WorldWideScience

Sample records for biosensor alarm devices

  1. Electrochemical nano biosensor alarm devices for the determination of endocrine disruptor agents

    International Nuclear Information System (INIS)

    The role of cytochrome P450 (CYP) enzyme systems in the detoxification of bioactive and hydrophobic xenobiotics, such as drugs, environmental pollutants, food supplements, steroids and endocrine disruptors, cannot be over-emphasized. In this study we present the development and amperometric transduction of cytochromal biosensor alarm device for the determination of endocrine disruptors. As a class II microsomal b-type heme enzyme, CYP3A4 requires the obligatory presence of electron transfer donor redox protein, NAD(P)H, and cytochrome b5 for its physiological reactivity. Optimal reconstitution assays preferably involves vesicle forming phospholipids, detergents and specialized reducing agents. Biosensor offers the possibility of observing direct electron transfer reaction of cytochrome P450-3A4 (CYP3A4) without the requirement of the enzyme's physiological redox partners (1,2). In this study, a nanobiosensor alarm device for the determination of 2,4-dichlorophenol (an endocrine disruptor and hepatocarcinogen) was developed with genetically engineered CYP3A4 imprinted on carbon electrode chips that was modified with polypyrrole-gold nanoparticles. The sensor amperometric signals resulted from the two-electron monooxygenation reaction between the ferri-heme CYP3A4 enzyme and the endocrine disruptor compound. The biosensor was interrogated electrochemically for its ability to detect and report the presence of the endocrine disruptor compound in real time. Accordingly, the response time, sensitivity, storage stability, dynamic linear range and detection limits of the device were evaluated. The biosensor alarm device had a detection limit of 43 ng/L for 2,4-dichlorophenol which is lower than the European Union limit of 300 ng/L for pesticide compounds in ground water; as well as the USA Environmental Protection Agency's drinking water equivalent level (DWEL) of 2000 ng/L (3,4). Chromatographic studies despite their tedious sample preparation and time-consuming pre

  2. "Turn it off!": diabetes device alarm fatigue considerations for the present and the future.

    Science.gov (United States)

    Shivers, Joseph P; Mackowiak, Linda; Anhalt, Henry; Zisser, Howard

    2013-05-01

    Safe and widespread use of diabetes technology is constrained by alarm fatigue: when someone receives so many alarms that he or she becomes less likely to respond appropriately. Alarm fatigue and related usability issues deserve consideration at every stage of alarm system design, especially as new technologies expand the potential number and complexity of alarms. The guiding principle should be patient wellbeing, while taking into consideration the regulatory and liability issues that sometimes contribute to building excessive alarms. With examples from diabetes devices, we illustrate two complementary frameworks for alarm design: a "patient safety first" perspective and a focus on human factors. We also describe opportunities and challenges that will come with new technologies such as remote monitoring, adaptive alarms, and ever-closer integration of glucose sensing with insulin delivery. PMID:23759412

  3. Optical Biosensors: A Revolution Towards Quantum Nanoscale Electronics Device Fabrication

    OpenAIRE

    Dey, D.; Goswami, T.

    2011-01-01

    The dimension of biomolecules is of few nanometers, so the biomolecular devices ought to be of that range so a better understanding about the performance of the electronic biomolecular devices can be obtained at nanoscale. Development of optical biomolecular device is a new move towards revolution of nano-bioelectronics. Optical biosensor is one of such nano-biomolecular devices that has a potential to pave a new dimension of research and device fabrication in the field of optical and biomedi...

  4. Graphene Electronic Device Based Biosensors and Chemical Sensors

    OpenAIRE

    Jiang, Shan

    2014-01-01

    Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first...

  5. Cell-Based Biosensors: Electrical Sensing in Microfluidic Devices

    OpenAIRE

    Noemi Rozlosnik; Katrine Kiilerich-Pedersen

    2012-01-01

    Cell-based biosensors provide new horizons for medical diagnostics by adopting complex recognition elements such as mammalian cells in microfluidic devices that are simple, cost efficient and disposable. This combination renders possible a new range of applications in the fields of diagnostics and personalized medicine. The review looks at the most recent developments in cell-based biosensing microfluidic systems with electrical and electrochemical transduction, and relevance to medical diagn...

  6. Flexural plate wave devices for biosensor platform

    Science.gov (United States)

    Yoon, Sang H.; Park, Jung-Hyun; Shen, Dongna; Kim, Dong-Joo

    2007-04-01

    Flexural plate wave (FPW) device is one of promising devices for biological sensor application, because its electronic circuit can be isolated from the medium being detected, and it shows low acoustic energy loss in liquid medium. Moreover, FPW device arrays on the silicon based substrate can be possible at low cost fabrication by micromachining technology, so that it offers batch processing for economic sensor fabrication. In this study, piezoelectric ZnO film was chosen as a material for a biological sensor platform, due to non-toxicity, and chemical and thermal stability. RF magnetron sputtering and chemical solution deposition (CSD) were investigated as film fabrication method. To launch and receive the acoustic wave through the piezoelectric material, it is required that the piezoelectric ZnO film have strong c-axis orientation in the device. For the magnetron RF sputtering, process parameters such as gas ratio, substrate types, and temperature, were varied, and heat treatment and substrate types for CSD. Results indicated that the preferred orientation and microstructure of ZnO films can be controlled by the variation of the process parameter, and that uniform and dense microstructures of ZnO films were obtained by both fabrication methods. CSD method showed, however, stronger dependence of the preferred orientation on substrate types while less dependence on the substrates for sputtering due to energetic sputtered species. Mechanism for ZnO thin film growth will be discussed. FPW devices have been successfully integrated onto 4 inch Si-wafer with 22 different interdigitated electrodes designs, and the device demonstrated the capability to detect biological quantity of 446.13 cm2/gram of sensitivity.

  7. Graphene-metal interfaces for biosensors devices

    Science.gov (United States)

    Zuppella, Paola; Gerlin, Francesca; Bacco, Davide; Corso, Alain J.; Tessarolo, Enrico; Nardello, Marco; Silvestrini, Simone; Maggini, Michele; Pelizzo, Maria G.

    2015-08-01

    Graphene-metals interfaces are investigated in many subject areas both applicative and speculative. The interest mainly stems from the possibility for CVD synthesis of large area graphene on metals. In this case the metal acts as a catalyst for complete dehydrogenetaion of hydrocarbon precursors that leaves carbon behind at the surface. Such bilayer are also very appealing for surface plasmon resonance devices, since graphene acts both as a protective layer and biorecognition element. Several pairs of graphene-metal interfaces have been studied in terms of SPR performance and physicalchemical properties at the interface. With regard to this last aspect, NEXAFS spectroscopy is a powerful method to study single-, double-, and few- layers graphene and to illustrate any evolution of the electronic states.

  8. Biosensors.

    Science.gov (United States)

    Rechnitz, Garry A.

    1988-01-01

    Describes theory and principles behind biosensors that incorporate biological components as part of a sensor or probe. Projects major applications in medicine and veterinary medicine, biotechnology, food and agriculture, environmental studies, and the military. Surveys current use of biosensors. (ML)

  9. Smart electrochemical biosensors: From advanced materials to ultrasensitive devices

    Energy Technology Data Exchange (ETDEWEB)

    Sadik, Omowunmi A., E-mail: osadik@binghamton.ed [Department of Chemistry, Center for Advanced Sensors and Environmental Monitoring (CASE), State University of New York-Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States); Mwilu, Samuel K.; Aluoch, Austin [Department of Chemistry, Center for Advanced Sensors and Environmental Monitoring (CASE), State University of New York-Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States)

    2010-05-30

    The specificity, simplicity, and inherent miniaturization afforded by advances in modern electronics have allowed electrochemical sensors to rival the most advanced optical protocols. One major obstacle in implementing electrochemistry for studying biomolecular reaction is its inadequate sensitivity. Recent reports however showed unprecedented sensitivities for biomolecular recognition using enhanced electronic amplification provided by new classes of electrode materials (e.g. carbon nanotubes, metal nanoparticles, and quantum dots). Biosensor technology is one area where recent advances in nanomaterials are pushing the technological limits of electrochemical sensitivities, thus allowing for the development of new sensor chemistries and devices. This work focuses on our recent work, based on metal-enhanced electrochemical detection, and those of others in combining advanced nanomaterials with electrochemistry for the development of smart sensors for proteins, nucleic acids, drugs and cancer cells.

  10. Fabrication of polyimide based microfluidic channels for biosensor devices

    International Nuclear Information System (INIS)

    The ever-increasing complexity of the fabrication process of Point-of-care (POC) devices, due to high demand of functional versatility, compact size and ease-of-use, emphasizes the need of multifunctional materials that can be used to simplify this process. Polymers, currently in use for the fabrication of the often needed microfluidic channels, have limitations in terms of their physicochemical properties. Therefore, the use of a multipurpose biocompatible material with better resistance to the chemical, thermal and electrical environment, along with capability of forming closed channel microfluidics is inevitable. This paper demonstrates a novel technique of fabricating microfluidic devices using polyimide (PI) which fulfills the aforementioned properties criteria. A fabrication process to pattern microfluidic channels, using partially cured PI, has been developed by using a dry etching method. The etching parameters are optimized and compared to those used for fully cured PI. Moreover, the formation of closed microfluidic channel on wafer level by bonding two partially cured PI layers or a partially cured PI to glass with high bond strength has been demonstrated. The reproducibility in uniformity of PI is also compared to the most commonly used SU8 polymer, which is a near UV sensitive epoxy resin. The potential applications of PI processing are POC and biosensor devices integrated with microelectronics. (paper)

  11. Graphene Electronic Device Based Biosensors and Chemical Sensors

    Science.gov (United States)

    Jiang, Shan

    Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first part of my thesis, I demonstrated the fabrication of graphene nanomesh (GNM), which is a graphene thin film with a periodic array of holes punctuated in it. The periodic holes introduce long periphery active edges that provide a high density of functional groups (e.g. carboxylic groups) to allow for covalent grafting of specific receptor molecules for chemical and biosensor applications. After covalently functionalizing the GNM with glucose oxidase, I managed to make a novel electronic sensor which can detect glucose as well as pH change. In the following part of my thesis I demonstrate the fabrication of graphene-hemin conjugate for nitric oxide detection. The non-covalent functionalization through pi-pi stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. The graphene-hemin nitric oxide sensor is capable of real-time monitoring of nitric oxide concentrations, which is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems, and immune responses. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their

  12. Rapid, Sensitive, and Reusable Detection of Glucose by a Robust Radiofrequency Integrated Passive Device Biosensor Chip

    OpenAIRE

    Nam-Young Kim; Kishor Kumar Adhikari; Rajendra Dhakal; Zorigt Chuluunbaatar; Cong Wang; Eun-Soo Kim

    2015-01-01

    Tremendous demands for sensitive and reliable label-free biosensors have stimulated intensive research into developing miniaturized radiofrequency resonators for a wide range of biomedical applications. Here, we report the development of a robust, reusable radiofrequency resonator based integrated passive device biosensor chip fabricated on a gallium arsenide substrate for the detection of glucose in water-glucose solutions and sera. As a result of the highly concentrated electromagnetic ener...

  13. BIOSENSORS

    Science.gov (United States)

    It has recently been proposed under the International Union of Pure and Applied Chemistry (IUPAC) Commission that biosensors be regarded as a subgroup of chemical sensors in which a biologically based mechanism is used for detection of the analyte. hemical sensors are defined und...

  14. A versatile biosensor device for continuous biomedical monitoring

    NARCIS (Netherlands)

    Rhemrev-Boom, MM; Korf, J; Venema, K; Urban, G; Vadgama, P

    2001-01-01

    Although biosensors are by means suitable for continuous biomedical monitoring, due to fouling and blood clotting, in vivo performance is far from optimal. For this reason, ultrafiltration, microdialysis or open tubular flow is frequently used as interface. To secure quantitative recoveries of the a

  15. Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients.

    Directory of Open Access Journals (Sweden)

    Barbara J Drew

    Full Text Available PURPOSE: Physiologic monitors are plagued with alarms that create a cacophony of sounds and visual alerts causing "alarm fatigue" which creates an unsafe patient environment because a life-threatening event may be missed in this milieu of sensory overload. Using a state-of-the-art technology acquisition infrastructure, all monitor data including 7 ECG leads, all pressure, SpO(2, and respiration waveforms as well as user settings and alarms were stored on 461 adults treated in intensive care units. Using a well-defined alarm annotation protocol, nurse scientists with 95% inter-rater reliability annotated 12,671 arrhythmia alarms. RESULTS: A total of 2,558,760 unique alarms occurred in the 31-day study period: arrhythmia, 1,154,201; parameter, 612,927; technical, 791,632. There were 381,560 audible alarms for an audible alarm burden of 187/bed/day. 88.8% of the 12,671 annotated arrhythmia alarms were false positives. Conditions causing excessive alarms included inappropriate alarm settings, persistent atrial fibrillation, and non-actionable events such as PVC's and brief spikes in ST segments. Low amplitude QRS complexes in some, but not all available ECG leads caused undercounting and false arrhythmia alarms. Wide QRS complexes due to bundle branch block or ventricular pacemaker rhythm caused false alarms. 93% of the 168 true ventricular tachycardia alarms were not sustained long enough to warrant treatment. DISCUSSION: The excessive number of physiologic monitor alarms is a complex interplay of inappropriate user settings, patient conditions, and algorithm deficiencies. Device solutions should focus on use of all available ECG leads to identify non-artifact leads and leads with adequate QRS amplitude. Devices should provide prompts to aide in more appropriate tailoring of alarm settings to individual patients. Atrial fibrillation alarms should be limited to new onset and termination of the arrhythmia and delays for ST-segment and other parameter

  16. A randomized controlled trial comparing the effects of counseling and alarm device on HAART adherence and virologic outcomes.

    Directory of Open Access Journals (Sweden)

    Michael H Chung

    2011-03-01

    Full Text Available BACKGROUND: Behavioral interventions that promote adherence to antiretroviral medications may decrease HIV treatment failure. Antiretroviral treatment programs in sub-Saharan Africa confront increasing financial constraints to provide comprehensive HIV care, which include adherence interventions. This study compared the impact of counseling and use of an alarm device on adherence and biological outcomes in a resource-limited setting. METHODS AND FINDINGS: A randomized controlled, factorial designed trial was conducted in Nairobi, Kenya. Antiretroviral-naïve individuals initiating free highly active antiretroviral therapy (HAART in the form of fixed-dose combination pills (d4T, 3TC, and nevirapine were randomized to one of four arms: counseling (three counseling sessions around HAART initiation, alarm (pocket electronic pill reminder carried for 6 months, counseling plus alarm, and neither counseling nor alarm. Participants were followed for 18 months after HAART initiation. Primary study endpoints included plasma HIV-1 RNA and CD4 count every 6 months, mortality, and adherence measured by monthly pill count. Between May 2006 and September 2008, 400 individuals were enrolled, 362 initiated HAART, and 310 completed follow-up. Participants who received counseling were 29% less likely to have monthly adherence <80% (hazard ratio [HR] = 0.71; 95% confidence interval [CI] 0.49-1.01; p = 0.055 and 59% less likely to experience viral failure (HIV-1 RNA ≥5,000 copies/ml (HR 0.41; 95% CI 0.21-0.81; p = 0.01 compared to those who received no counseling. There was no significant impact of using an alarm on poor adherence (HR 0.93; 95% CI 0.65-1.32; p = 0.7 or viral failure (HR 0.99; 95% CI 0.53-1.84; p = 1.0 compared to those who did not use an alarm. Neither counseling nor alarm was significantly associated with mortality or rate of immune reconstitution. CONCLUSIONS: Intensive early adherence counseling at HAART initiation resulted

  17. Electrochemical biosensors and logic devices based on aptamers

    Institute of Scientific and Technical Information of China (English)

    Zuo Xiaolei; Lin Meihua; Fan Chunhai

    2013-01-01

    Aptamers are molecular recognition elements with high specificity that are selected from deoxyribonucleic acid/ribonucleic acid (DNA/RNA) library.Compared with the traditional protein recognition elements,aptamers have excellent properties such as cost-effective,stable,easy for synthesis and modification.In recent years,electrochemistry plays an important role in biosensor field because of its high sensitivity,high stability,fast response and easy miniaturization.Through the combination of these two technologies and our rational design,we constructed a series of biosensors and biochips that are simple,fast,cheap and miniaturized.Firstly,we designed an adenosine triphosphate (ATP) electrochemical biosensor based on the strand displacement strategy.We can detect as low as 10 nmol/L of ATP both in pure solution and complicated cell lysates.Secondly,we creatively split the aptamers into two fragments and constructed the sandwich assay platform only based on single aptamer sequence.We successfully transferred this design on biochips with multiple micro electrodes (6×6) and accomplished multiplex detection.In the fields of biochips and biocomputers,we designed several DNA logic gates with electric (electrochemical) signal as output which paves a new way for the development of DNA computer.

  18. Fabrication of Optical Devices Based on Printable Photonics Technology and Its Application for Biosensor

    Science.gov (United States)

    Endo, Tatsuro; Okuda, Norimichi; Yanagida, Yasuko; Tanaka, Satoru; Hatsuzawa, Takeshi

    The specific optical characteristics which can be observed nanostructured optical device have great potentials for applying to several applications such as lifescience, optical communications, and data storage. Application of nanostrcutured optical device to industry, we suggest “printable photonics technology” for fabrication of nanostructured optical device based on nanoimprint lithography (NIL). In this study, using printable photonics technology, fabrication of flexible photonic crystal (PC) and its application for biosensor was performed. Using printable photonics technology-based PC for biosensing application, high sensitive detection of protein adsorption (detection limit: 1 pg/ml) could be detected.

  19. A biosensor based on graphene nanoribbon with nanopores: a first-principles devices-design

    Institute of Scientific and Technical Information of China (English)

    Ouyang Fang-Ping; Peng Sheng-Lin; Zhang Hua; Weng Li-Bo; Xu Hui

    2011-01-01

    A biosensor device, built from graphene nanoribbons (GNRs) with nanopores, was designed and studied by firstprinciples quantum transport simulation. We have demonstrated the intrinsic transport properties of the device and the effect of different nucleobases on device properties when they are located in the nanopores of GNRs. It was found that the device's current changes remarkably with the species of nucleobases, which originates from their different chemical compositions and coupling strengths with GNRs. In addition, our first-principles results clearly reveal that the distinguished ability of a device's current depends on the position of the pore to some extent. These results may present a new way to read off the nucleobases sequence of a single-stranded DNA (ssDNA) molecule by such GNRs-based device with designed nanopores

  20. “Turn It Off!”: Diabetes Device Alarm Fatigue Considerations for the Present and the Future

    OpenAIRE

    Shivers, Joseph P.; Mackowiak, Linda; Anhalt, Henry; Zisser, Howard

    2013-01-01

    Safe and widespread use of diabetes technology is constrained by alarm fatigue: when someone receives so many alarms that he or she becomes less likely to respond appropriately. Alarm fatigue and related usability issues deserve consideration at every stage of alarm system design, especially as new technologies expand the potential number and complexity of alarms. The guiding principle should be patient wellbeing, while taking into consideration the regulatory and liability issues that someti...

  1. Piezoelectric Mass-Sensing Devices as Biosensors-An Alternative to Optical Biosensors?

    Science.gov (United States)

    Janshoff; Galla; Steinem

    2000-11-17

    In the early days of electronic communication-as a result of the limited number of quartz resonators available-frequency adjustment was accomplished by a pencil mark depositing a foreign mass layer on the crystal. In 1959, Sauerbrey showed that the shift in resonance frequency of thickness-shear-mode resonators is proportional to the deposited mass. This was the starting point for the development of a new generation of piezoelectric mass-sensitive devices. However, it was the development of new powerful oscillator circuits that were capable of operating thickness shear mode resonators in fluids that enabled this technique to be introduced into bioanalytic applications. In the last decade adsorption of biomolecules on functionalized surfaces turned in to one of the paramount applications of piezoelectric transducers. These applications include the study of the interaction of DNA and RNA with complementary strands, specific recognition of protein ligands by immobilized receptors, the detection of virus capsids, bacteria, mammalian cells, and last but not least the development of complete immunosensors. Piezoelectric transducers allow a label-free detection of molecules; they are more than mere mass sensors since the sensor response is also influenced by interfacial phenomena, viscoelastic properties of the adhered biomaterial, surface charges of adsorbed molecules, and surface roughness. These new insights have recently been used to investigate the adhesion of cells, liposomes, and proteins onto surfaces, thus allowing the determination of the morphological changes of cells as a response to pharmacological substances and changes in the water content of biopolymers without employing labor-intense techniques. However, the future will show whether the quartz-crystal microbalance will assert itself against established label-free sensor devices such as surface plasmon resonance spectroscopy and interferometry. PMID:11093194

  2. Design of Alarm Clock

    OpenAIRE

    Budík, Marek

    2015-01-01

    The goal of this thesis is to create alarm clock, which respect the functional, technical and aesthetic requirements of this device and attain an attractive design of this product. The final draft should be innovative, original and user attractive alarm clock.

  3. Fabrication of polyimide based microfluidic channels for biosensor devices

    DEFF Research Database (Denmark)

    Zulfiqar, Azeem; Pfreundt, Andrea; Svendsen, Winnie Edith;

    2015-01-01

    fabrication of the often needed microfluidic channels, have limitations in terms of their physicochemical properties. Therefore, the use of a multipurpose biocompatible material with better resistance to the chemical, thermal and electrical environment, along with capability of forming closed channel...... microfluidics is inevitable. This paper demonstrates a novel technique of fabricating microfluidic devices using polyimide (PI) which fulfills the aforementioned properties criteria. A fabrication process to pattern microfluidic channels, using partially cured PI, has been developed by using a dry etching...... method. The etching parameters are optimized and compared to those used for fully cured PI. Moreover, the formation of closed microfluidic channel on wafer level by bonding two partially cured PI layers or a partially cured PI to glass with high bond strength has been demonstrated. The reproducibility in...

  4. 视觉报警信号检测工装设计%Designation of Visual Alarm Signals Test Device

    Institute of Scientific and Technical Information of China (English)

    许于春; 陈卓强; 邓潇彬

    2014-01-01

    As the state standard YY 0709 Medical electrical equipment-Part 1-8: General requirements for basic safety and essential performance-Col ateral standard: General requirements, tests and guidance for alarm systems in medical electrical equipment and medical electrical systems was to enforce. It is important to make the test easier and faster. This paper detailed description the designation of visual alarm signals test device.%国家行业标准Y Y 0709-2009《医用电气设备第1-8部分:安全通用要求并列标准:通用要求,医用电气设备和医用电气系统中报警系统的测试和指南》已于2010年12月01日实施,如何让检测工作变得更加简便快捷尤为重要。本文详细介绍了视觉报警信号检测工装的设计。

  5. Biosensors. Biosensoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, R.D. (TU Braunschweig (Germany) Gesellschaft fuer Biotechnologische Forschung (GBF), Braunschweig (Germany). Bereich Enzymtechnologie/Naturstoffchemie); Bilitewski, U. (Gesellschaft fuer Biotechnologische Forschung (GBF), Braunschweig (Germany). Abt. Enzymtechnologie)

    1992-08-01

    A biosensor is an analysis device in which a biological component (e.g. enzyme or antibody) is connected with a signal transducer. The signal transducer converts a biochemical primary reaction - or its chemical secondary reaction - into an optical or electrical signal. The most important measuring methods are described: Amperometric, potentiometric and optical biosensors; monomolecular films, flow injection systems and so on. Different applications for biosensors are introduced; e.g. in medicine, bioprocess control, food analysis and environmental protection. (orig.).

  6. A plastic total internal reflection-based photoluminescence device for enzymatic biosensors

    Science.gov (United States)

    Thakkar, Ishan G.

    Growing concerns for quality of water, food and beverages in developing and developed countries drive sizeable markets for mass-producible, low cost devices that can measure the concentration of contaminant chemicals in water, food, and beverages rapidly and accurately. Several fiber-optic enzymatic biosensors have been reported for these applications, but they exhibit very strong presence of scattered excitation light in the signal for sensing, requiring expensive thin-film filters, and their non-planar structure makes them challenging to mass-produce. Several other planar optical waveguide-based biosensors prove to be relatively costly and more fragile due to constituent materials and the techniques involved in their fabrication. So, a plastic total internal reflection (TIR)-based low cost, low scatter, field-portable device for enzymatic biosensors is fabricated and demonstrated. The design concept of the TIR-based photoluminescent enzymatic biosensor device is explained. An analysis of economical materials with appropriate optical and chemical properties is presented. PMMA and PDMS are found to be appropriate due to their high chemical resistance, low cost, high optical transmittance and low auto-fluorescence. The techniques and procedures used for device fabrication are discussed. The device incorporated a PMMA-based optical waveguide core and PDMS-based fluid cell with simple multi-mode fiber-optics using cost-effective fabrication techniques like molding and surface modification. Several techniques of robustly depositing photoluminescent dyes on PMMA core surface are discussed. A pH-sensitive fluorescent dye, fluoresceinamine, and an O2-sensitive phosphorescent dye, Ru(dpp) both are successfully deposited using Si-adhesive gel-based as well as HydroThane-based deposition methods. Two different types of pH-sensors using two different techniques of depositing fluoresceinamine are demonstrated. Also, the effect of concentration of fluoresceinamine-dye molecules

  7. Clinical Alarms in Intensive Care Units: Perceived Obstacles of Alarm Management and Alarm Fatigue in Nurses

    OpenAIRE

    Cho, Ok Min; Kim, Hwasoon; Lee, Young Whee; Cho, Insook

    2016-01-01

    Objectives The purpose of this descriptive study was to investigate the current situation of clinical alarms in intensive care unit (ICU), nurses' recognition of and fatigue in relation to clinical alarms, and obstacles in alarm management. Methods Subjects were ICU nurses and devices from 48 critically ill patient cases. Data were collected through direct observation of alarm occurrence and questionnaires that were completed by the ICU nurses. The observation time unit was one hour block. On...

  8. 21 CFR 876.2040 - Enuresis alarm.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enuresis alarm. 876.2040 Section 876.2040 Food and... GASTROENTEROLOGY-UROLOGY DEVICES Monitoring Devices § 876.2040 Enuresis alarm. (a) Identification. An enuresis... type of device includes conditioned response enuresis alarms. (b) Classification. Class II...

  9. Alarming atmospheres

    DEFF Research Database (Denmark)

    Højlund, Marie; Kinch, Sofie

    2014-01-01

    . As a response to this situation, our design artefact, the interactive furniture Kidkit, invites children to become accustomed to the alarming sounds sampled from the ward while they are waiting in the waiting room. Our design acknowledges how atmospheres emerge as temporal negotiations between the...

  10. Biosensor and its Clinical Application

    OpenAIRE

    Amandeep kaur1; Minni Verma; Kamaljit Singh

    2013-01-01

    A biosensor is a device for the detection of an analyte that combines a biological component with a physicochemical detector component. The biological component of a biosensor may be the enzyme, whole cells, organelles, tissues, receptor antibodies, nucleic acid, etc. Applications of biosensor are widespread in healthcare, clinical diagnostics, veterinary medicines and chemical industry. Electrochemical biosensors have emerged as the most commonly used biosensor e.g. commercial glucose biosen...

  11. In vivo continuous and simultaneous monitoring of brain energy substrates with a multiplex amperometric enzyme-based biosensor device.

    Science.gov (United States)

    Cordeiro, C A; de Vries, M G; Ngabi, W; Oomen, P E; Cremers, T I F H; Westerink, B H C

    2015-05-15

    Enzyme-based amperometric biosensors are widely used for monitoring key biomarkers. In experimental neuroscience there is a growing interest in in vivo continuous and simultaneous monitoring of metabolism-related biomarkers, like glucose, lactate and pyruvate. The use of multiplex biosensors will provide better understanding of brain energy metabolism and its role in neuropathologies such as diabetes, ischemia, and epilepsy. We have developed and characterized an implantable multiplex microbiosensor device (MBD) for simultaneous and continuous in vivo monitoring of glucose, lactate, and pyruvate. First, we developed and characterized amperometric microbiosensors for monitoring lactate and pyruvate. In vitro evaluation allowed us to choose the most suitable biosensors for incorporation into the MBD, along with glucose and background biosensors. Fully assembled MBDs were characterized in vitro. The calculated performance parameters (LOD, LR, LRS, IMAX and appKM) showed that the multiplex MBD was highly selective and sensitive (LRS≥100 nA/mM) for each analyte and within an adequate range for in vivo application. Finally, MBDs were implanted in the mPFC of anesthetized adult male Wistar rats for in vivo evaluation. Following an equilibration period, baseline brain levels of glucose (1.3±0.2 mM), lactate (1.5±0.4 mM) and pyruvate (0.3±0.1 mM) were established. Subsequently, the MBDs recorded the responses of the animals when submitted to hyperglycemic (40% glucose i.v.) and hypoglycemic (5 U/kg insulin i.v.) challenges. Afterwards, MBDs were recalibrated to convert electrochemical readings into accurate substrate concentrations and to assess biofouling. The presented MBD can monitor simultaneously multiple biomarkers in vivo. PMID:25459054

  12. 21 CFR 870.1100 - Blood pressure alarm.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood pressure alarm. 870.1100 Section 870.1100...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1100 Blood pressure alarm. (a) Identification. A blood pressure alarm is a device that accepts the signal from a blood...

  13. Alarm filtering and presentation

    International Nuclear Information System (INIS)

    This paper discusses alarm filtering and presentation in the control room of nuclear and other process control plants. Alarm generation and presentation is widely recognized as a general process control problem. Alarm systems often fail to provide meaningful alarms to operators. Alarm generation and presentation is an area in which computer aiding is feasible and provides clear benefits. Therefore, researchers have developed several computerized alarm filtering and presentation approaches. This paper discusses problems associated with alarm generation and presentation. Approaches to improving the alarm situation and installation issues of alarm system improvements are discussed. The impact of artificial intelligence (AI) technology on alarm system improvements is assessed. (orig.)

  14. Paper-based enzyme immobilization for flow injection electrochemical biosensor integrated with reagent-loaded cartridge toward portable modular device.

    Science.gov (United States)

    Tan, Swee Ngin; Ge, Liya; Tan, Hsih Yin; Loke, Weng Keong; Gao, Jinrong; Wang, Wei

    2012-11-20

    Paper-based enzyme immobilization for a flow injection electrochemical biosensor integrated with a reagent-loaded cartridge toward a portable device was developed. A paper disk was immobilized with enzyme, then it was integrated in a flow cell as an electrochemical biosensor. A silicon tube reagent-loaded cartridge was integrated into the system, a complicated procedure was simplified as a one-click operation toward development for point-of-care applications. In this research, glucose oxidase (GOx) was employed as a model enzyme, silver ion as an inhibition reagent for GOx, and EDTA as a regeneration reagent. When GOx was inhibited by silver ions, glucose was introduced for electrochemical measurements before and after inhibited enzyme regeneration and the difference was caused by silver inhibition. The modular device has great potential for other applications, e.g., detection of enzyme activity and substrate. The platform based on double-test mode provided accurate results due to elimination of an average or control value in comparison with classical routine approaches. PMID:23116304

  15. The IsoStretcher: An isotropic cell stretch device to study mechanical biosensor pathways in living cells.

    Science.gov (United States)

    Schürmann, S; Wagner, S; Herlitze, S; Fischer, C; Gumbrecht, S; Wirth-Hücking, A; Prölß, G; Lautscham, L A; Fabry, B; Goldmann, W H; Nikolova-Krstevski, V; Martinac, B; Friedrich, O

    2016-07-15

    Mechanosensation in many organs (e.g. lungs, heart, gut) is mediated by biosensors (like mechanosensitive ion channels), which convert mechanical stimuli into electrical and/or biochemical signals. To study those pathways, technical devices are needed that apply strain profiles to cells, and ideally allow simultaneous live-cell microscopy analysis. Strain profiles in organs can be complex and multiaxial, e.g. in hollow organs. Most devices in mechanobiology apply longitudinal uniaxial stretch to adhered cells using elastomeric membranes to study mechanical biosensors. Recent approaches in biomedical engineering have employed intelligent systems to apply biaxial or multiaxial stretch to cells. Here, we present an isotropic cell stretch system (IsoStretcher) that overcomes some previous limitations. Our system uses a rotational swivel mechanism that translates into a radial displacement of hooks attached to small circular silicone membranes. Isotropicity and focus stability are demonstrated with fluorescent beads, and transmission efficiency of elastomer membrane stretch to cellular area change in HeLa/HEK cells. Applying our system to lamin-A overexpressing fibrosarcoma cells, we found a markedly reduced stretch of cell area, indicative of a stiffer cytoskeleton. We also investigated stretch-activated Ca(2+) entry into atrial HL-1 myocytes. 10% isotropic stretch induced robust oscillating increases in intracellular Fluo-4 Ca(2+) fluorescence. Store-operated Ca(2+) entry was not detected in these cells. The Isostretcher provides a useful versatile tool for mechanobiology. PMID:26991603

  16. Alarm system advances and innovations

    International Nuclear Information System (INIS)

    Alarm: 'a signal (as a loud noise or flashing light) that warns or alerts; also: a device that signals... '. This statement, this definition as simple as it is sums up every alarm system for every control system that has ever existed, but what it's missing from it is the complexity and uniqueness required by a Nuclear Power Plant. With advances in computerized control and engineering technologies within these plants, the need for more comprehensive alarm control and monitoring systems is as critical as the operation itself. (authors)

  17. Means and methods used to check radiation detection, signalling and alarm devices in the centralized environment control systems of the INB of CEN-Saclay

    International Nuclear Information System (INIS)

    Having reviewed the prescribed technical measures concerning 'systematic environment controls' in INB (Installations nucleaires de base - basic nuclear facilities) and published in the J.O. (French Official Journal) the authors briefly describe the main radiation detection, signalling and alarm systems at present installed in INB of CEN-Saclay and weigh up the extent to which their characteristics comply with the statutory texts. They then develop the means and methods set up to check on the good working order of these devices which are integrated in centralised one-piece modular analogue or informatics type control systems possible functioning anomalies being classed in two categories: logic type anomalies corresonding to a straightforward breakdown where detection is permanent; developing anomalies corresponding to poor functioning where detection requires a more critical and periodic control. The authors demonstrate the advantages offered by centralised computer type control systems

  18. The effect of a SiO2 layer on the performance of a ZnO-based SAW device for high sensitivity biosensor applications

    International Nuclear Information System (INIS)

    The properties of ZnO/SiO2/Si surface acoustic wave (SAW) love mode biosensors are studied in this paper. This specific structure is very suitable for biosensors since the reactive ZnO surface offers the opportunity for effective bio–ZnO interfaces, and the development of sensors directly on Si substrates provides the chance for full integration with read-out and signal processing circuitry in the mature Si technology. However, investigations of the dependence of buffer layer SiO2 on the performance of biosensors are very few. Therefore, the main interest of this paper is to find the relation between the properties of biosensors and the SiO2 layer. Some important results are obtained by solving the coupled electromechanical field equations. It is found that the mass loading sensitivity can be further improved by adding the SiO2 layer; furthermore, the maximal sensitivity of the biosensors can be obtained by adjusting the thicknesses of the two layers. Accordingly, consideration of the buffer layer is very important in the optimization of devices. On the other hand, it is found that the thickness of the piezoelectric guiding layer has an evident effect on the electromechanical coupling coefficient, while that of the SiO2 layer has a tiny effect on it. Moreover, we find that the effect of initial stresses on the properties of biosensors depends on the distribution of acoustic flow power in the two layers. This analysis is meaningful for the manufacture and applications of the ZnO/SiO2/Si structure love wave biosensor

  19. Results from prototypes of environmental and health alarm devices based on gaseous detectors operating in air in counting mode

    CERN Document Server

    Martinengo, P; Peskov, V; Benaben, P; Charpak, G; Breuil, P

    2011-01-01

    We have developed and successfully tested two prototypes of detectors of dangerous gases based on wire-type counters operating in air in avalanche mode: one is for radon (Rn) detection whereas the other one is for the detection of gases with an ionization potential less than the air components. Due to the operation in pulse counting mode these prototypes have sensitivities comparable to (in the case of the Rn detector) or much higher than (in the case of the detector for low ionization gases) the best commercial devices currently available on the market. We believe that due to their high sensitivity, simplicity and low cost such new detectors will find massive applications. One of them, discussed in this paper, could be the on-line monitoring of Rn for the prediction of earthquakes. (C) 2010 Elsevier B.V. All rights reserved.

  20. 公路桥涵汽车用电子限高报警系统(Ⅰ)——电子限高报警装置的原理与基本要求%Electronic Height Limit Alarm System of Highway Bridge Culvert Automobile(Ⅰ)——principle and essential requirements of electronic height limit alarm device

    Institute of Scientific and Technical Information of China (English)

    刘长生

    2011-01-01

    公路桥涵车用电子限高报警装置,是一种防止超高车辆撞坏桥涵的自动检测报警装置。文中描述这种专用电子限高装置的工作原理、基本要求以及常用的激光检测器与红外检测器的性能,为下一步进行设计公路桥涵车用电子限高报警装置提供必要的理论依据。%Electronic height limit alarm device of highway bridge culvert vehicle is an automatic detection and alarm device that prevents bridge and culver being destroyed by high vehicles.The working principles and essential requirements of the special device together with the performance of laser and infrared detectors commonly used were described in this paper,which could provide necessary theoretical basis for the design of electronic height limit alarm device applied in highway bridge culvert vehicles.

  1. Alarm analysis

    Energy Technology Data Exchange (ETDEWEB)

    Esp, D.G.; Warwick, K.

    1997-12-31

    The electrical power distribution network in the UK is a distributed grid of high power components. The grid is controlled hierarchically with, at the lower level, proximal components being grouped around substations which contain not only protection elements but also sequencing and timing logic. At the next level up the substations feed to a control centre which, for historical reasons, can be viewed in terms of a number of different geographical areas, each area control containing its own regional substations. When a fault occurs on the transmission network, automatic protection and isolation occurs at a number of substations, opening switches to ensure that power is no longer fed to the faulty line, and that the disturbance on the remainder of the grid is effectively minimised. Details on which of the switches have operated are passed on to the control centre which continually polls round the different substations to see what switchgear information each has. No direct information is obtained on what type of fault has occurred and where, but rather information is obtained in the control centre which indicates whch switches and automatic protection devices have operated in response to the fault. (Author)

  2. Biosensors for hepatitis B virus detection

    OpenAIRE

    Yao, Chun-Yan; Fu, Wei-Ling

    2014-01-01

    A biosensor is an analytical device used for the detection of analytes, which combines a biological component with a physicochemical detector. Recently, an increasing number of biosensors have been used in clinical research, for example, the blood glucose biosensor. This review focuses on the current state of biosensor research with respect to efficient, specific and rapid detection of hepatitis B virus (HBV). The biosensors developed based on different techniques, including optical methods (...

  3. Insights into the problem of alarm fatigue with physiologic monitor devices: A comprehensive observational study of consecutive intensive care unit patients

    OpenAIRE

    Drew, BJ; Harris, P.; Zègre-Hemsey, JK; Mammone, T; Schindler, D; Salas-Boni, R; Bai, Y.(Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China); Tinoco, A.; Q. Ding; Hu, X

    2014-01-01

    © 2014 Drew et al. Purpose: Physiologic monitors are plagued with alarms that create a cacophony of sounds and visual alerts causing "alarm fatigue" which creates an unsafe patient environment because a life-threatening event may be missed in this milieu of sensory overload. Using a state-of-the-art technology acquisition infrastructure, all monitor data including 7 ECG leads, all pressure, SpO2, and respiration waveforms as well as user settings and alarms were stored on 461 adults treated i...

  4. In vivo continuous and simultaneous monitoring of brain energy substrates with a multiplex amperometric enzyme-based biosensor device

    NARCIS (Netherlands)

    De Lima Braga Lopes Cordeiro, Carlos; de Vries, M.G.; Ngabi, W; Oomen, P.E.; Cremers, T.I.F.H.; Westerink, B.H.C.

    2015-01-01

    Enzyme-based amperometric biosensors are widely used for monitoring key biomarkers. In experimental neuroscience there is a growing interest in in vivo continuous and simultaneous monitoring of metabolism-related biomarkers, like glucose, lactate and pyruvate. The use of multiplex biosensors will pr

  5. Optimal Alarm Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — An optimal alarm system is simply an optimal level-crossing predictor that can be designed to elicit the fewest false alarms for a fixed detection probability. It...

  6. Biosensor nanomaterials

    CERN Document Server

    Li, Songjun; Li, He; Banerjee, Ipsita A

    2011-01-01

    Focusing on the materials suitable for biosensor applications, such as nanoparticles, quantum dots, meso- and nanoporous materials and nanotubes, this text enables the reader to prepare the respective nanomaterials for use in actual devices by appropriate functionalization, surface processing or directed self-assembly. The main detection methods used are electrochemical, optical, and mechanical, providing solutions to challenging tasks.The result is a reference for researchers and developers, disseminating first-hand information on which nanomaterial is best suited to a particular applicat

  7. Biosensors : Fundamentals and Applications

    OpenAIRE

    1987-01-01

    This truly interdisciplinary work is the first substantial and comprehensive book to describe the biosensor, an important new technology combining the specificity and sensitivity of biological systems with the computing capabilities of the micro-processor. Biosensors hold enormous potential: they can monitor personal health and fitness, the food we eat, and our environment. They can replace the large analytical facilities of industrial and health services with cheap and simple devices anyone ...

  8. Simulation and fabrication of a new novel 3D injectable biosensor for high throughput genomics and proteomics in a lab-on-a-chip device

    International Nuclear Information System (INIS)

    Biosensors are used for the detection of biochemical molecules such as proteins and nucleic acids. Traditional techniques, such as enzyme-linked immuno-sorbent assay (ELISA), are sensitive but require several hours to yield a result and usually require the attachment of a fluorophore molecule to the target molecule. Micromachined biosensors that employ electrical detection are now being developed. Here we describe one such device, which is ultrasensitive, real-time, label free and localized. It is called the nanoneedle biosensor and shows promise to overcome some of the current limitations of biosensors. The key element of this device is a 10 nm wide annular gap at the end of the needle, which is the sensitive part of the sensor. The total diameter of the sensor is about 100 nm. Any change in the population of molecules in this gap results in a change of impedance across the gap. Single molecule detection should be possible because the sensory part of the sensor is in the range of bio-molecules of interest. To increase throughput we can flow the solution containing the target molecules over an array of such structures, each with its own integrated read-out circuitry to allow ‘real-time’ detection (i.e. several minutes) of label free molecules without sacrificing sensitivity. To fabricate the arrays we used electron beam lithography together with associated pattern transfer techniques. Preliminary measurements on individual needle structures in water are consistent with the design. Since the proposed sensor has a rigid nano-structure, this technology, once fully developed, could ultimately be used to directly monitor protein quantities within a single living cell, an application that would have significant utility for drug screening and studying various intracellular signaling pathways. (paper)

  9. Fundamental Aspects of Biosensors

    Directory of Open Access Journals (Sweden)

    K.Sowjanya

    2016-06-01

    Full Text Available A biosensor is an analytical device which converts a biological response into an electrical signal. The term 'biosensor' is often used to cover sensor devices used in order to determine the concentration of substances and other parameters of biological interest even where they do not utilize a biological system directly. This very broad definition is used by some scientific journals (e.g. Biosensors, Elsevier Applied Science but will not be applied to the coverage here. The emphasis of this Chapter concerns enzymes as the biologically responsive material, but it should be recognized that other biological systems may be utilized by biosensors, for example, whole cell metabolism, ligand binding and the antibody-antigen reaction. Biosensors represent a rapidly expanding field, at the present time, with an estimated 60% annual growth rate; the major impetus coming from the health-care industry (e.g. 6% of the western world are diabetic and would benefit from the availability of a rapid, accurate and simple biosensor for glucose but with some pressure from other areas, such as food quality appraisal and environmental monitoring. The estimated world analytical market is about 12,000,000,000 year- 1 of which 30% is in the health care area. There is clearly a vast market expansion potential as less than 0.1% of this market is currently using biosensors. Research and development in this field is wide and multidisciplinary, spanning biochemistry, bioreactor science, physical chemistry, electrochemistry, electronics and software engineering. Most of this current endeavour concerns potentiometric and amperometric biosensors and colorimetric paper enzyme strips. However, all the main transducer types are likely to be thoroughly examined, for use in biosensors, over the next few years.

  10. Portable axle temperature alarming device for railway train%铁路列车便携式轴温报警装置的研制

    Institute of Scientific and Technical Information of China (English)

    徐超凡; 姜璐; 刘飞; 康旭韡; 曹源

    2016-01-01

    The high temperature of the train axle could bring dangerous to the train operation, so it is very important to detect train axle temperature. This research was different from the design of other axle temperature detection. Mobile phone with Android platform and ARM11 development board was used to communicate with each other in order to implement real-time monitoring of temperature. Wi-Fi technology was used to receive real-time data from the development board, and the mobile phone was used to receive data in the socket communication process, while the ARM development board worked as the client to send temperature data, so that the mechanical engineer could observe the temperature values of each axle at any position of the train. After testing, the portable axle temperature alarming device for railway train could implement the function of axle temperature detection and transmit the data of axle temperature to the intelligent handheld terminal through wireless communication.%列车轴温过高会给列车运行带来危险,因此列车轴温检测系统的意义重大。本研究不同于其他轴温检测设计,采用Android平台手机与ARM11开发板相互通信以实现对温度的实时监测。设计中采用Wi-Fi技术进行实时接收开发板采集的轴温数据,并将手机作为Socket通信过程中的服务器端接收数据,ARM开发板作为客户端发送轴温数据,使机械师能够在列车的任意位置对每一车轴的温度值进行实时观测。经测试,研制的铁路列车便携式轴温报警装置基本实现了轴温检测和无线发送轴温数据到智能手持终端的功能。

  11. Safety alarms at CERN

    CERN Document Server

    Ninin, P; Henny, L

    1998-01-01

    In order to operate the CERN accelerators complex safely, the acquisition, transport and management of safety alarms is of crucial importance. The French regulatory authority [Direction de Sûreté des Installations Nucléaires de Base (INB)] defines them as Level 3 alarms; they represent as such a danger for the life and require an immediate intervention of the Fire Brigade. Safety alarms are generated by fire and flammable gas detection systems, electrical emergency stops, and other safety related systems. Level 3 alarms are transmitted for reliability reasons to their operation centre: the CERN Safety Control Room (SCR) using two different media: the hard-wired network and a computer based system. The hard-wired networks are connected to local panels summarizing in 34 security areas the overall CERN geography. The computer based system offers data management facilities such as alarm acquisition, distribution, archiving and information correlation. The Level 3 alarms system is in constant evolution in order...

  12. Perspectives on use of personal alarms by older fallers

    Directory of Open Access Journals (Sweden)

    Kylie Johnston

    2010-08-01

    Full Text Available Kylie Johnston1, Karen Grimmer-Somers1, Michele Sutherland21International Centre for Allied Health Evidence, University of South Australia, Adelaide; 2Falls Prevention Unit, Department of Health, Government of South Australia, Adelaide, AustraliaBackground: Personal alarms are proposed as a reliable mechanism for older people to obtain assistance after falling. However, little is known about how older people feel about owning and using personal alarms.Aim: This paper reports on experiences of independently living older people, who have recently fallen, regarding alarm use and their independence.Method: Volunteers older than 65 years who had sustained a fall in the previous six months were sought via community invitations. Semistructured telephone interviews were conducted to gain information about their fall and their perspectives on personal alarm use. Interviews were content-analyzed to identify key concepts and themes.Results: Thirty-one interviews were conducted. Twenty callers owned personal alarms. Four subgroups of older fallers were identified; the first group used personal alarms effectively and were advocates for their benefits, the second group owned an alarm but did not use it effectively, the third group did not own alarms mostly because of cost, although were receptive to an alarm should one be provided, and the fourth group did not have an alarm and would not use it even if it was provided.Discussion: Personal alarms produce positive experiences when used effectively by the right people. The cost of personal alarms prohibits some older fallers from being effective alarm users. However, other elderly fallers remain unwilling to consider alarm use even if one was provided. In view of their cost, personal alarms should be targeted to people who will benefit most. ­Alternative strategies should be considered when alarms are unlikely to be used appropriately.Keywords: personal alarm devices, falls, older people, patient perspective

  13. Simultaneous real-time monitoring of oxygen consumption and hydrogen peroxide production in cells using our newly developed chip-type biosensor device

    Directory of Open Access Journals (Sweden)

    Ankush ePrasad

    2016-03-01

    Full Text Available All living organisms bear its defense mechanism. Immune cells during invasion by foreign body undergoes phagocytosis during which monocyte and neutrophil produces reactive oxygen species (ROS. The ROS generated in animal cells are known to be involved in several diseases and ailments, when generated in excess. Therefore, if the ROS generated in cells can be measured and analyzed precisely, it can be employed in immune function evaluation and disease detection. The aim of the current study is to introduce our newly developed chip-type biosensor device with high specificity and sensitivity. It comprises of counter electrode and working electrodes I and II. The counter electrode is a platinum plate while the working electrodes I and II are platinum microelectrode and osmium-horseradish peroxidase modified gold electrode, respectively which acts as oxygen and hydrogen peroxide (H2O2 detection sensors. Simultaneous measurement of oxygen consumption and H2O2 generation were measured in animal cells under the effect of exogenous addition of differentiation inducer, phorbol 12-myristate 13-acetate. The results obtained showed considerable changes in reduction currents in the absence and presence of inducer. Our newly developed chip-type biosensor device is claimed to be a useful tool for real-time monitoring of the respiratory activity and precise detection of H2O2 in cells. It can thus be widely applied in biomedical research and in clinical trials being an advancement over other H2O2 detection techniques.

  14. Intelligent Alarm Management System (IAMS)

    International Nuclear Information System (INIS)

    A large number of alarms in a nuclear power plant (NPP) are related to one causative event/alarm. When such an event happens, it triggers a cascade of alarms (called alarm avalanche) that comes in quick succession. These alarms may or may not come in a particular time-sequence each time the cause event is triggered. Alarm avalanches in an emergency situation can affect the performance of even the most seasoned operators. If a cause-consequence relationship can be established among a set of alarms, then such avalanches can be avoided by annunciating only the rootcause alarm. Intelligent Alarm Management System (IAMS) is a knowledge-based alarm processing system to reduce the number of presented alarms. The processing is based on the functional cause-consequence knowledge-base of the plant, wherein an alarm on a function denotes degradation/unavailability of the function.The knowledge is modeled using a graphical construct called Function Graph. (author)

  15. Smart smoke alarm

    Energy Technology Data Exchange (ETDEWEB)

    Warmack, Robert J. Bruce; Wolf, Dennis A; Frank, Steven Shane

    2015-04-28

    Methods and apparatus for smoke detection are disclosed. In one embodiment, a smoke detector uses linear discriminant analysis (LDA) to determine whether observed conditions indicate that an alarm is warranted.

  16. Speech Alarms Pilot Study

    Science.gov (United States)

    Sandor, Aniko; Moses, Haifa

    2016-01-01

    Speech alarms have been used extensively in aviation and included in International Building Codes (IBC) and National Fire Protection Association's (NFPA) Life Safety Code. However, they have not been implemented on space vehicles. Previous studies conducted at NASA JSC showed that speech alarms lead to faster identification and higher accuracy. This research evaluated updated speech and tone alerts in a laboratory environment and in the Human Exploration Research Analog (HERA) in a realistic setup.

  17. Biosensors for hepatitis B virus detection.

    Science.gov (United States)

    Yao, Chun-Yan; Fu, Wei-Ling

    2014-09-21

    A biosensor is an analytical device used for the detection of analytes, which combines a biological component with a physicochemical detector. Recently, an increasing number of biosensors have been used in clinical research, for example, the blood glucose biosensor. This review focuses on the current state of biosensor research with respect to efficient, specific and rapid detection of hepatitis B virus (HBV). The biosensors developed based on different techniques, including optical methods (e.g., surface plasmon resonance), acoustic wave technologies (e.g., quartz crystal microbalance), electrochemistry (amperometry, voltammetry and impedance) and novel nanotechnology, are also discussed. PMID:25253948

  18. HOME INSECURITY: NO ALARMS, FALSE ALARMS, AND SIGINT

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, Logan M [ORNL

    2014-01-01

    The market share of home security systems has substantially increased as vendors incorporate more desirable features: intrusion detection, automation, wireless, and LCD touch panel controls. Wireless connectivity allows vendors to manufacture cheaper, more featureful products that require little to no home modification to install. Consumer win, since adding devices is easier. The result: an ostensibly more secure, convenient, and connected home for a larger number of citizens. Sadly, this hypothesis is flawed; the idea of covering a home with more security sensors does not translate into a more secure home. Additionally, the number of homes using these vulnerable systems is large, and the growth rate is increasing producing a even larger problem. In this talk, I will demonstrate a generalized approach for compromising three systems: ADT, the largest home security dealer in North America; Honeywell, one of the largest manufacturers of security devices; and Vivint, a top 5 security dealer. We will suppress alarms, create false alarms, and collect artifacts that facilitate tracking the movements of individuals in their homes.

  19. Video methods for evaluating physiologic monitor alarms and alarm responses.

    Science.gov (United States)

    Bonafide, Christopher P; Zander, Miriam; Graham, Christian Sarkis; Weirich Paine, Christine M; Rock, Whitney; Rich, Andrew; Roberts, Kathryn E; Fortino, Margaret; Nadkarni, Vinay M; Lin, Richard; Keren, Ron

    2014-01-01

    False physiologic monitor alarms are extremely common in the hospital environment. High false alarm rates have the potential to lead to alarm fatigue, leading nurses to delay their responses to alarms, ignore alarms, or disable them entirely. Recent evidence from the U.S. Food and Drug Administration (FDA) and The Joint Commission has demonstrated a link between alarm fatigue and patient deaths. Yet, very little scientific effort has focused on the rigorous quantitative measurement of alarms and responses in the hospital setting. We developed a system using multiple temporarily mounted, minimally obtrusive video cameras in hospitalized patients' rooms to characterize physiologic monitor alarms and nurse responses as a proxy for alarm fatigue. This allowed us to efficiently categorize each alarm's cause, technical validity, actionable characteristics, and determine the nurse's response time. We describe and illustrate the methods we used to acquire the video, synchronize and process the video, manage the large digital files, integrate the video with data from the physiologic monitor alarm network, archive the video to secure servers, and perform expert review and annotation using alarm "bookmarks." We discuss the technical and logistical challenges we encountered, including the root causes of hardware failures as well as issues with consent, confidentiality, protection of the video from litigation, and Hawthorne-like effects. The description of this video method may be useful to multidisciplinary teams interested in evaluating physiologic monitor alarms and alarm responses to better characterize alarm fatigue and other patient safety issues in clinical settings. PMID:24847936

  20. Tiny Medicine: Nanomaterial-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Nelson Watts

    2009-11-01

    Full Text Available Tiny medicine refers to the development of small easy to use devices that can help in the early diagnosis and treatment of disease. Early diagnosis is the key to successfully treating many diseases. Nanomaterial-based biosensors utilize the unique properties of biological and physical nanomaterials to recognize a target molecule and effect transduction of an electronic signal. In general, the advantages of nanomaterial-based biosensors are fast response, small size, high sensitivity, and portability compared to existing large electrodes and sensors. Systems integration is the core technology that enables tiny medicine. Integration of nanomaterials, microfluidics, automatic samplers, and transduction devices on a single chip provides many advantages for point of care devices such as biosensors. Biosensors are also being used as new analytical tools to study medicine. Thus this paper reviews how nanomaterials can be used to build biosensors and how these biosensors can help now and in the future to detect disease and monitor therapies.

