WorldWideScience

Sample records for bioretention soil mix

  1. Soil moisture dynamics and their effect on bioretention performance in Northeast Ohio

    Science.gov (United States)

    Bush, S. A.; Jefferson, A.; Jarden, K.; Kinsman-Costello, L. E.; Grieser, J.

    2014-12-01

    Urban impervious surfaces lead to increases in stormwater runoff. Green infrastructure, like bioretention cells, is being used to mitigate negative impacts of runoff by disconnecting impervious surfaces from storm water systems and redirecting flow to decentralized treatment areas. While bioretention soil characteristics are carefully designed, little research is available on soil moisture dynamics within the cells and how these might relate to inter-storm variability in performance. Bioretentions have been installed along a residential street in Parma, Ohio to determine the impact of green infrastructure on the West Creek watershed, a 36 km2 subwatershed of the Cuyahoga River. Bioretentions were installed in two phases (Phase I in 2013 and Phase II in 2014); design and vegetation density vary slightly between the two phases. Our research focuses on characterizing soil moisture dynamics of multiple bioretentions and assessing their impact on stormwater runoff at the street scale. Soil moisture measurements were collected in transects for eight bioretentions over the course of one summer. Vegetation indices of canopy height, percent vegetative cover, species richness and NDVI were also measured. A flow meter in the storm drain at the end of the street measured storm sewer discharge. Precipitation was recorded from a meteorological station 2 km from the research site. Soil moisture increased in response to precipitation and decreased to relatively stable conditions within 3 days following a rain event. Phase II bioretentions exhibited greater soil moisture and less vegetation than Phase I bioretentions, though the relationship between soil moisture and vegetative cover is inconclusive for bioretentions constructed in the same phase. Data from five storms suggest that pre-event soil moisture does not control the runoff-to-rainfall ratio, which we use as a measure of bioretention performance. However, discharge data indicate that hydrograph characteristics, such as lag

  2. Soil-atmosphere greenhouse-gas exchange in a bioretention system

    Science.gov (United States)

    Daly, E.; Chan, H.; Beringer, J.; Livesley, S. J.

    2011-12-01

    Bioretention systems are a popular green-technology for the management of urban stormwater runoff in many countries. They typically consist of a trench filled with a highly permeable soil medium that supports vegetation; runoff is diverted to bioretention systems and, by percolating through the filter medium, is subjected to a number of treatment processes. Nitrogen (N) is one of the key pollutants targeted by bioretention systems, which are able to reduce N concentrations considerably from inflow to outflow. To increase N removal, a saturated zone at the bottom of the filter medium is often artificially generated, to both enhance the denitrification process and increase the water available to the vegetation between inflow events. Although studies on the N-removal performance of bioretention systems are widely available in the literature, less is known about the exchange of greenhouse gases (GHG), especially nitrous oxide (N2O), between the bioretention systems and the atmosphere. Here, we present an experimental pilot study to measure N2O and CO2 soil emissions in a bioretention system installed on the Clayton Campus of Monash University in Melbourne, Australia. The bioretention system is divided into three cells, each 15 m2; the system as a whole receives water run-off from 4500 m2 of impervious car park. We monitored two cells with mostly sandy-loam vegetated with native sedges (mainly Carex Appressa and Lomandra Longifolia), one with and one without a saturated zone. Three manual flux chambers were installed in both cells. Gas flux samples were taken twice a week at about 11 am between the 2nd of March and the 18th of May 2011 (late summer and fall). Since October 2010, air-phase soil CO2 concentration profiles were measured continuously using solid-state infrared CO2 transmitters (GMT-221 model, Vaisala, Finland), along with soil moisture and soil temperature. Preliminary analysis of the chamber data (March only) showed that N2O fluxes were in general below 50

  3. Impacts of Different Soil Texture and Organic Content on Hydrological Performance of Bioretention

    Science.gov (United States)

    Gülbaz, Sezar; Melek Kazezyilmaz Alhan, Cevza

    2015-04-01

    The land development and increase in urbanization in a watershed has adverse effects such as flooding and water pollution on both surface water and groundwater resources. Low Impact Development (LID) Best Management Practices (BMPs) such as bioretentions, vegetated rooftops, rain barrels, vegetative swales and permeable pavements have been implemented in order to diminish adverse effects of urbanization. LID-BMP is a land planning method which is used to manage storm water runoff by reducing peak flows as well as simultaneously improving water quality. The aim of this study is developing a functional experimental setup called as Rainfall-Watershed-Bioretention (RWB) System in order to investigate and quantify the hydrological performance of bioretention. RWB System is constructed on the Istanbul University Campus and includes an artificial rainfall system, which allows for variable rainfall intensity, drainage area, which has controllable size and slope, and bioretention columns with different soil ratios. Four bioretention columns with different soil textures and organic content are constructed in order to investigate their effects on water quantity. Using RWB System, the runoff volume, hydrograph, peak flow rate and delay in peak time at the exit of bioretention columns may be quantified under various rainfalls in order to understand the role of soil types used in bioretention columns and rainfall intensities. The data obtained from several experiments conducted in RWB System are employed in establishing a relation among rainfall, surface runoff and flow reduction after bioretention. Moreover, the results are supported by mathematical models in order to explain the physical mechanism of bioretention. Following conclusions are reached based on the analyses carried out in this study: i) Results show that different local soil types in bioretention implementation affect surface runoff and peak flow considerably. ii) Rainfall intensity and duration affect peak flow

  4. Effect of heavy metals on soil mineral surfaces and bioretention pond performance

    Science.gov (United States)

    Zhang, H.; Olson, M. S.

    2009-12-01

    Haibo Zhang and Mira S. Olson Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 As urban stormwater runoff flows across impervious surfaces, it collects and accumulates pollutants that are detrimental to the quality of local receiving water bodies. Heavy metal pollution, such as copper, lead and zinc, has been a concern in urban stormwater runoff. In addition, the presence of bacteria in stormwater has been frequently reported. The co-existence of both heavy metals and bacteria in stormwater and their complex interactions determine their transport and removal through bioretention pond. Stormwater runoff was sampled from a bioretention pond in Philadelphia, PA. The concentration of copper, lead and zinc were measured as 0.086ppm, 0.083ppm and 0.365ppm, respectively. Batch experiments were conducted with solutions of pure copper, lead and zinc, and with a synthetic stormwater solution amended with copper, lead and zinc. The solution was buffered to pH 7, within the range of the observed stormwater pH. In pure heavy metal solutions, the sorption of copper, lead and zinc onto soil are 96%, 99% and 85%, respectively. In synthetic stormwater containing nutrients and all three metals, the sorption of lead is 97%, while copper and zinc decrease to 29% and 71%, respectively. Mineralogy of a soil sample taken from the bioretention pond was analyzed using a scanning electron microscope (SEM) and compared before and after sorption experiments. Sorption and complexation of heavy metals is likely to change the mineralogy of soil particle surfaces, which will affect the attachment of bacteria and therefore its transport through soil. This study will benefit long-term predictions of the performance of bioretention ponds for urban stormwater runoff treatment. Keyword: Heavy metal pollution, sorption, surface complexation, urban stormwater runoff, bioretention pond

  5. Hydrologic performance of bioretention in an expressway service area.

    Science.gov (United States)

    Gao, Jianping; Pan, Junkui; Hu, Ning; Xie, Chengzuo

    2018-04-01

    Bioretention can be an effective measure for stormwater treatment. However, there is a lack of systematic analysis of the impact of bioretention design parameters on hydrologic performance. Herein, SWMM and RECARGA models were applied to generate the typical annual rainfall runoff and simulate the water balance of the bioretention system in an expressway service area. The purpose of the investigation was to identify key design parameters for the bioretention system and delineate the priorities in developing the design. Results showed that the average groundwater recharge ratios for bioretention basins with and without an underdrain were 58.29% and 92.27%, respectively, the average overflow ratios were 4.13% and 4.19%, the average evapotranspiration ratios were 4.48% and 4.47%, and the average outflow ratio for bioretention with an underdrain was 33.94%. The ratio of the bioretention area to drainage area, and the saturated infiltration rates of planting soil and native soil were the main factors influencing water balance, while the underdrain diameter and gravel layer depth exerted little effect. Based on the impact analysis, multivariate nonlinear regression models of runoff reduction rate for two types of bioretention basin were established, which both exhibited high determination coefficients and acceptable Nash-Sutcliffe coefficients.

  6. Developing a Hydrologic Assessment Tool for Designing Bioretention in a watershed

    Science.gov (United States)

    Baek, Sangsoo; Ligaray, Mayzonee; Park, Jeong-Pyo; Kwon, Yongsung; Cho, Kyung Hwa

    2017-04-01

    Continuous urbanization has negatively impacted the ecological and hydrological environments at the global, regional, and local scales. This issue was addressed by developing Low Impact Development (LID) practices to deliver better hydrologic function and improve the environmental, economic, social and cultural outcomes. This study developed a modeling software to simulate and optimize bioretentions among LID in a given watershed. The model calculated a detailed soil infiltration process in bioretention with hydrological conditions and hydraulic facilities (e.g. riser and underdrain) and also generated an optimized plan using Flow Duration Curve (FDC). The optimization result from the simulation demonstrated that the location and size of bioretention, as well as the soil texture, are important elements for an efficient bioretention. We hope that the developed software in this study could be useful for establishing an appropriate scheme of LID installment

  7. EFFECTS OF LIME AMENDMENT ON THE PH OF ENGINEERED SOIL MIX FOR THE PURPOSES OF BIORETENTION

    Science.gov (United States)

    Bioretention basins are currently at the forefront of federal and state initiatives for urban stormwater management and water quality control. Also known as raingardens, these systems have been included in U.S. EPA’s list urban stormwater best management practices (BMPs). A bio...

  8. Adapting Bioretention Construction Details to Local Practices in Finland

    Directory of Open Access Journals (Sweden)

    Outi Tahvonen

    2018-01-01

    Full Text Available Bioretention is a method of storm water management that includes several processes following the natural hydrological cycle. Bioretention, or variations of it, include rain gardens and bioswales, infiltrates, filtrates, evapotranspirates, and help to store and manage storm water run-off. A bioretention cell retains water, removes pollutants, and provides water elements for urban green areas. Although bioretention is a promising method for multifunctional storm water management, its construction details should not be copied from other climatic areas. A direct application may dismiss local conditions, materials, and construction practices. This study aimed to adapt construction details for bioretention to Finnish local practices and conditions and to formulate bioretention constructions that balance water, soil, and vegetation. First, construction details were reviewed, then local adaptations were applied, and finally, the application and two variations of growing media in two construction depths were tested in a test field in Southern Finland. Sandy growing media allowed the efficient retention of water during the first year, but failed to provide vital growth. The use of topsoil and compost in the growing media improved growth, but held high electrical conductivity after infiltration. All the experimental cells in the test field showed activity during the melting periods, both during winter and spring. If bioretention plays a multifunctional role in urban design and engineered ecology, the design parameters should not only focus on storm water quantity, but also on quality management and vegetation growth.

  9. Non - Vegetated Standard Bioretention Structure Hydrodynamic Soil Characterization For Ponding - Layer Optimum Thickness Determination With A Distinctive Urban - Region Rainfall Event In Bogota

    Science.gov (United States)

    Velasco Ávila, Frank; Acero Rivero, Germán Eduardo; Angulo Jaramillo, Rafael

    2017-04-01

    Aiming to propose a system, in accordance with Best Management Practices (BMP) kind of structures, specifically a standard bioretention system in Bogota city, and in order to apply the inverse solution methodology on Hydrus - 1D, it is mandatory to determine each θ_s; θ_r; α;n and ks parameters in van Genuchten - Mualem function, without considering the hysteresis phenomenon, for a standard bioretention system composing soils, as well as required components and dimensions to implement the bioretention structure in Bogota. First, a bioretention structure general dimensioning was carried out based on current urban landscaping regulations and recommendations given by the sewage - system service provider in Bogota city. Soil composing and design were performed after information gathering and previous investigation on bioretention systems dimensioning from different sources such as manuals. To give an adequate interpretation of the vadose zone, a soil column experimental prototype was built to be able to control and measure the intervening parameters in the subsoil unidimensional flow description, such as capillary pressure, soil water saturation, inflow and outflow. Thirteen sensor - based devices were built to measure the inverse model required parameters. It is important to underline that all the designed instrumentation was based on low cost electronic development. In addition, the whole instrumentation system is controlled by an Arduino Mega PLC and was designed and built as a personal initiative by the author of this work. For signal processing and data capturing, a commercial Lab View version intuitive program was designed, to be able to create a user-friendly interface to make real-time sensor visualisation and control. Finally, all the hydrodynamic characterisation for the studied soils was made through a Hydrus-1D inverse model and laboratory experimenting and obtained results. In addition, several direct models were run in order to determinate both

  10. Fate and degradation of petroleum hydrocarbons in stormwater bioretention cells

    Science.gov (United States)

    LeFevre, Gregory Hallett

    This dissertation describes the investigation of the fate of hydrocarbons in stormwater bioretention areas and those mechanisms that affect hydrocarbon fate in such systems. Seventy-five samples from 58 bioretention areas were collected and analyzed to measure total petroleum hydrocarbon (TPH) residual and biodegradation functional genes. TPH residual in bioretention areas was greater than background sites but low overall (hydrocarbon biodegradation. Field soils were capable of mineralizing naphthalene, a polycyclic aromatic hydrocarbon (PAH) when incubated in the laboratory. In an additional laboratory investigation, a column study was initiated to comprehensively determine naphthalene fate in a simulated bioretention cell using a 14C-labeled tracer. Sorption to soil was the greatest sink of naphthalene in the columns, although biodegradation and vegetative uptake were also important loss mechanisms. Little leaching occurred following the first flush, and volatilization was insignificant. Significant enrichment of naphthalene degrading bacteria occurred over the course of the experiment as a result of naphthalene exposure. This was evident from enhanced naphthalene biodegradation kinetics (measured via batch tests), significant increases in naphthalene dioxygenase gene quantities, and a significant correlation observed between naphthalene residual and biodegradation functional genes. Vegetated columns outperformed the unplanted control column in terms of total naphthalene removal and biodegradation kinetics. As a result of these experiments, a final study focused on why planted systems outperform unplanted systems was conducted. Plant root exudates were harvested from hydroponic setups for three types of plants. Additionally, a solution of artificial root exudates (AREs) as prepared. Exudates were digested using soil bacteria to create metabolized exudates. Raw and metabolized exudates were characterized for dissolved organic carbon, specific UV absorbance

  11. Soil bioretention protects juvenile salmon and their prey from the toxic impacts of urban stormwater runoff.

    Science.gov (United States)

    McIntyre, J K; Davis, J W; Hinman, C; Macneale, K H; Anulacion, B F; Scholz, N L; Stark, J D

    2015-08-01

    Green stormwater infrastructure (GSI), or low impact development, encompasses a diverse and expanding portfolio of strategies to reduce the impacts of stormwater runoff on natural systems. Benchmarks for GSI success are usually framed in terms of hydrology and water chemistry, with reduced flow and loadings of toxic chemical contaminants as primary metrics. Despite the central goal of protecting aquatic species abundance and diversity, the effectiveness of GSI treatments in maintaining diverse assemblages of sensitive aquatic taxa has not been widely evaluated. In the present study we characterized the baseline toxicity of untreated urban runoff from a highway in Seattle, WA, across six storm events. For all storms, first flush runoff was toxic to the daphniid Ceriodaphnia dubia, causing up to 100% mortality or impairing reproduction among survivors. We then evaluated whether soil media used in bioretention, a conventional GSI method, could reduce or eliminate toxicity to juvenile coho salmon (Oncorhynchus kisutch) as well as their macroinvertebrate prey, including cultured C. dubia and wild-collected mayfly nymphs (Baetis spp.). Untreated highway runoff was generally lethal to salmon and invertebrates, and this acute mortality was eliminated when the runoff was filtered through soil media in bioretention columns. Soil treatment also protected against sublethal reproductive toxicity in C. dubia. Thus, a relatively inexpensive GSI technology can be highly effective at reversing the acutely lethal and sublethal effects of urban runoff on multiple aquatic species. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Bioretention column study of bacteria community response to salt-enriched artificial stormwater.

    Science.gov (United States)

    Endreny, Theodore; Burke, David J; Burchhardt, Kathleen M; Fabian, Mark W; Kretzer, Annette M

    2012-01-01

    Cold climate cities with green infrastructure depend on soil bacteria to remove nutrients from road salt-enriched stormwater. Our research examined how bacterial communities in laboratory columns containing bioretention media responded to varying concentrations of salt exposure from artificial stormwater and the effect of bacteria and salt on column effluent concentrations. We used a factorial design with two bacteria treatments (sterile, nonsterile) and three salt concentrations (935, 315, and 80 ppm), including a deionized water control. Columns were repeatedly saturated with stormwater or deionized and then drained throughout 5 wk, with the last week of effluent analyzed for water chemistry. To examine bacterial communities, we extracted DNA from column bioretention media at time 0 and at week 5 and used molecular profiling techniques to examine bacterial community changes. We found that bacterial community taxa changed between time 0 and week 5 and that there was significant separation between taxa among salt treatments. Bacteria evenness was significantly affected by stormwater treatment, but there were no differences in bacterial richness or diversity. Soil bacteria and salt treatments had a significant effect on the effluent concentration of NO, PO, Cu, Pb, and Zn based on ANOVA tests. The presence of bacteria reduced effluent NO and Zn concentrations by as much as 150 and 25%, respectively, while having a mixed effect on effluent PO concentrations. Our results demonstrate how stormwater can affect bacterial communities and how the presence of soil bacteria improves pollutant removal by green infrastructure. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Stormwater Effects on Heavy Metal Sequestration in a Bioretention System in Culver City, California

    Science.gov (United States)

    Yousavich, D. J.; Ellis, A. S.; Dorsey, J.; Johnston, K.

