WorldWideScience

Sample records for biosatellites

  1. Future investigations onboard Soviet biosatellites of the Cosmos series.

    Science.gov (United States)

    Ilyin, E A

    1981-01-01

    Many rat experiments onboard Cosmos biosatellites have furnished information concerning the effects of weightlessness, artificial gravity, and ionizing radiation combined with weightlessness on structural and biochemical parameters of the animal body. The necessity to expand the scope of physiological investigations has led to the project of flight primate studies. It is planned to carry out the first primate experiments onboard the Cosmos biosatellite in 1982. At present investigations of weightlessness effects on the cardiovascular and vestibular systems, higher nervous activity, skeletal muscles and biorhythms of two rhesus monkeys are being developed and tested. It is also planned to conduct a study of weightlessness effects on embryogenesis of rats and bioenergetics of living systems onboard the same biosatellite. Further experiments onboard Cosmos biosatellites are planned.

  2. Investigations onboard the biosatellite Cosmos-1667

    Science.gov (United States)

    Gazenko, O. G.; Ilyin, E. A.

    The program of the 7-day flight of the biosatellite Cosmos-1667 launched in July 1985 included experiments on two rhesus monkeys, ten Wistar SPF rats, ten newts, Drosophila flies, maize seedlings, lettuce sprouts, and unicellular organisms - Tetrahymena. The primate study demonstrated that transition to orbital flight was accompanied by a greater excitability of the vestibular apparatus and an increased linear blood flow velocity in the common carotid artery. The rat studies showed that atrophy of antigravity muscles and osteoporosis of limb bones developed even during short-term exposure to microgravity. The experiments on other living systems revealed no microgravity effects on the cell division rate, proliferative activity of cells of regenerating tissues and organs, energy metabolism of developing insects, structure or chemical composition of higher plant seedlings.

  3. Preliminary results of scientific research on biosatellite KOSMOS-1129

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The first physiological study aimed at deeper examination mechanisms of weightlessness and adaptation/readaptation is described. It dealt with metabolism, support motor changes and nonspecific changes connected with stress reaction. Wistar rats were used in a triple setup: flight/vivarium/biosatellite mockup. Animal condition was assessed on motor activity and body temperature. Extensive tables show weight, blood and enzyme analysis, etc. Animals groups were labeled: stress, behavior, body composition, biorhythm, ontogenesis. The second or biological study dealt with tumorous carrot tissues but humidity control was defective: some indices are reported such as cell membrane permeability, tissue respiration, etc. It also was concerned with a fowl embryogenetic experiment (Japanese quail) but mechanical effects on landing reduced its success. The third study, on radiation dosimetry, presents a little tabulated data but chiefly gives lists of satellite detector units of different kinds and from different countries.

  4. The digestive tract of rat after flight in the biosatellite Cosmos 1667.

    Science.gov (United States)

    Groza, P; Bordeianu, A; Boca, A

    1987-01-01

    From the histochemical investigation carried out on the digestive tract of rats after 7 days space flight in the soviet biosatellite Cosmos 1667 it resulted that neutral and acid glycoproteins diminished slightly in the sublingual gland, stomach, small intestine and the colon. Some intestinal enzymes augmented (leucineaminopeptidase, acid phosphatase, adenosinetriphosphatase and glucose-6-phosphatase). The changes observed after this flight were less marked than after an 18 day flight (in the Soviet biosatellite Cosmos 936 and 1129) and similar to those revealed after 7 days of hypokinesia. The glycoprotein changes were close to those observed after a 5-day flight (Cosmos 1514) but in which there were pregnant rats; after these last flights, the enzymes were not studied.

  5. Catecholamines and their enzymes in discrete brain areas of rats after space flight on biosatellites Cosmos.

    Science.gov (United States)

    Kvetnansky, R; Culman, J; Serova, L V; Tigranjan, R A; Torda, T; Macho, L

    1983-01-01

    The activity of the catecholaminergic system was measured in the hypothalamus of rats which had experienced an 18.5-19.5-day-long stay in the state of weightlessness during space flights on board Soviet biosatellites of the type Cosmos. In the first two experiments, Cosmos 782 and 936, the concentration of norepinephrine and the activities of synthesizing enzymes tyrosine hydroxylase and dopamine-beta-hydroxylase and of the degrading enzyme monoamine oxidase were measured in the total hypothalamus. None of the given parameters was changed after space flight. In the light of the changes of these parameters recorded after exposure to acute stress on Earth, this finding indicates that long-term state of weightlessness does not represent an intensive stressogenic stimulus for the system studied. In the space experiment Cosmos 1129, the concentration of norepinephrine, epinephrine, and dopamine was studied in isolated nuclei of the hypothalamus of rats within 6-10 hr following return from space. Norepinephrine was found to be significantly reduced in the arcuate nucleus, median eminence and periventricular nucleus, epinephrine in the median eminence, periventricular and suprachiasmatic nuclei, whereas dopamine was not significantly changed after space flight. The decreased catecholamine levels found in some hypothalamic nuclei of rats which had undergone space flight indicate that no chronic intensive stressor could have acted during the flight, otherwise the catecholamine concentration would have been increased in the nuclei. The decreased levels must have been induced by the effect of a stressogenic factor acting for a short time only, and that either during the landing maneuver or immediately after landing. Thus long-term exposure of the organism to the state of weightlessness does not represent a stressogenic stimulus for the catecholaminergic system in the hypothalamus, which is one of the regulators of the activation of neuroendocrine reactions under stress.

  6. The 2013 German-Russian BION-M1 Joint Flight Project: Skeletal Muscle and Neuromuscular Changes in Mice Housed for 30 Days in a Biosatellite on Orbit

    Science.gov (United States)

    Blottner, Dieter; Shenkman, Boris; Salanova, Michele

    Exposure to microgravity results in various structural, biochemical and molecular changes of the skeletal neuromuscular system. The BION Joint Flight Proposal between the Charité Berlin Center of Space Medicine (www.zwmb.de) in Berlin, and the Institute of Biomedical Problem (IMBP) in Moscow, provided an exciting opportunity for a more detailed analysis of neuromuscular changes in mice (C57/bl6) exposed to real microgravity housed for 30 days in a BION M1 biosatellite on orbit. The mice from the BION flight group (n=5) were compared to three different on-ground control groups (Flight control, BION-ground and Vivarium, each n=5 mice). We started to analyse various skeletal muscles from the hind limbs or trunk. Apart from routine structural and biochemical analysis (fiber size and type distribution, slow/fastMyHC) we test the hypothesis for the presence of a microgravity-induced sarcolemma-cytosolic protein shift of nitric oxide synthase (NOS) and partial loss in neuromuscular synapse scaffold protein (Homer) immunoexpression known to be prone to disuse in mice or humans (hind limb unloading, bed rest) as previously shown (Sandonà D et al., PLoS One, 2012, Salanova M et al., FASEB J, 2011). National Sponsors: Federal Ministry of Economics and Technology (BMWi) via the German AeroSpace Board, DLR e.V., Bonn-Oberkassel, Germany (#50WB1121); Contract RAS-IMBP/Charité Berlin # Bion-M1/2013

  7. Protein composition in human plasma after long-term orbital missions and in rodent plasma after spaceflights on biosatellites "Cosmos-1887" and "Cosmos-2044".

    Science.gov (United States)

    Larina, O N

    1991-02-01

    The two-dimensional plasma protein map of crewmembers of long-duration "Mir" expeditions obtained the day after the recovery shows a manifold increase in the content of several proteins normally seen in trace amounts. The emergence of several unusual protein spots occurs as well, some of them probably due to charge shifts provided by the events influencing posttranslational modification processes. By the 8 postflight day these phenomena were disappeared. In the "Cosmos-1887" biosatellite experiment, the plasma samples obtained two days after the landing as well as plasma of synchronous animals exhibited the higher fibrinogen levels when compared to those of vivarium animals. The protein consisting of a number of fractions with molecular weight of 50 to 60 kD and pI 5 to 6 had protein spots of similar size in flight and synchronous animals while in vivarium rats one of the spots was larger in size as opposed to the others. The plasma protein spectrum of flight and synchronous groups of animals in "Cosmos-1887" experiment where plasma samples were prepared in the period of time from 5 to 10 hours after spaceflight coincided with the pattern of vivarium animals. The data suggest that the protein changes described above develop during postflight period and accelerations, vibrations, readaptation to 1 G gravity, emotional stress could be the cause of these alterations.

  8. Comparison of cytogenetic effects in bone marrow of mice after the flight on the biosatellite "BION-M1" and the ground-based radiobiological experiment

    Science.gov (United States)

    Dorozhkina, Olga; Vorozhtsova, Svetlana; Ivanov, Alexander

    2016-07-01

    During space flight, the astronauts are exposed to radiation exposure at low doses with low dose rates, so one of the actual areas of Radiobiology is research of action of ionizing radiation in low and ultra-low doses. Violation of the chromosome apparatus of living biosystems, ranging from viruses and bacteria to humans, is the most reliable evidence of exposure to ionizing radiation. In this regard, the study of cytogenetic damage in the cells of humans and animals is central to space radiobiology (Fedorenko B.S., 2006). In experiment "BION - M1" by anaphase method was determined level of chromosomal aberrations in bone marrow cells of tibia of mice. Flight duration biosatellite "BION - M1" (Sychev V.N. et al., 2014) was 30 days in Earth orbit. Euthanasia of experimental animals was carried out after 12 hours from the moment of landing satellite by method of cervical dislocation. The level of chromosomal aberrations in vivarium-housed control mice was 1,75 ± 0,6% and 1,8 ± 0,45%, while the mitotic index 1,46 ± 0,09% and 1,53 ± 0,05%. The content of animals in the experiment with onboard equipment led to some increase in aberrant mitosis (2,3 ± 0,4%) and reduction of the mitotic index (1,37 ± 0,02%). In the flight experiment "BION-M1" was a statistically significant increase in level of chromosome aberrations (29,7 ± 4,18%) and a decrease in the mitotic index (0,74 ± 0,07%). According to VA Shurshakova (2014), the radiation dose to mice ranged from 32 to 72 mGy and relate to a range of small doses (ICRP, 2012). In this connection we conducted a series of experiments in the ground conditions, the aim of which was the study of earliest effects of ionizing radiation in vivo in mice irradiated with low doses of γ-irradiation of 10 to 200 mGy in the first 24 hours after exposure, i.e. within the first post-radiation exposure cell cycle. Studies were carried out on adult female mice outbred ICR (CD-1) - SPF category at the age of 4-4.5 months with an average

  9. Effects of spaceflight in the adductor longus muscle of rats flown in the Soviet Biosatellite COSMOS 2044. A study employing neural cell adhesion molecule (N-CAM) immunocytochemistry and conventional morphological techniques (light and electron microscopy)

    Science.gov (United States)

    D'Amelio, F.; Daunton, N. G.

    1992-01-01

    The effects of spaceflight upon the "slow" muscle adductor longus were examined in rats flown in the Soviet Biosatellite COSMOS 2044. The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leukocytes and mononuclear cells. Neural cell adhesion molecule immunoreactivity (N-CAM-IR) was seen on the myofiber surface and in regenerating myofibers. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with apparent preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments. The principal electron microscopic changes of the neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles replaced by microtubules and neurofilaments, degeneration of axon terminals, vacant axonal spaces and changes suggestive of axonal sprouting. The present observations suggest that alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.