  1. Biosensors in forensic sciences

    Directory of Open Access Journals (Sweden)

    Frederickx, C.

    2011-01-01

    Full Text Available A biosensor is a device that uses biological materials to detect and monitor the presence of specific chemicals in an area. Traditional methods of volatile detection used by law enforcement agencies and rescue teams typically consist of reliance on canine olfaction. This concept of using dogs to detect specific substances is quite old. However, dogs have some limitations such as cost of training and time of conditioning. Thus, the possibility of using other organisms as biosensors including rats, dolphins, honeybees, and parasitic wasps for detecting explosives, narcotics and cadavers has been developed. Insects have several advantages unshared by mammals. Insects are sensitive, cheap to produce and can be conditioned with impressive speed for a specific chemical-detection task. Moreover, insects might be a preferred sensing method in scenarios that are deemed too dangerous to use mammals. The purpose of this review is to provide an overview of the biosensors used in forensic sciences.

  2. Biosensors in Endocrinology- Review Article

    Directory of Open Access Journals (Sweden)

    Farnoush FARIDBOD

    2015-10-01

    Full Text Available Biosensors are classes of sensors in which at least a biological process is used in sensing procedure. They are generally composed of three parts: a sensing element, a transducer, and a signal processor (or detector. They can be categorized by type of sensing materials or by detection techniques. From their invention time up to now, various biological species have been analyzed using variety of biosensors. They have been widely used for environmental, industrial, pharmaceutical and clinical applications in many research papers. Perhaps the number of biosensors which had a chance to commercialize and enter to the market is limited, but by recent developments in science and technology, day-by-day, the number of commercial biosensors are growing. Their importance in clinical medicine can be found in determination of biomarkers for early diagnosis of disease or for control and manage of them in point-of-care devices. Diagnosis and control of many endocrine diseases and metabolic disorders depend strongly on determination of chemicals, hormones and antibodies. A large number of biosensors research studies have focused on determination of these biomolecules. One of the famous commercial biosensor is widely used in management of diabetes is glucometer. They are portable commercial biosensors which measure the amount of glucose in a blood drop. The main challenges in designing biosensors are decrease the limit of detection, increasing the sensitivity and accuracy in an analysis, increasing lifetime and miniaturization. Even scientists are now trying to develop biosensors for non-invasive measurements of biomarkers in saliva or tears. Keywords: Biosensor, Endocrinology, Point-of-care device, Diabetes, Glucometer 

  3. The LEP alarm system

    International Nuclear Information System (INIS)

    Unlike alarm systems for previous accelerators, the LEP alarm system caters not only for the operation of the accelerator but also for technical services and provides the direct channel for personnel safety. It was commissioned during 1989 and has seen a continued development up to the present day. The system, comprising over 50 computers including 5 different platforms and 4 different operating systems, is described. The hierarchical structure of the software is outlined from the interface to the equipment groups, through the front end computers to the central server, and finally to the operator consoles. Reasons are given for choosing a conventional, as opposed to a 'knowledge based' approach. Finally, references are made to a prototype real time expert system for surveying the power converters of LEP, which was conducted during 1990 as part of the alarm development program. (author)

  4. Gynecological cancer alarm symptoms:

    DEFF Research Database (Denmark)

    Balasubramaniam, Kirubakaran; Ravn, Pernille; dePont Christensen, René;

    2016-01-01

    INTRODUCTION: To determine the proportion of patients who were referred to specialist care after reporting gynecological cancer alarm symptoms to their general practitioner. To investigate whether contact with specialist care was associated with lifestyle factors or socioeconomic status. MATERIAL...... care and odds ratios (ORs) for associations between specialist care contact, lifestyle factors and socioeconomic status. RESULTS: The study included 25 866 non-pregnant women; 2957 reported the onset of at least one gynecological cancer alarm symptom, and 683 of these (23.1%) reported symptoms to their.......17-2.95). CONCLUSIONS: Educational level influence contact with specialist care among patients with gynecological cancer alarm symptoms. Future studies should investigate inequalities in access to the secondary healthcare system. This article is protected by copyright. All rights reserved....

  5. Biosensors in Clinical Practice: Focus on Oncohematology

    Directory of Open Access Journals (Sweden)

    Agostino Cortelezzi

    2013-05-01

    Full Text Available Biosensors are devices that are capable of detecting specific biological analytes and converting their presence or concentration into some electrical, thermal, optical or other signal that can be easily analysed. The first biosensor was designed by Clark and Lyons in 1962 as a means of measuring glucose. Since then, much progress has been made and the applications of biosensors are today potentially boundless. This review is limited to their clinical applications, particularly in the field of oncohematology. Biosensors have recently been developed in order to improve the diagnosis and treatment of patients affected by hematological malignancies, such as the biosensor for assessing the in vitro pre-treatment efficacy of cytarabine in acute myeloid leukemia, and the fluorescence resonance energy transfer-based biosensor for assessing the efficacy of imatinib in chronic myeloid leukemia. The review also considers the challenges and future perspectives of biosensors in clinical practice.

  6. Biosensors based on nanomaterials and nanodevices

    CERN Document Server

    Li, Jun

    2013-01-01

    Biosensors Based on Nanomaterials and Nanodevices links interdisciplinary research from leading experts to provide graduate students, academics, researchers, and industry professionals alike with a comprehensive source for key advancements and future trends in nanostructured biosensor development. It describes the concepts, principles, materials, device fabrications, functions, system integrations, and applications of various types of biosensors based on signal transduction mechanisms, including fluorescence, photonic crystal, surface-enhanced Raman scattering, electrochemistry, electro-lumine

  7. Biosensors for Environmental Monitoring and Biomedical Applications

    OpenAIRE

    ŠTOFIK, Marcel

    2012-01-01

    Study of biosensors has become an essential part of research in biotechnology. Biosensors as fast, portable, highly sensitive, and low-cost bioanalytical detection devices have been utilized in many fields of human activity. The first part of the presented work focuses on electrochemical biosensors for rapid environmental screening of herbicides as water pollutants. A sol-gel immobilization method for a photosystem II (PSII) complex is studied in order to enhance the sensitivity and the signa...

  8. Dynamic alarm response procedures

    International Nuclear Information System (INIS)

    The Dynamic Alarm Response Procedure (DARP) system provides a robust, Web-based alternative to existing hard-copy alarm response procedures. This paperless system improves performance by eliminating time wasted looking up paper procedures by number, looking up plant process values and equipment and component status at graphical display or panels, and maintenance of the procedures. Because it is a Web-based system, it is platform independent. DARP's can be served from any Web server that supports CGI scripting, such as ApacheR, IISR, TclHTTPD, and others. DARP pages can be viewed in any Web browser that supports Javascript and Scalable Vector Graphics (SVG), such as NetscapeR, Microsoft Internet ExplorerR, Mozilla FirefoxR, OperaR, and others. (authors)

  9. Microbial biosensors for environmental monitoring

    Directory of Open Access Journals (Sweden)

    David VOGRINC

    2015-12-01

    Full Text Available Microbial biosensors are analytical devices capable of sensing substances in the environment due to the specific biological reaction of the microorganism or its parts. Construction of a microbial biosensor requires knowledge of microbial response to the specific analyte. Linking this response with the quantitative data, using a transducer, is the crucial step in the construction of a biosensor. Regarding the transducer type, biosensors are divided into electrochemical, optical biosensors and microbial fuel cells. The use of the proper configuration depends on the selection of the biosensing element. With the use of transgenic E. coli strains, bioluminescence or fluorescence based biosensors were developed. Microbial fuel cells enable the use of the heterogeneous microbial populations, isolated from wastewater. Different microorganisms are used for different pollutants – pesticides, heavy metals, phenolic compounds, organic waste, etc. Biosensing enables measurement of their concentration and their toxic or genotoxic effects on the microbes. Increasing environmental awareness has contributed to the increase of interest for biomonitoring. Although technologies, such as bioinformatics and genetic engineering, allow us to design complex and efficient microbial biosensors for environmental pollutants, the transfer of the laboratory work to the field still remains a problem to solve.

  10. Toxicity alarm: Case history

    International Nuclear Information System (INIS)

    In late fall 1991, the Novacor petrochemical plant near Joffre, Alberta experienced a toxicity alarm, the first since its startup 14 years ago. Fish exposed to a normal toxicity test were stressed within 2 h and showed 100% mortality after 24 h. A history of the events leading up to, during, and after the toxicity alarm is presented. The major effluent sources were three cooling water systems. Although these sources are well characterized, the event causes were not immediately clear. Initial toxic screening indicated that one was very toxic, another moderately toxic, and the third not toxic at all. All three systems utilized the same chemical treatment program to avoid fouling: stabilized phosphates with minor variants. The most toxic of the cooling systems operated at 10-12 cycles, had three chemicals for biocide control, and had three makeup streams. Toxic and nontoxic system characteristics were compared. An in-depth modified toxicity identification and evaluation program was then performed to identify and evaluate the cause of the toxicity alarm for future prevention. The most probable causes of toxicity were identified by elimination. The combination of high numbers of cycles, hydrocarbons in the makeup water, and bromine added as an antifoulant resulted in formation of aromatic bromamines which are capable of causing the toxic condition experienced. 2 tabs

  11. Potential diagnostic applications of biosensors: current and future directions

    OpenAIRE

    SONG, Shiping; Xu, Hui; Fan, Chunhai

    2006-01-01

    This review describes recent advances in biosensors of potential clinical applications. Biosensors are becoming increasingly important and practical tools in pathogen detection, molecular diagnostics, environmental monitoring, food safety control as well as in homeland defense. Electrochemical biosensors are particularly promising toward these goals arising due to several combined advantages including low-cost, operation convenience, and miniaturized devices. We review the clinical applicatio...

  12. Biosensors in clinical chemistry: An overview

    OpenAIRE

    Sathish Babu Murugaiyan; Ramesh Ramasamy; Niranjan Gopal; Kuzhandaivelu, V.

    2014-01-01

    Biosensors are small devices that employ biological/biochemical reactions for detecting target analytes. Basically, the device consists of a biocatalyst and a transducer. The biocatalyst may be a cell, tissue, enzyme or even an oligonucleotide. The transducers are mainly amperometric, potentiometric or optical. The classification of biosensors is based on (a) the nature of the recognition event or (b) the intimacy between the biocatalyst and the transducer. Bioaffinity and biocatalytic device...

  13. SuperAlarm: System and Methods to Predict In-Hospital Patient Deterioration and Alleviate Alarm Fatigue

    OpenAIRE

    Bai, Yong

    2016-01-01

    A diverse array of continuous, multi-parameter and alarm-equipped physiologic monitoring devices have been deployed in modern intensive care units (ICUs) and other critical care settings to detect changes in a patient's status. Alarm signals activated by the monitors are intended to alert caregivers to either abnormalities in a patient's normal state or device malfunctions in order to prevent adverse events, and hence improve quality of care and patient safety. The majority of patients who ev...

  14. A CMOS self-powered front-end architecture for subcutaneous event-detector devices

    CERN Document Server

    Colomer-Farrarons, Jordi

    2011-01-01

    A CMOS Self-Powered Front-End Architecture for Subcutaneous Event-Detector Devices presents the conception and prototype realization of a Self-Powered architecture for subcutaneous detector devices. The architecture is designed to work as a true/false (event detector) or threshold level alarm of some substances, ions, etc. that are detected through a three-electrodes amperometric BioSensor approach. The device is conceived as a Low-Power subcutaneous implantable application powered by an inductive link, one emitter antenna at the external side of the skin and the receiver antenna under the ski

  15. Implementation of alarm system for vibration monitoring of KOMAC facility

    International Nuclear Information System (INIS)

    For operating 100 MeV linac, Devices have to be operated in certain order. Thus malfunction of a device cause damage to linac and related devices. To protect linac, machine protect system (MPS) has been developed. The MPS protects the components by monitoring hardwired signals. When values of operating parameters go beyond or below limit, alarm will be generated and interlock system which stops related devices in certain sequence will run. Other factor, giving damage to linac is disaster. A strong vibration such as earthquake causes malfunction of devices and damage to linac. Against disaster, the monitoring system based on Experimental Physics and Industrial Control System (EPICS) was implemented. Configuration and Implementation of the monitoring system are presented and some preliminary results are reported. KOMAC implemented alarm system for a strong vibration and fire. Alarm is generated in unusual situation. Coping rapidly with situation, damages for Linac and related devices can be reduced

  16. The Coast Alarm System Editor

    International Nuclear Information System (INIS)

    The OECD Halden Reactor Project has for several years worked in the field of alarm handling. COAST was developed based on long experience with several different methods for identification of plant status and detection of plant anomalies. COAST has been delivered to a number of different organisations which generate their own applications. With COAST one can implement many alarm generation or structuring methods. So far, the alarm system is defined using a COAST language, COLA. Now, a first version of an editor to implement alarm systems is available, to support alarm system designers to write and structure their COLA code. It is developed based on general guidelines for user interface design and a thorough discussion of different editor types. The most important functionality needed when designing alarm systems for complex processes was emphasized when choosing the type of editor. A structure-oriented editor is currently implemented, and the report gives a description for how to include graphic features towards a more complete editor in the future. Support and encouragement for reuse of code is obtained by defining classes in a class library browser. Separate applications with their specific object definitions are constructed in an application browser. In this way the alarm classes from the class libraries can easily be used in several applications. The application browser offers the possibility to organize the alarm objects in a structured hierarchy. In big complex alarm systems such a structuring feature is of vital importance to keep the overview of the alarm system and to perform maintenance. (author)

  17. Biosensoric potential of microbial fuel cells.

    Science.gov (United States)

    Schneider, György; Kovács, Tamás; Rákhely, Gábor; Czeller, Miklós

    2016-08-01

    Recent progress in microbial fuel cell (MFC) technology has highlighted the potential of these devices to be used as biosensors. The advantages of MFC-based biosensors are that they are phenotypic and can function in either assay- or flow-through formats. These features make them appropriate for contiguous on-line monitoring in laboratories and for in-field applications. The selectivity of an MFC biosensor depends on the applied microorganisms in the anodic compartment where electron transfer (ET) between the artificial surface (anode) and bacterium occurs. This process strongly determines the internal resistance of the sensoric system and thus influences signal outcome and response time. Despite their beneficial characteristics, the number of MFC-based biosensoric applications has been limited until now. The aim of this mini-review is to turn attention to the biosensoric potential of MFCs by summarizing ET mechanisms on which recently established and future sensoric devices are based. PMID:27401925

  18. A climate of alarm

    International Nuclear Information System (INIS)

    The conventional view among scientists is that man-made global warming is real and potentially devastating. Climate physicist Richard Lindzen tells Edwin Cartlidge why he disagrees. Lindzen believes that even if man were indeed responsible for the vast majority of the warming observed in the last 100 years, he thinks there is still no cause for alarm. He claims the climate models used by the IPCC are far too sensitive to changes in the concentration of atmospheric carbon dioxide, and estimates that the Earth will in fact warm up by perhaps just a few tenths of a degree over the next century. Needless to say, this is a conclusion that other climate researchers strongly disagree with. Certainly in public, Richard Lindzen is in the minority when it comes to his belief that man is not seriously heating up the Earth. (U.K.)

  19. Android integrated urea biosensor for public health awareness

    Directory of Open Access Journals (Sweden)

    Pranali P. Naik

    2015-03-01

    Full Text Available Integration of a biosensor with a wireless network on the Android 4.2.1 (Jelly Bean platform has been demonstrated. The present study reports an android integrated user friendly Flow injection analysis-Enzyme thermistor (FIA-ET urea biosensor system. This android-integrated biosensor system will facilitate enhanced consumer health and awareness alongside abridging the gap between the food testing laboratory and the concerned higher authorities. Data received from a flow injection mode urea biosensor has been exploited as an integration point among the analyst, the food consumer and the responsible higher authorities. Using the urea biosensor as an example, an alarm system has also been demonstrated both graphically and through text message on a mobile handset. The presented sensor integrated android system will also facilitate decision making support system in various fields of food quality monitoring and clinical analysis.

  20. The Quantitative Overhead Analysis for Effective Task Migration in Biosensor Networks

    OpenAIRE

    Sung-Min Jung; Tae-Kyung Kim; Jung-Ho Eom; Tai-Myoung Chung

    2013-01-01

    We present a quantitative overhead analysis for effective task migration in biosensor networks. A biosensor network is the key technology which can automatically provide accurate and specific parameters of a human in real time. Biosensor nodes are typically very small devices, so the use of computing resources is restricted. Due to the limitation of nodes, the biosensor network is vulnerable to an external attack against a system for exhausting system availability. Since biosensor nodes gener...

  1. Electrochemical biosensors and nanobiosensors

    Science.gov (United States)

    Hammond, Jules L.; Formisano, Nello; Carrara, Sandro; Tkac, Jan

    2016-01-01

    Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications–in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an approximately 70% share of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market. In this review, we present the basic principles of electrochemical biosensor devices. A description of the different generations of glucose sensors is used to describe in some detail the operation of amperometric sensors and how the introduction of mediators can enhance the performance of the sensors. Electrochemical impedance spectroscopy is a technique being increasingly used in devices due to its ability to detect variations in resistance and capacitance upon binding events. Novel advances in electrochemical sensors, due to the use of nanomaterials such as carbon nanotubes and graphene, are presented as well as future directions that the field is taking. PMID:27365037

  2. Electrochemical biosensors and nanobiosensors.

    Science.gov (United States)

    Hammond, Jules L; Formisano, Nello; Estrela, Pedro; Carrara, Sandro; Tkac, Jan

    2016-06-30

    Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications-in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an approximately 70% share of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market.In this review, we present the basic principles of electrochemical biosensor devices. A description of the different generations of glucose sensors is used to describe in some detail the operation of amperometric sensors and how the introduction of mediators can enhance the performance of the sensors. Electrochemical impedance spectroscopy is a technique being increasingly used in devices due to its ability to detect variations in resistance and capacitance upon binding events. Novel advances in electrochemical sensors, due to the use of nanomaterials such as carbon nanotubes and graphene, are presented as well as future directions that the field is taking. PMID:27365037

  3. Line supervision of alarm communications

    International Nuclear Information System (INIS)

    The objective of this paper is to explain the role and application of alarm communication link supervision in security systems such as for nuclear facilities. The vulnerabilities of the various types of alarm communication links will be presented. Throughout the paper, an effort has been made to describe only those technologies commercially available and to avoid speculative theoretical solutions

  4. Fundamental Principles of Alarm Design

    DEFF Research Database (Denmark)

    Us, Tolga; Jensen, Niels; Lind, Morten;

    2011-01-01

    Traditionally alarms are designed on the basis of empirical guidelines rather than on a sound scientific framework rooted in a theoretical foundation for process and control system design. This paper proposes scientific principles and a methodology for design of alarms based on a functional...... modeling technique (MFM) which represents a process in terms of its goals, functions and operating requirements. The reasoning capabilities of MFM enable identification of operational situations which threaten to generate an alarm and derivation of potential response scenarios. The design methodology can...... be applied to any engineering system which can be modeled by MFM. The methodology provides a set of alarms which can facilitate event interpretation and operator support for abnormal situation management. The proposed design methodology provides the information content of the alarms, but does not...

  5. Sistemas biosensores

    OpenAIRE

    Lechuga, Laura M.

    2004-01-01

    EE.UU. ha aprobado el empleo de microchips en humanos para identificarlos y tener acceso a su historia clínica. Noticia como está podemos encontrar otras muchas en las que los biosensores permiten desarrollar aplicaciones en áreas como la biomedicina, genómica, defensa a los ciudadanos, biotecnología, alimentación, medio ambiente, farmacéutica, microelectrónica, o seguridad.

  6. DTR, Taut Wire System: An alarm barrier with experience

    International Nuclear Information System (INIS)

    The Taut Wire Fence Alarm System concept was developed and introduced more that fifteen years ago in Israel. A sudden expansion of the nations's border lines, the difficulty to monitor intrusions along those elongated lines and the need for timely as well as accurate armed response to an intrusion attempt dictated the need for an alarming barrier. Traditionally, protection of perimeters was accomplished by the installation of a fence or other type obstacles (man made or natural) and surveillance by manned patrols, fixed observation posts, and/or electronic devices. Defense planners recognized therefore the need for an alarming barrier. A concentrated effort by scientists solved the problem by developing the first Taut Wire Fence Alarm System in a configuration of an alarm barrier. The system was specified to have an extremely low false alarm rate (FAR/NAR), high probability of detection, the capability to follow various terrains, operability in a wide range of environmental conditions, a capability to delay an intruder, ease of installation by unskilled labor, and low maintenance requirements. The authors try here to explain the various constraints and considerations given during the design stages of the Taut Wire Alarm System so as to bring the present magnitude of users to a better understanding of the system's operation

  7. Alarm fatigue: a patient safety concern.

    Science.gov (United States)

    Sendelbach, Sue; Funk, Marjorie

    2013-01-01

    Research has demonstrated that 72% to 99% of clinical alarms are false. The high number of false alarms has led to alarm fatigue. Alarm fatigue is sensory overload when clinicians are exposed to an excessive number of alarms, which can result in desensitization to alarms and missed alarms. Patient deaths have been attributed to alarm fatigue. Patient safety and regulatory agencies have focused on the issue of alarm fatigue, and it is a 2014 Joint Commission National Patient Safety Goal. Quality improvement projects have demonstrated that strategies such as daily electrocardiogram electrode changes, proper skin preparation, education, and customization of alarm parameters have been able to decrease the number of false alarms. These and other strategies need to be tested in rigorous clinical trials to determine whether they reduce alarm burden without compromising patient safety. PMID:24153215

  8. Biosensors: tool for food borne pathogen detection

    Directory of Open Access Journals (Sweden)

    Heena Sharma

    2013-12-01

    Full Text Available A paramount and alluring sphere of research, now-a-days, is food analysis, because of the breakneck augmentation of food enterprise and highly hightened maneuverability of today's populations. The management of food quality is very indispensable both for consumer safeguard as well as the food corporations. The biosensors' application in the field of food analysis is quite propitious for the revealing of food borne pathogens. Biosensor, an analytical device, transforms a biological response into an electrical signal. Bioreceptors and transducers are the two main components of a biosensor. Bioreceptor or biorecognition element is the one which leads to the recognition of target analyte and a transducer, for the conversion of recognized event into a measurable electrical signal. The development of biosensors improved the sensitivity and selectivity of detection techniques for food borne pathogens and is rapid, reliable, effective and highly suitable when used in in situ analysis. Since the security in the food supply becomes crucial because of increased perception among consumers and vying nature of food industries, the necessity for expeditious, low volume and sensitive biosensor devices has productively increased. Nevertheless, till date, a very few biosensor systems are available commercially such as Biacore, SpreetaTM, Reichert SR 7000, Analyte 2000, RAPTOR etc. Since, there is ever growing concern regarding safe food and water supply, it is very obvious that the demand for rapid detecting biosensors will also be increasing at par.

  9. 40 CFR 267.34 - When must personnel have access to communication equipment or an alarm system?

    Science.gov (United States)

    2010-07-01

    ... to an internal alarm or emergency communication device, either directly or through visual or voice... communication equipment or an alarm system? 267.34 Section 267.34 Protection of Environment ENVIRONMENTAL... have access to communication equipment or an alarm system? (a) Whenever hazardous waste is being...

  10. Fundamental principles of alarm design

    International Nuclear Information System (INIS)

    Traditionally alarms are designed on the basis of empirical guidelines rather than on a sound scientific framework rooted in a theoretical foundation for process and control system design. This paper proposes scientific principles and a methodology for design of alarms based on a functional modeling technique (MFM) which represents a process in terms of its goals, functions and operating requirements. The reasoning capabilities of MFM enable identification of operational situations which threaten to generate an alarm and derivation of potential response scenarios. The design methodology can be applied to any engineering system which can be modeled by MFM. The methodology provides a set of alarms which can facilitate event interpretation and operator support for abnormal situation management. The proposed design methodology provides the information content of the alarms, but does not deal with alarm presentation or display design issues. A hydraulically powered grinding process is employed as an industrially relevant system to show the applicability of the proposed design methodology with promising results. (author)

  11. Design Strategies for Aptamer-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Kun Han

    2010-05-01

    Full Text Available Aptamers have been widely used as recognition elements for biosensor construction, especially in the detection of proteins or small molecule targets, and regarded as promising alternatives for antibodies in bioassay areas. In this review, we present an overview of reported design strategies for the fabrication of biosensors and classify them into four basic modes: target-induced structure switching mode, sandwich or sandwich-like mode, target-induced dissociation/displacement mode and competitive replacement mode. In view of the unprecedented advantages brought about by aptamers and smart design strategies, aptamer-based biosensors are expected to be one of the most promising devices in bioassay related applications.

  12. Polymer Based Biosensors for Medical Applications

    DEFF Research Database (Denmark)

    Cherré, Solène; Rozlosnik, Noemi

    2015-01-01

    , environmental monitoring and food safety. The detected element varies from a single molecule (such as glucose), a biopolymer (such as DNA or a protein) to a whole organism (such as bacteria). Due to their easy use and possible miniaturization, biosensors have a high potential to come out of the lab and be......The objective of this chapter is to give an overview about the newest developments in biosensors made of polymers for medical applications. Biosensors are devices that can recognize and detect a target with high selectivity. They are widely used in many fields such as medical diagnostic...... available for use by everybody. To fulfil these purposes, polymers represent very appropriate materials. Many nano- and microfabrication methods for polymers are available, allowing a fast and cheap production of devices. This chapter will present the general concept of a biosensor in a first part. The...

  13. Biosensors a promising future in measurements

    International Nuclear Information System (INIS)

    A biosensor is an analytical device which can be used to convert the existence of a molecule or compound into a measurable and useful signal. Biosensors use stimulus to translate changes to recognisable signals and have great importance to society. Applications include diagnosis tools for diseases, security appliances, and other biomedical equipments. Biosensors can also be used in the detection of pathogens and other microbes in foodstuffs, drugs and processing industries. Enormous progress and advancement has been witnessed in this area. Research and development in micro level systems serves to interface biology with novel materials such as nanomaterial. Development of high speed and accurate electronic devices tfor use in medicine and energy storage (such as biofuel cells) is one of the target areas. This paper discusses the importance, use and current and future trend in the application of biosensors

  14. REVIEW ARTICLE: Environmental applications of analytical biosensors

    Science.gov (United States)

    Marco, María-Pilar; Barceló, Damià

    1996-11-01

    A review of the fundamental aspects and environmental applications of biosensors is presented. The bases of different transducer principles such as electrochemical, optical and piezoelectric are discussed. Various examples are given of the applications of such principles to develop immunosensor devices to determine common environmental contaminants. Attention is also paid to catalytic biosensors, using enzymes as sensing elements. Biosensor devices based on the use of cholinesterase and various oxidase enzymes such as tyrosinase, laccase, peroxidase and aldehyde dehydrogenase are reported. Some examples are given of the applications of other biomolecules such as whole cells, DNA or proteins, to determine pollution. Validation studies are presented comparing biosensors with chromatographic techniques to determine organophosphorus pesticides and phenolic compounds in environmental samples.

  15. Multiplexed Biosensors for Mycotoxins.

    Science.gov (United States)

    Maragos, Chris M

    2016-07-01

    Significant progress has been made in the development of biosensors that can be used to detect low-MW toxins produced by fungi (mycotoxins). The number of formats that have been investigated is impressive and is an indication of the importance attached to finding easy-to-use, accurate, and rapid methods for detecting these toxins in commodities and foods. This review explores the details of multiplexed biosensors based on many formats, including multiplexed immunoassays, suspension arrays, membrane-based devices (flow-through and immunochromatographic), and planar microarrays. Each assay format has its own strengths and areas that need improvement. Certain formats, such as multiplexed immunochromatographic devices, are well developed and relatively easy to use, and in some cases, commercial products are being sold. Others, such as the suspension arrays and microarrays, are laboratory-based assays that, although more complicated, are also more amenable to a larger scale of multiplexing. The diversity of such efforts and the multitude of formats under investigation suggest that multiple solutions will be found to satisfy the need for multiplexed toxin detection. PMID:27455928

  16. Use of pagers with an alarm escalation system to reduce cardiac monitor alarm signals.

    Science.gov (United States)

    Cvach, Maria M; Frank, Robert J; Doyle, Pete; Stevens, Zeina Khouri

    2014-01-01

    Alarm fatigue desensitizes nurses to alarm signals and presents potential for patient harm. This project describes an innovative method of communicating cardiac monitor alarms to pagers using an alarm escalation algorithm. This innovation was tested on 2 surgical progressive care units over a 6-month period. There was a significant decrease in mean frequency and duration of high-priority monitor alarms and improvement in nurses' perception of alarm response time, using this method of alarm communication. PMID:23963169

  17. Biosensors in clinical chemistry: An overview

    Directory of Open Access Journals (Sweden)

    Sathish Babu Murugaiyan

    2014-01-01

    Full Text Available Biosensors are small devices that employ biological/biochemical reactions for detecting target analytes. Basically, the device consists of a biocatalyst and a transducer. The biocatalyst may be a cell, tissue, enzyme or even an oligonucleotide. The transducers are mainly amperometric, potentiometric or optical. The classification of biosensors is based on (a the nature of the recognition event or (b the intimacy between the biocatalyst and the transducer. Bioaffinity and biocatalytic devices are examples for the former and the first, whereas second and third generation instruments are examples for the latter. Cell-based biosensors utilizing immobilized cells, tissues as also enzyme immunosensors and DNA biosensors find variegated uses in diagnostics. Enzyme nanoparticle-based biosensors make use of small particles in the nanometer scale and are currently making a mark in laboratory medicine. Nanotechnology can help in optimizing the diagnostic biochips, which would facilitate sensitive, rapid, accurate and precise bedside monitoring. Biosensors render themselves as capable diagnostic tools as they meet most of the above-mentioned criteria.

  18. Biosensors in clinical chemistry: An overview.

    Science.gov (United States)

    Murugaiyan, Sathish Babu; Ramasamy, Ramesh; Gopal, Niranjan; Kuzhandaivelu, V

    2014-01-01

    Biosensors are small devices that employ biological/biochemical reactions for detecting target analytes. Basically, the device consists of a biocatalyst and a transducer. The biocatalyst may be a cell, tissue, enzyme or even an oligonucleotide. The transducers are mainly amperometric, potentiometric or optical. The classification of biosensors is based on (a) the nature of the recognition event or (b) the intimacy between the biocatalyst and the transducer. Bioaffinity and biocatalytic devices are examples for the former and the first, whereas second and third generation instruments are examples for the latter. Cell-based biosensors utilizing immobilized cells, tissues as also enzyme immunosensors and DNA biosensors find variegated uses in diagnostics. Enzyme nanoparticle-based biosensors make use of small particles in the nanometer scale and are currently making a mark in laboratory medicine. Nanotechnology can help in optimizing the diagnostic biochips, which would facilitate sensitive, rapid, accurate and precise bedside monitoring. Biosensors render themselves as capable diagnostic tools as they meet most of the above-mentioned criteria. PMID:24627875

  19. Central alarm system replacement in NPP Krsko

    International Nuclear Information System (INIS)

    Current NPP Krsko central alarm system consists of three main segments. Main Control Board alarm system (BETA 1000), Ventilation Control Board alarm system (BETA 1000) and Electrical Control Board alarm system (BETA 1100). All sections are equipped with specific BetaTone audible alarms and silence, acknowledge as well as test push buttons. The main reason for central alarm system replacement is system obsolescence and problems with maintenance, due to lack of spare parts. Other issue is lack of system redundancy, which could lead to loss of several Alarm Light Boxes in the event of particular power supply failure. Current central alarm system does not provide means of alarm optimization, grouping or prioritization. There are three main options for central alarm system replacement: Conventional annunciator system, hybrid annunciator system and advanced alarm system. Advanced alarm system implementation requires Main Control Board upgrade, integration of process instrumentation and plant process computer as well as long time for replacement. NPP Krsko has decided to implement hybrid alarm system with patchwork approach. The new central alarm system will be stand alone, digital, with advanced filtering and alarm grouping options. Sequence of event recorder will be linked with plant process computer and time synchronized with redundant GPS signal. Advanced functions such as link to plant procedures will be implemented with plant process computer upgrade in outage 2006. Central alarm system replacement is due in outage 2004.(author)

  20. Integration of biosensors into digital microfluidics: Impact of hydrophilic surface of biosensors on droplet manipulation.

    Science.gov (United States)

    Samiei, Ehsan; Luka, George S; Najjaran, Homayoun; Hoorfar, Mina

    2016-07-15

    Several studies have been performed on the integration of biosensors into digital microfluidics (DMF). Despite the general success in their detection capabilities, there are still two challenges associated with the integration of biosensors into DMF: (1) complete removal of the droplet containing the analytes from the sensing surface; and (2) biochemical regeneration of the biosensor involving detaching the target analyte from the receptor after each round of sensing. The latter is case dependent and the solution can vary from one application to another. Our research aims at addressing the former, the solution to which is applicable to all biosensors integrated to DMF. This paper presents a thorough characterization of the hydrophilic surface of the biosensor in terms of wettability and geometry, taking into account the overall configuration of the DMF platform. Consequently, we identify the optimal geometry of the sensing surface and the DMF platform providing successful removal of the target droplet from the sensing surface after detection. Based on the results, the gap height is suggested to be chosen at the upper limit of the applicable range. Also, the biosensor, patterned on the device top plate, is recommended to be designed with a high aspect ratio and aligned with the center of the actuating electrode. As a proof of concept, the optimum configuration is implemented on a DMF platform with an interdigitated capacitive biosensor to detect different concentrations of Cryptosporidium, for which it is shown that the sample droplet is removed successfully from the superhydrophilic surface of the biosensor. PMID:27016626

  1. Functional alarming and information retrieval

    International Nuclear Information System (INIS)

    This paper deals with two facets of the design and efficient utilisation by operating personnel of computer-based interfaces for monitoring and the supervisory control of complex industrial systems - e.g., power stations, chemical plants, etc. These are alarming and information retrieval both of which are extremely sensitive to computerisation. For example, the advent of computers for display requires that some means of assuring easy and rapid access to large amounts of relevant stored information be found. In this paper, alarming and information retrieval are linked together through a multilevel functional description of the target plant. This representation serves as a framework for structuring the access to information as well as defining associated ''alarms'' at the various descriptive levels. Particular attention is paid to the level where mass and energy flows and balances are relevant. It is shown that the number of alarms here is reduced considerably while information about content and interrelationships is enhanced - which at the same time eases the retrieval problem. (author)

  2. Design strategies of alarm system for SMART

    International Nuclear Information System (INIS)

    The high level goal of the SMART-AS (Alarm System for System-integrated Modular Advanced ReacTor) is for operators to enthusiastically accept a new technology that will improve their response to alarms during plant transient conditions. Three alarm system design characteristics were included: (1) alarm processing (degree of alarm reduction); (2) alarm availability (prioritization and suppression); and (3) alarm display (a dedicated tile format, a mixed tile and message list format, and a format in which alarm information is integrated into the process displays). The SMART-AS prioritizes alarms based on the state of the plant; reduces the amount of information presented to the operator by grouping and display the arms in accordance with the present state of the plant; and allows nuisance alarms to be suppressed. This paper provides an introduction into applying the data mining techniques for the alarm processing of SMART-AS. In this paper, we describe our data mining algorithms, and illustrate how to apply these algorithms to generate an alarm suppression model from the alarm data. (authors)

  3. Fire auto alarm system intelligent trend

    International Nuclear Information System (INIS)

    The author gives the course and trend of the fire alarm system going to more computerized and more intelligent. It is described that only the system applied artificial intelligent and confusion control is the true intelligent fire alarm system. The author gives the detailed analysis on the signal treatment of artificial intelligent applied to analogue fire alarm system as well as the alarm system controlled by confusion technology and artificial nervous net

  4. 10 CFR 74.57 - Alarm resolution.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Alarm resolution. 74.57 Section 74.57 Energy NUCLEAR... Quantities of Strategic Special Nuclear Material § 74.57 Alarm resolution. (a) Licensees subject to § 74.51 shall provide the MC&A alarm resolution capabilities described in paragraphs (b) through (f) of...

  5. Applications of Nanomaterials in Electrogenerated Chemiluminescence Biosensors

    Directory of Open Access Journals (Sweden)

    Honglan Qi

    2009-01-01

    Full Text Available Electrogenerated chemiluminescence (also called electrochemiluminescence and abbreviated ECL involves the generation of species at electrode surfaces that then undergo electron-transfer reactions to form excited states that emit light. ECL biosensor, combining advantages offered by the selectivity of the biological recognition elements and the sensitivity of ECL technique, is a powerful device for ultrasensitive biomolecule detection and quantification. Nanomaterials are of considerable interest in the biosensor field owing to their unique physical and chemical properties, which have led to novel biosensors that have exhibited high sensitivity and stability. Nanomaterials including nanoparticles and nanotubes, prepared from metals, semiconductor, carbon or polymeric species, have been widely investigated for their ability to enhance the efficiencies of ECL biosensors, such as taking as modification electrode materials, or as carrier of ECL labels and ECL-emitting species. Particularly useful application of nanomaterials in ECL biosensors with emphasis on the years 2004-2008 is reviewed. Remarks on application of nanomaterials in ECL biosensors are also surveyed.

  6. SUBSURFACE VISUAL ALARM SYSTEM ANALYSIS

    International Nuclear Information System (INIS)

    The ''Subsurface Fire Hazard Analysis'' (CRWMS M andO 1998, page 61), and the document, ''Title III Evaluation Report for the Surface and Subsurface Communication System'', (CRWMS M andO 1999a, pages 21 and 23), both indicate the installed communication system is adequate to support Exploratory Studies Facility (ESF) activities with the exception of the mine phone system for emergency notification purposes. They recommend the installation of a visual alarm system to supplement the page/party phone system The purpose of this analysis is to identify data communication highway design approaches, and provide justification for the selected or recommended alternatives for the data communication of the subsurface visual alarm system. This analysis is being prepared to document a basis for the design selection of the data communication method. This analysis will briefly describe existing data or voice communication or monitoring systems within the ESF, and look at how these may be revised or adapted to support the needed data highway of the subsurface visual alarm. system. The existing PLC communication system installed in subsurface is providing data communication for alcove No.5 ventilation fans, south portal ventilation fans, bulkhead doors and generator monitoring system. It is given that the data communication of the subsurface visual alarm system will be a digital based system. It is also given that it is most feasible to take advantage of existing systems and equipment and not consider an entirely new data communication system design and installation. The scope and primary objectives of this analysis are to: (1) Briefly review and describe existing available data communication highways or systems within the ESF. (2) Examine technical characteristics of an existing system to disqualify a design alternative is paramount in minimizing the number of and depth of a system review. (3) Apply general engineering design practices or criteria such as relative cost, and degree

  7. Development and implementation of miniature impedimetric systems for biosensor readout

    OpenAIRE

    BROEDERS, Jeroen

    2013-01-01

    Research in the field of biosensors, i.e. sensors that are based on a biological recognition layer, has steadily increased in popularity over the last few decades. Sensors suited for a wide variety of bio-medically relevant target molecules are constantly being developed. The number of biosensor devices that actually reach the commercial market is however highly limited. Very few examples of such devices can be found, aside from the well-known glucose sensor and pregnancy test strips. Recent ...

  8. CERN alarms data management: state and improvements

    International Nuclear Information System (INIS)

    The CERN Alarms System - LASER is a centralized service ensuring the capturing, storing and notification of anomalies for the whole accelerator chain, including the technical infrastructure at CERN. The underlying database holds the pre-defined configuration data for the alarm definitions, for the Operators alarms consoles as well as the time-stamped, run-time alarm events, propagated through the Alarms Systems. The article will discuss the current state of the Alarms database and recent improvements that have been introduced. It will look into the data management challenges related to the alarms configuration data that is taken from numerous sources. Specially developed Extract-Transform-Load (ETL) processes must be applied to this data in order to transform it into an appropriate format and load it into the Alarms database. The recorded alarms events together with some additional data, necessary for providing events statistics to users, are transferred to the long-term alarms archive. The article will cover as well the data management challenges related to the recently developed suite of data management interfaces in respect of keeping data consistency between the alarms configuration data coming from external data sources and the data modifications introduced by the end-users. (authors)

  9. Alarm system for ABWR main control panels

    International Nuclear Information System (INIS)

    TOSHIBA has developed integrated digital control and instrumentation system for ABWR, which is the third-generation man machine interface system for main control room that we call A-PODIA (Advanced PODIA). A-Podia has been introduced the first actual ABWR plant in Japan. in A-PODIA, TOSHIBA has realized improvement of alarm system that all operator crews in the control room can recognize plant anomalies easily. The alarm system can recognize essential alarms for plant safety easily and understand annunciators with each integrated annunciators and their prioritized color easily by classifying alarms into plant-level essential annunciators, system-level integrated annunciators and equipment level individual annunciators with hierarchical structure. This paper describes conventional alarm system and the design philosophy, alarm system design and operation of ''Alarm System for ABWR Main Control Panels''. (author). 5 refs, 8 figs, 1 tab

  10. Survey of the year 2007 commercial optical biosensor literature.

    Science.gov (United States)

    Rich, Rebecca L; Myszka, David G

    2008-01-01

    In 2007, 1179 papers were published that involved the application of optical biosensors. Reported developments in instrument hardware, assay design, and immobilization chemistry continue to improve the technology's throughput, sensitivity, and utility. Compared to recent years, the widest range of platforms, both traditional format and array-based, were used. However, as in the past, we found a disappointingly low percentage of well-executed experiments and thoughtful data interpretation. We are alarmed by the high frequency of suboptimal data and over-interpreted results in the literature. Fortunately, learning to visually recognize good--and more importantly, bad--data is easy. Using examples from the literature, we outline several features of biosensor responses that indicate experimental artifacts versus actual binding events. Our goal is to have everyone, from benchtop scientists to project managers and manuscript reviewers, become astute judges of biosensor results using nothing more than their eyes. PMID:18951413

  11. Alarm-Processing in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Information overload due to the activation of a great number of alarms in a short time is a common problem for the operator in the control room of a industrial plant, mainly in complex process like the nuclear power plants.The problem is the conventional conception of the alarm system, that defines each alarm like a separated and independent entity of the global situation of the plant.A direct consequence is the generation of multiple alarms during a significative disturbance in the process, being most of them redundant and irrelevant to the actual process state wich involves an extra load to the operator, who wastes time in acting selecting the important alarms of the group that appears or lead to a an erroneous action.The present work first describes the techniques developed in the last years to attack the avalanche of alarms problem.Later we present our approach to alarm-processing: an expert system as alarm-filter.Our objective is collect in the system the state of the art in the development of advanced alarm systems, offering an improvement of the information flow to the operators through the suppression of nonsignificant alarms and a structured visualization of the process state.Such support is important during a disturbance for the identification of plant state, diagnosis, consequence prediction and corrective actions.The system is arranged in three stages: alarm-generation, alarm-filter and alarm-presentation.The alarm-generation uses conventional techniques or receives them from an external system.The alarm-filter uses suppression techniques based on: irrelevance analysis with the operation mode and the state of components, causal reasoning and static importance analysis.The alarm presentation is made through a structured way using a priority scheme with three level.The knowledge representation of each alarm is based on frames and a graph of alarms for global knowledge, where the connections between nodes represent causal and irrelevance relations

  12. Biosensors for termite control

    Science.gov (United States)

    Farkhanda, M.

    2013-12-01

    Termites are major urban pests in Pakistan and cause damage to wooden structures and buildings. Termite management has two parts: prevention and control. The most difficult part of termite control is termite detection as most of them are subterranean in Pakistan and have tunneling habit.Throughout the world, chemical termiticides are going to be replaced by baits, microwave and sensor technology. Termite species are distinct biologically and have specific foraging behaviors. Termite Detection Radar, Moisture meter and Remote Thermal Sensor with Laser are available throughout the world. These can detect termites underground and use fewer chemicals than traditional methods. For wooden buildings, a termite sensor and an intrusion detection system for detecting termites are designed. A pair of electrodes is disposed inside the container. A pair of terminals is connected to these electrodes, these extend outside the container. Termites are detected by a change of conductivity between the electrodes, when termites are detected a warning device generates a warning signal. In Pakistan, there is dire need to develop such biosensoring devices locally, then apply control methods that would save money and protect the environment.

  13. Biosensors for termite control

    International Nuclear Information System (INIS)

    Termites are major urban pests in Pakistan and cause damage to wooden structures and buildings. Termite management has two parts: prevention and control. The most difficult part of termite control is termite detection as most of them are subterranean in Pakistan and have tunneling habit.Throughout the world, chemical termiticides are going to be replaced by baits, microwave and sensor technology. Termite species are distinct biologically and have specific foraging behaviors. Termite Detection Radar, Moisture meter and Remote Thermal Sensor with Laser are available throughout the world. These can detect termites underground and use fewer chemicals than traditional methods. For wooden buildings, a termite sensor and an intrusion detection system for detecting termites are designed. A pair of electrodes is disposed inside the container. A pair of terminals is connected to these electrodes, these extend outside the container. Termites are detected by a change of conductivity between the electrodes, when termites are detected a warning device generates a warning signal. In Pakistan, there is dire need to develop such biosensoring devices locally, then apply control methods that would save money and protect the environment

  14. Video systems for alarm assessment

    International Nuclear Information System (INIS)

    The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing closed-circuit television systems for video alarm assessment. There is a section on each of the major components in a video system: camera, lens, lighting, transmission, synchronization, switcher, monitor, and recorder. Each section includes information on component selection, procurement, installation, test, and maintenance. Considerations for system integration of the components are contained in each section. System emphasis is focused on perimeter intrusion detection and assessment systems. A glossary of video terms is included. 13 figs., 9 tabs

  15. Tracking alarm causes by logic diagram

    International Nuclear Information System (INIS)

    An operator should provide the correct and fast actions on a cause of alarms and failure for reducing the effect of failure. There are a lot of study. But most of those studies may use a physical knowledges or causal relationships. Most of those studies impose on high level information like the physical knowledges or causal relationships of failure rather than the logical states or process signals as the detail causes of failure. It is very difficult that the physical knowledges or causal relationships are to be implemented and verified. This paper proposes a methodology for tracking alarm by logic of alarms. This methodology uses the proper logical knowledges on the proven logic and alarm diagram or electrical alarm relay logic than the uncertain physical knowledges or causal relationships. This system is to display the highlighted alarm procedure related to the causes. The system can be used for operator to identify the detail causes of alarm without checking all candidates for causes in alarm response procedure and the logical states of alarm with alarm logic disgrams provided on CRT dynamically

  16. ED accreditation update. Hospitals put on notice: alarm management is a top priority for 2014.

    Science.gov (United States)

    2013-09-01

    Establishing alarm management as a new National Patient Safety Goal (NPSG), The Joint Commission (TJC) is calling on hospitals to make the issue a safety priority, and to begin establishing policies and procedures designed to minimize alarm fatigue among clinical staff. Beginning on January 1,2014, hospitals need to begin identifying the most important alarm signals to manage based on input from staff as well as factors such as patient risk, and the potential for harm as demonstrated by the device's history. By January 1,2016, hospitals need to have policies and procedures in place for managing alarms identified in the first phase of the NPSG's requirements. Also, staff and independent licensed practitioners need to be educated about the purpose and proper operation of alarm systems that they are responsible for. PMID:24058949

  17. Introduction to Biosensors From Electric Circuits to Immunosensors

    CERN Document Server

    Yoon, Jeong-Yeol

    2013-01-01

    Introduction to Biosensors: From Electric Circuits to Immunosensors discusses underlying circuitry of sensors for biomedical and biological engineers as well as biomedical sensing modalities for electrical engineers while providing an applications-based approach to the study of biosensors with over 13 extensive, hands-on labs. The material is presented using a building-block approach, beginning with the fundamentals of sensor design and temperature sensors and ending with more complicated biosensors. This book also: Provides electrical engineers with the specific knowledge they need to understand biological sensing modalities Provides biomedical engineers with a solid background in circuits and systems Includes complete coverage of temperature sensors, electrochemical sensors, DNA and immunosensors, piezoelectric sensors and immunosensing in a micofluidic device Introduction to Biosensors: From Electric Circuits to Immunosensors aims to provide an interdisciplinary approach to biosensors that will be apprecia...

  18. Silicon Photonic Biosensors for Lab-on-a-Chip Applications

    Directory of Open Access Journals (Sweden)

    Laura M. Lechuga

    2008-06-01

    Full Text Available In the last two decades, we have witnessed a remarkable progress in the development of biosensor devices and their application in areas such as environmental monitoring, biotechnology, medical diagnostics, drug screening, food safety, and security, among others. The technology of optical biosensors has reached a high degree of maturity and several commercial products are on the market. But problems of stability, sensitivity, and size have prevented the general use of optical biosensors for real field applications. Integrated photonic biosensors based on silicon technology could solve such drawbacks, offering early diagnostic tools with better sensitivity, specificity, and reliability, which could improve the effectiveness of in-vivo and in-vitro diagnostics. Our last developments in silicon photonic biosensors will be showed, mainly related to the development of portable and highly sensitive integrated photonic sensing platforms.

  19. Alarm management for storage and transportation terminals; Gerenciamento de alarmes para terminais de transferencia e estocagem

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Patricia [PETROBRAS, Rio de Janeiro, RJ (Brazil); Feldman, Rafael Noac [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Recently, in many industrial segments, it has been taken into account the issues related to the high amount of alarms that are announced in the control rooms, even if the industrial process is under normal conditions. Recent studies and surveys have shown that the three major problems related to it are: alarms that remain active during normal operation; alarms that remain chattering during an operational period; the phenomenon called Alarm flood, that occurs when an extensive amount of alarms is announced and the operator does not have enough time to take effective actions. In order to reduce or to eliminate the two above mentioned causes, alarm analysis and housekeeping, called Alarm Rationalization, have been efficient in major cases, because such facts occur mainly due to inadequate limits definition and/or equipment and instruments out of service or in maintenance. Such alarms are called in the literature as bad-actors or villains, and their occurrences may reach up to 50% of the daily total amount of alarms. This paper aims to present the main results of a project named Alarm Management for Transfer and Storage Terminals. The project development is based on two different terminal surveys, in order not only to identify the most frequent causes of undesirable alarms, but also to generate design standards. The main phases of the project are: alarm rationalization based on bad-actors detection; generate a set of design and operation standards; generate an Alarm Philosophy document for the Terminals. (author)

  20. Alarm system management: evidence-based guidance encouraging direct measurement of informativeness to improve alarm response.

    Science.gov (United States)

    Rayo, Michael F; Moffatt-Bruce, Susan D

    2015-04-01

    Although there are powerful incentives for creating alarm management programmes to reduce 'alarm fatigue', they do not provide guidance on how to reduce the likelihood that clinicians will disregard critical alarms. The literature cites numerous phenomena that contribute to alarm fatigue, although many of these, including total rate of alarms, are not supported in the literature as factors that directly impact alarm response. The contributor that is most frequently associated with alarm response is informativeness, which is defined as the proportion of total alarms that successfully conveys a specific event, and the extent to which it is a hazard. Informativeness is low across all healthcare applications, consistently ranging from 1% to 20%. Because of its likelihood and strong evidential support, informativeness should be evaluated before other contributors are considered. Methods for measuring informativeness and alarm response are discussed. Design directions for potential interventions, as well as design alternatives to traditional alarms, are also discussed. With the increased attention and investment in alarm system management that alarm interventions are currently receiving, initiatives that focus on informativeness and the other evidence-based measures identified will allow us to more effectively, efficiently and reliably redirect clinician attention, ultimately improving alarm response. PMID:25734193

  1. TMACS test procedure TP001: Alarm management. Revision 6

    International Nuclear Information System (INIS)

    The TMACS Software Project Test Procedures translate the project's acceptance criteria into test steps. Software releases are certified when the affected Test Procedures are successfully performed and the customers authorize installation of these changes. This Test Procedure addresses the Alarm Management requirements of the TMACS. The features to be tested are: real-time alarming on high and low level and discrete alarms, equipment alarms, dead-band filtering, alarm display color coding, alarm acknowledgement, and alarm logging

  2. A basic design of alarm system for the future nuclear power plants in Korea

    International Nuclear Information System (INIS)

    The design of an advanced alarm system is under way to apply to the new MMIS for the future nuclear power plants in Korea. Based on the alarm system design bases we established the design requirements and are now refining them with the results of evaluation through the prototype. To realize the advanced system new algorithms for alarm processing and display are implemented and various new devices are examined. The evaluation for the design is performed in accordance with the verification and validation plans and through the prototype. (author). 7 refs, 2 figs

  3. Research and development of a miniaturized and high-throughput SPR biosensor device%一种小型高通量SPR生物传感检测装置的研制

    Institute of Scientific and Technical Information of China (English)

    杨军; 黄小玲; 张丽果; 曹毅; 杨静

    2011-01-01

    针对一种角度扫描型SPR生物传感检测装置的小型化、高通量研究,包括系统的硬、软件研制及实验测试.在现有 SPR传感研究基础上,提出了实现仪器小型化的设计方案,可以在仪器体积明显减小的情况下,保持检测精度基本不变.同时,利用入射光分束,靶标阵列,以及相应的阵列图像采集、处理及分析方法,实现了多样品的同时检测分析.针对新的系统设计,利用计算仿真确定了相应的实验参数.在新建立的SPR检测装置上完成了不同金膜厚度及芯片表面修饰后的共振曲线检测,并实现了C反应蛋白的检测分析.结果表明,该系统能够有效地分析表面介质特性改变所引起的共振角度变化,同时,设备的 小型化和高通量基本实现.%The research and development of a miniaturized, high-throughput angle-scanning SPR biosensor device. Based on the existing SPR research, a new device design was brought forward in order to keep the detection precision while obviously miniaturize the size of the device. Meanwhile, multiple light beam, target molecule array and image processing methods were used to detect multiple samples. Computer simulation was used to determine the related design parameters. SPR curves of gold film with different thickness and different surface modification were detected using this prototype device. Test results indicate that the developed new device can effectively analyze the change of resonance angle due to the change of surface medium characteristics. At the same time, the miniaturization and high-throughput analysis of the device are basically realized.