    2017-12-01

    Rain Gardens, also referred to as bioretention or biofilters, are often used to capture or filter urban runoff before it drains into surface or groundwater systems. The Culver City Rain Garden (CCRG) is one such system that is designed to capture and filter runoff from approximately 11 acres of mixed-use commercial and industrial land before it enters Ballona Creek. The EPA has designated Ballona Creek as an impaired waterway and established Total Maximum Daily Loads for heavy metals. Previous research has utilized sequential extractions to establish trends in heavy metal sequestration for Cu, Pb, and Zn in bioretention media. The aim of this project is to evaluate if there is a difference in heavy metal sequestration between dry and wetted bioretention media. To characterize the stormwater at the site, influent and surface water were collected and analyzed for sulfate and heavy metals 3 times during the 2016-2017 storm season. Two soil cores from the CCRG were acquired in the summer of 2017 to analyze soil metal sequestration trends. They will be subjected to different wetting conditions, sectioned into discrete depths, and digested with an established sequential extraction technique. Surface water in the CCRG shows average Dissolved Oxygen during wet conditions of 2.92 mg/L and average pH of 6.1 indicating reducing conditions near the surface and the possible protonation of adsorption sites during wet weather conditions. Influent metal data indicate average dissolved iron levels near 1 ppm and influent Cu, Pb, and Zn levels near 0.05, 0.01, and 0.5 ppm respectively. This coupled with average surface water sulfate levels near 3 ppm indicates the potential for iron oxide and sulfide mineral formation depending on redox conditions. The sequential extraction results will elucidate whether heavy metals are adsorbed or are being sequestered in mineral formation. These results will allow for the inclusion of heavy metal sequestration trends in the design of further

  14. Experimental study and simulation of phosphorus purification effects of bioretention systems on urban surface runoff.

    Directory of Open Access Journals (Sweden)

    Jiake Li

    Full Text Available Excessive phosphorus (P contributes to eutrophication by degrading water quality and limiting human use of water resources. Identifying economic and convenient methods to control soluble reactive phosphorus (SRP pollution in urban runoff is the key point of rainwater management strategies. Through three series of different tests involving influencing factors, continuous operation and intermittent operation, this study explored the purification effects of bioretention tanks under different experimental conditions, it included nine intermittent tests, single field continuous test with three groups of different fillers (Fly ash mixed with sand, Blast furnace slag, and Soil, and eight intermittent tests with single filler (Blast furnace slag mixed with sand. Among the three filler combinations studied, the filler with fly ash mixed with sand achieved the best pollution reduction efficiency. The setting of the submerged zone exerted minimal influence on the P removal of the three filler combinations. An extension of the dry period slightly promoted the P purification effect. The combination of fly ash mixed with sand demonstrated a positive purification effect on SRP during short- or long-term simulated rainfall duration. Blast furnace slag also presented a positive purification effect in the short term, although its continuous purification effect on SRP was poor in the long term. The purification abilities of soil in the short and long terms were weak. Under intermittent operations across different seasons, SRP removal was unstable, and effluent concentration processes were different. The purification effect of the bioretention system on SRP was predicted through partial least squares regression (PLS modeling analysis. The event mean concentration removal of SRP was positively related to the adsorption capacity of filler and rainfall interval time and negatively related to submerged zones, influent concentration and volume.

  15. [Bioretention Media Screening for the Removal of Phosphorus in Urban Stormwater].

    Science.gov (United States)

    Li, Li-qing; Gong, Yan-fang; Yan, Zi-qin; Shan, Bao-qing

    2015-07-01

    Urban runoff is an increasingly important source of excess phosphorus (P) to local receiving waters. Bioretention, a promising technology for urban stormwater pollution treatment, was investigated to determine whether the mixture of purple soil and sand could adsorb sufficient P at low concentrations in urban stormwater. The TP concentrations of urban runoff from variously impervious areas in Chongqing City ranged from 0. 04 to 7. 00 mg . L-1 (mean ± S. D. = 0. 75 mg . L-1 ± 1. 08 mg . L-1); the TDP concentrations ranged from 0. 02-0. 46 mg . L-1 ( mean ± S. D. = 0. 15 mg . L-1 ± 0. 10 mg . L-1). The media adsorption benchmark was determined for a bioretention facility sized at 10% of the 100% impervious catchment area and having 10 years of capacity according to annual rainfall pattern and the runoff TDP range. The media benchmark for adsorption was calculated as 7. 5 mg . kg-1 at soluble P concentration of 0. 30 mg . L-1 which provided the necessary stormwater treatment. The oxalate-extractable aluminum and iron content influenced the P sorption capacity for neutral and acid purple soils. A strong positive linear relationship was observed between the oxalate ratio [OR = (Alox + Feox)/Pox] and media P sorption capacity. The media mixture of 20% purple soil and 80% sand showed excellent P removal, meeting the developed benchmark for adsorptive behavior. The media mixture in a large-scale (60 cm) column consistently produced soluble reactive phosphorus effluent event with mean concentrations soil and sand can be used as a bioretention media to treat low-concentration phosphorus in urban runoff under various hydrologic and pollutant concentration conditions.

  16. Phosphorus retention by fly-ash amended filter media in aged bioretention cells

    Science.gov (United States)

    Bioretention cells (BRCs) have shown potential for stormwater quantity and quality control. However, the phosphorus (P) removal in BRC has been variable due to differences of soil properties in filter media. The objectives of this research were to identify and evaluate P accumulation in filter media...

  17. Modelling hydrology of a single bioretention system with HYDRUS-1D.

    Science.gov (United States)

    Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan

    2014-01-01

    A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems.

  18. Exploring Psychological and Aesthetic Approaches of Bio-Retention Facilities in the Urban Open Space

    Directory of Open Access Journals (Sweden)

    Suyeon Kim

    2017-11-01

    Full Text Available Over the last decades, a number of bio-retention facilities have been installed in urban areas for flood control and green amenity purposes. As urban amenity facilities for citizens, bio-retentions have a lot potential; however, the literature on bio-retentions focused mostly on physiochemical aspects like water quality and runoffs. Hence, this paper aims to explore psychological aspects of bio-retentions such as perceptions and landscape aesthetic value for visitors. In order to achieve this purpose, the study employed on-site interviews and questionnaires in the chosen three case studies as research methodology. For the 3 different locations of bio-retention facilities, interviews and questionnaires were carried out. The surveys of 100 bio-retention users were conducted, investigating their general perceptions and landscape aesthetics of the bio-retention facilities. The paper found that only 34% of the interviewees recognised bio-detention facilities, illustrating that most visitors were not aware of such facilities and were unable to distinguish the differences between bio-retention and conventional gardens. On the other hand, the majority of interviewees strongly supported the concept and function of bio-retentions, especially those who recognised the differences in planting species with conventional urban open spaces. Such main findings also encourage further studies of seeking quantitative values by conducting a correlation analysis between the functions and aesthetics of bio-retention facilities.

  19. Intermittent rainstorms cause pulses of nitrogen, phosphorus, and copper in leachate from compost in bioretention systems

    Energy Technology Data Exchange (ETDEWEB)

    Mullane, Jessica M. [Department of Crop and Soil Sciences, Washington State University, Puyallup, WA 98371, Pullman, WA 99164 (United States); Flury, Markus, E-mail: flury@wsu.edu [Department of Crop and Soil Sciences, Washington State University, Puyallup, WA 98371, Pullman, WA 99164 (United States); Iqbal, Hamid [Department of Crop and Soil Sciences, Washington State University, Puyallup, WA 98371, Pullman, WA 99164 (United States); Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Sector H-12, Islamabad (Pakistan); Freeze, Patrick M. [Department of Crop and Soil Sciences, Washington State University, Puyallup, WA 98371, Pullman, WA 99164 (United States); Hinman, Curtis [Natural Resources Program Extension, Washington State University, Puyallup, WA 98371 (United States); Cogger, Craig G.; Shi, Zhenqing [Department of Crop and Soil Sciences, Washington State University, Puyallup, WA 98371, Pullman, WA 99164 (United States)

    2015-12-15

    Bioretention systems rely on vegetation and mixtures of soil, sand, and compost to filter stormwater runoff. However, bioretention systems can also leach metals and nutrients, and compost may be a major contributor to this leaching. To safely implement bioretention systems, it is crucial to determine the composition of compost leachate. We characterized and quantified the leachate composition of compost following intermittent, simulated storm events. Columns of municipal compost were irrigated to simulate 6-month, 24-hour rain storms in the Seattle–Tacoma region. Outflow was analyzed for pH, electrical conductivity (EC), particulate concentration, surface tension, dissolved organic carbon (DOC), nitrogen, phosphorus, and copper. Results indicate a decrease of chemical concentrations over the course of individual storms and following repeated storms, but each new storm released another peak of constituents. The decrease in phosphorus, copper, and DOC concentrations with repeated storms was slower than for nitrate and EC. Nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) showed that the DOC consisted mainly of aliphatic and aromatic components typical of fulvic and humic acids. Less than 3% of the original copper content from the compost leached out even after nine storm events. Nonetheless, copper concentrations in the leachate exceeded regulatory discharge standards. Our results show that compost can serve as a sustained source of leaching of nutrients and metals. - Highlights: • Intermittent rainstorms release N, P, and Cu from compost in bioretention systems. • Leaching of Cu is sustained over several years of rainfall. • Leaching of Cu is correlated with DOC concentrations. • Compost in bioretention systems can be a source of pollution.

  20. Intermittent rainstorms cause pulses of nitrogen, phosphorus, and copper in leachate from compost in bioretention systems

    International Nuclear Information System (INIS)

    Mullane, Jessica M.; Flury, Markus; Iqbal, Hamid; Freeze, Patrick M.; Hinman, Curtis; Cogger, Craig G.; Shi, Zhenqing

    2015-01-01

    Bioretention systems rely on vegetation and mixtures of soil, sand, and compost to filter stormwater runoff. However, bioretention systems can also leach metals and nutrients, and compost may be a major contributor to this leaching. To safely implement bioretention systems, it is crucial to determine the composition of compost leachate. We characterized and quantified the leachate composition of compost following intermittent, simulated storm events. Columns of municipal compost were irrigated to simulate 6-month, 24-hour rain storms in the Seattle–Tacoma region. Outflow was analyzed for pH, electrical conductivity (EC), particulate concentration, surface tension, dissolved organic carbon (DOC), nitrogen, phosphorus, and copper. Results indicate a decrease of chemical concentrations over the course of individual storms and following repeated storms, but each new storm released another peak of constituents. The decrease in phosphorus, copper, and DOC concentrations with repeated storms was slower than for nitrate and EC. Nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) showed that the DOC consisted mainly of aliphatic and aromatic components typical of fulvic and humic acids. Less than 3% of the original copper content from the compost leached out even after nine storm events. Nonetheless, copper concentrations in the leachate exceeded regulatory discharge standards. Our results show that compost can serve as a sustained source of leaching of nutrients and metals. - Highlights: • Intermittent rainstorms release N, P, and Cu from compost in bioretention systems. • Leaching of Cu is sustained over several years of rainfall. • Leaching of Cu is correlated with DOC concentrations. • Compost in bioretention systems can be a source of pollution.

  1. Water Quality Improvement through Reductions of Pollutant Loads on Small Scale of Bioretention System

    Science.gov (United States)

    Elyza Muha, Norshafa; Mohd Sidek, Lariyah; Jajarmizadeh, Milad

    2016-03-01

    Bioretention system is introduced as an important topic namely Urban Storm Water Management Manual for Malaysia (MSMA) by the Department of Irrigation and Drainage Malaysia (DID) in May 2012. The main objective of this paper is to evaluate the performance of water quality for small scale bioretention system under tropical climate via MUSIC model. Two bioretention systems 1 and 2 are observed based on the difference media depth. The result of bioretention system is compared with a reference model which has infrastructure with Urban Stormwater Improvement Conceptualisation (MUSIC) for pollutants load reduction and water quality results. Assessment of results via MUSIC software indicates a significant percentage of reduction for Total Suspended Solid (TSS), Total Phosphorus (TP) and Total Nitrogen (TN). The prediction of pollutant reduction via using MUSIC has the harmony for requirement in MSMA. TSS pollutant reduction is more than 80%, while for TP and TN more than 50%. The outcome of this study can be helpful for improvement of the existing MSMA guidelines for application of bioretention systems in Malaysia.

  2. Designing Bioretention Systems to Improve Nitrogen Removal - poster

    Science.gov (United States)

    Rain gardens, also referred to as bioretention systems, are designed primarily to infiltrate stormwater flow and reduce surface runoff and peak flows to receiving streams. Additionally, they are known to remove stressors from urban stormwater runoff, including oil and grease, pho...

  3. Assessing cost-effectiveness of bioretention on stormwater in response to climate change and urbanization for future scenarios

    Science.gov (United States)

    Wang, Mo; Zhang, Dongqing; Adhityan, Appan; Ng, Wun Jern; Dong, Jianwen; Tan, Soon Keat

    2016-12-01

    Bioretention, as a popular low impact development practice, has become more important to mitigate adverse impacts on urban stormwater. However, there is very limited information regarding ensuring the effectiveness of bioretention response to uncertain future challenges, especially when taking into consideration climate change and urbanization. The main objective of this paper is to identify the cost-effectiveness of bioretention by assessing the hydrology performance under future scenarios modeling. First, the hydrology model was used to obtain peak runoff and TSS loads of bioretention with variable scales under different scenarios, i.e., different Representative Concentration Pathways (RCPs) and Shared Socio-economic reference Pathways (SSPs) for 2-year and 10-year design storms in Singapore. Then, life cycle costing (LCC) and life cycle assessment (LCA) were estimated for bioretention, and the cost-effectiveness was identified under different scenarios. Our finding showed that there were different degree of responses to 2-year and 10-year design storms but the general patterns and insights deduced were similar. The performance of bioretenion was more sensitive to urbanization than that for climate change in the urban catchment. In addition, it was noted that the methodology used in this study was generic and the findings could be useful as reference for other LID practices in response to climate change and urbanization.

  4. Bioretention for stormwater quality improvement in Texas : pilot experiments.

    Science.gov (United States)

    2010-07-01

    This report summarizes the results of pilot-scale bioretention experiments. Five steel boxes of 6 ft (L) 6 ft : (W) 4 ft (D) were constructed, each of which has a different type of vegetation: (1) shrubs, (2) grass : species in Texas Department...

  5. Bioretention storm water control measures decrease the toxicity of copper roof runoff.

    Science.gov (United States)

    LaBarre, William J; Ownby, David R; Rader, Kevin J; Lev, Steven M; Casey, Ryan E

    2017-06-01

    The present study evaluated the ability of 2 different bioretention storm water control measures (SCMs), planter boxes and swales, to decrease the toxicity of sheet copper (Cu) roofing runoff to Daphnia magna. The present study quantified changes in storm water chemistry as it passed through the bioretention systems and utilized the biotic ligand model (BLM) to assess whether the observed D. magna toxicity could be predicted by variations found in water chemistry. Laboratory toxicity tests were performed using select storm samples with D. magna cultured under low ionic strength conditions that were appropriate for the low ionic strength of the storm water samples being tested. The SCMs decreased toxicity of Cu roof runoff in both the BLM results and the storm water bioassays. Water exiting the SCMs was substantially higher than influent runoff in pH, ions, alkalinity, and dissolved organic carbon and substantially lower in total and dissolved Cu. Daphnids experienced complete mortality in untreated runoff from the Cu roof (the SCM influent); however, for planter and swale effluents, survival averaged 86% and 95%, respectively. The present study demonstrated that conventional bioretention practices, including planter boxes and swales, are capable of decreasing the risk of adverse effects from sheet Cu roof runoff to receiving systems, even before considering dilution of effluents in those receiving systems and associated further reductions in copper bioavailability. Environ Toxicol Chem 2017;36:1680-1688. © 2016 SETAC. © 2016 SETAC.

  6. Raingarden Soil Bacteria Community Response to Lab Simulated Salt-Enriched Artificial Stormwater

    Science.gov (United States)

    Endreny, T. A.

    2014-12-01

    Cold climate cities with green infrastructure depend on soil bacteria to remove nutrients from road salt-enriched stormwater. Our research examined how bacterial communities in laboratory columns containing bioretention media responded to varying concentrations of salt exposure from artificial stormwater and the effect of bacteria and salt on column effluent concentrations. We used a factorial design with two bacteria treatments (sterile, nonsterile) and three salt concentrations (935, 315, and 80 ppm), including a deionized water control. Columns were repeatedly saturated with stormwater or deionized and then drained throughout 5 wk, with the last week of effluent analyzed for water chemistry. To examine bacterial communities, we extracted DNA from column bioretention media at time 0 and at week 5 and used molecular profiling techniques to examine bacterial community changes. We found that bacterial community taxa changed between time 0 and week 5 and that there was significant separation between taxa among salt treatments. Bacteria evenness was significantly affected by stormwater treatment, but there were no differences in bacterial richness or diversity. Soil bacteria and salt treatments had a significant effect on the effluent concentration of NO3, PO4, Cu, Pb, and Zn based on ANOVA tests. The presence of bacteria reduced effluent NO3 and Zn concentrations by as much as 150 and 25%, respectively, while having a mixed effect on effluent PO4 concentrations. Our results demonstrate how stormwater can affect bacterial communities and how the presence of soil bacteria improves pollutant removal by green infrastructure.

  7. Soil mixing of stratified contaminated sands.

    Science.gov (United States)

    Al-Tabba, A; Ayotamuno, M J; Martin, R J

    2000-02-01

    Validation of soil mixing for the treatment of contaminated ground is needed in a wide range of site conditions to widen the application of the technology and to understand the mechanisms involved. Since very limited work has been carried out in heterogeneous ground conditions, this paper investigates the effectiveness of soil mixing in stratified sands using laboratory-scale augers. This enabled a low cost investigation of factors such as grout type and form, auger design, installation procedure, mixing mode, curing period, thickness of soil layers and natural moisture content on the unconfined compressive strength, leachability and leachate pH of the soil-grout mixes. The results showed that the auger design plays a very important part in the mixing process in heterogeneous sands. The variability of the properties measured in the stratified soils and the measurable variations caused by the various factors considered, highlighted the importance of duplicating appropriate in situ conditions, the usefulness of laboratory-scale modelling of in situ conditions and the importance of modelling soil and contaminant heterogeneities at the treatability study stage.