  10. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 1; A Study Employing Neural Cell Adhesion Molecules (N-CAM) Immunocytochemistry and Conventional Morphological Techniques (Light and Electron Microscopy)

    Science.gov (United States)

    Daunton, N. G.; DAmelio, F.; Wu, L.; Ilyina-Kakueva, E. I.; Krasnov, I. B.; Hyde, T. M.; Sigworth, S. K.

    1994-01-01

    The effects of spaceflight upon the 'slow' muscle adductor longus was examined in rats flown in the Soviet Biosatellite COSMOS 2044. Three groups - synchronous, vivarium and basal served as controls. The techniques employed included standard methods for light microscopy, N-CAM immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy, contraction bands and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leucocytes and mononuclear cells. N-CAM immunoreactivity was seen (N-CAM-IR) on the myofiber surface, satellite cells and in regenerating myofibers reminiscent of myotubes. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments that displayed varied distributive patterns. The principal electron microscopic changes of the neuromuscular junctions consisted of a decrease or absence of synaptic vesicles, degeneration of axon terminals, increased number of microtubules, vacant axonal spaces and axonal sprouting. The present observations indicate that major alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.

  11. [Cytogenetic investigations of bone marrow cells from mice exposed onboard biosatellite "Bion-M1"].

    Science.gov (United States)

    Dorozhkina, O V; Ivanov, A A

    2015-01-01

    The results of studying the mitotic activities and chromosomal aberrations in bone marrow cells from C57/BL6N mice with the help of the anaphase technique in 12 hours after completion of the 30-day "Bion-M1" mission and ground-based experiment using flight equipment are presented. A statistically reliable decline of the mitotic activity (0.74%) was found in cells taken from the space flown animals. In the ground-based experiment, a statistically reliable downward trend in proliferative activity (1.37%) was revealed after the comparison with groups of vivarium control (1.46-1.53%). In both experiments mice increased the number of initial mitotic phases (prophase + metaphase) relative to the sum of anaphases and telophases. The number of aberrant mitoses grew reliably in the group of flight animals by 29.7%, whereas in the ground-based experiment an upward trend was insignificant as their number increased up to 2.3% only. In the vivarium controls aberrant mitoses constituted 1.75-1.8%. An increase in chromosomal aberrations was largely due to such abnormalities as fragments. These findings seem to have been a result of summation of the effects of radiation and other stressful factors in space flight.

  12. [Cytogenetic investigations of bone marrow cells from mice exposed onboard biosatellite "Bion-M1"].

    Science.gov (United States)

    Dorozhkina, O V; Ivanov, A A

    2015-01-01

    The results of studying the mitotic activities and chromosomal aberrations in bone marrow cells from C57/BL6N mice with the help of the anaphase technique in 12 hours after completion of the 30-day "Bion-M1" mission and ground-based experiment using flight equipment are presented. A statistically reliable decline of the mitotic activity (0.74%) was found in cells taken from the space flown animals. In the ground-based experiment, a statistically reliable downward trend in proliferative activity (1.37%) was revealed after the comparison with groups of vivarium control (1.46-1.53%). In both experiments mice increased the number of initial mitotic phases (prophase + metaphase) relative to the sum of anaphases and telophases. The number of aberrant mitoses grew reliably in the group of flight animals by 29.7%, whereas in the ground-based experiment an upward trend was insignificant as their number increased up to 2.3% only. In the vivarium controls aberrant mitoses constituted 1.75-1.8%. An increase in chromosomal aberrations was largely due to such abnormalities as fragments. These findings seem to have been a result of summation of the effects of radiation and other stressful factors in space flight. PMID:25958465

  13. [Experiments with cultures of mammalian cells aboard the biosatellite "Cosmos-782"].

    Science.gov (United States)

    Sushkov, F V; Rudneva, S V; Nadtocheĭ, G A; Polikarpova, S I; Portugalov, V V

    1977-10-01

    A considerable contribution to the investigation on biological importance of weightlessness was made by the experiments with animals in the artificial Earth satelites (AES) of "Cosmos" type. Cell cultures can serve as an ideal model to get a direct cell response to the effect of external factors. For the experiment in the AES "Cosmos-782", two thoroughly examined cell strains (L and 237) were chosen, which differed in a number of parameters (for example, duration of their mitotic cycles). Density of cell seeding and temperature of their cultivation in the laboratory experiment were calculated in such a way that the whole cycle of the culture development should take place under the conditions of weightlessness: the beginning of lag-phase--before launching and the stationary phase--after landing. The weightlessness was not shown to result in any genetical shifts revealed at chromosomal level. When cultivated after the flight, the cells do not change their mitotic cycle parameters, mitotic course and structural organization. The data obtained in the experiments with AES "Cosmos-368" and "Cosmos-782" (increase of mitotic index, some forms of mitotic pathology during the first terms of cultivation after the flight and enlargement of cellular nuclei) demonstrate the changes in the cell population which have formed under the conditions of weightlessness. Similar changes are observed while the cells propagate in the laboratory conditions. Indirect data on an earlier cell culture aging during the flight do not exclued the possibility that under weightlessness the rate of cell propagation could differ from that under gravitation.

  14. Renin-angiotensin-aldosterone system and electrolyte metabolism in rat blood after flight aboard Cosmos-1129 biosatellite

    Energy Technology Data Exchange (ETDEWEB)

    Kvetnansky, R.; Tigranyan, R.A.; Jindra, A.; Viting, T.A.

    1982-08-01

    Blood plasma aldosterone concentration and renin activity were studied in rats flow in space on the Cosmos 1129 satellite using radioimmunoassay techniques. Immediately after the flight, the animals presented significant decreases in plasma renin activity, as compared to rats in the vivarium control and animals in the synchronous experiment. R. J.

  15. [Dynamics of lipid concentration changes in the livers of rats on biosatellites "Cosmos-605" and "Cosmos-782"].

    Science.gov (United States)

    Iakovleva, V I

    1977-10-01

    Histological and histochemical investigation was carried out with rat liver specimens taken 9-11 h (from 6 rats), 24 (from 7 rats), 48 h (from 8 rats), and 25 (from 5 rats) and 27 days (from 7 rats) after the completion of 19.5- and 22.5-day of space bioflights in "Cosmos-605" and "Cosmos-782". The same number of specimens was investigated from corresponding models of the experiments carried out in the laboratory and from the control rats. The investigations demonstrated that in the rats sacrificed during the first two days, and in 25 and 27 days after the completion of the flight, no morphological changes developed in comparison with the control and with the animals from the laboratory experiments. Only some fluctuations in lipid content could be noticed in connection with the time of samples taking after the completion of the experiments. The greatest amount of lipids in the liver was observed in the rats sacrified 9-11 h after the completion of the flight, in 24 h the lipid level was still rather high, and in 48 h there was a tendency to their decrease. In 25 and 27 days the livers of the animals from the experimental group did not differ in their lipid content from those of the control animals. The changes in the lipid content observed in the liver during 8-48 h after the flight completion and during the period of afteraction indicate the reversibility of the adipose infiltration process, connected with lipid mobilization, dependent on stress-reaction.

  16. Experiment K-7-30: Effects of Spaceflight in the Cosmos Biosatellite 2044 on the Vestibular-Ocular Reflex (VOR) of Rhesus Monkeys

    Science.gov (United States)

    Cohen, B.; Cohen, N.; Helwig, D.; Solomon, D.; Kozlovskaya, I.; Sirota, M.; Yakushin, S.; Raphan, T.

    1994-01-01

    This technical paper discusses the following: (1) The VOR of two rhesus monkeys was studied before and after 14 days of spaceflight to determine effects of microgravity on the VOR. Horizontal, vertical and roll eye movements were recorded in these and six other monkeys implanted with scleral search coils. Animals were rotated about a vertical axis to determine the gain of the horizontal, vertical and roll VOR. They were rotated about axes tilted from the vertical (off-vertical axis rotation, OVAR) to determine steady state gains and effects of gravity on modulations in eye position and eye velocity. They were also tested for tilt dumping of post-rotatory nystagmus. (2) The gain of the horizontal VOR was close to unity when animals were tested 15 and 18 hours after flight. VOR gain values were similar to those registered before flight. If the gain of the horizontal VOR changes in microgravity, it must revert to normal soon after landing. (3) Steady state velocities of nystagmus induced by off-vertical axis rotation (OVAR) were unchanged by adaptation to microgravity, and the phase of the modulations was similar before and after flight. However, modulations in horizontal eye velocity had more variation after landing and were on mean about 50% larger for angles of tilt of the axis of rotation between 50 and 90?/s after flight. This difference was similar in both animals and was significant. (4) A striking finding was that tilt dumping was lost in the one animal tested for this function. This loss persisted for several days after return. This is reminiscent of the loss of response to pitch while rotating in the M-131 experiments of Skylab, and must be studied in detail in future spaceflights. (5) Thus, two major findings emerged from these studies: after spaceflight the modulation of horizontal eye velocity was larger during OVAR, and one animal lost its ability to tilt-dump its nystagmus. Both findings are consistent with the postulate that adaptation to microgravity causes alterations in the way that otolith information is processed in the central nervous system. The experiments lay the groundwork for studying the vertical and roll VOR before and after future space flights, as well as for studying modulations in vertical and roll eye position during OVAR and tilt dumping.

  17. Full-genome study of gene expression in lumbar spinal cord of mice after 30-day space flight on Bion-M1 biosatellite

    Science.gov (United States)

    Islamov, R. R.; Gusev, O. A.; Tanabe, A.; Terada, M.; Tyapkina, O. V.; Petrov, K. A.; Rizvanov, A. A.; Kozlovskaya, I. B.; Nikolskiy, E. E.; Grigorjev, A. I.

    2016-05-01

    Zero-gravity is one of the factors that negatively affect a man in space and it is not a surprise as the evolution of all living things proceeded in a one-G environment. The negative effects of zero-gravity set in while in space, but clinically manifest themselves following the cosmonauts' return to Earth, the usual one-G environment. All the systems of the organism, which adapted to the virtually weight-free environment, become incapable of regular performance in a one-G environment.

  18. Changes in the numbers of osteoclasts in newts under conditions of microgravity

    Science.gov (United States)

    Berezovska, O. P.; Rodionova, N. V.; Grigoryan, E. N.; Mitashov, V. I.

    Intensity of osteoclastic resorption and calcium content were investigated in intact limb bones of the newts flown on board of a biosatellite Cosmos-2229 after amputation of their forelimbs and tail. Using X-ray microanalysis it was shown an increase in calcium content in the bones on 20^th day after operation. Histological study revealed an activation of osteoclastic resorption on endosteal surface of long bones. The newts exposed after surgery on a biosatellite had the same level of bone mineralisation as operated ground control ones, but the increase in number of polynuclear osteoclasts was lower.

  19. [STRUCTURAL-FUNCTIONAL STATUS OF THE LYMPH TISSUE OF MICE LYMPHATIC NODES FOLLOWING THE 30-DAY FLIGHT ONBOARD SPACECRAFT BION-M1].

    Science.gov (United States)

    Bulekbaeva, L E; Demchenko, G A; Ilyin, E A; Erofeeva, L M

    2015-01-01

    The article reports the results of studying the lymph tissue of mesenteric and cervical lymphatic nodes in C57BL/6N mice after the 30-day orbital flight onboard biosatellite Bion-M1. Histological and morphometric investigations revealed changes in the ratio of the nodes structural-functional zones and microstructure. Reductions in reticular cells, plasmocytes, macrophages and blasts in the nodes point to degradation of both humoral and cellular immunity.