  4. False alarm reduction in critical care.

    Science.gov (United States)

    Clifford, Gari D; Silva, Ikaro; Moody, Benjamin; Li, Qiao; Kella, Danesh; Chahin, Abdullah; Kooistra, Tristan; Perry, Diane; Mark, Roger G

    2016-08-01

    High false alarm rates in the ICU decrease quality of care by slowing staff response times while increasing patient delirium through noise pollution. The 2015 PhysioNet/Computing in Cardiology Challenge provides a set of 1250 multi-parameter ICU data segments associated with critical arrhythmia alarms, and challenges the general research community to address the issue of false alarm suppression using all available signals. Each data segment was 5 minutes long (for real time analysis), ending at the time of the alarm. For retrospective analysis, we provided a further 30 seconds of data after the alarm was triggered. A total of 750 data segments were made available for training and 500 were held back for testing. Each alarm was reviewed by expert annotators, at least two of whom agreed that the alarm was either true or false. Challenge participants were invited to submit a complete, working algorithm to distinguish true from false alarms, and received a score based on their program's performance on the hidden test set. This score was based on the percentage of alarms correct, but with a penalty that weights the suppression of true alarms five times more heavily than acceptance of false alarms. We provided three example entries based on well-known, open source signal processing algorithms, to serve as a basis for comparison and as a starting point for participants to develop their own code. A total of 38 teams submitted a total of 215 entries in this year's Challenge. This editorial reviews the background issues for this challenge, the design of the challenge itself, the key achievements, and the follow-up research generated as a result of the Challenge, published in the concurrent special issue of Physiological Measurement. Additionally we make some recommendations for future changes in the field of patient monitoring as a result of the Challenge. PMID:27454172

  5. 46 CFR 130.450 - Machinery alarms.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Machinery alarms. 130.450 Section 130.450 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.450 Machinery alarms....

  6. Intelligent alarm-processing system for NPP

    International Nuclear Information System (INIS)

    Information on developing the intelligent alarm-processing system for NPPs with BWR reactors, which makes it possible to reduce the information load for the operators through the information volume optimization, related to identification of failures in the NPP operation, is presented. Calculational principles and methodological constituents for processing alarm signals are considered. Description of the system and simulation check results are presented

  7. The CANDU alarm analysis tool (CAAT)

    International Nuclear Information System (INIS)

    AECL undertook the development of a software tool to assist alarm system designers and maintainers based on feedback from several utilities and design groups. The software application is called the CANDU Alarm Analysis Tool (CAAT) and is being developed to: Reduce by one half the effort required to initially implement and commission alarm system improvements; improve the operational relevance, consistency and accuracy of station alarm information; record the basis for alarm-related decisions; provide printed reports of the current alarm configuration; and, make day-to-day maintenance of the alarm database less tedious and more cost-effective. The CAAT assists users in accessing, sorting and recording relevant information, design rules, decisions, and provides reports in support of alarm system maintenance, analysis of design changes, or regulatory inquiry. The paper discusses the need for such a tool, outlines the application objectives and principles used to guide tool development, describes the how specific tool features support user design and maintenance tasks, and relates the lessons learned from early application experience. (author). 4 refs, 2 figs

  8. Textile Moisture Sensor for Enuresis Alarm System

    OpenAIRE

    Kašurina, I; Vališevskis, A; Ziemele, I; Viļumsone, A

    2012-01-01

    The aim of this research is to develop an enuresis alarm system with textile moisture sensor (electrode), which is more suitable for textile garments. Authors propose to design sensor by embroidery using conductive yarn. Conductive yarns are a preferable material for enuresis alarm sensors, since they blend with the textile structure of underwear and bedding sheet, inducing less stress on the treated person.

  9. Knowledge Discovery from Communication Network Alarm Databases

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The technique of Knowledge Discovery in Databases(KDD) to learn valuable knowledge hidden in network alarm databases is introduced. To get such knowledge, we propose an efficient method based on sliding windows (named as Slidwin) to discover different episode rules from time sequential alarm data. The experimental results show that given different thresholds parameters, large amount of different rules could be discovered quickly.

  10. Applications of Nanomaterials in Electrochemical Enzyme Biosensors

    Directory of Open Access Journals (Sweden)

    Xiaodi Yang

    2009-10-01

    Full Text Available A biosensor is defined as a kind of analytical device incorporating a biological material, a biologically derived material or a biomimic intimately associated with or integrated within a physicochemical transducer or transducing microsystem. Electrochemical biosensors incorporating enzymes with nanomaterials, which combine the recognition and catalytic properties of enzymes with the electronic properties of various nanomaterials, are new materials with synergistic properties originating from the components of the hybrid composites. Therefore, these systems have excellent prospects for interfacing biological recognition events through electronic signal transduction so as to design a new generation of bioelectronic devices with high sensitivity and stability. In this review, we describe approaches that involve nanomaterials in direct electrochemistry of redox proteins, especially our work on biosensor design immobilizing glucose oxidase (GOD, horseradish peroxidase (HRP, cytochrome P450 (CYP2B6, hemoglobin (Hb, glutamate dehydrogenase (GDH and lactate dehydrogenase (LDH. The topics of the present review are the different functions of nanomaterials based on modification of electrode materials, as well as applications of electrochemical enzyme biosensors.

  11. From alarm systems to smart houses.

    Science.gov (United States)

    Vlaskamp, F J

    1992-01-01

    The percentage of senior citizens in the Netherlands will rise in coming years. The expected percentage for the year 2010 of persons over age 65 in the total population is 15%. More persons over age 65 than ever before will continue to live in their own environment. Emergency response systems (ERS) can support independent living. The most common type of organization distributing ERS is a small, partly subsidized local alarm organization run by a social welfare office for the elderly. Government subsidy has been reduced in recent years which has motivated small organizations to join together into larger regional organizations in order to get a more solid financial base. On the other hand new semi-commercial and commercial organizations have come into being. These developments are part of the growing importance of home care, leading to more medical applications of ERS. User satisfaction with ERS is high. Portable triggers can enhance the effectiveness of the system. However, many users do not wear the portable trigger when feeling well. Future technical developments will result in multifunctionality of ERS-devices. In the long term the hardware of today will be integrated in a multimedia home terminal replacing the telephone. The portable trigger will remain the only specific hardware at home for ERS. PMID:10126436

  12. Implantable electronic medical devices

    CERN Document Server

    Fitzpatrick, Dennis

    2014-01-01

    Implantable Electronic Medical Devices provides a thorough review of the application of implantable devices, illustrating the techniques currently being used together with overviews of the latest commercially available medical devices. This book provides an overview of the design of medical devices and is a reference on existing medical devices. The book groups devices with similar functionality into distinct chapters, looking at the latest design ideas and techniques in each area, including retinal implants, glucose biosensors, cochlear implants, pacemakers, electrical stimulation t

  13. Estimation of the patient monitor alarm rate for a quantitative analysis of new alarm settings.

    Science.gov (United States)

    de Waele, Stijn; Nielsen, Larry; Frassica, Joseph

    2014-01-01

    In many critical care units, default patient monitor alarm settings are not fine-tuned to the vital signs of the patient population. As a consequence there are many alarms. A large fraction of the alarms are not clinically actionable, thus contributing to alarm fatigue. Recent attention to this phenomenon has resulted in attempts in many institutions to decrease the overall alarm load of clinicians by altering the trigger thresholds for monitored parameters. Typically, new alarm settings are defined based on clinical knowledge and patient population norms and tried empirically on new patients without quantitative knowledge about the potential impact of these new settings. We introduce alarm regeneration as a method to estimate the alarm rate of new alarm settings using recorded patient monitor data. This method enables evaluation of several alarm setting scenarios prior to using these settings in the clinical setting. An expression for the alarm rate variance is derived for the calculation of statistical confidence intervals on the results. PMID:25571296

  14. Biosensors Incorporating Bimetallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    John Rick

    2015-12-01

    Full Text Available This article presents a review of electrochemical bio-sensing for target analytes based on the use of electrocatalytic bimetallic nanoparticles (NPs, which can improve both the sensitivity and selectivity of biosensors. The review moves quickly from an introduction to the field of bio-sensing, to the importance of biosensors in today’s society, the nature of the electrochemical methods employed and the attendant problems encountered. The role of electrocatalysts is introduced with reference to the three generations of biosensors. The contributions made by previous workers using bimetallic constructs, grouped by target analyte, are then examined in detail; following which, the synthesis and characterization of the catalytic particles is examined prior to a summary of the current state of endeavor. Finally, some perspectives for the future of bimetallic NPs in biosensors are given.

  15. Reactor alarm system development and application issues

    International Nuclear Information System (INIS)

    The new hardware and software technologies, and the need in research reactors for assistance systems in operation and maintenance, have given an appropriate background to develop a computer based system named ''Reactor Alarm System'' (RAS). RAS is a software package, user oriented, with emphasis on production, experiments and maintenance goals. It is designed to run on distributed systems conformed with microcomputers under QNX operating system. RAS main features are: a) Alarm Panel Display; b) Alarm Page; c) Alarm Masking and Inhibition; d) Alarms Color and Attributes; e) Condition Classification; and f) Arrangement Presentation. RAS design allows it to be installed as a part of a computer based Supervision and Control System in new installations or retrofit existing reactor instrumentation systems. The analysis of human factors during development stage and successive user feedback from different applications, brought out several RAS improvements: a) Multiple-copy alarm summaries; b) Improved alarm handling; c) Extended dictionary; and d) Enhanced hardware availability. It has proved successful in providing new capabilities for operators, and also has shown the continuous increase of user-demands, reflecting the expectations placed today on computer-based systems. (author). 6 figs, 1 tabs

  16. Ultrasensitive detection of influenza viruses with a glycan-based impedimetric biosensor.

    Science.gov (United States)

    Hushegyi, András; Pihíková, Dominika; Bertok, Tomas; Adam, Vojtech; Kizek, René; Tkac, Jan

    2016-05-15

    An ultrasensitive impedimetric glycan-based biosensor for reliable and selective detection of inactivated, but intact influenza viruses H3N2 was developed. Such glycan-based approach has a distinct advantage over antibody-based detection of influenza viruses since glycans are natural viral receptors with a possibility to selectively distinguish between potentially pathogenic influenza subtypes by the glycan-based biosensors. Build-up of the biosensor was carefully optimized with atomic force microscopy applied for visualization of the biosensor surface after binding of viruses with the topology of an individual viral particle H3N2 analyzed. The glycan biosensor could detect a glycan binding lectin with a limit of detection (LOD) of 5aM. The biosensor was finally applied for analysis of influenza viruses H3N2 with LOD of 13 viral particles in 1μl, what is the lowest LOD for analysis of influenza viral particles by the glycan-based device achieved so far. The biosensor could detect H3N2 viruses selectively with a sensitivity ratio of 30 over influenza viruses H7N7. The impedimetric biosensor presented here is the most sensitive glycan-based device for detection of influenza viruses and among the most sensitive antibody or aptamer based biosensor devices. PMID:26765527

  17. Alarm points for fixed oxygen monitors

    International Nuclear Information System (INIS)

    Oxygen concentration monitors were installed in a vault where numerous pipes carried inert cryogens and gases to the Mirror Fusion Test Facility (MFTF-B) experimental vessel at Lawrence Livermore National Laboratory (LLNL). The problems associated with oxygen-monitoring systems and the reasons why such monitors were installed were reviewed. As a result of this review, the MFTF-B monitors were set to sound an evacuation alarm when the oxygen concentration fell below 18%. We chose the 18% alarm criterion to minimize false alarms and to allow time for personnel to escape in an oxygen-deficient environment

  18. Wallac automatic alarm dosimeter type RAD21

    International Nuclear Information System (INIS)

    The Automatic Alarm Dosimeter type RAD 21 is a batterypowered personal dosemeter and exposure rate alarm monitor, designed to be worn on the body, covering an exposure range from 0.1 to 999.9 mR and has an audible alarm which can be pre-set over the range 1 mR h-1 to 250 mR h-1. The instrument is designed to measure x- and γ radiation over the energy range 50 keV to 3 MeV. The facilities and controls, the radiation, electrical, environmental and mechanical characteristics, and the manual, have been evaluated. (U.K.)

  19. A Selection of Data Structure for SMART Alarm System Database

    International Nuclear Information System (INIS)

    A design goal of SMART Alarm System is providing intelligence alarm information to operator in main control room. To achive this, we should apply advanced alarm process logics and manage alarm data sets for advanced alarm logic. SMART Alarm System must analyze a lot of alarm by the cycle to determines alarms. For this, performance optimization of database is essential. Especially, high performance of search function is required. In this paper, we propose most a suitable search method to database by compare several search methods

  20. An expert system for alarm diagnosis and filtering

    International Nuclear Information System (INIS)

    This paper describes an alarm processing system being developed at the Oak Ridge National Laboratory for implementation in the High Flux Isotope Reactor. The purpose of the system is to perform two related functions, alarm diagnosis and filtering, to aid nuclear plant operators in responding to the large number of alarms typically activated during a major plant transient. The alarm diagnostician determines the root cause of a pattern or sequence of alarms and generates an explanation of the events leading to the alarm sequence. The alarm filter identifies and deemphasize those alarms which are either irrelevant to the current plant condition or contribute no significant new information

  1. Cantilever-Based Biosensors in CMOS Technology

    CERN Document Server

    Kirstein, K -U; Zimmermann, M; Vancura, C; Volden, T; Song, W H; Lichtenberg, J; Hierlemannn, A

    2011-01-01

    Single-chip CMOS-based biosensors that feature microcantilevers as transducer elements are presented. The cantilevers are functionalized for the capturing of specific analytes, e.g., proteins or DNA. The binding of the analyte changes the mechanical properties of the cantilevers such as surface stress and resonant frequency, which can be detected by an integrated Wheatstone bridge. The monolithic integrated readout allows for a high signal-to-noise ratio, lowers the sensitivity to external interference and enables autonomous device operation.

  2. Nanobiocatalysts for biofuel cells and biosensor systems

    Directory of Open Access Journals (Sweden)

    Radivoje M. Prodanović

    2011-10-01

    Full Text Available This overview summarizes the application of enzymes in the manufacture and design of biofuel cells and biosensors. The emphasis will be put on the protein engineering techniques used for improving the properties of enzymes such as nanobiocatalysts, e.g. immobilization orientation, stability, activity and efficiency of electron transfer between immobilized enzymes and electrodes. Some possible applications in the military and some future designs of these electric devices will be discussed as well.

  3. Electrochemical biosensors - sensor principles and architectures

    OpenAIRE

    Erik Reimhult; Janos Vörös; Robert MacKenzie; Dorothee Grieshaber

    2008-01-01

    Quantification of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. However, converting the biological information to an easily processed electronic signal is challenging due to the complexity of connecting an electronic device directly to a biological environment. Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an ele...

  4. 46 CFR 63.15-7 - Alarms.

    Science.gov (United States)

    2010-10-01

    ... periodically unattended machinery space, the auxiliary boiler trip alarm required by 46 CFR 62.35-50, Table 62... reset. (c) For steam boilers, operation of the lower low water cutoff must automatically sound...

  5. Recommendations for the LHC safety alarm system

    CERN Document Server

    Laeger, H

    1999-01-01

    A working group was set up to define the LHC safety alarm system, also known as Alarm-of-Level-3-System (AL3S). The mandate asked for recommendations to be elaborated on four items: the overall concept of the AL3S for machine and experiments, the transmission and display of safety alarms, the AL3S during civil engineering construction, and the transition from the present LEP to the final LHC safety alarm system. The members of the working group represented a wide range of interest and experience including the CERN Fire Brigade, safety officers from experiments and machines, and specialists for safety and control systems. The recommendations highlight the need for a clear definition of responsibilities and procedures, well-engineered homogeneous systems across CERN, and they point to several important issues outside the mandate of the working group. These recommendations were presented, discussed and accepted by several CERN and LHC committees.

  6. Design of nanostructured-based glucose biosensors

    Science.gov (United States)

    Komirisetty, Archana; Williams, Frances; Pradhan, Aswini; Konda, Rajini B.; Dondapati, Hareesh; Samantaray, Diptirani

    2012-04-01

    This paper presents the design of glucose sensors that will be integrated with advanced nano-materials, bio-coatings and electronics to create novel devices that are highly sensitive, inexpensive, accurate, and reliable. In the work presented, a glucose biosensor and its fabrication process flow have been designed. The device is based on electrochemical sensing using a working electrode with bio-functionalized zinc oxide (ZnO) nano-rods. Among all metal oxide nanostructures, ZnO nano-materials play a significant role as a sensing element in biosensors due to their properties such as high isoelectric point (IEP), fast electron transfer, non-toxicity, biocompatibility, and chemical stability which are very crucial parameters to achieve high sensitivity. Amperometric enzyme electrodes based on glucose oxidase (GOx) are used due to their stability and high selectivity to glucose. The device also consists of silicon dioxide and titanium layers as well as platinum working and counter electrodes and a silver/silver chloride reference electrode. Currently, the biosensors are being fabricated using the process flow developed. Once completed, the sensors will be bio-functionalized and tested to characterize their performance, including their sensitivity and stability.

  7. Addressing the alarm analysis barrier - a tool for improving alarm systems

    International Nuclear Information System (INIS)

    This paper describes a software application tool for the initial specification and maintenance of the thousands of alarms in nuclear and other process control plants. The software program is used by system designers and maintainers to analyze, characterize, record and maintain the alarm information and configuration decisions for an alarm system. The tool provides a comprehensive design and information handling environment for: the existing alarm functions in current CANDU plants; the new alarm processing and presentation concepts developed under CANDU Owners Group (COG) sponsorship that are available to be applied to existing CANDU plants on a retrofit basis; and, the alarm functions to be implemented in new CANDU plants. (author). 3 refs., 1 fig

  8. Principal alarms in multivariate statistical process control

    OpenAIRE

    González, Isabel; Sánchez, Ismael

    2006-01-01

    This paper describes a methodology for the simulation of multivariate out of control situations using in-control data. The method is based on finding the independent factors of the variability of the process, and shifting these factors one by one. These shifts are then translated in terms of the observed variables. The shifts provoked by the most important factors are called principal alarms. The principal alarms are plotted, visualizing the main deviations of the process. Also, a resampling ...

  9. Engineered PQQ-Glucose Dehydrogenase as a Universal Biosensor Platform.

    Science.gov (United States)

    Guo, Zhong; Murphy, Lindy; Stein, Viktor; Johnston, Wayne A; Alcala-Perez, Siro; Alexandrov, Kirill

    2016-08-17

    Biosensors with direct electron output hold promise for nearly seamless integration with portable electronic devices. However, so far, they have been based on naturally occurring enzymes that significantly limit the spectrum of detectable analytes. Here, we present a novel biosensor architecture based on analyte-driven intermolecular recombination and activity reconstitution of a re-engineered component of glucometers: PQQ-glucose dehydrogenase. We demonstrate that this sensor architecture can be rapidly adopted for the detection of immunosuppressant drugs, α-amylase protein, or protease activity of thrombin and Factor Xa. The biosensors could be stored in dried form without appreciable loss of activity. We further show that ligand-induced activity of the developed biosensors could be directly monitored by chronoamperometry, enabling construction of disposable sensory electrodes. We expect that this architecture could be expanded to the detection of other biochemical activities, post-translational modifications, nucleic acids, and inorganic molecules. PMID:27463000

  10. Sensor fusion for intelligent alarm analysis

    International Nuclear Information System (INIS)

    The purpose of an intelligent alarm analysis system is to provide complete and manageable information to a central alarm station operator by applying alarm processing and fusion techniques to sensor information. This paper discusses the sensor fusion approach taken to perform intelligent alarm analysis for the Advanced Exterior Sensor (AES). The AES is an intrusion detection and assessment system designed for wide-area coverage, quick deployment, low false/nuisance alarm operation, and immediate visual assessment. It combines three sensor technologies (visible, infrared, and millimeter wave radar) collocated on a compact and portable remote sensor module. The remote sensor module rotates at a rate of 1 revolution per second to detect and track motion and provide assessment in a continuous 360 degree field-of-regard. Sensor fusion techniques are used to correlate and integrate the track data from these three sensors into a single track for operator observation. Additional inputs to the fusion process include environmental data, knowledge of sensor performance under certain weather conditions, sensor priority, and recent operator feedback. A confidence value is assigned to the track as a result of the fusion process. This helps to reduce nuisance alarms and to increase operator confidence in the system while reducing the workload of the operator

  11. Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells.

    Science.gov (United States)

    Desmet, Cloé; Marquette, Christophe A; Blum, Loïc J; Doumèche, Bastien

    2016-02-15

    Paper-based analytical devices (PAD) emerge in the scientific community since 2007 as low-cost, wearable and disposable devices for point-of-care diagnostic due to the widespread availability, long-time knowledge and easy manufacturing of cellulose. Rapidly, electrodes were introduced in PAD for electrochemical measurements. Together with biological components, a new generation of electrochemical biosensors was born. This review aims to take an inventory of existing electrochemical paper-based biosensors and biofuel cells and to identify, at the light of newly acquired data, suitable methodologies and crucial parameters in this field. Paper selection, electrode material, hydrophobization of cellulose, dedicated electrochemical devices and electrode configuration in biosensors and biofuel cells will be discussed. PMID:26163746

  12. A NEW INVENTION OF ALARM REMINDER LOCKING (ARL SECURITY SYSTEM

    Directory of Open Access Journals (Sweden)

    M.S.M. Effendi

    2016-02-01

    Full Text Available Alarm Reminder Locking (ARL Security System mainly focuses on a door security system, which can install in the door area to increase the security level for home, office room, hostel or other places. This system used Arduino Controller and Global System for Mobile Communication (GSM technology, which is the cheapest source to embed the security system to transmit the Short Message Service (SMS alert data. This device integrates three functions that are alarming, reminder and locked for a purpose of safety and connecting via mobile phone to remind the users through SMS. This device has a 3 modes of operation which is the system will be functional when the door is not improperly closed for the first reminder with the buzzer alert. The second mode is automated locked will be activated when users closed the door, but did not lock manually. Intrusion mode will activate while auto locked modes are interrupted without proper access. All this integrated system will provide high security access against intrusion occurrence. This security device will bring a new benefit to the user to consider about the userfriendly application, low power consumption and reasonable cost to install.

  13. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  14. 46 CFR 78.47-9 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping... and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” (b)...

  15. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  16. 46 CFR 108.627 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next...

  17. 46 CFR 169.732 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  18. Recent advances in ZnO nanostructures and thin films for biosensor applications: Review

    International Nuclear Information System (INIS)

    Graphical abstract: ZnO nanostructures have shown binding of biomolecules in desired orientation with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, their compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes them suitable candidate for future small integrated biosensor devices. This review highlights various approaches to synthesize ZnO nanostructures and thin films, and their applications in biosensor technology. Highlights: ► This review highlights various approaches to synthesize ZnO nanostructures and thin films. ► Article highlights the importance of ZnO nanostructures as biosensor matrix. ► Article highlights the advances in various biosensors based on ZnO nanostructures. ► Article describes the potential of ZnO based biosensor for new generation healthcare devices. - Abstract: Biosensors have shown great potential for health care and environmental monitoring. The performance of biosensors depends on their components, among which the matrix material, i.e., the layer between the recognition layer of biomolecule and transducer, plays a crucial role in defining the stability, sensitivity and shelf-life of a biosensor. Recently, zinc oxide (ZnO) nanostructures and thin films have attracted much interest as materials for biosensors due to their biocompatibility, chemical stability, high isoelectric point, electrochemical activity, high electron mobility, ease of synthesis by diverse methods and high surface-to-volume ratio. ZnO nanostructures have shown the binding of biomolecules in desired orientations with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes ZnO nanostructures suitable candidate for future small integrated biosensor devices. This review

  19. SMS-baserat alarm med positionering : GPS based alarm with positioning

    OpenAIRE

    Nors, Niclas; Rehnström, Tom

    2008-01-01

    The study investigates how to design a low-cost, versatile event messaging system using SMS. A typical use case is a fire alarm or intrusion detector when equipped with appropriate sensors. With a GPS receiver connected, the actual position is included in the message, allowing for use as theft alarm in e.g. a car or in mobile home.

  20. Cultured neuronal networks as environmental biosensors.

    Science.gov (United States)

    O'Shaughnessy, Thomas J; Gray, Samuel A; Pancrazio, Joseph J

    2004-01-01

    Contamination of water by toxins, either intentionally or unintentionally, is a growing concern for both military and civilian agencies and thus there is a need for systems capable of monitoring a wide range of natural and industrial toxicants. The EILATox-Oregon Workshop held in September 2002 provided an opportunity to test the capabilities of a prototype neuronal network-based biosensor with unknown contaminants in water samples. The biosensor is a portable device capable of recording the action potential activity from a network of mammalian neurons grown on glass microelectrode arrays. Changes in the action potential fi ring rate across the network are monitored to determine exposure to toxicants. A series of three neuronal networks derived from mice was used to test seven unknown samples. Two of these unknowns later were revealed to be blanks, to which the neuronal networks did not respond. Of the five remaining unknowns, a significant change in network activity was detected for four of the compounds at concentrations below a lethal level for humans: mercuric chloride, sodium arsenite, phosdrin and chlordimeform. These compounds--two heavy metals, an organophosphate and an insecticide--demonstrate the breadth of detection possible with neuronal networks. The results generated at the workshop show the promise of the neuronal network biosensor as an environmental detector but there is still considerable effort needed to produce a device suitable for routine environmental threat monitoring. PMID:15478174

  1. Pre-alarm closed circuit television verification to reduce false alarm impact

    International Nuclear Information System (INIS)

    Closed circuit television (CCTV) plays an important role in modern security systems for protection of nuclear material. The functions of video are for detection and to assist in classification or assessment of alarms from other sensors. A nuclear facility with an extensive security system can experience a very high alarm rate, including false, nuisance and alarms occurring as part of routine operations. Video systems which include the Pre-Alarm Image Recall feature continuously capture and store a number of images from each camera. The images leading up to, at the instant of, and immediately after an alarm, can be displayed as a very valuable aid in assessment. The technology and operation of this feature is described, together with actual operating experience and a summary of the benefits which have been obtained from its use. (author)

  2. Biosensors and other medical and environmental probes

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, K.B.

    1996-12-31

    The author presents a overview of work at Oak Ridge National Laboratory directed toward the development of biosensors which can be used to monitor for an array of medical and environmental effects. The article describes the variety of problems which have been addressed by development of such sensors, and the range of staff who have been actively involved in this effort. The first such sensor developed at ORNL was an optical fiber whose end was treated with an antibody which would react with the carcinogen benzo(a)pyrene (BaP). Section titles from the article provide an idea of the breadth of applications addressed: medical telesensors; microcantilevers; detecting cancer and health abnormalities; bioreporters; miniaturized devices; biosensors and DNA analysis; lipids in bacteria and human fingerprints; and anthropometry.

  3. Biosensors for security and bioterrorism applications

    CERN Document Server

    Nikoleli, Georgia-Paraskevi

    2016-01-01

    This book offers comprehensive coverage of biomarker/biosensor interactions for the rapid detection of weapons of bioterrorism, as well as current research trends and future developments and applications. It will be useful to researchers in this field who are interested in new developments in the early detection of such. The authors have collected very valuable and, in some aspects indispensable experience in the area i.e. in the development and application of portable biosensors for the detection of potential hazards. Most efforts are centered on the development of immunochemical assays including flow-lateral systems and engineered antibodies and their fragments. In addition, new approaches to the detection of enzyme inhibitors, direct enzymatic and microbial detection of metabolites and nutrients are elaborated. Some realized prototypes and concept devices applicable for the further use as a basis for the cooperation programs are also discussed. There is a particular focus on electrochemical and optical det...

  4. System for alarms analysis and optimization in petrochemicals plants; Sistema para analise e otimizacao de alarmes em plantas petroquimicas

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Gustavo; Pifer, Aderson; Guedes, Luiz Affonso [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Saito, Kaku; Aquino, Leonardo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    The present work presents a group of algorithms, techniques and functionalities on alarms management which can be used efficiently on the treatment of 'disturbances' caused by the informal management of the alarm systems. Among the disturbances handled by these techniques, there is the recognition of intermittent alarms and false alarms, location of alarm floods and correlation between alarms, aiming the identification of communal root causes. The results will be presented through a case study on petrochemical alarm plants. At last, the results obtained by the utilization of such functionalities will be presented and discussed. (author)

  5. Behavioral alarm treatment for nocturnal enuresis

    Directory of Open Access Journals (Sweden)

    Rodrigo F. Pereira

    2010-06-01

    Full Text Available PURPOSES: To investigate the efficacy of alarm treatment in a sample of Brazilian children and adolescents with nocturnal enuresis and relate treatment success to age and type of clinical support. MATERIALS AND METHODS: During 32 weeks, 84 children and adolescents received alarm treatment together with weekly psychological support sessions for individual families or groups of 5 to 10 families. RESULTS: 71% of the participants achieved success, defined as 14 consecutive dry nights. The result was similar for children and adolescents and for individual or group support. The time until success was shorter for participants missing fewer support sessions. CONCLUSIONS: Alarm treatment was effective for the present sample, regardless of age or type of support. Missing a higher number of support sessions, which may reflect low motivation for treatment, increased the risk of failure.

  6. An evaluation approach for alarm processing improvement

    International Nuclear Information System (INIS)

    In light of the need to improve MMIS of NPPs, the advanced I and C research team of KAERI has embarked on developing an Alarm and Diagnosis-Integrated Operator Support System, called ADIOS, to filter or suppress unnecessary or nuisance alarms and diagnose abnormality of the plant process. ADIOS has been built in an object-oriented AI environment of G-2 expert system software tool, as presented in a companion paper. ADIOS then is evaluated according to the plan in three steps; (1) preliminary tests to refine the knowledge base and inference structure of ADIOS in such a dynamic environment, and also to evaluate the appropriateness of alarm-processing algorithms; (2) to ensure correctness, consistency, and completeness in the knowledge base using COKEP (Checker Of Knowledge base using Extended Petri net); and (3) the cognitive performance evaluation using the Simulation Analyzer with a Cognitive Operator Model (SACOM) in the KAERI's Integrated Test Facility (ITF). (author). 5 figs, 1 tab

  7. HISTAMINE BIOSENSOR: A REVIEW

    Directory of Open Access Journals (Sweden)

    Niraj*, M. M. Gupta and Shweta Pandey

    2012-11-01

    Full Text Available Some biogenic amine like Histamine, cadaverine and putrescine have been confirmed as useful chemical indicators to estimate bacterial spoilage of foods, particularly fish and fish products, cheese, meat and fermented foods. Histamine is toxic at high intakes, while cadaverine and putrescine potentiate the effects of Histamine. Histamine has regulated level of 200 mg/kg (200 ppm. Basic principle involved in Biogenic amines biosensor is the action of diamine oxidase (DAO that catalyzes the oxidative deamination of primary amines to the corresponding aldehydes, hydrogen peroxide and ammonia. Two different approaches for the histamine biosensor design were studied, i.e. the enzyme DAO was directly immobilized on the surface of the oxygen electrode membrane using glutaraldehyde or entrapped in a hydrogel film. In histamine biosensor consisting of diamine oxidase (DAO and a conventional oxygen electrode transducer was developed and applied for the determination of standard histamine solutions. For immobilisation with glutaraldehyde, the enzyme was cross-linked with glutaraldehyde as a bifunctional reagent on the electrode surface. For entrapment, DAO was entrapped in a polymeric hydrogel film, i.e. poly(hydroxyl ethyl methacrylate (pHEMA polymer and deposited onto the teflon membrane of the oxygen electrode. Good linear correlation response obtained of the histamine biosensors with immobilized DAO showed between the changes of oxygen level with changes in concentration of histamine at both high concentration ranges (200-1000 mg/L and low concentrations (20-100 mg/L. However, the sensitivity of the biosensor response decreased at high concentration range of histamine, for the direct DAO immobilisation with glutaraldehyde. Biogenic amines concentration can be measured by monitoring either the decrease in oxygen or the increase of hydrogen peroxide concentration.

  8. Decision-making and response strategies in interaction with alarms: the impact of alarm reliability, availability of alarm validity information and workload.

    Science.gov (United States)

    Manzey, Dietrich; Gérard, Nina; Wiczorek, Rebecca

    2014-01-01

    Responding to alarm systems which usually commit a number of false alarms and/or misses involves decision-making under uncertainty. Four laboratory experiments including a total of 256 participants were conducted to gain comprehensive insight into humans' dealing with this uncertainty. Specifically, it was investigated how responses to alarms/non-alarms are affected by the predictive validities of these events, and to what extent response strategies depend on whether or not the validity of alarms/non-alarms can be cross-checked against other data. Among others, the results suggest that, without cross-check possibility (experiment 1), low levels of predictive validity of alarms ( ≤ 0.5) led most participants to use one of two different strategies which both involved non-responding to a significant number of alarms (cry-wolf effect). Yet, providing access to alarm validity information reduced this effect dramatically (experiment 2). This latter result emerged independent of the effort needed for cross-checkings of alarms (experiment 3), but was affected by the workload imposed by concurrent tasks (experiment 4). Theoretical and practical consequences of these results for decision-making and response selection in interaction with alarm systems, as well as the design of effective alarm systems, are discussed. PMID:25224606

  9. Lipase Based Biosensors for Triglyceride Determination

    OpenAIRE

    Rosli Nurul Huwaida; Mohd Zain Zainiharyati; Ahmad Nor Monica

    2016-01-01

    A review of methods development in lipase based biosensor for triglyceride determination was briefly discussed. This review focuses on the basic principle of triglyceride biosensor that includes performances of triglyceride biosensor such as limit of detection, response time, and optimization.

  10. Alarm handling systems and techniques developed to match operator tasks

    International Nuclear Information System (INIS)

    This paper covers alarm handling methods and techniques explored at the Halden Project, and describes current status on the research activities on alarm systems. Alarm systems are often designed by application of a bottom-up strategy, generating alarms at component level. If no structuring of the alarms is applied, this may result in alarm avalanches in major plant disturbances, causing cognitive overload of the operator. An alarm structuring module should be designed using a top-down approach, analysing operator's tasks, plant states, events and disturbances. One of the operator's main tasks during plant disturbances is status identification, including determination of plant status and detection of plant anomalies. The main support of this is provided through the alarm systems, the process formats, the trends and possible diagnosis systems. The alarm system should both physically and conceptually be integrated with all these systems. 9 refs, 5 figs

  11. Development of the newly advanced alarm system for APWR plant

    International Nuclear Information System (INIS)

    We have been developing AMCB (Advanced Main Control Board) for APWR consisting of a large overview display and on operator console. We have adopted the alarm prioritizing functions, which are already in use in the existing Japanese PWR plants, for easier identification of the high priority alarms. Moreover, we have developed an alarm system with a large overview display, which presents alarms on the plant process flow diagram. This enhances the location aids and pattern recognition in the alarm identification process. This time, we made further improvement and studies for better and various functions combining a large overview display with a CRT display. We determined the alarm system specification as follows, taking account of flexible alarm recognition processes. (1) The high priority alarms can be identified upon the LOD (large overview display). On the display, the alarms are described on the plant flow diagram, and the alarm status is shown on the fixed position of process or equipment symbols. (2) Other alarms are identified on large overview display and on CRTs using a hierarchical process. (3) The alarm messages are divided into 4 different groups according to the plant systems, thus enabling to undertake the countermeasure operations, using only the CRT. Moreover, we integrated a computerized ARPs (Alarm Response Procedures) into the alarm system. (author). 4 figs, 5 tabs

  12. An Undergraduate Experiment in Alarm System Design.

    Science.gov (United States)

    Martini, R. A.; And Others

    1988-01-01

    Describes an experiment involving data acquisition by a computer, digital signal transmission from the computer to a digital logic circuit and signal interpretation by this circuit. The system is being used at the Illinois Institute of Technology. Discusses the fundamental concepts involved. Demonstrates the alarm experiment as it is used in…

  13. Electrochemical biosensors in pharmaceutical analysis

    OpenAIRE

    Eric de Souza Gil; Giselle Rodrigues de Melo

    2010-01-01

    Given the increasing demand for practical and low-cost analytical techniques, biosensors have attracted attention for use in the quality analysis of drugs, medicines, and other analytes of interest in the pharmaceutical area. Biosensors allow quantification not only of the active component in pharmaceutical formulations, but also the analysis of degradation products and metabolites in biological fluids. Thus, this article presents a brief review of biosensor use in pharmaceutical analysis, fo...

  14. Nuclear power plant alarm systems: Problems and issues

    International Nuclear Information System (INIS)

    Despite the incorporation of advanced technology into nuclear power plant alarm systems, human factors problems remain. This paper identifies to be addressed in order to allow advanced technology to be used effectively in the design of nuclear power plant alarm systems. The operator's use and processing of alarm system information will be considered. Based upon a review of alarm system research, issues related to general system design, alarm processing, display and control are discussed. It is concluded that the design of effective alarm systems depends on an understanding of the information processing capabilities and limitations of the operator. 39 refs

  15. Gold nanoparticles embedded silicon channel biosensor for improved sensitivity

    Science.gov (United States)

    Chang, H. Y.; Arshad, M. K. Md.; M. Nuzaihan M., N.; Fathil, M. F. M.; Hashim, U.

    2016-07-01

    This project discusses the fabrication steps of a biosensor device on silicon-on-insulator (SOI) wafer. Conventional photolithography technique is used to fabricate the device. The gold nanoparticles (GNPs) are then used to enhance the sensitivity of the device. By incorporating the GNPs, it is expected to get higher current compared with the device without GNPs due to better conductivity of gold and higher volume-to-ratio. Hence, with the addition of GNPs, it may boost up the signal and enhance the sensitivity of the device.

  16. Bioluminiscent Biosensor of Toluene

    Czech Academy of Sciences Publication Activity Database

    Kuncová, Gabriela; Pazlarová, J.; Adamová, Nela; Hlavatá, Alena

    -: -, 2009, P66 1-P66 4. ISBN B. [International Conference on Bioencapsulation /17./. Groningen (NL), 24.09.2009-26.09.2009] R&D Projects: GA MŠk OC 121; GA MŠk ME 892; GA MŠk ME 893 Institutional research plan: CEZ:AV0Z40720504 Keywords : bioluminscence * biosensor * immobilization Subject RIV: CE - Biochemistry www.bioencapsolation.net

  17. Surface plasmon resonance biosensors

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří

    MALDEN: WILEY-BLACKWELL, 2009. Roč. 276, Suppl. 1 (2009), s. 63-63. ISSN 1742-464X. [Congress of the Federation-of-European-Biochemical-Societies /34.00/. 04.07.2009-09.07.2009, Praha] R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance imaging * Biosensor * Protein detection Subject RIV: JB - Sensors, Measurment, Regulation

  18. Surface plasmon resonance biosensors

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří; Piliarik, Marek; Kvasnička, Pavel

    Bellingham: SPIE - The International Society for Optical Engineering, 2007 - (Cutolo, A.; Culshaw, B.; Lopéz-Higuera, J.), s. 661909.1-661909.6. (Proceedings of SPIE. Vol. 6619). ISBN 978-0-8194-6761-4. ISSN 0277-786X. [EWOFS 2007 - European Workshop on Optical Fibre Sensors /3./. Napoli (IT), 04.07.2007-06.07.2007] Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * biosensors * optical sensors Subject RIV: JB - Sensors, Measurment, Regulation

  19. Surface plasmon resonance biosensors

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří

    Praha: Agentura Action M, 2006. 3--. [Czech-Polish-Slovak Optical Conference Wave and Quantum Aspects of Contemporary Optics /15./. 11.09.2006-15.09.2006, Liberec] R&D Projects: GA ČR(CZ) GA202/05/0628; GA AV ČR(CZ) IAA400500507 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical sensors * biosensors * surface plasmon resonance Subject RIV: BO - Biophysics

  20. Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients1

    OpenAIRE

    Adriana Carla Bridi; Thiago Quinellato Louro; Roberto Carlos Lyra da Silva

    2014-01-01

    OBJECTIVES: to identify the number of electro-medical pieces of equipment in a coronary care unit, characterize their types, and analyze implications for the safety of patients from the perspective of alarm fatigue. METHOD: this quantitative, observational, descriptive, non-participatory study was conducted in a coronary care unit of a cardiology hospital with 170 beds. RESULTS: a total of 426 alarms were recorded in 40 hours of observation: 227 were triggered by multi-parametric monitors and...

  1. Thermoresponsive amperometric glucose biosensor.

    Science.gov (United States)

    Pinyou, Piyanut; Ruff, Adrian; Pöller, Sascha; Barwe, Stefan; Nebel, Michaela; Alburquerque, Natalia Guerrero; Wischerhoff, Erik; Laschewsky, André; Schmaderer, Sebastian; Szeponik, Jan; Plumeré, Nicolas; Schuhmann, Wolfgang

    2016-03-01

    The authors report on the fabrication of a thermoresponsive biosensor for the amperometric detection of glucose. Screen printed electrodes with heatable gold working electrodes were modified by a thermoresponsive statistical copolymer [polymer I: poly(ω-ethoxytriethylenglycol methacrylate-co-3-(N,N-dimethyl-N-2-methacryloyloxyethyl ammonio) propanesulfonate-co-ω-butoxydiethylenglycol methacrylate-co-2-(4-benzoyl-phenoxy)ethyl methacrylate)] with a lower critical solution temperature of around 28 °C in aqueous solution via electrochemically induced codeposition with a pH-responsive redox-polymer [polymer II: poly(glycidyl methacrylate-co-allyl methacrylate-co-poly(ethylene glycol)methacrylate-co-butyl acrylate-co-2-(dimethylamino)ethyl methacrylate)-[Os(bpy)2(4-(((2-(2-(2-aminoethoxy)ethoxy)ethyl)amino)methyl)-N,N-dimethylpicolinamide)](2+)] and pyrroloquinoline quinone-soluble glucose dehydrogenase acting as biological recognition element. Polymer II bears covalently bound Os-complexes that act as redox mediators for shuttling electrons between the enzyme and the electrode surface. Polymer I acts as a temperature triggered immobilization matrix. Probing the catalytic current as a function of the working electrode temperature shows that the activity of the biosensor is dramatically reduced above the phase transition temperature of polymer I. Thus, the local modulation of the temperature at the interphase between the electrode and the bioactive layer allows switching the biosensor from an on- to an off-state without heating of the surrounding analyte solution. PMID:26702635

  2. Dual-mode acoustic wave biosensors microarrays

    Science.gov (United States)

    Auner, Gregory W.; Shreve, Gina; Ying, Hao; Newaz, Golam; Hughes, Chantelle; Xu, Jianzeng

    2003-04-01

    We have develop highly sensitive and selective acoustic wave biosensor arrays with signal analysis systems to provide a fingerprint for the real-time identification and quantification of a wide array of bacterial pathogens and environmental health hazards. We have developed an unique highly sensitive dual mode acoustic wave platform prototype that, when combined with phage based selective detection elements, form a durable bacteria sensor. Arrays of these new real-time biosensors are integrated to form a biosensor array on a chip. This research and development program optimizes advanced piezoelectric aluminum nitride wide bandgap semiconductors, novel micromachining processes, advanced device structures, selective phage displays development and immobilization techniques, and system integration and signal analysis technology to develop the biosensor arrays. The dual sensor platform can be programmed to sense in a gas, vapor or liquid environment by switching between acoustic wave resonate modes. Such a dual mode sensor has tremendous implications for applications involving monitoring of pathogenic microorganisms in the clinical setting due to their ability to detect airborne pathogens. This provides a number of applications including hospital settings such as intensive care or other in-patient wards for the reduction of nosocomial infections and maintenance of sterile environments in surgical suites. Monitoring for airborn pathogen transmission in public transportation areas such as airplanes may be useful for implementation of strategies for redution of airborn transmission routes. The ability to use the same sensor in the liquid sensing mode is important for tracing the source of airborn pathogens to local liquid sources. Sensing of pathogens in saliva will be useful for sensing oral pathogens and support of decision-making strategies regarding prevention of transmission and support of treatment strategies.

  3. An embedded telecommunication cable auto-locating system of guard against theft and alarm

    Science.gov (United States)

    Li, Yan; Li, Jun; Jin, Tian-Bo; Zhang, Li-yong

    2005-12-01

    This system adopted two-level structure that was composed of Cable Monitoring And Controlling Device (CMCD) and Cable Monitoring Center (CMC). CMC receives the alarm data via the MODEM and the telephone net. In this way, the functions of typing the fault point's map, alarming and the cable management can be picked up. CMCD takes the processor chip Atemega128 as the center of the system that adopted the alternating current and direct current on-line switching electricity-supply mode. Also, the system includes four groups of independent power, the relay and the optical isolation to separate the system from the monitoring cable and the telephone net. CMCD accomplishes the cable real-time monitoring, malfunctions auto-locating, telephone voice alarming, long-distance parameters modification, data up-loading, error verifying and the telecommunication room's environment monitoring and so on. The longest distance of monitoring cable is 20 km, and the precision is 1%.

  4. Last Advances in Silicon-Based Optical Biosensors

    Directory of Open Access Journals (Sweden)

    Adrián Fernández Gavela

    2016-02-01

    Full Text Available We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies.

  5. Last Advances in Silicon-Based Optical Biosensors.

    Science.gov (United States)

    Fernández Gavela, Adrián; Grajales García, Daniel; Ramirez, Jhonattan C; Lechuga, Laura M

    2016-01-01

    We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies. PMID:26927105

  6. Optimal design of label-free silicon “lab on a chip” biosensors

    Institute of Scientific and Technical Information of China (English)

    Yaping Zhang

    2013-01-01

    This paper reported the optimal design of label-free silicon on insulator (SOI)“lab on a chip”biosensors. These devices are designed on the basis of the evanescent field detection principles and interferometer technologies. The well-established silicon device process technology can be applied to fabricate and test these biosensor devices. In addition, these devices can be monolithically integrated with CMOS electronics and microfluidics. For these biosensor devices, multi-mode interferometer (MMI) was employed to combine many stand-alone biosensors to form chip-level biosensor arrays, which enable real-time and label-free monitoring and parallel detection of various analytes in multiple test samples. This sensing and detection technology features the highest detection sensitivity, which can detect analytes at extremely low concentrations instantaneously. This research can lead to innovative commercial development of the new generation of high sensitivity biosensors for a wide range of applications in many fields, such as environmental monitoring, food security control, medical and biological applications.

  7. Surface Patterning and Nanowire Biosensor Construction

    DEFF Research Database (Denmark)

    Iversen, Lars

    2008-01-01

    submicron feature sizes, varying linearly in size with laser power and irradiation time. In Part II - “Nanoscale Biosensors” - Indium Arsenide (InAs) nanowires (NW) incorporated in field effect transistor (FET) devices provide a sensitive platform for detection of charged analyte species binding to the NW...... surface. A central limitation to this biosensor principle is the screening of analyte charge by mobile ions in electrolytes with physiological ionic strength. To overcome this problem, we propose to use as capture agents proteins which undergo large conformational changes. Using structure based protein...

  8. Biosensors and invasive monitoring in clinical applications

    CERN Document Server

    Córcoles, Emma P

    2013-01-01

    This volume examines the advances of invasive monitoring by means of biosensors and microdialysis. Physical and physiological parameters are commonly monitored in clinical settings using invasive techniques due to their positive outcome in patients’ diagnosis and treatment. Biochemical parameters, however, still rely on off-line measurements and require large pieces of equipment. Biosensing and sampling devices present excellent capabilities for their use in continuous monitoring of patients’ biochemical parameters. However, certain issues remain to be solved in order to ensure a more widespread use of these techniques in today’s medical practices.

  9. Development of microbial biosensors for food analysis

    DEFF Research Database (Denmark)

    Lukasiak, Justyna

    Microbial biosensors are analytical devices composed of a biological recognition element (microorganism) integrated to a signal transduction element (i.e. bioluminescence), converting a biochemical signal into quantifiable response. Due to their molecular properties they can be diversely designed...... grains. It is a dietary fiber, with potential as a functional food ingredient. In this study, reporter strains targeting specifically L-rhamnose, L-arabinose and Dxylose using three different signal transducers: bioluminescence (luxCDABE), fluorescence (gfp) and ice nucleation (inaZ) were developed...

  10. Panic, Suffocation False Alarms, Separation Anxiety and Endogenous Opioids

    OpenAIRE

    Preter, Maurice; KLEIN, DONALD F.

    2007-01-01

    This review paper presents an amplification of the suffocation false alarm theory (SFA) of spontaneous panic (Klein, 1993). SFA postulates the existence of an evolved physiologic suffocation alarm system that monitors information about potential suffocation. Panic attacks maladaptively occur when the alarm is erroneously triggered. That panic is distinct from Cannon’s emergency fear response and Selye’s General Alarm Syndrome is shown by the prominence of intense air hunger during these attac...

  11. Reducing False Intracranial Pressure Alarms using Morphological Waveform Features

    OpenAIRE

    Scalzo, Fabien; Liebeskind, David; Hu, Xiao

    2012-01-01

    False alarms produced by patient monitoring systems in intensive care units (ICU) are a major issue that causes alarm fatigue, waste of human resources, and increased patient risks. While alarms are typically triggered by manually adjusted thresholds, the trend and patterns observed prior to threshold crossing are generally not used by current systems. This study introduces and evaluates a smart alarm detection system for intracranial pressure signal (ICP) that is based on advanced pattern re...

  12. Male monkeys remember which group members have given alarm calls

    OpenAIRE

    Wich, Serge A.; Vries, Han de

    2005-01-01

    Primates give alarm calls in response to the presence of predators. In some species, such as the Thomas langur (Presbytis thomasi), males only emit alarm calls if there is an audience. An unanswered question is whether the audience's behaviour influences how long the male will continue his alarm calling. We tested three hypotheses that might explain the alarm calling duration of male Thomas langurs: the fatigue, group size and group member behaviour hypotheses. Fatigue and group size did not ...

  13. Automated Information System (AIS) Alarm System

    International Nuclear Information System (INIS)

    The Automated Information Alarm System is a joint effort between Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and Sandia National Laboratory to demonstrate and implement, on a small-to-medium sized local area network, an automated system that detects and automatically responds to attacks that use readily available tools and methodologies. The Alarm System will sense or detect, assess, and respond to suspicious activities that may be detrimental to information on the network or to continued operation of the network. The responses will allow stopping, isolating, or ejecting the suspicious activities. The number of sensors, the sensitivity of the sensors, the assessment criteria, and the desired responses may be set by the using organization to meet their local security policies

  14. Integrated taut wire sensor alarm monitoring system

    International Nuclear Information System (INIS)

    For many years mechanical taut wire intrusion detection systems have played a key role in protecting high risk facilities. The taut wire sensor has the advantage that it combines a physical barrier with an intrusion sensor, a useful feature where no fence is installed or planned. However, mechanical taut wire sensors have proven to have several major disadvantages, including: no sensitivity adjustment, no sensor self-test feature, no remote control capability, and inflexible mounting constraints. This paper deals with a new generation of solid state taut wire sensor which overcomes the deficiencies of the aging mechanical design. The new sensor uses a microprocessor to filter out sources of nuisance alarms, yet maintains exceptional sensitivity to intrusion and tamper attempts. Being solid sate, the new sensor can be mounted in any orientation, even upside down. Moreover, when combined with a new, advanced alarm monitoring system, the solid state taut wire fence will support remote sensitivity adjustment and remote sensor self-test control

  15. Analyse fonctionnelle d’une alarme incendie

    OpenAIRE

    Jacob Dominique; Lagonotte Patrick

    2011-01-01

    L’enseignement de l’électricité dans les départements Hygiène Sécurité Environnement (HSE) des I.U.T. ne comprend qu’un faible nombre d’heures en première et en deuxième année. Il est cependant intéressant d’utiliser ce peu de temps à la présentation d’applications de l’électricité liées à la sécurité. Les alarmes incendie sont installées dans de très nombreux bâtiments recevant du public ou des travailleurs. Une alarme incendie est en général discrète et personne ne s’en préoccupe jusqu’au j...

  16. Automated Information System (AIS) Alarm System

    Energy Technology Data Exchange (ETDEWEB)

    Hunteman, W.

    1997-05-01

    The Automated Information Alarm System is a joint effort between Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and Sandia National Laboratory to demonstrate and implement, on a small-to-medium sized local area network, an automated system that detects and automatically responds to attacks that use readily available tools and methodologies. The Alarm System will sense or detect, assess, and respond to suspicious activities that may be detrimental to information on the network or to continued operation of the network. The responses will allow stopping, isolating, or ejecting the suspicious activities. The number of sensors, the sensitivity of the sensors, the assessment criteria, and the desired responses may be set by the using organization to meet their local security policies.

  17. Optimal alarm system applied in coffee rust

    Directory of Open Access Journals (Sweden)

    Luciene Resende Gonçalves

    2014-02-01

    Full Text Available Alarm systems have very great utility in detecting and warning of catastrophes. This methodology was applied via TARSO model with Bayesian estimation, serving as a forecasting mechanism for coffee rust disease. The coffee culture is very susceptible to this disease causing several records of incidence in most cultivated crops. Researches involving this limiting factor for production are intense and frequent, indicating environmental factors as responsible for the epidemics spread, which does not occur if these factors are not favorable. The fitting type used by the a posteriori probability, allows the system to be updated each time point. The methodology was applied to the rust index series in the presence of the average temperature series. Thus, it is possible to verify the alarm resulted or in a high catastrophe detection in points at which the catastrophe has not occurred, or in the low detections if the point was already in the catastrophe state.