  8. Do salt and low temperature impair metal treatment in stormwater bioretention cells with or without a submerged zone?

    Science.gov (United States)

    Søberg, Laila C; Viklander, Maria; Blecken, Godecke-Tobias

    2017-02-01

    Although seasonal temperature changes and (road) salt in winter and/or coastal stormwater runoff might interfere with the metal treatment performance of stormwater bioretention cells, no previous study has evaluated the effect of these factors and their interactions under controlled conditions. In this 18week long study 24 well established pilot-scale bioretention columns were employed to evaluate the individual and combined effect(s) of low/high temperature, salt and presence of a submerged zone with an embedded carbon source on metal removal using a three factor, two-level full factorial experimental design. In most instances, the three factors significantly influenced the metal outflow concentrations and thus the treatment performance; the effect of temperature depended on the metal in question, salt had an overall negative effect and the submerged zone with carbon source had an overall positive effect. Despite these statistically significant effects, the discharge water quality was generally markedly improved. However, leaching of dissolved Cu and Pb did occur, mainly from bioretention cells dosed with salt-containing stormwater. The highest concentrations of metals were captured in the top layer of the filter material and were not significantly affected by the three factors studied. Overall, the results confirmed that bioretention provides a functioning stormwater treatment option in areas experiencing winter conditions (road salt, low temperatures) or coastal regions (salt-laden stormwater). However, validation of these results in the field is recommended, especially focusing on dissolved metal removal, which may be critically affected under certain conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Theory of soil decontamination in mixing liquid

    International Nuclear Information System (INIS)

    Polyakov, A.S.; Emets, E.P.; Poluehktov, P.P.; Rybakov, K.A.

    1997-01-01

    The theory of soil decontamination from radioactive pollution in mixing liquid flow is described. It is shown that there exists the threshold intensity of liquid mixing up to which there is no decontamination. Beyond the threshold and by increasing the mixing intensity the decontamination of large soil fractions is allowable whereby the higher is the mixing intensity and lower is the soil contamination, the laser is the characteristic decontamination time. The above theory is related to cases of uniform pollution of the particles surface

  10. Nutrient Release from Disturbance of Infiltration System Soils during Construction

    OpenAIRE

    Daniel P. Treese; Shirley E. Clark; Katherine H. Baker

    2012-01-01

    Subsurface infiltration and surface bioretention systems composed of engineered and/or native soils are preferred tools for stormwater management. However, the disturbance of native soils, especially during the process of adding amendments to improve infiltration rates and pollutant removal, may result in releases of nutrients in the early life of these systems. This project investigated the nutrient release from two soils, one disturbed and one undisturbed. The disturbed soil was collected i...

  11. In situ enhanced soil mixing. Innovative technology summary report

    International Nuclear Information System (INIS)

    1996-02-01

    In Situ Enhanced Soil Mixing (ISESM) is a treatment technology that has been demonstrated and deployed to remediate soils contaminated with volatile organic compounds (VOCs). The technology has been developed by industry and has been demonstrated with the assistance of the U.S. Department of Energy's Office of Science and Technology and the Office of Environmental Restoration. The technology is particularly suited to shallow applications, above the water table, but can be used at greater depths. ISESM technologies demonstrated for this project include: (1) Soil mixing with vapor extraction combined with ambient air injection. [Contaminated soil is mixed with ambient air to vaporize volatile organic compounds (VOCs). The mixing auger is moved up and down to assist in removal of contaminated vapors. The vapors are collected in a shroud covering the treatment area and run through a treatment unit containing a carbon filter or a catalytic oxidation unit with a wet scrubber system and a high efficiency particulate air (HEPA) filter.] (2) soil mixing with vapor extraction combined with hot air injection [This process is the same as the ambient air injection except that hot air or steam is injected.] (3) soil mixing with hydrogen peroxide injection [Contaminated soil is mixed with ambient air that contains a mist of diluted hydrogen peroxide (H 2 O 2 ) solution. The H 2 O 2 solution chemically oxidizes the VOCs to carbon dioxide (CO 2 ) and water.] (4) soil mixing with grout injection for solidification/stabilization [Contaminated soil is mixed as a cement grout is injected under pressure to solidify and immobilize the contaminated soil in a concrete-like form.] The soils are mixed with a single-blade auger or with a combination of augers ranging in diameter from 3 to 12 feet

  12. Basic Aspects of Deep Soil Mixing Technology Control

    Science.gov (United States)

    Egorova, Alexandra A.; Rybak, Jarosław; Stefaniuk, Damian; Zajączkowski, Przemysław

    2017-10-01

    Improving a soil is a process of increasing its physical/mechanical properties without changing its natural structure. Improvement of soil subbase is reached by means of the knitted materials, or other methods when strong connection between soil particles is established. The method of DSM (Deep Soil Mixing) columns has been invented in Japan in 1970s. The main reason of designing cement-soil columns is to improve properties of local soils (such as strength and stiffness) by mixing them with various cementing materials. Cement and calcium are the most commonly used binders. However new research undertaken worldwide proves that apart from these materials, also gypsum or fly ashes can also be successfully implemented. As the Deep Soil Mixing is still being under development, anticipating mechanical properties of columns in particular soils and the usage of cementing materials in formed columns is very difficult and often inappropriate to predict. That is why a research is carried out in order to find out what binders and mixing technology should be used. The paper presents several remarks on the testing procedures related to quality and capacity control of Deep Soil Mixing columns. Soil improvement methods, their advantages and limitations are briefly described. The authors analyse the suitability of selected testing methods on subsequent stages of design and execution of special foundations works. Chosen examples from engineering practice form the basis for recommendations for the control procedures. Presented case studies concerning testing the on capacity field samples and laboratory procedures on various categories of soil-cement samples were picked from R&D and consulting works offered by Wroclaw University of Science and Technology. Special emphasis is paid to climate conditions which may affect the availability of performing and controlling of DSM techniques in polar zones, with a special regard to sample curing.

  13. Deep soil mixing for reagent delivery and contaminant treatment

    International Nuclear Information System (INIS)

    Korte, N.; Gardner, F.G.; Cline, S.R.; West, O.R.

    1997-01-01

    Deep soil mixing was evaluated for treating clay soils contaminated with TCE and its byproducts at the Department of Energy's Kansas City Plant. The objective of the project was to evaluate the extent of limitations posed by the stiff, silty-clay soil. Three treatment approaches were tested. The first was vapor stripping. In contrast to previous work, however, laboratory treatability studies indicated that mixing saturated, clay soil was not efficient unless powdered lime was added. Thus, powder injection of lime was attempted in conjunction with the mixing/stripping operation. In separate treatment cells, potassium permanganate solution was mixed with the soil as a means of destroying contaminants in situ. Finally, microbial treatment was studied in a third treatment zone. The clay soil caused operational problems such as breakage of the shroud seal and frequent reagent blowouts. Nevertheless, treatment efficiencies of more than 70% were achieved in the saturated zone with chemical oxidation. Although expensive ($1128/yd 3 ), there are few alternatives for soils of this type

  14. Case study of shallow soil mixing and soil vacuum extraction remediation project

    International Nuclear Information System (INIS)

    Carey, M.J.; Day, S.R.; Pinewski, R.; Schroder, D.

    1995-01-01

    Shallow Soil Mixing (SSM) and Soil Vacuum Extraction (SVE) are techniques which have been increasingly relied on for the insitu remediation of contaminated soils. The primary applications of SSM have been to mix cement, bentonite, or other reagents to modify properties and thereby remediate contaminated soils or sludges. Soil vacuum extraction has been used at numerous applications for insitu removal of contaminants from soils. At a recent project in southern Ohio, the two technologies were integrated and enhanced to extract volatile organic compounds (VOCs) from soils at a Department of Energy facility. Advantages of the integrated SSM/SVE technology over alternative technologies include a relatively rapid remediation compared to other in-situ techniques at a lower cost, less exposure of waste to the surface environment and elimination of off-site disposal. These advantages led to the selection of the use of both technologies on the project in Southern Ohio. The information presented in this paper is intended to provide Engineers and owners with the level of understanding necessary to apply soil mixing and vacuum extraction technology to a specific site. The most important steps in implementing the technology are site investigation, feasibility estimate, selection of performance criteria, selection of appropriate materials, bench scale testing and construction

  15. Soil washing results for mixed waste pond soils at Hanford

    International Nuclear Information System (INIS)

    Gerber, M.A.; Freeman, H.D.; Baker, E.G.; Riemath, W.F.

    1991-01-01

    Soil washing technology was assessed as a means for remediating soil contaminated with mixed wastes primarily composed of heavy metals and radionuclides. The soils at the US Department of Energy's Hanford Site are considered suitable for soil washing because of their relatively low quantities of silt and clay. However, in a limited number of soil washing experiments using soils from different locations in the north pond of the 300 Area, the degree of decontamination achieved for the coarse fraction of the soil varied considerably. Part of this variation appears to be due to the presence of a discrete layer of contaminated sediment found in some of the samples

  16. Soil washing results for mixed waste pond soils at Hanford

    International Nuclear Information System (INIS)

    Gerber, M.A.

    1991-09-01

    Soil washing technology was assessed as a means for remediating soil contaminated with mixed wastes primarily composed of heavy metals and radionuclides. The soils at the US Department of Energy's Hanford Site are considered suitable for soil washing because of their relatively low quantities of silt and clay. However, in a limited number of soil washing experiments using soils from different locations in the north pond of the 300 Area, the degree of decontamination achieved for the coarse fraction of the soil varied considerably. Part of this variation appears to be due to the presence of a discrete layer of contaminated sediment found in some of the samples. 7 refs., 2 figs., 4 tabs

  17. Evaluation of quicklime mixing for the remediation of petroleum contaminated soils.

    Science.gov (United States)

    Schifano, V; Macleod, C; Hadlow, N; Dudeney, R

    2007-03-15

    Quicklime mixing is an established solidification/stabilization technique to improve mechanical properties and immobilise contaminants in soils. This study examined the effects of quicklime mixing on the concentrations and leachability of petroleum hydrocarbon compounds, in two natural soils and on a number of artificial sand/kaolinite mixtures. Several independent variables, such as clay content, moisture content and quicklime content were considered in the study. After mixing the soils with the quicklime, pH, temperature, moisture content, Atterberg limits and concentrations of petroleum hydrocarbon compounds were determined on soil and leachate samples extracted from the treated soils. Significant decreases in concentrations of petroleum hydrocarbon compounds were measured in soils and leachates upon quicklime mixing, which may be explained by a number of mechanisms such as volatilization, degradation and encapsulation of the hydrocarbon compounds promoted by the quicklime mixing. The increase in temperature due to the exothermic hydration reaction of quicklime when in contact with porewater helps to volatilize the light compounds but may not be entirely responsible for their concentration decreases and for the decrease of heavy aliphatics and aromatics concentrations.

  18. Hybrid electrokinetic method applied to mix contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, H.; Maria, E. [Dept. of Building Civil and Environmental Engineering, Concordia Univ., Montreal (Canada)

    2001-07-01

    Several industrials and municipal areas in North America are contaminated with heavy metals and petroleum products. This mix contamination presents a particularly difficult task for remediation when is exposed in clayey soil. The objective of this research was to find a method to cleanup mix contaminated clayey soils. Finally, a multifunctional hybrid electrokinetic method was investigated. Clayey soil was contaminated with lead and nickel (heavy metals) at the level of 1000 ppm and phenanthrene (PAH) of 600 ppm. Electrokinetic surfactant supply system was applied to mobilize, transport and removal of phenanthrene. A chelation agent (EDTA) was also electrokinetically supplied to mobilize heavy metals. The studies were performed on 8 lab scale electrokinetic cells. The mix contaminated clayey soil was subjected to DC total voltage gradient of 0.3 V/cm. Supplied liquids (surfactant and EDTA) were introduced in different periods of time (22 days, 42 days) in order to optimize the most excessive removal of contaminants. The ph, electrical parameters, volume supplied, and volume discharged was monitored continuously during each experiment. At the end of these tests soil and cathalyte were subjected to physico-chemical analysis. The paper discusses results of experiments including the optimal energy use, removal efficiency of phenanthrene, as well, transport and removal of heavy metals. The results of this study can be applied for in-situ hybrid electrokinetic technology to remediate clayey sites contaminated with petroleum product mixed with heavy metals (e.g. manufacture Gas Plant Sites). (orig.)

  19. Implementation of deep soil mixing at the Kansas City Plant

    International Nuclear Information System (INIS)

    Gardner, F.G.; Korte, N.; Strong-Gunderson, J.; Siegrist, R.L.; West, O.R.; Cline, S.R.

    1998-01-01

    In July 1996, the US Department of Energy (DOE) Kansas City Plant (KCP), AlliedSignal Federal Manufacturing and Technologies, and Oak Ridge National Laboratory (ORNL), conducted field-scale tests of in situ soil mixing and treatment technologies within the Northeast Area (NEA) of the KCP at the Former Ponds site. This demonstration, testing, and evaluation effort was conducted as part of the implementation of a deep soil mixing (DSM) innovative remedial technology demonstration project designed to test DSM in the low-permeability clay soils at the KCP. The clay soils and groundwater beneath this area are contaminated by volatile organic compounds (VOCs), primarily trichloroethene (TCE) and 1,2-dichloroethene (1,2-DCE). The demonstration project was originally designed to evaluate TCE and 1,2-DCE removal efficiency using soil mixing coupled with vapor stripping. Treatability study results, however, indicated that mixed region vapor stripping (MRVS) coupled with calcium oxide (dry lime powder) injection would improve TCE and 1,2-DCE removal efficiency in saturated soils. The scope of the KCP DSM demonstration evolved to implement DSM with the following in situ treatment methodologies for contaminant source reduction in soil and groundwater: DSM/MRVS coupled with calcium oxide injection; DSM/bioaugmentation; and DSM/chemical oxidation using potassium permanganate. Laboratory treatability studies were started in 1995 following collection of undisturbed soil cores from the KCP. These studies were conducted at ORNL, and the results provided information on optimum reagent concentrations and mixing ratios for the three in situ treatment agents to be implemented in the field demonstration

  20. Soil-bentonite design mix for slurry cutoff walls used as containment barriers

    International Nuclear Information System (INIS)

    Rad, N.S.; Bachus, R.C.; Jacobson, B.D.

    1995-01-01

    In recent years, soil-bentonite slurry cutoff walls have been increasingly used as containment barriers around contaminated soils to impede or, in some cases, nearly eliminate the off-site migration of contaminated ground water or other potentially hazardous liquids. The paper presents the procedures used and the results obtained during an extensive laboratory testing program performed to select varying soil-bentonite slurry mix components for a soil-bentonite slurry cutoff wall constructed around an old landfill at a former oil refinery. The landfill is underlain to varying depths by a coarse granular soils that has been exposed to oil-products. Compatibility of three commercially available bentonite products with the free oil-products and the oil-contaminated ground water found at some locations in the landfill was initially investigated. Based on the test results, one of the bentonite products was selected for use in the soil-bentonite slurry testing program. A clayey soil from a borrow source, potable water from the site, and subsurface soils from the proposed soil-bentonite slurry wall alignment were used to form different soil-bentonite slurry mixes. Slump tests were performed to evaluate the workability of the mixes. Based on the test results, a single mix was selected for further study, including permeability/compatibility testing. The results of the compatibility testing program are presented and discussed in the paper. A specific design mix methodology for evaluating the chemical compatibility of soil-bentonite slurry mixes with permeants is proposed

  1. The capture and destruction of E. coli from simulated urban runoff using conventional bioretention media and iron oxide-coated sand

    Science.gov (United States)

    Given the magnitude of the threat to the quality of receiving water bodies posed by microbial pollutants in urban stormwater runoff, and the untested potential for their removal in bioretention systems, studies were performed to evaluate the removal efficiency of bacteria from simulated urban stormw...

  2. Zebrafish and clean water technology: assessing soil bioretention as a protective treatment for toxic urban runoff.

    Science.gov (United States)

    McIntyre, J K; Davis, J W; Incardona, J P; Stark, J D; Anulacion, B F; Scholz, N L

    2014-12-01

    Urban stormwater contains a complex mixture of contaminants that can be acutely toxic to aquatic biota. Green stormwater infrastructure (GSI) is a set of evolving technologies intended to reduce impacts on natural systems by slowing and filtering runoff. The extent to which GSI methods work as intended is usually assessed in terms of water quantity (hydrology) and quality (chemistry). Biological indicators of GSI effectiveness have received less attention, despite an overarching goal of protecting the health of aquatic species. Here we use the zebrafish (Danio rerio) experimental model to evaluate bioinfiltration as a relatively inexpensive technology for treating runoff from an urban highway with dense motor vehicle traffic. Zebrafish embryos exposed to untreated runoff (48-96h; six storm events) displayed an array of developmental abnormalities, including delayed hatching, reduced growth, pericardial edema, microphthalmia (small eyes), and reduced swim bladder inflation. Three of the six storms were acutely lethal, and sublethal toxicity was evident across all storms, even when stormwater was diluted by as much as 95% in clean water. As anticipated from exposure to cardiotoxic polycyclic aromatic hydrocarbons (PAHs), untreated runoff also caused heart failure, as indicated by circulatory stasis, pericardial edema, and looping defects. Bioretention treatment dramatically improved stormwater quality and reversed nearly all forms of developmental toxicity. The zebrafish model therefore provides a versatile experimental platform for rapidly assessing GSI effectiveness. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Some Remarks on Practical Aspects of Laboratory Testing of Deep Soil Mixing Composites Achieved in Organic Soils

    Science.gov (United States)

    Kanty, Piotr; Rybak, Jarosław; Stefaniuk, Damian

    2017-10-01

    This paper presents the results of laboratory testing of organic soil-cement samples are presented in the paper. The research program continues previously reported the authors’ experiences with cement-fly ash-soil sample testing. Over 100 of compression and a dozen of tension tests have been carried out altogether. Several samples were waiting for failure test for over one year after they were formed. Several factors, like: the large amount of the tested samples, a long observation time, carrying out the tests in complex cycles of loading and the possibility of registering the loads and deformation in the axial and lateral direction - have made it possible to take into consideration numerous interdependencies, three of which have been presented in this work: the increments of compression strength, the stiffness of soil-cement in relation to strength and the tensile strength. Compressive strength, elastic modulus and tensile resistance of cubic samples were examined. Samples were mixed and stored in the laboratory conditions. Further numerical analysis in the Finite Element Method numerical code Z_Soil, were performed on the basis of laboratory test results. Computations prove that cement-based stabilization of organic soil brings serious risks (in terms of material capacity and stiffness) and Deep Soil Mixing technology should not be recommended for achieving it. The numerical analysis presented in the study below includes only one type of organic and sandy soil and several possible geometric combinations. Despite that, it clearly points to the fact that designing the DSM columns in the organic soil may be linked with a considerable risk and the settlement may reach too high values. During in situ mixing, the organic material surrounded by sand layers surely mixes with one another in certain areas. However, it has not been examined and it is difficult to assume such mixing already at the designing stage. In case of designing the DSM columns which goes through a

  4. The standardization of an apparatus for the mixing of soil samples ...

    African Journals Online (AJOL)

    Quantitative determination of nematode populations in soils frequently necessitates the mixing of representative soil samples to form a homogeneous, compound sample from which the nematodes are extracted. A mixing apparatus was developed and standardized with the aid of a spectrophotometric technique by which ...