  20. [STRUCTURAL-FUNCTIONAL STATUS OF THE LYMPH TISSUE OF MICE LYMPHATIC NODES FOLLOWING THE 30-DAY FLIGHT ONBOARD SPACECRAFT BION-M1].

    Science.gov (United States)

    Bulekbaeva, L E; Demchenko, G A; Ilyin, E A; Erofeeva, L M

    2015-01-01

    The article reports the results of studying the lymph tissue of mesenteric and cervical lymphatic nodes in C57BL/6N mice after the 30-day orbital flight onboard biosatellite Bion-M1. Histological and morphometric investigations revealed changes in the ratio of the nodes structural-functional zones and microstructure. Reductions in reticular cells, plasmocytes, macrophages and blasts in the nodes point to degradation of both humoral and cellular immunity. PMID:26554128

  1. Space flight and radiaton effects on aminoacid metabolism in skeletal muscles of rats

    International Nuclear Information System (INIS)

    The results are presented on the investigation of aminoacid metabolism in the skeletal muscles of rats after the flight on the Cosmos-690 biosatellite. It is demonstrated that a combined effect of 20.5 - day space flight and gamma-irradiation at doses of 220, 670 and 955 rad has reduced the content of a number of biologically important aminoacids and inhileited the activity of aspartate aminotransferase of sarcoplasmatic proteins

  2. Blood and clonogenic hemopoietic cells of newts after the space flight

    Science.gov (United States)

    Michurina, T. V.; Domaratskaya, E. I.; Nikonova, T. M.; Khrushchov, N. G.

    Ribbed newts were used for studying the effect of space flight on board of the biosatellite (Cosmos-2229) on blood and clonogenic hemopoietic cells. In blood of newts of the flight group, the relative proportion of neutrophils increased, whereas that of lymphocytes and eosinophils decreased. Space flight did not result in loss of the ability of newt blood cells to incorporate H^3-thymidine. Analysis of clonogenic hemopoietic cells was performed using the method of hemopoietic colony formation on cellulose acetate membranes implanted into the peritoneal cavity of irradiated newts. To analyze reconstitution of hemopoiesis after irradiation donor hemopoietic cells from flight or control newts were transplanted into irradiated newts whose hemopoietic organs were investigated. The newt can be considered an adequate model for studying hemopoiesis under the conditions of the space flight. Previous studies on rats subjected to 5- to 19-day space flights revealed a decrease in the number of clonogenic cells in their hemopoietic organs accompanied by specific changes in the precursor cell compartment and in blood /1,2/. Hence, it was interesting to analyze blood and hemopoietic tissue of lower vertebrates after a space flight and to compare the response to it of animals belonging to different taxonomic groups. We analyzed blood and clonogenic hemopoietic cells of ribbed newts, Pleurodeles waltl (age one year, weight 20-28 g) subjected to a 12-day space flight on board of a Cosmos-2229 biosatellite. The same animals were used in studies on limb and lens regeneration. The results were compared with those obtained with control groups of newts: (1) basic control, operated newts sacrificed on the day of biosatellite launching (BC); (2) synchronous control, operated newts kept in the laboratory under simulated space flight conditions (SC); and (3) intact newts (IC).

  3. Experiment K-6-13. Morphological and biochemical examination of heart tissue. Part 1: Effects of microgravity on the myocardial fine structure of rats flown on Cosmos 1887. Ultrastructure studies. Part 2: Cellular distribution of cyclic ampdependent protein kinase regulatory subunits in heart muscle of rats flown on Cosmos 1887

    Science.gov (United States)

    Philpott, D. E.; Kato, K.; Stevenson, J.; Miquel, Jaime; Mednieks, M. I.; Sapp, W.; Popova, I. A.; Serova, L. V.

    1990-01-01

    The left ventricle of hearts from rats flown on the Cosmos 1887 biosatellite for 12.5 days was compared to the same tissue of synchronous and vivarium control animals maintained in a ground based laboratory. The volume density of the mitochondria in the myocardium of the space-flown animals was statistically less (p equal less than 0.01) than that of the synchronous or vivarium control rats. Exposure to microgravity resulted in a certain degree of myocardial degeneration manifested in mitochondrial changes and accumulation of myeloid bodies. Generalized myofibrillar edema was also observed.

  4. Ontogenesis of mammals in microgravity

    Science.gov (United States)

    Gazenko, O. G. (Editor)

    1993-01-01

    This report is an English translation of a Russian report prepared by a group of authors from the USSR, Bulgaria, Hungary, the GDR, Poland, Czechoslovakia, France, and the USA. It presents results of the first microgravity experiment on mammalian embryology performed during the flight of the biosatellite Cosmos-1514 and in ground-based simulation studies. An overview is provided of the data available about the role of gravity in animal growth and development, and future studies into this problem are discussed. A new introduction has been provided for the English version.

  5. [Neurochemical characteristics of rats during flight on the Kosmos-782 artificial satellite and after returning to earth].

    Science.gov (United States)

    Gazenko, O G; Demin, N N; Panov, A N; Rashevskaia, D A; Rubinskaia, N L

    1979-01-01

    The brain of rats flown aboard the biosatellite Cosmos-782 was sampled immediately postflight and taken under neurochemical study. It was shown cytospectrophotometrically that the absolute content of RNA decreased by 20% in the cytoplasm of cerebellar Purkinje cells and remained unaltered in glial cells-satellites, and that the protein content did not change. In the frontal cortex (homogenates) the concentration of sulfhydryl groups decreased by 26%, activity of nonspecific cholinesterase by 33%. The activity of the latter in the cerebellum also diminished.

  6. Microgravity and aging of animals.

    Science.gov (United States)

    Serova, L V

    2001-07-01

    A study of changed gravity effects upon viability, life span and aging is of interest, on one hand, from a practical viewpoint in relation to the growing duration of space missions and on other hand, from a theoretical viewpoint, because gravity is one of the key factors in the evolutionary process on the Earth. In 1978 special conference titled "Space Gerontology" was held. Well known experts in space biology and physiology of aging participated in it. However, all the materiales presented at the conference were based on analogies and on what could be during exposure to microgravity rather than on real data. I shall try to discuss this problem, basing on the results of rats experiments on board "Cosmos" biosatellites and ground based model experiments. Male wistar rats examined after 1-3 weeks exposure to microgravity on board biosatellites demonstrated some changes similar to the signs [correction of sings] of aging, such as decreased motor activity, thymus involution, muscle atrophy, osteoporosis etc. But all these changes were reversible and in rats examined 3 weeks after return to the Earth we did not find any deviations from the controls.

  7. U.S. biological experiments in space

    Science.gov (United States)

    Klein, H. P.

    1981-01-01

    The history of biologic experimentation in space is traced. Early balloon and rocket borne animals showed no abnormalities on the macroscale, and biosatellite launches with bacteria and amoebae revealed no microscopic dysfunctions. Adult Drosophila flies on board Cosmos spacecraft died with a shortened lifespan, while their offspring lived full lifespans. Green pepper plants grown in weightlessness showed a different orientation, but no physiological disturbances. Normal bone growth in rats has been found to almost cease after 11 days in space, and the mean life span of red blood cells decreases by four days. A series of experiments designed by U.S. scientists will be performed on primates provided and flown by the U.S.S.R. Finally, experiments on board Spacelab will involve determination of the persistence of circadian rhythms in bacteria and humans.

  8. Neurospora experiment P-1037. Quarterly progress report to the National Aeronautics and Space Administration, October 1--December 15, 1966

    Energy Technology Data Exchange (ETDEWEB)

    1967-12-01

    The main values of the 302 gantry exercise were to check the preparation of the Neurospora experiment and the spacecraft loading procedure under timed conditions and to provide final assurance that necessary operations can be completed with appropriate inspection in the allotted time. Because of the brief time interval between the 302 Gantry Exercise and the scheduled Biosatellite A flight, no attempt was made to assay for forward-mutation frequecies; however, biocompatibility tests were performed on the 302 hardware by plating conidia from a number of the modules in the usual fashion to assay survival. The average heteokaryotic conidial survival was 82.6%, which is sufficiently high for use of the conidia in a forward-mutation experiment. Calibration of thermoluminescent dosimeters was carried out using a /sup 85/Sr ..gamma.. source.

  9. Man in space: The use of animal models

    Science.gov (United States)

    Ballard, Rodney W.; Souza, Kenneth A.

    Animals have traditionally preceded man into space. During animal and human travels in space over the past almost 30 years, numerous anatomical, physiological, and biochemical changes have been observed. In order to safely qualify humans for extended duration space missions, scientific research needs to be performed. It may be possible to achieve many of these research goals with flight crews serving as experimental subjects; however, to do this with human subjects alone is impractical. Therefore, the use of animal surrogates as experimental subjects is essential to provide the missing information on the effects of spaceflights, to validate countermeasures, and to test medical treatment techniques which will be necessary for long duration missions. This research to assure human health, safety, and productivity in future extended duration space flights will include flights on NASA's Space Shuttle, unmanned biosatellites, and the Space Station Freedom.

  10. Pancreas of C57 black mice after long-term space flight (Bion-M1 Space Mission)

    Science.gov (United States)

    Proshchina, A. E.; Krivova, Y. S.; Saveliev, S. C.

    2015-11-01

    In this study, we analysed the pancreases of C57BL/6N mice in order to estimate the effects of long-term space flights. Mice were flown aboard the Bion-M1 biosatellite, or remained on ground in the control experiment that replicated environmental and housing conditions in the spacecraft. Vivarium control group was used to account for housing effects. Each of the groups included mice designated for recovery studies. Mice pancreases were dissected for histological and immunohistochemical examinations. Using a morphometry and statistical analysis, a strong correlation between the mean islet size and the mean body weight was revealed in all groups. Therefore, we propose that hypokinesia and an increase in nutrition play an important role in alterations of the endocrine pancreas, both in space flight and terrestrial conditions.

  11. Influence of longitudinal whole animal clinorotation on lens, tail, and limb regeneration in urodeles

    Science.gov (United States)

    Anton, H. J.; Grigoryan, E. N.; Mitashov, V. I.

    Two species of newts (Urodela) and two types of clinostats for fast clinorotation (60 rpm) were used to investigate the influence of simulated weightlessness on regeneration and to compare results obtained with data from spaceflight experiments. Seven or fourteen days of weightlessness in Russian biosatellites caused acceleration of lens and limb regeneration by an increase in cell proliferation, differentiation, and rate of morphogenesis in comparison with ground controls. After a comparable time of clinorotation the results obtained with Triturus vulgaris using a horizontal clinostat were similar to those found in spaceflight. In contrast, in Pleurodeles waltl using both horizontal and radial clinostats the results were contradictionary compared to Triturus. We speculate that different levels of gravity or/and species specific thresholds for gravitational sensitivity could be responsible for these contradictionary results.

  12. Review of primary spaceflight-induced and secondary reloading-induced changes in slow antigravity muscles of rats

    Science.gov (United States)

    Riley, D. A.