  18. Protein Detection with Aptamer Biosensors

    Directory of Open Access Journals (Sweden)

    Regina Stoltenburg

    2008-07-01

    Full Text Available Aptamers have been developed for different applications. Their use as new biological recognition elements in biosensors promises progress for fast and easy detection of proteins. This new generation of biosensor (aptasensors will be more stable and well adapted to the conditions of real samples because of the specific properties of aptamers.

  19. SPR biosensors for medical diagnostics

    Czech Academy of Sciences Publication Activity Database

    Vaisocherová, Hana; Homola, Jiří

    Berlin : Springer, 2006 - (Wolfbeis, O.; Homola, J.), s. 229-247 ISBN 3-540-33918-3. - (Springer Ser.on Chemical Sensors and Biosensors. 4) Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * biosensors * optical sensors * cancer Subject RIV: JB - Sensors, Measurment, Regulation

  20. 30 CFR 57.4360 - Underground alarm systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground alarm systems. 57.4360 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Procedures/alarms/drills § 57.4360 Underground alarm systems. (a) Fire...

  1. 46 CFR 130.460 - Placement of machinery alarms.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Placement of machinery alarms. 130.460 Section 130.460..., AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.460 Placement of machinery alarms. (a) Visible and audible alarms must be installed at the pilothouse to...

  2. Alarm fatigue: a roadmap for mitigating the cacophony of beeps.

    Science.gov (United States)

    Purbaugh, Thomas

    2014-01-01

    The phenomenon known as alarm fatigue is the direct result of excessive alarms in hospitals. This article highlights the effects of alarm fatigue and reviews current clinical recommendations and guidelines to raise nurse awareness and provide tools to combat the problem. PMID:24310707

  3. Printable Ultrathin Metal Oxide Semiconductor-Based Conformal Biosensors.

    Science.gov (United States)

    Rim, You Seung; Bae, Sang-Hoon; Chen, Huajun; Yang, Jonathan L; Kim, Jaemyung; Andrews, Anne M; Weiss, Paul S; Yang, Yang; Tseng, Hsian-Rong

    2015-12-22

    Conformal bioelectronics enable wearable, noninvasive, and health-monitoring platforms. We demonstrate a simple and straightforward method for producing thin, sensitive In2O3-based conformal biosensors based on field-effect transistors using facile solution-based processing. One-step coating via aqueous In2O3 solution resulted in ultrathin (3.5 nm), high-density, uniform films over large areas. Conformal In2O3-based biosensors on ultrathin polyimide films displayed good device performance, low mechanical stress, and highly conformal contact determined using polydimethylsiloxane artificial skin having complex curvilinear surfaces or an artificial eye. Immobilized In2O3 field-effect transistors with self-assembled monolayers of NH2-terminated silanes functioned as pH sensors. Functionalization with glucose oxidase enabled d-glucose detection at physiologically relevant levels. The conformal ultrathin field-effect transistor biosensors developed here offer new opportunities for future wearable human technologies. PMID:26498319

  4. DNA-Metallodrugs Interactions Signaled by Electrochemical Biosensors: An Overview

    Directory of Open Access Journals (Sweden)

    Mauro Ravera

    2007-01-01

    Full Text Available The interaction of drugs with DNA is an important aspect in pharmacology. In recent years, many important technological advances have been made to develop new techniques to monitor biorecognition and biointeraction on solid devices. The interaction between DNA and drugs can cause chemical and conformational modifications and, thus, variation of the electrochemical properties of nucleobases. The propensity of a given compound to interact with DNA is measured as a function of the decrease of guanine oxidation signal on a DNA electrochemical biosensor. Covalent binding at N7 of guanine, electrostatic interactions, and intercalation are the events that this kind of biosensor can detect. In this context, the interaction between a panel of antitumoral Pt-, Ru-, and Ti-based metallodrugs with DNA immobilized on screen-printed electrodes has been studied. The DNA biosensors are used for semiquantitative evaluation of the analogous interaction occurring in the biological environment.

  5. Tin Oxide Nanorod Array-Based Electrochemical Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    Liu Jinping

    2010-01-01

    Full Text Available Abstract SnO2 nanorod array grown directly on alloy substrate has been employed as the working electrode of H2O2 biosensor. Single-crystalline SnO2 nanorods provide not only low isoelectric point and enough void spaces for facile horseradish peroxidase (HRP immobilization but also numerous conductive channels for electron transport to and from current collector; thus, leading to direct electrochemistry of HRP. The nanorod array-based biosensor demonstrates high H2O2 sensing performance in terms of excellent sensitivity (379 μA mM−1 cm−2, low detection limit (0.2 μM and high selectivity with the apparent Michaelis–Menten constant estimated to be as small as 33.9 μM. Our work further demonstrates the advantages of ordered array architecture in electrochemical device application and sheds light on the construction of other high-performance enzymatic biosensors.

  6. Research and implementation of intelligent alarm transceiver

    Institute of Scientific and Technical Information of China (English)

    Haobo long; XiaolingTian

    2015-01-01

    To design and implement a inteligent alarm transceiver, the sensor, such as temperature, voltage, video check. is used in transceiver. Then it analyses real-time acquisition data of sensor, if the transceiver is not working normaly, and the results are sent to the host computer. And the latter send fault information to user by mobile phone. During this period, without artificial participation, to achieve the purpose of inteligent warning. it can improve the maintenance efficiency of transceiver.

  7. Parental alarm calls suppress nestling vocalization.

    OpenAIRE

    Platzen, Dirk; Magrath, Robert D.

    2004-01-01

    Evolutionary models suggest that the cost of a signal can ensure its honesty. Empirical studies of nestling begging imply that predator attraction can impose such a cost. However, parents might reduce or abolish this cost by warning young of the presence of danger. We tested, in a controlled field playback experiment, whether alarm calls cause 5-, 8- and 11-day-old nestlings of the white-browed scrubwren, Sericornis frontalis, to suppress vocalization. In this species, nestlings vocalize when...

  8. APLIKASI SENSOR CAHAYA UNTUK ALARM ANTI PENCURI

    OpenAIRE

    Asita Shoman Muzaki; Arief Hendra Saptadi; Wahyu Pamungkas

    2013-01-01

    Kasus pencurian di rumah kosong yang ditinggal pergi oleh pemiliknya belakangan ini marak terjadi. Berangkat dari pemikiran ini penulis mencoba merancang alarm yang dapat mendeteksi pergerakan seseorang saat rumah dalam kondisi kosong, ditinggalkan oleh pemiliknya. Alat ini mempunyai prinsip kerja yaitu mendeteksi bayangan seseorang yang melewati titik tertentu. Perancangan dan pembuatan perangkat ini menggunakan sensor cahaya berupa LASER dan LDR yang dirangkai dengan transistor sebagai sakl...

  9. Science communication and the Swedish acrylamide "alarm".

    Science.gov (United States)

    Lofstedt, Ragnar E

    2003-01-01

    On April 24, 2002 the Swedish National Food Administration along with a group of researchers at the University of Stockholm raised an alarm regarding potential health risks associated with eating fried and baked foods such as potatoes and bread. Scientists had found high levels of acrylamide (up to 500 times more acrylamide than that allowed in drinking water by the World Health Organisation), a substance widely believed to cause cancer, in cooked high starch foods. The outcomes of this "alarm" were immediate. In Sweden sales of chips fell by 30-50 percent over a 3-day period following the press conference, and share prices among several fried food manufacturers fell substantially, as stock analysts were fearful that consumption of fried foods would decrease significantly. Four days after the press conference, however, consumers began eating fried food as normal and a number of researchers and journalists in Sweden and elsewhere took the view that the alarm had been both exaggerated and ill placed. In this study, I evaluate the science communication process associated with the scare, based on a content analysis of a select group of Swedish broad sheets from just previous to the April 2002 press conference to the present time (December 2002). In addition, the study is based on interviews with the various Swedish regulators involved in the process itself (in particular at the Swedish National Food Administration) as well as with the scientists responsible for the study at Stockholm University and relevant journalists and politicians. PMID:14530144

  10. Over-the-Counter Biosensors: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Thomas Ming-Hung Lee

    2008-09-01

    Full Text Available The demand for specific, low cost, rapid, sensitive and easy detection of biomolecules is huge. A well-known example is the glucose meters used by diabetics to monitor their blood glucose levels. Nowadays, a vast majority of the glucose meters are based on electrochemical biosensor technology. The inherent small size and simple construction of the electrochemical transducer and instrument are ideally suited for pointof-care biosensing. Besides glucose, a wide variety of electrochemical biosensors have been developed for the measurements of some other key metabolites, proteins, and nucleic acids. Nevertheless, unlike the glucose meters, limited success has been achieved for the commercialization of the protein and nucleic acid biosensors. In this review article, key technologies on the electrochemical detection of key metabolites, proteins, and DNAs are discussed in detail, with particular emphasis on those that are compatible to home-use setting. Moreover, emerging technologies of lab-on-a-chip microdevices and nanosensors (i.e., silicon and carbon nanotube field-effect sensors offer opportunities for the construction of new generation biosensors with much better performances. Together with the continuous innovations in the basic components of biosensors (i.e., transducers, biorecognition molecules, immobilization and signal transduction schemes, consumers could soon buy different kinds of biosensing devices in the pharmacy stores.

  11. Development of an electrochemical biosensor for alkylphenol detection.

    Science.gov (United States)

    Belkhamssa, Najet; da Costa, João P; Justino, Celine I L; Santos, Patrícia S M; Cardoso, Susana; Duarte, Armando C; Rocha-Santos, Teresa; Ksibi, Mohamed

    2016-09-01

    In this work, electrochemical biosensors based on field effect transistors (FET) with single-walled carbon nanotubes (SWCNT) were constructed as disposable analytical devices to detect alkylphenols through immunoreaction using 4-nonylphenol (NP) as model analyte, and validated by comparison with enzyme-linked immunosorbent assay (ELISA). The calibration curve displays a working range with five concentrations between 5 and 500µgL(-1), and for each concentration, five biosensors were analysed for reproducibility estimation and two analytical measurements were performed for each biosensor for repeatability estimation. The accuracy of the biosensors was validated by analyzing NP contents in ten spiked artificial seawater samples and comparing these results to those obtained with the traditional ELISA methodology. Excellent analytical performance was obtained with reproducibility of 0.56±0.08%, repeatability of 0.5±0.2%, limit of detection for NP as low as 5µgL(-1), and average recovery between 97.8% and 104.6%. This work demonstrates that simple biosensors can be used to detect hazardous priority substances in seawater samples, even at low concentrations. PMID:27343574

  12. Biosensors and bioelectronics on smartphone for portable biochemical detection.

    Science.gov (United States)

    Zhang, Diming; Liu, Qingjun

    2016-01-15

    Smartphone has been widely integrated with sensors, such as test strips, sensor chips, and hand-held detectors, for biochemical detections due to its portability and ubiquitous availability. Utilizing built-in function modules, smartphone is often employed as controller, analyzer, and displayer for rapid, real-time, and point-of-care monitoring, which can significantly simplify design and reduce cost of the detecting systems. This paper presents a review of biosensors and bioelectronics on smartphone for portable biochemical detections. The biosensors and bioelectronics based on smartphone can mainly be classified into biosensors using optics, surface plasmon resonance, electrochemistry, and near-field communication. The developments of these biosensors and bioelectronics on smartphone are reviewed along with typical biochemical detecting cases. Sensor strategies, detector attachments, and coupling methods are highlighted to show designs of the compact, lightweight, and low-cost sensor systems. The performances and advantages of these designs are introduced with their applications in healthcare diagnosis, environment monitoring, and food evaluation. With advances in micro-manufacture, sensor technology, and miniaturized electronics, biosensor and bioelectronic devices on smartphone can be used to perform biochemical detections as common and convenient as electronic tag readout in foreseeable future. PMID:26319170

  13. Recommendations to alarm systems and lessons learned on alarm system implementation

    International Nuclear Information System (INIS)

    Alarm systems have been of major concern within complex industrial processes for many years. Within the nuclear community, the TMI accident in 1979 was the first really serious event that showed also the importance of the man-machine aspects of the systems in general, and the alarm system in particular. The OECD Halden Reactor Project has been working with alarm systems since 1974. This report is an attempt to gather some of the knowledge that has been accumulated during the years in Halden, both in research and also in bilateral projects. Bilateral projects within this field have provided a practical basis of knowledge.A major part of this report consists of a set of recommendations, which reflect HRP's current understanding of how an alarm system should work. There are also recommendations on design methods. But also other issues are included, as system development and implementation experience, and experimental knowledge on the performance of alarm systems. Some open issues are also discussed. (Author). 54 refs., 15 figs

  14. Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients

    Directory of Open Access Journals (Sweden)

    Adriana Carla Bridi

    2014-12-01

    Full Text Available OBJECTIVES: to identify the number of electro-medical pieces of equipment in a coronary care unit, characterize their types, and analyze implications for the safety of patients from the perspective of alarm fatigue.METHOD: this quantitative, observational, descriptive, non-participatory study was conducted in a coronary care unit of a cardiology hospital with 170 beds.RESULTS: a total of 426 alarms were recorded in 40 hours of observation: 227 were triggered by multi-parametric monitors and 199 were triggered by other equipment (infusion pumps, dialysis pumps, mechanical ventilators, and intra-aortic balloons; that is an average of 10.6 alarms per hour.CONCLUSION: the results reinforce the importance of properly configuring physiological variables, the volume and parameters of alarms of multi-parametric monitors within the routine of intensive care units. The alarms of equipment intended to protect patients have increased noise within the unit, the level of distraction and interruptions in the workflow, leading to a false sense of security.

  15. Biosensors. New developments and opportunities in the diagnosis of livestock diseases

    International Nuclear Information System (INIS)

    Phenomenal growth in the field of biosensors has been observed in recent years, with applications in a wide range of disciplines, including food, environment and medical analysis. The need for high sensitivity, speed and accuracy of analytical measurements has stimulated considerable interest in developing sensors as diagnostic tools. Substances with recognition powers are available naturally in the form of antibodies, enzymes, cell receptors, nucleic acids and lectins. These can be used as the sensing element in biosensors, and therefore a wide range of analytes can be detected and measured using these devices. A wide range of transducers are also feasible. Biosensors are suitable devices to fulfil the rapid monitoring needs of the diagnostic market. They have the great advantage over many other analytical methods in that they can be incorporated into simple to use instruments. Immunochemical sensors are powerful analytical devices which enable the identification of a wide range of target molecules. These devices combine the selectivity of antibodies with the sensitivity and rapid measurement of a biosensor. The rapid development of immunosensor technology during the last few years opens new perspectives for the development of relatively inexpensive applications to monitor livestock and their products. The paper deals with recent developments in biosensor technology and assesses the current and potential use of biosensors in the diagnosis and control of livestock diseases. (author)

  16. Changes in Default Alarm Settings and Standard In-Service are Insufficient to Improve Alarm Fatigue in an Intensive Care Unit: A Pilot Project

    OpenAIRE

    Sowan, Azizeh Khaled; Gomez, Tiffany Michelle; Tarriela, Albert Fajardo; Reed, Charles Calhoun; Paper, Bruce Michael

    2016-01-01

    Background Clinical alarm systems safety is a national concern, specifically in intensive care units (ICUs) where alarm rates are known to be the highest. Interventional projects that examined the effect of changing default alarm settings on overall alarm rate and on clinicians’ attitudes and practices toward clinical alarms and alarm fatigue are scarce. Objective To examine if (1) a change in default alarm settings of the cardiac monitors and (2) in-service nursing education on cardiac monit...

  17. A high content assay for biosensor validation and for examining stimuli that affect biosensor activity

    OpenAIRE

    Slattery, Scott D.; Hahn, Klaus M.

    2014-01-01

    Biosensors are valuable tools used to monitor many different protein behaviors in vivo. Demand for new biosensors is high, but their development and characterization can be difficult. During biosensor design, it is necessary to evaluate the effects of different biosensor structures on specificity, brightness, and fluorescence responses. By co-expressing the biosensor with upstream proteins that either stimulate or inhibit the activity reported by the biosensor, one can determine the differenc...

  18. A Study on Performance Requirements for Advanced Alarm System

    International Nuclear Information System (INIS)

    A design goals of advanced alarm system is providing advanced alarm information to operator in main control room. To achive this, we applied computer based system to Alarm System. Because, It should apply data management and advanced alarm processing(ie. Data Base Mangegment System and S/W module for alarm processing). These are not impossible in analog based alarm system. And, preexitance research examples are made on digital computer. We have digital systems for test of advanced alarm system table and have tested and studied using by test equipment in the view point of the system performance, stability and security. In this paper, we discribed about general software architecture of preexitance research examples. Also, CPU performance and requirements of system software that served to accommodate it, stability and security

  19. Dielectric modulated overlapping gate-on-drain tunnel-FET as a label-free biosensor

    Science.gov (United States)

    Abdi, Dawit Burusie; Kumar, M. Jagadesh

    2015-10-01

    In this paper, based on the concept of dielectric-modulation, we have proposed a tunnel field effect transistor (TFET) biosensor with a nanogap created by overlapping the gate on the drain side. Sensing in the proposed device is due to a change in the ambipolar current of the transistor when biomolecules with different dielectric constant are immobilized in the nanogap. The maximum ratio of the drain current with absence and presence of biomolecules, which indicates the sensitivity, is as high as 1010. In comparison to other field effect transistor (FET) based biosensors, using TFET as a biosensor not only gives higher sensitivity but also the advantage of low leakage.

  20. Papers Based Electrochemical Biosensors: From Test Strips to Paper-Based Microfluidics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bingwen; Du, Dan; Hua, Xin; Yu, Xiao-Ying; Lin, Yuehe

    2014-05-08

    Papers based biosensors such as lateral flow test strips and paper-based microfluidic devices (or paperfluidics) are inexpensive, rapid, flexible, and easy-to-use analytical tools. An apparent trend in their detection is to interpret sensing results from qualitative assessment to quantitative determination. Electrochemical detection plays an important role in quantification. This review focuses on electrochemical (EC) detection enabled biosensors. The first part provides detailed examples in paper test strips. The second part gives an overview of paperfluidics engaging EC detections. The outlook and recommendation of future directions of EC enabled biosensors are discussed in the end.

  1. Improved Biosensors for Soils

    Science.gov (United States)

    Silberg, J. J.; Masiello, C. A.; Cheng, H. Y.

    2014-12-01

    Microbes drive processes in the Earth system far exceeding their physical scale, affecting crop yields, water quality, the mobilization of toxic materials, and fundamental aspects of soil biogeochemistry. The tools of synthetic biology have the potential to significantly improve our understanding of microbial Earth system processes: for example, synthetic microbes can be be programmed to report on environmental conditions that stimulate greenhouse gas production, metal oxidation, biofilm formation, pollutant degradation, and microbe-plant symbioses. However, these tools are only rarely deployed in the lab. This research gap arises because synthetically programmed microbes typically report on their environment by producing molecules that are detected optically (e.g., fluorescent proteins). Fluorescent reporters are ideal for petri-dish applications and have fundamentally changed how we study human health, but their usefulness is quite limited in soils where detecting fluorescence is challenging. Here we describe the construction of gas-reporting biosensors, which release nonpolar gases that can be detected in the headspace of incubation experiments. These constructs can be used to probe microbial processes within soils in real-time noninvasive lab experiments. These biosensors can be combined with traditional omics-based approaches to reveal processes controlling soil microbial behavior and lead to improved environmental management decisions.

  2. The implications of probability matching for clinician response to vital sign alarms: a theoretical study of alarm fatigue.

    Science.gov (United States)

    Bailey, James M

    2015-01-01

    Alarm fatigue has been recognised as a significant health technology safety risk. 'Probability matching', in which clinicians respond to the alarm at a rate identical to the perceived reliability of the alarm, has been postulated as a model to explain alarm fatigue. In this article, we quantitatively explore the implications of probability matching for systolic blood pressure alarms. We find that probability matching could have a profound effect on clinician response to the alarm, with a response rate of only 8.6% when the alarm threshold is 90 mm Hg and the optimal threshold for a systolic blood pressure alarm would only be 77 mm Hg. We use the mathematical framework to assess a mitigation strategy when clinicians have a limit to the capacity to respond. We find that a tiered alarm in which clinicians receive information on the severity of vital sign perturbation significantly improves the opportunity to rescue patients. Practitioner Summary: Using a theoretical model, we predict that probability matching, a postulated model of clinician behaviour, can result in a profound decrease in clinician response to alarms for decreased blood pressure. A mitigating strategy is to create alarms that convey information on the degree of vital sign perturbation. PMID:25849772

  3. Guided-Wave Optical Biosensors

    Directory of Open Access Journals (Sweden)

    Francesco De Leonardis

    2007-04-01

    Full Text Available Guided-wave optical biosensors are reviewed in this paper. Advantages related to optical technologies are presented and integrated architectures are investigated in detail. Main classes of bio receptors and the most attractive optical transduction mechanisms are discussed. The possibility to use Mach-Zehnder and Young interferometers, microdisk and microring resonators, surface plasmon resonance, hollow and antiresonant waveguides, and Bragg gratings to realize very sensitive and selective, ultra-compact and fast biosensors is discussed. Finally, CMOS-compatible technologies are proved to be the most attractive for fabrication of guided-wave photonic biosensors.

  4. A Novel Cell-Based Hybrid Acoustic Wave Biosensor with Impedimetric Sensing Capabilities

    OpenAIRE

    Ioana Voiculescu; Anis Nurashikin Nordin; Fang Li; Fei Liu

    2013-01-01

    A novel multiparametric biosensor system based on living cells will be presented. The biosensor system includes two biosensing techniques on a single device: resonant frequency measurements and electric cell-substrate impedance sensing (ECIS). The multiparametric sensor system is based on the innovative use of the upper electrode of a quartz crystal microbalance (QCM) resonator as working electrode for the ECIS technique. The QCM acoustic wave sensor consists of a thin AT-cut quartz substrate...

  5. A new diamond biosensor with integrated graphitic microchannels for detecting quantal exocytic events from chromaffin cells.

    Science.gov (United States)

    Picollo, Federico; Gosso, Sara; Vittone, Ettore; Pasquarelli, Alberto; Carbone, Emilio; Olivero, Paolo; Carabelli, Valentina

    2013-09-14

    An MeV ion-microbeam lithographic technique can be successfully employed for the fabrication of an all-carbon miniaturized cellular biosensor based on graphitic microchannels embedded in a single-crystal diamond matrix. The device is functionally characterized for the in vitro recording of quantal exocytic events from single chromaffin cells, with high sensitivity and signal-to-noise ratio, opening promising perspectives for the realization of monolithic all-carbon cellular biosensors. PMID:23847004

  6. Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors.

    Science.gov (United States)

    Zhou, Ming; Dong, Shaojun

    2011-11-15

    Over the past decade, researchers have devoted considerable attention to the integration of living organisms with electronic elements to yield bioelectronic devices. Not only is the integration of DNA, enzymes, or whole cells with electronics of scientific interest, but it has many versatile potential applications. Researchers are using these ideas to fabricate biosensors for analytical applications and to assemble biofuel cells (BFCs) and biomolecule-based devices. Other research efforts include the development of biocomputing systems for information processing. In this Account, we focus on our recent progress in engineering at the bioelectrochemical interface (BECI) for the rational design and construction of important bioelectronic devices, ranging from electrochemical (EC-) biosensors to BFCs, and self-powered logic biosensors. Hydrogels and sol-gels provide attractive materials for the immobilization of enzymes because they make EC-enzyme biosensors stable and even functional in extreme environments. We use a layer-by-layer (LBL) self-assembly technique to fabricate multicomponent thin films on the BECI at the nanometer scale. Additionally, we demonstrate how carbon nanomaterials have paved the way for new and improved EC-enzyme biosensors. In addition to the widely reported BECI-based electrochemical impedance spectroscopy (EIS)-type aptasensors, we integrate the LBL technique with our previously developed "solid-state probe" technique for redox probes immobilization on electrode surfaces to design and fabricate BECI-based differential pulse voltammetry (DPV)-type aptasensors. BFCs can directly harvest energy from ambient biofuels as green energy sources, which could lead to their application as simple, flexible, and portable power sources. Porous materials provide favorable microenvironments for enzyme immobilization, which can enhance BFC power output. Furthermore, by introducing aptamer-based logic systems to BFCs, such systems could be applied as self

  7. Design and development of a personal alarm monitor for use by first responders

    Science.gov (United States)

    Ehntholt, Daniel J.; Louie, Alan S.; Marenchic, Ingrid G.; Forni, Ronald J.

    2004-03-01

    This paper describes the design and development of a small, portable alarm device that can be used by first responders to an emergency event to warn of the presence of low levels of a toxic nerve gas. The device consists of a rigid reusable portion and a consumable packet that is sensitive to the presence of acetylcholinesterase inhibitors such as the nerve gases Sarin or Soman. The sensitivity level of the alarm is set to be at initial physiological response at the meiosis level, orders of magnitude below lethal concentrations. The AChE enzyme used is specific for nerve-type toxins. A color development reaction is used to demonstrate continued activity of the enzyme over its twelve-hour operational cycle.

  8. JOYO operation support system 'JOYCAT' based on intelligent alarm handling

    International Nuclear Information System (INIS)

    An operation support system for the experimental fast reactor 'JOYO' was developed based on an intelligent alarm-handling. A specific feature of this system, called JOYCAT (JOYO Consulting and Analyzing Tool), is in its sequential processing structure that a uniform treatment by using design knowledge base is firstly applied for all activated alarms, and an exceptional treatment by using heuristic knowledge base is then applied only for the former results. This enables us to achieve real-time and flexible alarm-handling. The first alarm-handling determines the candidates of causal alarms, important alarms with which the operator should firstly cope, through identifying the cause-consequence relations among alarms based on the design knowledge base in which importance and activating conditions are described for each of 640 alarms in a frame format. The second alarm-handling makes the final judgement with the candidates by using the heuristic knowledge base described as production rules. Then, operation manuals concerning the most important alarms are displayed to operators. JOYCAT has been in commission since September of 1990, after a wide scope of validation tests by using an on-site full-scope training simulator. (author)

  9. Alarm management in gas pipeline plant: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Juliano; Lima, Marcelo; Leitao, Gustavo; Guedes, Luiz Affonso [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Branco, Nicolau; Coelho, Robson; Elias, Gustavo Passos; Nunes, Marcelo [Transportadora Brasileira Gasoduto Bolivia-Brasil (TBG), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    In order to improve the requirements of industrial processes, many decision support systems have been introduced in recent years. In this context, the alarm management systems have great relevance. On the other hand, the informatics revolution allowed a great increase of information concerning the operation of the industrial processes. Currently, process operators handle an excessive number of about 1.500 alarms per day. Thus, this overdose of information implies in the discredit of alarms. Then, in order to improve the operation activities of industrial processes, it is mandatory to incorporate procedures to evaluate and rationalize alarms. Since the EMMUA191 Standard is the reference guide to alarm management, but it does not specify how to execute an alarm management procedure, in this paper, a systematic procedure to evaluate alarms configurations in industrial processes is proposed. This procedure is in line with EMMUA191 and is composed by the following steps: to use statistics analyses to identify problematic alarms, such as occurrence, intermittency, correlation, and flooding calculation; to indicate problematic alarm group; and to propose a set of actions to be implemented. To validate our proposal, we present a case study in a gas pipeline plant using the BR-AlarmExpert software. (author)

  10. Plasmonic paper: an emerging analytical platform for highly sensitive biosensors (Conference Presentation)

    Science.gov (United States)

    Singamaneni, Srikanth

    2016-03-01

    Plasmonic biosensors hold enormous potential for the development of low-cost, label-free, point-of-care biodiagnostics. However, two major challenges need to be overcome to reap the benefits of this class of biosensors: (i) state-of-the-art plasmonic biosensors either offer limited sensitivity or are impractical for real-world applications due to their poor stability and excessive cost; (ii) these biosensors rely on natural antibodies, which are high-cost and impose severe limitations in handling, storage and device integration. We demonstrate that a common filter paper can be transformed into a plasmonic sensing platform for highly sensitive and selective detection of trace levels of chemical and biological analytes. We also demonstrate that short peptides as biorecognition elements compared to larger antibodies as target capture agents offer several advantages. Using a bioplasmonic paper device, we demonstrate the selective and sensitive detection of the cardiac biomarker troponin I. The smaller sized peptide provides higher sensitivity and a lower detection limit using a bioplasmonic paper device. Furthermore, the excellent shelf-life and thermal stability of peptide-based plasmonic biosensors, which precludes the need for special storage conditions, makes it ideal for use in resource-limited settings. We also demonstrate plasmonic biosensors based on artificial antibodies by molecularly imprinting the plasmonic nanotransducers. Apart from significantly lowering the cost, these developments are critical for translating plasmonic sensors to point-of-care and resource-limited settings.

  11. A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers

    Directory of Open Access Journals (Sweden)

    Chen Zhao, Martin M Thuo and Xinyu Liu

    2013-01-01

    Full Text Available Paper-based microfluidic devices have emerged as simple yet powerful platforms for performing low-cost analytical tests. This paper reports a microfluidic paper-based electrochemical biosensor array for multiplexed detection of physiologically relevant metabolic biomarkers. Different from existing paper-based electrochemical devices, our device includes an array of eight electrochemical sensors and utilizes a handheld custom-made electrochemical reader (potentiostat for signal readout. The biosensor array can detect several analytes in a sample solution and produce multiple measurements for each analyte from a single run. Using the device, we demonstrate simultaneous detection of glucose, lactate and uric acid in urine, with analytical performance comparable to that of the existing commercial and paper-based platforms. The paper-based biosensor array and its electrochemical reader will enable the acquisition of high-density, statistically meaningful diagnostic information at the point of care in a rapid and cost-efficient way.

  12. A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers

    Science.gov (United States)

    Zhao, Chen; Thuo, Martin M.; Liu, Xinyu

    2013-10-01

    Paper-based microfluidic devices have emerged as simple yet powerful platforms for performing low-cost analytical tests. This paper reports a microfluidic paper-based electrochemical biosensor array for multiplexed detection of physiologically relevant metabolic biomarkers. Different from existing paper-based electrochemical devices, our device includes an array of eight electrochemical sensors and utilizes a handheld custom-made electrochemical reader (potentiostat) for signal readout. The biosensor array can detect several analytes in a sample solution and produce multiple measurements for each analyte from a single run. Using the device, we demonstrate simultaneous detection of glucose, lactate and uric acid in urine, with analytical performance comparable to that of the existing commercial and paper-based platforms. The paper-based biosensor array and its electrochemical reader will enable the acquisition of high-density, statistically meaningful diagnostic information at the point of care in a rapid and cost-efficient way.

  13. APLIKASI SENSOR CAHAYA UNTUK ALARM ANTI PENCURI

    Directory of Open Access Journals (Sweden)

    Asita Shoman Muzaki

    2013-07-01

    Full Text Available Kasus pencurian di rumah kosong yang ditinggal pergi oleh pemiliknya belakangan ini marak terjadi. Berangkat dari pemikiran ini penulis mencoba merancang alarm yang dapat mendeteksi pergerakan seseorang saat rumah dalam kondisi kosong, ditinggalkan oleh pemiliknya. Alat ini mempunyai prinsip kerja yaitu mendeteksi bayangan seseorang yang melewati titik tertentu. Perancangan dan pembuatan perangkat ini menggunakan sensor cahaya berupa LASER dan LDR yang dirangkai dengan transistor sebagai saklar otomatis serta LED dan telepon rumah untuk melakukan panggilan kepada nomor telepon pemilik rumah. Komponen yang dipakai dalam pembuatan perangkat ini antara lain IC LM7805, LASER pointer, resistor, transistor BC108, LED, relay dan telepon rumah. Perancangan dan pembuatan alat menggunakan software multisim 10.1 sebagai simulator rangkaian, dan software eagle 5.1.1 untuk mendesain jalur rangkaian pada papan PCB. Saat cahaya LASER tidak sampai ke LDR karena terhalang oleh sesuatu, maka rangkaian output yang berupa indikator LED dan panggilan dari telepon rumah akan aktif. Kata kunci: alarm, sensor cahaya, saklar otomatis, relay.

  14. Biosensors in Endocrinology- Review Article

    OpenAIRE

    Faridbod, Farnoush; Ganjali, Mohammad Reza; Larijani, Bagher; Norouzi, Parviz; Hosseini, Morteza

    2015-01-01

    Biosensors are classes of sensors in which at least a biological process is used in sensing procedure. They are generally composed of three parts: a sensing element, a transducer, and a signal processor (or detector). They can be categorized by type of sensing materials or by detection techniques. From their invention time up to now, various biological species have been analyzed using variety of biosensors. They have been widely used for environmental, industrial, pharmaceutical and clinical ...

  15. General methods for alarm reduction; Larmsanering med generella metoder

    Energy Technology Data Exchange (ETDEWEB)

    Ahnlund, Jonas; Bergquist, Tord; Raaberg, Martin [Lund Univ. (Sweden). Dept. of Information Technology

    2003-10-01

    The information in the control rooms has increased due to the technological advances in process control. Large industries produce large data quantities, where some information is unnecessary or even incorrect. The operator needs support from an advanced and well-adjusted alarm system to be able to separate a real event from a minor disturbance. The alarms must be of assistance and not a nuisance. An enhanced alarm situation qualifies an increased efficiency with fewer production disturbances and an improved safety. Yet, it is still unusual that actions are taken to improve the situation. An alarm cleanup with general methods can shortly be described as taking advantage of the control systems built-in functions, the possibility to modify or create function blocks and fine-tune the settings in the alarm system. In this project, we make use of an intelligent software, Alarm Cleanup Toolbox, that simulate different signal processing methods and tries to find improved settings on all the signals in the process. This is a fast and cost-efficient way to improve the overall alarm situation, and lays a foundation for more advanced alarm systems. An alarm cleanup has been carried out at Flintraennan district heating plant in Malmoe, where various signal processing methods has been implemented in a parallel alarm system. This made it possible to compare the two systems under the same conditions. The result is very promising, and shows that a lot of improvements can be achieved with very little effort. An analysis of the alarm system at Vattenreningen (the water purification process) at Heleneholmsverket in Malmoe has been carried out. Alarm Cleanup Toolbox has, besides suggesting improved settings, also found logical errors in the alarm system. Here, no implementation was carried out and therefore the results are analytical, but they validate the efficiency of the general methods. The project has shown that an alarm cleanup with general methods is cost-efficient, and that the

  16. Biosensors for functional food safety and analysis.

    Science.gov (United States)

    Lavecchia, Teresa; Tibuzzi, Arianna; Giardi, Maria Teresa

    2010-01-01

    The importance of safety and functionality analysis of foodstuffs and raw materials is supported by national legislations and European Union (EU) directives concerning not only the amount of residues of pollutants and pathogens but also the activity and content of food additives and the health claims stated on their labels. In addition, consumers' awareness of the impact of functional foods' on their well-being and their desire for daily healthcare without the intake pharmaceuticals has immensely in recent years. Within this picture, the availability of fast, reliable, low cost control systems to measure the content and the quality of food additives and nutrients with health claims becomes mandatory, to be used by producers, consumers and the governmental bodies in charge of the legal supervision of such matters. This review aims at describing the most important methods and tools used for food analysis, starting with the classical methods (e.g., gas-chromatography GC, high performance liquid chromatography HPLC) and moving to the use of biosensors-novel biological material-based equipments. Four types of bio-sensors, among others, the novel photosynthetic proteins-based devices which are more promising and common in food analysis applications, are reviewed. A particular highlight on biosensors for the emerging market of functional foods is given and the most widely applied functional components are reviewed with a comprehensive analysis of papers published in the last three years; this report discusses recent trends for sensitive, fast, repeatable and cheap measurements, focused on the detection of vitamins, folate (folic acid), zinc (Zn), iron (Fe), calcium (Ca), fatty acids (in particular Omega 3), phytosterols and phytochemicals. A final market overview emphasizes some practical aspects ofbiosensor applications. PMID:21520718

  17. Noninvasive biosensor for hypoglycemia

    Science.gov (United States)

    Varadan, Vijay K.; Whitchurch, Ashwin K.; Sarukesi, Karunakaran

    2003-01-01

    Hypoglycemia-abnormal decrease in blood sugar- is a major obstacle in the management of diabetes and prevention of long-term complications, and it may impose serious effects on the brain, including impairment of memory and other cognitive functions. This is especially a concern in early childhood years when the nervous system is still developing. Hypoglycemic unawareness (in which the body"s normal ability to signal low blood sugar doesn"t work and an oncoming low blood sugar episode proceeds undetected) is a particularly frightening problem for many people with diabetes. Researchers have now uncovered evidence that repeated bouts of insulin-induced hypoglycemia can harm the brain over time, causing confusion, abnormal behavior, loss of consciousness, and seizures. Extreme cases have resulted in coma and death. In this paper, a non-invasive biosensor in a wrist watch along with a wireless data downloading system is proposed.

  18. DNA nanotechnology-enabled biosensors.

    Science.gov (United States)

    Chao, Jie; Zhu, Dan; Zhang, Yinan; Wang, Lianhui; Fan, Chunhai

    2016-02-15

    Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. DNA-based biosensors, as a sub-field to biosensor, utilize DNA strands with short oligonucleotides as probes for target recognition. Although DNA-based biosensors have offered a promising alternative for fast, simple and cheap detection of target molecules, there still exist key challenges including poor stability and reproducibility that hinder their competition with the current gold standard for DNA assays. By exploiting the self-recognition properties of DNA molecules, researchers have dedicated to make versatile DNA nanostructures in a highly rigid, controllable and functionalized manner, which offers unprecedented opportunities for developing DNA-based biosensors. In this review, we will briefly introduce the recent advances on design and fabrication of static and dynamic DNA nanostructures, and summarize their applications for fabrication and functionalization of DNA-based biosensors. PMID:26212206

  19. Classification of alarm processing techniques and human performance issues

    International Nuclear Information System (INIS)

    Human factors reviews indicate that conventional alarm systems based on the one sensor, one alarm approach, have many human engineering deficiencies, a paramount example being too many alarms during major disturbances. As an effort to resolve these deficiencies, various alarm processing systems have been developed using different techniques. To ensure their contribution to operational safety, the impacts of those systems on operating crew performance should be carefully evaluated. This paper briefly reviews some of the human factors research issues associated with alarm processing techniques and then discusses a framework with which to classify the techniques. The dimensions of this framework can be used to explore the effects of alarm processing systems on human performance

  20. Experimental evaluation of human-system interaction on alarm design

    International Nuclear Information System (INIS)

    This study evaluates the practicability of automatic reset alarm system in Fourth Nuclear Power Plant (FNPP) of Taiwan. The features of auto-reset alarm system include dynamic prioritization of all alarm signals and fast system reset. Two experiments were conducted to evaluate the effect of automatic/manual reset on operation time, situational awareness (SA), task load index (TLX), and subjective ratings. All participants, including Experts and Novices, took part in the experiment on the alarm system simulator with Load Rejection procedure. The experimental results imply that the auto-reset alarm system may be applied in an advanced control room under Load Rejection procedure, because all participants' operation time were reduced as well as Novice's SA were raised up. Nevertheless, to ensure operating safety in FNPP, the effects of the auto-reset alarm system in other procedures/special situations still need to be tested in the near future

  1. Operator Performance Comparison of two VDT-based Alarm Systems

    International Nuclear Information System (INIS)

    This study is carried out to investigate performance differences between two alarm presentation methods from the viewpoint of human factors and to provide items to be improved. One of the alarm display methods considered in this study displays alarm lists on VDT combined with hardwired alarm panels. The other method displays alarms on plant mimic diagrams of VDT. This alarm display method has other features for operator aid with which operator can get detailed information on the activated alarm in the mimic diagrams, and the capability for alarm processing such as alarm reduction and prioritization. To compare the two display methods, a human factor experiment was performed with a plant simulator in the ITF (Integrated Test Facility) that plant operators run for 4 event scenarios. During the experiment, physiological measurements, system and operator action log, and audio/video recordings were collected. Operators subjective opinion was collected as well after the experiment. Time, error rate and situation awareness were major human factor criteria used for the comparison during the analysis stage of the experiment. No statistical significance was found in the results of our statistical comparison analysis. Several findings were identified, however, through the analysis of subjective opinions. (authors)

  2. Contribution of computerization to alarm processing: A French safety view

    International Nuclear Information System (INIS)

    Following the TMI accident and according to the requirement of the French safety authority, very important studies were performed by the French utility, Electricite de France (EDF), and assessed by the Institute for Nuclear Safety and Protection (IPSN) on reactor operation in conventional control rooms, particularly on alarm processing. These studies dealt with the man-machine interface, as well as design and exploitation requirements, presentation and management of alarm signals, and associated operating documents. The conclusions of these studies have led to improvements in French conventional control rooms. The current state of these control rooms and links between alarm sets and operating documents will be shortly presented in the first part of the paper. More recently, the computerized means implemented in the PWR 1400 MWe control rooms (N4) profoundly modified reactor operation. In particular, major advances concern alarm processing in comparison with conventional control rooms. The N4 plants provide a more rigorous approach in processing and presentation of alarms than in the past. Indeed, EDF wanted to have less alarms switched on during plant upsets and to make them more characteristic of a specific situation of the process. For example, computerization makes it easier to validate or inhibit alarms according to the situation, to allow the operator to manage alarm presentation and to propose on-line alarm sheets to the operator etc. This approach in comparison with conventional control rooms, and the IPSN assessment will be presented in the second part of this paper. (author)

  3. AI-based alarm processing for a nuclear power plant

    International Nuclear Information System (INIS)

    A real-time expert system is implemented using artificial intelligence and object-oriented technology for alarm processing and presentation in a nuclear power plant. The knowledge base is constructed based on some schemes to process and display alarms to the plant operators. The activated alarms are dynamically prioritized by the reasoning rules, and then, presented on the process mimic overview and by some other means. To demonstrate the proposed system, the alarm processing and presentation is carried out in a simulated environment of the TMI-2 accident

  4. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors

    OpenAIRE

    Wei Zheng; Remko van den Hurk; Yong Cao; Rongbing Du; Xuejun Sun; Yiyu Wang; McDermott, Mark T.; Stephane Evoy

    2016-01-01

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, ...

  5. Multiwalled Carbon Nanotubes for Amperometric Array-Based Biosensors

    OpenAIRE

    Taurino, Irene; De Micheli, Giovanni; Carrara, Sandro

    2012-01-01

    For diagnostic and therapeutic purposes an accurate determination of multiple metabolites is often required. Amperometric devices are attractive tools to quantify biological compounds due to the direct conversion of a biochemical event to a current. This review addresses recent developments in the use of multiwalled carbon nanotubes to enhance detection ca- pability of amperometric array-based biosensors. More specifically, the principal techniques for multiwalled carbon nanotube incorporatio...

  6. Interferometric optical fiber microcantilever beam biosensor

    Science.gov (United States)

    Wavering, Thomas A.; Meller, Scott A.; Evans, Mishell K.; Pennington, Charles; Jones, Mark E.; VanTassell, Roger; Murphy, Kent A.; Velander, William H.; Valdes, E.

    2000-12-01

    With the proliferation of biological weapons, the outbreak of food poisoning occurrences, and the spread of antibiotic resistant strains of pathogenic bacteria, the demand has arisen for portable systems capable of rapid, specific, and quantitative target detection. The ability to detect minute quantities of targets will provide the means to quickly assess a health hazardous situation so that the appropriate response can be orchestrated. Conventional test results generally require hours or even several days to be reported, and there is no change for real-time feedback. An interferometric optical fiber microcantilever beam biosensor has successfully demonstrated real time detection of target molecules. The microcantilever biosensor effectively combines advanced technology from silicon micromachining, optical fiber sensor, and biochemistry to create a novel detection device. This approach utilizes affinity coatings on micromachiend cantilever beams to attract target molecules. The presence of the target molecule causes bending in the cantilever beam, which is monitored using an optical displacement system. Dose-response trials have shown measured responses at nanogram/ml concentrations of target molecules. Sensitivity is expected to extend from the nanogram to the picogram range of total captured mass as the microcantilever sensors are optimized.

  7. Correlating data from different sensors to increase the positive predictive value of alarms: an empiric assessment

    OpenAIRE

    Yuval Bitan; O’Connor, Michael F.

    2012-01-01

    Objectives: Alarm fatigue from high false alarm rate is a well described phenomenon in the intensive care unit (ICU). Progress to further reduce false alarms must employ a new strategy. Highly sensitive alarms invariably have a very high false alarm rate. Clinically useful alarms have a high Positive-Predictive Value. Our goal is to demonstrate one approach to suppressing false alarms using an algorithm that correlates information across sensors and replicates the ways that human evaluators d...

  8. Role of biomolecular logic systems in biosensors and bioactuators

    Science.gov (United States)

    Mailloux, Shay; Katz, Evgeny

    2014-09-01

    An overview of recent advances in biosensors and bioactuators based on biocomputing systems is presented. Biosensors digitally process multiple biochemical signals through Boolean logic networks of coupled biomolecular reactions and produce an output in the form of a YES/NO response. Compared to traditional single-analyte sensing devices, the biocomputing approach enables high-fidelity multianalyte biosensing, which is particularly beneficial for biomedical applications. Multisignal digital biosensors thus promise advances in rapid diagnosis and treatment of diseases by processing complex patterns of physiological biomarkers. Specifically, they can provide timely detection and alert medical personnel of medical emergencies together with immediate therapeutic intervention. Application of the biocomputing concept has been successfully demonstrated for systems performing logic analysis of biomarkers corresponding to different injuries, particularly as exemplified for liver injury. Wide-ranging applications of multianalyte digital biosensors in medicine, environmental monitoring, and homeland security are anticipated. "Smart" bioactuators, for signal-triggered drug release, for example, were designed by interfacing switchable electrodes with biocomputing systems. Integration of biosensing and bioactuating systems with biomolecular information processing systems advances the potential for further scientific innovations and various practical applications.

  9. Biomolecular logic systems: applications to biosensors and bioactuators

    Science.gov (United States)

    Katz, Evgeny

    2014-05-01

    The paper presents an overview of recent advances in biosensors and bioactuators based on the biocomputing concept. Novel biosensors digitally process multiple biochemical signals through Boolean logic networks of coupled biomolecular reactions and produce output in the form of YES/NO response. Compared to traditional single-analyte sensing devices, biocomputing approach enables a high-fidelity multi-analyte biosensing, particularly beneficial for biomedical applications. Multi-signal digital biosensors thus promise advances in rapid diagnosis and treatment of diseases by processing complex patterns of physiological biomarkers. Specifically, they can provide timely detection and alert to medical emergencies, along with an immediate therapeutic intervention. Application of the biocomputing concept has been successfully demonstrated for systems performing logic analysis of biomarkers corresponding to different injuries, particularly exemplified for liver injury. Wide-ranging applications of multi-analyte digital biosensors in medicine, environmental monitoring and homeland security are anticipated. "Smart" bioactuators, for example for signal-triggered drug release, were designed by interfacing switchable electrodes and biocomputing systems. Integration of novel biosensing and bioactuating systems with the biomolecular information processing systems keeps promise for further scientific advances and numerous practical applications.

  10. Label-free biosensor based on long period grating

    Science.gov (United States)

    Baldini, Francesco; Chiavaioli, Francesco; Giannetti, Ambra; Brenci, Massimo; Trono, Cosimo

    2013-03-01

    Long period gratings have been recently proposed as label-free optical devices for biochemical sensing. A biochemical interaction along the grating region changes the biolayer refractive index and a change in the fiber transmission spectrum occurs. The fiber biofunctionalization was performed with a novel chemistry using Eudragit L100 copolymer as opposed to the commonly-used silanization procedure. An IgG/anti-IgG bioassay was carried out for studying the antigen/antibody interaction. The biosensor was fully characterized, monitoring the kinetics during the antibody immobilization and achieving the calibration curve of the assay. To compare the biosensor performance, two LPG-based biosensors with distinct grating periods were characterized following the same bioassay protocol. Experimental results demonstrated an enhancement of the biosensor performance when the fundamental core mode of a single-mode fiber couples with a higher order cladding mode. Considering an LPG manufactured on a bare optical fiber, in which the coupling occurs with the 7-th cladding mode, a dynamic signal range of 0.33 nm, a working range of 1.7 - 1450 mg L-1 and a LOD of 500 μg L-1 were achieved

  11. Electropolymerized phenol derivatives as permselective polymers for biosensor applications.

    Science.gov (United States)

    Calia, Giammario; Monti, Patrizia; Marceddu, Salvatore; Dettori, Maria A; Fabbri, Davide; Jaoua, Samir; O'Neill, Robert D; Serra, Pier A; Delogu, Giovanna; Migheli, Quirico

    2015-05-21

    Amperometric biosensors are often coated with a polymeric permselective film to avoid electroactive interference by reducing agents present in the target medium. Phenylenediamine and phenol monomers are commonly used to form these permselective films in the design of microsensors and biosensors. This paper aims to evaluate the permselectivity, stability and lifetime of polymers electrosynthesized using either constant potential amperometry (CPA) or cyclic voltammetry (CV) from naturally occurring phenylpropanoids in monomeric and dimeric forms (eugenol, isoeugenol, dehydrodieugenol and magnolol). Sensors were characterized by scanning electron microscopy and permselectivity analysis. Magnolol formed an electro-deposited polymer with a more defined three-dimensional texture in comparison with the other films. The phenol-derived films showed different permselectivity towards H2O2 over ascorbic acid and dopamine, likely to be related to the thickness and compactness of the polymer. The CV-derived films had a better permselectivity compared to the CPA-corresponding polymers. Based on these results, the permselectivity, stability and lifetime of a biosensor for glucose were studied when a magnolol coating was electro-deposited. The structural principles governing the permselectivity of the magnolol-derived film are suggested to be mainly related to the conformational flexibility of this monomer. Newly designed biosensors, coated with electropolymerized natural phenol derivatives, may represent promising analytical devices for different application fields. PMID:25857616

  12. Modelling a Peroxidase-based Optical Biosensor

    OpenAIRE

    Juozas Kulys; Evelina Gaidamauskait˙e; Romas Baronas

    2007-01-01

    The response of a peroxidase-based optical biosensor was modelled digitally. A mathematical model of the optical biosensor is based on a system of non-linear reaction-diffusion equations. The modelling biosensor comprises two compartments, an enzyme layer and an outer diffusion layer. The digital simulation was carried out using finite difference technique. The influence of the substrate concentration as well as of the thickness of both the enzyme and diffusion layers on the biosensor respons...

  13. From Nanostructure to Nano Biosensor: Institute of Nano Electronic Engineering (INEE, UniMAP Experience

    Directory of Open Access Journals (Sweden)

    U Hashim

    2012-02-01

    Full Text Available Nanostructure is defined as something that has a physical dimension smaller than 100 nanometers, ranging from clusters and/or to dimensional layers of atoms. There are three most important nanostructures that are extensively studied and researched in various organizations including Institute of Nano Electronic Engineering (INEE in UniMAP. These include quantum dot, nanowire, and nanogap, which have been successfully designed and fabricated using in-house facilities available. These are subsequently used as a main sensing component in nanostructures based biosensor. This fabrication, characterization and testing job were done within four main interlinked laboratories namely microfabrication cleanroom, nanofabrication cleanroom, failure analysis laboratory and nano biochip laboratory.  Currently, development of Nano Biosensor is the main research focus in INEE. In principle, biosensor is an analytical device which converts a biological response into an electrical signal.   Keywords: Nanostructure, INEE , nanowire , nanogap and Nano Biosensor

  14. Biosensors in Health Care: The Milestones Achieved in Their Development towards Lab-on-Chip-Analysis

    Directory of Open Access Journals (Sweden)

    Suprava Patel

    2016-01-01

    Full Text Available Immense potentiality of biosensors in medical diagnostics has driven scientists in evolution of biosensor technologies and innovating newer tools in time. The cornerstone of the popularity of biosensors in sensing wide range of biomolecules in medical diagnostics is due to their simplicity in operation, higher sensitivity, ability to perform multiplex analysis, and capability to be integrated with different function by the same chip. There remains a huge challenge to meet the demands of performance and yield to its simplicity and affordability. Ultimate goal stands for providing point-of-care testing facility to the remote areas worldwide, particularly the developing countries. It entails continuous development in technology towards multiplexing ability, fabrication, and miniaturization of biosensor devices so that they can provide lab-on-chip-analysis systems to the community.

  15. Nano-machining of biosensor electrodes through gold nanoparticles deposition produced by femtosecond laser ablation

    Science.gov (United States)

    Della Ventura, B.; Funari, R.; Anoop, K. K.; Amoruso, S.; Ausanio, G.; Gesuele, F.; Velotta, R.; Altucci, C.

    2015-06-01

    We report an application of femtosecond laser ablation to improve the sensitivity of biosensors based on a quartz crystal microbalance device. The nanoparticles produced by irradiating a gold target with 527-nm, 300-fs laser pulses, in high vacuum, are directly deposited on the quartz crystal microbalance electrode. Different gold electrodes are fabricated by varying the deposition time, thus addressing how the nanoparticles surface coverage influences the sensor response. The modified biosensor is tested by weighting immobilized IgG antibody from goat and its analyte (IgG from mouse), and the results are compared with a standard electrode. A substantial increase of biosensor sensitivity is achieved, thus demonstrating that femtosecond laser ablation and deposition is a viable physical method to improve the biosensor sensitivity by means of nanostructured electrodes.

  16. Biosensor for metal analysis and speciation

    Science.gov (United States)

    Aiken, Abigail M.; Peyton, Brent M.; Apel, William A.; Petersen, James N.

    2007-01-30

    A biosensor for metal analysis and speciation is disclosed. The biosensor comprises an electron carrier immobilized to a surface of an electrode and a layer of an immobilized enzyme adjacent to the electrode. The immobilized enzyme comprises an enzyme having biological activity inhibited by a metal to be detected by the biosensor.

  17. 24 CFR 3280.208 - Smoke alarm requirements.

    Science.gov (United States)

    2010-04-01

    ... locations: (i) To protect both the living area and kitchen space. Manufacturers are encouraged to locate the alarm in the living area remote from the kitchen and cooking appliances. A smoke alarm located within 20... other equipment discharging conditioned air through a ceiling grille into the living space; and (ii)...

  18. Successful use of the nocturnal urine alarm for diurnal enuresis.

    OpenAIRE

    Friman, P C; Vollmer, D.

    1995-01-01

    We report the effects of using a urine alarm, typically employed for nocturnal enuresis, to treat chronic diurnal enuresis in a 15-year-old female resident at Boys' Town. The results of an ABAB reversal design indicate that the alarm eliminated wetting in both treatment phases and that continence was maintained at 3- and 6-month follow-up.

