Sample records for biosatellites

  1. [Research on the Kosmos biosatellites]. (United States)

    Il'in, E A


    In the last decade the USSR has launched six biosatellites of the Cosmos series. The duration of the first flight was 6 days and of the five subsequent flights 18 to 21 days. The major goals of the flight studies were: investigation of adaptation of living systems to weightlessness, identification of the modifying effect of weightlessness on radiosensitivity, and detection of the biological effect of artificial gravity. The examinations were performed on 37 biological species, with most of them on rats. The exposure to weightlessness gave rise to moderate stress reactions and specific changes, particularly in the musculo-skeletal system (muscle atrophy, reduced bone strength, etc). Artificial gravity of 1 g generated inflight helped maintain the normal function of most physiological systems. The exposure of mammals (rats) to 137Ce irradiation did not reveal a modifying effect of weightlessness on radiation sickness. Distinct manifestations of the effects of weightlessness on intracellular processes were not observed. Dissimilar results were obtained with respect to the growth and development of living organisms in weightlessness.

  2. Future investigations onboard Soviet biosatellites of the Cosmos series. (United States)

    Ilyin, E A


    Many rat experiments onboard Cosmos biosatellites have furnished information concerning the effects of weightlessness, artificial gravity, and ionizing radiation combined with weightlessness on structural and biochemical parameters of the animal body. The necessity to expand the scope of physiological investigations has led to the project of flight primate studies. It is planned to carry out the first primate experiments onboard the Cosmos biosatellite in 1982. At present investigations of weightlessness effects on the cardiovascular and vestibular systems, higher nervous activity, skeletal muscles and biorhythms of two rhesus monkeys are being developed and tested. It is also planned to conduct a study of weightlessness effects on embryogenesis of rats and bioenergetics of living systems onboard the same biosatellite. Further experiments onboard Cosmos biosatellites are planned.

  3. [Experiments using rats on Kosmos biosatellites: morphologic and biochemical studies]. (United States)

    Il'in, E A; Kaplanskiĭ, A S; Savina, E A


    Results of morphological and biochemical investigations of rats flown on Cosmos biosatellites are discussed. It is emphasized that most changes occurring during exposure to microgravity are directly or indirectly related to lower musculoskeletal loads which in turn produce deconditioning of different physiological systems and organism as a whole. It is concluded that this deconditioning is associated with both metabolic and structural changes.

  4. The US Experiments Flown on the Soviet Biosatellite Cosmos 1887 (United States)

    Connolly, James P. (Editor); Grindeland, Richard E. (Editor); Ballard, Rodney W. (Editor)


    Cosmos 1887, a biosatellite containing biological and radiation experiments from the Soviet Union, the United States and seven other countries, was launched on September 29, 1987. One Rhesus monkey's feeder stopped working two days into the flight and a decision was made to terminate the mission after 12 1/2 days. The biosatellite returned to Earth on October 12, 1987. A system malfunction, during the reentry procedure, caused the Cosmos 1887 spacecraft to land approximately 1800 miles beyond the intended landing site and delayed the start of the postflight procedures by approximately 44 hours. Further information on the conditions at landing and postflight activities is included in the Mission Operations portion of this document. U.S. and U.S.S.R. specialists jointly conducted 26 experiments on this mission, including the postflight transfer of data, hardware and biosamples to the U.S.

  5. Investigations on-board the biosatellite Cosmos-83 (United States)

    Gazenko, O. G.; Ilyin, Eu. A.

    The program of the 5day flight of the biosatellite Cosmos-1514 (December 1983) envisaged experimental investigations the purpose of which was to ascertain the effect of short-term microgravity on the physiology, growth and development of various animal and plant species. The study of Rhesus-monkeys has shown that they are an adequate model for exploring the mechanisms of physiological adaptation to weightlessness of the vestibular apparatus and the cardiovascular system. The rat experiment has demonstrated that mammalian embryos, at least during the last term of pregnancy, can develop in microgravity. This finding has been confirmed by fish studies. The experiment on germinating seeds and adult plants has given evidence that microgravity produces no effect on the metabolism of seedlings and on the flowering stage.

  6. Preliminary results of scientific research on biosatellite Kosmos-1129 (United States)


    The first physiological study aimed at deeper examination mechanisms of weightlessness and adaptation/readaptation is described. It dealt with metabolism, support motor changes and nonspecific changes connected with stress reaction. Wistar rats were used in a triple setup: flight/vivarium/biosatellite mockup. Animal condition was assessed on motor activity and body temperature. Extensive tables show weight, blood and enzyme analysis, etc. Animals groups were labeled: stress, behavior, body composition, biorhythm, ontogenesis. The second or biological study dealt with tumorous carrot tissues but humidity control was defective: some indices are reported such as cell membrane permeability, tissue respiration, etc. It also was concerned with a fowl embryogenetic experiment (Japanese quail) but mechanical effects on landing reduced its success. The third study, on radiation dosimetry, presents a little tabulated data but chiefly gives lists of satellite detector units of different kinds and from different countries.

  7. Preliminary results of scientific research on biosatellite KOSMOS-1129

    Energy Technology Data Exchange (ETDEWEB)


    The first physiological study aimed at deeper examination mechanisms of weightlessness and adaptation/readaptation is described. It dealt with metabolism, support motor changes and nonspecific changes connected with stress reaction. Wistar rats were used in a triple setup: flight/vivarium/biosatellite mockup. Animal condition was assessed on motor activity and body temperature. Extensive tables show weight, blood and enzyme analysis, etc. Animals groups were labeled: stress, behavior, body composition, biorhythm, ontogenesis. The second or biological study dealt with tumorous carrot tissues but humidity control was defective: some indices are reported such as cell membrane permeability, tissue respiration, etc. It also was concerned with a fowl embryogenetic experiment (Japanese quail) but mechanical effects on landing reduced its success. The third study, on radiation dosimetry, presents a little tabulated data but chiefly gives lists of satellite detector units of different kinds and from different countries.

  8. US experiment flown on the Soviet biosatellite Cosmos 1667 (United States)

    Hines, John W. (Editor); Skidmore, Michael G. (Editor)


    Two male young-adult rhesus monkeys were flown on the Soviet Biosatellite Cosmos 1667 for seven days from July 10-17, 1985. Both animals were instrumented to record neurophysiological parameters. One animal, Gordyy, was additionally instrumented to record cardiovascular changes. Space capsule and environmental parameters were very similar to those of previous missions. On Cosmos 1514, which flew for five days in 1983, one animal was fitted with a left carotid artery cuff to measure blood pressure and flow velocity. An additional feature of Cosmos 1667 was a postflight control study using the flight animal. Intermittent postural tilt tests were also conducted before and after spaceflight and synchronous control studies, to simulate the fluid shifts associated with spaceflight. The experiment results support the conclusion derived from Cosmos 1514 that significant cardiovascular changes occur with spaceflight. The changes most clearly seen were rapid initial decreases in heart rate and further decreases with continued exposure to microgravity. The triggering mechanism appeared to be a headward shift in blood and tissue fluid volume which, in turn, triggered adaptive cardiovascular changes. Adaptive changes took place rapidly and began to stabilize after the first two days of flight. However, these changes did not plateau in the animal by the last day of the mission.

  9. Bone marrow mononuclears from murine tibia after spaceflight on biosatellite (United States)

    Andreeva, Elena; Roe, Maria; Buravkova, Ludmila; Andrianova, Irina; Goncharova, Elena; Gornostaeva, Alexandra

    Elucidation of the space flight effects on the adult stem and progenitor cells is an important goal in space biology and medicine. A unique opportunity for this is provided by project "BION -M1". The purpose of this study was to evaluate the effects of a 30-day flight on biosatellite "BION - M1" and the subsequent 7-day recovery on the quantity, viability, immunophenotype of mononuclears from murine tibia bone marrow. Also the in vitro characterization of functional capacity of multipotent mesenchymal stromal cells (MSCs) was scheduled. Under the project, the S57black/6 mice were divided into groups: spaceflight/vivarium control, recovery after spaceflight/ vivarium control to recovery. Bone marrow mononuclears were isolated from the tibia and immunophenotyped using antibodies against CD45, CD34, CD90 on a flow cytometer Epics XL (Beckman Coulter). A part of the each pool was frozen for subsequent estimation of hematopoietic colony-forming units (CFU), the rest was used for the evaluation of fibroblast CFU (CFUf) number, MSC proliferative activity and osteogenic potency. The cell number in the flight group was significantly lower than in the vivarium control group. There were no differences in this parameter between flight and control groups after 7 days of recovery. The mononuclears viability was more than 95 percent in all examined groups. Flow cytometric analysis showed no differences in the bone marrow cell immunophenotype (CD45, CD34, CD90.1 (Thy1)), but the flight animals had more large-sized CD45+mononuclears, than the control groups of mice. There was no difference in the CFUf number between groups. After 7 days in vitro the MSC number in flight group was twice higher than in vivarium group, after 10 days - 4 times higher. These data may indicate a higher proliferative activity of MSCs after spaceflight. MSCs showed the same and high alkaline phosphatase activity, both in flight and in the control groups, suggesting no effect of spaceflight factors on early

  10. The digestive tract of rat after flight in the biosatellite Cosmos 1667. (United States)

    Groza, P; Bordeianu, A; Boca, A


    From the histochemical investigation carried out on the digestive tract of rats after 7 days space flight in the soviet biosatellite Cosmos 1667 it resulted that neutral and acid glycoproteins diminished slightly in the sublingual gland, stomach, small intestine and the colon. Some intestinal enzymes augmented (leucineaminopeptidase, acid phosphatase, adenosinetriphosphatase and glucose-6-phosphatase). The changes observed after this flight were less marked than after an 18 day flight (in the Soviet biosatellite Cosmos 936 and 1129) and similar to those revealed after 7 days of hypokinesia. The glycoprotein changes were close to those observed after a 5-day flight (Cosmos 1514) but in which there were pregnant rats; after these last flights, the enzymes were not studied.

  11. [Immunological reactivity of rats exposed on the Kosmos-605 and 690 biosatellites]. (United States)

    Ivanov, A A; Shvets, V N


    Immunological reactivity of rats flown aboard the biosatellites Cosmos-605 and Cosmos-690 was compared with respect to the complementary activity of serum and frequency antibodies to sheep red blood cells. Cosmos-605 rats showed changes that rapidly returned to the normal whereas Cosmos-690 rats irradiated inflight with a dose of 800 rad exhibited significant and stable changes in immunological reactivity. Those latter seemed to be associated with the combined effect of ionizing radiation and other space flight factors.

  12. [Plasma and tissue lipids in rats after a flight on the Kosmos-1129 biosatellite]. (United States)

    Ahlers, J; Tigranian, R A; D'jatelinka, J; Smajda, B; Toropila, M


    Concentrations of triglycerides, total cholesterol, lipid phosphorus and nonesterified fatty acids were measured in blood plasma, liver, thymus, bone marrow and adipose tissues of rats flown for 18.5 days onboard the biosatellite Cosmos-1129. This exposure was accompanied by increases in lipomobilization, content of total cholesterol and lipid phosphorus in plasma, and triglycerides in the thymus and bone marrow. The postflight exposure to repeated stresses demonstrated changes in the lipid content in all animal groups, especially in flight rats.

  13. [Hormone content of the blood plasma of rats after a flight on the Kosmos-1129 biosatellite]. (United States)

    Tigranian, R A; Kalita, N F; Macho, L; Kvetnanský, R


    The concentration of ACTH, insulin, glucagon, glucose, epinephrine, norepinephrine, thyrotrophic hormone, thyroxine, and triiodothyronine was measured in plasma of the rats flown for 18.5 days on Cosmos-1129. As a result of the flight, the concentration of insulin, thyrotrophic hormone, and triiodothyronine increased and that of thyroxine decreased. It is suggested that the above changes have been induced by an acute stress associated with biosatellite reentry and touchdown.

  14. Preliminary results of the scientific experiments on the Kosmos-936 biosatellite (United States)


    The scientific equipment and experiments on the Kosmos-936 biosatellite are described, including various ground controls and the lab unit for studies at the descent vehicle landing site. Preliminary results are presented of the physiological experiment with rats, biological experiments with drosophila and higher and lower plants, and radiation physics and radiobiology studies for the planning of biological protection on future space flights. The most significant conclusion from the preliminary data is that rats tolerate space flight better with an artificial force of gravity.

  15. [Amino acid composition of the rat quadriceps femoris muscle after a flight on the Kosmos-936 biosatellite]. (United States)

    Vlasova, T F; Miroshnikova, E B; Poliakov, V V; Murugova, T P


    The amino acid composition of the quadriceps muscle of rats flown onboard the biosatellite Cosmos-936 and exposed to the ground-based synchronous control experiment was studied. The weightless rats showed changes in the amino acid concentration in the quadriceps muscle. The centrifuged flight and synchronous rats displayed an accumulation of free amino acids in the above muscle.

  16. [Effect of space flight on the Kosmos-1129 biosatellite on enzyme activity of the rat liver]. (United States)

    Nemeth, S; Tigranian, R A


    After the 18.5 day Cosmos-1129 flight the activity of 7 glucocorticoid-stimulated enzymes of the rat liver was measured. Immediately postflight the activity of tyrosine aminotransferase, tryptophan pyrolase and serine dehydrogenase increased. These enzymes rapidly (within several hours) react to increased glucocorticoids. The activity of aspartate and alanine aminotransferases also increased. These enzymes require many days of a continuous effect of glucocorticoids. The glycogen concentration in the rat liver also grew. At R + 6 the activity of tryptophan pyrolase and serine dehydrogenase decreased and that of the other enzymes returned to normal. The immobilization stress applied postflight led to an increased activity of tyrosine aminotransferase and tryptophan pyrolase. This study gives evidence that after space flight rats are in an acute stress state, evidently, produced by the biosatellite recovery.

  17. Ethics control of vertebrate animals experiments in biosatellite BION-M1 project (United States)

    Ilyin, Eugene

    During April 19-May 19, 2013 it was realized 30-days flight of Russian biosatellite Bion-M1. The main goal of this flight was to study effects of microgravity upon behavior and structural-functional state of different physiological systems of vertebrates. The folloving species were accommodated aboard of biosatellite: 45 mice C57bl/6, 8 Mongolian gerbils Meriones unguiculatus, 15 lizards, i.e. geckos Chondrodctylus turneri Gray, and fish Oreochromis mossambicus. The selection and traing of mice for the flight and ground-based control experiments was carried out at the Research Institute of Mitoengineering by Moscow State University. The protocols for animals care and reserch were revised and adopted by Bioethics Commission of above mentioned institute (decision on November 01, 2013, N35). The final version of Bion-M1 Scientific Reseach Program and protocols for separate experiments were discussed and adopted by Biomedical Ethics Commission of Institute of Biomedical Problems (decision on April 4, 2014, N317). The IMBP Commission has a status of Physiological Section of Russian Bioethics Committee by Russian Commision for UNESCO affairs and follows the Russian Bioethical Guidelines for Experiments in Aerospace and Naval Medicine and other national and international rules including COSPAR International Policy and Guidelines for Animal Care and Use in Space-born Research. Because US-scientists were the main partners in mice investigations the decision of IMBP Biomedical Commission related to Bion-M1 project was sended for information to Institutional Animal Care and Use Committee of NASA Ames Research Center. Postflight estimation of mice was done by Russian veterinary with the participation of NASA Chief veterinary.

  18. Final Science Reports of the US Experiments Flown on the Russian Biosatellite Cosmos 2229 (United States)

    Connolly, James P. (Editor); Skidmore, Michael G. (Editor); Helwig, Denice A. (Editor)


    Cosmos 2229 was launched on December 29, 1992, containing a biological payload including two young male rhesus monkeys, insects, amphibians, and cell cultures. The biosatellite was launched from the Plesetsk Cosmodrome in Russia for a mission duration of 11.5 days. The major research objectives were: (1) Study of adaptive response mechanisms of mammals during flight; and (2) Study of physiological mechanisms underlying vestibular, motor system and brain function in primates during early and later adaptation phases. American scientists and their Russian collaborators conducted 11 experiments on this mission which included extensive preflight and postflight studies with rhesus monkeys. Biosamples and data were subsequently transferred to the United States. The U.S. responsibilities for this flight included the development of experiment protocols, the fabrication of some flight instrumentation and experiment-specific ground-based hardware, the conducting of preflight and postflight testing and the analysis of biospecimens and data for the U.S. experiments. A description of the Cosmos 2229 mission is presented in this report including preflight, on-orbit and postflight activities. The flight and ground-based bioinstrumentation which was developed by the U.S. and Russia is also described, along with the associated preflight testing ot the U.S. hardware. Final Science Reports for the experiments are also included.

  19. [Catecholamines and their metabolic enzymes in the rat myocardium after a flight on the Kosmos-936 biosatellite]. (United States)

    Kwetncanski, R; Tigranian, R A; Torda, T


    In the myocardium of the weightless and centrifuged rats flown for 18.5 days onboard the biosatellite Cosmos-936 the catecholamine concentration and activity of enzymes involved in their synthesis and degradation--dopamine-beta-hydroxylase, monoamine oxidase and catechol-O-methyl transferase--were measured. The catecholamine concentration in the myocardium of both flight groups significantly increased, and the enzyme activity did not change. These results suggest that an exposure to space flight increases the catecholamine concentration and exerts no effect on their synthesis and degradation in the rat myocardium.