    We have examined the light and electron microscopic properties of hindlimb muscles of rats flown in space for 1-2 weeks on Cosmos biosatellite flights 1887 and 2044 and Space Shuttle missions Spacelab-3, Spacelab Life Sciences-1 and Spacelab Life Sciences-2. Tissues were obtained both inflight and postflight permitting definition of primary microgravity-induced changes and secondary reentry and gravity reloading-induced alterations. Spaceflight causes atrophy and expression of fast fiber characteristics in slow antigravity muscles. The stresses of reentry and reloading reveal that atrophic muscles show increased susceptibility to interstitial edema and ischemic-anoxic necrosis as well as muscle fiber tearing with disruption of contractile proteins. These results demonstrate that the effects of spaceflight on skeletal muscle are multifaceted, and major changes occur both inflight and following return to Earth's gravity.

  13. Facilities for animal research in space

    Science.gov (United States)

    Bonting, Sjoerd L.; Kishiyama, Jenny S.; Arno, Roger D.

    1991-01-01

    The animal facilities used aboard or designed for various spacecraft research missions are described. Consideration is given to the configurations used in Cosmos-1514 (1983) and Cosmos-1887 (1987) missions; the reusable Biosatellite capsule flown three times by NASA between 1966 and 1969; the NASA's Lifesat spacecraft that is being currently designed; the Animal Enclosure Module flown on Shuttle missions in 1983 and 1984; the Research Animal Holding Facility developed for Shuttle-Spacelab missions; the Rhesus Research Facility developed for a Spacelab mission; and the Japanese Animal Holding Facility for the Space Station Freedom. Special attention is given to the designs of NASA's animal facilities developed for Space Station Freedom and the details of various subsystems of these facilities. The main characteristics of the rodent and the primate habitats provided by these various facilities are discussed.

  14. Vitamin D Status in Monkey Candidates for Space Flight

    Science.gov (United States)

    Arnaud, S. B.; Wronski, T. J.; Koslovskeya, I.; Dotsenko, R.; Navidi, M.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    In preparation for the Cosmos 2229 Biosatellite space flight experiments in Rhesus monkeys, we evaluated the status of vitamin D in animals of different origins: candidates for space flight raised in Moscow (IMBP) and animals housed at Ames Research Ctr. (ARC) for pilot studies. Diets at IMBP were natural foods found by analysis to contain 1.4% Ca, 2.8% P andng/ml,p<.001) in IMBP than ARC animals. 1,25D (174156 vs. 212+77 pg/ml), Pi and AP were similar. In bone, osteoid and osteoblast surfaces averaged 38114% and 33+15% in all, with %vol. of osteoid higher in IMBP than ARC monkeys of the same BW (p<.05) Indices of bone formation were inversely related to 25D, not 1,25D. Of interest are similar 1,25D levels associated with a wide range of substrate and extensive osteoid in bone of D replete animals.

  15. Effects of spaceflight on hypothalamic peptide systems controlling pituitary growth hormone dynamics

    Science.gov (United States)

    Sawchenko, P. E.; Arias, C.; Krasnov, I.; Grindeland, R. E.; Vale, W.

    1992-01-01

    Possible effects of reduced gravity on central hypophysiotropic systems controlling growth hormone (GH) secretion were investigated in rats flown on Cosmos 1887 and 2044 biosatellites. Immunohistochemical (IHC)staining for the growth hormone-releasing factor (GRF), somatostatin (SS), and other hypothalamic hormones was performed on hypothalami obtained from rats. IHC analysis was complemented by quantitative in situ assessments of mRNAs encoding the precursors for these hormones. Data obtained suggest that exposure to microgravity causes a preferential reduction in GRF peptide and mRNA levels in hypophysiotropic neurons, which may contribute to impared GH secretion in animals subjected to spaceflight. Effects of weightlessness are not mimicked by hindlimb suspension in this system.

  16. The Effects of Gravity on the Circadian Timing System

    Science.gov (United States)

    Fuller, Charles A.

    1999-01-01

    All vertebrates have a physiological control system that regulates the timing of the rhythms of their daily life. Dysfunction of this system, the circadian timing system (CTS), adversely affects an organism's ability to respond to environmental challenges and has been linked to physiological and psychological disorders. Exposure to altered gravitational environments (the microgravity of space and hyperdynamic environments produced via centrifugation) produces changes in both the functioning of the CTS and the rhythmic variables it controls. The earliest record of primate rhythms in a spaceflight environment come from Biosatellite III. The subject, a pig-tailed macaque, showed a loss of synchronization of the body temperature rhythm and a fragmented sleep-wake cycle. Alterations in the rhythm of body temperature were also seen in rhesus macaques flown on COSMOS 1514. Squirrel monkeys exposed to chronic centrifugation showed an initial decrease in the amplitude and mean of their body temperature and activity rhythms. In a microgravity environment, Squirrel monkeys on Spacelab-3 showed a reduction in the mean and amplitude of their feeding rhythms. Since 1992 we have had the opportunity to participate on three US/Russian sponsored biosatellite missions on which a total of six juvenile male rhesus macaques were flown. These animals uniformly exhibited delays in the phasing of their temperature rhythms, but not their heart rate or activity rhythms during spaceflight. There was also a tendency for changes in waveform mean and amplitude. These data suggest that the spaceflight environment may have a differential effect on the different oscillators controlling different rhythmic variables. Ongoing studies are examining the effects of +G on the CTS. The long-term presence of humans in space highlights the need for effective countermeasures to gravitational effects on the CTS.

  17. Space Biology in Russia Today

    Science.gov (United States)

    Grigoriev, Anatoly; Sychev, Vladimir; Ilyin, Eugene

    At present space biology research in Russia is making significant progress in several areas of high priority. Gravitational biology. In April-May 2013, a successful 30-day flight of the biological satellite (biosatellite) Bion-M1 was conducted, which carried rodents (mice and gerbils), geckos, fish, mollusks, crustaceans, microorganisms, insects, lower and higher plants, seeds, etc. The investigations were performed by Russian scientists as well as by researchers from NASA, CNES, DLR and South Korea. Foton-M4 carrying various biological specimens is scheduled to launch in 2014. Work has begun to develop science research programs to be implemented onboard Bion-M2 and Bion-M3 as well as on high apogee recoverable spacecraft. Study of the effects of microgravity on the growth and development of higher plants cultivated over several generations on the International Space Station (ISS) has been recently completed. Space radiobiology. Regular experiments aimed at investigating the effects of high-energy galactic cosmic rays on the animal central nervous system and behavior are being carried out using the Particle Accelerator in the town of Dubna. Biological (environmental) life support systems. In recent years, experiments have been performed on the ISS to upgrade technologies of plant cultivation in microgravity. Advanced greenhouse mockups have been built and are currentlyundergoing bioengineering tests. Technologies of waste utilization in space are being developed. Astrobiology experiments in orbital missions. In 2010, the Biorisk experiment on bacterial and fungal spores, seeds and dormant forms of organisms was completed. The payload containing the specimens was installed on the exterior wall of the ISS and was exposed to outer space for 31 months. In addition, Bion-M1 also carried seeds, bacterial spores and microbes that were exposed to outer space effects. The survival rate of bacterial spores incorporated into man-made meteorites, that were attached to the

  18. Study of plant phototropic responses to different LEDs illumination in microgravity

    Science.gov (United States)

    Zyablova, Natalya; Berkovich, Yuliy A.; Skripnikov, Alexander; Nikitin, Vladimir

    2012-07-01

    The purpose of the experiment planned for Russian BION-M #1, 2012, biosatellite is research of Physcomitrella patens (Hedw.) B.S.G. phototropic responses to different light stimuli in microgravity. The moss was chosen as small-size higher plant. The experimental design involves five lightproof culture flasks with moss gametophores fixed inside the cylindrical container (diameter 120 mm; height 240 mm). The plants in each flask are illuminated laterally by one of the following LEDs: white, blue (475 nm), red (625 nm), far red (730 nm), infrared (950 nm). The gametophores growth and bending are captured periodically by means of five analogue video cameras and recorder. The programmable command module controls power supply of each camera and each light source, commutation of the cameras and functioning of video recorder. Every 20 minutes the recorder is sequentially connecting to one of the cameras. This results in a clip, containing 5 sets of frames in a row. After landing time-lapse films are automatically created. As a result we will have five time-lapse films covering transformations in each of the five culture flasks. Onground experiments demonstrated that white light induced stronger gametophores phototropic bending as compared to red and blue stimuli. The comparison of time-lapse recordings in the experiments will provide useful information to optimize lighting assemblies for space plant growth facilities.

  19. Establishment of Korea-Russia bilateral research collaboration for studies on biological effects of cosmic ray and space radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juwoon; Kim, Dongho; Choi, Jongil; Song, Beomseok; Kim, Jaekyung; Kang, Oilhyun; Lee, Yoonjong; Kim, Jinhong; Jo, Minho

    2011-04-15

    {Omicron} KAERI-IBMP joint workshop on countermeasure and application researches to space environments - Sharing of state-of-the-art researches on space radiobiology using bio-satellites (BION-M1, Photon-soil) and ISS module (Bio-risk) was conducted - Sharing and discussion of state-of-the-art researches on dosimetry of space radiation and its affect on organisms were conducted. {Omicron} Making a contract on KAERI-IBMP Joint Research using Bio-risk module - Contract on KAERI-IBMP Joint Research to evaluate effect of space environment (microgravity and space radiation) on fermentative fungi (Aspergillus oryzae), Algae (Nostoc sp.), and plant seeds (rice, Arabidopsis thaliana, Brachypodium distachyon) was made in November, 2010. {Omicron} Discussion on new Joint Researches on evaluation of space radiation on organisms - Final step on Bion-M projects in terms of evaluation of physiological changes of lactic acid bacteria consumed by Mouse - Discussing new joint research on evaluation of physiological changes of primate by space radiation {Omicron} Establishment and management of the practical working group to invite a branch office of the IBMP in Korea - The system and the working group to implement cooperating researches between KAERI-IBMP on space radiation were established.

  20. Structural and functional organisation of regenerated plant protoplasts exposed to microgravity on Biokosmos 9

    Science.gov (United States)

    Klimchuk, D. A.; Kordyum, E. L.; Danevich, L. A.; Tarnavskaya, E. B.; Tairbekov, M. G.; Iversen, T.-H.; Baggerud, C.; Rasmussen, O.

    Preparatory experiments for the IML-1 mission using plant protoplasts, were flown on a 14-day flight on Biokosmos 9 in September 1989. Thirty-six hours before launch of the biosatellite, protoplasts were isolated from hypocotyl cells of rapeseed (Brassica napus) and suspension cultures of carrot (Daucus carota). Ultrastructural and fluorescence analysis of cell aggregates from these protoplasts, cultured under microgravity conditions, have been performed. In the flight samples as well as in the ground controls, a portion of the total number of protoplasts regenerated cell walls. The processes of cell differentiation and proliferation under micro-g did not differ significantly from those under normal gravity conditions. However, in micro-g differences were observed in the ultrastructure of some organelles such as plastids and mitochondria. There was also an increase in the frequency of the occurrence of folds formed by the plasmalemma together with an increase in the degree of complexity of these folds. In cell cultures developed under micro-g conditions, the calcium content tends to decrease, compared to the ground control. Different aspects of using isolated protoplasts for clarifying the mechanisms of biological effects of microgravity are discussed.

  1. Effects of spaceflight on rat humerus geometry, biomechanics, and biochemistry

    Science.gov (United States)

    Vailas, A. C.; Zernicke, R. F.; Grindeland, R. E.; Kaplansky, A.; Durnova, G. N.; Li, K. C.; Martinez, D. A.