  5. The Effects of Rain Garden Size on Hydrological Performance

    Science.gov (United States)

    Bioretention systems are vegetated depressions designed to accept stormwater runoff from impervious surfaces. Manuals and guidance documents recommend sizing bioretention cells anywhere from 3% to 43% of their associated drainage areas, based on factors including soil type, slop...

  6. Time-dependent performance of soil mix technology stabilized/solidified contaminated site soils.

    Science.gov (United States)

    Wang, Fei; Wang, Hailing; Al-Tabbaa, Abir

    2015-04-09

    This paper presents the strength and leaching performance of stabilized/solidified organic and inorganic contaminated site soil as a function of time and the effectiveness of modified clays applied in this project. Field trials of deep soil mixing application of stabilization/solidification (S/S) were performed at a site in Castleford in 2011. A number of binders and addictives were applied in this project including Portland cement (PC), ground granulated blastfurnace slag (GGBS), pulverised fuel ash (PFA), MgO and modified clays. Field trial samples were subjected to unconfined compressive strength (UCS), BS CN 12457 batch leaching test and the extraction of total organics at 28 days and 1.5 years after treatment. The results of UCS test show that the average strength values of mixes increased from 0-3250 kPa at 28 days to 250-4250 kPa at 1.5 years curing time. The BS EN 12457 leachate concentrations of all metals were well below their drinking water standard, except Ni in some mixes exceed its drinking water standard at 0.02 mg/l, suggesting that due to varied nature of binders, not all of them have the same efficiency in treating contaminated soil. The average leachate concentrations of total organics were in the range of 20-160 mg/l at 28 days after treatment and reduced to 18-140 mg/l at 1.5 years. In addition, organo clay (OC)/inorgano-organo clay (IOC) slurries used in this field trial were found to have a negative effect on the strength development, but were very effective in immobilizing heavy metals. The study also illustrates that the surfactants used to modify bentonite in this field trail were not suitable for the major organic pollutants exist in the site soil in this project. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    International Nuclear Information System (INIS)

    Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi

    2015-01-01

    Highlights: • A novel metal-immobilizing organoclay (MIOC) synthesized and characterized. • MIOC immobilizes toxic metals and reduces metal bioavailability. • It enhances PAH-bioavailability to soil bacteria. • It improves microbial growth and activities in mixed-contaminated soils. • MIOC facilitates PAH-biodegradation in metal co-contaminated soils. - Abstract: Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad ® 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils

  8. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Bhabananda; Sarkar, Binoy [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia); Mandal, Asit [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Division of Soil Biology, Indian Institute of Soil Science, Bhopal, Madhya Pradesh (India); Naidu, Ravi [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia)

    2015-11-15

    Highlights: • A novel metal-immobilizing organoclay (MIOC) synthesized and characterized. • MIOC immobilizes toxic metals and reduces metal bioavailability. • It enhances PAH-bioavailability to soil bacteria. • It improves microbial growth and activities in mixed-contaminated soils. • MIOC facilitates PAH-biodegradation in metal co-contaminated soils. - Abstract: Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad{sup ®} 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils.

  9. Improvement of Characteristics of Clayey Soil Mixed with Randomly Distributed Natural Fibers

    Science.gov (United States)

    Maity, J.; Chattopadhyay, B. C.; Mukherjee, S. P.

    2017-11-01

    In subgrade construction for flexible road pavement, properties of clayey soils available locally can be improved by providing randomly distributed fibers in the soil. The fibers added in subgrade constructions are expected to provide better compact interlocking system between the fiber and the soil grain, greater resistance to deformation and quicker dissipation of pore water pressure, thus helping consolidation and strengthening. Many natural fibers like jute, coir, sabai grass etc. which are economical and eco-friendly, are grown in abundance in India. If suitable they can be used as additive material in the subgrade soil to result in increase in strength and decrease in deformability. Such application will also reduce the cost of construction of roads, by providing lesser thickness of pavement layer. In this paper, the efficacy of using natural jute, coir or sabai grass fibers with locally available clayey soil has been studied. A series of Standard Proctor test, Soaked and Unsoaked California Bearing Ratio (CBR) test, and Unconfined Compressive Strength test were done on locally available clayey soil mixed with different types of natural fiber for various length and proportion to study the improvement of strength properties of fiber-soil composites placed at optimum moisture content. From the test results, it was observed that there was a substantial increase in CBR value for the clayey soil when mixed with increasing percentage of all three types of randomly distributed natural fibers up to 2% of the dry weight of soil. The CBR attains maximum value when the length for all types of fibers mixed with the clay taken in this study, attains a value of 10 mm.

  10. Effect of mixed and single crops on disease suppressiveness of soils

    NARCIS (Netherlands)

    Hiddink, G.A.; Termorshuizen, A.J.; Raaijmakers, J.M.; Bruggen, van A.H.C.

    2005-01-01

    The effect of mixed cropping on disease suppressiveness of soils was tested for two cropping systems, Brussels sprouts¿barley and triticale¿white clover. Disease suppressiveness of field soils was evaluated in bioassays for the soilborne pathogens Rhizoctonia solani, Fusarium oxysporum f. sp. lini,

  11. Electrokinetic Amendment in Phytoremediation of Mixed Contaminated Soil

    International Nuclear Information System (INIS)

    Chirakkara, Reshma A.; Reddy, Krishna R.; Cameselle, Claudio

    2015-01-01

    This study examines the effects of electrokinetic amendments for phytoremediation of mixed contaminated soil where typical silty clay soil was spiked with organic contaminants (naphthalene and phenanthrene) and heavy metal (lead, cadmium and chromium). The contaminated soil was treated with compost and placed in electrokinetic cells, which were seeded with oat plant or sunflower. Thirty days after germination, 25 V alternating current was applied to selected cells using graphite electrodes for 3 h per day. The plants were harvested after a growth period of 61 days. One cell remained unplanted to evaluate the effect of the electric current on the soil, alone. The results confirm a significant reduction of heavy metals and organic contaminants in soil. However, there was no noticeable improvement of heavy metal phytoextraction or PAH degradation due to the application of electric field despite the increase in biomass production by the plants subjected to the electric current. The electric potential application time and frequency are suggested to be increased to have noticeable effects in heavy metal uptake and PAHs degradation.

  12. Nutrient Release from Disturbance of Infiltration System Soils during Construction

    Directory of Open Access Journals (Sweden)

    Daniel P. Treese

    2012-01-01

    Full Text Available Subsurface infiltration and surface bioretention systems composed of engineered and/or native soils are preferred tools for stormwater management. However, the disturbance of native soils, especially during the process of adding amendments to improve infiltration rates and pollutant removal, may result in releases of nutrients in the early life of these systems. This project investigated the nutrient release from two soils, one disturbed and one undisturbed. The disturbed soil was collected intact, but had to be air-dried, and the columns repacked when soil shrinkage caused bypassing of water along the walls of the column. The undisturbed soil was collected and used intact, with no repacking. The disturbed soil showed elevated releases of nitrogen and phosphorus compared to the undisturbed soil for approximately 0.4 and 0.8 m of runoff loading, respectively. For the undisturbed soil, the nitrogen release was delayed, indicating that the soil disturbance accelerated the release of nitrogen into a very short time period. Leaving the soil undisturbed resulted in lower but still elevated effluent nitrogen concentrations over a longer period of time. For phosphorus, these results confirm prior research which demonstrated that the soil, if shown to be phosphorus-deficient during fertility testing, can remove phosphorus from runoff even when disturbed.

  13. Use of mixed solid waste as a soil amendment for saline-sodic soil remediation and oat seedling growth improvement.

    Science.gov (United States)

    Fan, Yuan; Ge, Tian; Zheng, Yanli; Li, Hua; Cheng, Fangqin

    2016-11-01

    Soil salinization has become a worldwide problem that imposes restrictions on crop production and food quality. This study utilizes a soil column experiment to address the potential of using mixed solid waste (vinegar residue, fly ash, and sewage sludge) as soil amendment to ameliorate saline-sodic soil and enhance crop growth. Mixed solid waste with vinegar residue content ranging from 60-90 %, sewage sludge of 8.7-30 %, and fly ash of 1.3-10 % was added to saline-sodic soil (electrical conductivity (EC 1:5 ) = 1.83 dS m -1 , sodium adsorption ratio (SAR 1:5 ) = 129.3 (mmol c L -1 ) 1/2 , pH = 9.73) at rates of 0 (control), 130, 260, and 650 kg ha -1 . Results showed that the application of waste amendment significantly reduced SAR, while increasing soil soluble K + , Ca 2+ , and Mg 2+ , at a dose of 650 kg ha -1 . The wet stability of macro-aggregates (>1 mm) was improved 90.7-133.7 % when the application rate of amendment was greater than 260 kg ha -1 . The application of this amendment significantly reduced soil pH. Germination rates and plant heights of oats were improved with the increasing rate of application. There was a positive correlation between the percentage of vinegar residue and the K/Na ratio in the soil solutions and roots. These findings suggest that applying a mixed waste amendment (vinegar residue, fly ash, and sewage sludge) could be a cost-effective method for the reclamation of saline-sodic soil and the improvement of the growth of salt-tolerant plants.

  14. [Microelement contents of litter, soil fauna and soil in Pinus koraiensis and broad-leaved mixed forest].

    Science.gov (United States)

    Yin, Xiu-qin; Li, Jin-xia; Dong, Wei-hua

    2007-02-01

    The analysis on the Mn, Zn and Cu contents of litter, soil fauna and soil in Pinus korazenszis and broad-leaved mixed forest in Liangshui Natural Reserve of Xiaoxing' an Mountains showed that the test microelement contents in the litter, soil fauna and soil all followed the sequence of Mn > Zn > Cu, but varied with these environmental components, being in the sequence of soil > litter > soil fauna for Mn, soil fauna > litter and soil for Zn, and soil fauna > soil > litter for Cu. The change range of test microelement contents in litter was larger in broad-leaved forest than in coniferous forest. Different soil fauna differed in their microelement-enrichment capability, e. g. , earthworm, centipede, diplopod had the highest content of Mn, Zn and Cu, respectively. The contents of test microelements in soil fauna had significant correlations with their environmental background values, litter decomposition rate, food habit of soil fauna, and its absorbing selectivity and enrichment to microelements. The microelements contained in 5-20 cm soil layer were more than those in 0-5 cm soil layer, and their dynamics differed in various soil layers.

  15. Pulse frequency and soil-litter mixing alter the control of cumulative precipitation over litter decomposition.

    Science.gov (United States)

    Joly, François-Xavier; Kurupas, Kelsey L; Throop, Heather L

    2017-09-01

    Macroclimate has traditionally been considered the predominant driver of litter decomposition. However, in drylands, cumulative monthly or annual precipitation typically fails to predict decomposition. In these systems, the windows of opportunity for decomposer activity may rather depend on the precipitation frequency and local factors affecting litter desiccation, such as soil-litter mixing. We used a full-factorial microcosm experiment to disentangle the relative importance of cumulative precipitation, pulse frequency, and soil-litter mixing on litter decomposition. Decomposition, measured as litter carbon loss, saturated with increasing cumulative precipitation when pulses were large and infrequent, suggesting that litter moisture no longer increased and/or microbial activity was no longer limited by water availability above a certain pulse size. More frequent precipitation pulses led to increased decomposition at high levels of cumulative precipitation. Soil-litter mixing consistently increased decomposition, with greatest relative increase (+194%) under the driest conditions. Collectively, our results highlight the need to consider precipitation at finer temporal scale and incorporate soil-litter mixing as key driver of decomposition in drylands. © 2017 by the Ecological Society of America.

  16. Construction Technology and Mechanical Properties of a Cement-Soil Mixing Pile Reinforced by Basalt Fibre

    Directory of Open Access Journals (Sweden)

    Yingwei Hong

    2017-01-01

    Full Text Available A new type of cement-soil mixing pile reinforced by basalt fibre is proposed for increasing the bearing capacity of cement-soil mixing piles. This work primarily consists of three parts. First, the process of construction technology is proposed, which could allow uniform mixing of the basalt fibre in cement-soil. Second, the optimal proportions of the compound mixtures and the mechanical properties of the pile material are obtained from unconfined compression strength test, tensile splitting strength test, and triaxial shear test under different conditions. Third, the reliability of the construction technology, optimal proportions, and mechanical properties are verified by testing the mechanical properties of the drilling core sample on site.

  17. [Effects of mixed decomposition of Populus simonii and other tree species leaf litters on soil properties in Loess Plateau].

    Science.gov (United States)

    Li, Qian; Liu, Zeng-Wen; Du, Liang-Zhen

    2012-03-01

    In this study, the leaf litters of Populus simonii and other 11 tree species were put into soil separately or in mixture after grinding, and incubated in laboratory to analyze the effects of their decomposition on soil properties and the interactions between the litters decomposition. The decomposition of each kind of the leaf litters in soil increased the soil urease, dehydrogenase, and phosphatase activities and the soil organic matter and available N contents markedly, but had greater differences in the effects on the soil available P content and CEC. The decomposition of the leaf litters of Caragana microphylla and of Amorpha fruticosa showed obvious effects in improving soil properties. The decomposition of the mixed leaf litters of P. simonii and Pinus tabulaeformis, Platycladus orientalis, Robinia pseudoacacia, or Ulmus pumila showed interactive promotion effects on the abundance of soil microbes, and that of the mixed leaf litters of P. simonii and P. orientalis or C. microphylla showed interactive promotion effects on the soil organic matter, available P, and available K contents and soil CEC but interactive inhibition effects on the activities of most of the soil enzymes tested. The decomposition of the mixed leaf litters of P. simonii and Larix principis-rupprechtii showed interactive promotion effects on the activities of most of the soil enzymes and soil nutrient contents, while that of the mixed leaf litters of P. simonii and P. sylvestris var. mongolica showed interactive inhibition effects. Overall, the decomposition of the mixed leaf litters of P. simo- nii and U. pumila, P. tabulaeformis, L. principis-rupprechtii, or R. pseudoacacia could improve soil quality, but the mixed leaf litters of P. simonii and P. orientalis, C. microphylla, P. sylvestris var. mongolica, Hippophae rhamnoides, or A. fruticosa showed an interactive inhibition effect during their decomposition.

  18. Evaluation of a Linear Mixing Model to Retrieve Soil and Vegetation Temperatures of Land Targets

    International Nuclear Information System (INIS)

    Yang, Jinxin; Jia, Li; Cui, Yaokui; Zhou, Jie; Menenti, Massimo

    2014-01-01

    A simple linear mixing model of heterogeneous soil-vegetation system and retrieval of component temperatures from directional remote sensing measurements by inverting this model is evaluated in this paper using observations by a thermal camera. The thermal camera was used to obtain multi-angular TIR (Thermal Infra-Red) images over vegetable and orchard canopies. A whole thermal camera image was treated as a pixel of a satellite image to evaluate the model with the two-component system, i.e. soil and vegetation. The evaluation included two parts: evaluation of the linear mixing model and evaluation of the inversion of the model to retrieve component temperatures. For evaluation of the linear mixing model, the RMSE is 0.2 K between the observed and modelled brightness temperatures, which indicates that the linear mixing model works well under most conditions. For evaluation of the model inversion, the RMSE between the model retrieved and the observed vegetation temperatures is 1.6K, correspondingly, the RMSE between the observed and retrieved soil temperatures is 2.0K. According to the evaluation of the sensitivity of retrieved component temperatures on fractional cover, the linear mixing model gives more accurate retrieval accuracies for both soil and vegetation temperatures under intermediate fractional cover conditions

  19. Soil respiration response to prescribed burning and thinning in mixed-conifer and hardwood forests

    Science.gov (United States)

    Amy Concilio; Siyan Ma; Qinglin Li; James LeMoine; Jiquan Chen; Malcolm North; Daryl Moorhead; Randy Jensen

    2005-01-01

    The effects of management on soil carbon efflux in different ecosystems are still largely unknown yet crucial to both our understanding and management of global carbon flux. To compare the effects of common forest management practices on soil carbon cycling, we measured soil respiration rate (SRR) in a mixed-conifer and hardwood forest that had undergone various...

  20. Stability of embankments over cement deep soil mixing columns

    International Nuclear Information System (INIS)

    Morilla Moar, P.; Melentijevic, S.