  19. Successful Use of the Nocturnal Urine Alarm for Diurnal Enuresis.

    Science.gov (United States)

    Friman, Patrick C.; Vollmer, Dennis

    1995-01-01

    A urine alarm, typically used to treat nocturnal enuresis, was effectively used to treat diurnal enuresis in a 15-year-old female with depression, attention deficit hyperactivity disorder, and conduct disorder. The study indicated that the alarm eliminated wetting in both treatment phases and that continence was maintained at three-month and…

  20. Los Alamos Scientific Laboratory long-range alarm system

    International Nuclear Information System (INIS)

    The Los Alamos Scientific Laboratory (LASL) Long-Range Alarm System is described. The last few years have brought significant changes in the Department of Energy regulations for protection of classified documents and special nuclear material. These changes in regulations have forced a complete redesign of the LASL security alarm system. LASL covers many square miles of varying terrain and consists of separate technical areas connected by public roads and communications. A design study over a period of 2 years produced functional specifications for a distributed intelligence, expandable alarm system that will handle 30,000 alarm points from hundreds of data concentrators spread over a 250-km2 area. Emphasis in the design was on nonstop operation, data security, data communication, and upward expandability to incorporate fire alarms and the computer-aided dispatching of security and fire vehicles. All aspects of the alarm system were to be fault tolerant from the central computer system down to but not including the individual data concentrators. Redundant communications lines travel over public domain from the alarmed area to the central alarm station

  1. 33 CFR 401.16 - Propeller direction alarms.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Propeller direction alarms. 401.16 Section 401.16 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Condition of Vessels § 401.16 Propeller direction alarms. Every vessel of 1600...

  2. Impedimetric Biosensors and Immunosensors

    Directory of Open Access Journals (Sweden)

    Mamas I. Prodromidis

    2007-12-01

    Full Text Available The development of methods targeting the direct monitoring of antibody-antigen interactions is particularly attractive. The design of label-free affinity-based probing concepts is the objective of much current research, at both academic and industrial levels, towards establishing alternative methods to the already existing ELISA-based immunoassays. Among these, Electrochemical Impedance Spectroscopy (EIS represents one of the most powerful methods, due to the ability of EIS-based sensors to be more easily integrated into multi-array or microprocessor- controlled diagnostic tools. During the last decade, EIS and the concept of biochemical capacitors have been widely used for probing various types of biomolecular interactions (immunosensors, DNA hybridization, protein-protein interactions. So far, impedimetric or capacitive immunosensors have been successfully applied at the academic level. However, no prototypes have been released into the market, since major fundamental issues still exist. Even though this fact has brought the reliability of impedimetric immunosensors into question, features associated with electrochemical approaches, namely the ability to be miniaturized, remote control of implanted sensors, low cost of electrode mass production, and cost effective instrumentation (without need of high-energy sources keep impedimetric sensors particularly attractive as compared to other approaches based on microbalances, surface plasmon resonance or ellipsometry. This lecture outlines the theoretical background of impedimetric immunosensors and presents different types of impedimetric biosensors as well as the instrumental approaches that have been so far proposed in the literature.

  3. Alarm systems a guide to design, management and procurement

    CERN Document Server

    Engineering Equipment and Materials Users' Association. London

    2013-01-01

    Alarm systems form an essential part of the operator interfaces to large modern industrial facilities. They provide vital support to the operators by warning them of situations that need their attention and have an important role in preventing, controlling and mitigating the effects of abnormal situations. Since it was first published in 1999, EEMUA 191 has become the globally accepted and leading guide to good practice for all aspects of alarm systems. The guide, developed by users of alarm systems with input from the GB Health and Safety Executive, gives comprehensive guidance on designing, managing and procuring an effective alarm system. The new Third Edition has been comprehensively updated and includes guidance on implementing the alarm management philosophy in practice; applications in geographically distributed processes; and performance metrics and KPIs.

  4. Reliability enhancement of criticality alarm system in CORAL

    International Nuclear Information System (INIS)

    This paper describes the challenges encountered in the Criticality Alarm System (CAS) installed in CORAL plant and explains the requirement and ways to make the system rugged, reliable and eliminate any false criticality alarms. To improve the reliability of the system the following improvements are required to be carried out viz. the power supply connections to the CAS, changes in wiring in the existing CASs, provision for electronic testing of the CAS remotely from control panel, connection of the criticality alarms to annunicator panel, design of common plant CAS alarm circuit with redundant DC power supplies, provision of alarm for mains and DC power supply failures, provision for transferring the CAS dose rate signals to the Radiation Data Acquisition Systems (RDAS) for event log and remote display and surveillance of CAS. (author)

  5. A multi-functional plasmonic biosensor.

    Science.gov (United States)

    Chang, Yun-Tzu; Lai, Yueh-Chun; Li, Chung-Tien; Chen, Cheng-Kuang; Yen, Ta-Jen

    2010-04-26

    We present a coupler-free, multi-mode refractive index sensor based on nanostructured split ring resonators (SRRs). The fabricated SRR structures exhibit multiple reflectance peaks, whose spectral positions are sensitive to local dielectric environment and can be quantitatively described by our standing-wave plasmonic resonance model, providing a design rule for this multi-mode refractive-index (MMRI) sensor. We further manifest that the lower-order modes possess greater sensitivity associated with stronger localized electromagnetic field leading to shorter detection lengths within five hundreds nanometers, while the higher-order modes present mediate sensitivity with micron-scale detection lengths to allow intracellular bio-events detection. These unique merits enable the SRR-based sensor a multi-functional biosensor and a potential label-free imaging device. PMID:20588803

  6. Application and Development of Biosensors

    Institute of Scientific and Technical Information of China (English)

    GAO Yuelin; LI Jichang; HUO Guicheng; LIU Libo

    2008-01-01

    As a new kind of analytical instrument, the principles, types and characters of biosensors were discussed in this paper. A biosensor is usually composed of a recognition element of biological origin and a physicochemical transducer. The biological element is capable of sensing the presence, activity or concentration of a chemical analyse in solution. The sensing takes place either as a binding event or a biocatalyticai event. These into'actions produce a measurable change in a solution property, in which the transducer is converted into a quantifiable electrical signal. The principles, types and applications of biosensors in environmental inspection, food production, clinical medicine and military defense were reviewed, and the trends in research were predicated. Furthermore, an attempt had been made to describe the future development directions and prospects.

  7. Microfluidic and biosensor applications of fluoropolymer films

    Science.gov (United States)

    McLaughlin, Glen Wallace

    2001-07-01

    Deposition of fluoropolymer films in microfluidic and biosensor applications enables the fabrication and miniaturization of several new integrated sensor devices that could provide a method for measuring oxygen consumption at the cellular level, providing an unique measurement device to be incorporated in cell based sensors. Fluoropolymer films have several properties that make them an excellent candidate for microfluidic and biosensor applications. These films are chemically inert, biocompatible, selectively gas permeable, have a low friction coefficient, are non-polarizable, and are capable of being processed using standard integrated circuit fabrication techniques. This allows for the seamless incorporation of these films into many different sensor applications, ranging from coating fluid interconnect channels to minimize protein absorption, to the realization of different miniaturized sensors which are capable of making point specific measurements. Film deposition is accomplished using an industrial standard plasma enhanced chemical vapor deposition (PECVD) chamber, customized with the capability of producing a pulsed plasma. The film deposition process has been characterised in situ using real time power measurement techniques, ultra violet optical emission spectroscopy (OES) measurements, and Langmuir probe measurements. These measurements along with post processing measurements of the films properties utilizing X-ray photoelectron spectroscopy (XPS) measurements, fourier transform infra-red spectroscopy (FTIR), ellipsometric measurements, contact angle measurements, and electrical characterization methods have been utilized to optimize the films properties for various applications. This thesis presents the characterization and optimization of the pulsed plasma deposited polytetrafluoroethylene (PTFE) film process along with the development of a solid state dissolved oxygen sensor using the PTFE film as the oxygen permeable membrane. The plasma deposition

  8. Cell-Based Biosensors Principles and Applications

    CERN Document Server

    Wang, Ping

    2009-01-01

    Written by recognized experts the field, this leading-edge resource is the first book to systematically introduce the concept, technology, and development of cell-based biosensors. You find details on the latest cell-based biosensor models and novel micro-structure biosensor techniques. Taking an interdisciplinary approach, this unique volume presents the latest innovative applications of cell-based biosensors in a variety of biomedical fields. The book also explores future trends of cell-based biosensors, including integrated chips, nanotechnology and microfluidics. Over 140 illustrations hel

  9. Modelling a Peroxidase-based Optical Biosensor

    Science.gov (United States)

    Baronas, Romas; Gaidamauskaite, Evelina; Kulys, Juozas

    2007-01-01

    The response of a peroxidase-based optical biosensor was modelled digitally. A mathematical model of the optical biosensor is based on a system of non-linear reaction-diffusion equations. The modelling biosensor comprises two compartments, an enzyme layer and an outer diffusion layer. The digital simulation was carried out using finite difference technique. The influence of the substrate concentration as well as of the thickness of both the enzyme and diffusion layers on the biosensor response was investigated. Calculations showed complex kinetics of the biosensor response, especially at low concentrations of the peroxidase and of the hydrogen peroxide.

  10. Micro-and nanoelectromechanical biosensors

    CERN Document Server

    Nicu, Liviu

    2014-01-01

    Most books dedicated to the issues of bio-sensing are organized by the well-known scheme of a biosensor. In this book, the authors have deliberately decided to break away from the conventional way of treating biosensing research by uniquely addressing biomolecule immobilization methods on a solid surface, fluidics issues and biosensing-related transduction techniques, rather than focusing simply on the biosensor. The aim is to provide a contemporary snapshot of the biosensing landscape without neglecting the seminal references or products where needed, following the downscaling (from the micr

  11. Enzyme conductometric biosensor for maltose determination

    Directory of Open Access Journals (Sweden)

    Dzyadevych S. V.

    2009-08-01

    Full Text Available Aim. To develop enzyme conductometric biosensor for maltose determination. Methods. A conductometric transducer consisting of two gold pairs of electrodes was applied. Three-enzyme membrane (glucose oxidase, mutarotase, -glucosidase immobilized on the surface of the conductometric transducer was used as a bioselective element. Results. A linear range of maltose conductometric biosensor was from 0,002 mM to 1 mM for glucose and maltose detection. The time of maltose analysis in solution was 1–2 minutes. The dependence of biosensor responses to substrate on pH, ionic strength, and buffer capacity of work solution was studied. The data of biosensor selectivity are presented. The developed conductometric biosensor is characterized by high operational stability and signal reproducibility. Conclusion. The enzyme conductometric biosensor for maltose determination has been developed. The analytical characteristics of the maltose biosensor were investigated. The proposed method could be used in food industry to control and optimize production.

  12. Biosensors and their applications - A review.

    Science.gov (United States)

    Mehrotra, Parikha

    2016-01-01

    The various types of biosensors such as enzyme-based, tissue-based, immunosensors, DNA biosensors, thermal and piezoelectric biosensors have been deliberated here to highlight their indispensable applications in multitudinous fields. Some of the popular fields implementing the use of biosensors are food industry to keep a check on its quality and safety, to help distinguish between the natural and artificial; in the fermentation industry and in the saccharification process to detect precise glucose concentrations; in metabolic engineering to enable in vivo monitoring of cellular metabolism. Biosensors and their role in medical science including early stage detection of human interleukin-10 causing heart diseases, rapid detection of human papilloma virus, etc. are important aspects. Fluorescent biosensors play a vital role in drug discovery and in cancer. Biosensor applications are prevalent in the plant biology sector to find out the missing links required in metabolic processes. Other applications are involved in defence, clinical sector, and for marine applications. PMID:27195214

  13. Photonic Crystal Biosensor Based on Optical Surface Waves

    Directory of Open Access Journals (Sweden)

    Giovanni Dietler

    2013-02-01

    Full Text Available A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately.

  14. High-Sensitivity Temperature-Independent Silicon Photonic Microfluidic Biosensors

    Science.gov (United States)

    Kim, Kangbaek

    Optical biosensors that can precisely quantify the presence of specific molecular species in real time without the need for labeling have seen increased use in the drug discovery industry and molecular biology in general. Of the many possible optical biosensors, the TM mode Si biosensor is shown to be very attractive in the sensing application because of large field amplitude on the surface and cost effective CMOS VLSI fabrication. Noise is the most fundamental factor that limits the performance of sensors in development of high-sensitivity biosensors, and noise reduction techniques require precise studies and analysis. One such example stems from thermal fluctuations. Generally SOI biosensors are vulnerable to ambient temperature fluctuations because of large thermo-optic coefficient of silicon (˜2x10 -4 RIU/K), typically requiring another reference ring and readout sequence to compensate temperature induced noise. To address this problem, we designed sensors with a novel TM-mode shallow-ridge waveguide that provides both large surface amplitude for bulk and surface sensing. With proper design, this also provides large optical confinement in the aqueous cladding that renders the device athermal using the negative thermo-optic coefficient of water (~ --1x10-4RIU/K), demonstrating cancellation of thermo-optic effects for aqueous solution operation near 300K. Additional limitations resulting from mechanical actuator fluctuations, stability of tunable lasers, and large 1/f noise of lasers and sensor electronics can limit biosensor performance. Here we also present a simple harmonic feedback readout technique that obviates the need for spectrometers and tunable lasers. This feedback technique reduces the impact of 1/f noise to enable high-sensitivity, and a DSP lock-in with 256 kHz sampling rate can provide down to micros time scale monitoring for fast transitions in biomolecular concentration with potential for small volume and low cost. In this dissertation, a novel

  15. A luminescent nisin biosensor

    Science.gov (United States)

    Immonen, Nina; Karp, Matti

    2006-02-01

    Nisin is a lantibiotic, an antibacterial peptide produced by certain Lactococcus lactis strains that kills or inhibits the growth of other bacteria. Nisin is widely used as a food preservative, and its long-time use suggests that it can be generally regarded as safe. We have developed a method for determining the amount of nisin in food samples that is based on luminescent biosensor bacteria. Bacterial luciferase operon luxABCDE was inserted into plasmid pNZ8048, and the construct was transformed by electroporation into Lc. lactis strain NZ9800, whose ability to produce nisin has been erased by deletion of the gene nisA. The operon luxABCDE has been modified to be functional in gram-positive bacteria to confer a bioluminescent phenotype without the requirement of adding an exogenous substrate. In the plasmid pNZ8048, the operon was placed under control of the nisin-inducible nisA promoter. The chromosomal nisRK genes of Lc. lactis NZ9800 allow it to sense nisin in the environment and relay this signal via signal transduction proteins NisK and NisR to initiate transcription from nisA promoter. In the case of our sensor bacteria, this leads to production of luciferase and, thus, luminescence that can be directly measured from living bacteria. Luminescence can be detected as early as within minutes of induction. The nisin assay described here provides a detection limit in the sub-picogram level per ml, and a linear area between 1 - 1000 pg/ml. The sensitivity of this assay exceeds the performance of all previously published methods.

  16. Pattern discovery in critical alarms originating from neonates under intensive care.

    Science.gov (United States)

    Joshi, Rohan; van Pul, Carola; Atallah, Louis; Feijs, Loe; Van Huffel, Sabine; Andriessen, Peter

    2016-04-01

    Patient monitoring generates a large number of alarms, the vast majority of which are false. Excessive non-actionable medical alarms lead to alarm fatigue, a well-recognized patient safety issue. While multiple approaches to reduce alarm fatigue have been explored, patterns in alarming and inter-alarm relationships, as they manifest in the clinical workspace, are largely a black-box and hamper research efforts towards reducing alarms. The aim of this study is to detect opportunities to safely reduce alarm pressure, by developing techniques to identify, capture and visualize patterns in alarms. Nearly 500 000 critical medical alarms were acquired from a neonatal intensive care unit over a 20 month period. Heuristic techniques were developed to extract the inter-alarm relationships. These included identifying the presence of alarm clusters, patterns of transition from one alarm category to another, temporal associations amongst alarms and determination of prevalent sequences in which alarms manifest. Desaturation, bradycardia and apnea constituted 86% of all alarms and demonstrated distinctive periodic increases in the number of alarms that were synchronized with nursing care and enteral feeding. By inhibiting further alarms of a category for a short duration of time (30 s/60 s), non-actionable physiological alarms could be reduced by 20%. The patterns of transition from one alarm category to another and the time duration between such transitions revealed the presence of close temporal associations and multiparametric derangement. Examination of the prevalent alarm sequences reveals that while many sequences comprised of multiple alarms, nearly 65% of the sequences were isolated instances of alarms and are potentially irreducible. Patterns in alarming, as they manifest in the clinical workspace were identified and visualized. This information can be exploited to investigate strategies for reducing alarms. PMID:27027383

  17. Development of portable memory type radiation alarm monitor

    International Nuclear Information System (INIS)

    A radiation alarm monitor has been developed and manufactured in order to protect radiation workers from over-exposure. A visual and audible alarm system has been attached to initiate evacuation when accident occurs such as an unexpected change of radiation level or an over-exposure. The radiation alarm monitor installed with microprocessor can record the information of radiation field change between 90 min. before the alarm and 30 min. after the alarm and also provide the data to an IBM compatible computer to analyze the accidents and to set a counter plan. It features a wide detection range of radiation field(10 mR/h-100 R/h), radiation field data storage, portability, high precision (±5%) due to self-calibration function, and adaption of a powerful alarm system. According to ANSI N42.17A, the most stringent test standards, performance tests were carried out under various conditions of temperature, humidity, vibration, and electromagnetic wave hindrance at Korea Research Institute of Standards and Science(KRISS). As a result, the Radiation Alarm Monitor passed all tests

  18. A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers

    OpenAIRE

    Chen Zhao, Martin M Thuo and Xinyu Liu

    2013-01-01

    Paper-based microfluidic devices have emerged as simple yet powerful platforms for performing low-cost analytical tests. This paper reports a microfluidic paper-based electrochemical biosensor array for multiplexed detection of physiologically relevant metabolic biomarkers. Different from existing paper-based electrochemical devices, our device includes an array of eight electrochemical sensors and utilizes a handheld custom-made electrochemical reader (potentiostat) for signal readout. The b...

  19. Computational Human Performance Modeling For Alarm System Design

    Energy Technology Data Exchange (ETDEWEB)

    Jacques Hugo

    2012-07-01

    The introduction of new technologies like adaptive automation systems and advanced alarms processing and presentation techniques in nuclear power plants is already having an impact on the safety and effectiveness of plant operations and also the role of the control room operator. This impact is expected to escalate dramatically as more and more nuclear power utilities embark on upgrade projects in order to extend the lifetime of their plants. One of the most visible impacts in control rooms will be the need to replace aging alarm systems. Because most of these alarm systems use obsolete technologies, the methods, techniques and tools that were used to design the previous generation of alarm system designs are no longer effective and need to be updated. The same applies to the need to analyze and redefine operators’ alarm handling tasks. In the past, methods for analyzing human tasks and workload have relied on crude, paper-based methods that often lacked traceability. New approaches are needed to allow analysts to model and represent the new concepts of alarm operation and human-system interaction. State-of-the-art task simulation tools are now available that offer a cost-effective and efficient method for examining the effect of operator performance in different conditions and operational scenarios. A discrete event simulation system was used by human factors researchers at the Idaho National Laboratory to develop a generic alarm handling model to examine the effect of operator performance with simulated modern alarm system. It allowed analysts to evaluate alarm generation patterns as well as critical task times and human workload predicted by the system.

  20. Toxicity assessment using different bioassays and microbial biosensors.

    Science.gov (United States)

    Hassan, Sedky H A; Van Ginkel, Steven W; Hussein, Mohamed A M; Abskharon, Romany; Oh, Sang-Eun

    2016-01-01

    Toxicity assessment of water streams, wastewater, and contaminated sediments, is a very important part of environmental pollution monitoring. Evaluation of biological effects using a rapid, sensitive and cost effective method can indicate specific information on ecotoxicity assessment. Recently, different biological assays for toxicity assessment based on higher and lower organisms such as fish, invertebrates, plants and algal cells, and microbial bioassays have been used. This review focuses on microbial biosensors as an analytical device for environmental, food, and biomedical applications. Different techniques which are commonly used in microbial biosensing include amperometry, potentiometry, conductometry, voltammetry, microbial fuel cells, fluorescence, bioluminescence, and colorimetry. Examples of the use of different microbial biosensors in assessing a variety of environments are summarized. PMID:27071051

  1. New ways to develop biosensors towards addressing practical problems

    Science.gov (United States)

    Starodub, N. F.

    2013-11-01

    The main modern approaches which were realized at the development of new generation of biosensors intended for application in field of diagnostics, food quality control and environmental monitoring are presented. The main attention was paid to creation of the multi-parametrical and multi-functional enzymatic and immune biosensors which were realized for the complex diagnostics of diabetes, autoimmune state and for the control of process of sugar production. The label-free bioaffine devices based on the nano-porouse silicon (NPS) with the registration of specific formed signal by chemiluminescence (ChL) and photoresistivity and intended for the determination mycotoxins and diagnostics of retroviral bovine leukemia (RBL) are analyzed too. Improving of ion sensitive field effect transistors (ISFETs) through changing silicon nitride on the cerium oxide is discussed as perspective approach in case of micotoxins and Salmonella control. In the conclusion the possibility to replace biological sensitive elements by artificial ones is considered.

  2. Characterization of an hrp-aox-polyaniline-graphite composite biosensor

    Directory of Open Access Journals (Sweden)

    Ana Carolina O. Santana

    2014-12-01

    Full Text Available Nowadays there is an increasing demand to develop new and robust biosensors in order to detect low concentrations of different chemicals, in practical and small devices, giving fast and confident responses. The electrode material was a polyaniline-graphite-epoxy composite (PANI/GEC. Alcohol oxidase (AOX and horseradish peroxidase (HRP enzymes were immobilized and the responses were tested by cyclic voltammetry. The conductivities for the composites of graphite/polyaniline were determined. The cyclic voltammograms allowed detecting ethanol in pure diluted samples in a range from 0.036 to 2.62 M. Differential scanning calorimetry (DSC and thermal gravimetry analysis (TGA were used to verify the thermal characteristics of the composites (0, 10, 20, 30 and 100 % of graphite. The Imax value was determined for the dual enzyme biosensor (0.0724 mA, and the Kapp m  as 1.41 M (with R2 =0.9912.

  3. A magnetic biosensor system for detection of E. coli

    KAUST Repository

    Li, Fuquan

    2013-07-01

    This work describes a device for detecting E. coli bacteria by manipulating superparamagnetic beads to a sensing area and immobilizing them in a trapping well. The trapping well replaces the biochemical immobilization layer, which is commonly used in magnetic biosensor systems. A concept exploiting the volume difference between bare magnetic beads and magnetic bead-bioanalyte compounds is utilized to detect E. coli bacteria. Trapped beads are detected by the help of a tunnel magneto-resistive sensor. Frequency modulation is employed, in order to increase the signal-to-noise ratio, enabling the detection of individual superparamagnetic beads of 2.8 μm in diameter. Replacing the biochemical immobilization layer by the trapping well greatly simplifies the detection process. After applying the mixture of E. coli and magnetic beads to the biosensor system, bacteria detection is achieved in a single step, within a few minutes. © 2013 IEEE.

  4. Design of SMART alarm system using main memory database

    International Nuclear Information System (INIS)

    To achieve design goal of SMART alarm system, first of all we have to decide on how to handle and manage alarm information and how to use database. So this paper analyses concepts and deficiencies of main memory database applied in real time system. And this paper sets up structure and processing principles of main memory database using nonvolatile memory such as flash memory and develops recovery strategy and process board structures using these. Therefore this paper shows design of SMART alarm system is suited functions and requirements

  5. DESIGN OF INTEGRATING WAVEGUIDE BIOSENSOR

    Science.gov (United States)

    The Integrating Waveguide Biosensor allows for rapid and sensitive detection of pathogenic agents, cells and proteins via immunoassay or PCR products. The analytes are captured on the surface of the waveguide and then tagged with fluorescent labels. The waveguides are illuminated by excitation light...

  6. Multiple-Parameter, Low-False-Alarm Fire-Detection Systems

    Science.gov (United States)

    Hunter, Gary W.; Greensburg, Paul; McKnight, Robert; Xu, Jennifer C.; Liu, C. C.; Dutta, Prabir; Makel, Darby; Blake, D.; Sue-Antillio, Jill

    2007-01-01

    Fire-detection systems incorporating multiple sensors that measure multiple parameters are being developed for use in storage depots, cargo bays of ships and aircraft, and other locations not amenable to frequent, direct visual inspection. These systems are intended to improve upon conventional smoke detectors, now used in such locations, that reliably detect fires but also frequently generate false alarms: for example, conventional smoke detectors based on the blockage of light by smoke particles are also affected by dust particles and water droplets and, thus, are often susceptible to false alarms. In contrast, by utilizing multiple parameters associated with fires, i.e. not only obscuration by smoke particles but also concentrations of multiple chemical species that are commonly generated in combustion, false alarms can be significantly decreased while still detecting fires as reliably as older smoke-detector systems do. The present development includes fabrication of sensors that have, variously, micrometer- or nanometer-sized features so that such multiple sensors can be integrated into arrays that have sizes, weights, and power demands smaller than those of older macroscopic sensors. The sensors include resistors, electrochemical cells, and Schottky diodes that exhibit different sensitivities to the various airborne chemicals of interest. In a system of this type, the sensor readings are digitized and processed by advanced signal-processing hardware and software to extract such chemical indications of fires as abnormally high concentrations of CO and CO2, possibly in combination with H2 and/or hydrocarbons. The system also includes a microelectromechanical systems (MEMS)-based particle detector and classifier device to increase the reliability of measurements of chemical species and particulates. In parallel research, software for modeling the evolution of a fire within an aircraft cargo bay has been developed. The model implemented in the software can

  7. Alarm!!! A UFO inside the heart.

    Science.gov (United States)

    Santoro, Giuseppe; Castaldi, Biagio; Iacono, Carola; Giugno, Luca; Gaio, Gianpiero; Russo, Maria G

    2012-10-01

    An 8-year-old asymptomatic child was referred for surgical repair of coronary sinus atrial septal defect resulting in significant left-to-right shunt and right chamber volume overload. The septal fenestration was located near to its drainage site into the right atrium. Due to this seemingly favourable anatomy, transcatheter closure of the septal defect was performed using an Amplatzer Septal Occluder device. The echocardiographic postprocedural evaluation imaged the occluding device almost perpendicular to the atrial septum, seemingly floating above the mitral valve orifice, like an alien spaceship inside the heart. PMID:22955207

  8. A WSN-Based Intrusion Alarm System to Improve Safety in Road Work Zones

    Directory of Open Access Journals (Sweden)

    Jose Martin

    2016-01-01

    Full Text Available Road traffic accidents are one of the main causes of death and disability worldwide. Workers responsible for maintaining and repairing roadways are especially prone to suffer these events, given their exceptional exposure to traffic. Since these actuations usually coexist with regular traffic, an errant driver can easily intrude the work area and provoke a collision. Some authors have proposed mechanisms aimed at detecting breaches in the work zone perimeter and alerting workers, which are collectively called intrusion alarm systems. However, they have several limitations and have not yet fulfilled the necessities of these scenarios. In this paper, we propose a new intrusion alarm system based on a Wireless Sensor Network (WSN. Our system is comprised of two main elements: vehicle detectors that form a virtual barrier and detect perimeter breaches by means of an ultrasonic beam and individual warning devices that transmit alerts to the workers. All these elements have a wireless communication interface and form a network that covers the whole work area. This network is in charge of transmitting and routing the alarms and coordinates the behavior of the system. We have tested our solution under real conditions with satisfactory results.

  9. rf duress alarms: market survey and preliminary characterization

    International Nuclear Information System (INIS)

    This report represents the first phase of the duress alarm studies. Presented here are the results of an extensive market survey and some preliminary observations on the effectiveness of many system components

  10. A weighted dissimilarity index to isolate faults during alarm floods

    CERN Document Server

    Charbonnier, S; Gayet, P

    2015-01-01

    A fault-isolation method based on pattern matching using the alarm lists raised by the SCADA system during an alarm flood is proposed. A training set composed of faults is used to create fault templates. Alarm vectors generated by unknown faults are classified by comparing them with the fault templates using an original weighted dissimilarity index that increases the influence of the few alarms relevant to diagnose the fault. Different decision strategies are proposed to support the operator in his decision making. The performances are evaluated on two sets of data: an artificial set and a set obtained from a highly realistic simulator of the CERN Large Hadron Collider process connected to the real CERN SCADA system.

  11. Changes in 900 MW PWR alarm processing policy

    International Nuclear Information System (INIS)

    Following a brief description of the current 900 MW PWR alarm processing system, this document presents the feasibility study carried out within the scope of the Instrumentation and Control Refurbishment project (R2C). (author). 4 figs, tabs

  12. Measurement of the Portsmouth Gaseous Diffusion Plant criticality accident alarm

    International Nuclear Information System (INIS)

    Measurements of the Portsmouth Gaseous Diffusion Plant's nuclear criticality accident radiation alarm signal response time, sound wave frequency, and sound volume levels were made to demonstrate compliance with ANSI/ANS-8.3-1986. A steady-state alarm signal is produced within one-half second of obtaining a two-out-of-three detector trip. The fundamental alarm sound wave frequency is 440 hertz. The sound volume levels are greater than 10 decibels above background and ranged from 100 to 125 A-weighted decibels. The requirements of the standard were met; however the recommended maximum sound volume level of 115 dBA was exceeded. Emergency procedures require immediate evacuation upon initiation of a facility's radiation alarm. Comparison with standards for allowable time of exposure at different noise levels indicate that the elevated noise level at this location does not represent an occupational injury hazard. 8 refs., 5 figs

  13. rf duress alarms: market survey and preliminary characterization

    Energy Technology Data Exchange (ETDEWEB)

    Draper, B.L.

    1979-05-01

    This report represents the first phase of the duress alarm studies. Presented here are the results of an extensive market survey and some preliminary observations on the effectiveness of many system components.

  14. ARC Code TI: Optimal Alarm System Design and Implementation

    Data.gov (United States)

    National Aeronautics and Space Administration — An optimal alarm system can robustly predict a level-crossing event that is specified over a fixed prediction horizon. The code contained in this packages provides...

  15. Nanoelectronic biosensors based on CVD grown graphene

    Science.gov (United States)

    Huang, Yinxi; Dong, Xiaochen; Shi, Yumeng; Li, Chang Ming; Li, Lain-Jong; Chen, Peng

    2010-08-01

    Graphene, a single-atom-thick and two-dimensional carbon material, has attracted great attention recently. Because of its unique electrical, physical, and optical properties, graphene has great potential to be a novel alternative to carbon nanotubes in biosensing. We demonstrate the use of large-sized CVD grown graphene films configured as field-effect transistors for real-time biomolecular sensing. Glucose or glutamate molecules were detected by the conductance change of the graphene transistor as the molecules are oxidized by the specific redox enzyme (glucose oxidase or glutamic dehydrogenase) functionalized onto the graphene film. This study indicates that graphene is a promising candidate for the development of real-time nanoelectronic biosensors.Graphene, a single-atom-thick and two-dimensional carbon material, has attracted great attention recently. Because of its unique electrical, physical, and optical properties, graphene has great potential to be a novel alternative to carbon nanotubes in biosensing. We demonstrate the use of large-sized CVD grown graphene films configured as field-effect transistors for real-time biomolecular sensing. Glucose or glutamate molecules were detected by the conductance change of the graphene transistor as the molecules are oxidized by the specific redox enzyme (glucose oxidase or glutamic dehydrogenase) functionalized onto the graphene film. This study indicates that graphene is a promising candidate for the development of real-time nanoelectronic biosensors. Electronic supplementary information (ESI) available: AFM images of graphene film before and after functionalization, transfer curves of graphene after every step, SEM image of CNT-net, and detection results using CNT-net devices. See DOI: 10.1039/c0nr00142b

  16. Chimpanzee Alarm Call Production Meets Key Criteria for Intentionality

    OpenAIRE

    Schel, Anne Marijke; Simon W Townsend; Machanda, Zarin; Zuberbühler, Klaus; Slocombe, Katie E.

    2013-01-01

    Determining the intentionality of primate communication is critical to understanding the evolution of human language. Although intentional signalling has been claimed for some great ape gestural signals, comparable evidence is currently lacking for their vocal signals. We presented wild chimpanzees with a python model and found that two of three alarm call types exhibited characteristics previously used to argue for intentionality in gestural communication. These alarm calls were: (i) sociall...

  17. Chimpanzee alarm call production meets key criteria for intentionality

    OpenAIRE

    Schel, Anne M.; Simon W Townsend; Machanda, Zarin; Zuberbühler, Klaus; Slocombe, Katie E.

    2013-01-01

    Determining the intentionality of primate communication is critical to understanding the evolution of human language. Although intentional signalling has been claimed for some great ape gestural signals, comparable evidence is currently lacking for their vocal signals. We presented wild chimpanzees with a python model and found that two of three alarm call types exhibited characteristics previously used to argue for intentionality in gestural communication. These alarm calls were: (i) sociall...

  18. Heterospecific alarm call recognition in a non-vocal reptile

    OpenAIRE

    Vitousek, Maren N; Adelman, James S; Gregory, Nathan C; Clair, James J. H. St

    2007-01-01

    The ability to recognize and respond to the alarm calls of heterospecifics has previously been described only in species with vocal communication. Here we provide evidence that a non-vocal reptile, the Galápagos marine iguana (Amblyrhynchus cristatus), can eavesdrop on the alarm call of the Galápagos mockingbird (Nesomimus parvulus) and respond with anti-predator behaviour. Eavesdropping on complex heterospecific communications demonstrates a remarkable degree of auditory discrimination in a ...

  19. A study of reset mode in advanced alarm system simulator

    International Nuclear Information System (INIS)

    An automation function has been widely applied in main control room of nuclear power plants. That leads to a new issue of human-automation interaction, which considers human operational performance in automated systems. In this research is the automation alarm reset in the advanced alarm system (AAS) of Advanced Nuclear Power Plant in Taiwan. Since alarms are very crucial for the understanding of the status of the plant as well as the reset function of alarm system will be changed from fully manual to fully automatic, it is very important to test and evaluate the performance and the effect of reset modes in AAS. The purpose of this paper is to evaluate the impact of the auto-reset alarm system on the plant performance and on operators' preference and task load. To develop a dynamic simulator as an AAS was conducted to compare manual and automatic reset function of alarm system on task performance and subjective ratings of task workload, comprehension, and preference. The simulation includes PCTRAN model and alarm software processing. The final results revealed that, using the auto-reset mode, participants had lower task load index (TLX) on effort in the first test trial and was more satisfied in multiple tasks condition. In contrast, using manual reset mode, participants were more satisfied on alarm handling, monitoring, and decision making. In other words, either reset mode in the study has unique features to assist operator, but is insufficient. The reset function in AAS therefore should be very flexible. Additionally, the experimental results also pointed out that the user interfaces need to be improved. Those experiences will be helpful for human factors verification and validation in the near future. (authors)

  20. ALARM SYSTEM FOR A BOILER SYSTEM CONTROL ON ENERGY ENTERPRISE

    OpenAIRE

    Lueder, Arndt; Ryshentseva, Daria

    2014-01-01

    As the problem of good qualified functioning of a boiler every year is taking place, there is an interest to create an advanced error alarm system, which, as its mission, has the timely notification of the controlled object functioning errors. Thus, in this paper the improved model of the alarm system object control is proposed, the question of an error-free object functioning problem solving is raised. The proposed model includes such approaches to solve this problem as artificial intelligen...

  1. Polystyrene Based SPR Biosensor Chip for Use in Immunoassay

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Biosensors are widely used in immunoassay.The biosensor chip carries a receptor which is used in immunoassay and the chip properties have an important influence on the detecting sensitivity of the biosensor.This paper describes a polystyrene-based biosensor chip developed and used as part of a surface plasmon resonance (SPR) biosensor.The SPR biosensor has a much higher detecting sensitivity than enzyme-linked immunoserbent assay (ELISA).

  2. Frog Swarms: Earthquake Precursors or False Alarms?

    Science.gov (United States)

    Grant, Rachel A; Conlan, Hilary

    2013-01-01

    In short-term earthquake risk forecasting, the avoidance of false alarms is of utmost importance to preclude the possibility of unnecessary panic among populations in seismic hazard areas. Unusual animal behaviour prior to earthquakes has been reported for millennia but has rarely been scientifically documented. Recently large migrations or unusual behaviour of amphibians have been linked to large earthquakes, and media reports of large frog and toad migrations in areas of high seismic risk such as Greece and China have led to fears of a subsequent large earthquake. However, at certain times of year large migrations are part of the normal behavioural repertoire of amphibians. News reports of "frog swarms" from 1850 to the present day were examined for evidence that this behaviour is a precursor to large earthquakes. It was found that only two of 28 reported frog swarms preceded large earthquakes (Sichuan province, China in 2008 and 2010). All of the reported mass migrations of amphibians occurred in late spring, summer and autumn and appeared to relate to small juvenile anurans (frogs and toads). It was concluded that most reported "frog swarms" are actually normal behaviour, probably caused by juvenile animals migrating away from their breeding pond, after a fruitful reproductive season. As amphibian populations undergo large fluctuations in numbers from year to year, this phenomenon will not occur on a yearly basis but will depend on successful reproduction, which is related to numerous climatic and geophysical factors. Hence, most large swarms of amphibians, particularly those involving very small frogs and occurring in late spring or summer, are not unusual and should not be considered earthquake precursors. In addition, it is likely that reports of several mass migration of small toads prior to the Great Sichuan Earthquake in 2008 were not linked to the subsequent M = 7.9 event (some occurred at a great distance from the epicentre), and were probably co

  3. An integrated microfluidic biosensor for the rapid screening of foodborne pathogens by surface plasmon resonance imaging

    Science.gov (United States)

    Zordan, Michael D.; Grafton, Meggie M. G.; Leary, James F.

    2011-03-01

    The rapid detection of foodborne pathogens is of vital importance to keep the food supply rid of contamination. Previously we have demonstrated the design of a hybrid optical device that performs real-time surface plasmon resonance (SPR) and epi-fluorescence imaging. Additionally we have developed a biosensor array chip that is able to specifically detect the presence of two known pathogens. This biosensor detects the presence of the pathogen strains by the selective capture of whole pathogens by peptide ligands functionalized to the spots of the array. We have incorporated this biosensor array into a self contained PDMS microfluidic chip. The enclosure of the biosensor array by a PDMS microfluidic chip allows for a sample to be screened for many strains of pathogens simultaneously in a safe one time use biochip. This disposable optical biochip is inserted into with the hybrid SPR/epi-fluorescence imaging device to form an integrated system for the detection of foodborne pathogens. Using this integrated system, we can selectively detect the presence of E. coli 0157:H7 or S. enterica in a simultaneously in real-time. Additionally, we have modeled the mechanical properties of the microfluidic biochip in order to manipulate the flow conditions to achieve optimal pathogen capture by the biosensor array. We have developed an integrated system that is able to screen a sample for multiple foodborne pathogens simultaneously in a safe, rapid and label-free manner.

  4. False-alarm characterization in hyperspectral gas-detection applications

    Science.gov (United States)

    DiPietro, Robert S.; Truslow, Eric; Manolakis, Dimitris G.; Golowich, Steven E.; Lockwood, Ronald B.

    2012-09-01

    Chemical cloud detection using long-wave infrared (LWIR) hyperspectral-imaging sensors has many civilian and military applications, including chemical warfare threat mitigation, environmental monitoring, and emergency response. Current capabilities are limited by variation in background clutter as opposed to the physics of photon detection, and this makes the statistical characterization of clutter and clutter-induced false alarms essential to the design of practical systems. In this exploratory work, we use hyperspectral data collected both on the ground and in the air to spectrally and spatially characterize false alarms. Focusing on two widely-used detectors, the matched filter (MF) and the adaptive cosine estimator (ACE), we compare empirical false-alarm rates to their theoretical counterparts - detector output under Gaussian, t and t-mixture distributed data - and show that these models often underestimate false-alarm rates. Next, we threshold real detection maps and show that true detections and false alarms often exhibit very different spatial behavior. To exploit this difference and understand how spatial processing affects performance, the spatial behavior of false alarms must be understood. We take a first step in this direction by showing that, although the behavior may `look' quite random, it is not well captured by the complete-spatial-randomness model. Finally, we describe how our findings impact the design of real detection systems.

  5. Perimeter security alarm system based on fiber Bragg grating

    Science.gov (United States)

    Zhang, Cui; Wang, Lixin

    2010-11-01

    With the development of the society and economy and the improvement of living standards, people need more and more pressing security. Perimeter security alarm system is widely regarded as the first line of defense. A highly sensitive Fiber Bragg grating (FBG) vibration sensor based on the theory of the string vibration, combined with neural network adaptive dynamic programming algorithm for the perimeter security alarm system make the detection intelligently. Intelligent information processing unit identify the true cause of the vibration of the invasion or the natural environment by analyzing the frequency of vibration signals, energy, amplitude and duration. Compared with traditional perimeter security alarm systems, such as infrared perimeter security system and electric fence system, FBG perimeter security alarm system takes outdoor passive structures, free of electromagnetic interference, transmission distance through optical fiber can be as long as 20 km It is able to detect the location of event within short period of time (high-speed response, less than 3 second).This system can locate the fiber cable's breaking sites and alarm automatically if the cable were be cut. And the system can prevent effectively the false alarm from small animals, birds, strong wind, scattering things, snowfalls and vibration of sensor line itself. It can also be integrated into other security systems. This system can be widely used in variety fields such as military bases, nuclear sites, airports, warehouses, prisons, residence community etc. It will be a new force of perimeter security technology.

  6. An alarm processing system for a nuclear power plant using artificial intelligence techniques

    International Nuclear Information System (INIS)

    This paper reports on an alarm processing system (APS) developed that uses artificial intelligence techniques to help operators to make decisions. Alarms in nuclear power plants are classified into generalized and special alarms. Generalized alarms are further classified into global and local alarms. For each type of alarm, the specific processing rules are applied to filter and suppress unnecessary and potentially misleading alarms. The processing for the generalized alarms is based on model-based reasoning. The special alarms are processed by the cause-consequence check rules. The priorities of alarms are determined according to both the plant state and the consistencies among the alarms. This APS is built on a workstation using the Prolog language

  7. Integrated optical biosensor for rapid detection of bacteria

    Science.gov (United States)

    Mathesz, Anna; Valkai, Sándor; Újvárosy, Attila; Aekbote, Badri; Sipos, Orsolya; Stercz, Balázs; Kocsis, Béla; Szabó, Dóra; Dér, András

    2016-02-01

    In medical diagnostics, rapid detection of pathogenic bacteria from body fluids is one of the basic issues. Most state-of-the-art methods require optical labeling, increasing the complexity, duration and cost of the analysis. Therefore, there is a strong need for developing selective sensory devices based on label-free techniques, in order to increase the speed, and reduce the cost of detection. In a recent paper, we have shown that an integrated optical Mach-Zehnder interferometer, a highly sensitive all-optical device made of a cheap photopolymer, can be used as a powerful lab-on-a-chip tool for specific, labelfree detection of proteins. By proper modifications of this technique, our interferometric biosensor was combined with a microfluidic system allowing the rapid and specific detection of bacteria from solutions, having the surface of the sensor functionalized by bacterium-specific antibodies. The experiments proved that the biosensor was able to detect Escherichia coli bacteria at concentrations of 106 cfu/ml within a few minutes, that makes our device an appropriate tool for fast, label-free detection of bacteria from body fluids such as urine or sputum. On the other hand, possible applications of the device may not be restricted to medical microbiology, since bacterial identification is an important task in microbial forensics, criminal investigations, bio-terrorism threats and in environmental studies, as well.

  8. Label-Free Biosensors for Cell Biology

    OpenAIRE

    Ye Fang

    2011-01-01

    Label-free biosensors for studying cell biology have finally come of age. Recent developments have advanced the biosensors from low throughput and high maintenance research tools to high throughput and low maintenance screening platforms. In parallel, the biosensors have evolved from an analytical tool solely for molecular interaction analysis to powerful platforms for studying cell biology at the whole cell level. This paper presents historical development, detection principles, and applicat...

  9. Zinc Oxide Nanostructured Biosensor for Glucose Detection

    Institute of Scientific and Technical Information of China (English)

    X. W.Sun; J.X. Wang; A. Wei

    2008-01-01

    Zinc oxide (ZnO) nanocombs were fabricated by vapor phase transport, and nanorods and hierarchical nanodisk structures by aqueous thermal decomposition. Glucose biosensors were constructed using these ZnO nanostructures as supporting materials for glucose oxidase (GOx) loading. These ZnO glucose biosensors showed a high sensitivity for glucose detection and high affinity of GOx to glucose as well as the low detection limit. The results demonstrate that ZnO nanostructures have potential applications in biosensors.

  10. Graphene based biosensors

    Science.gov (United States)

    Gürel, Hikmet Hakan; Salmankurt, Bahadır

    2016-03-01

    Nanometer-sized graphene as a 2D material has unique chemical and electronic properties. Because of its unique physical, chemical, and electronic properties, its interesting shape and size make it a promising nanomaterial in many biological applications. It is expected that biomaterials incorporating graphene will be developed for the graphene-based drug delivery systems and biomedical devices. The interactions of biomolecules and graphene are long-ranged and very weak. Development of new techniques is very desirable for design of bioelectronics sensors and devices. In this work, we present first-principles calculations within density functional theory to calculate effects of charging on nucleobases on graphene. It is shown that how modify structural and electronic properties of nucleobases on graphene by applied charging.

  11. Polymer based biosensor for rapid electrochemical detection of virus infection of human cells

    DEFF Research Database (Denmark)

    Kiilerich-Pedersen, Katrine; Poulsen, Claus R.; Jain, Titoo;

    2011-01-01

    The demand in the field of medical diagnostics for simple, cost efficient and disposable devices is growing. Here, we present a label free, all-polymer electrochemical biosensor for detection of acute viral disease. The dynamics of a viral infection in human cell culture was investigated in a micro...

  12. A MEMS Dielectric Affinity Glucose Biosensor.

    Science.gov (United States)

    Huang, Xian; Li, Siqi; Davis, Erin; Li, Dachao; Wang, Qian; Lin, Qiao

    2013-06-20

    Continuous glucose monitoring (CGM) sensors based on affinity detection are desirable for long-term and stable glucose management. However, most affinity sensors contain mechanical moving structures and complex design in sensor actuation and signal readout, limiting their reliability in subcutaneously implantable glucose detection. We have previously demonstrated a proof-of-concept dielectric glucose sensor that measured pre-mixed glucose-sensitive polymer solutions at various glucose concentrations. This sensor features simplicity in sensor design, and possesses high specificity and accuracy in glucose detection. However, lack of glucose diffusion passage, this device is unable to fulfill real-time in-vivo monitoring. As a major improvement to this device, we present in this paper a fully implantable MEMS dielectric affinity glucose biosensor that contains a perforated electrode embedded in a suspended diaphragm. This capacitive-based sensor contains no moving parts, and enables glucose diffusion and real-time monitoring. The experimental results indicate that this sensor can detect glucose solutions at physiological concentrations and possesses good reversibility and reliability. This sensor has a time constant to glucose concentration change at approximately 3 min, which is comparable to commercial systems. The sensor has potential applications in fully implantable CGM that require excellent long-term stability and reliability. PMID:24511215

  13. Applications of polymers for biomolecule immobilization in electrochemical biosensors

    International Nuclear Information System (INIS)

    Polymers are becoming inseparable from biomolecule immobilization strategies and biosensor platforms. Their original role as electrical insulators has been progressively substituted by their electrical conductive abilities, which opens a new and broad scope of applications. In addition, recent advances in diagnostic chips and microfluidic systems, together with the requirements of mass-production technologies, have raised the need to replace glass by polymeric materials, which are more suitable for production through simple manufacturing processes. Conducting polymers (CPs), in particular, are especially amenable for electrochemical biosensor development for providing biomolecule immobilization and for rapid electron transfer. It is expected that the combination of known polymer substrates, but also new transducing and biocompatible interfaces, with nanobiotechnological structures, like nanoparticles, carbon nanotubes (CNTs) and nanoengineered 'smart' polymers, may generate composites with new and interesting properties, providing higher sensitivity and stability of the immobilized molecules, thus constituting the basis for new and improved analytical devices for biomedical and other applications. This review covers the state-of-the-art and main novelties about the use of polymers for immobilization of biomolecules in electrochemical biosensor platforms

  14. Use of biosensors for the detection of marine toxins.

    Science.gov (United States)

    McPartlin, Daniel A; Lochhead, Michael J; Connell, Laurie B; Doucette, Gregory J; O'Kennedy, Richard J

    2016-06-30

    Increasing occurrences of harmful algal blooms (HABs) in the ocean are a major concern for countries around the globe, and with strong links between HABs and climate change and eutrophication, the occurrences are only set to increase. Of particular concern with regard to HABs is the presence of toxin-producing algae. Six major marine biotoxin groups are associated with HABs. Ingestion of such toxins via contaminated shellfish, fish, or other potential vectors, can lead to intoxication syndromes with moderate to severe symptoms, including death in extreme cases. There are also major economic implications associated with the diverse effects of marine biotoxins and HABs. Thus, effective monitoring programmes are required to manage and mitigate their detrimental global effect. However, currently legislated detection methods are labour-intensive, expensive and relatively slow. The growing field of biosensor diagnostic devices is an exciting area that has the potential to produce robust, easy-to-use, cost-effective, rapid and accurate detection methods for marine biotoxins and HABs. This review discusses recently developed biosensor assays that target marine biotoxins and their microbial producers, both in harvested fish/shellfish samples and in the open ocean. The effective deployment of such biosensor platforms could address the pressing need for improved monitoring of HABs and marine biotoxins, and could help to reduce their global economic impact. PMID:27365035

  15. Surface Modification on Acoustic Wave Biosensors for Enhanced Specificity

    Directory of Open Access Journals (Sweden)

    Nathan D. Gallant

    2012-09-01

    Full Text Available Changes in mass loading on the surface of acoustic biosensors result in output frequency shifts which provide precise measurements of analytes. Therefore, to detect a particular biomarker, the sensor delay path must be judiciously designed to maximize sensitivity and specificity. B-cell lymphoma 2 protein (Bcl-2 found in urine is under investigation as a biomarker for non-invasive early detection of ovarian cancer. In this study, surface chemistry and biofunctionalization approaches were evaluated for their effectiveness in presenting antibodies for Bcl-2 capture while minimizing non-specific protein adsorption. The optimal combination of sequentially adsorbing protein A/G, anti-Bcl-2 IgG and Pluronic F127 onto a hydrophobic surface provided the greatest signal-to-noise ratio and enabled the reliable detection of Bcl-2 concentrations below that previously identified for early stage ovarian cancer as characterized by a modified ELISA method. Finally, the optimal surface modification was applied to a prototype acoustic device and the frequency shift for a range of Bcl-2 concentration was quantified to demonstrate the effectiveness in surface acoustic wave (SAW-based detection applications. The surface functionalization approaches demonstrated here to specifically and sensitively detect Bcl-2 in a working ultrasonic MEMS biosensor prototype can easily be modified to detect additional biomarkers and enhance other acoustic biosensors.

  16. An automated portable array biosensor

    Science.gov (United States)

    Golden, Joel P.; Shubin, Yura S.; Shriver-Lake, Lisa C.; Delehanty, James B.; Sapsford, Kim E.; Rowe-Taitt, Chris A.; Ligler, Frances S.

    2003-07-01

    Array biosensors provide the capability of immobilizing multiple capture biomolecules onto a single surface and therefore offer the exciting prospect of multi-analyte detection. A miniaturized, fully automated, stand-alone biosensor is reported which can simultaneously test multiple samples for multiple analytes. This portable system (monitoring for food safety, infectious disease detection, and biological warfare defense. The surface-selective nature of this technology allows determination of binding constants and tracking of both specific and non-specific binding events as they occur. Thus, it provides an exciting new research tool for characterizing the interactions of biomolecules with surfaces or immobilized receptors in real time. This capability has important implications for development of new materials and sensors.

  17. Plasmonic Nanostructures for Biosensor Applications

    Science.gov (United States)

    Gadde, Akshitha

    Improving the sensitivity of existing biosensors is an active research topic that cuts across several disciplines, including engineering and biology. Optical biosensors are the one of the most diverse class of biosensors which can be broadly categorized into two types based on the detection scheme: label-based and label-free detection. In label-based detection, the target bio-molecules are labeled with dyes or tags that fluoresce upon excitation, indicating the presence of target molecules. Label-based detection is highly-sensitive, capable of single molecule detection depending on the detector type used. One method of improving the sensitivity of label-based fluorescence detection is by enhancement of the emission of the labels by coupling them with metal nanostructures. This approach is referred as plasmon-enhanced fluorescence (PEF). PEF is achieved by increasing the electric field around the nano metal structures through plasmonics. This increased electric field improves the enhancement from the fluorophores which in turn improves the photon emission from the fluorophores which, in turn, improves the limit of detection. Biosensors taking advantage of the plasmonic properties of metal films and nanostructures have emerged an alternative, low-cost, high sensitivity method for detecting labeled DNA. Localized surface plasmon resonance (LSPR) sensors employing noble metal nanostructures have recently attracted considerable attention as a new class of plasmonic nanosensors. In this work, the design, fabrication and characterization of plasmonic nanostructures is carried out. Finite difference time domain (FDTD) simulations were performed using software from Lumerical Inc. to design a novel LSPR structure that exhibit resonance overlapping with the absorption and emission wavelengths of quantum dots (QD). Simulations of a composite Au/SiO2 nanopillars on silicon substrate were performed using FDTD software to show peak plasmonic enhancement at QD emission wavelength

  18. MRI Biosensors: A Short Primer

    OpenAIRE

    Louie, Angelique

    2013-01-01

    Interest in Magnetic Resonance Imaging (MRI) contrast agents for molecular imaging of biological function experienced a surge of excitement approximately 20 years ago with the development of the first activatable contrast agents that could act as biosensors and turn “on” in response to a specific biological activity. This brief tutorial, based on a short course lecture from the 2011 ISMRM meeting, provides an overview of underlying principles governing the design of biosensing contrast agents...