    1990-01-01

    The effects of a 12.5-day spaceflight (Cosmos 1887 biosatellite) on the geometric, biomechanical, and biochemical characteristics of humeri of male specific pathogen-free rats were examined. Humeri of age-matched basal control, synchronous control, and vivarium control rats were contrasted with the flight bones to examine the influence of growth and space environment on bone development. Lack of humerus longitudinal growth occurred during the 12.5 days in spaceflight. In addition, the normal mid-diaphysial periosteal appositional growth was affected; compared with their controls, the spaceflight humeri had less cortical cross-sectional area, smaller periosteal circumferences, smaller anterior-posterior periosteal diameters, and smaller second moments of area with respect to the bending and nonbending axes. The flexural rigidity of the flight humeri was comparable to that of the younger basal control rats and significantly less than that of the synchronous and vivarium controls; the elastic moduli of all four groups, nonetheless, were not significantly different. Generally, the matrix biochemistry of the mid-diaphysial cross sections showed no differences among groups. Thus, the spaceflight differences in humeral mechanical strength and flexural rigidity were probably a result of the differences in humeral geometry rather than material properties.

  2. Experiment aboard Russian satellite "Foton M2" in 2005: new approaches for study on stimulating effect of space flight on cell proliferation and regeneration in Urodela

    Science.gov (United States)

    Grigoryan, E.; Almeida, E.; Domaratskaya, E.; Tairbekov, M.; Aleinikova, K.; Mitashov, V.

    A study on space flight effect upon processes of regeneration is due to the necessity to know their characteristics in animals and human exposed to space and earth conditions shortly after flight Several experiments on the newts performed earlier aboard Russian biosatellites showed that the rate of organ and tissue regeneration in space was greater than that on the ground Space flight effect stimulating regeneration was enduring and apparent not only just after flight but long time later as well This observation found support in studies simulated physiological weightlessness by means of fast-rotating clinostat It was shown also that the higher rate of regeneration was associated with enhanced cell proliferation For instance we found that the number of cells in S-phase in regenerating tissues was significantly greater in space-flown animals than in the ground controls However it was unclear whether cell proliferation stimulation was induced by micro- g per se or by conditions of hyper- g during launching and re-adaptation on the earth Molecular mechanisms underlying the change also remained obscure These issues were addressed by the joint Russian-USA experiment Regeneration performed on Foton-M2 in 2005 In 16- day flight we used two well-known models of regeneration lens regeneration after lensectomy and tail regeneration after amputation in adult newts Pleurodeles walt Urodela In order to evaluate cell proliferative activity in time limits of microgravity influence the original method for in-flight delivering DNA precursor BrdU

  3. Studies on clonogenic hemopoietic cells of vertebrate in space: problems and perspectives

    Science.gov (United States)

    Domaratskaya, E. I.; Michurina, T. V.; Bueverova, E. I.; Bragina, E. V.; Nikonova, T. A.; Starostin, V. I.; Khrushchov, N. G.

    Hemopoietic tissues were studied in vertebrates launched aboard the Soviet (Russian) biosatellites ("Cosmos-1129, 1514, 1667, 1887 and 2044"; "Bion-10 and 11") between 1980 and 1996. In the bone marrow of rats exposed to spaceflight conditions, a statistically significant decrease in cell number was revealed in the progenitor cell compartment accounting for the compensatory response of granulocyte—macrophage (CFU-gm) and erythrocyte lineages (BFU-e and CFU-e) and in the compartment of multipotent hemopoietic stem cells (CFU-s), which is responsible for the permanent renewal of hemopoietic tissue. The number of stromal fibroblastic progenitors (CFC-f) in the bone marrow of these rats was also reduced. Apparently, changes in the hemopoietic stroma damage the hemopoietic microenvironment and, hence, may be responsible for changes observed in the hemopoietic tissue proper. Attempts were made to develop methods for analyzing morphologically indiscernible clonogenic hemopoietic cells of newts, and studies on the effects of spaceflight factors on these cells were performed. The results showed that the numbers of clonogenic cells in newts of the flight group newts were significantly lower than in control newts. The data obtained are used as the basis for formulating the problems to be studied, drawing up a program for further research on the effects of spaceflight factors on stem and other clonogenic hemopoietic cells, and developing new experimental models for analyzing stem cells, the state of the hemopoietic stroma, etc.

  4. Animal Research in Space: Past, Present, and Future

    Science.gov (United States)

    Souza, Kenneth; Sun, Sidney; Tomko, David

    Animals, principally non-human primates, were the early pioneers of spaceflight demonstrating that higher organisms could survive the rigors of launch to low earth orbit and the unique microgravity and radiation environment of orbital spaceflight. Following dispelling the fears that spaceflight could cause major disruptions in key body systems, non-human primates gave way to rodent research, particularly rats, in order to increase the number of specimens per flight opportunity, reduce the cost of support equipment, and to focus on how animals adapt to the near absence of gravity. In the virtual absence of gravity, changes were observed in the musculoskeletal system, sensorimotor, cardiovascular, and other systems. To accommodate rodents during spaceflight special facilities had to be developed for both crewed and unscrewed space vehicles. e.g. the Space Shuttle, and free flyers like the Russian Cosmos biosatellites, respectively. With a crew onboard, scientists have the opportunity to use them to obtain samples from the animals, measure physiological function, observe and record animal behavior, and administer drugs or challenges. However, on free flyers one can utilize materials and techniques not possible on crewed spacecraft due to safety, cost, and/or flight resources or competing priorities. This presentation will provide a brief glimpse of some of the highlights in the history of animal research in space, recent results, and current prospects for the next decade, i.e., flight opportunities, rodent habitats, and support equipment for rodent research.

  5. Thermoregulatory responses of rhesus monkeys during spaceflight.

    Science.gov (United States)

    Sulzman, F M; Ferraro, J S; Fuller, C A; Moore-Ede, M C; Klimovitsky, V; Magedov, V; Alpatov, A M

    1992-03-01

    This study examines the activity, axillary temperature (T(ax)), and ankle skin temperature (Tsk) of two male Rhesus monkeys exposed to microgravity in space. The animals were flown on a Soviet biosatellite mission (COSMOS 1514). Measurements on the flight animals, as well as synchronous flight controls, were performed in the Soviet Union. Additional control studies were performed in the United States to examine the possible role of metabolic heat production in the T(ax) response observed during the spaceflight. All monkeys were exposed to a 24-h light-dark cycle (LD 16:8) throughout these studies. During weightlessness, T(ax) in both flight animals was lower than on earth. The largest difference (0.75 degree C) occurred during the night. There was a reduction in mean heart rate and Tsk during flight. This suggests a reduction in both heat loss and metabolic rate during spaceflight. Although the circadian rhythms in all variables were present during flight, some differences were noted. For example, the amplitude of the rhythms in Tsk and activity were attenuated. Furthermore, the T(ax) and activity rhythms did not have precise 24.0 hour periods and may have been externally desynchronized from the 24-h LD cycle. These data suggest a weakening of the coupling between the internal circadian pacemaker and the external LD synchronizer. PMID:1523235

  6. Vitamin D Status in Monkey Candidates for Space Flight

    Science.gov (United States)

    Arnaud, S. B.; Wronski, T. J.; Koslovskeya, I.; Dotsenko, R.; Navidi, M.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    In preparation for the Cosmos 2229 Biosatellite space flight experiments in Rhesus monkeys, we evaluated the status of vitamin D in animals of different origins: candidates for space flight raised in Moscow (IMBP) and animals housed at Ames Research Ctr. (ARC) for pilot studies. Diets at IMBP were natural foods found by analysis to contain 1.4% Ca, 2.8% P andalkaline phosphatase (AP), 25-hydroxyvitamin D (25D) and 1,25-dihydroxyvitamin D (1,25D) in 16 IMBP and 15 ARC male animals and indices of bone formation in cancellous bone obtained from iliac crest biopsy of 6 IMBP and 13 ARC animals. BW were the same in juveniles at IMBP as ARC although ARC monkeys were born a year later. Mean(1SD) TCa and TP were higher and 25D lower (1819 vs. 93+18 ng/ml,p<.001) in IMBP than ARC animals. 1,25D (174156 vs. 212+77 pg/ml), Pi and AP were similar. In bone, osteoid and osteoblast surfaces averaged 38114% and 33+15% in all, with %vol. of osteoid higher in IMBP than ARC monkeys of the same BW (p<.05) Indices of bone formation were inversely related to 25D, not 1,25D. Of interest are similar 1,25D levels associated with a wide range of substrate and extensive osteoid in bone of D replete animals.

  7. Research on the adaptation of skeletal muscle to hypogravity: Past and future directions

    Science.gov (United States)

    Riley, D. A.; Ellis, S.

    Our current understanding of hypogravity-induced atrophy of skeletal muscles is based primarily on studies comparing pre- and post-flight properties of muscles. Interpretations are necessarily qualified by the assumption that the stress of reentry and readjustment to terrestrial gravity do not alter the parameters being analyzed. The neuromuscular system is highly responsive to changes in functional demands and capable of rapid adaptation, making this assumption questionable. A reexamination of the changes in the connective tissue and synaptic terminals of soleus muscles from rats orbited in biosatellites and sampled postflight indicates that these structural alterations represent adaptative responses of the atrophic muscles to the increased workload of returning to 1 G, rather than hypogravity per se. The atrophy of weightlessness is postulated to result because muscles are both underloaded and used less often. Proper testing of this hypothesis requires quantitation of muscle function by monitoring electromyography, force output and length changes during the flight. Experiments conducted in space laboratories, like those being developed for the Space Shuttle, will avoid the complications of reentry before tissue sampling and allow time course studies of the rate of development of adaptive changes to zero gravity. Another area of great importance for future studies of muscle atrophy is inflight measurement of plasma levels of hormones and tissue receptor levels. Glucocorticoids, thyroid hormone and insulin exert dramatic regulatory influences on muscle structure. Prevention of neuromuscular atrophy becomes increasingly more important as spaceflights increase in duration. Definition of the atrophic mechanism is essential to developing means of preventing neuromuscular atrophy.

  8. Peculiarities of ultrastructure of Chlorella cells growing aboard the Bion-10 during 12 days

    Science.gov (United States)

    Popova, A. F.; Sytnik, K. M.

    The ultrastructure of Chlorella cells grown in darkness on a solid agar medium with organic additions aboard the Bion-1O biosatellite was studied. Certain differences in submicroscopic organization of organelles in the experimental cells were revealed compared to the Earth control. The changes are registered mainly in ultrastructure of energetic organelles - mitochondria and plastids of the experimental cells, in particular, an increase of mitochondria and their cristae size, as well as an increase of the total volume of mitochondrion per cell were established. The decrease of the starch amount in the plastid stroma and the electron density of the latter was also observed. In many experimental cells, the increase of condensed chromatin in the nuclei has been noted. Ultrastructural rearrangements in cells after laboratory experiment realized according to the thermogram registered aboard the Bion-10 were insignificant compared to the flight experiment. Data obtained are compared to results of space flight experiments carried out aboard the Bion-9 (polycomponent aquatic system) and the orbital station Mir (solid agar medium).

  9. Effects of weightlessness on body composition in the rat

    Science.gov (United States)

    Pitts, G. C.; Ushakov, A. S.; Pace, N.; Smith, A. H.; Rahlmann, D. F.; Smirnova, T. A.