  20. [Catecholamines and their metabolic enzymes in the hypothalamus of rats after a flight on the Kosmos-782 biosatellite]. (United States)

    Kvetnanský, R; Tigranian, R A; Torda, T; Babusiková, D; Jahnová, E


    The concentration of catecholamines, and activity of enzymes involved in their synthesis (tyrosine hydroxylase and dopamine-beta-hydroxylase) and degradation (monoamine oxidase) were measured in the hypothalamus of rats flown for 19.5 days aboard the biosatellite Cosmos-782, synchronous and vivarium controls sacrificed on R+O and R+25 days. No significant changes in the above parameters of the flight rats were found. The findings give evidence that a prolonged space flight induces no changes in the content, synthesis or degradation of catecholamines in the rat hypothalamus. This seems to indicate that weightlessness does not act as an acute stressor.

  1. [Lactate dehydrogenase isoenzymatic makeup of the skeletal muscles of rats after a flight on the Kosmos-690 biosatellite]. (United States)

    Petrova, N V


    The isoenzyme composition of lactate dehydrogenase in the soleus and plantaris muscles of rats which had flown for 20.5 days onboard the biosatellite Cosmos-690 equipped with a radiation source was studied. Difference in the isoenzyme composition of lactate dehydrogenase in flight and synchronous rats disappeared 27 days after the experiments; however, some changes persisted as compared with vivarium controls. The data obtained give evidence that irradiation-induced effects in skeletal muscles manifested themselves at a far later stage than weightlessness-induced changes.

  2. [Morphometry of giant multipolar neurons of the brain stem reticular formation in rats on board the Kosmos-1667 biosatellite]. (United States)

    Belichenko, P V; Leontovich, T A


    Giant multipolar neurons of nucleus reticularis gigantocellularis of rats which had been kept on board the biosatellite "Kosmos-1667" were morphometrically studied. There was a trend towards the increase in the cellular surface, the maximum diameter of dendritic field, the volume of the whole dendritic territory in the test group ad in the control experimental group kept on the earth. A reliable decrease in dendritic mass oriented to nucleus vestibularis and an increase in dendritic mass oriented to the midline were also found in test group, as compared to 3 control groups. Our data were discussed in the light of nervous tissue plasticity in adult mammals.

  3. Catecholamines and their enzymes in discrete brain areas of rats after space flight on biosatellites Cosmos. (United States)

    Kvetnansky, R; Culman, J; Serova, L V; Tigranjan, R A; Torda, T; Macho, L


    The activity of the catecholaminergic system was measured in the hypothalamus of rats which had experienced an 18.5-19.5-day-long stay in the state of weightlessness during space flights on board Soviet biosatellites of the type Cosmos. In the first two experiments, Cosmos 782 and 936, the concentration of norepinephrine and the activities of synthesizing enzymes tyrosine hydroxylase and dopamine-beta-hydroxylase and of the degrading enzyme monoamine oxidase were measured in the total hypothalamus. None of the given parameters was changed after space flight. In the light of the changes of these parameters recorded after exposure to acute stress on Earth, this finding indicates that long-term state of weightlessness does not represent an intensive stressogenic stimulus for the system studied. In the space experiment Cosmos 1129, the concentration of norepinephrine, epinephrine, and dopamine was studied in isolated nuclei of the hypothalamus of rats within 6-10 hr following return from space. Norepinephrine was found to be significantly reduced in the arcuate nucleus, median eminence and periventricular nucleus, epinephrine in the median eminence, periventricular and suprachiasmatic nuclei, whereas dopamine was not significantly changed after space flight. The decreased catecholamine levels found in some hypothalamic nuclei of rats which had undergone space flight indicate that no chronic intensive stressor could have acted during the flight, otherwise the catecholamine concentration would have been increased in the nuclei. The decreased levels must have been induced by the effect of a stressogenic factor acting for a short time only, and that either during the landing maneuver or immediately after landing. Thus long-term exposure of the organism to the state of weightlessness does not represent a stressogenic stimulus for the catecholaminergic system in the hypothalamus, which is one of the regulators of the activation of neuroendocrine reactions under stress.

  4. [Effect of weightlessness on the course of the reparative process in the muscles of the biosatellite Kosmos-2044 rats]. (United States)

    Il'ina-Kakueva, E I; Burkovskaia, T E


    The repair process in the soleus and gastrocnemius muscles of SPF Wistar rats flown for 14 days on the biosatellite Cosmos-2044 was investigated. The muscles were injured 2 days before launch by means of clamp forceps. The exposure inhibited the process but did not impair its phasic development. As a result, the reparative field diminished and took the size of an atrophic muscle; thinner myofibers appeared that originated from the ends of injured atrophic fibers and fibers that underwent splitting. It is postulated that repair inhibition is caused by the same mechanisms that produce muscle atrophy in microgravity. It is suggested that both repair inhibition and muscle atrophy are induced by disorders in the neurotrophic regulation of metabolism due to partial disuse.

  5. [Ultrastructure of the cortex of the cerebellar nodulus in rats after a flight on the biosatellite Kosmos-1514]. (United States)

    Krasnov, I B; D'iachkova, L N


    The ultrastructure of moss fibers and granule cells of the cortex of the cerebellum nodulus of rats flown for 5 days onboard the biosatellite Cosmos-1514 and exposed to 1 g for 6-8 hours upon return to Earth is indicative of an excess excitation of terminals of moss fibers and excitation of granule cells. The excitation of moss fiber terminals reflect the excitatory state of hair cells of the otolith apparatus and neurons of the vestibular ganglion produced by the effect of 1 g after exposure to microgravity. This state can be viewed as evidence of a greater sensitivity of the hair cell of the otolith organ--neuron of the vestibular ganglion system during exposure to microgravity. It is hypothesized that the sensitivity of this system of other mammals may also increase in microgravity.

  6. Particle trajectories in seeds of Lactuca sativa and chromosome aberrations after exposure to cosmic heavy ions on cosmos biosatellites 8 and 9 (United States)

    Facius, R.; Scherer, K.; Reitz, G.; Bücker, H.; Nevzgodina, L. V.; Maximova, E. N.


    The potentially specific importance of the heavy ions of the galactic cosmic radiation for radiation protection in manned spaceflight continues to stimulate in situ, i.e., spaceflight experiments to investigate their radiobiological properties. Chromosome aberrations as an expression of a direct assault on the genome are of particular interest in view of cancerogenesis being the primary radiation risk for man in space. In such investigations the establishment of the geometrical correlation between heavy ions' trajectories and the location of radiation sensitive biological substructures is an essential task. The overall qualitative and quantitative precision achieved for the identification of particle trajectories in the order of 2~10 μm as well as the contributing sources of uncertainties are discussed. We describe how this was achieved for seeds of Lactuca sativa as biological test organisms, whose location and orientation had to be derived from contact photographies displaying their outlines and those of the holder plates only. The incidence of chromosome aberrations in cells exposed during the COSMOS 1887 (Biosatellite 8) and the COSMOS 2044 (Biosatellite 9) mission was determined for seeds hit by cosmic heavy ions. In those seeds the incidence of both single and multiple chromosome aberrations was enhanced. The results of the Biosatellite 9 experiment, however, are confounded by spaceflight effects unrelated to the passage of heavy ions.

  7. [Electrolyte makeup of the blood plasma and skeletal muscles of rats after a flight on the Kosmos-690 biosatellite]. (United States)

    Nesterov, V P; Tigranian, R A


    Measurements of Na+, K+, Mg2+ and Ca2+ concentrations in the functionally different muscles (soleus, plantaris, diaphragm muscles) and plasma of the rats flown for 20.5 days aboard the biosatellite Cosmos-690 did not show any significant changes as compared with the controls. At the same time a decrease of the K+/Na+ ratio and a similar shift of Mg2+ and Ca2+ concentrations in plasma of irradiated rats as compared with these of non-irradiated animals demonstrated that the combined effects of space flight factors and gamma-irradiation influenced the system of ionic homeostasis in the blood. In the animals sacrificed on the R + 1 day the K+/Na+ ratio in the soleus muscle changed in favor of Na+ and in the plantaris muscle in favor of K+, and remained essentially unchanged in the diaphragm. The comparison of the flight experiments with the ground-based controls showed that ion changes in muscles occurred due to ionizing radiation rather than due to weightlessness.

  8. [Water and electrolyte content of the organs and tissues of male rats following a flight on the Kosmos 1667 biosatellite]. (United States)

    Denisova, L A; Lavrova, E A; Natochin, Iu V; Serova, L V


    After the 7-day space flight onboard the biosatellite Cosmos-1667 the water, Na, K, Ca and Mg content of the liver, kidney, heart, skin and bone of male rats was measured. No significant changes in the weight or water content of the above organs were seen. The exception was a decrease of water contained in the heart and an increase of water contained in the caudal appendage of the epididymis. After flight the mineral composition of the liver was identical to that after control studies. The K content of the heart of the flight rats was lower and that of Na, Ca and Mg was identical to the parameter in the controls. The K content of the skin and bone increased and the Na content of the skin also grew. In the kidney the Ca content did not change whereas the content of K, Na and Mg decreased significantly. In the testis Na decreased and K increased after flight. Thus, changes in fluid-electrolyte homeostasis at the organ and tissue level can develop within 7 days of space flight. They occur not only in the musculoskeletal system but may also evolve in the nonweight-bearing organs.

  9. [The effect of space flight on metabolism: the results of biochemical research in rat experiments on the Kosmos biosatellites]. (United States)

    Popova, I A; Grigor'ev, A I


    Cosmos biosatellites research program was the unique possibility to study the metabolic features influenced by space flight factors. Based on the existing ideas about relationships between some metabolic responses, the state of metabolism and the systems of its control in the rats flown in space was evaluated to differentiate the processes occurred in microgravity, possibly under effect of this factor and during first postflight hours. The biochemical results of studying the rats exposed to space environments during 7, 14, 18.5 and 19.5 days and sacrificed 4-11 h after landing (Cosmos-782, -936, -1129, -1667, -2044 flight) are used. The major portion of data are in line with understanding that after landing when the microgravity-adapted rats again return to 1-g environments they display an acute stress reaction. A postflight stress reaction is manifested itself in a specific way as compared to adequate and well studied model of acute and chronic stress and dictates subsequent metabolic changes. Postflight together with the acute stressful and progressing readaptation shifts the metabolic signs of previous adaptation to microgravity are shown up. In the absence of engineering feasibility to control or record the state of metabolism inflight it can only presupposed what metabolic status is typical of the animals in space environments and that its development is triggered by a decreased secretion of the biologically active growth hormone. This concept is confirmed by the postflight data.

  10. [Noradrenaline and the enzymes of its synthesis and breakdown in the rat hypothalamus after a flight on the Kosmos-936 biosatellite]. (United States)

    Torda, T; Kvetnansky, R; Tigranian, R A; Chulman, J; Genin, A M


    In the hypothalamus of the weightless and centrifuged rats flown for 18.5 days on board the biosatellite Cosmos-936 the noradrenaline concentration and activity of the enzymes involved in the catecholamine synthesis and degradation were measured. It was found that under the space flight influence the noradrenaline concentration and tyrosine hydroxylase, dopamine-beta-hydroxylase and monoamine oxidase activities remained unaltered. These findings indicate that a prolonged exposure to weightlessness was not a stressogenic agent that could activate the adrenergic system in the rat hypothalamus.

  11. [Lipid peroxidation and the system of antioxidant protection in rats following a 13-day space flight on the Kosmos-1887 biosatellite]. (United States)

    Markin, A A; Delenian, N V


    After a 13-day space mission, in the rats flown on Cosmos-1887 biosatellite the parameters of lipid peroxidation and antioxidant defense system--the contents of diene conjugates, malonic dialdehyde, Schiff bases, tocopherol, total antioxidant activity (in blood plasma only), antioxidant enzyme activity (in tissues only)--superoxide dismutase, catalase, glutathio peroxidase, glutathio reductase have been measured in the blood plasma, myocardium, skeletal muscles and liver. The liver level of diene conjugates, Schiff bases and tocopherol decreased, and an activity of superoxide dismutase and catalase increased. In the skeletal muscles there was an elevation of diene conjugate contents followed by the decreases in malonic dialdehyde and superoxide dismutase activity. In rat myocardium, superoxide dismutase activity and tocopherol levels increased significantly. In the blood plasma the levels of tocopherol, malonic dialdehyde and total antioxidant activity were elevated. It is concluded that the observed changes in lipid peroxidation developed probably in response to an effect of the last dynamic stage of space flight and during re-adapting to the Earth environments.

  12. Microgravity effects on Drosophila melanogaster development and aging: comparative analysis of the results of the Fly experiment in the Biokosmos 9 biosatellite flight. (United States)

    Marco, R; González-Jurado, J; Calleja, M; Garesse, R; Maroto, M; Ramírez, E; Holgado, M C; de Juan, E; Miquel, J


    The results are presented of the exposure of Drosophila melanogaster to microgravity conditions during a 15-day biosatellite flight, Biokosmos 9, in a joint ESA-URSS project. The experimental containers were loaded before launch with a set of Drosophila melanogaster Oregon R larvae so that imagoes were due to emerge half-way through the flight. A large number of normally developed larvae were recovered from the space-flown containers. These larvae were able to develop into normal adults confirming earlier results that Drosophila melanogaster of a wild-type constitution can develop normally in the absence of gravity. However, microgravity exposure clearly enhances the number of growing embryos laid by the flies and possibly slows down the developmental pace of the microgravity-exposed animals. Due to some problems in the experimental set-up, this slowing down needs to be verified in future experiments. No live adult that had been exposed to microgravity was recovered from the experiment, so that no life span studies could be carried out, but adult males emerged from the recovered embyros showed a slight shortening in life span and a lower performance in other experimental tests of aging. This agrees with the results of previous experiments performed by our groups.

  13. Protein composition in human plasma after long-term orbital missions and in rodent plasma after spaceflights on biosatellites "Cosmos-1887" and "Cosmos-2044". (United States)

    Larina, O N


    The two-dimensional plasma protein map of crewmembers of long-duration "Mir" expeditions obtained the day after the recovery shows a manifold increase in the content of several proteins normally seen in trace amounts. The emergence of several unusual protein spots occurs as well, some of them probably due to charge shifts provided by the events influencing posttranslational modification processes. By the 8 postflight day these phenomena were disappeared. In the "Cosmos-1887" biosatellite experiment, the plasma samples obtained two days after the landing as well as plasma of synchronous animals exhibited the higher fibrinogen levels when compared to those of vivarium animals. The protein consisting of a number of fractions with molecular weight of 50 to 60 kD and pI 5 to 6 had protein spots of similar size in flight and synchronous animals while in vivarium rats one of the spots was larger in size as opposed to the others. The plasma protein spectrum of flight and synchronous groups of animals in "Cosmos-1887" experiment where plasma samples were prepared in the period of time from 5 to 10 hours after spaceflight coincided with the pattern of vivarium animals. The data suggest that the protein changes described above develop during postflight period and accelerations, vibrations, readaptation to 1 G gravity, emotional stress could be the cause of these alterations.