    2014-01-01

    The deep soil mixing (DSM) is one of the ground improvement methods used for the construction of embankments over soft soils. DSM column-supported embankments are constructed over soft soils to accelerate its construction, improve embankment stability, increase bearing capacity and control of total and differential settlements. There are two traditional design methods, the Japanese (rigid columns) and the scandinavian (soft and semi-rigid columns). Based on Laboratory analysis and numerical analysis these traditional approaches have been questioned by several authors due to its overestimation of the embankment stability considering that the most common failures types are not assumed. This paper presents a brief review of traditional design methods for embankments on DSM columns constructed in soft soils, studies carried out determine the most likely failure types of DSM columns, methods to decrease the overestimation when using limit equilibrium methods and numerical analysis methods that permit detect appropriate failure modes in DSM columns. Finally a case study was assessed using both limited equilibrium and finite element methods which confirmed the overestimation in the factors of safety on embankment stability over DSM columns. (Author)

  1. Implications of soil mixing for NAPL source zone remediation: Column studies and modeling of field-scale systems.

    Science.gov (United States)

    Olson, Mitchell R; Sale, Tom C

    2015-01-01

    Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (>96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to >99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Fixation of petroleum contaminated soils via cold-mix asphalt for use as a liner

    International Nuclear Information System (INIS)

    Testa, S.M.; Patton, D.L.; Conca, J.L.

    1992-01-01

    This paper reports on several methodologies which are available for the remediation of petroleum hydrocarbon-affected soils (PHAS) including bioremediation vapor extraction, chemical fixation and direct disposal. A proven alternative for the fixation of petroleum-contaminated soils is via combination with cold-mix asphalt. One viable and creative use which is within the intent and spirit of current regulations is producing, in lieu of a landfill waste, an end-product for use as a cap, liner or other site-specific application. Consideration of certain factors including durability, aging, permeability and leachability suggests that cold-mix asphalt incorporation petroleum-contaminated soils will perform more than adequately under normal conditions for a long period of time - probably more than 1,000 years

  3. Biodegradation of Aged Residues of Atrazine and Alachlor in a Mix-Load Site Soil by Fungal Enzymes

    OpenAIRE

    Chirnside, Anastasia E. M.; Ritter, William F.; Radosevich, Mark

    2011-01-01

    Soils from bulk pesticide mixing and loading (mix-load) sites are often contaminated with a complex mixture of pesticides, herbicides, and other organic compounds used in pesticide formulations that limits the success of remediation efforts. Therefore, there is a need to find remediation strategies that can successfully clean up these mix-load site soils. This paper examined the degradation of atrazine (2-chloro-4-ethylamino-6-isopropylamino-S-triazine; AT) and alachlor (2-chloro- 2  , 6  -...

  4. EFFECT OF MULCH AND MIXED CROPPING GRASS - LEGUME AT SALINE SOIL ON GROWTH, FORAGE YIELD AND NUTRITIONAL QUALITY OF GUINEA GRASS

    Directory of Open Access Journals (Sweden)

    F. Kusmiyati

    2014-10-01

    Full Text Available The research was conducted to evaluate the effect of mulch and mixed cropping grass – legume atsaline soil on growth, forage yield and nutritional quality of guinea grass. Saline soil used in thisresearch was classified into strongly saline soil with low soil fertility. The research was arrranged inrandomized complete block design with 3 blocks. The treatments were : M1 = guinea grassmonoculture, without mulch; M2 = guinea grass monoculture, 3 ton/ha mulch; M3 = guinea grassmonoculture, 6 ton/ha mulch, M4 = mixed cropping grass with Sesbania grandiflora, without mulch;M5 = mixed cropping grass with Sesbania grandiflora, 3 ton/ha mulch; M6 = mixed cropping grass withSesbania grandiflora, 6 ton/ha mulch. Data were analyzed using analysis of variance, then followed byDuncan's Multiple Range Test. The highest soil moisture content was achieved at mixed cropping grasslegumewith 6 ton/ha of mulch. The effect of mulch at saline soil significantly increased plant growth,forage yield and nutritional quality of guinea grass. Application of 3 ton/ha mulch increased plantgrowth, forage yield and nutritional quality of guinea grass. Plant growth, forage yield and nutritionalquality of guinea grass were not affected by monoculture or mixed cropping with Sesbania at saline soil.

  5. Hydrological Design of Two Low-Impact Development Techniques in a Semi-Arid Climate Zone of Central Mexico

    Directory of Open Access Journals (Sweden)

    Liliana Lizárraga-Mendiola

    2017-07-01

    Full Text Available This paper deals with the design of a bioretention cell and an infiltration trench in a semi- arid micro watershed. The study area was analyzed by characteristics such as slope changes (S, direction and maximum length of the urban runoff (L, and soil use (runoff coefficient, Rc. The bioretention cell was designed by the calculation of variables such as drainage area (A, concentration time (Tc, rainfall intensity (i, maximum peak drained (Qmax, inlet and outlet runoff (Qa and Qout, respectively, temperature (T, evaporation (Ev, potential evapotranspiration (PEm, consumptive use (U for tolerant plants to semi-arid climates, and soil infiltration capacity (Inf. To design the infiltration trench, only Tc, Qmax, and i were taken into account. The results showed that the designed bioretention cell could retain between 5.37% and 2.25% of runoff volume. As the efficiency of the bioretention cell can be defined by the need for additional irrigation, our results showed that the cell is inefficient in some of the dry months (November and December, even in years characterized by abundant rainfall. Besides, it was shown that the designed infiltration trench could store or infiltrate the water from typical rain events. Based on these results, it is the implementation of more Low-Impact Development (LID for runoff management in the study area is recommended.

  6. Short-Term Effects of Mixed Species Fallows on Soil Organic Matter Build-Up in the Soil of Western Kenya

    International Nuclear Information System (INIS)

    Ndufa, J.K; Candish, D.

    2007-01-01

    The rotations of crops with Nitrogen fixing legumes in improved fallows have become central agroforestry technology for soil fertility replenishments in smallholder farms because of high cost of inorganic fertilizers. The choice of the fallow species is important because the quality of residue incorporated into the soil determines it's distribution to soil organic matter (SOM) and nitrogen (N) release. High quality residues (high N content, low lignin and polyphenols) may decompose rapidly and it's unlikely to release N in synchrony with crop demand. In contrast, residues with wide C- to- N ratio, high lignin and high polyphenols may lead to long period of N immobilization and long term build up of SOM. Field experiments were conducted on farmers' fields on a Kandiudalfic eutrudox soil in Western Kenya to determine the fate of 1 5 N labelled residues in soil. Maize recovered significantly less N from single calliandra residue treatment (3 to 6%). About 70% of the residue N recovered in a mize was contained in the maize grain yield. In long rains 2000, there were no significant differences in residue-N recovery among the different single mixed residue treatment. The percentage 1 5N recovery of residues N by maize was significantly correlated with maize grain yield. At the end of short rains 1999, legume-15N recovery from 0 to 15 cm depth ranged from 30 to 80 % and was significantly higher for calliandra both in single and mixed treatment. 15N distribution in particle size fraction showed that most calliandra N was found in >20 um fraction but N from sesbania and macroptilium was mostly in the 20 um fraction. The high recovery of N of calliandra in the soil confirms the high contribution of polyphenol rich residues to soil organic matter build up

  7. Absorption and utilization of fertilizer-N and soil-N with mixed application of straw and urea by rice

    International Nuclear Information System (INIS)

    Zhang Xinwei; Liu Feng; Ye Shuya; Zhu Hongbin; Ye Chengxin

    1996-01-01

    The nitrogen absorption of mixed application of straw and urea by rice was studied by using 15 N isotope tracing technique. The results show that the sole application of straw would result in biological immobilization of available soil N. The insufficient N supply was the limiting factor for rice tiller and spikelets development. Mixed use of straw and urea obviously improved nitrogen supply from both fertilizer and soil, which in turn, promoted the yield of growing rice and increased the soil fertility and productivity of later crop

  8. Biodegradation of Aged Residues of Atrazine and Alachlor in a Mix-Load Site Soil by Fungal Enzymes

    Directory of Open Access Journals (Sweden)

    Anastasia E. M. Chirnside

    2011-01-01

    Full Text Available Soils from bulk pesticide mixing and loading (mix-load sites are often contaminated with a complex mixture of pesticides, herbicides, and other organic compounds used in pesticide formulations that limits the success of remediation efforts. Therefore, there is a need to find remediation strategies that can successfully clean up these mix-load site soils. This paper examined the degradation of atrazine (2-chloro-4-ethylamino-6-isopropylamino-S-triazine; AT and alachlor (2-chloro-2, 6-diethyl-N-[methoxymethyl]-acetanilide in contaminated mix-load site soil utilizing an extracellular fungal enzyme solution derived from the white rot fungus, Phanerochaete chrysosporium, grown in a packed bed bioreactor. Thirty-two percent of AT and 54% of AL were transformed in the biometers. The pseudo first-order rate constant for AT and AL biodegradation was 0.0882 d−1 and 0.2504 d−1, respectively. The half-life (1/2 for AT and AL was 8.0 and 3.0 days, respectively. Compared to AT, the initial disappearance of AL proceeded at a faster rate and resulted in a greater amount of AL transformed. Based on the net Co2 evolved from the biometers, about 4% of the AT and AL initially present in the soil was completely mineralized.

  9. Comparison of an ability to degrade MTBE between mixed culture and monoculture isolated from gasoline contaminated soil

    Directory of Open Access Journals (Sweden)

    Wanpen Virojanakud

    2004-02-01

    Full Text Available Methyl tertiary butyl ether (MTBE is an oxygenated compound used to enhance the octane index of gasoline and replace lead in gasoline. MTBE can reduce air pollution but causes water pollution due to its high water solubility and low sorption to soil and thus can easily contaminate the environment. Biodegradation is one of the promising techniques to reduce MTBE contaminated in the environment and MTBE degrader was proposed as an efficient method used to degrade MTBE. In this study, MTBE degraders were isolated from gasoline contaminated soil and then were evaluated with the hypothesis that MTBE degraders could improve biodegradation of MTBE in soil and mixed culture could degrade MTBE more rapidly than monoculture. Gasoline contaminated soil samples were taken from retail gas stations and a motorcycle repair shop in Khon Kaen University. Isolation of MTBE degrader was conducted by using Basal Salt Medium (BSM containing 200 mg/L of MTBE as a carbon source. Mixed culture of MTBE degrader was successfully isolated under aerobic condition. Morphology study was conducted by streaking isolated mixed culture in solid medium, agar slant and identifying the cells shape under a microscope. It was found that this mixed culture was a gram negative bacteria with 7 different isolates. A comparison of the ability to degrade MTBE between mixed culture and monoculture was investigated in BSM containing 100 mg/L of MTBE. The results indicated that a mixed culture degraded MTBE more rapidly than monoculture i.e. 20% within 14 days. Monoculture, J4 and J7, were the most rapid MTBE degraders among the other monocultures in which they degraded 14% of MTBE in 14 days while monoculture J15 could degrade only 1% of MTBE.This preliminary result suggests that mixed cultures degrade MTBE more efficiently than monoculture.

  10. Use of deep soil mixing as an alternate verticle barrier to slurry walls

    International Nuclear Information System (INIS)

    Miller, A.D.

    1997-01-01

    Slurry walls have become an accepted subsurface remediation technique to contain contaminated zones. However, situations develop where conventional slurry wall excavation techniques are not suitable. The use of conventional containment wall construction methods may involve removal and disposal of contaminated soils, stability concerns and the risk of open excavations. For these reasons, other installation techniques have received further consideration. Deep Soil Mixing (DSM) has emerged as a viable alternative to conventional slurry wall techniques. In situations dictating limited soil removal for contamination or stability concerns, or where space is a limitation, DSM can be used for installation of the barrier. Proper installation of a DSM wall requires sufficient monitoring and sampling to evaluate the continuity, mixing effectiveness, permeability and key into the confining layer. This paper describes a case study where DSM was used to cross major highways to avoid open excavation, and along slopes to reduce stability concerns. The DSM barrier was tied to an existing conventional slurry wall that had been installed in more stable areas without highway traffic

  11. Biophysical controls on soil respiration in the dominant patch types of an old-growth, mixed-conifer forest

    Science.gov (United States)

    Siyan Ma; Jiquan Chen; John R. Butnor; Malcolm North; Eugénie S. Euskirchen; Brian Oakley

    2005-01-01

    Little is known about biophysical controls on soil respiration in California's Sierra Nevada old-growth, mixed-conifer forests. Using portable and automated soil respiration sampling units, we measured soil respiration rate (SRR) in three dominant patch types: closed canopy (CC), ceanothus-dominated patches (CECO), and open canopy (OC). SRR varied significantly...

  12. Designing chemical soil characterization programs for mixed waste sites

    International Nuclear Information System (INIS)

    Meyers, K.A. Jr.

    1989-01-01

    The Weldon Spring Site Remedial Action Project is a remedial action effort funded by the U.S. Department of Energy. The Weldon Spring Site, a former uranium processing facility, is located in east-central Missouri on a portion of a former ordnance works facility which produced trinitrotoluene during World War II. As a result of both uranium and ordnance production, the soils have become both radiologically and chemically contaminated. As a part of site characterization efforts in support of the environmental documentation process, a chemical soil characterization program was developed. This program consisted of biased and unbiased sampling program which maximized areal coverage, provided a statistically sound data base and maintained cost effectiveness. This paper discusses how the general rationale and processes used at the Weldon Spring Site can be applied to other mixed and hazardous waste sites

  13. Global W`o'rming and Darwin Revisited: Quantifying Soil Mixing Rates by Non-native Earthworms in Fennoscandian Boreal and Arctic Ecosystems

    Science.gov (United States)

    Wackett, A. A.; Yoo, K.; Cameron, E. K.; Olid, C.; Klaminder, J.

    2017-12-01

    Fennoscandian boreal and arctic ecosystems represent some of the most pristine environments in Europe and store sizeable quantities of soil carbon. Both ecosystems may have evolved without native earthworms since the last glaciation, but are now increasingly subject to arrivals of novel geoengineering earthworm species due to human activities. As a result, invaded areas are devoid of the typical thick organic horizon present in earthworm free forest soils and instead contain carbon-rich mineral (A-horizon) soils at the surface. How rapidly this transition occurs and how it affects the fate of soil organic carbon (SOC) pools is not well known. In this study, we quantify the rates at which earthworm-mediated mixing of forest soils proceeds in these formerly glaciated landscapes. We infer soil mass fluxes using the vertical distribution of 210Pb in soils from Fennoscandia (N=4) and North America (N=1) and quantify annual mixing velocities as well as vertical fluxes of organic and mineral matter throughout the upper soil profiles. Across the sites, mixing velocities generally increase with increasing earthworm biomass and functional group diversity, and our annual mixing rates closely align with those predicted by Darwin for earthworm-engineered ecosystems in the UK 130 years earlier. Reduction of the O-horizon is concomitant with a decrease in surface SOC contents. However, we observe minimal changes to SOC inventories with earthworm invasion across the sites, reflecting the upward translocation of mineral soil and accompanying increase in soil bulk densities. Thus, the reduction or depletion of organic horizon by exotic earthworms does not necessarily involve loss of SOC via earthworm-accelerated decomposition, but is rather compensated for by physical mixing of organic matter and minerals, which may facilitate stabilizing organo-mineral interactions. This work constitutes an important step to elucidate how non-native earthworms impact SOC inventories and potentially

  14. In-situ stabilization of mixed waste contaminated soil

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Cline, S.R.; Gilliam, T.M.; Conner, J.R.

    1993-01-01

    A full-scale field demonstration was conducted to evaluate in for stabilizing an inactive RCRA land treatment site at a DOE facility in Ohio. Subsurface silt and clay deposits were contaminated principally with up to 500 mg/kg of trichloroethylene and other halocarbons, but also trace to low levels of Pb, Cr, 235 U, and 99 Tc. In situ solidification was studied in three, 3.1 m diameter by 4.6 m deep columns. During mixing, a cement-based grout was injected and any missions from the mixed region were captured in a shroud and treated by filtration and carbon adsorption. During in situ processing, operation and performance parameters were measured, and soil cores were obtained from a solidified column 15 months later. Despite previous site-specific treatability experience, there were difficulties in selecting a grout with the requisite treatment agents amenable to subsurface injection and at a volume adequate for distribution throughout the mixed region while minimizing volume expansion. observations during the demonstration revealed that in situ solidification was rapidly accomplished (e.g., >90 m 3 /d) with limited emissions of volatile organics (i.e., -6 cm/s vs. 10 -8 cm/s). Leaching tests performed on the treated samples revealed non-detectable to acceptably low concentrations of all target contaminants

  15. Effects of thinning intensities on soil infiltration and water storage capacity in a Chinese pine-oak mixed forest.

    Science.gov (United States)

    Chen, Lili; Yuan, Zhiyou; Shao, Hongbo; Wang, Dexiang; Mu, Xingmin

    2014-01-01

    Thinning is a crucial practice in the forest ecosystem management. The soil infiltration rate and water storage capacity of pine-oak mixed forest under three different thinning intensity treatments (15%, 30%, and 60%) were studied in Qinling Mountains of China. The thinning operations had a significant influence on soil infiltration rate and water storage capacity. The soil infiltration rate and water storage capacity in different thinning treatments followed the order of control (nonthinning): soil infiltration rate and water storage capacity of pine-oak mixed forest in Qinling Mountains. The soil initial infiltration rate, stable infiltration rate, and average infiltration rate in thinning 30% treatment were significantly increased by 21.1%, 104.6%, and 60.9%, compared with the control. The soil maximal water storage capacity and noncapillary water storage capacity in thinning 30% treatment were significantly improved by 20.1% and 34.3% in contrast to the control. The soil infiltration rate and water storage capacity were significantly higher in the surface layer (0~20 cm) than in the deep layers (20~40 cm and 40~60 cm). We found that the soil property was closely related to soil infiltration rate and water storage capacity.

  16. In situ application of activated carbon and biochar to PCB-contaminated soil and the effects of mixing regime

    International Nuclear Information System (INIS)

    Denyes, Mackenzie J.; Rutter, Allison; Zeeb, Barbara A.