    1983-01-01

    The effects of weightlessness on the body composition of rats were investigated using 5 male rats exposed to 18.5 days of weightlessness on the COSMOS 1129 biosatellite and killed after reentry. The animals were immediately dissected and the three major body divisions (musculoskeletal system, skin, and pooled viscera) were analyzed for fat, water, solids, and six elements. These results were determined as percentages of the fat-free body or its components and then compared with two groups of terrestrial controls, one of which was subjected to a flight simulation in a spacecraft mock-up while the other was under standard vivarium conditions. Compared with the control groups, the flight group was found to exhibit a reduced fraction of total body water, a net shift of body water from skin to viscera, a marked diminution in the fraction of extracellular water in the fat-free body, a marked reduction in the fraction of bone mineral, no change in the quantity of stored fat or adrenal masses, and a net increase in total muscle mass as indicated by total body creatine, protein, and body cell mass.

  10. Application of "FLUOR-P" device for analysis of the space flight effects on the intracellular level.

    Science.gov (United States)

    Grigorieva, Olga; Rudimov, Evgeny; Buravkova, Ludmila; Galchuk, Sergey

    The mechanisms of cellular gravisensitivity still remain unclear despite the intensive research in the hypogravity effects on cellular function. In most cell culture experiments on unmanned vehicles "Bion" and "Photon", as well as on the ISS only allow post-flight analysis of biological material, including fixed cells is provided. The dynamic evaluation cellular parameters over a prolonged period of time is not possible. Thus, a promising direction is the development of equipment for onboard autonomous experiments. For this purpose, the SSC RF IBMP RAS has developed "FLUOR-P" device for measurement and recording of the dynamic differential fluorescent signal from nano- and microsized objects of organic and inorganic nature (human and animal cells, unicellular algae, bacteria, cellular organelles suspension) in hermetically sealed cuvettes. Besides, the device allows to record the main physical factors affecting the analyzed object (temperature and gravity loads: position in space, any vector acceleration, shock) in sync with the main measurements. The device is designed to perform long-term programmable autonomous experiments in space flight on biological satellites. The device software of allows to carry out complex experiments using cell. Permanent registration of data on built-in flash will give the opportunity to analyze the dynamics of the estimated parameters. FLUOR-P is designed as a monobloc (5.5 kg weight), 8 functional blocks are located in the inner space of the device. Each registration unit of the FLUOR-P has two channels of fluorescence intensity and excitation light source with the wavelength range from 300 nm to 700 nm. During biosatellite "Photon" flight is supposed to conduct a full analysis of the most important intracellular parameters (mitochondria activity and intracellular pH) dynamics under space flight factors and to assess the possible contribution of temperature on the effects of microgravity. Work is supported by Roskosmos and the

  11. The ESA Mice in Space (MIS) habitat: effects of cage confinement on neuromusculoskeletal structure and function and stress/behavior using wild-type C57Bl/6JRj mice in a modular science reference model (MSRM) test on ground

    Science.gov (United States)

    Blottner, Dieter; Vico, Laurence; Jamon, D. Berckmansp L. Vicop Y. Liup R. Canceddap M.

    Background: Environmental conditions likely affect physiology and behaviour of mice used for Life Sciences Research on Earth and in Space. Thus, mice habitats with sufficient statistical numbers should be developed for adequate life support and care and that should meet all nesces-sary ethical and scientific requirements needed to successfully perform animal experimentation in Space. Aim of study: We here analysed the effects of cage confinement on the weightbear-ing musculoskeletal system, behaviour and stress of wild-type mice (C57BL/6JRj, 30 g b.wt., total n = 24) housed for 25 days in a prototypical ground-based MSRM (modular science ref-erence module) in the frame of breadboard activities for a fully automated life support habitat called "Mice in Space" (MIS) at the Leuven University, Belgium. Results: Compared with control housing (individually ventilated cages, IVC-mice) the MIS mice revealed no significant changes in soleus muscle size and myofiber distribution (type I vs. II) and quality of bone (3-D microarchitecture and mineralisation of calvaria, spine and femur) determined by confocal and micro-computed tomography. Corticosterone metabolism measured non-invasively (faeces) monitored elevated adrenocortical activity at only start of the MIS cage confinement (day 1). Behavioural tests (i.e., grip strength, rotarod, L/D box, elevated plus-maze, open field, ag-gressiveness) performed subsequently revealed only minor changes in motor performance (MIS vs. controls). Conclusions: The MIS habitat will not, on its own, produce major effects that could confound interpretation of data induced by microgravity exposure on orbit as planned for future biosatellite programmes. Sponsors: ESA-ESTEC, Noordwijk, NL

  12. Microgravity can activate signals urging cells to S-phase entry during tissue and organ regeneration in Urodele amphibians exposed to real and simulated microgravity

    Science.gov (United States)

    Grigoryan, E.; Anton, H.-J.; Mitashov, V.

    Regenerative response following local injury or tissue removal in urodele amphibians is dependent on cell cycle entry of cells sources for regeneration in the remaining tissue. In a number of our experiments performed aboard biosatellites in orbital flights and fast rotated clinostat we found enhanced proliferative activity and, as a result, regeneration quicker than that in controls. In each investigated case an activity of cell proliferation evaluated by 3H-thymidine radioautography and BrdU assay at the early stages of lens, retina, forelimb and tail regeneration in newts was about 1,2-1,7 fold higher both under conditions of real and physiological weightlessness as compared with controls. Faster S-phase entry under conditions of micro- g was demonstrated by cycling multipotent cells as well as by differentiated postmitotic cells both participated in regeneration. Important, that cycling cells outside areas of regeneration were also found as displayed faster cellular growth. In our papers (1,2,3,4) we offered some hypothesis that could explain mechanisms of low g stimulating effect upon cell growth in regeneration in Urodela. In particular, changes in expression of some growth factors and their receptors, as well as the synthesis of specific range of generalized stress proteins (AGSPs) were proposed. However, in fact, molecular mechanisms of micro- g effect upon cell proliferation are mediated by changes on organismic level induced by micro- g environment. Some of them which are able to trigger off signaling changes on the cellular level that, in turn, evoke cells to grow faster would be represented in our report. 1. Mitashov V. et al. Adv. Space Res. 1996. 17 (6/7): 241-255 2. Anton H.-J. et al. Adv. Space Res. 1996. 17 (6/7): 55-65 3. Grigoryan E. et al. Adv. Space Res. 1998. 22 (2): 293-301 4. Grigoryan E. et al. Adv. Space Res. 2002. 30 (4): 757-764

  13. In Vivo Measurements in Mice in the Bion-M 1 Mission

    Science.gov (United States)

    Andreev-Andrievskiy, Alexander; Custaud, Marc-Antoine; Popova, Anfisa; Borovik, Anatoliy; Dolgov, Oleg; Anokhin, Konstantin; Tsvirkun, Daria; Vinogradova, Olga

    The main aim of BION-M 1 mission was to reveal morphological, biochemical and molecular mechanisms of adaptation to prolonged exposure in microgravity. Besides that functional state and behavior were assessed in vivo using test battery, home cage observations and implantable telemetry in space-flown mice (SF), control mice from the ground replica of the flight experiment (GC) and in mice kept in vivarium (SFV and GCV). Blood pressure and heart rate were monitored continuously in a subgroup of mice using implantable telemetry throughout the flight as well as before and after it. After 30-days flight aboard BION-M 1 biosatellite SF mice have gained more weight than GC, SFV or GCV mice (11%). SF mice displayed pronounced motor impairment upon examination shortly after landing. 1 day after the flight mice were less active and more anxious in the open-field test, less coordinated in the Rotarod and aerial drop test and had less grip force compared to both control and pre-flight values. Exercise performance was greatly reduced after 30-days flight and recovered by day 7 post-flight. Before the flight mice were trained to perform a simple task using positively reinforced free operant conditioning approach. After the flight performance in the same task was preserved, however learning ability was impaired. Mice displayed drastic reduction of heart rate during launch and reentry acceleration periods. Heart rate (by 8-10%) and, to a lesser extent blood pressure (by 5%) were elevated during the 30-days flight. After return heart rate in SF mice remained elevated throughout the 7-days observation period with no apparent recovery. In summary, mice display pronounced disadaptation to 1g after 30-days exposure in microgravity with different physiological systems having different recovery dynamics. Of particular interest, hemodynamic reactions in mice closely resemble reactions in larger organisms, implying that factors that govern the cardiovascular system adaptation to

  14. Effect of weightlessness on sympathetic-adrenomedullary activity of rats

    Science.gov (United States)

    Kvetňanský, R.; Torda, T.; Macho, L.; Tigranian, R. A.; Serova, L.; Genin, A. M.

    Three cosmic experiments were performed in which rats spent 18-20 days in space on board the biosatellites "COSMOS 782", "COSMOS 936" and "COSMOS 1129". The following indicators of the sympathetic-adrenomedullary system (SAS) activity were measured: tissue and plasma catecholamines (CA), CA-synthesizing enzymes—tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DBH), phenylethanolamine-N-methyltransferase (PNMT)—as well as CA-degrading enzymes—monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT). Adrenal epinephrine (EPI) and norepinephrine (NE) as well as CA-synthesizing and degrading enzymes were not significantly changed in the animals after flight on COSMOS 782. On the other hand, a significant increase was found in heart CA, the indicator which is usually decreased after stress. 26 days after landing all values were at control levels. The results obtained, compared to our previous stress experiments on Earth, suggest that prolonged weightlessness does not appear to be a pronounced stressful stimulus for the SAS. Heart and plasma CA, mainly NE, were increased both in the group living in the state of weightlessness and the group living in a centrifuge and exposed to artificial gravitation 1 g (COSMOS 936), suggesting again that prolonged weightlessness is not an intensive stressful stimulus for the SAS. The animals exposed after space flight on COSMOS 1129 to repeated immobilization stress on Earth showed a significant decrease of adrenal EPI and an expressive increase of adrenal TH activity compared to stressed animals which were not in space. Thus, the results corroborate that prolonged state of weightlessness during space flight though not representing by itself an intensive stressful stimulus for the sympathetic-adrenomedullary system, was found to potentiate the response of "cosmic rats" to stress exposure after return to Earth.

  15. Spaceflight effects on biomechanical and biochemical properties of rat vertebrae

    Science.gov (United States)

    Zernicke, R. F.; Vailas, A. C.; Grindeland, R. E.; Kaplansky, A.; Salem, G. J.; Martinez, D. A.

    1990-01-01

    The biomechanical and biochemical responses of lumbar vertebral bodies during a 12.5-day spaceflight (Cosmos 1887 biosatellite) were determined for rapidly growing rats (90-day-old, Czechoslovakian-Wistar). By use of age-matched vivarium controls (normal cage environment) and synchronous controls (simulated flight conditions), as well as a basal control group (killed before lift-off on the 1st day of flight), the combined influences of growth and space-flight could be examined. Centra of the sixth lumbar vertebrae (L6) were compressed to 50% strain at a fast strain rate while immersed in physiological buffer (37 degrees C). The body masses of vivarium and synchronous controls were significantly heavier than either the flight or basal controls. The flight group had an L6 vertebral body compressional stiffness that was 39% less than the vivarium controls, 47% less than the synchronous control, and 16% less than the basal controls. In addition, the average initial maximum load of the flight L6 was 22% less than vivarium controls and 18% less than the synchronous controls, whereas the linear compressional load of the flight group averaged 34% less than the vivarium and 25% less than the synchronous groups. The structural properties of the vertebrae from the 12.5-day-younger basal group closely resembled the flight vertebrae. Calcium, phosphorous, and hydroxyproline concentrations were not significantly different among the groups. Nevertheless, the lack of strength and stiffness development in spaceflight, coupled with a smaller proportion of mature hydroxypyridinoline cross-links, suggested that the 12.5 days of spaceflight slowed the maturation of trabecular bone in the vertebral bodies of rapidly growing rats.