  14. Comparison of cytogenetic effects in bone marrow of mice after the flight on the biosatellite "BION-M1" and the ground-based radiobiological experiment (United States)

    Dorozhkina, Olga; Vorozhtsova, Svetlana; Ivanov, Alexander


    During space flight, the astronauts are exposed to radiation exposure at low doses with low dose rates, so one of the actual areas of Radiobiology is research of action of ionizing radiation in low and ultra-low doses. Violation of the chromosome apparatus of living biosystems, ranging from viruses and bacteria to humans, is the most reliable evidence of exposure to ionizing radiation. In this regard, the study of cytogenetic damage in the cells of humans and animals is central to space radiobiology (Fedorenko B.S., 2006). In experiment "BION - M1" by anaphase method was determined level of chromosomal aberrations in bone marrow cells of tibia of mice. Flight duration biosatellite "BION - M1" (Sychev V.N. et al., 2014) was 30 days in Earth orbit. Euthanasia of experimental animals was carried out after 12 hours from the moment of landing satellite by method of cervical dislocation. The level of chromosomal aberrations in vivarium-housed control mice was 1,75 ± 0,6% and 1,8 ± 0,45%, while the mitotic index 1,46 ± 0,09% and 1,53 ± 0,05%. The content of animals in the experiment with onboard equipment led to some increase in aberrant mitosis (2,3 ± 0,4%) and reduction of the mitotic index (1,37 ± 0,02%). In the flight experiment "BION-M1" was a statistically significant increase in level of chromosome aberrations (29,7 ± 4,18%) and a decrease in the mitotic index (0,74 ± 0,07%). According to VA Shurshakova (2014), the radiation dose to mice ranged from 32 to 72 mGy and relate to a range of small doses (ICRP, 2012). In this connection we conducted a series of experiments in the ground conditions, the aim of which was the study of earliest effects of ionizing radiation in vivo in mice irradiated with low doses of γ-irradiation of 10 to 200 mGy in the first 24 hours after exposure, i.e. within the first post-radiation exposure cell cycle. Studies were carried out on adult female mice outbred ICR (CD-1) - SPF category at the age of 4-4.5 months with an average

  15. US experiments flown on the Soviet biosatellite Cosmos 2044. Volume 1: Mission description, experiments K-7-01 - K-7-15 (United States)

    Connolly, James P. (Editor); Grindeland, Richard E. (Editor); Ballard, Rodney W. (Editor)


    Cosmos 2044 was launched on September 15, 1989, containing radiation dosimetry experiments and a biological payload including two young male rhesus monkeys, ten adult male Wistar rats, insects, amphibians, protozoa, cell cultures, worms, plants and fish. The biosatellite was launched from the Plesetsk Cosmodrome in the Soviet Union for a mission duration of 14 days, as planned. The major research objectives were: (1) Study adaptive response mechanisms of mammals during flight; (2) Study physiological mechanisms underlying vestibular, motor system and brain function in primates during early and later adaptation phases; (3) Study the tissue regeneration processes of mammals; (4) Study the development of single-celled organisms, cell cultures and embryos in microgravity; (5) Study radiation characteristics during the mission and investigate doses, fluxes and spectra of cosmic radiation for various types of shielding. American and Soviet specialists jointly conducted 29 experiments on this mission including extensive preflight and post flight studies with rhesus monkeys, and tissue processing and cell culturing post flight. Biosamples and data were subsequently transferred to the United States. The U.S. responsibilities for this flight included development of flight and ground-based hardware, the preparation of rat tissue sample procedures, the verification testing of hardware and experiment procedures, and the post flight analysis of biospecimens and data for the joint experiments. The U.S. investigations included four primate experiments, 24 rat experiments, and one radiation dosimetry experiment. Three scientists investigated tissue repair during flight for a subgroup of rats injured preflight by surgical intervention. A description of the Cosmos 2044 mission is presented in this report including preflight, on-orbit and post flight activities. The flight and ground-based bioinstrumentation which was developed by the U.S. and U.S.S.R. is also described, along with

  16. Effects of spaceflight in the adductor longus muscle of rats flown in the Soviet Biosatellite COSMOS 2044. A study employing neural cell adhesion molecule (N-CAM) immunocytochemistry and conventional morphological techniques (light and electron microscopy) (United States)

    D'Amelio, F.; Daunton, N. G.


    The effects of spaceflight upon the "slow" muscle adductor longus were examined in rats flown in the Soviet Biosatellite COSMOS 2044. The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leukocytes and mononuclear cells. Neural cell adhesion molecule immunoreactivity (N-CAM-IR) was seen on the myofiber surface and in regenerating myofibers. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with apparent preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments. The principal electron microscopic changes of the neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles replaced by microtubules and neurofilaments, degeneration of axon terminals, vacant axonal spaces and changes suggestive of axonal sprouting. The present observations suggest that alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.

  17. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 1; A Study Employing Neural Cell Adhesion Molecules (N-CAM) Immunocytochemistry and Conventional Morphological Techniques (Light and Electron Microscopy) (United States)

    Daunton, N. G.; DAmelio, F.; Wu, L.; Ilyina-Kakueva, E. I.; Krasnov, I. B.; Hyde, T. M.; Sigworth, S. K.


    The effects of spaceflight upon the 'slow' muscle adductor longus was examined in rats flown in the Soviet Biosatellite COSMOS 2044. Three groups - synchronous, vivarium and basal served as controls. The techniques employed included standard methods for light microscopy, N-CAM immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy, contraction bands and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leucocytes and mononuclear cells. N-CAM immunoreactivity was seen (N-CAM-IR) on the myofiber surface, satellite cells and in regenerating myofibers reminiscent of myotubes. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments that displayed varied distributive patterns. The principal electron microscopic changes of the neuromuscular junctions consisted of a decrease or absence of synaptic vesicles, degeneration of axon terminals, increased number of microtubules, vacant axonal spaces and axonal sprouting. The present observations indicate that major alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.

  18. Radiobiological experiments with plant seeds aboard the biosatellite Kosmos 1887 (United States)

    Anikeeva, I. D.; Vaulina, E. N.; Kostina, L. N.; Marenny, A. M.; Portman, A. I.; Rusin, S. V.; Benton, E. V.


    The effects of spaceflight factors on the seeds of Arabidopsis thaliana and Crepis capillaris were studied provided with various protective measures: the seeds were located inside the satellite and in open space, protected with aluminium foil and also exposed without the foil cover. When the seeds were in open space without any protection, their viability was found to be suppressed; the survival rate and fertility of plants grown from these seeds were also diminished. An increase in the frequency of chromosome aberrations (CA) and in the number of multiple injuries was registered in this case. Experiments with the aluminium foil shielding showed a decrease in the suppression of the seeds' viability, but mutational changes were found to be even more increased, while the survival and fertility of the plants decreased. An increase in the thickness of shielding resulted in a decrease in the effects up to the level of the control, except for the effects connected with CA and fertility of the plants. Analysis of the results shows that these impairments can be ascribed to the action of single heavy charged particles (HCP). The seeds can be thus regarded as an integral biological 'dosimeter' which allows estimation of the total effects of radiation, ecological and biological factors.

  19. [An experiment with Chlamydomonas reinhardtii on the Kosmos-2044 biosatellite]. (United States)

    Gavrilova, O V; Gabova, A V; Goriainova, L N; Filatova, E V


    Space experiment with Chlamydomonas reinhardtii demonstrated that the microgravity effects were noted in Chlamydomonas at both cellular and population levels: in space the cell size is increased, stage of active growth of the culture is extended, it contains the juvenile vegetative motile cells in greater quantities. Ultrastructural analysis indicated that in microgravity the changes in shape, structure and distribution of intracellular organelles and in volume ratio of organelles and cytoplasma are absent. Chlamydomonas data are in line with the results of the Infusoria and Chlorella experiments.

  20. Radiobiological experiments with plant seeds aboard the biosatellite Cosmos 1887 (United States)

    Benton, E. V.; Anikeeva, I. D.; Akatov, Yu. A.; Vaulina, E. N.; Kostina, L. N.; Marenny, A.; Portman, A. I.; Rusin, S. V.


    The effects of spaceflight factors on the seeds of Arabidopsis thaliana and Crepis capillaris were studied. The seeds were located inside the satellite in an open space, protected with aluminum foil and also exposed without the foil cover. When the seeds were in open space without any protection, their viability was found to be suppressed; the survival rate and fertility of plants grown from these seeds were also diminished. An increase in the frequency of chromosome aberrations (CA) and in the number of multiple injuries was registered in this case. Experiments with the aluminum foil shielding showed a decrease in the suppression of the seeds' viability, but mutational changes were found to be even more increased, while the survival rate and fertility of the plants decreased. An increase in the thickness of shielding resulted in a decrease in the effects up to the level of the control, except for the effects connected with CA and fertility of the plants. Analysis of the results shows that these impairments can be ascribed to the action of single heavy charged particles (HCP). The seeds can thus be regarded as an integral biological 'dosimeter' which allows estimation of the total effects of radiation, ecological and biological factors.

  1. [Amino acid composition of the body of rats after a flight on the Kosmos-1129 biosatellite]. (United States)

    Vlasova, T F; Miroshnikova, E B; Smirnova, T A; Dmitrieva, I A


    The paper presents data concerning the amino acid pool of rats flown on board Cosmos-1129 and exposed to the ground-based synchronous experiment. Certain changes in the amino acid pool of flight and synchronous rats have been found. The changes seem to be associated with the selective rate of incorporation of free amino acids into the biosynthetic processes during acute adaptation and with alterations in the protein synthesis rate.

  2. [The vestibular apparatus of quail embryos in an experiment on the Kosmos-1129 biosatellite]. (United States)

    Lychakov, D V; Il'inskaia, E V; Dadasheva, O A; Gur'eva, T S


    The light microscope was used to study serial sections of labyrinths of quail embryos incubated and reared during 12 d orbiting of Cosmos 1129. On recovery the embryos were aged 9, 11.5 and 12 days. No significant deviations in the development of the vestibular apparatus in flight species were noted as compared to the controls. Given this and our experimental data about in-space development of fish and amphibians we may deduce that hypo-g does not exert a noticeable altering effect on the vestibular embryogenesis. Nevertheless, it should be pointed out that in all otolith organs and semicircular channel ampules of the flight embryos cup-form neural endings innervating type I sensory cells were markedly swollen in contrast to the control. Earlier swollen cup-form nerve endings have been found in one adult rat after 7 days of space flight aboard Cosmos 1667. However, exposure in space does not bring about a substantial swelling of bud-like nerve endings which contact type II sensory cells. Thus, a conclusion may be drawn that spaceflight factors are liable to produce shifts in the type I sensory cell--cup-form nerve ending unit but they do not affect type II sensory cell--bud-like nerve ending unit to the extent when effects can be identified by light microscopy.

  3. [Skeletal muscle mixed fiber tissue metabolism in rats after a flight on the Kosmos-690 biosatellite]. (United States)

    Gaevskaia, M S; Belitskaia, R A; Kolganova, N S; Kolchina, E V; Kurkina, L M


    On the R+O day the quadriceps muscle of rats showed a decrease in the content of T protein and an inhibition of LDH activity of sacroplasmatic proteins. These changes resulted from the combined affect of space flight factors and gamma-irradiation, and may be considered as a decline of compensatory synthetic processes responsible for the recovery of muscle proteins in weightlessness. Inhibition of the age-associated shift of the M:H ratio of LDH found on the R+25 day can be attributed to the inhibitory effect of gamma-irradiation. No change in the content of glycogen in the gastrocnemius muscle of flight rats was noted.

  4. The Kosmos-1129 biosatellite. [experiments in biological effects of space flight (United States)

    Nikitin, S. A.


    A number of experiments, designed by participating specialists from several countries, are described. The experiments included studies in biorhythm, stress, body parts, behavior, ontogenesis, and gravitational preference. The biological subjects of the experiments were retrieved immediately after the landing of the satellite and examined in a field laboratory.

  5. [Characteristics of the rat nystagmic reaction after a flight on the Kosmos-1129 biosatellite]. (United States)

    Shipov, A A; Tabakova, L A


    The vestibular nystagmus of rats flown for 18.5 days on Cosmos-1129 was examined with reference to the latent period, number of beats, duration and the average velocity. The nystagmus was elicited by increasing angular acceleration of 10, 20, 30 degrees/sec2. As compared to the controls, the flown animals showed a significant inhibition of the nystagmic reaction (P less than less than 0.001). The inhibition can be attributed to the desynchronosis which developed inflight.

  6. [Plasma and tissue lipids in rats after a flight on the Kosmos-936 biosatellite]. (United States)

    Ahlers, J; Tigranian, R A; Praslická, M


    The content of triglycerides, total cholesterol, phospholipids and nonesterified fatty acids was measured in plasma and tissues of rats flown for 18.5 days on Cosmos-936 in the weightless and centrifuged state. The weightlessness exposure increased lipid fractions in plasma and tissues, and artificial gravity produced a beneficial effect.

  7. [Circadian rhythms and temperature homeostasis in monkeys during a flight on the Kosmos 1514 biosatellite (United States)

    Klimovitskui, V. Ia; Alpatov, A. M.; Salzman, F. M.; Fuller, C. A.; Moore-Ede, M. S.


    In the course of a 5-day space flight of two rhesus-monkeys the following parameters were recorded at an interval of 16 min: core body temperature (Tc), skin temperature (Ts), and motor activity (MA). The telemetric Tc sensor was implanted subcutaneously in the right axilla, Ts thermistor was attached to the right ankle, and the MA piezotape was fixed to the inner side of the vest. Circadian rhythms of Tc varied with a period of 24 hours in one monkey and 25 hours in the other. The daily Tc decreased on the average by 0.5 degrees C, Ts fell immediately after launch and remained close to the lower limit throughout the flight. The Ts amplitude decreased 5-fold. Phases of the circadian rhythms of Ts changed and circadian rhythms of MA remained unchanged and equal to 24 hours.

  8. [Reproductive function of the male rat after a flight on the Kosmos-1129 biosatellite]. (United States)

    Serova, L V; Denisova, L A; Apanasenko, Z I; Kuznetsova, M A; Meĭzerov, E S


    Male rats that were flown for 18.5 days on Cosmos-1129 were mated postflight with intact females. The mating 5 days postflight when the ejaculate consisted of spermatozoids that were exposed to zero-g effects in the mature stage yielded the litter which lagged behind the controls with respect to the growth and development during the first postnatal month. The mating 2.5-3 months postflight when the ejaculate consisted of spermatozoids that were exposed to zero-g effects at the stem cell stage yielded the litter which did not differ from the control.

  9. [Energy reactions in the skeletal muscles of rats after a flight on the Kosmos-1129 biosatellite]. (United States)

    Mailian, E S; Buravkova, L B; Kokoreva, L V


    The polarographic analysis of biological oxidation in rat skeletal muscles after the 18.5-day flight revealed changes specific for the flight animals: oxidative phosphorylation uncoupling, distinct inertness of energy accumulation 10 hrs after recovery. Tissue respiration inhibition occurred in both flight and synchronous rats suggesting the effect of other than weightlessness factors. In the flight animals the parameters of energy metabolism returned to the prelaunch level within a longer (29 days) time than in the synchronous rats (6 days). Muscles of different function (predominance of fast or slow fibers) showed similar responses of energy metabolism to weightlessness, i. e. inhibition of the intensity and decrease of the energy efficiency of oxidative processes.

  10. [Medullary layer activity of the rat adrenals after a flight on the Kosmos-1129 biosatellite]. (United States)

    Kvetnanský, R; Blazicek, P; Tigranian, R A


    After a 18.5-day space flight on Cosmos-1129 rat adrenals were investigated for the concentration of catecholamines and activity of enzymes involved in their synthesis, i.e. tyrosine hydroxylase, dopamine-beta-hydroxylase, and phenyl ethanol amine-N-methyl transferase. It was found that inflight the sympatho-adreno-medullary system of rats was not exposed to a prolonged or strong stressogenic effect. Postflight the rats showed an increased reactivity to the immobilization stress.

  11. [Energy reactions in the skeletal muscles of rats following space flight on the Kosmos-936 biosatellite]. (United States)

    Mailian, E S; Bruavkova, L B; Kokoreva, L V


    The respiration of mitochondria isolated from mixed skeletal muscles of hindlimbs of rats flown for 18.5 days on Cosmos-936 was investigated polarographically. At R + 10 hours the rate of mitochondrial respiration in different metabolic states during the oxidation of succinic acid and NAD-dependent substrates declined. The enzyme activity of mitochondrial cytochrome oxidase and cytosol lactate dehydrogenase diminished. At R + 25 days both aerobic and anaerobic oxidative processes increased, thus leading to the recovery of the parameters (sometimes they not only returned to the norm but exceeded it).

  12. [Effect of outer space factors on lettuce seeds (Lactuca sativa) flown on "Kosmos" biosatellites]. (United States)

    Nevzgodina, L V; Maksimova, E N; Akatov, Iu A; Kaminskaia, E V; Marennyĭ, A M


    The effect of cosmic radiation on air-dry lettuce (Lactuca sativa) seeds was investigated. It was attempted to discriminate the effects of cosmic ionizing radiation per se and its combination with solar light radiation. It was found that the number of aberrant cells in the seeds exposed to solar light was smaller than that of cells chielded with 0.0008 to 0.0035 g/cm2 foil which could be attributed to photoreactivity.

  13. [Stereological analysis of rat bone tissue after a flight on the Kosmos-1129 biosatellite]. (United States)

    Prokhonchukov, A A; Peschanskiĭ, V S


    Stereological measurements of volume fractions of 53 samples of compact and spongy structures of bones of 15 rats were carried out. The measurements were performed on cortical lamellae, trabecules and lacunae, channels of osteons and matrices of femoral, tibial and fibular bones of rats. Postflight no significant changes were seen in the above parameters as compared to the vivarium controls. During readaptation to I g a slight increase in the volume fraction of spongy bones was noted.

  14. [Morphological changes in the digestive organs during prolonged space flight on the Kosmos-782 biosatellite]. (United States)

    Loginov, A S; Aruin, L I; Brodskiĭ, R A; Morozov, I A; Permiakov, N K


    A reduction in the content of neutral mucopolysaccharides in mucous cells of the neck, a slight decrease in the activity of succinate dehydrogenase and NAD-diaphorase in parietal cells, a decrease in the DNA synthesis rate, and an increase in the area of mitochondria and cristae were detected in the gastric mucosa of rats which were in a long-term space flight. In the small intestine, an increase in the activity of glucose-6-phosphate dehydrogenase and leucine aminopeptidase were found. Morphological changes in the liver consisted in infiltrative adiposity. A similar morphological picture was demonstrated in a synchronous experiment on the earth. These changes, however, were nonspecific and reversible (25 days after rehabilitation the picture did not differ from the animal house control).