    2013-01-01

    The in situ use of carbon amendments such as activated carbon (AC) and biochar to minimize the bioavailability of organic contaminants is gaining in popularity. In the first in situ experiment conducted at a Canadian PCB-contaminated Brownfield site, GAC and two types of biochar were statistically equal at reducing PCB uptake into plants. PCB concentrations in Cucurbita pepo root tissue were reduced by 74%, 72% and 64%, with the addition of 2.8% GAC, Burt's biochar and BlueLeaf biochar, respectively. A complementary greenhouse study which included a bioaccumulation study of Eisenia fetida (earthworm), found mechanically mixing carbon amendments with PCB-contaminated soil (i.e. 24 h at 30 rpm) resulted in shoot, root and worm PCB concentrations 66%, 59% and 39% lower than in the manually mixed treatments (i.e. with a spade and bucket). Therefore, studies which mechanically mix carbon amendments with contaminated soil may over-estimate the short-term potential to reduce PCB bioavailability. Highlights: •Biochar and GAC reduced PCB uptake into plants and earthworms. •Biochar offered additional benefits, including increased plant and earthworm biomass. •BSAF reductions are greater when amendments are mechanically vs. manually mixed. •Mechanically mixing carbon amendments may over-estimate their remediation potential. -- In situ AC and biochar soil amendments perform equally well at reducing PCB uptake, however, laboratory-based mixing methods may exaggerate the sorptive capacities of both amendments

  17. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel: A preliminary report

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1988-12-01

    Tests of wind erosion were performed in a controlled-environment wind tunnel to support the development of natural-material protective barriers for long-term isolation of radioactive waste. Barrier performance standards currently being developed for internal and external barrier performance are expected to mandate a surface layer that is resistant to wind erosion. The purpose of this study was to initiate a series of tests to determine suitable soil and gravel mixtures for such a barrier and to test worst-case surface layer conditions under the influence of high wind speeds. Six mixed soil and gravel surfaces were prepared, weathered to represent natural wind-blown desert areas, and subjected to controlled wind erosion forces in a wind tunnel. The applied erosive forces, including surface shear forces, were characterized to provide a means of relating wind tunnel results with actual field conditions. Soil particle losses from the surfaces caused by suspension, saltation, and surface creep were monitored by aerosol sample probes and mass balance measurements. 23 refs., 22 figs., 3 tabs

  18. Effect of monospecific and mixed sea-buckthorn (Hippophae rhamnoides plantations on the structure and activity of soil microbial communities.

    Directory of Open Access Journals (Sweden)

    Xuan Yu

    Full Text Available This study aims to evaluate the effect of different afforestation models on soil microbial composition in the Loess Plateau in China. In particular, we determined soil physicochemical properties, enzyme activities, and microbial community structures in the top 0 cm to 10 cm soil underneath a pure Hippophae rhamnoides (SS stand and three mixed stands, namely, H. rhamnoides and Robinia pseucdoacacia (SC, H. rhamnoides and Pinus tabulaeformis (SY, and H. rhamnoides and Platycladus orientalis (SB. Results showed that total organic carbon (TOC, total nitrogen, and ammonium (NH4(+ contents were higher in SY and SB than in SS. The total microbial biomass, bacterial biomass, and Gram+ biomass of the three mixed stands were significantly higher than those of the pure stand. However, no significant difference was found in fungal biomass. Correlation analysis suggested that soil microbial communities are significantly and positively correlated with some chemical parameters of soil, such as TOC, total phosphorus, total potassium, available phosphorus, NH4(+ content, nitrate content (NH3(-, and the enzyme activities of urease, peroxidase, and phosphatase. Principal component analysis showed that the microbial community structures of SB and SS could clearly be discriminated from each other and from the others, whereas SY and SC were similar. In conclusion, tree species indirectly but significantly affect soil microbial communities and enzyme activities through soil physicochemical properties. In addition, mixing P. tabulaeformis or P. orientalis in H. rhamnoides plantations is a suitable afforestation model in the Loess Plateau, because of significant positive effects on soil nutrient conditions, microbial community, and enzyme activities over pure plantations.

  19. Experimental evaluation of compost leachates.

    Science.gov (United States)

    2015-09-01

    Compost is often used in raingardens, roadsides, and bioretention systems, not only because of : its beneficial properties on soil quality, but also because compost improves water infiltration and : retains stormwater contaminants. However, when comp...

  20. Soil Respiration Changes after Prescribed Fires in Spanish Black Pine (Pinus nigra Arn. ssp. salzmannii Monospecific and Mixed Forest Stands

    Directory of Open Access Journals (Sweden)

    Pedro Antonio Plaza-Álvarez

    2017-07-01

    Full Text Available Soil respiration is a major carbon pathway sensitive to environmental changes. Using prescribed burnings to reduce fuel accumulation and lower risks of large-scale wildfires has recently become more important. Prescribed burning can significantly alter the soil environment, but its effect in practice on soil respiration is not sufficiently understood. We evaluated the effects of prescribed burning on soil respiration before and after burning (May–July 2016. Prescribed burning was conducted in two natural pine areas by comparing a mixed stand of Pinus nigra Arn. ssp. salzmannii with Pinus pinaster Ait. to a pure stand of Pinus nigra Arn. ssp. salzmannii in the central Iberian Peninsula. Soil respiration was measured by an EGM-4 (Environmental Gas Monitor infrared gas analyser in both burned and unburned (control plots. Burnings were low-intensity, and slightly more energetic in the pure stand given its larger litter volume. Post-burning soil respiration followed a similar evolution to that in the control plots, but was greater in the pure stand burned zone and slightly lower in the burned plots in the mixed stand. No significant differences were found in any stand. Soil respiration significantly changed in temporal evolution due to increasing temperatures when summer began. We conclude that prescribed fire induces no changes in SR immediately after fire. This study helps understand how prescribed burnings can affect soil respiration in pure and mixed Spanish black pine forest stands.

  1. Albendazole versus combined pyrantel pamoate-mebendazole in the treatment of mixed infection of soil-transmitted helminthiasis

    Directory of Open Access Journals (Sweden)

    Tiangsa Sembiring

    2006-12-01

    Full Text Available Background Soil transmitted helminthiasis is still highly prevalent in Indonesia, especially in rural area and among poor socio-economic population. Helminthiasis is frequently found as a single or mixed infection. It is difficult to get a medication with better efficacy, low cost, and simple administration for all types of worms. Objective The aim of this sudy was to compare the effectiveness of albendazole and pyrantel pamoate-mebendazole combination in treating soil-transmitted helminthiasis. Methods A randomized clinical trial was perionned in September until November 1995 on students of a primary school in Tanjung Anom Village whose stool examinations showed mixed infection of helminthiasis. Subjects were randomly allocated into two groups. The A group was treated with 400 mg oral albendazole as a single dose, while the B group was treated with the combination of pyrantel pamoate 10 mg/kg body weight as a single dose and mebendazole 100 mg twice a day for three consecutive days. Cure was considered if in the stool examination, no wonn eggs were found. Statistical analysis was periormed by Chi-square test with confidence interval of 95% and p value of < 0.05 was considered significant. Results Out of 541 children, mixed infection of soil-transmitted helminthiasis was found in 374 children (69%. Three hundreds sixty-six children completed the study, consisted of 182 children in group A and 184 in group B. At 3 weeks after treatment, the cure rate in the A group was significantly better compared to that in B group. Conclusions Albendazole was more effective than the combination of pyrantel pamoate - mebendazole for treating mixed infection of soil-transmitted helminthiasis. Besides the administration was simpler and caused minimal side effect.

  2. Soil properties in 35 y old pine and hardwood plantations after conversion from mixed pine-hardwood forest

    Science.gov (United States)

    D. Andrew Scott; Michael G. Messina

    2009-01-01

    Past management practices have changed much of the native mixed pine-hardwood forests on upland alluvial terraces of the western Gulf Coastal Plain to either pine monocultures or hardwood (angiosperm) stands. Changes in dominant tree species can alter soil chemical, biological, and physical properties and processes, thereby changing soil attributes, and ultimately,...

  3. Migration of 137Cs in soils and its transfer to mushrooms and vascular plants in mixed forest

    International Nuclear Information System (INIS)

    Pietrzak-Flis, Z.; Radwan, I.; Rosiak, L.; Wirth, E.

    1996-01-01

    Migration of 137 Cs in the podzol soil and transfer of 137 Cs, 134 Cs and potassium from the soil to mushrooms and vascular plants in the mixed forest at the Kampinos National Park near Warsaw, Poland, was studied in 1994 at locations lying about 6 km apart. In the soil at both locations, up to about 40% of 137 Cs was present in the Of horizon and slightly less in the mixed organic/mineral OhAh horizon. The data indicate a slow vertical migration of radiocesium. Total content of 137 Cs in the soils was 3000 Bq m -2 . The enrichment of the Of horizon in 137 Cs from the decomposing mushroom fruitbodies was evaluated and it was shown that it can significantly contribute to the horizontal displacement of radiocesium. Transfer factors (TF) for mushrooms and Calluna were calculated using the concentrations of 137 Cs in the Of horizons, whereas for grass, Vaccinium myrtillus and Polypodium vulgare TF were calculated using a weighted mean concentration of 137 Cs in the nutritive horizons with organic matter as a weight

  4. The relationships between microbiological attributes and soil and litter quality in pure and mixed stands of native tree species in southeastern Bahia, Brazil.

    Science.gov (United States)

    Gama-Rodrigues, Emanuela F; Gama-Rodrigues, Antonio Carlos; Barros, Nairam F; Moço, Maria Kellen S

    2011-11-01

    This study was conducted to link soil and litter microbial biomass and activity with soil and litter quality in the surface layer for different pure and mixed stands of native tree species in southeastern Bahia, Brazil. The purpose of the study was to see how strongly the differences among species and stands affect the microbiological attributes of the soil and to identify how microbial processes can be influenced by soil and litter quality. Soil and litter samples were collected from six pure and mixed stands of six hardwood species (Peltogyne angustifolia, Centrolobium robustum, Arapatiella psilophylla, Sclerolobium chrysophyllum, Cordia trichotoma, Macrolobium latifolium) native to the southeastern region of Bahia, Brazil. In plantations of native tree species in humid tropical regions, the immobilization efficiency of C and N by soil microbial biomass was strongly related to the chemical quality of the litter and to the organic matter quality of the soil. According to the variables analyzed, the mixed stand was similar to the natural forest and dissimilar to the pure stands. Litter microbial biomass represented a greater sink of C and N than soil microbial biomass and is an important contributor of resources to tropical soils having low C and N availability.

  5. Geoecohydrological mechanisms couple soil and leaf water dynamics and facilitate species coexistence in shallow soils of a tropical semiarid mixed forest.

    Science.gov (United States)

    Rodríguez-Robles, Ulises; Arredondo, J Tulio; Huber-Sannwald, Elisabeth; Vargas, Rodrigo

    2015-07-01

    Trees growing on shallow rocky soils must have exceptional adaptations when underlying weathered bedrock has no deep fractures for water storage. Under semiarid conditions, hydrology of shallow soils is expected to decouple from plant hydrology, as soils dry out as a result of rapid evaporation and competition for water increases between coexisting tree species. Gas exchange and plant-water relations were monitored for 15 months for Pinus cembroides and Quercus potosina tree species in a tropical semiarid forest growing on c. 20-cm-deep soils over impermeable volcanic bedrock. Soil and leaf water potential maintained a relatively constant offset throughout the year in spite of high intra-annual fluctuations reaching up to 5 MPa. Thus, hydrology of shallow soils did not decouple from hydrology of trees even in the driest period. A combination of redistribution mechanisms of water stored in weathered bedrock and hypodermic flow accessible to oak provided the source of water supply to shallow soils, where most of the actively growing roots occurred. This study demonstrates a unique geoecohydrological mechanism that maintains a tightly coupled hydrology between shallow rocky soils and trees, as well as species coexistence in this mixed forest, where oak facilitates water access to pine. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Enhanced desorption of PCB and trace metal elements (Pb and Cu) from contaminated soils by saponin and EDDS mixed solution

    International Nuclear Information System (INIS)

    Cao, Menghua; Hu, Yuan; Sun, Qian; Wang, Linling; Chen, Jing; Lu, Xiaohua

    2013-01-01

    This study investigated the simultaneous desorption of trace metal elements and polychlorinated biphenyl (PCB) from mixed contaminated soil with a novel combination of biosurfactant saponin and biodegradable chelant S,S-ethylenediaminedisuccinic acid (EDDS). Results showed significant promotion and synergy on Pb, Cu and PCB desorption with the mixed solution of saponin and EDDS. The maximal desorption of Pb, Cu and PCB were achieved 99.8%, 85.7% and 45.7%, respectively, by addition of 10 mM EDDS and 3000 mg L −1 saponin. The marked interaction between EDDS and saponin contributed to the synergy performance. The sorption of EDDS and saponin on soil was inhibited by each other. EDDS could enhance the complexation of metals with the saponin micelles and the solubilization capabilities of saponin micelles for PCB. Our study suggests the combination of saponin and EDDS would be a promising alternative for remediation of co-contaminated soils caused by hydrophobic organic compounds (HOCs) and metals. -- Highlights: ► A novel combination of biosurfactant saponin and EDDS was used to simultaneously remove mixed contaminations from soil. ► Significant synergy on Pb, Cu and PCB desorption were achieved with EDDS/saponin. ► The marked interaction between EDDS and saponin contributed to the synergy performance. -- Significant synergistic effect on Pb, Cu and PCB desorption were achieved with the mixed solution of saponin and EDDS

  7. Selection of innovative technologies for the remediation of soils contaminated with radioactive and mixed wastes

    International Nuclear Information System (INIS)

    Steude, J.; Tucker, B.

    1991-01-01

    The remediation of sites containing radioactive and mixed wastes is in a period of rapid growth. The state of the art of remediation is progressing to handle the shortcomings of conventional pump and treat or disposal technologies. The objective of this paper is to review the status of selected innovative technologies which treat soils contaminated with radioactive and mixed waste. Technologies are generally classified as innovative if they are fully developed, but lack sufficient cost or performance data for comparison with conventional technologies. The Environmental Protection Agency recommends inclusion of innovative technologies in the RI/FS screening process if there is reason to believe that they would offer advantages in performance, implementability, cost, etc. This paper serves as a compilation of the pertinent information necessary to gain an overview of the selected innovative technologies to aid in the RI/F'S screening process. The innovative technologies selected for evaluation are listed below. Bioremediation, although innovative, was not included due to the combination of the vast amount of literature on this subject and the limited scope of this project. 1. Soil washing and flushing; 2. Low temperature thermal treatment; 3. Electrokinetics; 4. Infrared incineration; 5. Ultrasound; 6. In situ vitrification; 7. Soil vapor extraction; 8. Plasma torch slagging; 9. In situ hot air/steam extraction; 10. Cyclone reactor treatment; 11. In situ radio frequency; 12. Vegetative radionuclide uptake; and 13. In situ soil heating. The information provided on each technology includes a technical description, status, summary of results including types of contaminants and soils treated, technical effectiveness, feasibility and estimated cost

  8. Effects of Thinning Intensities on Soil Infiltration and Water Storage Capacity in a Chinese Pine-Oak Mixed Forest

    OpenAIRE

    Chen, Lili; Yuan, Zhiyou; Shao, Hongbo; Wang, Dexiang; Mu, Xingmin

    2014-01-01

    Thinning is a crucial practice in the forest ecosystem management. The soil infiltration rate and water storage capacity of pine-oak mixed forest under three different thinning intensity treatments (15%, 30%, and 60%) were studied in Qinling Mountains of China. The thinning operations had a significant influence on soil infiltration rate and water storage capacity. The soil infiltration rate and water storage capacity in different thinning treatments followed the order of control (nonthinning):

  9. Influence of litter diversity on dissolved organic matter release and soil carbon formation in a mixed beech forest.

    Science.gov (United States)

    Scheibe, Andrea; Gleixner, Gerd

    2014-01-01

    We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow.

  10. Comparative metagenomic analysis of PAH degradation in soil by a mixed microbial consortium.

    Science.gov (United States)

    Zafra, German; Taylor, Todd D; Absalón, Angel E; Cortés-Espinosa, Diana V

    2016-11-15

    In this study, we used a taxonomic and functional metagenomic approach to analyze some of the effects (e.g. displacement, permanence, disappearance) produced between native microbiota and a previously constructed Polycyclic Aromatic Hydrocarbon (PAH)-degrading microbial consortium during the bioremediation process of a soil polluted with PAHs. Bioaugmentation with a fungal-bacterial consortium and biostimulation of native microbiota using corn stover as texturizer produced appreciable changes in the microbial diversity of polluted soils, shifting native microbial communities in favor of degrading specific populations. Functional metagenomics showed changes in gene abundance suggesting a bias towards aromatic hydrocarbon and intermediary degradation pathways, which greatly favored PAH mineralization. In contrast, pathways favoring the formation of toxic intermediates such as cytochrome P450-mediated reactions were found to be significantly reduced in bioaugmented soils. PAH biodegradation in soil using the microbial consortium was faster and reached higher degradation values (84% after 30 d) as a result of an increased co-metabolic degradation when compared with other mixed microbial consortia. The main differences between inoculated and non-inoculated soils were observed in aromatic ring-hydroxylating dioxygenases, laccase, protocatechuate, salicylate and benzoate-degrading enzyme genes. Based on our results, we propose that several concurrent metabolic pathways are taking place in soils during PAH degradation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Evaluation of a Linear Mixing Model to Retrieve Soil and Vegetation Temperatures of Land Targets

    NARCIS (Netherlands)

    Yang, J.; Jia, L.; Cui, Y.; Zhou, J.; Menenti, M.

    2014-01-01

    A simple linear mixing model of heterogeneous soil-vegetation system and retrieval of component temperatures from directional remote sensing measurements by inverting this model is evaluated in this paper using observations by a thermal camera. The thermal camera was used to obtain multi-angular TIR

  12. The effects of green infrastructure on exceedance of critical shear stress in Blunn Creek watershed

    Science.gov (United States)

    Shannak, Sa'd.