  16. Effect of long-term actual spaceflight on the expression of key genes encoding serotonin and dopamine system

    Science.gov (United States)

    Popova, Nina; Shenkman, Boris; Naumenko, Vladimir; Kulikov, Alexander; Kondaurova, Elena; Tsybko, Anton; Kulikova, Elisabeth; Krasnov, I. B.; Bazhenova, Ekaterina; Sinyakova, Nadezhda

    The effect of long-term spaceflight on the central nervous system represents important but yet undeveloped problem. The aim of our work was to study the effect of 30-days spaceflight of mice on Russian biosatellite BION-M1 on the expression in the brain regions of key genes of a) serotonin (5-HT) system (main enzymes in 5-HT metabolism - tryptophan hydroxylase-2 (TPH-2), monoamine oxydase A (MAO A), 5-HT1A, 5-HT2A and 5-HT3 receptors); b) pivotal enzymes in DA metabolism (tyrosine hydroxylase, COMT, MAO A, MAO B) and D1, D2 receptors. Decreased expression of genes encoding the 5-HT catabolism (MAO A) and 5-HT2A receptor in some brain regions was shown. There were no differences between “spaceflight” and control mice in the expression of TPH-2 and 5-HT1A, 5-HT3 receptor genes. Significant changes were found in genetic control of DA system. Long-term spaceflight decreased the expression of genes encoding the enzyme in DA synthesis (tyrosine hydroxylase in s.nigra), DA metabolism (MAO B in the midbrain and COMT in the striatum), and D1 receptor in hypothalamus. These data suggested that 1) microgravity affected genetic control of 5-HT and especially the nigrostriatal DA system implicated in the central regulation of muscular tonus and movement, 2) the decrease in the expression of genes encoding key enzyme in DA synthesis, DA degradation and D1 receptor contributes to the movement impairment and dyskinesia produced by the spaceflight. The study was supported by Russian Foundation for Basic Research grant № 14-04-00173.

  17. Effect of space flights on plasma hormone levels in man and in experimental animal

    Science.gov (United States)

    Macho, L.; Kvetňanský, R.; Vigaš, M.; Németh, S.; Popova, I.; Tigranian, R. A.; Noskov, V. B.; Serova, L.; Grigoriev, I. A.

    An important increase of plasma hormone levels like insulin, TSH and aldosterone was observed in human subjects after space flights, however in the changes of plasma content of ACTH, cortisol, adrenaline and noradrenaline the individual variations were observed in relation to number and duration of space flight. For evaluation of the effects of these changes in plasma hormone levels on metabolic processes also the experiments with small animals subjected to space flights on a board of biosatellite of Cosmos series were running. An elevation of plasma levels of corticosterone, adrenaline, noradrenaline and insulin was found in rats after the space flights of duration from 7 to 20 days. It was demonstrated, that the increase of corticosterone in plasma is followed by the activation of enzymes involved in the aminoacid metabolism in rat liver (tyrosine aminotransferase, tryptophanpyrolase, alanine aminotransferase and aspartate aminotransferase). After a short recovery period (2 to 6 days) the plasma corticosterone concentration and also the activity of liver enzymes returned to control levels. The exposition of animals to stress stimuli during this recovery period showed higher response of corticosterone levels in flight rats as compared to intact controls. The increase of plasma catecholamine levels was not followed by elevation of lipolysis in adipose tissue. This is due to lower response of adipose tissue to catecholamine because a decrease of the stimulation of lipolysis by noradrenaline was observed in animals after space flight. The increase of insulin was not followed by adequate decrease of glucose concentration suggesting a disturbances in glucose utilization similarly as in cosmonauts after a long-term space flight. These results showed that changes in plasma hormone levels, observed after space flight, affected the regulation of metabolic processes in tissues.

  18. Signs of Müller cell gliotic response found in the retina of newts exposed to real and simulated microgravity

    Science.gov (United States)

    Grigoryan, E. N.; Anton, H. J.; Poplinskaya, V. A.; Aleinikova, K. S.; Domaratskaya, E. I.; Novikova, Y. P.; Almeida, E.

    2012-05-01

    The effects of real and simulated microgravity on the eye tissue regeneration of newts were investigated. For the first time changes in Müller glial cells in the retina of eyes regenerating after retinal detachment were detected in newts exposed to clinorotation. The cells divided, were hypertrophied, and their processes were thickened. Such changes suggested reactive gliosis and were more significant in animals exposed to rotation when compared with desk-top controls. Later experiments onboard the Russian biosatellite Bion-11 showed similar changes in the retinas that were regenerating in a two-week spaceflight. In the Bion-11 animals, GFAP, the major structural protein of retinal macroglial cells, was found to be upregulated. In a more recent experiment onboard Foton-M3 (2007), GFAP expression in retinas of space-flown, ground control (kept at 1 g), and basal control (sacrificed on launch day) newts was quantified, using microscopy, immunohistochemistry, and digital image analysis. A low level of immunoreactivity was observed in basal controls. In contrast, retinas of space-flown animals showed greater GFAP immunoreactivity associated with both an increased cell number and a higher thickness of intermediate filaments. This, in turn, was accompanied by up-regulation of stress protein (HSP90) and growth factor (FGF2) expressions. It can be postulated that such a response of Müller cells was to mitigate the retinal stress in newts exposed to microgravity. Taken together, the data suggest that the retinal population of macroglial cells could be sensitive to gravity changes and that in space it can react by enhancing its neuroprotective function.

  19. The character of abnormalities found in eye development of quail embruos exposed under space flight conditions

    Science.gov (United States)

    Grigoryan, E.; Dadheva, O.; Polinskaya, V.; Guryeva, T.

    The avian embryonic eye is used as a model system for studies on the environmental effects on central nervous system development. Here we present results of qualitative investigation of the eye development in quail embryos incubated in micro-"g" environment. In this study we used eyes of Japanese quail (Coturnix coturnix Japonica) embryos "flown" onboard biosatellite Kosmos-1129 and on Mir station within the framework of Mir-NASA Program. Eyes obtained from embryos ranging in age from 3-12 days (E3-E12) were prepared histologically and compared with those of the synchronous and laboratory gound controls. Ther most careful consideration was given to finding and analysis of eye developmental abnormalities. Then they were compared with those already described by experimental teratology for birds and mammals. At the stage of the "eye cup" (E3) we found the case of invalid formation of the inner retina. The latter was represented by disorganized neuroblasts occupying whole posterior chamber of the eye. On the 7th day of quail eye development, at the period of cellular growth activation some cases of small eyes with many folds of overgrowing neural and pigmented retinal layers were detected. In retinal folds of these eyes the normal layering was disturbed as well as the formation of aqueous body and pecten oculi. At this time point the changes were also found in the anterior part of the eye. The peculiarities came out of the bigger width of the cornea and separation of its layers, but were found in synchronous control as well. Few embryos of E10 had also eyes with the abnormities described for E7 but this time they were more vivid because of the completion of eye tissue differentiation. At the stage E12 we found the case evaluated as microphthalmia attending by overgrowth of anterior pigmented tissues - iris and ciliary body attached with the cornea. Most, but not all, of abnormalities we found in eye morphogeneses belonged to the birds "flown" aboard Kosmos- 1129 and

  20. Cell Mechanisms of Bone Tissue Loss Under Space Flight Conditions

    Science.gov (United States)

    Rodionova, Natalia

    Investigations on the space biosatellites has shown that the bone skeleton is one of the most im-portant targets of the effect space flight factors on the organism. Bone tissue cells were studied by electron microscopy in biosamples of rats' long bones flown on the board american station "SLS-2" and in experiments with modelling of microgravity ("tail suspension" method) with using autoradiography. The analysis of data permits to suppose that the processes of remod-eling in bone tissue at microgravity include the following succession of cell-to-cell interactions. Osteocytes as mechanosensory cells are first who respond to a changing "mechanical field". The next stage is intensification of osteolytic processes in osteocytes, leading to a volume en-largement of the osteocytic lacunae and removal of the "excess bone". Then mechanical signals have been transmitted through a system of canals and processes of the osteocytic syncitium to certain superficial bone zones and are perceived by osteoblasts and bone-lining cells (superficial osteocytes), as well as by the bone-marrow stromal cells. The sensitivity of stromal cells, pre-osteoblasts and osteoblasts, under microgravity was shown in a number of works. As a response to microgravity, the system of stromal cells -preosteoblasts -osteoblasts displays retardation of proliferation, differentiation and specific functions of osteogenetic cells. This is supported by the 3H-thymidine studies of the dynamics of differentiation of osteogenetic cells in remodeling zones. But unloading is not adequate and in part of the osteocytes are apoptotic changes as shown by our electron microscopic investigations. An osteocytic apoptosis can play the role in attraction the osteoclasts and in regulation of bone remodeling. The apoptotic bodies with a liquid flow through a system of canals are transferred to the bone surface, where they fulfil the role of haemoattractants for monocytes come here and form osteoclasts. The osteoclasts destroy

  1. Changes in the population of perivascular cells in the bone tissue remodeling zones under microgravity

    Science.gov (United States)

    Katkova, Olena; Rodionova, Natalia; Shevel, Ivan

    2016-07-01

    Microgravity and long-term hypokinesia induce reduction both in bone mass and mineral saturation, which can lead to the development of osteoporosis and osteopenia. (Oganov, 2003). Reorganizations and adaptive remodeling processes in the skeleton bones occur in the topographical interconnection with blood capillaries and perivascular cells. Radioautographic studies with 3H- thymidine (Kimmel, Fee, 1980; Rodionova, 1989, 2006) have shown that in osteogenesis zones there is sequential differentiation process of the perivascular cells into osteogenic. Hence the study of populations of perivascular stromal cells in areas of destructive changes is actual. Perivascular cells from metaphysis of the rat femoral bones under conditions of modeling microgravity were studied using electron microscopy and cytochemistry (hindlimb unloading, 28 days duration) and biosatellite «Bion-M1» (duration of flight from April 19 till May 19, 2013 on C57, black mice). It was revealed that both control and test groups populations of the perivascular cells are not homogeneous in remodeling adaptive zones. These populations comprise of adjacent to endothelium poorly differentiated forms and isolated cells with signs of differentiation (specific increased volume of rough endoplasmic reticulum in cytoplasm). Majority of the perivascular cells in the control group (modeling microgravity) reveals reaction to alkaline phosphatase (marker of the osteogenic differentiation). In poorly differentiated cells this reaction is registered in nucleolus, nucleous and cytoplasm. In differentiating cells activity of the alkaline phosphatase is also detected on the outer surface of the cellular membrane. Unlike the control group in the bones of experimental animals reaction to the alkaline phosphatase is registered not in all cells of perivascular population. Part of the differentiating perivascular cells does not contain a product of the reaction. Under microgravity some poorly differentiated perivascular