  15. [Histomorphometric analysis of the bones of rats on board the Kosmos 1667 biosatellite]. (United States)

    Kaplanskiĭ, A S; Durnova, G N; Sakharova, Z F; Il'ina-Kakueva, E I


    Bones of the rats flown on Cosmos-1667 were examined histologically and histomorphometrically. It was found that 7-day exposure to weightlessness led to osteoporosis in the spongy matter of proximal metaphyses of tibia and, although to a lesser extent, in the spongiosa of lumbar vertebrae whereas no signs of osteoporosis were seen in the spongy matter of iliac bones. Osteoporosis in the spongy matter of the above bones developed largely due to the inhibition of bone neoformation, which was indicated by a decrease in the number and activity of osteoblasts. Increased bone resorption (as shown by a greater number and activity of osteoclasts) was observed only in the spongy matter of tibial metaphyses. It is emphasized that a reduction of the number of highly active osteoblasts in spongy bones is one of the early signs of inhibition of bone neoformation and development of osteoporosis.

  16. [Cytogenetic investigations of bone marrow cells from mice exposed onboard biosatellite "Bion-M1"]. (United States)

    Dorozhkina, O V; Ivanov, A A


    The results of studying the mitotic activities and chromosomal aberrations in bone marrow cells from C57/BL6N mice with the help of the anaphase technique in 12 hours after completion of the 30-day "Bion-M1" mission and ground-based experiment using flight equipment are presented. A statistically reliable decline of the mitotic activity (0.74%) was found in cells taken from the space flown animals. In the ground-based experiment, a statistically reliable downward trend in proliferative activity (1.37%) was revealed after the comparison with groups of vivarium control (1.46-1.53%). In both experiments mice increased the number of initial mitotic phases (prophase + metaphase) relative to the sum of anaphases and telophases. The number of aberrant mitoses grew reliably in the group of flight animals by 29.7%, whereas in the ground-based experiment an upward trend was insignificant as their number increased up to 2.3% only. In the vivarium controls aberrant mitoses constituted 1.75-1.8%. An increase in chromosomal aberrations was largely due to such abnormalities as fragments. These findings seem to have been a result of summation of the effects of radiation and other stressful factors in space flight.

  17. [Experiments with cultures of mammalian cells aboard the biosatellite "Cosmos-782"]. (United States)

    Sushkov, F V; Rudneva, S V; Nadtocheĭ, G A; Polikarpova, S I; Portugalov, V V


    A considerable contribution to the investigation on biological importance of weightlessness was made by the experiments with animals in the artificial Earth satelites (AES) of "Cosmos" type. Cell cultures can serve as an ideal model to get a direct cell response to the effect of external factors. For the experiment in the AES "Cosmos-782", two thoroughly examined cell strains (L and 237) were chosen, which differed in a number of parameters (for example, duration of their mitotic cycles). Density of cell seeding and temperature of their cultivation in the laboratory experiment were calculated in such a way that the whole cycle of the culture development should take place under the conditions of weightlessness: the beginning of lag-phase--before launching and the stationary phase--after landing. The weightlessness was not shown to result in any genetical shifts revealed at chromosomal level. When cultivated after the flight, the cells do not change their mitotic cycle parameters, mitotic course and structural organization. The data obtained in the experiments with AES "Cosmos-368" and "Cosmos-782" (increase of mitotic index, some forms of mitotic pathology during the first terms of cultivation after the flight and enlargement of cellular nuclei) demonstrate the changes in the cell population which have formed under the conditions of weightlessness. Similar changes are observed while the cells propagate in the laboratory conditions. Indirect data on an earlier cell culture aging during the flight do not exclued the possibility that under weightlessness the rate of cell propagation could differ from that under gravitation.

  18. Renin-angiotensin-aldosterone system and electrolyte metabolism in rat blood after flight aboard Cosmos-1129 biosatellite

    Energy Technology Data Exchange (ETDEWEB)

    Kvetnansky, R.; Tigranyan, R.A.; Jindra, A.; Viting, T.A.


    Blood plasma aldosterone concentration and renin activity were studied in rats flow in space on the Cosmos 1129 satellite using radioimmunoassay techniques. Immediately after the flight, the animals presented significant decreases in plasma renin activity, as compared to rats in the vivarium control and animals in the synchronous experiment. R. J.

  19. [Cytogenetic effects in experimental exposure to the heavy charged particles of galactic cosmic radiation on the Kosmos-1129 biosatellite]. (United States)

    Nevzgodina, L V; Maksimova, E N


    The experiment was carried out on lattice (Lactuca sativa) seeds flown in a biocontainer equipped with plastic detectors to record heavy charged particles (HCP). The purpose of the experiment was to determine the yield of aberrant cells as a result of irradiation, and to identify this effect as a function of HCP topography in the seed. The cytogenetic examination of flight seedlings revealed a significant difference between the seeds which were hit with HCP and those that remained intact. This indicates a significant contribution of the heavy component of galactic cosmic rediation into the radiobiological effect. The relationship between the radiobiological effect and the HCP topography in the seed was established: zones of the root and stem meristema proved to be most sensitive targets.

  20. [Enzyme activity in the subcellular fractions of the liver of rats following a flight on board the Kosmos-1129 biosatellite]. (United States)

    Tigranian, R A; Vetrova, E G; Abraham, S; Lin, C; Klein, H


    The activities of malate, isocitrate, and lactate dehydrogenases were measured in the liver mitochondrial and cytoplasmatic fractions of rats flown for 18.5 days onboard Cosmos-1129. The activities of the oxidative enzymes, malate and isocitrate dehydrogenases, in the mitochondrial fraction and those of the glycolytic enzyme, lactate dehydrogenase, in the cytoplasmatic fraction were found to decrease.

  1. [The righting reaction in free fall in labyrinthectomized rats after a flight on the Kosmos-936 biosatellite]. (United States)

    Aĭzikov, G S; Markin, A S; Shipov, A A


    The paper presents the experimental data on a turning over reaction in labyrinthectomized rats after 18.5 day flight on Cosmos 936. On Earth, the labyrinthectomized rats are found to exhibit with time an activation of gaze fixation reflex (GFR) which substitutes for labyrinth function when executed a turning over reaction. In microgravity, in the labyrinthectomized rats there is no activation of GFR and postflight turning over reaction is absent in the rats.

  2. [An immunocytochemical study of the C-cell function of the thyroid in rats exposed on the Kosmos-2044 biosatellite]. (United States)

    Loginov, V I


    Immunocytochemical analysis of thyroid gland C-cells of the rats exposed to a 14-day space flight revealed a decrease in the number of C-cells, volume of their nuclei and a declined percentage of active secretory C-cells, which point to a decline of calcitonin proactive and calcitonin secretory hypofunction of the thyroid C-cells system in flown rats. Tail suspension as a microgravity model caused similar changes in C-cells.

  3. [Structural changes in the soleus muscle of rats on the Kosmos-series biosatellites and in hypokinesia]. (United States)

    Il'ina-Kakueva, E I; Portugalov, V V


    Structural changes in the soleus muscle of rats used in flight and synchronous experiments of the Cosmos program and hypokinetic studies have been investigated. It is hypothesized that focal edema and dystrophic changes observed in flight, synchronous and hypokinetic rats can be caused by circulation disorders of different etiology. In flight and synchronous rats they develop two days postflight due to the deconditioning of the muscle tissue and intraorgan vascular system which fail to meet the requirements after transition from 0 g to 1 g. In hypokinetic rats circulation disorders occur on the first experimental day due to mechanical causes (paws are pressed against the cage floor impeding venous outflow) and muscle pump deficiency. In all cases circulation disorders seem to be associated with peculiar features of angioarchitectonics of the soleus muscle.

  4. [The righting reaction in the free fall of rats after a flight on the Kosmos-936 biosatellite]. (United States)

    Aĭzikov, G S; Markin, A S; Shipov, A A


    The free fall turning over reaction has been studied in the weightless and centrifuged rats flown on board Cosmos 936. There occur particular changes of the reaction in the weightless rats after landing and its complete absence in eyes-closed centrifuged rats. The possible mechanisms responsible for the observed alterations are discussed.

  5. [Deoxyribonucleoprotein and nucleic acid changes in the tissues of rats after a flight on the Kosmos-1129 biosatellite]. (United States)

    Misŭrova, E U; TIgranian, R A; Sabova, T; Prasliĭcka, M


    The concentration of polydeoxyribonucleotides and nucleic acids was measured in the spleen, thymus, liver, bone marrow and blood of rats flown for 18.5 days on Cosmos-1129. The exposure led to an increase in the polydeoxyribonucleotide content in the thymus and a decrease of the DNA and RNA concentration in the spleen and thymus. These changes returned to normal at R+6.

  6. [Mineral phase and protein matrix status of rat bony tissue after a flight on the Kosmos-1129 biosatellite]. (United States)

    Prokhonchukov, A A; Desiatnichenko, K S; Tigranian, R A; Komissarova, N A


    The major parameters of the mineral component and protein matrix of bones were investigated in 30 rats flown onboard Cosmos-1129. Postflight, the content of calcium decreased by 7.8%, that of phosphorus diminished by 11.8%, the Ca/P ratio increased by 5.9%, the content of collagen diminished by 14.7% and that of non-collagenous proteins by 45.7% and the content of sialic and hexuronic acids increased by 36.2% and 14.6%, respectively, as compared to the vivarium controls. The paper discusses the role of EDTA-and HCl-protein extracts, soluble and poorly soluble calcium fractions, protein-Ca-phosphate complex, sialic and hexuronic acids in the mechanism of calcium binding by the bone organic matrix.

  7. Conditioned reflex activity of rats at later periods after the end of flight aboard the Kosmos-605 biosatellite (United States)

    Livshits, N. N.; Meyzerov, Y. S.; Apanasenko, Z. I.; Kuznetsova, M. A.


    The aftereffects of spaceflight on the higher nervous activity of rats were studied. A five lane maze with a feeding terminal was used to check such factors as transfer of experience, the habit and speed of reaching the goal in the maze, long term memory, and the dynamics of errors. During the 3rd-7th postflight week, functional disturbances in the rat HNA were manifested in the deterioration of the capacity for the transfer of experience and for locating the feeding compartment in the maze, thus indicating a general decrease of work capacity. The increased number of errors and failures pointed to exhaustion of higher nervous processes and to the weakened functional activity of the brain.

  8. [RNA-synthesizing activity in the liver of rats after a flight on the Kosmos 1667 biosatellite]. (United States)

    Makeeva, V F; Komolova, G S


    The effect of a short-term flight (7 days) on the RNA synthetic activity in isolated nuclei of the rat liver and its content of nucleic acids was investigated. Postflight the activity of RNA-polymerase, the key enzyme of RNA synthesis, increased. The endogenous synthesis of RNA in nuclei grew, probably, due to the change in the activity of RNA-polymerase. Conversely, the concentration of nucleic acids in the liver tended to decrease. The results obtained give evidence that the changes in the RNA synthetic apparatus of hepatocytes in short-term flights are similar in sign to those seen in long-term flights.

  9. [General characteristics of an experiment to study the ontogeny of rats on board the Kosmos-1514 biosatellite]. (United States)

    Serova, L V; Denisova, L A; Apanasenko, Z I; Briantseva, L A; Chel'naia, N A


    Ten female Wistar rats were exposed to zero-g during 5 days, i. e., from gestation day 13 to day 18. After recovery the flight animals showed a significant delay in weight gain, thymus involution, decreased liver weight, hemoglobin concentration. Nevertheless, their reproductive function did not differ from that of the controls: the rate of preimplantation and total fetal mortality as well as the number of live fetuses were very similar in the experimental and control animals. The flight group showed a slight decline of fetal weight and water content. The size of the litters produced by the flight and control rats was identical but the mortality rate of those former during the first 7 days after birth was significantly higher. This experiment has demonstrated that the mammalian fetus exposed to zero-g during the last term of pregnancy, i. e., at the stage of active organogenesis, can grow and develop in the normal way. A large body of biological material has been obtained for biochemical and histological examinations that will help evaluate the condition of dams, fetuses, and newborns.

  10. [The C-cell system of the thyroid in rats following a flight on the Kosmos 1667 biosatellite]. (United States)

    Plakhuta-Plakutina, G I; Dmitrieva, N P; Amirkhanian, E A


    Histological, electron-microscopic and morphometric investigations of the thyroid gland of Wistar SPF male rats (aged 3 months) flown for 7 days on Cosmos-1667 showed that its parenchyma was functionally active and changed but little as compared to the controls. However, at an acute stage of adaptation to microgravity C-cells showed morphological signs of their functional decline: the number of low activity cells and cells whose cytoplasm contained secretory granules increased, the volume of nuclei decreased significantly (by 16.2% as compared to the control), and dystrophic changes seen ultrastructurally appeared. These observations together with the results obtained in prolonged animal flights suggest that in microgravity the synthesis and excretion of the hormone calcitonin diminish. In combination with other factors, the functional decline of C-cells inhibits bone neoformation and enhances bone resorption.

  11. [Dynamics of lipid concentration changes in the livers of rats on biosatellites "Cosmos-605" and "Cosmos-782"]. (United States)

    Iakovleva, V I


    Histological and histochemical investigation was carried out with rat liver specimens taken 9-11 h (from 6 rats), 24 (from 7 rats), 48 h (from 8 rats), and 25 (from 5 rats) and 27 days (from 7 rats) after the completion of 19.5- and 22.5-day of space bioflights in "Cosmos-605" and "Cosmos-782". The same number of specimens was investigated from corresponding models of the experiments carried out in the laboratory and from the control rats. The investigations demonstrated that in the rats sacrificed during the first two days, and in 25 and 27 days after the completion of the flight, no morphological changes developed in comparison with the control and with the animals from the laboratory experiments. Only some fluctuations in lipid content could be noticed in connection with the time of samples taking after the completion of the experiments. The greatest amount of lipids in the liver was observed in the rats sacrified 9-11 h after the completion of the flight, in 24 h the lipid level was still rather high, and in 48 h there was a tendency to their decrease. In 25 and 27 days the livers of the animals from the experimental group did not differ in their lipid content from those of the control animals. The changes in the lipid content observed in the liver during 8-48 h after the flight completion and during the period of afteraction indicate the reversibility of the adipose infiltration process, connected with lipid mobilization, dependent on stress-reaction.

  12. JPRS Report, Soviet Union, Aviation & Cosmonautics, No. 12, December 1987 (United States)


    tissue. The results of experiments on animals carried out during flights of Kosmos series biosatellites made it possible to efficiently schedule...ration are a good means of protecting against accelera- tions after weightlessness. Soviet biosatellites of the Kosmos series are making a noticeable...tal research aboard Kosmos biosatellites, Interkosmos satellites and manned orbiting stations. Working together with specialists of the GDR

  13. [Effect of stress on nucleic acid metabolism in the rat spleen and liver after a flight on the Kosmos-1129 biosatellite]. (United States)

    Komolova, G S; Troitskaia, E N; Egorov, I A; Tigranian, R A


    Changes in nucleic acid metabolism of the spleen and liver of rats flown for 18.5 days on Cosmos-112 were investigated. Postflight changes in the liver RNA synthesis after an additional stress effect (immobilization) in the flown rats were expressed to a lesser degree than in the controls. The DNA synthesis remained essentially at the preflight level. The tissue content of nucleic acids suggests that postflight the dystrophic changes induced by the additional stress effect increased. It is very likely that an exposure to space flight effects contributes to the depletion of compensatory mechanisms maintaining the normal level of metabolic processes.

  14. Main results of the experiments conducted during the flight of the Kosmos-1129 Biosatellite and the status of preparation of studies on the next biosatllite (United States)

    Ilin, E. A.


    Experiments included studies on the biological effects of weightlessness. Space flight stress, disorientation, and physiological factors are discussed for each experimental subject. The subjects included rats, drosophila flies, and plants. Metabolic rates were monitored along with other changes in the subject's activity cycles.

  15. [Ultrastructure of the blood vessels and muscle fibers in the skeletal muscle of rats flown on the Kosmos-605 and Kosmos-782 biosatellites]. (United States)

    Savik, Z F; Rokhlenko, K D


    Electron microscopy was used to study ultrastructures of the wall of blood vessels and muscle fibers of the red (soleus) and mixed (gastrocnemius) muscles of rats flown on Cosmos-605 for 22.5 days and on Cosmos-782 for 19,5 days and sacrificed 4-6 hours, 48 hours and 25-27 days postflight. It was demonstrated that the orbital flight did not induce significant changes in the ultrastructure of blood vessels of the soleus and gastrocnemius muscles but caused atrophy of muscle fibers and reduction of the number of functioning capillaries. Readaptation of the soleus vascular system to 1 g led to degradation of permeability of capillary and venular walls and development of edema of the perivascular connective tissue. This may be one of the factors responsible for dystrophic changes in muscle fibers.

  16. [Nitrous compound content in the tissues of the cerebral hemispheres and cerebellum of rats after a flight on the Kosmos-1129 biosatellite]. (United States)

    Kurkina, L M; Tigranian, R A


    The content of ammonia, glutamine, urea, glutamic acid, aspartic acid, and GABA was measured to study nitrogen metabolism. Soon after recovery (6-10 hours after recovery) the content of the above compounds in brain tissues increased, except for GABA whose content decreased. Similar but more marked changes were seen in the brain of control rats exposed to a repeated immobilization stress-effect. These changes were still greater in the flight rats exposed to a repeated immobilization stress-effect postflight. It is suggested that the postflight changes of the above parameters of nitrogen metabolism are induced by stress-agents inherent in space flight and recovery.