  19. Novel Polythiophenes for Biosensor Applications

    OpenAIRE

    Clayton, Kate

    2011-01-01

    The development of an enzyme biosensor employing a novel functionalised polythiophene matrix is presented. The research upon conducting polymer platforms for biological immobilisation is extensive but by no means exhaustive and therefore this investigation contributes to the field of glucose detection with covalently immobilised glucose oxidase upon novel copolymers of N-succinimido thiophene-3- acetate/3-methylthiophene (STA-MT), trans-3-(3-thienyl) acetic acid/3- methylthiophene (TTA-MT)...

  20. Improvements in electrochemical glucose biosensors

    OpenAIRE

    Fragkou, Vasiliki

    2010-01-01

    Diabetes is one of the leading causes of death and disability in the world. Even though insulin was discovered in 1920, an intense research on diabetes has been conducted during the last five decades and this is because of the market size. The huge demand is creating the need for the development of new approaches. This project involved the research aimed at better understanding and improvements in performance of glucose biosensors. In general, high surface area electrodes ar...

  1. Alarm pheromone processing in the ant brain: an evolutionary perspective

    Directory of Open Access Journals (Sweden)

    Makoto Mizunami

    2010-06-01

    Full Text Available Social insects exhibit sophisticated communication by means of pheromones, one example of which is the use of alarm pheromones to alert nestmates for colony defense. We review recent advances in the understanding of the processing of alarm pheromone information in the ant brain. We found that information about formic acid and n-undecane, alarm pheromone components, is processed in a set of specific glomeruli in the antennal lobe of the ant Camponotus obscuripes. Alarm pheromone information is then transmitted, via projection neurons, to the lateral horn and the calyces of the mushroom body of the protocerebrum. In the lateral horn, we found a specific area where terminal boutons of alarm pheromone-sensitive projection neurons are more densely distributed than in the rest of the lateral horn. Some neurons in the protocerebrum responded specifically to formic acid or n-undecane and they may participate in the control of behavioral responses to each pheromone component. Other neurons, especially those originating from the mushroom body lobe, responded also to non-pheromonal odors and may play roles in integration of pheromonal and non-pheromonal signals. We found that a class of neurons receive inputs in the lateral horn and the mushroom body lobe and terminate in a variety of premotor areas. These neurons may participate in the control of aggressive behavior, which is sensitized by alarm pheromones and is triggered by non-pheromonal sensory stimuli associated with a potential enemy. We propose that the alarm pheromone processing system has evolved by differentiation of a part of general odor processing system.

  2. Alginate cryogel based glucose biosensor

    Science.gov (United States)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  3. Biosensor of endotoxin and sepsis

    Science.gov (United States)

    Shao, Yang; Wang, Xiang; Wu, Xi; Gao, Wei; He, Qing-hua; Cai, Shaoxi

    2001-09-01

    To investigate the relation between biosensor of endotoxin and endotoxin of plasma in sepsis. Method: biosensor of endotoxin was designed with technology of quartz crystal microbalance bioaffinity sensor ligand of endotoxin were immobilized by protein A conjugate. When a sample soliton of plasma containing endotoxin 0.01, 0.03, 0.06, 0.1, 0.5, 1.0Eu, treated with perchloric acid and injected into slot of quartz crystal surface respectively, the ligand was released from the surface of quartz crystal to form a more stable complex with endotoxin in solution. The endotoxin concentration corresponded to the weight change on the crystal surface, and caused change of frequency that occurred when desorbed. The result was biosensor of endotoxin might detect endotoxin of plasma in sepsis, measurements range between 0.05Eu and 0.5Eu in the stop flow mode, measurement range between 0.1Eu and 1Eu in the flow mode. The sensor of endotoxin could detect the endotoxin of plasm rapidly, and use for detection sepsis in clinically.

  4. Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor

    International Nuclear Information System (INIS)

    This letter demonstrates the direct laser printing of photosynthetic material onto low cost nonfunctionalized screen printed electrodes for the fabrication of photosynthesis-based amperometric biosensors. The high kinetic energy of the transferred material induces direct immobilization of the thylakoids onto the electrodes without the use of linkers. This type of immobilization is able to establish efficient electrochemical contact between proteins and electrode, stabilizing the photosynthetic biomolecule and transporting electrons to the solid state device with high efficiency. The functionality of the laser printed biosensors was evaluated by the detection of a common herbicide such as Linuron.

  5. Alarm reduction with correlation analysis; Larmsanering genom korrelationsanalys

    Energy Technology Data Exchange (ETDEWEB)

    Bergquist, Tord; Ahnlund, Jonas; Johansson, Bjoern; Gaardman, Lennart; Raaberg, Martin [Lund Univ. (Sweden). Dept. of Information Technology

    2004-09-01

    This project's main interest is to improve the overall alarm situation in the control rooms. By doing so, the operators working environment is less overstrained, which simplifies the decision-making. According to a study of the British refinery industry, the operators make wrong decisions in four times out of ten due to badly tuned alarm systems, with heavy expenses as a result. Furthermore, a more efficiently alarm handling is estimated to decrease the production loss with between three and eight percent. This sounds, according to Swedish standards, maybe a bit extreme, but there is no doubt about the benefits of having a well-tuned alarm system. This project can be seen as an extension of 'General Methods for Alarm Reduction' (VARMEFORSK--835), where the process improvements were the result of suggestions tailored for every signal. Here, instead causal dependences in the process are examined. A method for this, specially designed to fit process signals, has been developed. It is called MLPC (Multiple Local Property Correlation) and could be seen as an unprejudiced way of increase the information value in the process. There are a number of ways to make use of the additional process understanding a correlation analysis provides. In the report some are mentioned, foremost aiming to improve the alarm situation for operators. Signals from two heating plants have been analyzed with MLPC. In simulations, with the use of the result from these analyses as a base, a large number of alarms have been successfully suppressed. The results have been studied by personal with process knowledge, and they are very positive to the use of MLPC and they express many benefits by the clarification of process relations. It was established in 'General Methods for Alarm Reduction' that low pass filter are superior to mean value filter and time delay when trying to suppress alarms. As a result, a module for signal processing has been developed. The main purpose is

  6. Reducing SCADA System Nuisance Alarms in the Water Industry in Northern Ireland.

    Science.gov (United States)

    O'Donoghue, Nigel; Phillips, Debra H; Nicell, Ciaran

    2015-08-01

    The advancement of telemetry control for the water industry has increased the difficulty of managing large volumes of nuisance alarms (i.e., alarms that do not require a response). The aim of this study was to identify and reduce the number of nuisance alarms that occur for Northern Ireland (NI) Water by carrying out alarm duration analysis to determine the appropriate length of persistence (an advanced alarm management tool) that could be applied. All data were extracted from TelemWeb (NI Water's telemetry monitoring system) and analyzed in Excel. Over a 6-week period, an average of 40 000 alarms occurred per week. The alarm duration analysis, which has never been implemented before by NI Water, found that an average of 57% of NI Water alarms had a duration of <5 minutes. Applying 5-minute persistence, therefore, could prevent an average 26 816 nuisance alarms per week. Most of these alarms were from wastewater assets. PMID:26237691

  7. FAULT DIAGNOSIS WITH MULTI-STATE ALARMS IN A NUCLEAR POWER CONTROL SIMULATOR

    Energy Technology Data Exchange (ETDEWEB)

    Austin Ragsdale; Roger Lew; Brian P. Dyre; Ronald L. Boring

    2012-10-01

    This research addresses how alarm systems can increase operator performance within nuclear power plant operations. The experiment examined the effect of two types of alarm systems (two-state and three-state alarms) on alarm compliance and diagnosis for two types of faults differing in complexity. We hypothesized three-state alarms would improve performance in alarm recognition and fault diagnoses over that of two-state alarms. We used sensitivity and criterion based on Signal Detection Theory to measure performance. We further hypothesized that operator trust would be highest when using three-state alarms. The findings from this research showed participants performed better and had more trust in three-state alarms compared to two-state alarms. Furthermore, these findings have significant theoretical implications and practical applications as they apply to improving the efficiency and effectiveness of nuclear power plant operations.

  8. Fault Diagnosis with Multi-State Alarms in a Nuclear Power Control Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Stuart A. Ragsdale; Roger Lew; Ronald L. Boring

    2014-09-01

    This research addresses how alarm systems can increase operator performance within nuclear power plant operations. The experiment examined the effects of two types of alarm systems (two-state and three-state alarms) on alarm compliance and diagnosis for two types of faults differing in complexity. We hypothesized the use of three-state alarms would improve performance in alarm recognition and fault diagnoses over that of two-state alarms. Sensitivity and criterion based on the Signal Detection Theory were used to measure performance. We further hypothesized that operator trust would be highest when using three-state alarms. The findings from this research showed participants performed better and had more trust in three-state alarms compared to two-state alarms. Furthermore, these findings have significant theoretical implications and practical applications as they apply to improving the efficiency and effectiveness of nuclear power plant operations.

  9. Nuclear-power-plant perimeter-intrusion alarm systems

    International Nuclear Information System (INIS)

    Timely intercept of an intruder requires the examination of perimeter barriers and sensors in terms of reliable detection, immediate assessment and prompt response provisions. Perimeter security equipment and operations must at the same time meet the requirements of the Code of Federal Regulations, 10 CFR 73.55 with some attention to the performance and testing figures of Nuclear Regulatory Guide 5.44, Revision 2, May 1980. A baseline system is defined which recommends a general approach to implementing perimeter security elements: barriers, lighting, intrusion detection, alarm assessment. The baseline approach emphasizes cost/effectiveness achieved by detector layering and logic processing of alarm signals to produce reliable alarms and low nuisance alarm rates. A cost benefit of layering along with video assessment is reduction in operating expense. The concept of layering is also shown to minimize testing costs where detectability performance as suggested by Regulatory Guide 5.44 is to be performed. Synthesis of the perimeter intrusion alarm system and limited testing of CCTV and Video Motion Detectors (VMD), were performed at E-Systems, Greenville Division, Greenville, Texas during 1981

  10. Nuclear-power-plant perimeter-intrusion alarm systems

    Energy Technology Data Exchange (ETDEWEB)

    Halsey, D.J.

    1982-04-01

    Timely intercept of an intruder requires the examination of perimeter barriers and sensors in terms of reliable detection, immediate assessment and prompt response provisions. Perimeter security equipment and operations must at the same time meet the requirements of the Code of Federal Regulations, 10 CFR 73.55 with some attention to the performance and testing figures of Nuclear Regulatory Guide 5.44, Revision 2, May 1980. A baseline system is defined which recommends a general approach to implementing perimeter security elements: barriers, lighting, intrusion detection, alarm assessment. The baseline approach emphasizes cost/effectiveness achieved by detector layering and logic processing of alarm signals to produce reliable alarms and low nuisance alarm rates. A cost benefit of layering along with video assessment is reduction in operating expense. The concept of layering is also shown to minimize testing costs where detectability performance as suggested by Regulatory Guide 5.44 is to be performed. Synthesis of the perimeter intrusion alarm system and limited testing of CCTV and Video Motion Detectors (VMD), were performed at E-Systems, Greenville Division, Greenville, Texas during 1981.

  11. Graphene–protein field effect biosensors: glucose sensing

    Directory of Open Access Journals (Sweden)

    Sowmya Viswanathan

    2015-11-01

    Full Text Available Chronic diseases are becoming more prevalent, and the complexities of managing patients continue to escalate, since their care must be balanced between the home and clinical settings. Diabetes is the most advanced example, where self-monitoring has been shown to be necessary. Glucometers are point-of-care (POC devices that have become standard platforms at home and clinical settings. Similarly, many other POC biosensors have also been developed. Enzymes are often used in these sensors because of their specificity and the reaction products can be electrochemically transduced for the measurement. When enzymes are immobilized to an electronically active substrate, enzymatic reactions can be transduced by direct electron transport. This paper describes an approach for the development of graphene-based POC devices. This includes modifying enzymes for improved performance, developing methods to bind them to the graphene surface, incorporation of the functionalized graphene on a field-effect transistor (FET, and integration into a microfluidic device suitable for home use. This paper describes an approach for the development of a graphene-based POC biosensor platform using glucose as an example of target molecule.

  12. Wireless Integrated Biosensors for Point-of-Care Diagnostic Applications

    Directory of Open Access Journals (Sweden)

    Ebrahim Ghafar-Zadeh

    2015-02-01

    Full Text Available Recent advances in integrated biosensors, wireless communication and power harvesting techniques are enticing researchers into spawning a new breed of point-of-care (POC diagnostic devices that have attracted significant interest from industry. Among these, it is the ones equipped with wireless capabilities that drew our attention in this review paper. Indeed, wireless POC devices offer a great advantage, that of the possibility of exerting continuous monitoring of biologically relevant parameters, metabolites and other bio-molecules, relevant to the management of various morbid diseases such as diabetes, brain cancer, ischemia, and Alzheimer’s. In this review paper, we examine three major categories of miniaturized integrated devices, namely; the implantable Wireless Bio-Sensors (WBSs, the wearable WBSs and the handheld WBSs. In practice, despite the aforesaid progress made in developing wireless platforms, early detection of health imbalances remains a grand challenge from both the technological and the medical points of view. This paper addresses such challenges and reports the state-of-the-art in this interdisciplinary field.

  13. Nanoporous Anodic Alumina: A Versatile Platform for Optical Biosensors

    Directory of Open Access Journals (Sweden)

    Abel Santos

    2014-05-01

    Full Text Available Nanoporous anodic alumina (NAA has become one of the most promising nanomaterials in optical biosensing as a result of its unique physical and chemical properties. Many studies have demonstrated the outstanding capabilities of NAA for developing optical biosensors in combination with different optical techniques. These results reveal that NAA is a promising alternative to other widely explored nanoporous platforms, such as porous silicon. This review is aimed at reporting on the recent advances and current stage of development of NAA-based optical biosensing devices. The different optical detection techniques, principles and concepts are described in detail along with relevant examples of optical biosensing devices using NAA sensing platforms. Furthermore, we summarise the performance of these devices and provide a future perspective on this promising research field.

  14. Surface plasmon resonance biosensors for food safety

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří

    New York: Springer, 2003 - (Wolfbeis, O.; Narayanaswamy, R.), s. 145-172. (Springer Series on Chemical Sensors and Biosensors. 1). ISBN 3-540-40886-X Institutional research plan: CEZ:AV0Z2067918 Keywords : biosensors * surface plasmon resonance * optical sensors Subject RIV: JB - Sensors, Measurment, Regulation

  15. Development of conductometric biosensors based on alkaline phosphatases for the water quality control

    CERN Document Server

    Berezhetskyy, A

    2008-01-01

    Researches are focused on the elaboration of enzymatic microconductometric device for heavy metal ions detection in water solutions. The manuscript includes a general introduction, the first chapter contains bibliographic review, the second chapter described the fundamentals of conductometric transducers, the third chapter examining the possibility to create and to optimize conductometric biosensor based on bovine alkaline phosphatase for heavy metals ions detection, the fourth chapter devoted to creation and optimization of conductometric biosensor based on alkaline phosphatase active microalgae and sol gel technology, the last chapter described application of the proposed algal biosensor for measurements of heavy metal ions toxicity of waste water, general conclusions stating the progresses achieved in the field of environmental monitoring

  16. Biosensor-based real-time monitoring of paracetamol photocatalytic degradation.

    Science.gov (United States)

    Calas-Blanchard, Carole; Istamboulié, Georges; Bontoux, Margot; Plantard, Gaël; Goetz, Vincent; Noguer, Thierry

    2015-07-01

    This paper presents for the first time the integration of a biosensor for the on-line, real-time monitoring of a photocatalytic degradation process. Paracetamol was used as a model molecule due to its wide use and occurrence in environmental waters. The biosensor was developed based on tyrosinase immobilization in a polyvinylalcohol photocrosslinkable polymer. It was inserted in a computer-controlled flow system installed besides a photocatalytic reactor including titanium dioxide (TiO2) as photocatalyst. It was shown that the biosensor was able to accurately monitor the paracetamol degradation with time. Compared with conventional HPLC analysis, the described device provides a real-time information on the reaction advancement, allowing a better control of the photodegradation process. PMID:25828801

  17. Development of a criticality monitoring and alarm system

    International Nuclear Information System (INIS)

    In this work we are presenting the development of a Criticality Monitor and Alarm System (SIMAC). It monitors the burst of radiation produced during such an accident and triggers an alarm for evacuation in case the radiation exceeds a pre-established threshold. It consists of two subsystems, one for gamma rays and the other for neutrons. Each subsystem has three independent detectors modules. Each module is composed of an ion chamber plus its associated electronics, feeding a logic module that in turn would trigger the evacuation alarm. An additional feature is a PC interface for data acquisition. The radiation detectors are ion chambers working in current mode. The electronics associated to each detector can manage a wide signal range using a logarithmic converter. (author)

  18. Field response of tadpoles to conspecific and heterospecific alarm

    Science.gov (United States)

    Adams, M.J.; Claeson, S.

    1998-01-01

    Many organisms use chemical cues from a variety of sources to mediate predator avoidance. Response to heterospecific alarm cues has been demonstrated for tadpoles within but not among taxa and alarm response behavior has seldom been examined under field conditions. This study examined the response of three sympatric amphibian larvae and predaceous larval Dytiscus sp. (diving beetle) to damage-release signals in natural ponds by using capture rates from treated funnel traps as an index of larval behavior. Hyla regilla (Pacific tree frog) tadpoles avoided traps treated with either crushed conspecifics or with Rana aurora (red-legged frog) tadpoles but the larger ranids and Arabystoma macrodactylum (long-toed salamander) did not respond to either treatment. H. regilla tadpoles were likely susceptible to any potential predators of ranid tadpoles in these ponds and this result is consistent with the hypothesis that a response to heterospecific alarm occurs in sympatric prey with shared predators.

  19. Statistical Study of False Alarms of Geomagnetic Storms

    DEFF Research Database (Denmark)

    Leer, Kristoffer; Vennerstrøm, Susanne; Veronig, A.;

    Coronal Mass Ejections (CMEs) are known to cause geomagnetic storms on Earth. However, not all CMEs will trigger geomagnetic storms, even if they are heading towards the Earth. In this study, front side halo CMEs with speed larger than 500 km/s have been identified from the SOHO LASCO catalogue....... A subset of these halo CMEs did not cause a geomagnetic storm the following four days and have therefore been considered as false alarms. The properties of these events are investigated and discussed here. Their statistics are compared to the geo-effective CMEs. The ability to identify potential false...... alarms is considered as an important factor when forecasting geomagnetic storms. It would therefore be very helpful if there were a signature in the solar data that could indicate that a CME is a false alarm. The strength and position of associated flares have been considered as possible candidates...

  20. Nanomaterials based biosensors for cancer biomarker detection

    Science.gov (United States)

    Malhotra, Bansi D.; Kumar, Saurabh; Mouli Pandey, Chandra

    2016-04-01

    Biosensors have enormous potential to contribute to the evolution of new molecular diagnostic techniques for patients suffering with cancerous diseases. A major obstacle preventing faster development of biosensors pertains to the fact that cancer is a highly complex set of diseases. The oncologists currently rely on a few biomarkers and histological characterization of tumors. Some of the signatures include epigenetic and genetic markers, protein profiles, changes in gene expression, and post-translational modifications of proteins. These molecular signatures offer new opportunities for development of biosensors for cancer detection. In this context, conducting paper has recently been found to play an important role towards the fabrication of a biosensor for cancer biomarker detection. In this paper we will focus on results of some of the recent studies obtained in our laboratories relating to fabrication and application of nanomaterial modified paper based biosensors for cancer biomarker detection.

  1. Functionalized Palladium Nanoparticles for Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    H. Baccar

    2011-01-01

    Full Text Available We present a comparison between two biosensors for hydrogen peroxide (H2O2 detection. The first biosensor was developed by the immobilization of Horseradish Peroxidase (HRP enzyme on thiol-modified gold electrode. The second biosensor was developed by the immobilization of cysteamine functionalizing palladium nanoparticles on modified gold surface. The amino groups can be activated with glutaraldehyde for horseradish peroxidase immobilization. The detection of hydrogen peroxide was successfully observed in PBS for both biosensors using the cyclic voltammetry and the chronoamperometry techniques. The results show that the limit detection depends on the large surface-to-volume ratio attained with palladium nanoparticles. The second biosensor presents a better detection limit of 7.5 μM in comparison with the first one which is equal to 75 μM.

  2. ZnO-Based Amperometric Enzyme Biosensors

    Directory of Open Access Journals (Sweden)

    Helong Jiang

    2010-02-01

    Full Text Available Nanostructured ZnO with its unique properties could provide a suitable microenvironment for immobilization of enzymes while retaining their biological activity, and thus lead to an expanded use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance. ZnO-based enzyme electrochemical biosensors are summarized in several tables for an easy overview according to the target biosensing analyte (glucose, hydrogen peroxide, phenol and cholesterol, respectively. Moreover, recent developments in enzyme electrochemical biosensors based on ZnO nanomaterials are reviewed with an emphasis on the fabrications and features of ZnO, approaches for biosensor construction (e.g., modified electrodes and enzyme immobilization and biosensor performances.

  3. Towards an integrated biosensor array for simultaneous and rapid multi-analysis of endocrine disrupting chemicals

    International Nuclear Information System (INIS)

    Highlights: ► A multitask biosensor for the detection of endocrine disrupting chemicals is proposed. ► The sensing system employ an array of biological recognition elements. ► Amperometric and optical transduction methods are provided in an integrated biosensor together with flow control systems. ► The biosensing device results in an integrated, automatic and portable system for environmental and agrifood application. - Abstract: In this paper we propose the construction and application of a portable multi-purpose biosensor array for the simultaneous detection of a wide range of endocrine disruptor chemicals (EDCs), based on the recognition operated by various enzymes and microorganisms. The developed biosensor combines both electrochemical and optical transduction systems, in order to increase the number of chemical species which can be monitored. Considering to the maximum residue level (MRL) of contaminants established by the European Commission, the biosensor system was able to detect most of the chemicals analysed with very high sensitivity. In particular, atrazine and diuron were detected with a limit of detection of 0.5 nM, with an RSD% less than 5%; paraoxon and chlorpyrifos were revealed with a detection of 5 μM and 4.5 μM, respectively, with an RSD% less than 6%; catechol and bisphenol A were identified with a limit of detection of 1 μM and 35 μM respectively, with an RSD% less than 5%.

  4. Towards an integrated biosensor array for simultaneous and rapid multi-analysis of endocrine disrupting chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Scognamiglio, Viviana, E-mail: viviana.scognamiglio@mlib.ic.cnr.it [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy); Pezzotti, Italo; Pezzotti, Gianni; Cano, Juan; Manfredonia, Ivano [Biosensor S.r.l. - Via degli Olmetti 44 00060 Formello, Rome (Italy); Buonasera, Katia [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy); Arduini, Fabiana; Moscone, Danila; Palleschi, Giuseppe [Universita di Roma Tor Vergata, Dipartimento di Scienze e Tecnologie Chimiche - Via della Ricerca Scientifica 00133, Rome (Italy); Giardi, Maria Teresa [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer A multitask biosensor for the detection of endocrine disrupting chemicals is proposed. Black-Right-Pointing-Pointer The sensing system employ an array of biological recognition elements. Black-Right-Pointing-Pointer Amperometric and optical transduction methods are provided in an integrated biosensor together with flow control systems. Black-Right-Pointing-Pointer The biosensing device results in an integrated, automatic and portable system for environmental and agrifood application. - Abstract: In this paper we propose the construction and application of a portable multi-purpose biosensor array for the simultaneous detection of a wide range of endocrine disruptor chemicals (EDCs), based on the recognition operated by various enzymes and microorganisms. The developed biosensor combines both electrochemical and optical transduction systems, in order to increase the number of chemical species which can be monitored. Considering to the maximum residue level (MRL) of contaminants established by the European Commission, the biosensor system was able to detect most of the chemicals analysed with very high sensitivity. In particular, atrazine and diuron were detected with a limit of detection of 0.5 nM, with an RSD% less than 5%; paraoxon and chlorpyrifos were revealed with a detection of 5 {mu}M and 4.5 {mu}M, respectively, with an RSD% less than 6%; catechol and bisphenol A were identified with a limit of detection of 1 {mu}M and 35 {mu}M respectively, with an RSD% less than 5%.

  5. PROLOG language application for alarm system realization in accelerator control

    International Nuclear Information System (INIS)

    Such PROLOG features as backtracking, matching and recursive data representation are powerful tools for ALARM system realization. Although the main idea is the possibility to describe some technical system in recursive form, backtracking and matching are ideal for processing recursive data structures. This paper represents a technique which would allow PROLOG language application for ALARM system realization using an example of the KEK LINAC magnet system. The technique is based on an object-oriented internal data representation in terms of objects, properties, relations and knowledge conception. In addition, each property value is characterized by a typical 'time life'. (author)

  6. Emotional responses to the experience of cancer 'alarm' symptoms

    OpenAIRE

    Whitaker, KL; Cromme, S; Winstanley, K.; Renzi, C.; Wardle, J.

    2015-01-01

    Abstract Objective To qualitatively explore associations between emotional responses to experience of cancer ‘alarm’ symptoms and help‐seeking in a community sample of adults. Method Interviewees (n = 62) were recruited from a community sample (n = 2042) of adults aged ≥50 years, who had completed a health survey that included a list of cancer alarm symptoms. Participants who had reported an alarm symptom both at baseline and 3‐month follow‐up (n = 271), and who had consented to contact (n = ...

  7. MoS₂ field-effect transistor for next-generation label-free biosensors.

    Science.gov (United States)

    Sarkar, Deblina; Liu, Wei; Xie, Xuejun; Anselmo, Aaron C; Mitragotri, Samir; Banerjee, Kaustav

    2014-04-22

    Biosensors based on field-effect transistors (FETs) have attracted much attention, as they offer rapid, inexpensive, and label-free detection. While the low sensitivity of FET biosensors based on bulk 3D structures has been overcome by using 1D structures (nanotubes/nanowires), the latter face severe fabrication challenges, impairing their practical applications. In this paper, we introduce and demonstrate FET biosensors based on molybdenum disulfide (MoS2), which provides extremely high sensitivity and at the same time offers easy patternability and device fabrication, due to its 2D atomically layered structure. A MoS2-based pH sensor achieving sensitivity as high as 713 for a pH change by 1 unit along with efficient operation over a wide pH range (3-9) is demonstrated. Ultrasensitive and specific protein sensing is also achieved with a sensitivity of 196 even at 100 femtomolar concentration. While graphene is also a 2D material, we show here that it cannot compete with a MoS2-based FET biosensor, which surpasses the sensitivity of that based on graphene by more than 74-fold. Moreover, we establish through theoretical analysis that MoS2 is greatly advantageous for biosensor device scaling without compromising its sensitivity, which is beneficial for single molecular detection. Furthermore, MoS2, with its highly flexible and transparent nature, can offer new opportunities in advanced diagnostics and medical prostheses. This unique fusion of desirable properties makes MoS2 a highly potential candidate for next-generation low-cost biosensors. PMID:24588742

  8. Feasibility Studies on Si-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Marcella Renis

    2009-05-01

    Full Text Available The aim of this paperis to summarize the efforts carried out so far in the fabrication of Si-based biosensors by a team of researchers in Catania, Italy. This work was born as a collaboration between the Catania section of the Microelectronic and Microsystem Institute (IMM of the CNR, the Surfaces and Interfaces laboratory (SUPERLAB of the Consorzio Catania Ricerche and two departments at the University of Catania: the Biomedical Science and the Biological Chemistry and Molecular Biology Departments. The first goal of our study was the definition and optimization of an immobilization protocol capable of bonding the biological sensing element on a Si-based surface via covalent chemical bonds. We chose SiO2 as the anchoring surface due to its biocompatibility and extensive presence in microelectronic devices. The immobilization protocol was tested and optimized, introducing a new step, oxide activation, using techniques compatible with microelectronic processing. The importance of the added step is described by the experimental results. We also tested different biological molecule concentrations in the immobilization solutions and the effects on the immobilized layer. Finally a MOS-like structure was designed and fabricated to test an electrical transduction mechanism. The results obtained so far and the possible evolution of the research field are described in this review paper.

  9. Biosensors for the Detection of Food Pathogens

    Directory of Open Access Journals (Sweden)

    Palmiro Poltronieri

    2014-09-01

    Full Text Available Food pathogens frequently cause foodborne diseases. There is a need to rapidly identify the source of the bacteria in order to contain their spread and epidemics. A pre-enrichment culture or a direct culture on agar plate are standard microbiological methods. In this review, we present an update on alternative molecular methods to nucleic acid-based detection for species identification. Biosensor-based methods rely on the recognition of antigen targets or receptors by antibodies, aptamers or high-affinity ligands. The captured antigens may be then directly or indirectly detected through an antibody or high-affinity and high-specificity recognition molecule. Various different detection methods are discussed, from label-free sensors and immunosensors to fluorescence-based ones. Each method shows advantages and disadvantages in terms of equipment, sensitivity, simplicity and cost-effectiveness. Finally, lab-on-a-chip (LOC devices are introduced briefly, with the potential to be fast, sensitive and useful for on-site bacteria detection in food processing laboratories to check potential contamination by sample monitoring combined with a rapid pre-enrichment step.

  10. Carbon nanotubes field effect transistors biosensors

    Directory of Open Access Journals (Sweden)

    M.P. Marco

    2012-03-01

    Full Text Available Carbon nanotube transistor arrays (CNTFETs wereused as biosensors to detect DNA hybridization andto recognize two anabolic steroids, stanozolol (Stzand methylboldenone (MB. Single strand DNA andantibodies specific for STz and MB were immobilizedon the carbon nanotubes (CNTs in situ in the deviceusing two different approaches: direct noncovalentbonding of antibodies to the devices and covalentlytrough a polymer previously attached to theCNTFETs. A new approach to ensure specificadsorption of the biomolecules to the nanotubeswas developed. The polymer poly(methylmethacrylate0.8-co-poly (ethyleneglycolmethacrylate0.8-co-N-succinimidyl methacrylate0.1was synthesized and bonded noncovalently to thenanotube. Aminated single-strand DNA or antibodiesspecific for Stz and MB were then attached covalentlyto the polymer. Statistically significant changes wereobserved in key transistor parameters for both DNAhybridization and steroids recognition. Regardingthe detection mechanism, in addition to chargetransfer, Schottky barrier, SB, modification, andscattering potential reported by other authors, anelectron/hole trapping mechanism leading tohysteresis modification has been determined. Thepresence of polymer seems to hinder the modulationof the electrode-CNT contact.

  11. Design of alarm systems in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Research within the area of improving alarm system design and performance has mainly focused on new alarm systems. However, smaller modernisations of legacy systems are more common in the Swedish nuclear industry than design of totally new systems. This imposes problems when the new system should function together with the old system. This project deals with the special concerns raised by modernisation projects. The objective of the project has been to increase the understanding of the relationship between the operator's performance and the design of the alarm system. Of major concern has been to consider the cognitive abilities of the operator, different operator roles and work situations, and varying need of information. The aim of the project has been to complement existing alarm design guidance and to develop user-centred alarm design concepts. Different case studies have been performed in several industry sectors (nuclear, oil refining, pulp and paper, aviation and medical care) to identify best practice. Several empirical studies have been performed within the nuclear area to investigate the operator's need of information, performance and workload in different operating modes. The aspect of teamwork has also been considered. The analyses show that the operator has different roles in different work situations which affect both the type of information needed and how the information is processed. In full power operation, the interaction between the operator and the alarm system is driven by internal factors and the operator tries to maintain high situation awareness by actively searching for information. The operator wants to optimise the process and need detailed information with possibilities to follow-up and get historical data. In disturbance management, the operator is more dependent on external information presented by the alarm system. The new compilation of alarm guidance is based on the operator's varying needs in different working situations and is

  12. Orientational nanoparticle assemblies and biosensors.

    Science.gov (United States)

    Ma, Wei; Xu, Liguang; Wang, Libing; Kuang, Hua; Xu, Chuanlai

    2016-05-15

    Assemblies of nanoparticles (NPs) have regional correlated properties with new features compared to individual NPs or random aggregates. The orientational NP assembly contributes greatly to the collective interaction of individual NPs with geometrical dependence. Therefore, orientational NPs assembly techniques have emerged as promising tools for controlling inorganic NPs spatial structures with enhanced interesting properties. The research fields of orientational NP assembly have developed rapidly with characteristics related to the different methods used, including chemical, physical and biological techniques. The current and potential applications, important challenges remain to be investigated. An overview of recent developments in orientational NPs assemblies, the multiple strategies, biosensors and challenges will be discussed in this review. PMID:26708241

  13. Glucose biosensor enhanced by nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Glucose biosensors have been formed with glucose oxidase (GOD) immobilized in composite immobilization membrane matrix, which is composed of hydrophobic gold, or hydrophilic gold, or hydrophobic silica nanoparticles, or the combination of gold and silica nanoparticles, and polyvinyl butyral (PVB) by a sol-gel method. The experiments show that nanoparticles can significantly enhance the catalytic activity of the immobilization enzyme. The current response can be increased from tens of nanoamperometer (nA) to thousands of nanoamperometer to the same glucose concentration, and the electrodes respond very quickly, to about 1 min. The function of nanoparticles effect on immobilization enzyme has been discussed.

  14. Glucose biosensor enhanced by nanoparticles

    Institute of Scientific and Technical Information of China (English)

    唐芳琼; 孟宪伟; 陈东; 冉均国; 郑昌琼

    2000-01-01

    Glucose biosensors have been formed with glucose oxidase (GOD) immobilized in composite immobilization membrane matrix, which is composed of hydrophobic gold, or hydro-philic gold, or hydrophobic silica nanoparticles, or the combination of gold and silica nanoparticles, and polyvinyl butyral (PVB) by a sol-gel method. The experiments show that nanoparticles can significantly enhance the catalytic activity of the immobilization enzyme. The current response can be increased from tens of nanoamperometer (nA) to thousands of nanoamperometer to the same glucose concentration, and the electrodes respond very quickly, to about 1 min. The function of nanoparticles effect on immobilization enzyme has been discussed.

  15. Logic Alarm Cause Tracking System(LogACTs) for Wolsong 3 and 4

    International Nuclear Information System (INIS)

    KAERI I and C. HF Research team has developed an alarm root cause tracking system (ACTs), an alarm and diagnosis-integrated operator support system (ADIOS), and a dynamic alarm system (DAS). An alarm processing and presentation system, LogACTs(Logic Alarm Cause Tracking system) of their researches is developed and installed into the main control room(MCR) of the Wolsong nuclear power plant(NPP) unit 3. The system is integrated with tracking the logics of an alarm, finding the causes of an alarm, displaying the highlighted alarm procedure related to the causes, and suppressing and filtering nuisance alarms due to the physical or logical connections between components or systems in an abnormal state

  16. Development experience and strategy for the combined algorithm on the alarm processing and diagnosis

    International Nuclear Information System (INIS)

    In this paper, I presented the development experience on the alarm processing and fault diagnosis which has been achieved from early 1988 to late 1995. The scope covered is the prototype stage, the development stage of on-line operator-aid system, and an intelligent human-machine interface system. In the second part, I proposed a new method (APEXS) of multi-alarm processing to select the causal alarm(s) among occurred alarms by using the time information of each occurred alarm and alarm tree knowledge and the corresponding diagnosis method based on the selected causal alarm(s) by using the prescribed qualitative model. With more knowledge base about the plant and some modification suitable for real environment, APEXS will be able to adapt to a real steam power plant. (author). 18 refs, 3 figs, 1 tab

  17. Detection of false arrhythmia alarms with emphasis on ventricular tachycardia.

    Science.gov (United States)

    Rodrigues, Rui; Couto, Paula

    2016-08-01

    Our approach to detecting false arrhythmia alarms in the intensive care unit breaks down into several tasks. It involves beat detection on different signals: electrocardiogram, photoplethysmogram and arterial blood pressure. The quality of each channel has to be estimated in order to evaluate the reliability of obtained beat detections. The information about the heart rate from the different channels must be integrated in order to find a final conclusion. Some alarm types require particular detectors as is the case of ventricular fibrillation. To identify false ventricular tachycardia alarms we needed to classify heart beats as normal/ventricular. For that purpose we introduce a new feature, QRS polarity type. This feature was important in order to reduce misclassification of ventricular beats: there was an improvement in the ventricular tachycardia alarm true positive rate from 69% to 81%. However, the true negative rate was reduced from 95% to 69% and our global challenge score (real-time event) dropped from 79.02 to 74.28. Our challenge algorithm achieved the third best score in the 2015 PhysioNet/CinC challenge event 1 (real time). PMID:27454934

  18. False alarms in fault-tolerant dominating sets in graphs

    Directory of Open Access Journals (Sweden)

    Mateusz Nikodem

    2012-01-01

    Full Text Available We develop the problem of fault-tolerant dominating sets (liar's dominating sets in graphs. Namely, we consider a new kind of fault - a false alarm. Characterization of such fault-tolerant dominating sets in three different cases (dependent on the classification of the types of the faults are presented.

  19. Integrated alarm annunciation and entry control systems -- Survey results

    Energy Technology Data Exchange (ETDEWEB)

    Clever, J.J.; Arakaki, L.H.; Monaco, F.M.; Juarros, L.E.; Quintana, G.R.

    1993-10-01

    This report provides the results and analyses of a detailed survey undertaken in Summer 1993 to address integrated intrusion detection alarm annunciation and entry control system issues. This survey was undertaken as a first attempt toward beginning to answer questions about integrated systems and commercial capabilities to meet or partially meet US Department of Energy (DOE) site needs.

  20. An object-oriented alarm-filtering system

    International Nuclear Information System (INIS)

    This paper discusses an alarm-filtering system (AFS) being developed by EG and G Idaho, Inc. for the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory. The ultimate goal of this project is to place AFS into ATR's reactor control room to act as an aid during major plant transients. In addition, methods of alarm analysis are investigated based on functional relationships rather than on a historical approach utilizing cause-consequence trees. Artificial intelligence techniques, including object-oriented programming, are also demonstrated as useful in analyzing alarms and alarm sequences. After a brief description of the problem AFS addresses, this paper discusses the design constraints and human factors that influenced the development of the system. The reader is then presented with operational and architectural descriptions of the system as well as what directions the future development of AFS may take. The fact that AFS is being considered as a partial solution to the problems discussed in the next section demonstrates the viability of its underlying technology and approach

  1. 29 CFR 1910.165 - Employee alarm systems.

    Science.gov (United States)

    2010-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Fire Protection Other Fire Protection Systems § 1910.165 Employee... communication system also serves as the employee alarm system, all emergency messages shall have priority...

  2. Cost-Effective School Alarm Systems. Security Topics Series.

    Science.gov (United States)

    Kaufer, Steve

    This document outlines considerations in the selection of a cost-effective school-alarm system. Steps in the planning process include: conducting a district needs assessment; gathering input from all staff levels; consulting technical expertise; and selecting a security system that can be integrated with other site needs. It further describes the…

  3. Chemical alarm in the termite Termitogeton planus (Rhinotermitidae)

    Czech Academy of Sciences Publication Activity Database

    Dolejšová, Klára; Krasulová, Jana; Kutalová, K.; Hanus, Robert

    2014-01-01

    Roč. 40, 11/12 (2014), s. 1269-1276. ISSN 0098-0331 R&D Projects: GA ČR GAP506/10/1570 Institutional support: RVO:61388963 Keywords : termites * soldiers * frontal gland * alarm pheromone * Rhinotermitidae * Termitogeton Subject RIV: CC - Organic Chemistry Impact factor: 2.747, year: 2014

  4. Integrated alarm annunciation and entry control systems -- Survey results

    International Nuclear Information System (INIS)

    This report provides the results and analyses of a detailed survey undertaken in Summer 1993 to address integrated intrusion detection alarm annunciation and entry control system issues. This survey was undertaken as a first attempt toward beginning to answer questions about integrated systems and commercial capabilities to meet or partially meet US Department of Energy (DOE) site needs

  5. 46 CFR 120.550 - General alarm systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false General alarm systems. 120.550 Section 120.550 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS ELECTRICAL INSTALLATION...

  6. False Alarm Probability Estimation for Compressive Sensing Radar

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Hoogeboom, P.

    2011-01-01

    In this paper false alarm probability (FAP) estimation of a radar using Compressive Sensing (CS) in the frequency domain is investigated. Compressive Sensing is a recently proposed technique which allows reconstruction of sparse signal from sub-Nyquist rate measurements. The estimation of the FAP is

  7. SGLT-2 inhibition and glucagon: Cause for alarm?

    Science.gov (United States)

    Kibbey, Richard G

    2015-07-01

    Recent studies raised the alarm that the inhibition of sodium-coupled glucose transporter type-2 in humans increases endogenous glucose production rates by an unclear mechanism. Surprisingly, a potential explanation may be linked directly to the alpha-cell. Is this a mechanistic spoiler or an added benefit? PMID:26059706

  8. 46 CFR 162.050-35 - Bilge alarm: Approval tests.

    Science.gov (United States)

    2010-10-01

    ... concentration of iron oxide. Any change in the bilge alarm reading during the 5 minutes is recorded. (3) Repeat steps in paragraphs (c)(1) and (2) of this section using iron oxide concentrations of 50 ppm and 100 ppm... performed using test fluids described in § 162.050-20. (3) The oil content of each sample must be...

  9. Nanoparticle bridge DNA biosensor

    Science.gov (United States)

    Huang, Hong-Wen

    A new DNA sensing method is demonstrated in which DNA hybridization events lead to the formation of nanoparticle satellites that bridge two electrodes and are detected electrically. The hybridization events are exclusively carried out only on specific locations, the surfaces of C-ssDNA modified 50 nm GNPs. The uniqueness of this work is that only a small number of T-ccDNA molecules (target DNA and three-base-pair-mismatched DNA in 20nM concentrations. Three single-stranded DNA (ssDNA) system is used in our experiment which includes Capture-ssDNA (C-ssDNA), Target-ssDNA (T-ssDNA) and Probe-ssDNA (P-ssDNA). Both C-ssDNA and P-ssDNA are modified by a thiol group and can hybridize with different portions of T-ssDNA. T-ssDNA requires no modification in three ssDNA system, which is beneficial in many applications. C-ssDNA modified 50nm gold nanoparticle (C-50au) and P-ssDNA modified 30nm gold nanoparticle (P-30au) are prepared through the reaction of thiol-gold chemical bonding between thiolated ssDNA and gold nanoparticle (GNP) (C-ssDNA with 50nm GNP, P-ssDNA with 30nm GNP). We controllably place the C-50au only on the SiO2 band surface (˜ 90nm width) between two gold electrodes (source and drain electrodes) by forming positively- and negatively-charged self-assembled monolayers (SAMs) on SiO2 and gold surface, respectively. DNA modified GNP is negatively charged due to ionization of phosphate group on DNA back bone. C-50au therefore is negatively charged and can only be attracted toward SiO2 area (repelled by negatively charged gold electrode surface). The amine group of positively-charged SAMs on SiO2 surface is then passivated by converting to non-polar methyl functional group after C-50au placement. P-30au is first hybridized with T-ssDNA in the solution phase (T-P- 30au formed) and is introduced into DNA detection device in which C-50au are immobilized on ˜90nm width SiO2 band (between two gold electrodes). The passivation step ensures every TP-30au are attached

  10. A single detector spectrometric portal monitoring concept solving the problems of 'innocent alarms'

    International Nuclear Information System (INIS)

    In order to overcome the problems of 'innocent alarms' due to naturally occurring radioactive material (NORM) in vehicle monitoring and to medical isotopes in pedestrian monitoring, a new technology has been developed in the last few years, based on gamma spectrometry. The US Domestic Nuclear Detection Office (DNDO) has started a new approach to dynamic primary screening of vehicles, namely, advanced spectrometric portals (ASPs) based on multiple NaI scintillation or HPGe detectors. Complex and expensive instruments with up to 14 large volume NaI or HPGe detectors have been built and are presently being tested by DNDO. Up to now, it seems that these ASPs cannot meet the goal of detecting HEU masked by NORM 95% of the time. Even if this could be achieved, the approach is extremely expensive. The proposed new concept is based on a single detector spectrometric portal monitor (SRPM) with one large NaI crystal for dynamic primary screening of pedestrians, luggage, parcels, mail, etc., with immediate identification of innocent alarms. In addition, the SRPM can be used for secondary screening of vehicles in static mode after an alarm is triggered by a conventional plastic scintillator radiation portal monitor. After identification by the SRPM, the radiation source can be quickly localized with a highly sensitive gamma or neutron search detector, faster and easier as compared to a conventional radioisotope identifier device. One SRPM can serve several primary vehicle lanes for secondary inspection. This makes it even more economic. The paper describes test results obtained with a new SRPM, the SPIR IDENT, developed by SynOdys, France. Extensive testing, partly in cooperation with the IAEA, indicates that this instrument can meet the requirements of the IAEA, the International Electrotechnical Commission (IEC) and the American National Standards Institute (ANSI) for dynamic pedestrian monitoring as well as the IEC and ANSI requirements for static vehicle monitoring in

  11. Escherichia coli bacteria detection by using graphene-based biosensor.

    Science.gov (United States)

    Akbari, Elnaz; Buntat, Zolkafle; Afroozeh, Abdolkarim; Zeinalinezhad, Alireza; Nikoukar, Ali

    2015-10-01

    Graphene is an allotrope of carbon with two-dimensional (2D) monolayer honeycombs. A larger detection area and higher sensitivity can be provided by graphene-based nanosenor because of its 2D structure. In addition, owing to its special characteristics, including electrical, optical and physical properties, graphene is known as a more suitable candidate compared to other materials used in the sensor application. A novel model employing a field-effect transistor structure using graphene is proposed and the current-voltage (I-V) characteristics of graphene are employed to model the sensing mechanism. This biosensor can detect Escherichia coli (E. coli) bacteria, providing high levels of sensitivity. It is observed that the graphene device experiences a drastic increase in conductance when exposed to E. coli bacteria at 0-10(5) cfu/ml concentration. The simple, fast response and high sensitivity of this nanoelectronic biosensor make it a suitable device in screening and functional studies of antibacterial drugs and an ideal high-throughput platform which can detect any pathogenic bacteria. Artificial neural network and support vector regression algorithms have also been used to provide other models for the I-V characteristic. A satisfactory agreement has been presented by comparison between the proposed models with the experimental data. PMID:26435280

  12. Angle-resolved diffraction grating biosensor based on porous silicon

    Science.gov (United States)

    Lv, Changwu; Jia, Zhenhong; Liu, Yajun; Mo, Jiaqing; Li, Peng; Lv, Xiaoyi

    2016-03-01

    In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensor was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.

  13. Lipid Microarray Biosensor for Biotoxin Detection.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anup K.; Throckmorton, Daniel J.; Moran-Mirabal, Jose C.; Edel, Joshua B.; Meyer, Grant D.; Craighead, Harold G.

    2006-05-01

    We present the use of micron-sized lipid domains, patterned onto planar substrates and within microfluidic channels, to assay the binding of bacterial toxins via total internal reflection fluorescence microscopy (TIRFM). The lipid domains were patterned using a polymer lift-off technique and consisted of ganglioside-populated DSPC:cholesterol supported lipid bilayers (SLBs). Lipid patterns were formed on the substrates by vesicle fusion followed by polymer lift-off, which revealed micron-sized SLBs containing either ganglioside GT1b or GM1. The ganglioside-populated SLB arrays were then exposed to either Cholera toxin subunit B (CTB) or Tetanus toxin fragment C (TTC). Binding was assayed on planar substrates by TIRFM down to 1 nM concentration for CTB and 100 nM for TTC. Apparent binding constants extracted from three different models applied to the binding curves suggest that binding of a protein to a lipid-based receptor is strongly affected by the lipid composition of the SLB and by the substrate on which the bilayer is formed. Patterning of SLBs inside microfluidic channels also allowed the preparation of lipid domains with different compositions on a single device. Arrays within microfluidic channels were used to achieve segregation and selective binding from a binary mixture of the toxin fragments in one device. The binding and segregation within the microfluidic channels was assayed with epifluorescence as proof of concept. We propose that the method used for patterning the lipid microarrays on planar substrates and within microfluidic channels can be easily adapted to proteins or nucleic acids and can be used for biosensor applications and cell stimulation assays under different flow conditions. KEYWORDS. Microarray, ganglioside, polymer lift-off, cholera toxin, tetanus toxin, TIRFM, binding constant.4

  14. Technical Basis for the Use of Alarming Personal Criticality Detectors to Augment Permanent Nuclear Incident Monitor (NIM) Systems in Areas Not Normally Occupied

    CERN Document Server

    Yates, K R

    2003-01-01

    The technical basis for the use of alarming personal criticality detectors (APCDs) to augment permanent Nuclear Incident Monitor (NIM) Systems in areas not normally occupied is evaluated. All applicable DOE O 420.1A and ANSI/ANS-8.3-1997 criticality alarm system requirements and recommendations are evaluated for applicability to APCDs. Based on this evaluation, design criteria and administrative requirements are presented for APCDs. Siemens EPD/Mk-2 and EPD-N devices are shown to meet the design criteria. A definition of not normally occupied is also presented.

  15. A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell.

    Science.gov (United States)

    Chen, Zhengjun; Niu, Yongyan; Zhao, Shuai; Khan, Aman; Ling, Zhenmin; Chen, Yong; Liu, Pu; Li, Xiangkai

    2016-11-15

    P-nitrophenol is one of the most common contaminants in chemical industrial wastewater, and in situ real-time monitoring of PNP cannot be achieved by conventional analytical techniques. Here, a two-chamber microbial fuel cell with an aerobic anode chamber was tested as a biosensor for in situ real-time monitoring of PNP. Pseudomonas monteilii LZU-3, which was used as the biological recognition element, can form a biofilm on the anode electrode using PNP as a sole substrate. The optimal operation parameters of the biosensor were as follows: external resistance 1000Ω, pH 7.8, temperature 30°C, and maximum PNP concentration 50mgL(-1). Under these conditions, the maximum voltages showed a linear relationship with PNP concentrations ranging from 15±5 to 44±4.5mgL(-1). Furthermore, we developed a novel portable device for in situ real-time monitoring of PNP. When the device was applied to measure PNP in wastewater containing various additional aromatic compounds and metal ions, the performance of the biosensor was not affected and the correlation between the maximum voltages and the PNP concentrations ranging from 9±4mgL(-1) to 36 ± 5mgL(-1) was conserved. The results demonstrated that the MFC biosensor provides a rapid and cost-efficient analytical method for real-time monitoring of toxic and recalcitrant pollutants in environmental samples. PMID:27295573

  16. Development of an acoustic wave based biosensor for vapor phase detection of small molecules

    Science.gov (United States)

    Stubbs, Desmond

    For centuries scientific ingenuity and innovation have been influenced by Mother Nature's perfect design. One of her more elusive designs is that of the sensory olfactory system, an array of highly sensitive receptors responsible for chemical vapor recognition. In the animal kingdom this ability is magnified among canines where ppt (parts per trillion) sensitivity values have been reported. Today, detection dogs are considered an essential part of the US drug and explosives detection schemes. However, growing concerns about their susceptibility to extraneous odors have inspired the development of highly sensitive analytical detection tools or biosensors known as "electronic noses". In general, biosensors are distinguished from chemical sensors in that they use an entity of biological origin (e.g. antibody, cell, enzyme) immobilized onto a surface as the chemically-sensitive film on the device. The colloquial view is that the term "biosensors" refers to devices which detect the presence of entities of biological origin, such as proteins or single-stranded DNA and that this detection must take place in a liquid. Our biosensor utilizes biomolecules, specifically IgG monoclonal antibodies, to achieve molecular recognition of relatively small molecules in the vapor phase.

  17. Modeling amperometric biosensors based on allosteric enzymes

    Directory of Open Access Journals (Sweden)

    Liutauras Ričkus

    2013-09-01

    Full Text Available Computational modeling of a biosensor with allosteric enzyme layer was investigated in this study. The operation of the biosensor is modeled using non-stationary reaction-diffusion equations. The model involves three regions: the allosteric enzyme layer where the allosteric enzyme reactions as well as then mass transport by diffusion take place, the diffusion region where the mass transport by diffusion and non-enzymatic reactions take place and the convective region in which the analyte concentration is maintained constant. The biosensor response on dependency substrate concentration, cooperativity coefficient and the diffusion layer thickness on the same parameters have been studied.

  18. Retrofitting alarm prioritization at Bruce A: strategy development and implementation experience

    International Nuclear Information System (INIS)

    A prioritization strategy for computer-displayed control room alarms has been developed for Bruce A to better assist operations staff in visually identifying key alarms and judging the relative importance of alarms. The strategy consists of assigning each alarm indicative of a problem to be addressed to one of five priority categories. Each alarm is assigned to an alarm category based on an off-line analysis of the consequence and response characteristics applicable to the alarm for three plant operating contexts. The colour of the alarm message is used to convey the priority category of each alarm in computer-based alarm displays. In addition, alarms indicative of non-problematic changes in the state of plant equipment and processes are given a separate colour assignment to visually differentiate them from alarms indicative of problems. This paper outlines the user-based approach employed in the prioritization strategy development, describes the key features of the prioritization strategy adopted, and discusses the initial experience in systematically determining the priority assignments for all 6000 computer-based alarms associated with each generating unit. (author)

  19. Silicon photonic crystal resonators for label free biosensor

    Science.gov (United States)

    Sana, Amrita Kumar; Honzawa, Keita; Amemiya, Yoshiteru; Yokoyama, Shin

    2016-04-01

    We report the fabrication and characterization of a two-dimensional (2D) silicon photonic crystal biosensor consisting of waveguides and cavity-type and defect-type resonators for enhancing the interactions between light and biomaterials. Sensitivity was measured using sucrose solution and the sensor showed the highest sensitivity [1570 nm/RIU (refractive index unit)] ever reported. We also investigated cavity size effects on resonance wavelength shift, and we observed that a large cavity exhibits a greater resonance wavelength shift. The fabricated sensor has shown a high Q of ∼105 in water and a device figure of merit of 1.2 × 105, which represent the improvements of the device performance over other photonic-crystal-based sensors.

  20. Plasmon based biosensor for distinguishing different peptides mutation states

    KAUST Repository

    Das, Gobind

    2013-05-08

    Periodic and reproducible gold nanocuboids with various matrix dimensions and with different inter-particle gaps were fabricated by means of top-down technique. Rhodamine 6G was used as a probe molecule to optimize the design and the fabrication of the cuboid nanostructures. The electric field distribution for the nanocuboids with varying matrix dimensions/inter-particle gap was also investigated. These SERS devices were employed as biosensors through the investigation of both myoglobin and wild/mutated peptides. The results demonstrate the probing and the screening of wild/mutated BRCA1 peptides, thus opening a path for the fabrication of simple and cheap SERS device capable of early detection of several diseases.