    2017-10-01

    Green infrastructure (GI) has attracted city planners and watershed management professional as a new approach to control urban stormwater runoff. Several regulatory enforcements of GI implementation created an urgent need for quantitative information on GI practice effectiveness, namely for sediment and stream erosion. This study aims at investigating the capability and performance of GI in reducing stream bank erosion in the Blackland Prairie ecosystem. To achieve the goal of this study, we developed a methodology to represent two types of GI (bioretention and permeable pavement) into the Soil Water Assessment Tool, we also evaluated the shear stress and excess shear stress for stream flows in conjunction with different levels of adoption of GI, and estimated potential stream bank erosion for different median soil particle sizes using real and design storms. The results provided various configurations of GI schemes in reducing the negative impact of urban stormwater runoff on stream banks. Results showed that combining permeable pavement and bioretention resulted in the greatest reduction in runoff volumes, peak flows, and excess shear stress under both real and design storms. Bioretention as a stand-alone resulted in the second greatest reduction, while the installation of detention pond only had the least reduction percentages. Lastly, results showed that the soil particle with median diameter equals to 64 mm (small cobbles) had the least excess shear stress across all design storms, while 0.5 mm (medium sand) soil particle size had the largest magnitude of excess shear stress. The current study provides several insights into a watershed scale for GI planning and watershed management to effectively reduce the negative impact of urban stormwater runoff and control streambank erosion.

  13. Study of the Bioremediation of Atrazine under Variable Carbon and Nitrogen Sources by Mixed Bacterial Consortium Isolated from Corn Field Soil in Fars Province of Iran

    Science.gov (United States)

    Nasseri, Simin; Hashemi, Hassan

    2013-01-01

    Atrazine herbicide that is widely used in corn production is frequently detected in water resources. The main objectives of this research were focused on assessing the effects of carbon and nitrogen sources on atrazine biodegradation by mixed bacterial consortium and by evaluating the feasibility of using mixed bacterial consortium in soil culture. Shiraz corn field soil with a long history of atrazine application has been explored for their potential of atrazine biodegradation. The influence of different carbon compounds and the effect of nitrogen sources and a different pH (5.5–8.5) on atrazine removal efficiency by mixed bacterial consortium in liquid culture were investigated. Sodium citrate and sucrose had the highest atrazine biodegradation rate (87.22%) among different carbon sources. Atrazine biodegradation rate decreased more quickly by the addition of urea (26.76%) compared to ammonium nitrate. Based on the data obtained in this study, pH of 7.0 is optimum for atrazine biodegradation. After 30 days of incubation, the percent of atrazine reduction rates were significantly enhanced in the inoculated soils (60.5%) as compared to uninoculated control soils (12%) at the soil moisture content of 25%. In conclusion, bioaugmentation of soil with mixed bacterial consortium may enhance the rate of atrazine degradation in a highly polluted soil. PMID:23533452

  14. Effect of integrating straw into agricultural soils on soil infiltration and evaporation.

    Science.gov (United States)

    Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong

    2012-01-01

    Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China.

  15. Forage production and N2 fixation in mixed cropping of saltbush and shrubby medic grown on a salt affected soil

    International Nuclear Information System (INIS)

    Kurdali, F.

    2008-11-01

    Two experiments were conducted to evaluate dry matter, nitrogen yield, N 2 fixation (Ndfa) and soil N uptake in saltbush (Atriplex halimus) and shrubby medic (Medicago arborea) grown either solely or in mixture on a salt affected soil, using 15 N tracer techniques. In a pot experiment, the combined dry matter yield of both species was considerably higher than that of solely grown shrubs. The inclusion of saltbush in the mixed cropping system decreased soil N uptake by shrubby medic and enhanced %Ndfa without affecting amounts of N 2 fixed. Under field conditions, estimated values of %Ndfa via δ 15 N natural abundance were relatively similar to those of the pot experiment using 15 N enrichment method. It can be concluded that the use of mixed cropping system of shrubby medic and saltbush could be a promising bio-saline agricultural approach to utilize salt affected soils in terms of forage yield and N 2 -fixation. (Author)

  16. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium

    Science.gov (United States)

    de Andrade, Pedro Avelino Maia; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira

    2017-01-01

    Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil. PMID:28686690

  17. Source zone remediation by ZVI-clay soil-mixing: Reduction of tetrachloroethene mass and mass discharge at a Danish DNAPL site

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Lange, Ida Vedel; Binning, Philip John

    2012-01-01

    The presence of chlorinated solvent source zones in the subsurface pose a continuous threat to groundwater quality. The remediation of Dense Non-Aqueous Phase Liquid (DNAPL) sites is especially challenging and the development of innovative remediation technologies is needed. Zero-valent iron (ZVI......) technologies have proven effective for remediation of chlorinated compounds. ZVI-Clay soil-mixing is a new remediation technology, which combines abiotic degradation (via ZVI addition) and immobilization (via soil-mixing and clay addition), whereby a great potential for reduction of both contaminant mass....... The concentrations of chlorinated ethenes were monitored via soil sampling at the source zone and groundwater sampling at a control plane with multilevel samplers covering the entire contaminated plume down-gradient (3 m) of the source zone. The results showed a significant mass depletion of PCE (2-3 orders...

  18. Study of the Bioremediation of Atrazine under Variable Carbon and Nitrogen Sources by Mixed Bacterial Consortium Isolated from Corn Field Soil in Fars Province of Iran

    Directory of Open Access Journals (Sweden)

    Mansooreh Dehghani

    2013-01-01

    Full Text Available Atrazine herbicide that is widely used in corn production is frequently detected in water resources. The main objectives of this research were focused on assessing the effects of carbon and nitrogen sources on atrazine biodegradation by mixed bacterial consortium and by evaluating the feasibility of using mixed bacterial consortium in soil culture. Shiraz corn field soil with a long history of atrazine application has been explored for their potential of atrazine biodegradation. The influence of different carbon compounds and the effect of nitrogen sources and a different pH (5.5–8.5 on atrazine removal efficiency by mixed bacterial consortium in liquid culture were investigated. Sodium citrate and sucrose had the highest atrazine biodegradation rate (87.22% among different carbon sources. Atrazine biodegradation rate decreased more quickly by the addition of urea (26.76% compared to ammonium nitrate. Based on the data obtained in this study, pH of 7.0 is optimum for atrazine biodegradation. After 30 days of incubation, the percent of atrazine reduction rates were significantly enhanced in the inoculated soils (60.5% as compared to uninoculated control soils (12% at the soil moisture content of 25%. In conclusion, bioaugmentation of soil with mixed bacterial consortium may enhance the rate of atrazine degradation in a highly polluted soil.

  19. Power and limitation of soil properties as predictors of rangeland health and ecosystem functioning in a Northern mixed-grass prairie[Abstract

    Science.gov (United States)

    Soil properties are thought to affect rangeland ecosystem functioning (e.g. primary productivity, hydrology), and thus soil variables that are consistently correlated with key ecosystem functions may be general indicators of rangeland health. We summarize results from several studies in mixed-grass...

  20. In situ vitrification of a mixed-waste contaminated soil site: The 116-B-6A crib at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Luey, J.; Koegler, S.S.; Kuhn, W.L.; Lowery, P.S.; Winkelman, R.G.

    1992-09-01

    The first large-scale mixed-waste test of in situ vitrification (ISV) has been completed. The large-scale test was conducted at an actual contaminated soil site, the 116-B-6A crib, on the Department of Energy's Hanford Site. The large-scale test was a demonstration of the ISV technology and not an interim action for the 116-B-6A crib. This demonstration has provided technical data to evaluate the ISV process for its potential in the final disposition of mixed-waste contaminated soil sites at Hanford. Because of the test's successful completion. technical data on the vitrified soil are available on how well the process incorporates transuranics and heavy metals into the waste form. how well the form resists leaching of transuranics and heavy metals. how well the process handles sites with high combustible loadings, and the important site parameters which may affect the achievable process depth. This report describes the 116-B-6A crib site, the objectives of the ISV demonstration, the results in terms of the objectives, and the overall process performance.

  1. Reliance on shallow soil water in a mixed-hardwood forest in central Pennsylvania.

    Science.gov (United States)

    Gaines, Katie P; Stanley, Jane W; Meinzer, Frederick C; McCulloh, Katherine A; Woodruff, David R; Chen, Weile; Adams, Thomas S; Lin, Henry; Eissenstat, David M

    2016-04-01

    We investigated depth of water uptake of trees on shale-derived soils in order to assess the importance of roots over a meter deep as a driver of water use in a central Pennsylvania catchment. This information is not only needed to improve basic understanding of water use in these forests but also to improve descriptions of root function at depth in hydrologic process models. The study took place at the Susquehanna Shale Hills Critical Zone Observatory in central Pennsylvania. We asked two main questions: (i) Do trees in a mixed-hardwood, humid temperate forest in a central Pennsylvania catchment rely on deep roots for water during dry portions of the growing season? (ii) What is the role of tree genus, size, soil depth and hillslope position on the depth of water extraction by trees? Based on multiple lines of evidence, including stable isotope natural abundance, sap flux and soil moisture depletion patterns with depth, the majority of water uptake during the dry part of the growing season occurred, on average, at less than ∼60 cm soil depth throughout the catchment. While there were some trends in depth of water uptake related to genus, tree size and soil depth, water uptake was more uniformly shallow than we expected. Our results suggest that these types of forests may rely considerably on water sources that are quite shallow, even in the drier parts of the growing season. © The Author 2015. Published by Oxford University Press.

  2. Analysis of instantaneous profile test data from soils near the Mixed Waste Landfill, Technical Area 3, Sandia National Laboratories/New Mexico

    International Nuclear Information System (INIS)

    Goering, T.J.; McVey, M.D.; Strong, W.R.; Peace, J.L.

    1996-02-01

    This paper presents the results of an instantaneous profile test conducted near the Mixed Waste Landfill at Sandia National Laboratories/New Mexico. The purpose of the test was to measure the unsaturated hydraulic properties of soils near the Mixed Waste Landfill, including the relations between hydraulic conductivity, moisture content, and soil water tension. A 4.7 meter by 4.7 meter plot was saturated with water to a depth of 2 meters, and the wetting and drying responses of the vertical profile were observed. These data were analyzed to obtain in situ measurements of the unsaturated hydraulic properties

  3. Degradation of soil cyanide by single and mixed cultures of Pseudomonas stutzeri and Bacillus subtilis.

    Science.gov (United States)

    Nwokoro, Ogbonnaya; Dibua, Marie Esther Uju

    2014-03-01

    The aim of this investigation was to study whether certain bacteria could be used for cyanide degradation in soil. The bacteria Pseudomonas stutzeri and Bacillus subtilis were selected based on their good growth in a minimal medium containing 0.8 mg mL-1 potassium cyanide (KCN). In this study we tested their ability to reduce cyanide levels in a medium containing 1.5 mg mL-1 of KCN. Although both microorganisms reduced cyanide levels, Pseudomonas stutzeri was the more effective test organism. Later on, the selected cultures were grown, diluted and their various cell concentrations were used individually and in combination to test their ability of cyanide degradation in soil samples collected around a cassava processing mill. Bacillus subtilis caused degradation of soil cyanide from 0.218 mg g-1 soil immediately with an inoculum concentration of 0.1 (OD600nm) to 0.072 mg g-1 soil after 10 days with an inoculum concentration of 0.6 (OD600nm) implying a 66.9 % reduction. Pseudomonas stutzeri cell concentration of 0.1 (OD600nm) decreased soil cyanide from 0.218 mg g-1 soil initially to 0.061 mg g-1 soil after 10 days with an inoculum concentration of 0.6 (OD600nm) (72 % reduction). The mixed culture of the two bacteria produced the best degradation of soil cyanide from 0.218 mg g-1 soil sample with a combined inoculum concentration of 0.1 (OD600nm) initially to 0.025 mg g-1 soil with a combined inoculum concentration of 0.6 (OD600nm) after 10 days incubation resulting in an 88.5 % degradation of soil cyanide. The analysed bacteria displayed high cyanide degradation potential and may be useful for efficient decontamination of cyanide contaminated sites.

  4. Aluminum-Based Water Treatment Residue Reuse for Phosphorus Removal

    Directory of Open Access Journals (Sweden)

    Lai Yoke Lee

    2015-04-01

    Full Text Available Aluminum-based water treatment residue (Al-WTR generated during the drinking water treatment process is a readily available recycled material with high phosphorus (P adsorption capacity. The P adsorption capacity of Al-WTR generated from Singapore’s water treatment plant was evaluated with reference to particle size range, adsorption pH and temperature. Column tests, with WTR amendments in sand with and without compost, were used to simulate the bioretention systems. The adsorption rate decreased with increasing WTR sizes. Highest P adsorption capacity, 15.57 mg PO43−-P/g WTR, was achieved using fine WTR particles (>50% particles at less than 0.30 mm. At pH 4, the contact time required to reduce effluent P concentration to below the detectable range was half compared with pH 7 and 9. The adsorption rate observed at 40 ± 2 °C was 21% higher compared with that at 30 ± 2 °C. Soil mixes amended with 10% WTR and compost were able to maintain consistently high (90% total phosphorus (TP removal efficiency at a TP load up to 6.45 g/m3. In contrast, TP removal efficiencies associated with columns without WTR amendment decreased to less than 45% as the TP load increased beyond 4.5 g/m3. The results showed that WTR application is beneficial for enhanced TP removal in bioretention systems.

  5. Petroleum contaminated soil in Oman: evaluation of bioremediation treatment and potential for reuse in hot asphalt mix concrete.

    Science.gov (United States)

    Jamrah, Ahmad; Al-Futaisi, Ahmed; Hassan, Hossam; Al-Oraimi, Salem

    2007-01-01

    This paper presents a study that aims at evaluating the leaching characteristics of petroleum contaminated soils as well as their application in hot mix asphalt concrete. Soil samples are environmentally characterized in terms of their total heavy metals and hydrocarbon compounds and leachability. The total petroleum hydrocarbon (TPH) present in the PCS before and after treatment was determined to be 6.8% and 5.3% by dry weight, indicating a reduction of 1% in the TPH of PCS due to the current treatment employed. Results of the total heavy metal analysis on soils indicate that the concentrations of heavy metals are lower when extraction of the soil samples is carried out using hexane in comparison to TCE. The results show that the clean soils present in the vicinity of contaminated sites contain heavy metals in the following decreasing order: nickel (Ni), followed by chromium (Cr), zinc (Zn), copper (Cu), lead (Pb), and vanadium (V). The current treatment practice employed for remediation of the contaminated soil reduces the concentrations of nickel and chromium, but increases the concentrations of all remaining heavy metals.

  6. Hydraulic Conductivity of Residual Soil-Cement Mix

    Science.gov (United States)

    Govindasamy, P.; Taha, M. R.

    2016-07-01

    In Malaysia, although there are several researches on engineering properties of residual soils, however study on the hydraulic conductivity properties of metasedimentary residual soils is still lacking. Construction of containment walls like slurry wall techniques can be achieved with hydraulic conductivity of approximately 5 x 10-7cm/sec. The objectives of the study were to determine the physical properties of metasedimentary residual soils and to determine the influence of 1%, 3%, 5% and 10% of cement on hydraulic conductivity parameters. The coefficient of hydraulic conductivity of the soil naturally and soil-cement mixtures were determined by using the falling head test. According to the test, the hydraulic conductivity of the original soil was 4.16 x 10-8 m/s. The value decreases to 3.89 x 10-8 m/s, 2.78 x 10-8 m/s then 6.83 x 10-9 m/s with the addition of 1%, 3% and 5% of cement additives, respectively. During the hydration process, cement hydrates is formed followed by the increase in pH value and Ca(OH)2 which will alter the modification of pores size and distribution. When the quantity of cement increases, the pores size decrease. But, the addition of 10% cement gives an increased hydraulic conductivity value to 2.78 x 10-8 m/s. With 10%, the pore size increase might due to flocculation and agglomeration reaction. The generated hydraulic conductivity values will indirectly become a guide in the preliminary soil cement stabilization to modify the properties of the soil to become more like the properties of a soft rock.1. Introduction

  7. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil.

    Science.gov (United States)

    Seshadri, B; Bolan, N S; Choppala, G; Kunhikrishnan, A; Sanderson, P; Wang, H; Currie, L D; Tsang, Daniel C W; Ok, Y S; Kim, G

    2017-10-01

    Shooting range soils contain mixed heavy metal contaminants including lead (Pb), cadmium (Cd), and zinc (Zn). Phosphate (P) compounds have been used to immobilize these metals, particularly Pb, thereby reducing their bioavailability. However, research on immobilization of Pb's co-contaminants showed the relative importance of soluble and insoluble P compounds, which is critical in evaluating the overall success of in situ stabilization practice in the sustainable remediation of mixed heavy metal contaminated soils. Soluble synthetic P fertilizer (diammonium phosphate; DAP) and reactive (Sechura; SPR) and unreactive (Christmas Island; CPR) natural phosphate rocks (PR) were tested for Cd, Pb and Zn immobilization and later their mobility and bioavailability in a shooting range soil. The addition of P compounds resulted in the immobilization of Cd, Pb and Zn by 1.56-76.2%, 3.21-83.56%, and 2.31-74.6%, respectively. The reactive SPR significantly reduced Cd, Pb and Zn leaching while soluble DAP increased their leachate concentrations. The SPR reduced the bioaccumulation of Cd, Pb and Zn in earthworms by 7.13-23.4% and 14.3-54.6% in comparison with earthworms in the DAP and control treatment, respectively. Bioaccessible Cd, Pb and Zn concentrations as determined using a simplified bioaccessibility extraction test showed higher long-term stability of P-immobilized Pb and Zn than Cd. The differential effect of P-induced immobilization between P compounds and metals is due to the variation in the solubility characteristics of P compounds and nature of metal phosphate compounds formed. Therefore, Pb and Zn immobilization by P compounds is an effective long-term remediation strategy for mixed heavy metal contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Examination of evaporative fraction diurnal behaviour using a soil-vegetation model coupled with a mixed-layer model

    Directory of Open Access Journals (Sweden)

    J.-P. Lhomme

    1999-01-01

    Full Text Available In many experimental conditions, the evaporative fraction, defined as the ratio between evaporation and available energy, has been found stable during daylight hours. This constancy is investigated over fully covering vegetation by means of a land surface scheme coupled with a mixed-layer model, which accounts for entrainment of overlying air. The evaporation rate follows the Penman-Monteith equation and the surface resistance is given by a Jarvis type parameterization involving solar radiation, saturation deficit and leaf water potential. The diurnal course of the evaporative fraction is examined, together with the influence of environmental factors (soil water availability, solar radiation input, wind velocity, saturation deficit above the well-mixed layer. In conditions of fair weather, the curves representing the diurnal course of the evaporative fraction have a typical concave-up shape. Around midday (solar time these curves appear as relatively constant, but always lower that the daytime mean value. Evaporative fraction decreases when soil water decreases or when solar energy increases. An increment of saturation deficit above the mixed-layer provokes only a slight increase of evaporative fraction, and wind velocity has almost no effect. The possibility of estimation daytime evaporation from daytime available energy multiplied by the evaporative fraction at a single time of the day is also investigated. It appears that it is possible to obtain fairly good estimates of daytime evaporation by choosing adequately the time of the measurement of the evaporative fraction. The central hours of the day, and preferably about 3 hr before or after noon, are the most appropriate to provide good estimates. The estimation appears also to be much better when soil water availability (or evaporation is high than when it is low.