  17. [Status of the lipid peroxidation system in the tissues of rats following a 7-day flight on the Kosmos-1667 biosatellite]. (United States)

    Delenian, N V; Markin, A A


    Rats flown for 7 days on Cosmos-1667 were for the first time used to measure antioxidative enzymes (superoxide dismutase, glutathione peroxidase, glutathione reductase, catalase), lipid peroxidation products (diene conjugates, malonic dialdehyde, Schiff bases) and tocopherol. Enhanced lipid peroxidation in the heart was completely compensated by activation of antioxidative enzymes. The content of all lipid peroxidation products measured in the liver increased; this was accompanied by a decrease of glutathione peroxidase and an increase of superoxide dismutase activities. It is suggested that lipid peroxidation was activated in response to altered gravity.

  18. [Morphofunctional properties of the peripheral blood and bone marrow cells of rats following a flight on board the Kosmos-936 biosatellite]. (United States)

    Kozinets, G I; Korol'kov, V I; Britvan, I I; Bykova, I A; Spitsyna, N E


    Morphofunctional properties of peripheral blood cells of Cosmos-936 rats were examined, using morphological, interferometric and electron microscopic techniques. As follows from the morphological data, immediately after recovery the weightless rats showed symptoms of a stress reaction which disappeared by R+3. The centrifuged rats exhibited less expressed symptoms of this sort. The percentage of bone marrow cell distribution was shifted towards enhanced myelopoiesis and diminished erythropoiesis. By the end of the readaptation period the ratio of bone marrow cell composition returned to normal. Interferometric and electron microscopic examinations did not reveal any irreversible changes in the structure and function of cells that may be caused by zero-g.

  19. Full-genome study of gene expression in lumbar spinal cord of mice after 30-day space flight on Bion-M1 biosatellite (United States)

    Islamov, R. R.; Gusev, O. A.; Tanabe, A.; Terada, M.; Tyapkina, O. V.; Petrov, K. A.; Rizvanov, A. A.; Kozlovskaya, I. B.; Nikolskiy, E. E.; Grigorjev, A. I.


    Zero-gravity is one of the factors that negatively affect a man in space and it is not a surprise as the evolution of all living things proceeded in a one-G environment. The negative effects of zero-gravity set in while in space, but clinically manifest themselves following the cosmonauts' return to Earth, the usual one-G environment. All the systems of the organism, which adapted to the virtually weight-free environment, become incapable of regular performance in a one-G environment.

  20. The ecology of micro-organisms in a closed environment (United States)

    Fox, L.


    Microorganisms under closed environmental ecological conditions with reference to astronauts infectious diseases, discussing bacteria growth in Biosatellite 2 and earth based closed chamber experiments

  1. [Effect of weightlessness on the indices of brain development (the results of pregnant rats being on the Kosmos-1514 biosatellite and research on the subsequent development of their progeny on Earth)]. (United States)

    Olenev, S N; Danilov, A R; Kriuchkova, T A; Sorokina, L M; Krasnov, I B


    Beginning from the 13th day of pregnancy the rats were under conditions of weightlessness of spaceflight for 6 days. After landing in 18-day-old fetuses the state of their brain development is investigated comparing to that in control animals, that are on the Earth. As demonstrates analysis of a number of morphological processes: reproduction, migration, neuronal differentiation, growth of processes, establishment of nervous connections, neuroglial interconnections and vascularization--all they under conditions of weightlessness develop rather fully. Certain deviations in vascularization (as examples the medulla oblongata and the striated tuber are taken) are observed--the amount of vessels is greater and they are thinner--and changes in migration rate of cells is demonstrated by the example of the cortical plate formation. These changes are quickly levelled during their subsequent development on the Earth.

  2. Support of ASTP/KOSMOS fundulus embryo development experiment (United States)

    Fuller, P. M.; Keefe, J. R.


    Results from the Kosmos Biosatellite 782 flight are presented. Experiments with fish hatchlings are discussed along with postflight observation and testing. The preparation of fertilized eggs for the experiments is described.

  3. The effect of artificial gravity on plasma and tissue lipids in rats: The Cosmos 936 experiment (United States)

    Ahlers, I.; Praslička, M.; Tigranyan, R. A.

    Plasma and tissue lipids in male SPF Wistar rats flown for 18.5 days aboard the Cosmos 936 biosatellite were analyzed. One group of rats was subjected to artificial gravity by use of a centrifuge during the flight. An experiment simulating known space flight factors other than weightlessness was done on Earth. An increase of total cholesterol in plasma, of nonesterified fatty acids in plasma and brown adipose tissue, of triacylglycerols in plasma, liver, thymus and bone marrow was noted several hours after biosatellite landing. Smaller changes were observed in the terrestrial control experiment. With the exception of triacylglycerol accumulation in bone marrow, these increases disappeared 25 days after biosatellite landing. Exposing the rats aboard the biosatellite to artificial gravity was beneficial in the sense that such exposure inhibited the phospholipid and triacylglycerol increase in plasma and inhibited the increase of triacylglycerol in liver and especially in bone marrow.

  4. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 2; Quantitative Autoradiographic Analysis of Gaba (Benzodiazepine) and Muscarinic (Cholinergic) Receptors in the Forebrain of Rats Flown on Cosmos 2044 (United States)

    Wu, L.; Daunton, N. G.; Krasnov, I. B.; DAmelio, F.; Hyde, T. M.; Sigworth, S. K.


    Quantitative autoradiographic analysis of receptors for GABA and acetylcholine in the forebrain of rats flown on COSMOS 2044 was undertaken as part of a joint US-Soviet study to determine the effects of microgravity on the central nervous system, and in particular on the sensory and motor portions of the forebrain. Changes in binding of these receptors in tissue from animals exposed to microgravity would provide evidence for possible changes in neural processing as a result of exposure to microgravity. Tritium-labelled diazepam and Quinuclidinyl-benzilate (QNB) were used to visualize GABA (benzodiazepine) and muscarinic (cholinergic) receptors, respectively. The density of tritium-labelled radioligands bound to various regions in the forebrain of both flight and control animals were measured from autoradiograms. Data from rats flown in space and from ground-based control animals that were not exposed to microgravity were compared.

  5. Changes in the numbers of osteoclasts in newts under conditions of microgravity (United States)

    Berezovska, O. P.; Rodionova, N. V.; Grigoryan, E. N.; Mitashov, V. I.

    Intensity of osteoclastic resorption and calcium content were investigated in intact limb bones of the newts flown on board of a biosatellite Cosmos-2229 after amputation of their forelimbs and tail. Using X-ray microanalysis it was shown an increase in calcium content in the bones on 20^th day after operation. Histological study revealed an activation of osteoclastic resorption on endosteal surface of long bones. The newts exposed after surgery on a biosatellite had the same level of bone mineralisation as operated ground control ones, but the increase in number of polynuclear osteoclasts was lower.

  6. Dosimetric investigations of cosmic radiation aboard the Kosmos-936 AES (joint Soviet-American experiment K-206) (United States)

    Benton, E. V.; Kovalyev, Y. Y.; Dudkin, V. Y.


    The Soviet and American parts of the experiment are described separately. Particular attention was given to the following problems: placement of the detectors; study of neutron radiation within the biosatellite; and studies of fragmentation of heavy nuclei on accelerators. Unified methods were developed for the calibration of Soviet and American detectors.

  7. [Experiment with rats on a 22-day flight on the "Kosmos-605" biological satellite (objectives and methods)]. (United States)

    Il'in, E A; Serova, L V; Noskin, A D


    In 1974 a rat experiment was carried out onboard the Cosmos-605 biosatellite. Inflight Wistar rats were kept unrestrained in small cages. The cages were equipped with a feeder, water supply, light source and a ventilation device. The state of the animals was assessed with respect to their motor activity. The flight experiment was preceded by a number of preparatory runs and testinns that were completed with an end-to-end experiment in a biosatellite mockup. The flight experiment was paralleled by the ground-based synchroneous experiment which simulated almost entirely the flight profile. For each experiment rats were selected and trained during a month's observation. Postflight rats were exposed to clinical, physiological, morphological, cytochemical and biochemical investigations. Tissue examinations were performed on the 2nd-3rd day (20 rats) and 26-27th day (12 rats) after flight. Four rats were kept to study remote aftereffects.


    Bulekbaeva, L E; Demchenko, G A; Ilyin, E A; Erofeeva, L M


    The article reports the results of studying the lymph tissue of mesenteric and cervical lymphatic nodes in C57BL/6N mice after the 30-day orbital flight onboard biosatellite Bion-M1. Histological and morphometric investigations revealed changes in the ratio of the nodes structural-functional zones and microstructure. Reductions in reticular cells, plasmocytes, macrophages and blasts in the nodes point to degradation of both humoral and cellular immunity.

  9. JPRS Report, Science & Technology, USSR: Space Biology & Aerospace Medicine, Vol. 21, No. 3, May-June 1987 (United States)


    in the opinion of a number of scientists [1, 4], ethical elements of personality are conceived at the early stages in life and remain virtually...manuscript received 28 Jul 86) pp 63-66 [Article by L. V. Serova] [English abstract from source] The place of embryological in- vestigations preparing and conducting the first embryological experiment with mammals during a spaceflight aboard Cosmos-1514 biosatellite. For this

  10. Lipid peroxidation of plants under microgravity and its simulation (United States)

    Zhadko, S. I.; Polulyakh, Yu. A.; Vorobyeva, T. V.; Baraboy, V. A.


    In series of space experiments a board the biosatellites ``Cosmos 1887'', ``Bion 9'', the orbital stations ``Salut'', ``Mir'' and under clinostating, changes of lipid peroxidation (LPO) and antioxidation activity (AOA) of Chlorella, Haplopappus tissue culture, wheat and pea roots were determined. The changes had a complex fluctuation character three steps of response were established; LPO decreasing accompanied by AOA increase; stabilization LPO⇄AOA balance; secondary LPO activation. Most early and highly amplitude decreasing of LPO were fixed in mitochondria. The rate of response have been increased on multicellular level of plants organization.

  11. Interaction between radiation effects, gravity and other environmental factors in Tribolium confusum. (United States)

    Yang, C. H.; Tobias, C. A.


    The development of the flour beetle, Tribolium confusum, was studied through all stages of its life cycle. The results show that for each environmental factor there is a limited range of values within which the organisms are able best to survive and that this optimum range of survival becomes smaller when additional stresses are imposed upon the organism. This has been shown for external temperature, oxygen content of the atmosphere, gravity compensation, and radiation. On Biosatellite II it was shown that Tribolium pupae irradiated in spaceflight exhibited more wing abnormalities than ground controls. Later it was shown that gravity compensation, when combined with irradiation, can induce a similar effect at ground level.

  12. [Histochemical study of the digestive organs of rats after a flight on "Kosmos-605"]. (United States)

    Shubich, M G; Goriacheva, L L; Dudetskiĭ, V I; Lutsenko, N M; Mogil'naia, G M


    The histochemical study of the stomach, small and large intestines and pancreas of rats flown aboard the biosatellite Cosmos-605 as well as of synchronous and vivarium controls demonstrated a significant decline in the mucine producing capacity of epithelial cells of the stomach of the flight rats on the R + 1 day. The study showed an increased content of sialo- and sulphosaccharides in goblet cells of cryptae of large intestine and a reduced content of free cation protein in the acinar cells of the pancreas of flight rats. The changes were transient and disappeared by the R + 26 day.

  13. [Morphological study of the adrenals of rats exposed on the Kosmos-690 satellite]. (United States)

    Savina, E A; Alekseev, E I


    Adrenals of 12 rats flown aboard the biosatellite Cosmos-690 and 30 rats used in the ground-based experiments Control-1 and Control-2 were studied morphologically. The animals were sacrificed on the 2nd and 27th days after completion of the experiments (i. e., on the 12 and 37th days after irradiation at a total dose of 800 rad). A comparative study of morphological changes in the adrenals of flight and control rats did not show any distinct differences. It is therefore concluded that space flight factors did not produce a significant effect on the adrenal response to irradiation at a dose of 800 rad.

  14. Ontogenesis of mammals in microgravity (United States)

    Gazenko, O. G. (Editor)


    This report is an English translation of a Russian report prepared by a group of authors from the USSR, Bulgaria, Hungary, the GDR, Poland, Czechoslovakia, France, and the USA. It presents results of the first microgravity experiment on mammalian embryology performed during the flight of the biosatellite Cosmos-1514 and in ground-based simulation studies. An overview is provided of the data available about the role of gravity in animal growth and development, and future studies into this problem are discussed. A new introduction has been provided for the English version.

  15. Cosmos 1887 mission overview - Effects of microgravity on rat body and adrenal weights and plasma constituents (United States)

    Grindeland, R. E.; Vasques, M.; Arnaud, S. B.; Popova, I. A.


    Tissues of male, specific pathogen-free Wistar rats flown on the Cosmos 1887 biosatellite are studied. First the mission is described, and then analytical methods are outlined. It is noted that flight rats grew more slowly and had larger adrenal glands than earth gravity controls. Analysis of plasma reveals increased concentrations of hepatic alkaline phosphatase, glucose, urea nitrogen, and creatinine in flight rats. In contrast, electrolytes, total protein, albumin, corticosteron, prolactin, and immunoreactive growth hormone levels are unchanged. However, testosterone concentration is marginally decreased after flight and thyroid hormone levels are suggestive of reduced thyroid function.

  16. Morphogenetic responses of cultured totipotent cells of carrot /Daucus carota var. carota/ at zero gravity (United States)

    Krikorian, A. D.; Steward, F. C.


    An experiment designed to test whether embryos capable of developing from isolated somatic carrot cells could do so under conditions of weightlessness in space was performed aboard the unmanned Soviet biosatellite Kosmos 782 under the auspices of the joint United States-Soviet Biological Satellite Mission. Space flight and weightlessness seem to have had no adverse effects on the induction of embryoids or on the development of their organs. A portion of the crop of carrot plantlets originated in space and grown to maturity were not morphologically different from controls.

  17. The utilization of Habrobracon and artemia as experimental materials in bioastronautic studies (United States)

    Grosch, D. S.


    In the reproductive performance of female braconids striking contrasts were revealed between the results from the actual biosatellite flight and those from experiments when the recovered vehicle was subjected to the forces of simulated launching and recovery. Second week decreases in egg production due to the radiation damage of cells in mitosis were minimized for the females irradiated during space flight. It was demonstrated that females irradiated for two days during orbital flight laid as many eggs during the second week as the unirradiated ground-based controls. After the 10th day their oviposition records exceeded control values. The hatchability of eggs deposited by Biosatellite II females was excellent. Explanations were sought for the space flight's cancellation of the characteristic radiation-induced decrease in egg production, and for the exceptionally good hatchability of eggs derived from most of the cell types in the irradiated ovarioles. Eggs from only two classes of cells showed enhanced embryonic lethality: those poised in meiotic metaphase during their mother's orbital flight, and those from oocytes beginning vitellogenesis.

  18. Microgravity and aging of animals. (United States)

    Serova, L V


    A study of changed gravity effects upon viability, life span and aging is of interest, on one hand, from a practical viewpoint in relation to the growing duration of space missions and on other hand, from a theoretical viewpoint, because gravity is one of the key factors in the evolutionary process on the Earth. In 1978 special conference titled "Space Gerontology" was held. Well known experts in space biology and physiology of aging participated in it. However, all the materiales presented at the conference were based on analogies and on what could be during exposure to microgravity rather than on real data. I shall try to discuss this problem, basing on the results of rats experiments on board "Cosmos" biosatellites and ground based model experiments. Male wistar rats examined after 1-3 weeks exposure to microgravity on board biosatellites demonstrated some changes similar to the signs [correction of sings] of aging, such as decreased motor activity, thymus involution, muscle atrophy, osteoporosis etc. But all these changes were reversible and in rats examined 3 weeks after return to the Earth we did not find any deviations from the controls.

  19. Review of primary spaceflight-induced and secondary reloading-induced changes in slow antigravity muscles of rats (United States)

    Riley, D. A.

    We have examined the light and electron microscopic properties of hindlimb muscles of rats flown in space for 1-2 weeks on Cosmos biosatellite flights 1887 and 2044 and Space Shuttle missions Spacelab-3, Spacelab Life Sciences-1 and Spacelab Life Sciences-2. Tissues were obtained both inflight and postflight permitting definition of primary microgravity-induced changes and secondary reentry and gravity reloading-induced alterations. Spaceflight causes atrophy and expression of fast fiber characteristics in slow antigravity muscles. The stresses of reentry and reloading reveal that atrophic muscles show increased susceptibility to interstitial edema and ischemic-anoxic necrosis as well as muscle fiber tearing with disruption of contractile proteins. These results demonstrate that the effects of spaceflight on skeletal muscle are multifaceted, and major changes occur both inflight and following return to Earth's gravity.