  1. Opportunities in nano-structured metal oxides based biosensors

    International Nuclear Information System (INIS)

    Nanomaterials are presently at the critical stage of the next technological revolution in solid-state electronics and are emerging as new structural materials, to serve as systems for controlled drug delivery, biomolecular electronics and are considered to have considerable impact in practically all domains of science. Among the various types of nanomaterials that have been developed, nanostructured metal oxides (NSMOs) have recently aroused much interest as immobilizing matrices for biosensors development. The unique properties of NSMOs offer excellent prospects for interfacing biological recognition events with electronic signal transduction and for designing a new generation of bioelectronics devices that may exhibit novel functions. Among the NSMOs, biocompatible zirconia (ZrO2) and its composite especially with chitosan and carbon nanotubes are technologically important exhibits high bioactivity for biomolecules with rapid rand enhanced electrochemical signal. Efforts are being continuously made to explore the prospects and future challenges of NSMOs for the development of biosensing devices.

  2. Fluorescence-based biosensor for monitoring of environmental pollutants: From concept to field application.

    Science.gov (United States)

    Bidmanova, Sarka; Kotlanova, Marketa; Rataj, Tomas; Damborsky, Jiri; Trtilek, Martin; Prokop, Zbynek

    2016-10-15

    An advanced optical biosensor was developed based on the enzymatic reaction with halogenated aliphatic hydrocarbons that is accompanied by the fluorescence change of pH indicator. The device is applicable for the detection of halogenated contaminants in water samples with pH ranging from 4 to 10 and temperature ranging from 5 to 60°C. Main advantages of the developed biosensor are small size (60×30×190mm(3)) and portability, which together with short measurement time of 1min belong to crucial attributes of analytical technique useful for routine environmental monitoring. The biosensor was successfully applied for the detection of several important halogenated pollutants under laboratory conditions, e.g., 1,2-dichloroethane, 1,2,3-trichloropropane and γ-hexachlorocyclohexane, with the limits of detection of 2.7, 1.4 and 12.1mgL(-1), respectively. The continuous monitoring was demonstrated by repetitive injection of halogenated compound into measurement solution. Consequently, field trials under environmental settings were performed. The presence of 1,2-dichloroethane (10mgL(-1)) was proved unambiguously on one of three potentially contaminated sites in Czech Republic, and the same contaminant was monitored on contaminated locality in Serbia. Equipped by Global Positioning System, the biosensor was used for creation of a precise map of contamination. Concentrations determined by biosensor and by gas chromatograph coupled with mass spectrometer exhibited the correlation coefficient of 0.92, providing a good confidence for the routine use of the biosensor system in both field screening and monitoring. PMID:26725215

  3. Photonic crystal biosensor in spatial fourier domain

    OpenAIRE

    Hallynck, Elewout; Bienstman, Peter

    2011-01-01

    We propose a photonic crystal biosensor, operating at a single wavelength, based on analysis of resonant guided modes in the spatial Fourier domain. Sensitivities of 65 degrees per RIU and more have been simulated.

  4. Recent Advances in Nanotechnology Applied to Biosensors

    Directory of Open Access Journals (Sweden)

    Daxiang Cui

    2009-02-01

    Full Text Available In recent years there has been great progress the application of nanomaterials in biosensors. The importance of these to the fundamental development of biosensors has been recognized. In particular, nanomaterials such as gold nanoparticles, carbon nanotubes, magnetic nanoparticles and quantum dots have been being actively investigated for their applications in biosensors, which have become a new interdisciplinary frontier between biological detection and material science. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches, and challenges, with the aim of stimulating a broader interest in developing nanomaterial-based biosensors and improving their applications in disease diagnosis and food safety examination.

  5. Referral to the accident and emergency department following the use of community alarms

    OpenAIRE

    Youssef, G.; Underhill, T; Tovey, C

    2000-01-01

    Objectives—To assess the degree of appropriate referral to the accident and emergency (A&E) department following the use of a community alarm where a mobile warden works in conjunction with the community alarm control centre.

  6. Integrating monitor alarms with laboratory test results to enhance patient deterioration prediction.

    Science.gov (United States)

    Bai, Yong; Do, Duc H; Harris, Patricia Rae Eileen; Schindler, Daniel; Boyle, Noel G; Drew, Barbara J; Hu, Xiao

    2015-02-01

    Patient monitors in modern hospitals have become ubiquitous but they generate an excessive number of false alarms causing alarm fatigue. Our previous work showed that combinations of frequently co-occurring monitor alarms, called SuperAlarm patterns, were capable of predicting in-hospital code blue events at a lower alarm frequency. In the present study, we extend the conceptual domain of a SuperAlarm to incorporate laboratory test results along with monitor alarms so as to build an integrated data set to mine SuperAlarm patterns. We propose two approaches to integrate monitor alarms with laboratory test results and use a maximal frequent itemsets mining algorithm to find SuperAlarm patterns. Under an acceptable false positive rate FPRmax, optimal parameters including the minimum support threshold and the length of time window for the algorithm to find the combinations of monitor alarms and laboratory test results are determined based on a 10-fold cross-validation set. SuperAlarm candidates are generated under these optimal parameters. The final SuperAlarm patterns are obtained by further removing the candidates with false positive rate>FPRmax. The performance of SuperAlarm patterns are assessed using an independent test data set. First, we calculate the sensitivity with respect to prediction window and the sensitivity with respect to lead time. Second, we calculate the false SuperAlarm ratio (ratio of the hourly number of SuperAlarm triggers for control patients to that of the monitor alarms, or that of regular monitor alarms plus laboratory test results if the SuperAlarm patterns contain laboratory test results) and the work-up to detection ratio, WDR (ratio of the number of patients triggering any SuperAlarm patterns to that of code blue patients triggering any SuperAlarm patterns). The experiment results demonstrate that when varying FPRmax between 0.02 and 0.15, the SuperAlarm patterns composed of monitor alarms along with the last two laboratory test results

  7. Microalgae dual-head biosensors for selective detection of herbicides with fiber-optic luminescent O2 transduction.

    Science.gov (United States)

    Haigh-Flórez, David; de la Hera, Cristina; Costas, Eduardo; Orellana, Guillermo

    2014-04-15

    The microalgal species Dictyosphaerium chlorelloides (D. c.) was immobilized into porous silicone films and their photosynthetic activity was monitored with an integrated robust luminescent O2 sensor. The biosensor specificity towards a particular pesticide has been achieved by manufacturing a fiber-optic dual-head device containing both analyte-sensitive and analyte-resistant D. c. strains. The latter are not genetically modified microalgae, but a product of modified Luria-Delbrück fluctuation analysis followed by ratchet selection cycles. In this way the target herbicide decreases the O2 production of the analyte-sensitive immobilized strain without affecting the analyte-resistant population response; any other pollutant will lower the O2 production of both strains. The effect of the sample flow-rate, exposure time to the herbicide, biomass loading, biosensor film thickness, intensity of the actinic light, illumination cycle, and temperature on the biosensor response has been evaluated using waterborne simazine as test bench. The biosensing device is able to provide in situ measurements of the herbicide concentration every 180 min. The biosensor limit of detection for this herbicide was 12 μg L(-1), with a working range of 50-800 μg L(-1). The biosensor specificity to simazine has been assessed by comparing its response to that of isoproturon. PMID:24316451

  8. Improved Surface Modification Approach for Micromechanical Biosensors

    OpenAIRE

    Gao, Hongyan; Buchapudi, Koutilya R.; Harms-Smyth, Abraham; Schulte, Marvin K; Xu, Xiaohe; Ji, Hai-Feng

    2007-01-01

    We have investigated the sensing performance of protein-based microcantilever biosensors prepared from multiple surface conjugation chemistries. The 11-mercaptoundecanoic acid monolayers were prepared according to both traditional and modified processes. In three protein-based biosensors, the modified process improved microcantilever sensing performance by increasing the bending amplitude, a critical step toward developing a cost-effective microcantilever-based sensor platform for medical dia...

  9. Intelligent Communication Module for Wireless Biosensor Networks

    OpenAIRE

    Naik, R.; Singh, J.; Le, H. P.

    2010-01-01

    This chapter presented a new paradigm of biosensors which have processing capability with an intelligent and adaptive wireless communication module. The adaptive communication module efficiently reconfigures its hardware components according to the changes in operating environment in order to reduce system power consumption and optimally utilise resources. The chapter presented several significant applications of wireless biosensor networks which hold enormous potential to benefit the communi...

  10. Enzyme conductometric biosensor for maltose determination

    OpenAIRE

    Dzyadevych S. V.; Soldatkin O. O.; Saiapina O. Y.; Pyeshkova V. M.

    2009-01-01

    Aim. To develop enzyme conductometric biosensor for maltose determination. Methods. A conductometric transducer consisting of two gold pairs of electrodes was applied. Three-enzyme membrane (glucose oxidase, mutarotase, -glucosidase) immobilized on the surface of the conductometric transducer was used as a bioselective element. Results. A linear range of maltose conductometric biosensor was from 0,002 mM to 1 mM for glucose and maltose detection. The time of maltose analysis in solution was 1...

  11. Amperometric biosensors based on conducting nanotubes

    OpenAIRE

    Kros, Alexander

    2000-01-01

    This thesis describes a multidisciplinary study towards the development of a glucose biosensor that in the future can be used for in vivo implantations. The research focuses on three major topics, viz. the construction of the glucose sensor, the development of a biocompatible coating and a study of the factors influencing the in vivo behaviour of implanted biosensors. The first part of this thesis describes the construction of an amperometric glucose sensor based on the enzyme glucose oxidase...

  12. ZnO-Based Amperometric Enzyme Biosensors

    OpenAIRE

    Helong Jiang; Baoping Wang; Xiaobing Zhang; Zhiwei Zhao; Wei Lei

    2010-01-01

    Nanostructured ZnO with its unique properties could provide a suitable microenvironment for immobilization of enzymes while retaining their biological activity, and thus lead to an expanded use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance. ZnO-based enzyme electrochemical biosensors are summarized in several tables for an easy overview according to the target biosensing analyte (glucose, hydrogen peroxide, phenol and cholesterol)...

  13. Gold coated ZnO nanorod biosensor for glucose detection

    Science.gov (United States)

    Bhattacharya, Anuradha; Jain, Chhavi; Rao, V. Padmanapan; Banerjee, S.

    2012-06-01

    Gold coated ZnO nanorod based biosensor has been fabricated for its glucose detecting abilities and compared with that of ZnO nanorod based biosensor. SEM images of electrochemically grown ZnO nanorods show hexagonally grown ZnO nanorods on an ITO substrate. Electrochemical analysis show that gold coated ZnO based biosensors have higher sensitivity, lower limit of detection and a wider linear range for glucose detection. The results demonstrate that gold coated ZnO nanorod based biosensors are a promising material for biosensor applications over single component ZnO nanorod based biosensor.

  14. Integration of Fractal Biosensor in a Digital Microfluidic Platform

    KAUST Repository

    Mashraei, Yousof

    2016-06-08

    The digital microfluidic (DMF) platform introduces many applications in biomedical assays. If it is to be commercially available to the public, it needs to have the essential features of smart sensing and a compact size. In this work, we report on a fractal electrode biosensor that is used for both droplet actuation and sensing C-reactive protein (CRP) concentration levels to assess cardiac disease risk. Our proposed electrode is the first two-terminal electrode design to be integrated into DMF platforms. A simulation of the electrical field distribution shows reduced peak intensities and uniform distribution of the field. When compared to a V-notch square electrode, the fractal electrode shows a superior performance in both aspects, i.e. field uniformity and intensity. These improvements are translated into a successful and responsive actuation of a water droplet with 100V. Likewise, the effective dielectric strength is improved by a 33% increase in the fractal electrode breakdown voltage. Additionally, the capability of the fractal electrode to work as a capacitive biosensor is evaluated with CRP quantification test. Selected fractal electrodes undergo a surface treatment to immobilize anti-CRP antibodies on their surface. The measurement shows a response to the added CRP in capacitance within three minutes. When the untreated electrodes were used for quantification, there was no significant change in capacitance, and this suggested that immobilization was necessary. The electrodes configuration in the fabricated DMF platform allows the fractal electrodes to be selectively used as biosensors, which means the device could be integrated into point-of-care applications.

  15. Integrated optical biosensor system (IOBS)

    Science.gov (United States)

    Grace, Karen M.; Sweet, Martin R.; Goeller, Roy M.; Morrison, Leland Jean; Grace, Wynne Kevin; Kolar, Jerome D.

    2007-10-30

    An optical biosensor has a first enclosure with a pathogen recognition surface, including a planar optical waveguide and grating located in the first enclosure. An aperture is in the first enclosure for insertion of sample to be investigated to a position in close proximity to the pathogen recognition surface. A laser in the first enclosure includes means for aligning and means for modulating the laser, the laser having its light output directed toward said grating. Detection means are located in the first enclosure and in optical communication with the pathogen recognition surface for detecting pathogens after interrogation by the laser light and outputting the detection. Electronic means is located in the first enclosure and receives the detection for processing the detection and outputting information on the detection, and an electrical power supply is located in the first enclosure for supplying power to the laser, the detection means and the electronic means.

  16. Biosensor technology: technology push versus market pull.

    Science.gov (United States)

    Luong, John H T; Male, Keith B; Glennon, Jeremy D

    2008-01-01

    Biosensor technology is based on a specific biological recognition element in combination with a transducer for signal processing. Since its inception, biosensors have been expected to play a significant analytical role in medicine, agriculture, food safety, homeland security, environmental and industrial monitoring. However, the commercialization of biosensor technology has significantly lagged behind the research output as reflected by a plethora of publications and patenting activities. The rationale behind the slow and limited technology transfer could be attributed to cost considerations and some key technical barriers. Analytical chemistry has changed considerably, driven by automation, miniaturization, and system integration with high throughput for multiple tasks. Such requirements pose a great challenge in biosensor technology which is often designed to detect one single or a few target analytes. Successful biosensors must be versatile to support interchangeable biorecognition elements, and in addition miniaturization must be feasible to allow automation for parallel sensing with ease of operation at a competitive cost. A significant upfront investment in research and development is a prerequisite in the commercialization of biosensors. The progress in such endeavors is incremental with limited success, thus, the market entry for a new venture is very difficult unless a niche product can be developed with a considerable market volume. PMID:18577442

  17. Overview of affinity biosensors in food analysis.

    Science.gov (United States)

    Patel, Pradip D

    2006-01-01

    The 4 major driving forces that are expected to lead to increased use of affinity biosensors that meet crucial industrial test specifications, e.g., fast, reliable, cost-effective, and use of low-skilled personnel, are (1) strict legislative framework, e.g., recent changes proposed to the European food safety and hygiene legislation, EC No. 178/2002; (2) industrial shift from quality control to quality assurance procedures, e.g., Hazard Analysis Critical Control Point, ensuring effective positioning in the global competitive trade; (3) just-in-time production resulting in 'right' product every time; and (4) consumer demand for safe and wholesome products. The affinity biosensors field has expanded significantly over the past decade, with a projected global biosensors market growth from $6.1 billion in 2004 to $8.2 billion in 2009, representing major industrial sectors (e.g., Pharma, Medicare, and Food). This brief review is targeted to affinity biosensors developed for the food industry and includes research and development leading to biosensors for microbiological and chemical analytes of industrial concern, commercial biosensors products on the market, and examples of future prospects in this diagnostic field. PMID:16792079

  18. Chimpanzee alarm call production meets key criteria for intentionality.

    Science.gov (United States)

    Schel, Anne Marijke; Townsend, Simon W; Machanda, Zarin; Zuberbühler, Klaus; Slocombe, Katie E

    2013-01-01

    Determining the intentionality of primate communication is critical to understanding the evolution of human language. Although intentional signalling has been claimed for some great ape gestural signals, comparable evidence is currently lacking for their vocal signals. We presented wild chimpanzees with a python model and found that two of three alarm call types exhibited characteristics previously used to argue for intentionality in gestural communication. These alarm calls were: (i) socially directed and given to the arrival of friends, (ii) associated with visual monitoring of the audience and gaze alternations, and (iii) goal directed, as calling only stopped when recipients were safe from the predator. Our results demonstrate that certain vocalisations of our closest living relatives qualify as intentional signals, in a directly comparable way to many great ape gestures. We conclude that our results undermine a central argument of gestural theories of language evolution and instead support a multimodal origin of human language. PMID:24146908

  19. Chimpanzee alarm call production meets key criteria for intentionality.

    Directory of Open Access Journals (Sweden)

    Anne Marijke Schel

    Full Text Available Determining the intentionality of primate communication is critical to understanding the evolution of human language. Although intentional signalling has been claimed for some great ape gestural signals, comparable evidence is currently lacking for their vocal signals. We presented wild chimpanzees with a python model and found that two of three alarm call types exhibited characteristics previously used to argue for intentionality in gestural communication. These alarm calls were: (i socially directed and given to the arrival of friends, (ii associated with visual monitoring of the audience and gaze alternations, and (iii goal directed, as calling only stopped when recipients were safe from the predator. Our results demonstrate that certain vocalisations of our closest living relatives qualify as intentional signals, in a directly comparable way to many great ape gestures. We conclude that our results undermine a central argument of gestural theories of language evolution and instead support a multimodal origin of human language.

  20. Fault tolerant microcomputer based alarm annunciator for Dhruva reactor

    International Nuclear Information System (INIS)

    The Dhruva alarm annunciator displays the status of 624 alarm points on an array of display windows using the standard ringback sequence. Recognizing the need for a very high availability, the system is implemented as a fault tolerant configuration. The annunciator is partitioned into three identical units; each unit is implemented using two microcomputers wired in a hot standby mode. In the event of one computer malfunctioning, the standby computer takes over control in a bouncefree transfer. The use of microprocessors has helped built-in flexibility in the system. The system also provides built-in capability to resolve the sequence of occurrence of events and conveys this information to another system for display on a CRT. This report describes the system features, fault tolerant organisation used and the hardware and software developed for the annunciation function. (author). 8 figs

  1. A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part II: technical development and proof of concept of the biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, Thomas; Thouand, Gerald [UMR CNRS 6144 GEPEA, CBAC, Nantes University, PRES UNAM, Campus de la Courtaisiere-IUT, La Roche-sur-Yon cedex (France); Chapeau, Cyrille [Biolumine, Biokar Diagnostic, Rue des Quarante Mines ZAC de Ther-Allonne, Beauvais Cedex (France); Bendria, Loubna; Daniel, Philippe [UMR CNRS 6087 LPEC, Universite du Maine, Av Olivier Messiaen, Le Mans cedex 9 (France); Picart, Pascal [UMR CNRS 6613 IAM-LAUM, Ecole Nationale des Ingenieurs du Mans, Universite du Maine, Le Mans Cedex 9 (France)

    2011-05-15

    This research study deals with the on-line detection of heavy metals and toxicity within the context of environmental pollution monitoring. It describes the construction and the proof of concept of a multi-channel bioluminescent bacterial biosensor in immobilized phase: Lumisens3. This new versatile device, designed for the non-stop analysis of water pollution, enables the insertion of any bioluminescent strains (inducible or constitutive), immobilized in a multi-well removable card. The technical design of Lumisens3 has benefited from both a classical and a robust approach and includes four main parts: (1) a dedicated removable card contains 64 wells, 3 mm in depth, arranged in eight grooves within which bacteria are immobilized, (2) this card is incubated on a Pelletier block with a CCD cooled camera on top for bioluminescence monitoring, (3) a fluidic network feeds the card with the sample to be analyzed and finally (4) a dedicated computer interface, BIOLUX 1.0, controls all the elements of the biosensor, allowing it to operate autonomously. The proof of concept of this biosensor was performed using a set of four bioluminescent bacteria (Escherichia coli DH1 pBzntlux, pBarslux, pBcoplux, and E. coli XL1 pBfiluxCDABE) in the on-line detection of CdCl{sub 2} 0.5 {mu}M and As{sub 2}O{sub 3} 5 {mu}M from an influent. When considering metals individually, the ''fingerprints'' from the biosensor were as expected. However, when metals were mixed together, cross reaction and synergistic effects were detected. This biosensor allowed us to demonstrate the simultaneous on-line cross detection of one or several heavy metals as well as the measurement of the overall toxicity of the sample. (orig.)

  2. Development of the effectiveness measure for an advanced alarm system using signal detection theory

    International Nuclear Information System (INIS)

    Since many alarms which are activated during major process deviations or accidents in nuclear power plants can result in negative effects for operators, various types of advanced alarm systems that can select important alarms for the identification of process deviation have been developed to reduce the operator's workload. However, the irrelevant selection of important alarms could distract the operator from correct identification of process deviation. Therefore, to evaluate the effectiveness of the advanced alarm system, a tradeoff between the alarm reduction rate (how many alarms are reduced?) and informativeness (how many important alarms that are conducive to identifying process deviation are provided?) of an advanced alarm system should be considered. In this paper, a new measure is proposed to evaluate the effectiveness of an advanced alarm system with regard to the identification of process deviation. Here, the effectiveness measure is the combination of informativeness measure and reduction rate, and the informativeness measure means the information processing capability performed by the advanced alarm system including wrong rejection and wrong acceptance, and it can be calculated using the signal detection theory (SDT). The effectiveness of the prototype alarm system was evaluated using the loss of coolant accident (LOCA) scenario, and the validity of the effectiveness measure was investigated from two types of the operator response, such as the identification accuracy and the operator's preference for the identification of LOCA

  3. Preventing Charlie's in a chocolate factory: a human factors perspective of alarm handling in confectionary manufacture

    OpenAIRE

    Stanton, Neville A.

    1991-01-01

    The article analyses the results of a survey of a small population of Control Desk Engineers at a UK manufacturing plant. Specific objectives were to elicit the engineers' definition of the term `alarm', to examine their alarm handling activities, and to get information on problems with the alarm system

  4. 46 CFR 153.438 - Cargo pressure or temperature alarms required.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pressure or temperature alarms required. 153.438... Equipment Cargo Temperature Control Systems § 153.438 Cargo pressure or temperature alarms required. (a... vapor pressure described in § 153.371(b); or (2) An alarm that operates when the cargo's...

  5. Seismic alarm system for Ignalina nuclear power plant

    International Nuclear Information System (INIS)

    A seismic alarm system will be installed at the Ignalina Nuclear Power Plant (INPP) in Lithuania. There are two reactors, both RMBK 1500 MW units. Each reactor is a water cooled, graphite moderated, channel type reactor. INPP has the most advanced version of the RMBK reactor design series. The first and second units of INPP went into service at the end of 1983 and in August 1987 respectively. Their design lifetime is approx. 30 years. The various buildings and plant have been designed for two earthquake levels, that is the design earthquake and the maximum possible earthquake with peak ground accelerations ranging from 1.2% to 10% of the acceleration due to gravity. Certain parts of the buildings and some of the equipment of the first and second units do not comply with Western seismic standards. As seismic strengthening of the existing buildings and equipment is not feasible economically, a reactor protection system based on an earthquake early warning system was recommended. This system essentially consists of six seismic stations encircling INPP at a radial distance of approx. 30 km and a seventh station at INPP. Each station includes three seismic substations each 500 m apart. The ground motion at each station is measured continuously by three accelerometers and one seismometer. Data is transmitted via telemetry to the control centre at INPP. Early warning alarms are generated if a seismic threshold is exceeded. This paper discusses the characteristics of INPP, the seismic alarm system presently under construction and the experience with other early warning and seismic alarm systems. (author)

  6. Chimpanzee alarm call production meets key criteria for intentionality

    OpenAIRE

    Anne Marijke Schel; Simon W Townsend; Zarin Machanda; Klaus Zuberbühler; Slocombe, Katie E.

    2013-01-01

    BBSRC-funded, but difficult to identify the specific grant. Determining the intentionality of primate communication is critical to understanding the evolution of human language. Although intentional signalling has been claimed for some great ape gestural signals, comparable evidence is currently lacking for their vocal signals. We presented wild chimpanzees with a python model and found that two of three alarm call types exhibited characteristics previously used to argue for intentionality...

  7. The double slit experiment and the time reversed fire alarm

    OpenAIRE

    Halabi, Tarek

    2009-01-01

    When both slits of the double slit experiment are open, closing one paradoxically increases the detection rate at some points on the detection screen. Feynman famously warned that temptation to "understand" such a puzzling feature only draws us into blind alleys. Nevertheless, we gain insight into this feature by drawing an analogy between the double slit experiment and a time reversed fire alarm. Much as closing the slit increases probability of a future detection, ruling out fire drill scen...

  8. Design of Textile Moisture Sensor for Enuresis Alarm System

    OpenAIRE

    Kašurina, I; Vališevskis, A; Briedis, U; Viļumsone, A

    2012-01-01

    To improve the comfort properties of nocturnal enuresis alarm system, a modular humidity sensor should be replaced with a textile sensor. During research, two-electrode textile moisture sensor has been developed to study its electrical properties. To define the optimal type of a sensor, several sensor samples have been made using different configurations of sensor electrodes, yarn type and distance between parallel seams. Samples of sensor have been tested in terms of sig...

  9. Learning from adverse incidents involving medical devices.

    Science.gov (United States)

    Amoore, John; Ingram, Paula

    While an adverse event involving a medical device is often ascribed to either user error or device failure, the causes are typically multifactorial. A number of incidents involving medical devices are explored using this approach to investigate the various causes of the incident and the protective barriers that minimised or prevented adverse consequences. User factors, including mistakes, omissions and lack of training, conspired with background factors--device controls and device design, storage conditions, hidden device damage and physical layout of equipment when in use--to cause the adverse events. Protective barriers that prevented or minimised the consequences included staff vigilance, operating procedures and alarms. PMID:12715578

  10. Nurses' Perceptions and Practices Toward Clinical Alarms in a Transplant Cardiac Intensive Care Unit: Exploring Key Issues Leading to Alarm Fatigue

    OpenAIRE

    Sowan, Azizeh Khaled; Tarriela, Albert Fajardo; Gomez, Tiffany Michelle; Reed, Charles Calhoun; Rapp, Kami Marie

    2015-01-01

    Background Intensive care units (ICUs) are complex work environments where false alarms occur more frequently than on non-critical care units. The Joint Commission National Patient Safety Goal .06.01.01 targeted improving the safety of clinical alarm systems and required health care facilities to establish alarm systems safety as a hospital priority by July 2014. An important initial step toward this requirement is identifying ICU nurses’ perceptions and common clinical practices toward clini...

  11. Biosensor

    DEFF Research Database (Denmark)

    2002-01-01

    The invention relates to a biochemical assay for wide class of hydrophobic Coenzyme A esters wherein the analyte is caused to react with a specifically binding, modified protein, and thereby causing a detectable signal. A one step assay for hydrophobic carboxylic acid esters in whole blood, serum...

  12. Alarm handling for health monitoring: operator strategies used in an electrical control room of a rail network

    OpenAIRE

    Dadashi, Nastaran; Wilson, John R; Golightly, David; Sharples, Sarah

    2016-01-01

    Alarm management is a key component of the successful operation of a prognostic or health-monitoring technology. Although alarms can alert the operator to critical information, false alarms and alarm flooding can cause major difficulties for successfully diagnosing and acting upon infrastructure faults. Human factors approaches seek to design more-effective alarm systems through a deep understanding of the contextual factors that influence alarm response, including strategies and heuristics u...

  13. Disposable L-lactate biosensor based on a screen-printed carbon electrode enhanced by graphene

    International Nuclear Information System (INIS)

    In this work, an amperometric L-lactate biosensor based on a graphene-modified screen-printed carbon electrode (SPCE) was constructed. First, the electrocatalytic performance of the SPCE modified with graphene by a one-step electrodeposition process (OerGO/SPCE) was investigated. The cyclic voltammogram of OerGO/SPCE, which showed a well-defined redox peak, had a smaller peak potential separation than that of SPCE, revealing the improvement in electron transfer speed brought about by modifying with graphene. Next, lactate oxidase and potassium ferricyanide were dropped on the OerGO/SPCE to construct a graphene-modified L-lactate biosensor (LOD/K3[Fe(CN)6]/OerGO/SPCE). The proposed biosensor, with a detection limit of 60 μM, had a high sensitivity (42.42 μA mM−1 cm−2) when working at a low working potential (0.15 V). The linear range was 0.5 mM–15 mM, covering the detecting range of L-lactate in clinical applications. The L-lactate biosensor had a short response time (10 s) and required only 10 μl of the sample. This L-lactate sensor modified with electrodeposited graphene had a larger sensitivity than that based on the bare SPCE. Thus, our low-cost and disposable L-lactate biosensor enhanced by graphene can perform as an attractive electrochemical device that can be manufactured for point-of-care testing (POCT) devices and be employed in POCT applications. (paper)

  14. Disposable L-lactate biosensor based on a screen-printed carbon electrode enhanced by graphene

    Science.gov (United States)

    Tu, Dandan; He, Yu; Rong, Yuanzhen; Wang, You; Li, Guang

    2016-04-01

    In this work, an amperometric L-lactate biosensor based on a graphene-modified screen-printed carbon electrode (SPCE) was constructed. First, the electrocatalytic performance of the SPCE modified with graphene by a one-step electrodeposition process (OerGO/SPCE) was investigated. The cyclic voltammogram of OerGO/SPCE, which showed a well-defined redox peak, had a smaller peak potential separation than that of SPCE, revealing the improvement in electron transfer speed brought about by modifying with graphene. Next, lactate oxidase and potassium ferricyanide were dropped on the OerGO/SPCE to construct a graphene-modified L-lactate biosensor (LOD/K3[Fe(CN)6]/OerGO/SPCE). The proposed biosensor, with a detection limit of 60 μM, had a high sensitivity (42.42 μA mM-1 cm-2) when working at a low working potential (0.15 V). The linear range was 0.5 mM-15 mM, covering the detecting range of L-lactate in clinical applications. The L-lactate biosensor had a short response time (10 s) and required only 10 μl of the sample. This L-lactate sensor modified with electrodeposited graphene had a larger sensitivity than that based on the bare SPCE. Thus, our low-cost and disposable L-lactate biosensor enhanced by graphene can perform as an attractive electrochemical device that can be manufactured for point-of-care testing (POCT) devices and be employed in POCT applications.

  15. A new diamond biosensor with integrated graphitic microchannels for detecting quantal exocytic events from chromaffin cells

    CERN Document Server

    Picollo, Federico; Vittone, Ettore; Pasquarelli, Alberto; Carbone, Emilio; Olivero, Paolo; Carabelli, Valentina

    2013-01-01

    The quantal release of catecholamines from neuroendocrine cells is a key mechanism which has been investigated with a broad range of materials and devices, among which carbon-based materials such as carbon fibers, diamond-like carbon, carbon nanotubes and nanocrystalline diamond. In the present work we demonstrate that a MeV-ion-microbeam lithographic technique can be successfully employed for the fabrication of an all-carbon miniaturized cellular bio-sensor based on graphitic micro-channels embedded in a single-crystal diamond matrix. The device was functionally characterized for the in vitro recording of quantal exocytic events from single chromaffin cells, with high sensitivity and signal-to-noise ratio, opening promising perspectives for the realization of monolithic all-carbon cellular biosensors.

  16. Design of Microcantilever-Based Biosensor with Digital Feedback Control Circuit

    Directory of Open Access Journals (Sweden)

    Jayu P. Kalambe

    2012-01-01

    Full Text Available This paper present the design of cantilever-based biosensors with new readout, which hold promises as fast and cheap “point of care” device as well as interesting research tools. The fabrication process and related issues of the cantilever based bio-sensor are discussed. Coventorware simulation is carried out to analyze the device behavior. A fully integrated control circuit has been designed to solve manufacturing challenge which will take care of positioning of the cantilever instead of creating nanometer gap between the electrodes. The control circuit will solve the manufacturing challenge faced by the readout methods where it is essential to maintain precise gap between the electrodes. The circuit can take care of variation obtained due to fabrication process and maintain the precise gap between the electrodes by electrostatic actuation. The control circuit consist of analog and digital modules. The reliability issues of the sensor are also discussed.

  17. Efficiency of Fire Protection Devices in Buildings: Evidence from Response data

    OpenAIRE

    Jaldell, Henrik

    2012-01-01

    This study investigates the effectiveness of fire protection devices, such as smoke detectors, portable fire extinguishers, automatic fire alarms, sprinklers etc., in different types of buildings in Sweden. It contributes two aspects not taken into account in other studies of the effect of fire protection devices. First, response time is taken into account and, second, multiple fire protection devices are considered together. The results show that, for most types of buildings, automatic alarm...

  18. Masters Thesis- Criticality Alarm System Design Guide with Accompanying Alarm System Development for the Radioisotope Production Laboratory in Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Greenfield, Bryce A. [Univ. of New Mexico, Albuquerque, NM (United States)

    2009-12-01

    A detailed instructional manual was created to guide criticality safety engineers through the process of designing a criticality alarm system (CAS) for Department of Energy (DOE) hazard class 1 and 2 facilities. Regulatory and technical requirements were both addressed. A list of design tasks and technical subtasks are thoroughly analyzed to provide concise direction for how to complete the analysis. An example of the application of the design methodology, the Criticality Alarm System developed for the Radioisotope Production Laboratory (RPL) of Richland, Washington is also included. The analysis for RPL utilizes the Monte Carlo code MCNP5 for establishing detector coverage in the facility. Significant improvements to the existing CAS were made that increase the reliability, transparency, and coverage of the system.

  19. Polymer-on-glass waveguide structure for efficient fluorescence-based optical biosensors

    Science.gov (United States)

    Bernini, Romeo; Cennamo, Nunzio; Minardo, Aldo; Zeni, Luigi

    2005-03-01

    A novel waveguide geometry for an integrated optics bio-sensor suitable for fluorescence detection is presented. In particular, we propose a polymeric waveguide realized on a glass substrate. This new geometry is aimed to an efficient evanescent-wave excitation of the fluorophores and subsequent collection of the fluorescence emission with no need of optical filters. The absence of any optical filters simplifies the device operation and permits to avoid the losses resulting from the use of the filter itself.

  20. Self-Assembled Films of Dendrimers and Metallophthalocyanines as FET-Based Glucose Biosensors

    OpenAIRE

    Alessandra Figueiredo; Alvaro A.A. de Queiroz; Guimarães, Francisco E.G.; Valtencir Zucolotto; Vieira, Nirton C. S.

    2011-01-01

    Separative extended gate field effect transistor (SEGFET) type devices have been used as an ion sensor or biosensor as an alternative to traditional ion sensitive field effect transistors (ISFETs) due to their robustness, ease of fabrication, low cost and possibility of FET isolation from the chemical environment. The layer-by-layer technique allows the combination of different materials with suitable properties for enzyme immobilization on simple platforms such as the extended gate of SEGFET...

  1. Nanotechnology-Based Surface Plasmon Resonance Affinity Biosensors for In Vitro Diagnostics.

    Science.gov (United States)

    Antiochia, Riccarda; Bollella, Paolo; Favero, Gabriele; Mazzei, Franco

    2016-01-01

    In the last decades, in vitro diagnostic devices (IVDDs) became a very important tool in medicine for an early and correct diagnosis, a proper screening of targeted population, and also assessing the efficiency of a specific therapy. In this review, the most recent developments regarding different configurations of surface plasmon resonance affinity biosensors modified by using several nanostructured materials for in vitro diagnostics are critically discussed. Both assembly and performances of the IVDDs tested in biological samples are reported and compared. PMID:27594884

  2. Novel fully-integrated biosensor for endotoxin detection via polymyxin B immobilization onto gold electrodes

    OpenAIRE

    A. Zuzuarregui; S. Arana; E. Pérez-Lorenzo; Sánchez-Gómez, S.; Martínez de Tejada, G.; Mujika, M.

    2013-01-01

    In this paper an electrochemical endotoxin biosensor consisting of an immobilized lipopolysaccharide (LPS) ligand, polymyxin B (PmB), is presented. Several parameters involved both in the device fabrication and in the detection process were analyzed to optimize the ligand immobilization and the interaction between PmB and LPS, aiming at increasing the sensitivity of the sensor. Different electrochemical pre-treatment procedures as well as the functionalization methods were s...

  3. A simple enzyme based biosensor on flexible plastic substrate

    Science.gov (United States)

    Kanakamedala, Senaka K.; Alshakhouri, Haidar T.; Agarwal, Mangilal; Fang, Ji; DeCoster, Mark A.

    2010-08-01

    An enzyme based biosensor was fabricated by employing a simple, inexpensive and rapid xurography fabrication process. The electrodes and channel were made from the conducting polymer poly(3,4-ethyelenedioxythiphene) poly(styrene sulfonate) (PEDOT:PSS). PEDOT:PSS was selectively deposited using a polyimide tape mask. The tape mask was peeled off from the substrate after annealing the polymer in vacuum. Polymer wells of defined dimensions were made and were attached to the device to accommodate the solutions. This sensor utilizes the change in current as a parameter to measure different analyte concentrations. Initial experiments were done by using the sensor for glucose detection. The sensor is able to detect the glucose concentrations approximately from 1 μM to 10 mM range covering glucose in human saliva (8-210 μM). The glucose oxidase activity was independently measured using colorimetric method and the results indicate that the sensor retains the enzyme activity and can be used as a biosensor to detect various analytes. The analyte of interest can be measured by preloading the corresponding enzyme into the wells.

  4. Optical biosensor based on silicon nanowire ridge waveguide

    Science.gov (United States)

    Gamal, Rania; Ismail, Yehia; Swillam, Mohamed A.

    2015-02-01

    Optical biosensors present themselves as an attractive solution for integration with the ever-trending lab-on-a-chip devices. This is due to their small size, CMOS compatibility, and invariance to electromagnetic interference. Despite their many benefits, typical optical biosensors rely on evanescent field detection, where only a small portion of the light interacts with the analyte. We propose to use a silicon nanowire ridge waveguide (SNRW) for optical biosensing. This structure is comprised of an array of silicon nanowires, with the envelope of a ridge, on an insulator substrate. The SNRW maximizes the overlap between the analyte and the incident light wave by introducing voids to the otherwise bulk structure, and strengthens the contribution of the material under test to the overall modal effective index will greatly augment the sensitivity. Additionally, the SNRW provides a fabrication convenience as it covers the entire substrate, ensuring that the etching process would not damage the substrate. FDTD simulations were conducted and showed that the percentage change in the effective index due to a 1% change in the surrounding environment was more than 170 times the amount of change perceived in an evanescent detection based bulk silicon ridge waveguide.

  5. An implantable multifunctional needle type biosensor with integrated RF capability.

    Science.gov (United States)

    Chiu, Nan-Fu; Wang, Jmin-Min; Yang, Lung-Jieh; Liao, Cheng-Wei; Chen, Chun-Hao; Chen, Hsiao-Chin; Lu, Shey-Shi; Lin, Chii-Wann

    2005-01-01

    We report the development of an implantable multifunctional (glucose and cholesterol) needle type biosensor with integrated RF wireless circuitry for continuous in vivo monitoring of metabolites during short term stays in emergency room or intensive care unit. Silicon-based MEMS technologies are used for the fabrication of micro needle sensors. The whole device is covered by a biocompatible Parylene layer with opening structure at the active areas of electrodes. Electropolymerization of active biomolecules and conducting polymer provides in situ nanoscale physical entrapments of various oxidoreductases (Glucose oxidase and cholesterol oxidase) and functions as a viable matrix for the construction of micro amperometric biosensors. Hybrid CMOS fabrication processes are used to accomplish the 433 MHz ASK RF transmitter and receiver (0.18μm CMOS 1P6M process) and the data converter (0.35μm CMOS 2P4M process). We will present and discuss the detail design and the integrated system performance in this paper. PMID:17282599

  6. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors

    Science.gov (United States)

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T.; Evoy, Stephane

    2016-01-01

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors. PMID:26985910

  7. Disposable biosensor for detection of iron (III) in wines.

    Science.gov (United States)

    Cámara-Martos, Fernando; da Costa, João; Justino, Celine I L; Cardoso, Susana; Duarte, Armando C; Rocha-Santos, Teresa

    2016-07-01

    This paper reports the tuning of a fast, disposable, and label-free biosensor for quantification of iron (III) in food liquid samples such as wine. The biosensor is based on a field effect transistor(FET) where a net work of single-walled carbonnanotubes (SWCNTs) acts as the conductor channel, constituting carbonnanotubes field effect transistors (CNTFETs). An antibody such as transferrin with two specific high-affinity iron (III) binding sites, directly adsorbed to SWCNTs, was used as immunoreaction. Several individual CNTFETs were tested showing a linear range between 0.05 and 2ngmL(-1) and a limit of quantification below 0.05ngmL(-1), much lower than previously reported analytical techniques. The mean coefficient of variation was 0.13% showing a low variability of the analytical response. On the other hand, it was not observed interference effect of zinc (II) ion at least until 1:4 iron-zinc ratio. Finally, recovery percentages of spiked wine samples were around 100%, showing the high accuracy of method. The main advantages of the devices developed are their speed, convenience (it is an economical method), and the avoidance excessive handling samples since they do not require further pre-treatment of samples. PMID:27154651

  8. A new miniaturized multiarray biosensor system for fluorescence detection

    International Nuclear Information System (INIS)

    A miniaturized biosensor-based optical instrument has been designed and fabricated for multiarray fluorescence measurements of several biomediators in series, with applications in environmental monitoring and agrofood analysis. It is a multicell system featuring two arrays of five static cells (1 x 1 x 2 cm3) which are sealed to avoid contamination. Every cell is made up by two modular sections: the bottom compartment with optical LED light excitations and a photodiode detector for fluorescence emission capture, and the top biocompatible compartment where the biosample is deposited. The system (0.250 kg without batteries and case, 100 x 100 x 150 mm3 internal case dimensions) is equipped with electronic control boards, a flash memory card for automatic data storage, and internal batteries, thus being portable and versatile. The instrument allows one to perform simultaneous and multiparametric analyses and offers a large applicability in biosensor technology. The first prototype has been implemented with genetically modified oxygenic photosynthetic algae that were employed in the instrument experimental testing by monitoring pesticide pollution in water. Pesticides modify the photosystem II (PSII) activity in terms of fluorescence quenching. The PSII complex features a natural nanostructure and can be considered a sophisticated molecular device. Results from measurements employing several PSII mutants and six different pesticides at increasing concentrations and incubation times are presented and discussed

  9. Advanced Monitoring Is Associated with Fewer Alarm Events During Planned Moderate Procedure-Related Sedation: A 2-Part Pilot Trial

    Science.gov (United States)

    Lenart, John; Malkin, Mathew; Meineke, Minhthy N.; Qoshlli, Silvana; Neumann, Monica; Jacobson, J. Paul; Kruger, Alison; Ching, Jeffrey; Hassanian, Mohammad; Um, Michael

    2016-01-01

    BACKGROUND: Diagnostic and interventional procedures are often facilitated by moderate procedure-related sedation. Many studies support the overall safety of this sedation; however, adverse cardiovascular and respiratory events are reported in up to 70% of these procedures, more frequently in very young, very old, or sicker patients. Monitoring with pulse oximetry may underreport hypoventilation during sedation, particularly if supplemental oxygen is provided. Capnometry may result in false alarms during sedation when patients mouth breathe or displace sampling devices. Advanced monitor use during sedation may allow event detection before complications develop. This 2-part pilot study used advanced monitors during planned moderate sedation to (1) determine incidences of desaturation, low respiratory rate, and deeper than intended sedation alarm events; and (2) determine whether advanced monitor use is associated with fewer alarm events. METHODS: Adult patients undergoing scheduled gastroenterology or interventional radiology procedures with planned moderate sedation given by dedicated sedation nurses under the direction of procedural physicians (procedural sedation team) were monitored per standard protocols (electrocardiography blood pressure, pulse oximetry, and capnometry) and advanced monitors (acoustic respiratory monitoring and processed electroencephalograpy). Data were collected to computers for analysis. Advanced monitor parameters were not visible to teams in part 1 (standard) but were visible to teams in part 2 (advanced). Alarm events were defined as desaturation—Spo2 ≤92%; respiratory depression, acoustic respiratory rate ≤8 breaths per minute, and deeper than intended sedation, indicated by processed electroencephalograpy. The number of alarm events was compared. RESULTS: Of 100 patients enrolled, 10 were excluded for data collection computer malfunction or consent withdrawal. Data were analyzed from 90 patients (44 standard and 46 advanced

  10. SIRE-technology-based biosensors: will they do the job?

    Science.gov (United States)

    Kriz, Dario

    1997-06-01

    A new biosensor technology (SIRE--sensors based on injectable recognition elements) is described. Its application in laboratory equipment, medical survey equipment and process monitoring is reviewed. Furthermore, the promising practical and commercial relevance of SIRE- Biosensors is discussed.

  11. Reducing SCADA System Nuisance Alarms in the Water Industry in Northern Ireland

    OpenAIRE

    O'Donoghue, Nigel; Phillips, Debra H.; Nicell, Ciaran

    2015-01-01

    The advancement of telemetry control for the water industry has increased the difficulty of 14 managing large volumes of nuisance alarms (i.e. alarms that do not require a response). The aim 15 of this study was to identify and reduce the number of nuisance alarms that occur for Northern 16 Ireland (NI) Water by carrying-out alarm duration analysis to determine the appropriate length of 17 persistence (an advanced alarm management tool) that could be applied. All data was extracted 18 from Te...

  12. Microfluidic devices with integrated biosensors for biomedical applications

    OpenAIRE

    Parra Cabrera, César Alejandro

    2014-01-01

    In recent years, the LOC community has focused most of its research in the biomedical and biotechnology fields, due to the need of portable, low power consumption and low cost theranostics microdevices. Some developing countries do not have suitable medical diagnostics technologies and the supply and storage of the reagents is in many cases limited as well as the access to energy. Furthermore, developed countries are experimenting population aging needing novel low cost efficient disease-scre...

  13. Roughness effect on the efficiency of dimer antenna based biosensor

    OpenAIRE

    Dominique Barchiesi; Sameh Kessentini

    2012-01-01

    The fabrication process of nanodevices is continually improved. However, most of the nanodevices, such as biosensors present rough surfaces with mean roughness of some nanometers even if the deposition rate of material is more controlled. The effect of roughness on performance of biosensors was fully addressed for plane biosensors and gratings, but rarely addressed for biosensors based on Local Plasmon Resonance. The purpose of this paper is to evaluate numerically the influence of nanometric...

  14. Carbon Nanotubes Based Glucose Needle-type Biosensor

    OpenAIRE

    Hong Li; Yongquan Li; Minghao Sim; Wenjun Guan; Jinyan Jia

    2008-01-01

    A novel needle-type biosensor based on carbon nanotubes is reported. The biosensor was prepared by packing a mixture of multi-wall carbon nanotubes (MWCNTs), graphite powder and glucose oxidase (Gox) freeze-dried powder into a glass capillary of 0.5 mm inner diameter. The resulting amperometric biosensor was characterized electrochemically using amperometry in the presence of hydrogen peroxide and in the presence of glucose. The glucose biosensor sensitivity was influenced by the glucose oxid...

  15. Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • We report graphene-ink biosensor arrays on a microfluidic paper for metabolites. • The device is able to detect multiple metabolites sensitively and rapidly. • The device fabrication process is simple and inexpensive. - Abstract: The development of a miniaturized and low-cost platform for the highly sensitive, selective and rapid detection of multiplexed metabolites is of great interest for healthcare, pharmaceuticals, food science, and environmental monitoring. Graphene is a delicate single-layer, two-dimensional network of carbon atoms with extraordinary electrical sensing capability. Microfluidic paper with printing technique is a low cost matrix. Here, we demonstrated the development of graphene-ink based biosensor arrays on a microfluidic paper for the multiplexed detection of different metabolites, such as glucose, lactate, xanthine and cholesterol. Our results show that the graphene biosensor arrays can detect multiple metabolites on a microfluidic paper sensitively, rapidly and simultaneously. The device exhibits a fast measuring time of less than 2 min, a low detection limit of 0.3 μM, and a dynamic detection range of 0.3–15 μM. The process is simple and inexpensive to operate and requires a low consumption of sample volume. We anticipate that these results could open exciting opportunities for a variety of applications

  16. A novel silicon based mags-biosensor for nucleic acid detection by magnetoelectronic transduction

    Directory of Open Access Journals (Sweden)

    Maria Eloisa Castagna

    2015-12-01

    Full Text Available We developed a novel silicon biosensor based on magnetoelectronic transduction (MAGS for nucleic acid detection. The mags-biosensor is a planar device composed by a primary micro-coil, and two secondary coils which produce a differential voltage due to the induced magnetic field. The presence of magnetic material over one of the secondary coils causes variations of induced magnetic field density that in turn results in a total output voltage different from zero. The voltage variation, therefore, is a measure of the amount of magnetic material present in the active zone. A device sensitivity of 5.1 mV/ng and a resolution of 0.008 ng have been observed. The biosensor also presents a micro-heater and a thermal sensor respectively to set and read-out the chip temperature: this aspect enables the device to be used for several biochemical applications that need temperature control and activation such for example nucleic acid amplification (real-time PCR, antigen- antibody detection (immune-assay and SNP detection.

  17. Improved synthesis and growth of graphene oxide for field effect transistor biosensors.

    Science.gov (United States)

    Huang, Jingfeng; Chen, Hu; Jing, Lin; Fam, Derrick; Tok, Alfred Iing Yoong

    2016-08-01

    Reduced graphene oxide (RGO) has many advantages over graphene such as low-cost, aqueous processable and industrial-scalable. However, two main limitations that prevent the use of RGO in electronics are the high electrical resistance and large electrical resistance deviation between fabricated devices. This limits RGO's use in biosensors, capacitors and other electronic devices. Herein, we present (1) a modified Hummer's method to obtain large RGO flakes via in-situ size fractionation and (2) the novel growth of RGO which can bridge the gaps in-between existing RGO flakes. Together, these two processes reduced the electrical resistance drastically from 1.99E + 06 to 4.68E + 03 Ω/square and the standard deviation decreased from 80.5 % to 16.5 %. The RGO was then fabricated into a field-effect transistor biosensor. A 1 pmol to 100 nmol change in Cytochrome C protein corresponded to a 3 % change in electrical resistance. The reported improved RGO synthesis method and subsequent growth enable large-scale application of RGO in practical electronic devices such as biosensors. PMID:27379845

  18. Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Labroo, Pratima; Cui, Yue, E-mail: yue.cui@usu.edu

    2014-02-01

    Graphical abstract: - Highlights: • We report graphene-ink biosensor arrays on a microfluidic paper for metabolites. • The device is able to detect multiple metabolites sensitively and rapidly. • The device fabrication process is simple and inexpensive. - Abstract: The development of a miniaturized and low-cost platform for the highly sensitive, selective and rapid detection of multiplexed metabolites is of great interest for healthcare, pharmaceuticals, food science, and environmental monitoring. Graphene is a delicate single-layer, two-dimensional network of carbon atoms with extraordinary electrical sensing capability. Microfluidic paper with printing technique is a low cost matrix. Here, we demonstrated the development of graphene-ink based biosensor arrays on a microfluidic paper for the multiplexed detection of different metabolites, such as glucose, lactate, xanthine and cholesterol. Our results show that the graphene biosensor arrays can detect multiple metabolites on a microfluidic paper sensitively, rapidly and simultaneously. The device exhibits a fast measuring time of less than 2 min, a low detection limit of 0.3 μM, and a dynamic detection range of 0.3–15 μM. The process is simple and inexpensive to operate and requires a low consumption of sample volume. We anticipate that these results could open exciting opportunities for a variety of applications.

  19. A High-confidence Cyber-Physical Alarm System: Design and Implementation

    CERN Document Server

    Ma, Longhua; Xia, Feng; Xu, Ming; Yao, Jun; Shao, Meng

    2010-01-01

    Most traditional alarm systems cannot address security threats in a satisfactory manner. To alleviate this problem, we developed a high-confidence cyber-physical alarm system (CPAS), a new kind of alarm systems. This system establishes the connection of the Internet (i.e. TCP/IP) through GPRS/CDMA/3G. It achieves mutual communication control among terminal equipments, human machine interfaces and users by using the existing mobile communication network. The CPAS will enable the transformation in alarm mode from traditional one-way alarm to two-way alarm. The system has been successfully applied in practice. The results show that the CPAS could avoid false alarms and satisfy residents' security needs.

  20. Human factors engineering guidance for the review of advanced alarm systems

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J.M.; Brown, W.S.; Higgins, J.C.; Stubler, W.F. [Brookhaven National Lab., Upton, NY (United States)

    1994-09-01

    This report provides guidance to support the review of the human factors aspects of advanced alarm system designs in nuclear power plants. The report is organized into three major sections. The first section describes the methodology and criteria that were used to develop the design review guidelines. Also included is a description of the scope, organization, and format of the guidelines. The second section provides a systematic review procedure in which important characteristics of the alarm system are identified, described, and evaluated. The third section provides the detailed review guidelines. The review guidelines are organized according to important characteristics of the alarm system including: alarm definition; alarm processing and reduction; alarm prioritization and availability; display; control; automated; dynamic, and modifiable characteristics; reliability, test, maintenance, and failure indication; alarm response procedures; and control-display integration and layout.

  1. Human factors engineering guidance for the review of advanced alarm systems

    International Nuclear Information System (INIS)

    This report provides guidance to support the review of the human factors aspects of advanced alarm system designs in nuclear power plants. The report is organized into three major sections. The first section describes the methodology and criteria that were used to develop the design review guidelines. Also included is a description of the scope, organization, and format of the guidelines. The second section provides a systematic review procedure in which important characteristics of the alarm system are identified, described, and evaluated. The third section provides the detailed review guidelines. The review guidelines are organized according to important characteristics of the alarm system including: alarm definition; alarm processing and reduction; alarm prioritization and availability; display; control; automated; dynamic, and modifiable characteristics; reliability, test, maintenance, and failure indication; alarm response procedures; and control-display integration and layout

  2. A New Application of Carbon Nanotubes Constructing Biosensor

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Carbon nanotubes used for constructing biosensor was described for the first time. Single-wall carbon nanotubes (SWNTs) functionalized with carboxylic acid groups were used to immobilize glucose oxidase forming a glucose biosensor. The biosensor response can be determined by amperometric method at a low applied potential (0.40 V).