  2. The interactions of the cells in the development of osteoporotic changes in bones under space flight conditions

    Science.gov (United States)

    Rodionova, Natalia; Kabitskaya, Olga

    2016-07-01

    Using the methods of electron microscopy and autoradiography with ³N-glycine and ³N-thymidine on biosatellites "Bion-11" (Macaca mulatta, the duration of the experiments -10 days), "Bion-M1" (mouse C57 Black, duration of the flight - 30 days) in the experiments with modeled hypokinesia (white rats, hind limbs unloading, the duration of the experiments 28 days) new data about the morpho-functional peculiarities of cellular interactions in adaptive remodeling zones of bone structures under normal conditions and after exposure of animals to microgravity. Our conception on remodeling proposes the following sequence in the development of cellular interactions after decrease of the mechanical loading: a primary response of osteocytes (mechanosensory cells) to the mechanical stimulus; osteocytic remodeling (osteolysis); transmission of the mechanical signals through a system of canals and processes to functionally active osteoblasts and paving endost one as well as to the bone-marrow stromal cells and perivascular cells. As a response to the mechanical stimulus (microgravity) the system of perivascular cell-stromal cell-preosteoblast-osteoblast shows a delay in proliferation, differentiation and specific functioning of the osteogenetic cells, the number of apoptotic osteoblasts increases. Then the osteoclastic reaction occurs (attraction of monocytes and formation of osteoclasts, bone matrix resorption in the loci of apoptosis of osteoblasts and osteocytes). The macrophagal reaction is followed by osteoblastogenesis, which appears to be a rehabilitating process. However, during prolonged absence of mechanical stimuli (microgravity, long-time immobilization) the adaptive activization of osteoblastogenesis doesn't occur (as it is the case during the physiological remodeling of bone tissue) or it occurs to a smaller degree. The loading deficit leads to an adaptive differentiation of stromal cells to fibroblastic cells and adipocytes in remodeling loci. These cell reactions

  3. Ames Life Science Data Archive: Translational Rodent Research at Ames

    Science.gov (United States)

    Wood, Alan E.; French, Alison J.; Ngaotheppitak, Ratana; Leung, Dorothy M.; Vargas, Roxana S.; Maese, Chris; Stewart, Helen

    2014-01-01

    The Life Science Data Archive (LSDA) office at Ames is responsible for collecting, curating, distributing and maintaining information pertaining to animal and plant experiments conducted in low earth orbit aboard various space vehicles from 1965 to present. The LSDA will soon be archiving data and tissues samples collected on the next generation of commercial vehicles; e.g., SpaceX & Cygnus Commercial Cargo Craft. To date over 375 rodent flight experiments with translational application have been archived by the Ames LSDA office. This knowledge base of fundamental research can be used to understand mechanisms that affect higher organisms in microgravity and help define additional research whose results could lead the way to closing gaps identified by the Human Research Program (HRP). This poster will highlight Ames contribution to the existing knowledge base and how the LSDA can be a resource to help answer the questions surrounding human health in long duration space exploration. In addition, it will illustrate how this body of knowledge was utilized to further our understanding of how space flight affects the human system and the ability to develop countermeasures that negate the deleterious effects of space flight. The Ames Life Sciences Data Archive (ALSDA) includes current descriptions of over 700 experiments conducted aboard the Shuttle, International Space Station (ISS), NASA/MIR, Bion/Cosmos, Gemini, Biosatellites, Apollo, Skylab, Russian Foton, and ground bed rest studies. Research areas cover Behavior and Performance, Bone and Calcium Physiology, Cardiovascular Physiology, Cell and Molecular Biology, Chronobiology, Developmental Biology, Endocrinology, Environmental Monitoring, Gastrointestinal Physiology, Hematology, Immunology, Life Support System, Metabolism and Nutrition, Microbiology, Muscle Physiology, Neurophysiology, Pharmacology, Plant Biology, Pulmonary Physiology, Radiation Biology, Renal, Fluid and Electrolyte Physiology, and Toxicology. These

  4. Müller cell gliotic response in the retina of the newts exposed to real and simulated microgravity

    Science.gov (United States)

    Grigoryan, Eleonora N.; Poplinskaya, Valentina; Domaratskaya; Aleinikova, Karina; Novikova, Julia; Anton, Hermann J.; Almeida, Eduardo

    The effects of real and simulated microgravity on the eye tissue regeneration of newts (Pl. waltli) after lens and/or retina removal were investigated. Changes in Müller glial cells in the retina of eyes regenerating after lens extirpation were detected in newts exposed to clinostat-ing. The cells were hypertrophied, and their processes thickened. Such changes were viewed as specific of reactive gliosis [1]. Later experiments onboard the Russian biosatellite Bion-11 showed similar changes in the retinas of newts regenerating after a two-week spaceflight. In the Bion-11 animals, GFAP, the major structural protein of macroglial cells was found to be up-regulated [2]. In more recent experiments onboard Foton-2 (2005) and Foton-M3 (2007), GFAP expression in retinas of space-flown, ground control (kept at 1 g), and basal control (sacrificed on launch day) newts was quantified, using microscopy, immunohistochemistry, and digital image analysis. It was found that Müller cell processes of non-operated animals dis-u played low GFAP immunolabeling. A low level of immunoreactivity was also observed in basal controls. In contrast, retinas of space-flown animals showed greater GFAP immunoreactivity associated with both an increased cell number and a higher density of intermediate filaments [3]. This, in turn, was accompanied by up-regulation of stress protein (HSP90) and growth factor (FGF2) expressions. It can be postulated that such a response of Müller cells was to mitigate the retinal stress in newts exposed to microgravity. Although the exact mechanisms remain unknown, it can be hypothesized that GFAP up-regulation is mediated by HSPs and growth factors, particularly by FGF2. Taken together, these data suggest that the retinal population of macroglial cells is sensitive to gravity changes and that in space it can react by enhancing its neuroprotective function. [1] Grigoryan E.N., Anton H.J., Mitashov V.I. Adv. Space Res. 1998. V. 22. N.2. P. 293-301. [2] Grigoryan E

  5. Hemopoietic tissue in newts flown aboard Foton M3

    Science.gov (United States)

    Domaratskaya, Elena I.; Almeida, Eduardo; Butorina, Nina N.; Nikonova, Tatyana M.; Grigoryan, Eleonora N.; Poplinskaya, Valentina A.; Souza, Kenneth; Skidmore, Mike

    The effect of 12-day spaceflight aboard the Foton-M3 biosatellite on the hematopoietic tissue of P. waltl newts was studied. These animals used at the same time in regeneration experiments after lens and tail tip amputation. In flight and synchronous groups there were performed video recording, temperature and radiation monitoring and continuous contact (via skin) with thymidine analog BrdU. We took differential blood counts and assessed histologically the liver in the flight (F), basal (BC) and synchronous (SC)control groups of animals. In the peripheral blood, we identified neutrophils, eosinophils, basophils, lymphocytes, and monocytes. Lymphocytes (L) and neutrophils (N) prevailed, accounting for about 60 and 20% of white blood cells, respectively. The spaceflight had no apparent effect on the differential blood count in the F group: neither the L and N contents nor the maturing to mature N - ratio differed from those in the control groups. No significant differences between F, SC and BC groups were observed with respect to the structure of hematopoietic areas and the liver morphology. As in Foton-M2, BrdU labeled cells revealed in blood as well as in the hemopoietic areas of the liver. However, in previous experiments performed at satellites Bion-10 and Foton-M2 the changes in peripheral blood contents were registered in operated F newts, and we supposed it could be the result of additive effects of spaceflight factors and stimulation of reparative potency and stress due to surgical operation. Possibly, the temperature conditions also may provide some influence on blood cell content of newts that belong to poikilothermic animals. Thus, in present experiment F and SC groups were reared in the same temperature regims, whereas it was nearly 3o C differences between SC and F groups exposed on Foton-M2. At the same time as it was found in experiments on Bion-11 and Foton-M2 spaceflight factors did not affect on differential blood counts of intact non

  6. Purification of liquid products of cotton wipes biotransformation with the aid of Trichoderma viridae in orbital flight

    Science.gov (United States)

    Viacheslav, Ilyin; Korshunov, Denis

    Recovery of various organic wastes in space flight is an actual problem of modern astronautics and future interplanetary missions. Currently, organic waste are incinerated in the dense layers of the Earth's atmosphere in cargo containers. However, this method of anthropogenic waste treatment is not environmentally compatible with future interplanetary missions, and is not suitable due to planetary quarantine requirements. Furthermore, the maintaining of a closed ecosystem in spaceship is considered as one of the main ways of ensuring the food and air crew in the long term fully autonomous space expedition. Such isolated ecosystem is not conceivable without biotransformation of organic waste. In this regard, currently new ways of recycling organic waste are currently developed. The most promising method is a method for processing organic waste using thermophilic anaerobic microbial communities.However, the products of anaerobic fermentation of solid organic materials contain significant amounts of organic impurities, which often give them sour pH. This presents a significant problem because it does not allow to use this fluid as process water without pretreatment. Fermentation products - alcohols, volatile fatty acids other carbonaceous substances must be withdrawn.One way to solve this problem may be the use of microorganisms biodestructors for recycling organic impurities in the products of anaerobic biodegradation Under the proposed approach, the metabolic products (having acidic pH) of primary biotransformation of solid organic materials are used as media for the cultivation of fungi. Thus, cellulosic wastes are recycled in two successive stages. The aim of this work was to test the effectiveness of post-treatment liquid products of biodegradation of hygienic cotton wipes (common type of waste on the ISS) by the fungus Trichoderma viridae under orbital flight. The study was conducted onboard biosatellite Bion -M1, where was placed a bioreactor, designed to carry

  7. The effect of space microgravity on the physiological activity of mammalian resident cardiac stem cells

    Science.gov (United States)

    Belostotskaya, Galina; Zakharov, Eugeny

    weightlessness-treated samples vs. controls. These findings correlated with reduced expression of Connexin43. Typical elongated cardiomyocytes, presenting as both individual cells and conglomerates, were present in the control samples, whereas the shortened and thickened individual cardiac myocytes prevailed in the samples subjected to space microgravity. Both control samples and microgravity-treated samples contained resident CSCs of all subtypes. Both individual CSCs and CSC-derived clones were present in the suspension of myocardial cells. However, the number of CSC-formed clones of different maturity was significantly higher in the samples subjected to space microgravity. Some clones comprised only small undifferentiated cells of one CSCs subtype, while the cells of the other clones expressed some of the specific cardiac antigens (α-Actinin and Troponin T) at varying rate. In addition, large α-actinin- and troponin T-positive individual cardiomyocytes with readily discernible sarcomeric structure still expressing the original CSC antigens were also identified. The data obtained suggest that prolonged space microgravity exposure during space flight causes significant structural changes in the mammalian myocardium which may affect cardiac contractile function. Weightlessness-induced loss in heart muscle weight is assumed to be compensated by an increase in the activity of resident CSCs, which form new cardiomyocytes proliferating and differentiating inside the clones. The authors express their gratitude to the staff of Institute of Biomedical Problems of the Russian Academy of Sciences and Company "Progress" for the preparation of experimental animals for the biosatellite flight. The study was in part supported by grants from BION-M1 Project and Program of Presidium of Russian Academy of Sciences “Fundamental Sciences for Medicine” (2013).