  20. Effects of spaceflight on hypothalamic peptide systems controlling pituitary growth hormone dynamics (United States)

    Sawchenko, P. E.; Arias, C.; Krasnov, I.; Grindeland, R. E.; Vale, W.


    Possible effects of reduced gravity on central hypophysiotropic systems controlling growth hormone (GH) secretion were investigated in rats flown on Cosmos 1887 and 2044 biosatellites. Immunohistochemical (IHC)staining for the growth hormone-releasing factor (GRF), somatostatin (SS), and other hypothalamic hormones was performed on hypothalami obtained from rats. IHC analysis was complemented by quantitative in situ assessments of mRNAs encoding the precursors for these hormones. Data obtained suggest that exposure to microgravity causes a preferential reduction in GRF peptide and mRNA levels in hypophysiotropic neurons, which may contribute to impared GH secretion in animals subjected to spaceflight. Effects of weightlessness are not mimicked by hindlimb suspension in this system.

  1. Pancreas of C57 black mice after long-term space flight (Bion-M1 Space Mission) (United States)

    Proshchina, A. E.; Krivova, Y. S.; Saveliev, S. C.


    In this study, we analysed the pancreases of C57BL/6N mice in order to estimate the effects of long-term space flights. Mice were flown aboard the Bion-M1 biosatellite, or remained on ground in the control experiment that replicated environmental and housing conditions in the spacecraft. Vivarium control group was used to account for housing effects. Each of the groups included mice designated for recovery studies. Mice pancreases were dissected for histological and immunohistochemical examinations. Using a morphometry and statistical analysis, a strong correlation between the mean islet size and the mean body weight was revealed in all groups. Therefore, we propose that hypokinesia and an increase in nutrition play an important role in alterations of the endocrine pancreas, both in space flight and terrestrial conditions.

  2. Ionizing radiation fluxes and dose measurements during the Kosmos 1887 satellite flight. (United States)

    Charvat, J; Spurny, F; Kopecka, B; Votockova, I


    The results of dosimetric experiments performed during the flight of Kosmos 1887 biosatellite are presented. Two kinds of measurements were performed on the external surface of the satellite. First, the fluences and spectra of low energy charged particles were established. It was found that most of the particles registered by means of solid state nuclear track detectors are helium nuclei. Tracks of oxygen nuclei and some heavier charged particles were also observed. Thermoluminescent detectors were used to establish absorbed doses in open space on the satellite's surface and behind thin shielding. It was found that these doses were rather high; nevertheless, their decrease with shielding thickness is very rapid. Dosimetric and other consequences of the results obtained are analyzed and discussed.

  3. [Biological experiments on "Kosmos-1887"]. (United States)

    Alpatov, A M; I'lin, E A; Antipov, V V; Tairbekov, M G


    In the 13-ray space flight on Kosmos-1887 various experiments in the field of cell biology, genetics, biorhythm, developmental biology and regeneration were performed using bacteria, protozoa, plants, worms, insects, fish and amphibia. Paramecia showed enhanced cell proliferation, spheroidization and diminished protein content. Experiments on fruit-flies, newt oocytes and primate lymphocytes confirmed involvement of the cell genetic apparatus in responses to microgravity. Beetles exhibited a reduction of the length of the spontaneous period of freely running circadian rhythms. Carausius morosus developed latent changes in early embryogenesis which manifested at later stages of ontogenesis. Exposure to microgravity did not prevent recovery of injured tissues; moreover their regeneration may be accelerated after recovery. Biology research programs in future biosatellite flights are discussed.

  4. Neurospora experiment P-1037. Quarterly progress report to the National Aeronautics and Space Administration, October 1--December 15, 1966

    Energy Technology Data Exchange (ETDEWEB)


    The main values of the 302 gantry exercise were to check the preparation of the Neurospora experiment and the spacecraft loading procedure under timed conditions and to provide final assurance that necessary operations can be completed with appropriate inspection in the allotted time. Because of the brief time interval between the 302 Gantry Exercise and the scheduled Biosatellite A flight, no attempt was made to assay for forward-mutation frequecies; however, biocompatibility tests were performed on the 302 hardware by plating conidia from a number of the modules in the usual fashion to assay survival. The average heteokaryotic conidial survival was 82.6%, which is sufficiently high for use of the conidia in a forward-mutation experiment. Calibration of thermoluminescent dosimeters was carried out using a /sup 85/Sr ..gamma.. source.

  5. Man in space - The use of animal models (United States)

    Ballard, Rodney W.; Souza, Kenneth A.


    The use of animal surrogates as experimental subjects in order to provide essential missing information on the effects of long-term spaceflights, to validate countermeasures, and to test medical treatment techniques is discussed. Research needs also include the definition of biomedical adaptations to flight, and the developments of standards for safe space missions to assure human health and productivity during and following flight. NASA research plans in this area are outlined. Over the next 40 years, NASA plans to concentrate on the use of rodents and nonhuman primates as the models of choice for various physiological responses observed in humans during extended stays in space. This research will include flights on the Space Shuttle, unmanned biosatellites, and the Space Station Freedom.

  6. U.S. biological experiments in space (United States)

    Klein, H. P.


    The history of biologic experimentation in space is traced. Early balloon and rocket borne animals showed no abnormalities on the macroscale, and biosatellite launches with bacteria and amoebae revealed no microscopic dysfunctions. Adult Drosophila flies on board Cosmos spacecraft died with a shortened lifespan, while their offspring lived full lifespans. Green pepper plants grown in weightlessness showed a different orientation, but no physiological disturbances. Normal bone growth in rats has been found to almost cease after 11 days in space, and the mean life span of red blood cells decreases by four days. A series of experiments designed by U.S. scientists will be performed on primates provided and flown by the U.S.S.R. Finally, experiments on board Spacelab will involve determination of the persistence of circadian rhythms in bacteria and humans.

  7. Cosmos 1887 - Science overview (United States)

    Grindeland, R. E.


    Twenty two groups of U.S. investigators participated in joint studies of ten male rats flown on the Cosmos 1887 biosatellite. A summary of these studies embracing skeletal muscle, bone, endocrine, neural, intestinal, metabolic, immunology, cardiac, and gonadal investigations is presented. Three general objectives of the rat experiments are outlined - verification of previous observations of the biological responses to microgravity; clarification of the effects of microgravity on both the tissues investigated and the measurements performed; and relation of biological responses to flight duration. It is concluded that the first objective is met fully and the second with a varying degree of success. The confounding effects of overshooting the designated landing site and delayed recovery of the animals largely precluded meeting the last objective. It is also noted that investigations were performed for the first time on brain and spinal cord enzymes, a neurotransmitter, transmitter receptors, hypothalamic regulatory factors, pineal metabolites, atrial granules, liver histology, and jejunal mitotic rate in spaceflight animals.

  8. Linear Energy Transfer (LET) spectra of cosmic radiation in low Earth orbit (United States)

    Parnell, T. A.; Watts, J. W., Jr.; Akopova, A. B.; Magradze, N. V.; Dudkin, V. E.; Kovalev, E. E.; Potapov, Yu. V.; Benton, E. V.; Frank, A. L.; Benton, E. R.


    Integral linear energy transfer (LET) spectra of cosmic radiation (CR) particles were measured on five Cosmos series spacecraft in low Earth orbit (LEO). Particular emphasis is placed on results of the Cosmos 1887 biosatellite which carried a set of joint U.S.S.R.-U.S.A. radiation experiments involving passive detectors that included thermoluminescent detectors (TLD's), plastic nuclear track detectors (PNTD's), fission foils, nuclear photo-emulsions, etc. which were located both inside and outside the spacecraft. Measured LET spectra are compared with those theoretically calculated. Results show that there is some dependence of LET spectra on orbital parameters. The results are used to estimate the CR quality factor (QF) for the COSMOS 1887 mission.

  9. Space Biology in Russia Today (United States)

    Grigoriev, Anatoly; Sychev, Vladimir; Ilyin, Eugene

    At present space biology research in Russia is making significant progress in several areas of high priority. Gravitational biology. In April-May 2013, a successful 30-day flight of the biological satellite (biosatellite) Bion-M1 was conducted, which carried rodents (mice and gerbils), geckos, fish, mollusks, crustaceans, microorganisms, insects, lower and higher plants, seeds, etc. The investigations were performed by Russian scientists as well as by researchers from NASA, CNES, DLR and South Korea. Foton-M4 carrying various biological specimens is scheduled to launch in 2014. Work has begun to develop science research programs to be implemented onboard Bion-M2 and Bion-M3 as well as on high apogee recoverable spacecraft. Study of the effects of microgravity on the growth and development of higher plants cultivated over several generations on the International Space Station (ISS) has been recently completed. Space radiobiology. Regular experiments aimed at investigating the effects of high-energy galactic cosmic rays on the animal central nervous system and behavior are being carried out using the Particle Accelerator in the town of Dubna. Biological (environmental) life support systems. In recent years, experiments have been performed on the ISS to upgrade technologies of plant cultivation in microgravity. Advanced greenhouse mockups have been built and are currentlyundergoing bioengineering tests. Technologies of waste utilization in space are being developed. Astrobiology experiments in orbital missions. In 2010, the Biorisk experiment on bacterial and fungal spores, seeds and dormant forms of organisms was completed. The payload containing the specimens was installed on the exterior wall of the ISS and was exposed to outer space for 31 months. In addition, Bion-M1 also carried seeds, bacterial spores and microbes that were exposed to outer space effects. The survival rate of bacterial spores incorporated into man-made meteorites, that were attached to the

  10. Structural and functional organisation of regenerated plant protoplasts exposed to microgravity on Biokosmos 9 (United States)

    Klimchuk, D. A.; Kordyum, E. L.; Danevich, L. A.; Tarnavskaya, E. B.; Tairbekov, M. G.; Iversen, T.-H.; Baggerud, C.; Rasmussen, O.

    Preparatory experiments for the IML-1 mission using plant protoplasts, were flown on a 14-day flight on Biokosmos 9 in September 1989. Thirty-six hours before launch of the biosatellite, protoplasts were isolated from hypocotyl cells of rapeseed (Brassica napus) and suspension cultures of carrot (Daucus carota). Ultrastructural and fluorescence analysis of cell aggregates from these protoplasts, cultured under microgravity conditions, have been performed. In the flight samples as well as in the ground controls, a portion of the total number of protoplasts regenerated cell walls. The processes of cell differentiation and proliferation under micro-g did not differ significantly from those under normal gravity conditions. However, in micro-g differences were observed in the ultrastructure of some organelles such as plastids and mitochondria. There was also an increase in the frequency of the occurrence of folds formed by the plasmalemma together with an increase in the degree of complexity of these folds. In cell cultures developed under micro-g conditions, the calcium content tends to decrease, compared to the ground control. Different aspects of using isolated protoplasts for clarifying the mechanisms of biological effects of microgravity are discussed.

  11. Vitamin D Status in Monkey Candidates for Space Flight (United States)

    Arnaud, S. B.; Wronski, T. J.; Koslovskeya, I.; Dotsenko, R.; Navidi, M.; Wade, Charles E. (Technical Monitor)


    In preparation for the Cosmos 2229 Biosatellite space flight experiments in Rhesus monkeys, we evaluated the status of vitamin D in animals of different origins: candidates for space flight raised in Moscow (IMBP) and animals housed at Ames Research Ctr. (ARC) for pilot studies. Diets at IMBP were natural foods found by analysis to contain 1.4% Ca, 2.8% P andmonkey chow with 0.9% Ca, 0.5% P and 6600 IU D3/kg. We measured body weights (BW), serum calcium (TCa), total protein (TP), phosphorus (Pi), alkaline phosphatase (AP), 25-hydroxyvitamin D (25D) and 1,25-dihydroxyvitamin D (1,25D) in 16 IMBP and 15 ARC male animals and indices of bone formation in cancellous bone obtained from iliac crest biopsy of 6 IMBP and 13 ARC animals. BW were the same in juveniles at IMBP as ARC although ARC monkeys were born a year later. Mean(1SD) TCa and TP were higher and 25D lower (1819 vs. 93+18 ng/ml,pmonkeys of the same BW (p<.05) Indices of bone formation were inversely related to 25D, not 1,25D. Of interest are similar 1,25D levels associated with a wide range of substrate and extensive osteoid in bone of D replete animals.

  12. The Effects of Space Flight on Some Liver Enzymes Concerned with Carbohydrate and Lipid Metabolism in Rats (United States)

    Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.


    The activities of about 30 enzymes concerned with carbohydrate and lipid metabolism and the levels of glycogen and of individual fatty acids were measured in livers of rats ex- posed to prolonged space flight (18.5 days) aboard COSMOS 986 Biosatellite. When flight stationary, (FS) and flight centrifuged (FC) rats were compared at recovery (R(sub 0)), decrceases in the activities of glycogen phosphorylase, alpha glycerphosphate, acyl transferase, diglyceride acyl transferase, acconitase and Epsilon-phosphogluconate dehydrogenase were noted in the weightless group (FS). The significance of these findings was strengthened since all activities, showing alterations at R(sub 0), returned to normal 25 days post-flight. Differences were also seen in levels of two liver constituents. When glycogen and total fatty acids of the two groups of flight animals were determined, differences that could be attributed to reduced gravity were observed, the FS group at R(sub 0) contained, on the average, more than twice the amount of glycogen than did controls ad a remarkable shift in the ratio of palmitate to palmitoleate were noted. These metabolic alterations appear to be unique to the weightless condition. Our data justify the conclusion that centrifugation during space flight is equivalent to terrestrial gravity.

  13. The effects of space flight on some rat liver enzymes regulating carbohydrate and lipid metabolism (United States)

    Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.


    The effects of space flight conditions on the activities of certain enzymes regulating carbohydrate and lipid metabolism in rat liver are investigated in an attempt to account for the losses in body weight observed during space flight despite preflight caloric consumption. Liver samples were analyzed for the activities of 32 cytosolic and microsomal enzymes as well as hepatic glycogen and individual fatty acid levels for ground control rats and rats flown on board the Cosmos 936 biosatellite under normal space flight conditions and in centrifuges which were sacrificed upon recovery or 25 days after recovery. Significant decreases in the activities of glycogen phosphorylase, alpha-glycerol phosphate acyl transferase, diglyceride acyl transferase, aconitase and 6-phosphogluconate dehydrogenase and an increase in palmitoyl CoA desaturase are found in the flight stationary relative to the flight contrifuged rats upon recovery, with all enzymes showing alterations returning to normal values 25 days postflight. The flight stationary group is also observed to be characterized by more than twice the amount of liver glycogen of the flight centrifuged group as well as a significant increase in the ratio of palmitic to palmitoleic acid. Results thus indicate metabolic changes which may be involved in the mechanism of weight loss during weightlessness, and demonstrate the equivalence of centrifugation during space flight to terrestrial gravity.

  14. Effects of spaceflight on rat humerus geometry, biomechanics, and biochemistry (United States)

    Vailas, A. C.; Zernicke, R. F.; Grindeland, R. E.; Kaplansky, A.; Durnova, G. N.; Li, K. C.; Martinez, D. A.


    The effects of a 12.5-day spaceflight (Cosmos 1887 biosatellite) on the geometric, biomechanical, and biochemical characteristics of humeri of male specific pathogen-free rats were examined. Humeri of age-matched basal control, synchronous control, and vivarium control rats were contrasted with the flight bones to examine the influence of growth and space environment on bone development. Lack of humerus longitudinal growth occurred during the 12.5 days in spaceflight. In addition, the normal mid-diaphysial periosteal appositional growth was affected; compared with their controls, the spaceflight humeri had less cortical cross-sectional area, smaller periosteal circumferences, smaller anterior-posterior periosteal diameters, and smaller second moments of area with respect to the bending and nonbending axes. The flexural rigidity of the flight humeri was comparable to that of the younger basal control rats and significantly less than that of the synchronous and vivarium controls; the elastic moduli of all four groups, nonetheless, were not significantly different. Generally, the matrix biochemistry of the mid-diaphysial cross sections showed no differences among groups. Thus, the spaceflight differences in humeral mechanical strength and flexural rigidity were probably a result of the differences in humeral geometry rather than material properties.

  15. Study of plant phototropic responses to different LEDs illumination in microgravity (United States)

    Zyablova, Natalya; Berkovich, Yuliy A.; Skripnikov, Alexander; Nikitin, Vladimir


    The purpose of the experiment planned for Russian BION-M #1, 2012, biosatellite is research of Physcomitrella patens (Hedw.) B.S.G. phototropic responses to different light stimuli in microgravity. The moss was chosen as small-size higher plant. The experimental design involves five lightproof culture flasks with moss gametophores fixed inside the cylindrical container (diameter 120 mm; height 240 mm). The plants in each flask are illuminated laterally by one of the following LEDs: white, blue (475 nm), red (625 nm), far red (730 nm), infrared (950 nm). The gametophores growth and bending are captured periodically by means of five analogue video cameras and recorder. The programmable command module controls power supply of each camera and each light source, commutation of the cameras and functioning of video recorder. Every 20 minutes the recorder is sequentially connecting to one of the cameras. This results in a clip, containing 5 sets of frames in a row. After landing time-lapse films are automatically created. As a result we will have five time-lapse films covering transformations in each of the five culture flasks. Onground experiments demonstrated that white light induced stronger gametophores phototropic bending as compared to red and blue stimuli. The comparison of time-lapse recordings in the experiments will provide useful information to optimize lighting assemblies for space plant growth facilities.