  3. FRET Biosensors for Cancer Detection and Evaluation of Drug Efficacy

    OpenAIRE

    Lu, Shaoying; Wang, Yingxiao

    2010-01-01

    A sensitive and specific FRET biosensor was developed by Mizutani et al. and applied to detect the activity of BCR-ABL kinase in live cells. This biosensor allowed the detection of cancerous and drug-resistant cells, and the evaluation of kinase inhibitor efficacy. Future biosensor development and imaging can increasingly contribute to cancer diagnosis and therapeutics.

  4. EDUCATIONAL USE OF CLOUD COMPUTING AND AT-MEGA MICROCONTROLLER - A CASE STUDY OF AN ALARM SYSTEM

    Directory of Open Access Journals (Sweden)

    Tomasz Cieplak

    2016-06-01

    Full Text Available The article shows a case study of Cloud Computing model combined with AT-Mega microcontrollers for educational purposes. The presented system takes advantage of many aspects of Internet of Things model, thus conjoining Cloud Management system with measurement-execution module based on Arduino platform. One benefit of this solution is a cost-effective way of showcasing machine and device integration with distinct cloud services. This article is based on practical experience with students' projects and an home alarm system with use of a Cloud Computing services will be described.

  5. An experimental investigation of the effects of alarm processing and display on operator performance

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J.; Brown, W. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology; Hallbert, B.; Skraaning, G. [Halden Reactor Project (Norway); Wachtel, J.; Persensky, J. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

    1998-03-01

    This paper describes a research program sponsored by the US Nuclear Regulatory Commission to address the human factors engineering (HFE) aspects of nuclear power plant alarm systems. The overall objective of the program is to develop HFE review guidance for advanced alarm systems. As part of this program, guidance has been developed based on a broad base of technical and research literature. In the course of guidance development, aspects of alarm system design for which the technical basis was insufficient to support complete guidance development were identified. The primary purpose of the research reported in this paper was to evaluate the effects of three of these alarm system design characteristics on operator performance in order to contribute to the understanding of potential safety issues and to provide data to support the development of design review guidance in these areas. Three alarm system design characteristics studied were (1) alarm processing (degree of alarm reduction), (2) alarm availability (dynamic prioritization and suppression), and (3) alarm display (a dedicated tile format, a mixed tile and message list format, and a format in which alarm information is integrated into the process displays). A secondary purpose was to provide confirmatory evidence of selected alarm system guidance developed in an earlier phase of the project. The alarm characteristics were combined into eight separate experimental conditions. Six, two-person crews of professional nuclear power plant operators participated in the study. Following training, each crew completed 16 test trials which consisted of two trials in each of the eight experimental conditions (one with a low-complexity scenario and one with a high-complexity scenario). Measures of process performance, operator task performance, situation awareness, and workload were obtained. In addition, operator opinions and evaluations of the alarm processing and display conditions were collected. No deficient

  6. Semi-supervised detection of intracranial pressure alarms using waveform dynamics

    International Nuclear Information System (INIS)

    Patient monitoring systems in intensive care units (ICU) are usually set to trigger alarms when abnormal values are detected. Alarms are generated by threshold-crossing rules that lead to high false alarm rates. This is a recognized issue that causes alarm fatigue, waste of human resources, and increased patient risks. Recently developed smart alarm models require alarms to be validated by experts during the training phase. The manual annotation process involved is time-consuming and virtually impossible to achieve for the thousands of alarms recorded in the ICU every week. To tackle this problem, we investigate in this study if the use of semi-supervised learning methods, that can naturally integrate unlabeled data samples in the model, can be used to improve the accuracy of the alarm detection. As a proof of concept, the detection system is evaluated on intracranial pressure (ICP) signal alarms. Specific morphological and trending features are extracted from the ICP signal waveform to capture the dynamic of the signal prior to alarms. This study is based on a comprehensive dataset of 4791 manually labeled alarms recorded from 108 neurosurgical patients. A comparative analysis is provided between kernel spectral regression (SR-KDA) and support vector machine (SVM) both modified for the semi-supervised setting. Results obtained during the experimental evaluations indicate that the two models can significantly reduce false alarms using unlabeled samples; especially in the presence of a restrained number of labeled examples. At a true alarm recognition rate of 99%, the false alarm reduction rates improved from 9% (supervised) to 27% (semi-supervised) for SR-KDA, and from 3% (supervised) to 16% (semi-supervised) for SVM. (paper)

  7. Recent Progress in Lectin-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Baozhen Wang

    2015-12-01

    Full Text Available This article reviews recent progress in the development of lectin-based biosensors used for the determination of glucose, pathogenic bacteria and toxins, cancer cells, and lectins. Lectin proteins have been widely used for the construction of optical and electrochemical biosensors by exploiting the specific binding affinity to carbohydrates. Among lectin proteins, concanavalin A (Con A is most frequently used for this purpose as glucose- and mannose-selective lectin. Con A is useful for immobilizing enzymes including glucose oxidase (GOx and horseradish peroxidase (HRP on the surface of a solid support to construct glucose and hydrogen peroxide sensors, because these enzymes are covered with intrinsic hydrocarbon chains. Con A-modified electrodes can be used as biosensors sensitive to glucose, cancer cells, and pathogenic bacteria covered with hydrocarbon chains. The target substrates are selectively adsorbed to the surface of Con A-modified electrodes through strong affinity of Con A to hydrocarbon chains. A recent topic in the development of lectin-based biosensors is a successful use of nanomaterials, such as metal nanoparticles and carbon nanotubes, for amplifying output signals of the sensors. In addition, lectin-based biosensors are useful for studying glycan expression on living cells.

  8. Fabrication of multianalyte CeO2 nanograin electrolyte–insulator–semiconductor biosensors by using CF4 plasma treatment

    Directory of Open Access Journals (Sweden)

    Chyuan Haur Kao

    2015-09-01

    Full Text Available Multianalyte CeO2 biosensors have been demonstrated to detect pH, glucose, and urine concentrations. To enhance the multianalyte sensing capability of these biosensors, CF4 plasma treatment was applied to create nanograin structures on the CeO2 membrane surface and thereby increase the contact surface area. Multiple material analyses indicated that crystallization or grainization caused by the incorporation of flourine atoms during plasma treatment might be related to the formation of the nanograins. Because of the changes in surface morphology and crystalline structures, the multianalyte sensing performance was considerably enhanced. Multianalyte CeO2 nanograin electrolyte–insulator–semiconductor biosensors exhibit potential for use in future biomedical sensing device applications.

  9. Krohne Flow Indicator and High Flow Alarm - Local Indicator and High Flow Alarm of Helium Flow from the SCHe Purge Lines C and D to the Process Vent

    International Nuclear Information System (INIS)

    Flow Indicators/alarms FI/FSH-5*52 and -5*72 are located in the process vent lines connected to the 2 psig SCHe purge lines C and D. They monitor the flow from the 2 psig SCHe purge going to the process vent. The switch/alarm is non-safety class GS

  10. Krohne Flow Indicator and High Flow Alarm Local Indicator and High Flow Alarm of Helium Flow from the SCHe Purge Lines C and D to the Process Vent

    Energy Technology Data Exchange (ETDEWEB)

    MISKA, C.R.

    2000-09-03

    Flow Indicators/alarms FI/FSH-5*52 and -5*72 are located in the process vent lines connected to the 2 psig SCHe purge lines C and D. They monitor the flow from the 2 psig SCHe purge going to the process vent. The switch/alarm is non-safety class GS.

  11. TPLC-32 based alarm annunciation system for Dhruva

    International Nuclear Information System (INIS)

    The Control and Instrumentation (C and I) Systems of Dhruva Research Reactor have been designed in late seventies and are facing not only obsolescence but have limited diagnostic features. Since the expected life of C and I systems is typically twenty years, it was considered appropriate to upgrade some of the major systems including Alarm Annunciation System (AAS). The AAS of Dhruva is a Safety Class IB system that is used for processing alarm inputs and alerting the Main Control Room operator by driving LED based windows and audio annunciation in the Main Control Room. The AAS is also used for sequencing and logging of alarms on Operator Console. AAS is designed using qualified configurable platform Trombay Programmable Logic Controller-32 (TPLC-32) indigenously developed in BARC. The platform based design provides complete configurability, such that it can be used to build different systems for diverse applications. The AAS for Dhruva is first TPLC-32 based system to be deployed in any Indian Nuclear Reactor. The entire cycle involved conceptualization of system, making system requirement specifications, detailing the concept, design, fabrication, creation of test facilities, testing, validation of system performance, preparation of various documents for the regulatory safety clearances, installation and commissioning of the systems. This upgrade of AAS has helped enhancing safety, mitigates obsolescence and provided improved O and M features. Executing this upgrade in operating reactor posed additional constraints such as high level of safety, limited down time etc and this could be addressed through long term planning and implementation strategies based on innovative ideas and previous experience in installation and commissioning. Being an in-house product, long-term support for maintenance mitigating the obsolescence and technology up gradation is ensured. This paper provides technical information on AAS system design, its important features, the testing

  12. A liquid-activated textile battery for wearable biosensors

    Science.gov (United States)

    Liu, X.; Lillehoj, P. B.

    2015-12-01

    Wearable biosensors is an emerging field which offers great potential for many applications including human health monitoring, environmental sensing and bioagent detection. An important requirement for these systems is the need for robust, lightweight batteries which can be easily integrated with wearable materials (i.e. textiles). In this paper, we demonstrate a new textile Ag-Al battery which is activated by liquids. Experiments were performed to optimize the battery performance by altering the device parameters, such as the electrode/electrolyte area and electrolyte concentration. Based on these results, we developed a single-cell battery that can produce a voltage of 1.3 V. By connecting two cells in series, we could power a 1.6 V LED for up to 30 minutes.

  13. Disposable chemical sensors and biosensors made on cellulose paper

    International Nuclear Information System (INIS)

    Most sensors are based on ceramic or semiconducting substrates, which have no flexibility or biocompatibility. Polymer-based sensors have been the subject of much attention due to their ability to collect molecules on their sensing surface with flexibility. Beyond polymer-based sensors, the recent discovery of cellulose as a smart material paved the way to the use of cellulose paper as a potential candidate for mechanical as well as electronic applications such as actuators and sensors. Several different paper-based sensors have been investigated and suggested. In this paper, we review the potential of cellulose materials for paper-based application devices, and suggest their feasibility for chemical and biosensor applications. (topical review)

  14. Alarm coding of a model-based display

    International Nuclear Information System (INIS)

    This paper discusses and illustrates alarm coding of a model based display. The model based display synthesizes the heat engine cycle within a light water reactor. A digital computer uses measured process variables to form an icon of the heat engine cycle. The Rankine Cycle, a heat engine cycle, serves to structure the data in terms of the temperature and entropy properties of water. The iconic display serves as a visual knowledge base of the plant process for the operator, thereby reducing the operator's mental workload in evaluating the process

  15. Detecting outliers in multivariate data while controlling false alarm rate

    Directory of Open Access Journals (Sweden)

    André Achim

    2012-06-01

    Full Text Available Outlier identification often implies inspecting each z-transformed variable and adding a Mahalanobis D^2. Multiple outliers may mask each other by increasing variance estimates. Caroni and Prescott (1992 proposed a multivariate extension of Rosner’s (1983 technique to circumvent masking, taking sample size into account to keep the false alarm risk below, say, alpha = .05. Simulations studies here compare the single multivariate approach to "multiple-univariate plus multivariate" tests, each at a Bonferroni corrected alpha level, in terms of power at detecting outliers. Results suggest the former is better only up to about 12 variables. Macros in an Excel spreadsheet implement these techniques.

  16. Impedance biosensor based on interdigitated electrode array for detection of E.coli O157:H7 in food products

    Science.gov (United States)

    Ghosh Dastider, Shibajyoti; Barizuddin, Syed; Dweik, Majed; Almasri, Mahmoud F.

    2012-05-01

    An impedance biosensor was designed, fabricated and tested for detection of viable Escherichia coli O157:H7 in food samples. This device consists of interdigitated microelectrode array (IDEA) fabricated using thin layer of sputtered gold, embedded under a polydimethylsiloxane (PDMS) microchannel. The array of electrodes is designed to detect viable EColi in different food products. The active surface area of the detection array was modified using goat anti-E.coli polyclonal IgG antibody. Contaminated food samples were tested by infusing the supernatant containing bacteria over the IDEA's, through the microchannel. Antibody-antigen binding on the electrodes results in impedance change. Four serial concentrations of E.coli contaminated food samples (3x102 CFUmL-1 to 3x105 CFUmL-1) were tested. The biosensor successfully detected the E.coli samples, with the lower detection limit being 3x103 CFUmL-1 (up to 3cells/μl). Comparing the test results with an IDEA impedance biosensor without microchannel (published elsewhere) indicates that this biosensor have two order of magnitude times higher sensitivity. The proposed biosensor provides qualitative and quantitative detection, and potentially could be used for detection of other type of bacteria by immobilizing the specific type of antibody.

  17. Design & fabrication of cantilever array biosensors

    DEFF Research Database (Denmark)

    Boisen, Anja; Thundat, T

    2009-01-01

    Surface immobilization of functional receptors on microfabricated cantilever arrays offers a new paradigm for the development of biosensors based on nanomechanics. Microcantilever-based systems are capable of real-time, multiplexed detection of unlabeled disease markers in extremely small volumes......, electronic processing, and even local telemetry on a single chip have the potential of satisfying the need for highly sensitive and selective multiple-target detection in very small samples. Here we will review the design and fabrication process of cantilever-based biosensors.......Surface immobilization of functional receptors on microfabricated cantilever arrays offers a new paradigm for the development of biosensors based on nanomechanics. Microcantilever-based systems are capable of real-time, multiplexed detection of unlabeled disease markers in extremely small volumes...

  18. Microfabricated glucose biosensor for culture well operation.

    Science.gov (United States)

    Pemberton, R M; Cox, T; Tuffin, R; Sage, I; Drago, G A; Biddle, N; Griffiths, J; Pittson, R; Johnson, G; Xu, J; Jackson, S K; Kenna, G; Luxton, R; Hart, J P

    2013-04-15

    A water-based carbon screen-printing ink formulation, containing the redox mediator cobalt phthalocyanine (CoPC) and the enzyme glucose oxidase (GOx), was investigated for its suitability to fabricate glucose microbiosensors in a 96-well microplate format: (1) the biosensor ink was dip-coated onto a platinum (Pt) wire electrode, leading to satisfactory amperometric performance; (2) the ink was deposited onto the surface of a series of Pt microelectrodes (10-500 μm diameter) fabricated on a silicon substrate using MEMS (microelectromechanical systems) microfabrication techniques: capillary deposition proved to be successful; a Pt microdisc electrode of ≥100 μm was required for optimum biosensor performance; (3) MEMS processing was used to fabricate suitably sized metal (Pt) tracks and pads onto a silicon 96 well format base chip, and the glucose biosensor ink was screen-printed onto these pads to create glucose microbiosensors. When formed into microwells, using a 340 μl volume of buffer, the microbiosensors produced steady-state amperometric responses which showed linearity up to 5 mM glucose (CV=6% for n=5 biosensors). When coated, using an optimised protocol, with collagen in order to aid cell adhesion, the biosensors continued to show satisfactory performance in culture medium (linear range to 2 mM, dynamic range to 7 mM, CV=5.7% for n=4 biosensors). Finally, the operation of these collagen-coated microbiosensors, in 5-well 96-well format microwells, was tested using a 5-channel multipotentiostat. A relationship between amperometric response due to glucose, and cell number in the microwells, was observed. These results indicate that microphotolithography and screen-printing techniques can be combined successfully to produce microbiosensors capable of monitoring glucose metabolism in 96 well format cell cultures. The potential application areas for these microbiosensors are discussed. PMID:23265827

  19. Droplet-based microscale colorimetric biosensor for multiplexed DNA analysis via a graphene nanoprobe

    International Nuclear Information System (INIS)

    Graphical abstract: With a microvalve manipulate technique combined with droplet platform, a microscale fluorescence-based colorimetric sensor for multiplexed DNA analysis is developed via a graphene nanoprobe. Highlights: ► A quantitative detection for multiplexed DNA is first realized on droplet platform. ► The DNA detection is relied on a simple fluorescence-based colorimetric method. ► GO is served as a quencher for two different DNA fluorescent probes. ► This present work provides a rapid, sensitive, visual and convenient detection tool for droplet biosensor. - Abstract: The development of simple and inexpensive DNA detection strategy is very significant for droplet-based microfluidic system. Here, a droplet-based biosensor for multiplexed DNA analysis is developed with a common imaging device by using fluorescence-based colorimetric method and a graphene nanoprobe. With the aid of droplet manipulation technique, droplet size adjustment, droplet fusion and droplet trap are realized accurately and precisely. Due to the high quenching efficiency of graphene oxide (GO), in the absence of target DNAs, the droplet containing two single-stranded DNA probes and GO shows dark color, in which the DNA probes are labeled carboxy fluorescein (FAM) and 6-carboxy-X-rhodamine (ROX), respectively. The droplet changes from dark to bright color when the DNA probes form double helix with the specific target DNAs leading to the dyes far away from GO. This colorimetric droplet biosensor exhibits a quantitative capability for simultaneous detection of two different target DNAs with the detection limits of 9.46 and 9.67 × 10−8 M, respectively. It is also demonstrated that this biosensor platform can become a promising detection tool in high throughput applications with low consumption of reagents. Moreover, the incorporation of graphene nanoprobe and droplet technique can drive the biosensor field one more step to some extent.

  20. Developing Biosensors in Developing Countries: South Africa as a Case Study.

    Science.gov (United States)

    Fogel, Ronen; Limson, Janice

    2016-03-01

    A mini-review of the reported biosensor research occurring in South Africa evidences a strong emphasis on electrochemical sensor research, guided by the opportunities this transduction platform holds for low-cost and robust sensing of numerous targets. Many of the reported publications centre on fundamental research into the signal transduction method, using model biorecognition elements, in line with international trends. Other research in this field is spread across several areas including: the application of nanotechnology; the identification and validation of biomarkers; development and testing of biorecognition agents (antibodies and aptamers) and design of electro-catalysts, most notably metallophthalocyanine. Biosensor targets commonly featured were pesticides and metals. Areas of regional import to sub-Saharan Africa, such as HIV/AIDs and tuberculosis diagnosis, are also apparent in a review of the available literature. Irrespective of the targets, the challenge to the effective deployment of such sensors remains shaped by social and economic realities such that the requirements thereof are for low-cost and universally easy to operate devices for field settings. While it is difficult to disentangle the intertwined roles of national policy, grant funding availability and, certainly, of global trends in shaping areas of emphasis in research, most notable is the strong role that nanotechnology, and to a certain extent biotechnology, plays in research regarding biosensor construction. Stronger emphasis on collaboration between scientists in theoretical modelling, nanomaterials application and or relevant stakeholders in the specific field (e.g., food or health monitoring) and researchers in biosensor design may help evolve focused research efforts towards development and deployment of low-cost biosensors. PMID:26848700

  1. Lab-on-a-chip based biosensor for the real-time detection of aflatoxin.

    Science.gov (United States)

    Uludag, Yıldız; Esen, Elif; Kokturk, Guzin; Ozer, Hayrettin; Muhammad, Turghun; Olcer, Zehra; Basegmez, H Imge Oktay; Simsek, Senay; Barut, Serkan; Gok, M Yagmur; Akgun, Mete; Altintas, Zeynep

    2016-11-01

    Polymers were synthesized and utilized for aflatoxin detection coupled with a novel lab-on-a-chip biosensor: MiSens and high performance liquid chromatography (HPLC). Non-imprinted polymers (NIPs) were preferred to be designed and used due to the toxic nature of aflatoxin template and also to avoid difficult clean-up protocols. Towards an innovative miniaturized automated system, a novel biochip has been designed that consists of 6 working electrodes (1mm diameter) with shared reference and counter electrodes. The aflatoxin detection has been achieved by a competition immunoassay that has been performed using the new biochips and the automated MiSens electrochemical biosensor device. For the assay, aflatoxin antibody has been captured on the Protein A immobilized electrode. Subsequently the sample and the enzyme-aflatoxin conjugate mixture has been injected to the electrode surfaces. The final injection of the enzyme substrate results in an amperometric signal. The sensor assays for aflatoxin B1 (AFB1) in different matrices were also performed using enzyme link immunosorbent assay (ELISA) and HPLC for confirmation. High recovery was successfully achieved in spiked wheat samples using NIP coupled HPLC and NIP coupled MiSens biosensor [2ppb of aflatoxin was determined as 1.86ppb (93% recovery), 1.73ppb (86.5% recovery), 1.96ppb (98% recovery) and 1.88ppb (94.0% recovery) for immunoaffinity column (IAC)-HPLC, NIP-HPLC, Supel™ Tox SPE Cartridges (SUP)-HPLC and NIP-MiSens, respectively]. Aflatoxin detection in fig samples were also investigated with MiSens biosensor and the results were compared with HPLC method. The new biosensor allows real-time and on-site detection of AFB1 in foods with a rapid, sensitive, fully automated and miniaturized system and expected to have an immense economic impact for food industry. PMID:27591628

  2. Developing Biosensors in Developing Countries: South Africa as a Case Study

    Directory of Open Access Journals (Sweden)

    Ronen Fogel

    2016-02-01

    Full Text Available A mini-review of the reported biosensor research occurring in South Africa evidences a strong emphasis on electrochemical sensor research, guided by the opportunities this transduction platform holds for low-cost and robust sensing of numerous targets. Many of the reported publications centre on fundamental research into the signal transduction method, using model biorecognition elements, in line with international trends. Other research in this field is spread across several areas including: the application of nanotechnology; the identification and validation of biomarkers; development and testing of biorecognition agents (antibodies and aptamers and design of electro-catalysts, most notably metallophthalocyanine. Biosensor targets commonly featured were pesticides and metals. Areas  of regional import to sub-Saharan Africa, such as HIV/AIDs and tuberculosis diagnosis, are also apparent in a review of the available literature. Irrespective of the targets, the challenge to the effective deployment of such sensors remains shaped by social and economic realities such that the requirements thereof are for low-cost and universally easy to operate devices for field settings. While it is difficult to disentangle the intertwined roles of national policy, grant funding availability and, certainly, of global trends in shaping areas of emphasis in research, most notable is the strong role that nanotechnology, and to a certain extent biotechnology, plays in research regarding biosensor construction. Stronger emphasis on collaboration between scientists in theoretical modelling, nanomaterials application and or relevant stakeholders in the specific field (e.g., food or health monitoring and researchers in biosensor design may help evolve focused research efforts towards development and deployment of low-cost biosensors.

  3. The effect of pH and DNA concentration on organic thin-film transistor biosensors

    KAUST Repository

    Khan, Hadayat Ullah

    2012-03-01

    Organic electronics are beginning to attract more interest for biosensor technology as they provide an amenable interface between biology and electronics. Stable biosensor based on electronic detection platform would represent a significant advancement in technology as costs and analysis time would decrease immensely. Organic materials provide a route toward that goal due to their compatibility with electronic applications and biological molecules. In this report, we detail the effects of experimental parameters, such as pH and concentration, toward the selective detection of DNA via surface-bound peptide nucleic acid (PNA) sequences on organic transistor biosensors. The OTFT biosensors are fabricated with thin-films of the organic semiconductor, 5,5′-bis-(7-dodecyl-9H-fluoren-2-yl)-2,2′-bithiophene (DDFTTF), in which they exhibit a stable mobility of 0.2 cm 2 V -1 s -1 in buffer solutions (phosphate-buffer saline, pH 7.4 or sodium acetate, pH 7). Device performance were optimized to minimize the deleterious effects of pH on gate-bias stress such that the sensitivity toward DNA detection can be improved. In titration experiments, the surface-bound PNA probes were saturated with 50 nM of complementary target DNA, which required a 10-fold increase in concentration of single-base mismatched target DNA to achieve a similar surface saturation. The binding constant of DNA on the surface-bound PNA probes was determined from the concentration-dependent response (titration measurements) of our organic transistor biosensors. © 2011 Elsevier B.V. All rights reserved.

  4. Changes are detected - cameras and video systems are monitoring the plant site, only rarely giving false alarm

    International Nuclear Information System (INIS)

    The main purpose of automatic data acquisition and processing for monitoring goals is to relieve the security personnel from monotonous observation tasks. The novel video systems can be programmed to detect moving target alarm signals, or accept alarm-suppressing image changes. This allows an intelligent alarm evaluation for physical protection in industry, differentiating between real and false alarm signals. (orig.)

  5. Biosensors for Inorganic and Organic Arsenicals

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2014-11-01

    Full Text Available Arsenic is a natural environmental contaminant to which humans are routinely exposed and is strongly associated with human health problems, including cancer, cardiovascular and neurological diseases. To date, a number of biosensors for the detection of arsenic involving the coupling of biological engineering and electrochemical techniques has been developed. The properties of whole-cell bacterial or cell-free biosensors are summarized in the present review with emphasis on their sensitivity and selectivity. Their limitations and future challenges are highlighted.

  6. Development of oxidoreductase based electrochemical biosensors

    OpenAIRE

    Rodrigues, Patrícia Raquel dos Santos

    2013-01-01

    Dissertação para obtenção do Grau de Mestre em Biotecnologia This thesis is divided in 2 sections, each describing the development of an oxidoreductase based biosensor. In the first part human Cytochrome P450 1A2 (CYP1A2) electrochemistry was studied, while the second is focused on the optimization of immobilization platforms and operation methods for amperometric biosensors, using cytochrome c nitrite reductase (ccNiR), (Desulfovibrio desulfuricans ATCC 27774) as a model enzyme. The...

  7. Mathematical Model of the Biosensors Acting in a Trigger Mode

    Science.gov (United States)

    Baronas, Romas; Kulys, Juozas; Ivanauskas, Feliksas

    2004-01-01

    A mathematical model of biosensors acting in a trigger mode has been developed. One type of the biosensors utilized a trigger enzymatic reaction followed by the cyclic enzymatic and electrochemical conversion of the product (CCE scheme). Other biosensors used the enzymatic trigger reaction followed by the electrochemical and enzymatic product cyclic conversion (CEC scheme). The models were based on diffusion equations containing a non-linear term related to Michaelis-Menten kinetics of the enzymatic reactions. The digital simulation was carried out using the finite difference technique. The influence of the substrate concentration, the maximal enzymatic rate as well as the membrane thickness on the biosensor response was investigated. The numerical experiments demonstrated a significant gain (up to dozens of times) in biosensor sensitivity when the biosensor response was under diffusion control. In the case of significant signal amplification, the response time with triggering was up to several times longer than that of the biosensor without triggering.

  8. Mathematical Model of the Biosensors Acting in a Trigger Mode

    Directory of Open Access Journals (Sweden)

    Feliksas Ivanauskas

    2004-05-01

    Full Text Available Abstract: A mathematical model of biosensors acting in a trigger mode has been developed. One type of the biosensors utilized a trigger enzymatic reaction followed by the cyclic enzymatic and electrochemical conversion of the product (CCE scheme. Other biosensors used the enzymatic trigger reaction followed by the electrochemical and enzymatic product cyclic conversion (CEC scheme. The models were based on diffusion equations containing a non-linear term related to Michaelis-Menten kinetics of the enzymatic reactions. The digital simulation was carried out using the finite difference technique. The influence of the substrate concentration, the maximal enzymatic rate as well as the membrane thickness on the biosensor response was investigated. The numerical experiments demonstrated a significant gain (up to dozens of times in biosensor sensitivity when the biosensor response was under diffusion control. In the case of significant signal amplification, the response time with triggering was up to several times longer than that of the biosensor without triggering.

  9. Biotelemetric Monitoring of Brain Neurochemistry in Conscious Rats Using Microsensors and Biosensors

    OpenAIRE

    Desole, Maria S; Robert D. O’Neill; Lowry, John P.; Vittorio Mazzarello; Gianfranco Bazzu; Ylenia Spissu; Giulia Puggioni; Rossana Migheli; Gaia Rocchitta; Giammario Calia; Serra, Pier A.

    2009-01-01

    In this study we present the real-time monitoring of three key brain neurochemical species in conscious rats using implantable amperometric electrodes interfaced to a biotelemetric device. The new system, derived from a previous design, was coupled with carbon-based microsensors and a platinum-based biosensor for the detection of ascorbic acid (AA), O2 and glucose in the striatum of untethered, freely-moving rats. The miniaturized device consisted of a single-supply sensor driver, a current-t...

  10. Concatenation of 'alert' and 'identity' segments in dingoes' alarm calls.

    Science.gov (United States)

    Déaux, Eloïse C; Allen, Andrew P; Clarke, Jennifer A; Charrier, Isabelle

    2016-01-01

    Multicomponent signals can be formed by the uninterrupted concatenation of multiple call types. One such signal is found in dingoes, Canis familiaris dingo. This stereotyped, multicomponent 'bark-howl' vocalisation is formed by the concatenation of a noisy bark segment and a tonal howl segment. Both segments are structurally similar to bark and howl vocalisations produced independently in other contexts (e.g. intra- and inter-pack communication). Bark-howls are mainly uttered in response to human presence and were hypothesized to serve as alarm calls. We investigated the function of bark-howls and the respective roles of the bark and howl segments. We found that dingoes could discriminate between familiar and unfamiliar howl segments, after having only heard familiar howl vocalisations (i.e. different calls). We propose that howl segments could function as 'identity signals' and allow receivers to modulate their responses according to the caller's characteristics. The bark segment increased receivers' attention levels, providing support for earlier observational claims that barks have an 'alerting' function. Lastly, dingoes were more likely to display vigilance behaviours upon hearing bark-howl vocalisations, lending support to the alarm function hypothesis. Canid vocalisations, such as the dingo bark-howl, may provide a model system to investigate the selective pressures shaping complex communication systems. PMID:27460289

  11. Pocket dosimeter with alarm 'REM-Master-S'

    International Nuclear Information System (INIS)

    The pocket dosimeters with alarm presently used in nuclear power stations, laboratories, hospitals and so on are mainly of GM counter type, and have such problems as short service life and large characteristic fluctuation. Fuji Electric developed a new type of the dosimeters with alarm ''REM MASTER-S'', which adopted semiconductor detectors and has such features as the measuring range is wider than conventional type, the service life is long, and the size is small and convenient to carry. It is provided with data transmitting and reading functions by opto-electronic communication method so that the exposure dose of individuals can be efficiently controlled. For the development of this new type of dosimeters, Fuji Electric used its technology and experience accumulated in the manufacture of radiation monitors for years. The specifications are as follows. Type: NRS, sensor: silicon semiconductor detector, type S 104S, kind of radiation: X-ray and gamma-ray from 100 keV to 3 MeV, energy dependence: within +-20% from 100 keV to Co-60 (1.3 MeV), integrated calibration accuracy: within +-10% at 100 mR/h with Cs-137 source, linearity of dosage ratio: within +-15% from 10 mR/h to 10 R/h with Cs-137 source, display: 4-digit digital indicator from 0 to 9999 mR, and so on. The application range is shown. (Kako, I.)

  12. Biosensor Systems for Homeland Security

    Energy Technology Data Exchange (ETDEWEB)

    Bruckner-Lea, Cindy J.

    2004-05-30

    The detection of biological agents is important to minimize the effects of pathogens that can harm people, livestock, or plants. In addition to pathogens distributed by man, there is a need to detect natural outbreaks. Recent outbreaks of SARS, mad cow disease, pathogenic E. coli and Salmonella, as well as the discovery of letters filled with anthrax spores have highlighted the need for biosensor systems to aid in prevention, early warning, response, and recovery. Rapid detection can be used to prevent exposure; and detection on a longer timescale can be used to minimize exposure, define treatment, and determine whether contaminated areas are clean enough for reuse. The common types of biological agents of concern include bacteria, spores, and viruses (Figure 1). From a chemist’s point of view, pathogens are essentially complex packages of chemicals that are assembled into organized packages with somewhat predictable physical characteristics such as size and shape. Pathogen detection methods can be divided into three general approaches: selective detection methods for specific identification such as nucleic acid analysis and structural recognition, semi-selective methods for broad-spectrum detection (e.g. physical properties, metabolites, lipids), and function-based methods (e.g. effect of the pathogen on organisms, tissues, or cells). The requirements for biodetection systems depend upon the application. While detect to warn sensors may require rapid detection on the order one minute, detection times of many minutes or hours may be suitable for determining appropriate treatments or for forensic analysis. Of course ideal sensor systems will meet the needs of many applications, and will be sensitive, selective, rapid, and simultaneously detect all agents of concern. They will also be reliable with essentially no false negatives or false positives, small, easy to use, and low cost with minimal consumables.

  13. Self-Assembled Films of Dendrimers and Metallophthalocyanines as FET-Based Glucose Biosensors

    Directory of Open Access Journals (Sweden)

    Alessandra Figueiredo

    2011-10-01

    Full Text Available Separative extended gate field effect transistor (SEGFET type devices have been used as an ion sensor or biosensor as an alternative to traditional ion sensitive field effect transistors (ISFETs due to their robustness, ease of fabrication, low cost and possibility of FET isolation from the chemical environment. The layer-by-layer technique allows the combination of different materials with suitable properties for enzyme immobilization on simple platforms such as the extended gate of SEGFET devices enabling the fabrication of biosensors. Here, glucose biosensors based on dendrimers and metallophthalocyanines (MPcs in the form of layer-by-layer (LbL films, assembled on indium tin oxide (ITO as separative extended gate material, has been produced. NH3+ groups in the dendrimer allow electrostatic interactions or covalent bonds with the enzyme (glucose oxidase. Relevant parameters such as optimum pH, buffer concentration and presence of serum bovine albumin (BSA in the immobilization process were analyzed. The relationship between the output voltage and glucose concentration shows that upon detection of a specific analyte, the sub-products of the enzymatic reaction change the pH locally, affecting the output signal of the FET transducer. In addition, dendritic layers offer a nanoporous environment, which may be permeable to H+ ions, improving the sensibility as modified electrodes for glucose biosensing.

  14. Self-assembled films of dendrimers and metallophthalocyanines as FET-based glucose biosensors.

    Science.gov (United States)

    Vieira, Nirton C S; Figueiredo, Alessandra; de Queiroz, Alvaro A A; Zucolotto, Valtencir; Guimarães, Francisco E G

    2011-01-01

    Separative extended gate field effect transistor (SEGFET) type devices have been used as an ion sensor or biosensor as an alternative to traditional ion sensitive field effect transistors (ISFETs) due to their robustness, ease of fabrication, low cost and possibility of FET isolation from the chemical environment. The layer-by-layer technique allows the combination of different materials with suitable properties for enzyme immobilization on simple platforms such as the extended gate of SEGFET devices enabling the fabrication of biosensors. Here, glucose biosensors based on dendrimers and metallophthalocyanines (MPcs) in the form of layer-by-layer (LbL) films, assembled on indium tin oxide (ITO) as separative extended gate material, has been produced. NH(3)(+) groups in the dendrimer allow electrostatic interactions or covalent bonds with the enzyme (glucose oxidase). Relevant parameters such as optimum pH, buffer concentration and presence of serum bovine albumin (BSA) in the immobilization process were analyzed. The relationship between the output voltage and glucose concentration shows that upon detection of a specific analyte, the sub-products of the enzymatic reaction change the pH locally, affecting the output signal of the FET transducer. In addition, dendritic layers offer a nanoporous environment, which may be permeable to H(+) ions, improving the sensibility as modified electrodes for glucose biosensing. PMID:22163704

  15. Biofeedback With Implanted Blood-Pressure Device

    Science.gov (United States)

    Rischell, Robert E.

    1988-01-01

    Additional uses found for equipment described in "Implanted Blood-Pressure-Measuring Device" (GSC-13042). Implanted with device electronic circuitry that measures, interprets, and transmits data via inductive link through patient's skin to external receiver. Receiver includes audible alarm generator activated when patient's blood pressure exceeds predetermined threshold. Also included in receiver a blood-pressure display, recorder, or both, for use by patient or physician.

  16. Glucose biosensors based on a gold nanodendrite modified screen-printed electrode

    Science.gov (United States)

    Liu, Hsi-Chien; Tsai, Chung-Che; Wang, Gou-Jen

    2013-05-01

    In this study, an enzymatic glucose biosensor based on a three-dimensional gold nanodendrite (GND) modified screen-printed electrode was developed. The GNDs were electrochemically synthesized on the working electrode component of a commercially available screen-printed electrode using a solution acquired by dissolving bulk gold in aqua regia as the precursor. The 3D GND electrode greatly enhanced the effective sensing area of the biosensor, which improved the sensitivity of glucose detection. Actual glucose detections demonstrated that the fabricated devices could perform at a sensitivity of 46.76 μA mM-1 cm-2 with a linear detection range from 28 μM-8.4 mM and detection limit of 7 μM. A fast response time (˜3 s) was also observed. Moreover, only a 20 μl glucose oxidase is required for detection owing to the incorporation of the commercially available screen-printed electrode.

  17. Nanotechnology: A Tool for Improved Performance on Electrochemical Screen-Printed (BioSensors

    Directory of Open Access Journals (Sweden)

    Elena Jubete

    2009-01-01

    Full Text Available Screen-printing technology is a low-cost process, widely used in electronics production, especially in the fabrication of disposable electrodes for (biosensor applications. The pastes used for deposition of the successive layers are based on a polymeric binder with metallic dispersions or graphite, and can also contain functional materials such as cofactors, stabilizers and mediators. More recently metal nanoparticles, nanowires and carbon nanotubes have also been included either in these pastes or as a later stage on the working electrode. This review will summarize the use of nanomaterials to improve the electrochemical sensing capability of screen-printed sensors. It will cover mainly disposable sensors and biosensors for biomedical interest and toxicity monitoring, compiling recent examples where several types of metallic and carbon-based nanostructures are responsible for enhancing the performance of these devices.

  18. Sensitivity and detection limit of dual-waveguide coupled microring resonator biosensors

    Institute of Scientific and Technical Information of China (English)

    Zhixuan Xia; Huaxiang Yi; Yao Chen; Zhiping Zhou

    2009-01-01

    We show that a linear relation exists between the device sensitivity and the quality (Q) factor of a dual-waveguide coupled microring resonator optical biosensor when the optimal conditions are satisfied. We also show that the detection limit depends on the loss coefficient and signal-to-nosie ratio (SNR) of the overall system, rather than the circumference of the ring. For a microring resonator sensor whose Q factor is 20000, the detection limit is found to be about 10-7 with 30-dB SNR, which is in good agreement with reported experimental data. These results indicate that loss reduction is the top priority in the design and fabrication of highly sensitive microring resonator optical biosensors.

  19. Network single-walled carbon nanotube biosensors for fast and highly sensitive detection of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Hu Pingan; Zhang Jia; Wen Zhenzhong [Research Centre for Micro/Nanotechnology, Harbin Institute of Technology, No. 2 YiKuang Street, Harbin 150080 (China); Zhang Can, E-mail: hupa@hit.edu.cn [Centre for Advanced Photonics and Electronics, University of Cambridge, Cambridge CB3 0FA (United Kingdom)

    2011-08-19

    Detection of proteins is powerfully assayed in the diagnosis of diseases. A strategy for the development of an ultrahigh sensitivity biosensor based on a network single-walled carbon nanotube (SWNT) field-effect transistor (FET) has been demonstrated. Metallic SWNTs (m-SWNTs) in the network nanotube FET were selectively removed or cut via a carefully controlled procedure of electrical break-down (BD), and left non-conducting m-SWNTs which magnified the Schottky barrier (SB) area. This nanotube FET exhibited ultrahigh sensitivity and fast response to biomolecules. The lowest detection limit of 0.5 pM was achieved by exploiting streptavidin (SA) or a biotin/SA pair as the research model, and BD-treated nanotube biosensors had a 2 x 10{sup 4}-fold lower minimum detectable concentration than the device without BD treatment. The response time is in the range of 0.3-3 min.

  20. Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants.

    Science.gov (United States)

    Ramnani, Pankaj; Saucedo, Nuvia M; Mulchandani, Ashok

    2016-01-01

    Carbon allotropes such as graphene and carbon nanotubes, have been incorporated in electrochemical biosensors for highly sensitive and selective detection of various analytes. The superior physical and electrical properties like high carrier mobility, ambipolar electric field effect, high surface area, flexibility and their compatibility with microfabrication techniques makes these carbon nanomaterials easy to integrate in field-effect transistor (FET)/chemiresistor type configuration which is suitable for portable and point-of-use/field-deployable sensors. This review covers the synthesis of carbon nanostructures (graphene and CNTs) and their integration into devices using various fabrication methods. Finally, we discuss the recent reports showing different sensing platforms that incorporate biomolecules like enzymes, antibodies and aptamers as recognition elements for fabrication of simple, low cost, compact biosensors that can be used for on-site, rapid environmental monitoring of environmental pollutants like pathogens, heavy metals, pesticides and explosives. PMID:25956023

  1. Glucose biosensors based on a gold nanodendrite modified screen-printed electrode

    International Nuclear Information System (INIS)

    In this study, an enzymatic glucose biosensor based on a three-dimensional gold nanodendrite (GND) modified screen-printed electrode was developed. The GNDs were electrochemically synthesized on the working electrode component of a commercially available screen-printed electrode using a solution acquired by dissolving bulk gold in aqua regia as the precursor. The 3D GND electrode greatly enhanced the effective sensing area of the biosensor, which improved the sensitivity of glucose detection. Actual glucose detections demonstrated that the fabricated devices could perform at a sensitivity of 46.76 μA mM−1 cm−2 with a linear detection range from 28 μM–8.4 mM and detection limit of 7 μM. A fast response time (∼3 s) was also observed. Moreover, only a 20 μl glucose oxidase is required for detection owing to the incorporation of the commercially available screen-printed electrode. (paper)

  2. Protein-Based Graphene Biosensors: Optimizing Artificial Chemoreception in Bilayer Lipid Membranes.

    Science.gov (United States)

    Siontorou, Christina G; Georgopoulos, Konstantinos N; Nikoleli, Georgia-Paraskevi; Nikolelis, Dimitrios P; Karapetis, Stefanos K; Bratakou, Spyridoula

    2016-01-01

    Proteinaceous moieties are critical elements in most detection systems, including biosensing platforms. Their potential is undoubtedly vast, yet many issues regarding their full exploitation remain unsolved. On the other hand, the biosensor formats with the higher marketability probabilities are enzyme in nature and electrochemical in concept. To no surprise, alternative materials for hosting catalysis within an electrode casing have received much attention lately to demonstrate a catalysis-coated device. Graphene and ZnO are presented as ideal materials to modify electrodes and biosensor platforms, especially in protein-based detection. Our group developed electrochemical sensors based on these nanomaterials for the sensitive detection of cholesterol using cholesterol oxidase incorporated in stabilized lipid films. A comparison between the two platforms is provided and discussed. In a broader sense, the not-so-remote prospect of quickly assembling a protein-based flexible biosensing detector to fulfill site-specific requirements is appealing to both university researchers and industry developers. PMID:27618113

  3. Nitric Acid Revamp and Upgrading of the Alarm & Protection Safety System at Petrokemija, Croatia

    OpenAIRE

    Hoško, I.; Zečević, N.; Pavlaković, S.

    2012-01-01

    Every industrial production, particularly chemical processing, demands special attention in conducting the technological process with regard to the security requirements. For this reason, production processes should be continuously monitored by means of control and alarm safety instrumented systems. In the production of nitric acid at Petrokemija d. d., the original alarm safety system was designed as a combination of an electrical relay safety system and transistorized alarm module system. I...

  4. Intelligent alarms detection for the analysis of system fault impact on business

    OpenAIRE

    Pace, C.; Russo, I; Fernández, V.; Britos, Paola Verónica; Rossi, Bibiana D.; García Martínez, Ramón

    1998-01-01

    The tools for fault impact analysis are important for the deployment of critical mission systems. These tools can be also used as a development phase aid. We introduce several concepts related to "business alarms". Business alarms are an approximation to the company's business conceptual scheme driven by the business rules from systems conceptual schemes. In order to specify them we propose the utilization of Knowledge Engineering typical techniques. The object of alarm detection for impa...

  5. Mass Transport Effects in Suspended Waveguide Biosensors Integrated in Microfluidic Channels

    Directory of Open Access Journals (Sweden)

    Andrea M. Armani

    2012-10-01

    Full Text Available Label-free optical biosensors based on integrated photonic devices have demonstrated sensitive and selective detection of biological analytes. Integrating these sensor platforms into microfluidic devices reduces the required sample volume and enables rapid delivery of sample to the sensor surface, thereby improving response times. Conventionally, these devices are embedded in or adjacent to the substrate; therefore, the effective sensing area lies within the slow-flow region at the floor of the channel, reducing the efficiency of sample delivery. Recently, a suspended waveguide sensor was developed in which the device is elevated off of the substrate and the sensing region does not rest on the substrate. This geometry places the sensing region in the middle of the parabolic velocity profile, reduces the distance that a particle must travel by diffusion to be detected, and allows binding to both surfaces of the sensor. We use a finite element model to simulate advection, diffusion, and specific binding of interleukin 6, a signaling protein, to this waveguide-based biosensor at a range of elevations within a microfluidic channel. We compare the transient performance of these suspended waveguide sensors with that of traditional planar devices, studying both the detection threshold response time and the time to reach equilibrium. We also develop a theoretical framework for predicting the behavior of these suspended sensors. These simulation and theoretical results provide a roadmap for improving sensor performance and minimizing the amount of sample required to make measurements.

  6. Biosensor con nanoparticulas metálicas

    OpenAIRE

    Pino González de la Higuera, Pablo del; Pelaz, Beatriz; Polo, Ester; Grazú Bonavia, Valeria; MARTÍNEZ DE LA FUENTE, Jesús; Parro-García, Víctor

    2012-01-01

    La presente invención se refiere a un biosensor donde la detección del analito se realiza de forma visual por el cambio de color en las zonas del soporte en que el analito esté presente producido por las nanopartículas al ser irradiadas con una fuente de luz externa

  7. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    Science.gov (United States)

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  8. Design & fabrication of cantilever array biosensors

    DEFF Research Database (Denmark)

    Boisen, Anja; Thundat, T

    2009-01-01

    Surface immobilization of functional receptors on microfabricated cantilever arrays offers a new paradigm for the development of biosensors based on nanomechanics. Microcantilever-based systems are capable of real-time, multiplexed detection of unlabeled disease markers in extremely small volumes...

  9. Bioluminescent bacteria: lux genes as environmental biosensors

    OpenAIRE

    Nunes-Halldorson Vânia da Silva; Duran Norma Letícia

    2003-01-01

    Bioluminescent bacteria are widespread in natural environments. Over the years, many researchers have been studying the physiology, biochemistry and genetic control of bacterial bioluminescence. These discoveries have revolutionized the area of Environmental Microbiology through the use of luminescent genes as biosensors for environmental studies. This paper will review the chronology of scientific discoveries on bacterial bioluminescence and the current applications of bioluminescence in env...

  10. Diamond for bio-sensor applications

    Czech Academy of Sciences Publication Activity Database

    Nebel, C.E.; Rezek, Bohuslav; Shin, D.; Uetsuka, H.; Yang, N.

    2007-01-01

    Roč. 40, - (2007), s. 6443-6466. ISSN 0022-3727 Institutional research plan: CEZ:AV0Z10100521 Keywords : diamond * biosensors * DNA * surface functionalization Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.200, year: 2007

  11. Whole-Cell Optical Biosensor for PCBs

    Czech Academy of Sciences Publication Activity Database

    Gavlasová, Pavla; Kuncová, Gabriela; Macková, M.

    Manchester: -, 2006, s. 83-84. [Photon06: Optics and Photonics 2006. Manchester (GB), 04.09.2006-07.09.2006] R&D Projects: GA ČR(CZ) GA104/05/2637; GA MŠk(CZ) OC 121 Institutional research plan: CEZ:AV0Z40720504 Keywords : biosensor * polychlorinated biphenyls Subject RIV: CE - Biochemistry

  12. Nerve Agents Assay Using Cholinesterase Based Biosensor

    Czech Academy of Sciences Publication Activity Database

    Pohanka, M.; Dobeš, Petr; Drtinová, L.; Kuča, K.

    2009-01-01

    Roč. 21, č. 10 (2009), s. 1177-1182. ISSN 1040-0397 Grant ostatní: GA MO(CZ) OVUOFVZ200807 Institutional research plan: CEZ:AV0Z40550506 Keywords : organophosphate * biosensor * acetylcholinesterase Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.630, year: 2009

  13. Fiber optic-based regenerable biosensor

    Science.gov (United States)

    Sepaniak, Michael J.; Vo-Dinh, Tuan

    1993-01-01

    A fiber optic-based regenerable biosensor. The biosensor is particularly suitable for use in microscale work in situ. In one embodiment, the biosensor comprises a reaction chamber disposed adjacent the distal end of a waveguide and adapted to receive therein a quantity of a sample containing an analyte. Leading into the chamber is a plurality of capillary conduits suitable for introducing into the chamber antibodies or other reagents suitable for selective interaction with a predetermined analyte. Following such interaction, the contents of the chamber may be subjected to an incident energy signal for developing fluorescence within the chamber that is detectable via the optical fiber and which is representative of the presence, i.e. concentration, of the selected analyte. Regeneration of the biosensor is accomplished by replacement of the reagents and/or the analyte, or a combination of these, at least in part via one or more of the capillary conduits. The capillary conduits extend from their respective terminal ends that are in fluid communication with the chamber, away from the chamber to respective location(s) remote from the chamber thereby permitting in situ location of the chamber and remote manipulation and/or analysis of the activity with the chamber.

  14. Amperometric biosensors based on conducting nanotubes

    NARCIS (Netherlands)

    Kros, Alexander

    2000-01-01

    This thesis describes a multidisciplinary study towards the development of a glucose biosensor that in the future can be used for in vivo implantations. The research focuses on three major topics, viz. the construction of the glucose sensor, the development of a biocompatible coating and a study of

  15. Surface plasmon resonance biosensors for food safety

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří

    Ottawa: [NATO], 2004, nestránkováno. [NATO Advanced Research Workshop "Fontiers in Planar Lightwave Circuit Technology: Design, Simulation and Fabrication".. Ottawa (CA), 21.09.2004-25.09.2004] Institutional research plan: CEZ:AV0Z2067918 Keywords : optical sensors * biosensors * surface plasmon resonance Subject RIV: JB - Sensors, Measurment, Regulation

  16. Internal pump monitoring device

    International Nuclear Information System (INIS)

    In the present invention, a thermometer is disposed at the upper end of an internal pump casing of a coolant recycling system in a BWR type reactor to detect leakage of reactor water thereby ensuring the improvement of reliability of the internal pump. Namely, a thermometer is disposed, which can detect temperature elevation occurred when water in the internal pump leaked from a reactor pressure vessel passes through the gap between a stretch tube and an upper end of the pump casing. Signals from the thermometer are transmitted to a signal processing device by an instrumentation cable. The signal processing device generates an alarm when the temperature signal exceeds a predetermined value and announces that leakage of reactor water occurs in the internal pump. Since the present invention can detect the leakage of the reactor water in the pump casing in an early stage, it can contribute to the improvement of the safety and reliability of the internal pump. (I.S.)

  17. A Smart Cyber-physical Alarm System and its Application for Assisted Living

    Directory of Open Access Journals (Sweden)

    Zhe-Ming Lu

    2013-01-01

    Full Text Available Security issues are increasingly obvious. An automated real-time online alarm system to ensure the safety of property and personality while considering numerous smart Terminal Equipments (TE becomes a major challenge. At the same time, this is representative of novel and emerging alarm system for assisted living in the daily life. Two problems of current alarm system are identified. A smart Cyber-Physical Alarm System (CPAS based approach is proposed to address these problems. A prototype system installed in a house to assist living has been running stably and shows quite promising performance.

  18. Accident alarm equipment for steam generator, especially liquid sodium heated steam generator

    International Nuclear Information System (INIS)

    The alarm equipment consists of a system of sensors mounted onto the steam generator and its accessories. Each of the sensors is used for a different accident characteristic, such as the flow of sodium, the acoustic spectrum, the concentration of hydrogen in sodium. The system of sensors is connected to the common accident alarm system. The equipment will not issue the alarm signal if it receives a message from only one sensor, only when the message is confirmed from other sensors. This excludes false alarm. (M.D.)

  19. Advanced alarm system design and human performance: Guidance development and current research

    International Nuclear Information System (INIS)

    This paper describes a research program sponsored by the U.S. Nuclear Regulatory Commission to address the human factors engineering (HFE) aspects of nuclear power plant alarm systems. The overall objective of the program is to develop HFE review guidance for advanced alarm systems. Guidance has been developed based on a broad base of technical and research literature. As part of the development effort, aspects of alarm system design for which the technical basis was insufficient to support guidance development were identified and prioritized. Research is currently underway to address the highest priority topics: alarm processing and display characteristics. (author). 29 refs, 2 figs

  20. Surface engineered biosensors for the early detection of cancer

    Science.gov (United States)

    Islam, Muhymin

    Cancer commences in the building block of human body which is cells and in most of the cases remains silent at early stage. Diseases are only expressed at molecular and cellular level at primary stages. Recognition of diseases at this micro and nano level might reduce the mortality rate of cancer significantly. This research work aimed to introduce novel electronic biosensors for for identification of cancer at cellular level. The dissertation study focuses on 1) Label-Free Isolation of Metastatic Tumor Cells Using Filter Based Microfluidic device; 2) Nanotextured Polymer Substrates for Enhanced Cancer Cell Isolation and Cell Growth; 3) Nanotextured Microfluidic Channel for Electrical Profiling and Detection of Tumor Cells from Blood; and 4) Single Biochip for the Detection of Tumor Cells by Electrical Profile and Surface Immobilized Aptamer. Standard silicon processing techniques were followed to fabricate all of the biosensors. Nantoextruing and surface functionalizon were also incorporated to elevate the efficiency of the devices. The first approach aimed to detect cancer cells from blood based on their mechanophysical properties. Cancer cells are larger than blood cells but highly elastic in nature. These cells can squeeze through small microchannels much smaller than their size. The cross sectional area of the microchannels was optimized to isolate tumor cells from blood. Nanotextured polymer substrates, a platform inspired from the natural basement membrane was used to enhance the isolation and growth of tumor cells. Micro reactive ion etching was performed to have better control on features of nantoxtured surfaces and did not require any template. Next, electrical measurement of ionic current was performed across single microchannel to detect tumor cells from blood. Later, nanotexturing enhanced the efficiency of the device by selectively altering the translocation profile of cancer cells. Eventually aptamer functionalized nanotextured polymer surface was