  16. Establishment of Korea-Russia bilateral research collaboration for studies on biological effects of cosmic ray and space radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juwoon; Kim, Dongho; Choi, Jongil; Song, Beomseok; Kim, Jaekyung; Kang, Oilhyun; Lee, Yoonjong; Kim, Jinhong; Jo, Minho


    {Omicron} KAERI-IBMP joint workshop on countermeasure and application researches to space environments - Sharing of state-of-the-art researches on space radiobiology using bio-satellites (BION-M1, Photon-soil) and ISS module (Bio-risk) was conducted - Sharing and discussion of state-of-the-art researches on dosimetry of space radiation and its affect on organisms were conducted. {Omicron} Making a contract on KAERI-IBMP Joint Research using Bio-risk module - Contract on KAERI-IBMP Joint Research to evaluate effect of space environment (microgravity and space radiation) on fermentative fungi (Aspergillus oryzae), Algae (Nostoc sp.), and plant seeds (rice, Arabidopsis thaliana, Brachypodium distachyon) was made in November, 2010. {Omicron} Discussion on new Joint Researches on evaluation of space radiation on organisms - Final step on Bion-M projects in terms of evaluation of physiological changes of lactic acid bacteria consumed by Mouse - Discussing new joint research on evaluation of physiological changes of primate by space radiation {Omicron} Establishment and management of the practical working group to invite a branch office of the IBMP in Korea - The system and the working group to implement cooperating researches between KAERI-IBMP on space radiation were established.

  17. Research on the adaptation of skeletal muscle to hypogravity: Past and future directions (United States)

    Riley, D. A.; Ellis, S.

    Our current understanding of hypogravity-induced atrophy of skeletal muscles is based primarily on studies comparing pre- and post-flight properties of muscles. Interpretations are necessarily qualified by the assumption that the stress of reentry and readjustment to terrestrial gravity do not alter the parameters being analyzed. The neuromuscular system is highly responsive to changes in functional demands and capable of rapid adaptation, making this assumption questionable. A reexamination of the changes in the connective tissue and synaptic terminals of soleus muscles from rats orbited in biosatellites and sampled postflight indicates that these structural alterations represent adaptative responses of the atrophic muscles to the increased workload of returning to 1 G, rather than hypogravity per se. The atrophy of weightlessness is postulated to result because muscles are both underloaded and used less often. Proper testing of this hypothesis requires quantitation of muscle function by monitoring electromyography, force output and length changes during the flight. Experiments conducted in space laboratories, like those being developed for the Space Shuttle, will avoid the complications of reentry before tissue sampling and allow time course studies of the rate of development of adaptive changes to zero gravity. Another area of great importance for future studies of muscle atrophy is inflight measurement of plasma levels of hormones and tissue receptor levels. Glucocorticoids, thyroid hormone and insulin exert dramatic regulatory influences on muscle structure. Prevention of neuromuscular atrophy becomes increasingly more important as spaceflights increase in duration. Definition of the atrophic mechanism is essential to developing means of preventing neuromuscular atrophy.

  18. Approaches to the development of biomedical support systems for piloted exploration missions (United States)

    Grigoriev, A. I.; Potapov, A. N.


    Many aspects of the biomedical systems developed and realized aboard orbital stations, the International space station in the first place, deserve to be regarded as predecessors of the systems for health monitoring and maintenance of future exploration crews. At the same time, there are issues and tasks which have not been yet fully resolved. Specifically, these are prevention of the adverse changes in body systems and organs due to microgravity, reliable protection from the spectrum of space radiation, and elucidation of possible effects of hypomagnetic environment. We should not walk away from search and development of key biomedical technologies such as a system of automated fitness evaluation and a psychodiagnostic complex for testing and optimization of operator‧s efficiency, and others. We have to address a large number of issues related to designing the composite life support systems of the utmost autonomy, closure and ecological safety of the human environment that will provide transformation of all kinds of waste. Another crucial task is to define a concept of the onboard medical center and dataware including the telemedicine technology. All the above developments should assimilate the most recent achievements in physiology, molecular biology, genetics, and advanced medical technologies. Biomedical researches on biosatellites also do not lose topicality.

  19. Spaceflight and age affect tibial epiphyseal growth plate histomorphometry (United States)

    Montufar-Solis, Dina; Duke, Pauline J.; Durnova, G.


    Growth plate histomorphometry of rats flown aboard the Soviet biosatellite Cosmos 2044, a 14-day spaceflight, was compared with that of control groups. In growth plates of flight animals, there was a significant increase in cell number per column and height of the proliferative zone and a reduction in height and cell number in the hypertrophy/calcification zone. No significant differences were found in matrix organization at the ultrastructural level of flight animals, indicating that although spacefligfht continues to affect bone growth of 15-wk-old rats, extracellular matrix is not altered in the same manner as seen previously in younger animals. All groups showed growth plate characteristics attributed to aging: lack of calcification zone, reduced hypertrophy zone, and unraveling of collagen fibrils. Tail-suspended controls did not differ from other controls in any of the parameters measured. The results suggest that growth plates of older rats are less responsive to unloading by spaceflight or suspension than those of younger rats and provide new evidence about the modifying effect of spaceflight on the growth plate.

  20. Effect of space flights on plasma hormone levels in man and in experimental animal (United States)

    Macho, L.; Kvetňanský, R.; Vigaš, M.; Németh, S.; Popova, I.; Tigranian, R. A.; Noskov, V. B.; Serova, L.; Grigoriev, I. A.

    An important increase of plasma hormone levels like insulin, TSH and aldosterone was observed in human subjects after space flights, however in the changes of plasma content of ACTH, cortisol, adrenaline and noradrenaline the individual variations were observed in relation to number and duration of space flight. For evaluation of the effects of these changes in plasma hormone levels on metabolic processes also the experiments with small animals subjected to space flights on a board of biosatellite of Cosmos series were running. An elevation of plasma levels of corticosterone, adrenaline, noradrenaline and insulin was found in rats after the space flights of duration from 7 to 20 days. It was demonstrated, that the increase of corticosterone in plasma is followed by the activation of enzymes involved in the aminoacid metabolism in rat liver (tyrosine aminotransferase, tryptophanpyrolase, alanine aminotransferase and aspartate aminotransferase). After a short recovery period (2 to 6 days) the plasma corticosterone concentration and also the activity of liver enzymes returned to control levels. The exposition of animals to stress stimuli during this recovery period showed higher response of corticosterone levels in flight rats as compared to intact controls. The increase of plasma catecholamine levels was not followed by elevation of lipolysis in adipose tissue. This is due to lower response of adipose tissue to catecholamine because a decrease of the stimulation of lipolysis by noradrenaline was observed in animals after space flight. The increase of insulin was not followed by adequate decrease of glucose concentration suggesting a disturbances in glucose utilization similarly as in cosmonauts after a long-term space flight. These results showed that changes in plasma hormone levels, observed after space flight, affected the regulation of metabolic processes in tissues.

  1. Exposure to microgravity for 30 days onboard Bion M1 caused muscle atrophy and decreased regeneration in the mouse femoral Quadriceps (United States)

    Grigoryan, Eleonora; Radugina, Elena A.; Almeida, Eduardo; Blaber, Elizabeth; Poplinskaya, Valentina; Markitantova, Yulia

    Mechanical unloading of muscle during spaceflight in microgravity is known to cause muscular atrophy, changes in muscle fiber type composition, gene expression, and reductions in regenerative muscle growth. Although limited data exists for long-term effects of microgravity in human muscle, these processes have mostly been studied in rodents for short periods of time, up to two weeks of spaceflight. Here we report on how 30-day, long-term, mechanical unloading in microgravity affects mouse muscle of the femoral Quadriceps group. To conduct these studies we used muscle tissue from 6 mice from the NASA Biospecimen Sharing Program conducted in collaboration with the Institute for Biomedical Problems of the Russian Academy of Sciences, during the Russian Bion M1 biosatellite mission in 2013. Muscle morphology observed in histological sections shows signs of extensive atrophy and regenerative hypoplasia. Specifically, we observed a two-fold decrease in the number of myonuclei and low density of myofibrils, their separation and fragmentation. Despite obvious atrophy, muscle regeneration nevertheless appears to have continued after 30 days in microgravity as evidenced by thin and short newly formed muscle fibers. Many of them however showed evidence of apoptosis and degradation of synthesized fibrils, suggesting long-term unloading in microgravity affects late stages of myofiber differentiation. Ground asynchronous and vivarium control animals showed normal, well-developed tissue structure with sufficient blood and nerve supply and evidence of regenerative formation of new muscle fibers free of apoptotic nuclei. Myofiber nuclei stress responses in spaceflight animals was detected by positive nuclear immunolocalization of c-jun and c-myc proteins. Regenerative activity of satellite cells in muscle was localized with pax-7, MyoD and MCad immunostaining, and did not appear altered in microgravity. In summary, long-term spaceflight in microgravity causes significant atrophy

  2. Effect of long-term actual spaceflight on the expression of key genes encoding serotonin and dopamine system (United States)

    Popova, Nina; Shenkman, Boris; Naumenko, Vladimir; Kulikov, Alexander; Kondaurova, Elena; Tsybko, Anton; Kulikova, Elisabeth; Krasnov, I. B.; Bazhenova, Ekaterina; Sinyakova, Nadezhda

    The effect of long-term spaceflight on the central nervous system represents important but yet undeveloped problem. The aim of our work was to study the effect of 30-days spaceflight of mice on Russian biosatellite BION-M1 on the expression in the brain regions of key genes of a) serotonin (5-HT) system (main enzymes in 5-HT metabolism - tryptophan hydroxylase-2 (TPH-2), monoamine oxydase A (MAO A), 5-HT1A, 5-HT2A and 5-HT3 receptors); b) pivotal enzymes in DA metabolism (tyrosine hydroxylase, COMT, MAO A, MAO B) and D1, D2 receptors. Decreased expression of genes encoding the 5-HT catabolism (MAO A) and 5-HT2A receptor in some brain regions was shown. There were no differences between “spaceflight” and control mice in the expression of TPH-2 and 5-HT1A, 5-HT3 receptor genes. Significant changes were found in genetic control of DA system. Long-term spaceflight decreased the expression of genes encoding the enzyme in DA synthesis (tyrosine hydroxylase in s.nigra), DA metabolism (MAO B in the midbrain and COMT in the striatum), and D1 receptor in hypothalamus. These data suggested that 1) microgravity affected genetic control of 5-HT and especially the nigrostriatal DA system implicated in the central regulation of muscular tonus and movement, 2) the decrease in the expression of genes encoding key enzyme in DA synthesis, DA degradation and D1 receptor contributes to the movement impairment and dyskinesia produced by the spaceflight. The study was supported by Russian Foundation for Basic Research grant № 14-04-00173.

  3. Adaptation of skeletal muscle to spaceflight: Cosmos rhesus project. Cosmos 2044 and 2229 (United States)

    Bodine-Fowler, Sue


    The proposed experiments were designed to determine the effects of the absence of weight support on hindlimb muscles of the monkey: an ankle flexor (tibialis anterior, TA), two ankle extensors (medial gastrocnemius, MG and soleus, SOL), and a knee extensor (vastus lateralis, VL). These effects were assessed by examining the biochemical and morphological properties of muscle fibers obtained from biopsies in young Rhesus monkeys (3-4 Kg). Biopsies taken from ground base experiments were analyzed to determine: (1) the effects of chair restraint at 1 G on muscle properties and (2) the growth rate of flexor and extensor muscles in the Rhesus. In addition, two sets of biopsies were taken from monkeys which were in the flight pool and the four monkeys that flew on the Cosmos 2044 and 2229 biosatellite missions. Based on data collected in rats it is generally assumed that extensors atrophy to a greater extent than flexors in response to spaceflight or hindlimb suspension. Consequently, the finding that fibers in the TA (a fast flexor) of the flight monkeys atrophied, whereas fibers in the Sol (a predominantly slow extensor) and MG (a fast extensor) grew after a 14-day spaceflight (Cosmos 2044) and 12-day spaceflight (Cosmos 2229) was unexpected. In Cosmos 2044, the TA in both flight monkeys had a 21 percent decrease in fiber size, whereas the Sol and MG both had a 79 percent increase in fiber size. In Cosmos 2229, the TA in both flight monkeys showed significant atrophy, whereas the Sol and MG showed slight growth in one monkey (906) and slight atrophy in the other monkey (151).

  4. Experiment K-7-41: Radiation Experiments on Cosmos 2044 (United States)

    Benton, E. V.; Benton, E. R.; Frank, A. L.; Dudkin, V. E.; Marenny, A. M.; Kovalev, E. E.


    The Cosmos 2044 biosatellite mission offered the opportunity for radiation measurements under conditions which are seldom available (an inclination of 82.3 degrees and altitude of 294 x 216 km). Measurements were made on the outside of the spacecraft under near-zero shielding conditions. Also, this mission was the first in which active temperature recorders (the ATR-4) were flown to record the temperature profiles of detector stacks. Measurements made on this mission provide a comparison and test for modeling of depth doses and LET spectra for orbital parameters previously unavailable. Tissue absorbed doses from 3480 rad (252 rad/d) down to 0.115 rad (8.33 mrad/d) were measured at different depths (0.0146 and 3.20 g/sq. cm, respectively) with averaged TLD readings. The LET spectra yielded maximum and minimum values of integral flux of 27.3 x 10-4 and 3.05 x 10(exp -4) cm(exp -2).s(exp -1).sr(exp -4) of dose rate of 7.01 and 1.20 mrad/d, and of dose equivalent rate of 53.8 and 11.6 mrem/d, for LET(infinity).H2O is greater than or equal to 4 keV/micro-m. Neutron measurements yielded 0.018 mremld in the thermal region, 0.25 mrem/d in the resonance region and 3.3 mrem/d in the high energy region. The TLD depth dose and LET spectra have been compared with calculations from the modeling codes. The agreement is good but some further refinements are in order. In comparing measurements on Cosmos 2044 with those from previous Cosmos missions (orbital inclinations of 62.8 degrees) there is a greater spread (maximum to minimum) in depth doses and an increased contribution from GCR's, and higher LET particles, in the heavy particle fluxes.

  5. The ESA Mice in Space (MIS) habitat: effects of cage confinement on neuromusculoskeletal structure and function and stress/behavior using wild-type C57Bl/6JRj mice in a modular science reference model (MSRM) test on ground (United States)

    Blottner, Dieter; Vico, Laurence; Jamon, D. Berckmansp L. Vicop Y. Liup R. Canceddap M.

    Background: Environmental conditions likely affect physiology and behaviour of mice used for Life Sciences Research on Earth and in Space. Thus, mice habitats with sufficient statistical numbers should be developed for adequate life support and care and that should meet all nesces-sary ethical and scientific requirements needed to successfully perform animal experimentation in Space. Aim of study: We here analysed the effects of cage confinement on the weightbear-ing musculoskeletal system, behaviour and stress of wild-type mice (C57BL/6JRj, 30 g b.wt., total n = 24) housed for 25 days in a prototypical ground-based MSRM (modular science ref-erence module) in the frame of breadboard activities for a fully automated life support habitat called "Mice in Space" (MIS) at the Leuven University, Belgium. Results: Compared with control housing (individually ventilated cages, IVC-mice) the MIS mice revealed no significant changes in soleus muscle size and myofiber distribution (type I vs. II) and quality of bone (3-D microarchitecture and mineralisation of calvaria, spine and femur) determined by confocal and micro-computed tomography. Corticosterone metabolism measured non-invasively (faeces) monitored elevated adrenocortical activity at only start of the MIS cage confinement (day 1). Behavioural tests (i.e., grip strength, rotarod, L/D box, elevated plus-maze, open field, ag-gressiveness) performed subsequently revealed only minor changes in motor performance (MIS vs. controls). Conclusions: The MIS habitat will not, on its own, produce major effects that could confound interpretation of data induced by microgravity exposure on orbit as planned for future biosatellite programmes. Sponsors: ESA-ESTEC, Noordwijk, NL

  6. Application of "FLUOR-P" device for analysis of the space flight effects on the intracellular level. (United States)

    Grigorieva, Olga; Rudimov, Evgeny; Buravkova, Ludmila; Galchuk, Sergey

    The mechanisms of cellular gravisensitivity still remain unclear despite the intensive research in the hypogravity effects on cellular function. In most cell culture experiments on unmanned vehicles "Bion" and "Photon", as well as on the ISS only allow post-flight analysis of biological material, including fixed cells is provided. The dynamic evaluation cellular parameters over a prolonged period of time is not possible. Thus, a promising direction is the development of equipment for onboard autonomous experiments. For this purpose, the SSC RF IBMP RAS has developed "FLUOR-P" device for measurement and recording of the dynamic differential fluorescent signal from nano- and microsized objects of organic and inorganic nature (human and animal cells, unicellular algae, bacteria, cellular organelles suspension) in hermetically sealed cuvettes. Besides, the device allows to record the main physical factors affecting the analyzed object (temperature and gravity loads: position in space, any vector acceleration, shock) in sync with the main measurements. The device is designed to perform long-term programmable autonomous experiments in space flight on biological satellites. The device software of allows to carry out complex experiments using cell. Permanent registration of data on built-in flash will give the opportunity to analyze the dynamics of the estimated parameters. FLUOR-P is designed as a monobloc (5.5 kg weight), 8 functional blocks are located in the inner space of the device. Each registration unit of the FLUOR-P has two channels of fluorescence intensity and excitation light source with the wavelength range from 300 nm to 700 nm. During biosatellite "Photon" flight is supposed to conduct a full analysis of the most important intracellular parameters (mitochondria activity and intracellular pH) dynamics under space flight factors and to assess the possible contribution of temperature on the effects of microgravity. Work is supported by Roskosmos and the

  7. Cell Mechanisms of Bone Tissue Loss Under Space Flight Conditions (United States)

    Rodionova, Natalia

    Investigations on the space biosatellites has shown that the bone skeleton is one of the most im-portant targets of the effect space flight factors on the organism. Bone tissue cells were studied by electron microscopy in biosamples of rats' long bones flown on the board american station "SLS-2" and in experiments with modelling of microgravity ("tail suspension" method) with using autoradiography. The analysis of data permits to suppose that the processes of remod-eling in bone tissue at microgravity include the following succession of cell-to-cell interactions. Osteocytes as mechanosensory cells are first who respond to a changing "mechanical field". The next stage is intensification of osteolytic processes in osteocytes, leading to a volume en-largement of the osteocytic lacunae and removal of the "excess bone". Then mechanical signals have been transmitted through a system of canals and processes of the osteocytic syncitium to certain superficial bone zones and are perceived by osteoblasts and bone-lining cells (superficial osteocytes), as well as by the bone-marrow stromal cells. The sensitivity of stromal cells, pre-osteoblasts and osteoblasts, under microgravity was shown in a number of works. As a response to microgravity, the system of stromal cells -preosteoblasts -osteoblasts displays retardation of proliferation, differentiation and specific functions of osteogenetic cells. This is supported by the 3H-thymidine studies of the dynamics of differentiation of osteogenetic cells in remodeling zones. But unloading is not adequate and in part of the osteocytes are apoptotic changes as shown by our electron microscopic investigations. An osteocytic apoptosis can play the role in attraction the osteoclasts and in regulation of bone remodeling. The apoptotic bodies with a liquid flow through a system of canals are transferred to the bone surface, where they fulfil the role of haemoattractants for monocytes come here and form osteoclasts. The osteoclasts destroy

  8. Hemopoietic tissue in newts flown aboard Foton M3 (United States)

    Domaratskaya, Elena I.; Almeida, Eduardo; Butorina, Nina N.; Nikonova, Tatyana M.; Grigoryan, Eleonora N.; Poplinskaya, Valentina A.; Souza, Kenneth; Skidmore, Mike

    The effect of 12-day spaceflight aboard the Foton-M3 biosatellite on the hematopoietic tissue of P. waltl newts was studied. These animals used at the same time in regeneration experiments after lens and tail tip amputation. In flight and synchronous groups there were performed video recording, temperature and radiation monitoring and continuous contact (via skin) with thymidine analog BrdU. We took differential blood counts and assessed histologically the liver in the flight (F), basal (BC) and synchronous (SC)control groups of animals. In the peripheral blood, we identified neutrophils, eosinophils, basophils, lymphocytes, and monocytes. Lymphocytes (L) and neutrophils (N) prevailed, accounting for about 60 and 20% of white blood cells, respectively. The spaceflight had no apparent effect on the differential blood count in the F group: neither the L and N contents nor the maturing to mature N - ratio differed from those in the control groups. No significant differences between F, SC and BC groups were observed with respect to the structure of hematopoietic areas and the liver morphology. As in Foton-M2, BrdU labeled cells revealed in blood as well as in the hemopoietic areas of the liver. However, in previous experiments performed at satellites Bion-10 and Foton-M2 the changes in peripheral blood contents were registered in operated F newts, and we supposed it could be the result of additive effects of spaceflight factors and stimulation of reparative potency and stress due to surgical operation. Possibly, the temperature conditions also may provide some influence on blood cell content of newts that belong to poikilothermic animals. Thus, in present experiment F and SC groups were reared in the same temperature regims, whereas it was nearly 3o C differences between SC and F groups exposed on Foton-M2. At the same time as it was found in experiments on Bion-11 and Foton-M2 spaceflight factors did not affect on differential blood counts of intact non

  9. The interactions of the cells in the development of osteoporotic changes in bones under space flight conditions (United States)

    Rodionova, Natalia; Kabitskaya, Olga


    Using the methods of electron microscopy and autoradiography with ³N-glycine and ³N-thymidine on biosatellites "Bion-11" (Macaca mulatta, the duration of the experiments -10 days), "Bion-M1" (mouse C57 Black, duration of the flight - 30 days) in the experiments with modeled hypokinesia (white rats, hind limbs unloading, the duration of the experiments 28 days) new data about the morpho-functional peculiarities of cellular interactions in adaptive remodeling zones of bone structures under normal conditions and after exposure of animals to microgravity. Our conception on remodeling proposes the following sequence in the development of cellular interactions after decrease of the mechanical loading: a primary response of osteocytes (mechanosensory cells) to the mechanical stimulus; osteocytic remodeling (osteolysis); transmission of the mechanical signals through a system of canals and processes to functionally active osteoblasts and paving endost one as well as to the bone-marrow stromal cells and perivascular cells. As a response to the mechanical stimulus (microgravity) the system of perivascular cell-stromal cell-preosteoblast-osteoblast shows a delay in proliferation, differentiation and specific functioning of the osteogenetic cells, the number of apoptotic osteoblasts increases. Then the osteoclastic reaction occurs (attraction of monocytes and formation of osteoclasts, bone matrix resorption in the loci of apoptosis of osteoblasts and osteocytes). The macrophagal reaction is followed by osteoblastogenesis, which appears to be a rehabilitating process. However, during prolonged absence of mechanical stimuli (microgravity, long-time immobilization) the adaptive activization of osteoblastogenesis doesn't occur (as it is the case during the physiological remodeling of bone tissue) or it occurs to a smaller degree. The loading deficit leads to an adaptive differentiation of stromal cells to fibroblastic cells and adipocytes in remodeling loci. These cell reactions

  10. Changes in the population of perivascular cells in the bone tissue remodeling zones under microgravity (United States)

    Katkova, Olena; Rodionova, Natalia; Shevel, Ivan


    Microgravity and long-term hypokinesia induce reduction both in bone mass and mineral saturation, which can lead to the development of osteoporosis and osteopenia. (Oganov, 2003). Reorganizations and adaptive remodeling processes in the skeleton bones occur in the topographical interconnection with blood capillaries and perivascular cells. Radioautographic studies with 3H- thymidine (Kimmel, Fee, 1980; Rodionova, 1989, 2006) have shown that in osteogenesis zones there is sequential differentiation process of the perivascular cells into osteogenic. Hence the study of populations of perivascular stromal cells in areas of destructive changes is actual. Perivascular cells from metaphysis of the rat femoral bones under conditions of modeling microgravity were studied using electron microscopy and cytochemistry (hindlimb unloading, 28 days duration) and biosatellite «Bion-M1» (duration of flight from April 19 till May 19, 2013 on C57, black mice). It was revealed that both control and test groups populations of the perivascular cells are not homogeneous in remodeling adaptive zones. These populations comprise of adjacent to endothelium poorly differentiated forms and isolated cells with signs of differentiation (specific increased volume of rough endoplasmic reticulum in cytoplasm). Majority of the perivascular cells in the control group (modeling microgravity) reveals reaction to alkaline phosphatase (marker of the osteogenic differentiation). In poorly differentiated cells this reaction is registered in nucleolus, nucleous and cytoplasm. In differentiating cells activity of the alkaline phosphatase is also detected on the outer surface of the cellular membrane. Unlike the control group in the bones of experimental animals reaction to the alkaline phosphatase is registered not in all cells of perivascular population. Part of the differentiating perivascular cells does not contain a product of the reaction. Under microgravity some poorly differentiated perivascular

  11. Functional assessment of ubiquitin-depended processes under microgravity conditions (United States)

    Zhabereva, Anastasia; Shenkman, Boris S.; Gainullin, Murat; Gurev, Eugeny; Kondratieva, Ekaterina; Kopylov, Arthur

    Ubiquitylation, a widespread and important posttranslational modification of eukaryotic proteins, controls a multitude of critical cellular processes, both in normal and pathological conditions. The present work aims to study involvement of ubiquitin-dependent regulation in adaptive response to the external stimuli. Experiments were carried out on C57BL/6 mice. The microgravity state under conditions of real spaceflight on the biosatellite “BION-M1” was used as a model of stress impact. Additionally, number of control series including the vivarium control and experiments in Ground-based analog were also studied. The aggregate of endogenously ubiquitylated proteins was selected as specific feature of ubiquitin-dependent processes. Dynamic changes of modification pattern were characterized in liver tissue by combination of some methods, particularly by specific isolation of explicit protein pool, followed by immunodetection and/or mass spectrometry-based identification. The main approach includes specific extraction of proteins, modified by multiubiquitin chains of different length and topology. For this purpose two techniques were applied: 1) immunoprecipitation with antibodies against ubiquitin and/or multiubiquitin chains; 2) pull-down using synthetic protein construct termed Tandem Ubiquitin Binding Entities (TUBE, LifeSensors). TUBE represents fusion protein, composed of well characterized ubiquitin-binding domains, and thereby allows specific high-affinity binding and extraction of ubiquitylated proteins. Resulting protein fractions were analyzed by immunoblotting with antibodies against different types of multiubiquitin chains. Using this method we mapped endogenously modified proteins involved in two different types of ubiquitin-dependent processes, namely catabolic and non-catabolic ubiquitylation, in liver tissues, obtained from both control as well as experimental groups of animals, mentioned above. Then, isolated fractions of ubiquitylated proteins

  12. Ames Life Science Data Archive: Translational Rodent Research at Ames (United States)

    Wood, Alan E.; French, Alison J.; Ngaotheppitak, Ratana; Leung, Dorothy M.; Vargas, Roxana S.; Maese, Chris; Stewart, Helen


    The Life Science Data Archive (LSDA) office at Ames is responsible for collecting, curating, distributing and maintaining information pertaining to animal and plant experiments conducted in low earth orbit aboard various space vehicles from 1965 to present. The LSDA will soon be archiving data and tissues samples collected on the next generation of commercial vehicles; e.g., SpaceX & Cygnus Commercial Cargo Craft. To date over 375 rodent flight experiments with translational application have been archived by the Ames LSDA office. This knowledge base of fundamental research can be used to understand mechanisms that affect higher organisms in microgravity and help define additional research whose results could lead the way to closing gaps identified by the Human Research Program (HRP). This poster will highlight Ames contribution to the existing knowledge base and how the LSDA can be a resource to help answer the questions surrounding human health in long duration space exploration. In addition, it will illustrate how this body of knowledge was utilized to further our understanding of how space flight affects the human system and the ability to develop countermeasures that negate the deleterious effects of space flight. The Ames Life Sciences Data Archive (ALSDA) includes current descriptions of over 700 experiments conducted aboard the Shuttle, International Space Station (ISS), NASA/MIR, Bion/Cosmos, Gemini, Biosatellites, Apollo, Skylab, Russian Foton, and ground bed rest studies. Research areas cover Behavior and Performance, Bone and Calcium Physiology, Cardiovascular Physiology, Cell and Molecular Biology, Chronobiology, Developmental Biology, Endocrinology, Environmental Monitoring, Gastrointestinal Physiology, Hematology, Immunology, Life Support System, Metabolism and Nutrition, Microbiology, Muscle Physiology, Neurophysiology, Pharmacology, Plant Biology, Pulmonary Physiology, Radiation Biology, Renal, Fluid and Electrolyte Physiology, and Toxicology. These

  13. The character of abnormalities found in eye development of quail embruos exposed under space flight conditions (United States)

    Grigoryan, E.; Dadheva, O.; Polinskaya, V.; Guryeva, T.

    The avian embryonic eye is used as a model system for studies on the environmental effects on central nervous system development. Here we present results of qualitative investigation of the eye development in quail embryos incubated in micro-"g" environment. In this study we used eyes of Japanese quail (Coturnix coturnix Japonica) embryos "flown" onboard biosatellite Kosmos-1129 and on Mir station within the framework of Mir-NASA Program. Eyes obtained from embryos ranging in age from 3-12 days (E3-E12) were prepared histologically and compared with those of the synchronous and laboratory gound controls. Ther most careful consideration was given to finding and analysis of eye developmental abnormalities. Then they were compared with those already described by experimental teratology for birds and mammals. At the stage of the "eye cup" (E3) we found the case of invalid formation of the inner retina. The latter was represented by disorganized neuroblasts occupying whole posterior chamber of the eye. On the 7th day of quail eye development, at the period of cellular growth activation some cases of small eyes with many folds of overgrowing neural and pigmented retinal layers were detected. In retinal folds of these eyes the normal layering was disturbed as well as the formation of aqueous body and pecten oculi. At this time point the changes were also found in the anterior part of the eye. The peculiarities came out of the bigger width of the cornea and separation of its layers, but were found in synchronous control as well. Few embryos of E10 had also eyes with the abnormities described for E7 but this time they were more vivid because of the completion of eye tissue differentiation. At the stage E12 we found the case evaluated as microphthalmia attending by overgrowth of anterior pigmented tissues - iris and ciliary body attached with the cornea. Most, but not all, of abnormalities we found in eye morphogeneses belonged to the birds "flown" aboard Kosmos- 1129 and

  14. Purification of liquid products of cotton wipes biotransformation with the aid of Trichoderma viridae in orbital flight (United States)

    Viacheslav, Ilyin; Korshunov, Denis

    Recovery of various organic wastes in space flight is an actual problem of modern astronautics and future interplanetary missions. Currently, organic waste are incinerated in the dense layers of the Earth's atmosphere in cargo containers. However, this method of anthropogenic waste treatment is not environmentally compatible with future interplanetary missions, and is not suitable due to planetary quarantine requirements. Furthermore, the maintaining of a closed ecosystem in spaceship is considered as one of the main ways of ensuring the food and air crew in the long term fully autonomous space expedition. Such isolated ecosystem is not conceivable without biotransformation of organic waste. In this regard, currently new ways of recycling organic waste are currently developed. The most promising method is a method for processing organic waste using thermophilic anaerobic microbial communities.However, the products of anaerobic fermentation of solid organic materials contain significant amounts of organic impurities, which often give them sour pH. This presents a significant problem because it does not allow to use this fluid as process water without pretreatment. Fermentation products - alcohols, volatile fatty acids other carbonaceous substances must be withdrawn.One way to solve this problem may be the use of microorganisms biodestructors for recycling organic impurities in the products of anaerobic biodegradation Under the proposed approach, the metabolic products (having acidic pH) of primary biotransformation of solid organic materials are used as media for the cultivation of fungi. Thus, cellulosic wastes are recycled in two successive stages. The aim of this work was to test the effectiveness of post-treatment liquid products of biodegradation of hygienic cotton wipes (common type of waste on the ISS) by the fungus Trichoderma viridae under orbital flight. The study was conducted onboard biosatellite Bion -M1, where was placed a bioreactor, designed to carry

  15. The effect of space microgravity on the physiological activity of mammalian resident cardiac stem cells (United States)

    Belostotskaya, Galina; Zakharov, Eugeny

    weightlessness-treated samples vs. controls. These findings correlated with reduced expression of Connexin43. Typical elongated cardiomyocytes, presenting as both individual cells and conglomerates, were present in the control samples, whereas the shortened and thickened individual cardiac myocytes prevailed in the samples subjected to space microgravity. Both control samples and microgravity-treated samples contained resident CSCs of all subtypes. Both individual CSCs and CSC-derived clones were present in the suspension of myocardial cells. However, the number of CSC-formed clones of different maturity was significantly higher in the samples subjected to space microgravity. Some clones comprised only small undifferentiated cells of one CSCs subtype, while the cells of the other clones expressed some of the specific cardiac antigens (α-Actinin and Troponin T) at varying rate. In addition, large α-actinin- and troponin T-positive individual cardiomyocytes with readily discernible sarcomeric structure still expressing the original CSC antigens were also identified. The data obtained suggest that prolonged space microgravity exposure during space flight causes significant structural changes in the mammalian myocardium which may affect cardiac contractile function. Weightlessness-induced loss in heart muscle weight is assumed to be compensated by an increase in the activity of resident CSCs, which form new cardiomyocytes proliferating and differentiating inside the clones. The authors express their gratitude to the staff of Institute of Biomedical Problems of the Russian Academy of Sciences and Company "Progress" for the preparation of experimental animals for the biosatellite flight. The study was in part supported by grants from BION-M1 Project and Program of Presidium of Russian Academy of Sciences “Fundamental Sciences for Medicine” (2013).