  9. Construction of PAH-degrading mixed microbial consortia by induced selection in soil.

    Science.gov (United States)

    Zafra, German; Absalón, Ángel E; Anducho-Reyes, Miguel Ángel; Fernandez, Francisco J; Cortés-Espinosa, Diana V

    2017-04-01

    Bioremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soils through the biostimulation and bioaugmentation processes can be a strategy for the clean-up of oil spills and environmental accidents. In this work, an induced microbial selection method using PAH-polluted soils was successfully used to construct two microbial consortia exhibiting high degradation levels of low and high molecular weight PAHs. Six fungal and seven bacterial native strains were used to construct mixed consortia with the ability to tolerate high amounts of phenanthrene (Phe), pyrene (Pyr) and benzo(a)pyrene (BaP) and utilize these compounds as a sole carbon source. In addition, we used two engineered PAH-degrading fungal strains producing heterologous ligninolytic enzymes. After a previous selection using microbial antagonism tests, the selection was performed in microcosm systems and monitored using PCR-DGGE, CO 2 evolution and PAH quantitation. The resulting consortia (i.e., C1 and C2) were able to degrade up to 92% of Phe, 64% of Pyr and 65% of BaP out of 1000 mg kg -1 of a mixture of Phe, Pyr and BaP (1:1:1) after a two-week incubation. The results indicate that constructed microbial consortia have high potential for soil bioremediation by bioaugmentation and biostimulation and may be effective for the treatment of sites polluted with PAHs due to their elevated tolerance to aromatic compounds, their capacity to utilize them as energy source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Organic soil production from urban soil, spent mushroom substrate, and other additives

    Science.gov (United States)

    Pham, Nhung Thi Ha

    2017-09-01

    In recent years, spent mushroom substrate (SMS) is becoming the huge problem in environmental pollution issues from mushroom production. However, SMS is also a nutrient-rich ogranic material with available nutrients and high porosity. Therefore, the value of products made from SMS should be exploited to take full advantage of agricultural by-product, support organic agriculture development without environmental pollution. The research has built 5 experimental formulas (4 mixed formulas and 1 control formulas with only urban soil). The analysis results of soil samples from mixed formulas and the control formula witness a significant increase in moisture and OM of mixed formulas (moisture from 36-42%, OM from 5.5-6.9%) after 20 treatment days, and N-P-K contents are also improved remarkably. 60 days later, soil nutrients in mixed formulas continue to rise, with highest OM (8.679%) at CT1; N (0.154%) at CT4; K2O (0,698%) and P2O5 (0,172%) at CT3, in addition, heavy metal contents in all formulas are under standard limit. Synthetic assessment of all norms indicates that the best organic soil product comes from CT3. The pak choi planting experiments are performed show that the growth of plants cultivated on organic soil products made from mixed formulas are much better than plants are grown on initially soil, and they also have no pestilent insect. Specially, pak choi planted on organic soil from CT3 have sharp developing with excellent tolerance ability, quantity and area of leaves are high. Thus, CT3 is the most suitable formula to increase soil nutrients, to solve spent mushroom subtrate streament problems after harvest, and for sustainable agricultural development.

  11. Soil arthropod fauna from natural ecosites and reclaimed oil sands soils in northern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Battigelli, J.P.; Leskiw, L.A. [Paragon Soil and Environmental Consulting Inc., Edmonton, AB (Canada)

    2006-07-01

    An understanding of soil invertebrates may facilitate current reclamation activities in the oil sands region of Alberta. This paper presented the results of a study investigating the density, diversity, and structure of soil arthropod assemblages in natural habitats and reclaimed sites. The purpose of the study was to establish a baseline inventory of soil arthropod assemblages in order to enable long-term monitoring of soil arthropod recolonization in disturbed sites. Nine natural ecosites were sampled for the study, including peat mix over secondary material over tailing sand; direct placement over tailing sand; peat mix over secondary over overburden; direct placement over overburden; peat mix over tailing sand; and peat mix over overburden. Samples were collected from previously established long-term soil and vegetation treatment plots in both natural ecosites and reclaimed soil sites located near Fort McMurray, Alberta. Results showed that densities of mesofauna were significantly higher in samples collected from natural ecosites. Acari and Collembola represented approximately 97 to 98 per cent of the fauna collected. It was also noted that the overall structure of the soil mesofauna community differed between natural soils and reclaimed soils. A significant reduction in the abundance of oribatid mites was observed in soils that had been reclaimed for over 34 years. Changes in the soil mesofauna community structure suggested that reclaimed soils continue to represent disturbed ecosites, as was indicated by higher proportions of prostigmatid mites and some collembolan families. Differences in community structure may influence soil ecosystem functions, including decomposition rates; nutrient recycling; soil structure; and fungal and bacterial biomass. It was concluded that further research is needed to examine oribatid mites and collembolan species diversity and community structure in reclaimed soils. 18 refs., 6 figs.

  12. Using Cosmic-Ray Neutron Probes to Monitor Landscape Scale Soil Water Content in Mixed Land Use Agricultural Systems

    International Nuclear Information System (INIS)

    Franz, Trenton E.; Wahbi, Ammar; Weltin, Georg; Heng, Lee; Dercon, Gerd; Vreugdenhi, Mariette; Oismueller, Markus; Strauss, Peter; Desilets, Darin

    2016-01-01

    With an ever-increasing demand for natural resources and the societal need to understand and predict natural disasters such as flood, soil water content (SWC) observations remain a critical variable to monitor in order to optimally allocate resources, establish early warning systems, and improve weather forecasts. However, routine agricultural production practices of soil cultivation, planting, and harvest make the operation and maintenance of direct contact point sensors for long-term monitoring a challenging task. In this work, we used Cosmic-Ray Neutron Probe (CRNP) to monitor landscape average SWC in a mixed agricultural land use system in northeast Austria since December 2013.

  13. Stability of embankments over cement deep soil mixing columns; Estabilidad de terraplenes sobre columnas de suelo-cemento

    Energy Technology Data Exchange (ETDEWEB)

    Morilla Moar, P.; Melentijevic, S.

    2014-07-01

    The deep soil mixing (DSM) is one of the ground improvement methods used for the construction of embankments over soft soils. DSM column-supported embankments are constructed over soft soils to accelerate its construction, improve embankment stability, increase bearing capacity and control of total and differential settlements. There are two traditional design methods, the Japanese (rigid columns) and the scandinavian (soft and semi-rigid columns). Based on Laboratory analysis and numerical analysis these traditional approaches have been questioned by several authors due to its overestimation of the embankment stability considering that the most common failures types are not assumed. This paper presents a brief review of traditional design methods for embankments on DSM columns constructed in soft soils, studies carried out determine the most likely failure types of DSM columns, methods to decrease the overestimation when using limit equilibrium methods and numerical analysis methods that permit detect appropriate failure modes in DSM columns. Finally a case study was assessed using both limited equilibrium and finite element methods which confirmed the overestimation in the factors of safety on embankment stability over DSM columns. (Author)

  14. Grass and forb species for revegetation of mixed soil-lignite overburden in East Central Texas

    Energy Technology Data Exchange (ETDEWEB)

    Skousen, J.G.; Call, C.A. (West Virginia University, Morgantown, WV (USA). Division of Plant and Soil Sciences)

    Ten grasses and seven forbs were seeded into mixed soil-lignite overburden in the Post Oak Savannah region of Texas and monitored for establishment and growth over a 3-year period without fertilization. Buffelgrass (Cenchrus ciliaris), green sprangletop (Leptochloa dubia), switchgrass (Panicum virgatum), and kleingrass (P. coloratum) developed monotypic stands with sufficent density, aerial cover, and aboveground biomass to stabilize the mixed soil-lignite overburden surface by the end of the first growing season. Plant mortality eliminated buffelgrass and green sprangletop stands by the end of the third growing season. Indiangrass (Sorghastrum nutans) developed a satisfactory stand by the end of the third growing season, while Oldworld bluestem (Bothriochloa X Dicanthium), yellow bluestem (Bothriochloa ischaemum), and sideoats grama (Bouteloua curtipendula) established at a slower rate. Cover and biomass measurements from an adjacent, unfertilized stand of Coastal bermudagrass (Cynodon dactylon) were compared with those of seeded grasses throughout the study. Partidge pea (Cassia fasciculata) established rapidly and had the greatest cover and biomass of all seeded forbs by the end of the first growing season. Sericea lespedeza (Lespedeza cuneata), Illinois bundleflower (Desmanthus illinoensis), and western indigo (Indigofera miniata) developed adequate stands for surface stabilization by the end of the third growing season, while faseanil indigo (Indigofera suffruticosa), virgata lespedeza (Lespedeza virgata), and awnless bushsunflower (Simsia calva) showed slower establishment. 27 refs., 3 tabs.

  15. Soil mixing design methods and construction techniques for use in high organic soils.

    Science.gov (United States)

    2015-06-01

    Organic soils present a difficult challenge for roadway designers and construction due to the high : compressibility of the soil structure and the often associated high water table and moisture content. For : other soft or loose inorganic soils, stab...

  16. Geochemical controls on the composition of soil pore waters beneath a mixed waste disposal site in the unsaturated zone

    International Nuclear Information System (INIS)

    Rawson, S.A.; Hubbell, J.M.

    1989-01-01

    Soil pore waters are collected routinely to monitor a thick unsaturated zone that separates a mixed waste disposal site containing transuranic and low-level radioactive wastes from the Snake River Plain aquifer. The chemistry of the soil pore waters has been studied to evaluate the possible control on the water composition by mineral equilibria and determine the extent, if any, of migration of radionuclides from the disposal site. Geochemical codes were used to perform speciation calculations for the waters. The results of speciation calculations suggest that the installation of the lysimeters affects the observed silica contents of the soil pore waters. The results also establish those chemical parameters that are controlled by secondary mineral precipitation. 15 refs., 6 figs., 1 tab

  17. Mixed-Species Effects on Soil C and N Stocks, C/N Ratio and pH Using a Transboundary Approach in Adjacent Common Garden Douglas-Fir and Beech Stands

    Directory of Open Access Journals (Sweden)

    Seid Muhie Dawud

    2017-03-01

    Full Text Available Mixed forest of Douglas-fir and beech has been suggested as one of the possible future forest types in Northwest Europe but the effects of this mixed forest on soil properties relative to monoculture stands are unknown. In a transboundary investigation of adjacent common garden Douglas-fir and beech stands, we determined the effects on topsoil properties. However, responses of C and N stocks, the C/N ratio and pH were site- and soil layer-specific and were mainly single-sided and without synergistic effects. Beech reduced the soil C and N stocks in Douglas-fir at the nutrient-poor site, caused an increase in the C/N ratio in the forest floor and mineral soil at both nutrient-poor and -rich sites, and reduced the acidifying effect of Douglas-fir at the nutrient-poor site. These results do not support the hypothesis that mixture effects would be consistent across sites and soil layers. The lack of synergistic effects may be attributed to the relatively similar litter quality or rooting depth that prevented any larger niche differentiation and complementarity. The results indicate that the transboundary approach within a mature common garden proved useful as a platform to test tree species interactions, and this approach could be explored in soil studies until dedicated mixed-species common gardens reach maturity.

  18. Stabilization of Black Cotton Soil Using Micro-fine Slag

    Science.gov (United States)

    Shukla, Rajesh Prasad; Parihar, Niraj Singh

    2016-09-01

    This work presents the results of laboratory tests conducted on black cotton soil mixed with micro-fine slag. Different proportions of micro-fine slag, i.e., 3, 6, 9, 12 and 15 % were mixed with the black cotton soil to improve soil characteristics. The improvement in the characteristics of stabilized soil was assessed by evaluating the changes in the physical and strength parameters of the soil, namely, the Atterberg limits, free swell, the California Bearing Ratio (CBR), compaction parameters and Unconfined Compressive Strength (UCS). The mixing of micro-fine slag decreases the liquid limit, plasticity index and Optimum Moisture Contents (OMC) of the soil. Micro-fine slag significantly increases the plastic limit, UCS and CBR of the soil up to 6-7 % mixing, but mixing of more slag led to decrease in the UCS and CBR of the soil. The unsoaked CBR increased by a substantial amount unlike soaked CBR value. The swell potential of the soil is reduced from medium to very low. The optimum amount of micro-fine slag is found to be approximately 6-7 % by the weight of the soil.

  19. Effects of thinning, residue mastication, and prescribed fire on soil and nutrient budgets in a Sierra Nevada mixed-conifer forest

    Science.gov (United States)

    The effects of thinning followed by residue mastication (THIN), prescribed fire (BURN), and thinning plus residue mastication plus burning (T+B) on nutrient budgets and resin-based (plant root simulator [PRS] probe) measurements of soil nutrient availability in a mixed-conifer forest were measured. ...

  20. Effects of thinning, residue mastication, and prescribed fire on soil and nutrient budgets in a Sierra Nevada mixed conifer forest

    Science.gov (United States)

    The effects of thinning followed by residue mastication (THIN), prescribed fire (BURN), and thinning plus residue mastication plus burning (T+B) on nutrient budgets and resin-based (plant root simulator [PRS] probe) measurements of soil nutrient availability in a mixed-conifer forest were measured. ...

  1. Performance of mixed formulations for the particle finite element method in soil mechanics problems

    Science.gov (United States)

    Monforte, Lluís; Carbonell, Josep Maria; Arroyo, Marcos; Gens, Antonio

    2017-07-01

    This paper presents a computational framework for the numerical analysis of fluid-saturated porous media at large strains. The proposal relies, on one hand, on the particle finite element method (PFEM), known for its capability to tackle large deformations and rapid changing boundaries, and, on the other hand, on constitutive descriptions well established in current geotechnical analyses (Darcy's law; Modified Cam Clay; Houlsby hyperelasticity). An important feature of this kind of problem is that incompressibility may arise either from undrained conditions or as a consequence of material behaviour; incompressibility may lead to volumetric locking of the low-order elements that are typically used in PFEM. In this work, two different three-field mixed formulations for the coupled hydromechanical problem are presented, in which either the effective pressure or the Jacobian are considered as nodal variables, in addition to the solid skeleton displacement and water pressure. Additionally, several mixed formulations are described for the simplified single-phase problem due to its formal similitude to the poromechanical case and its relevance in geotechnics, since it may approximate the saturated soil behaviour under undrained conditions. In order to use equal-order interpolants in displacements and scalar fields, stabilization techniques are used in the mass conservation equation of the biphasic medium and in the rest of scalar equations. Finally, all mixed formulations are assessed in some benchmark problems and their performances are compared. It is found that mixed formulations that have the Jacobian as a nodal variable perform better.

  2. Towards Understanding Soil Forming in Santa Clotilde Critical Zone Observatory: Modelling Soil Mixing Processes in a Hillslope using Luminescence Techniques

    Science.gov (United States)

    Sanchez, A. R.; Laguna, A.; Reimann, T.; Giráldez, J. V.; Peña, A.; Wallinga, J.; Vanwalleghem, T.

    2017-12-01

    Different geomorphological processes such as bioturbation and erosion-deposition intervene in soil formation and landscape evolution. The latter processes produce the alteration and degradation of the materials that compose the rocks. The degree to which the bedrock is weathered is estimated through the fraction of the bedrock which is mixing in the soil either vertically or laterally. This study presents an analytical solution for the diffusion-advection equation to quantify bioturbation and erosion-depositions rates in profiles along a catena. The model is calibrated with age-depth data obtained from profiles using the luminescence dating based on single grain Infrared Stimulated Luminescence (IRSL). Luminescence techniques contribute to a direct measurement of the bioturbation and erosion-deposition processes. Single-grain IRSL techniques is applied to feldspar minerals of fifteen samples which were collected from four soil profiles at different depths along a catena in Santa Clotilde Critical Zone Observatory, Cordoba province, SE Spain. A sensitivity analysis is studied to know the importance of the parameters in the analytical model. An uncertainty analysis is carried out to stablish the better fit of the parameters to the measured age-depth data. The results indicate a diffusion constant at 20 cm in depth of 47 (mm2/year) in the hill-base profile and 4.8 (mm2/year) in the hilltop profile. The model has high uncertainty in the estimation of erosion and deposition rates. This study reveals the potential of luminescence single-grain techniques to quantify pedoturbation processes.

  3. Soil resistance and resilience to mechanical stresses for three differently managed sandy loam soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Schjønning, Per; Møldrup, Per

    2012-01-01

    carbon (CCCsoils to compaction using air permeability (ka), void ratio (e) and air-filled porosity (ε) as functional indicators and to characterise aggregate stability, strength and friability. Aggregate tensile strength...... the compression index and a proposed functional index,was significantly greater for theMFC soil compared to the other two soils. The change in compression index with initial void ratio was significantly less for the MFC than the other soils. Plastic reorganisation of the soil particles immediately after......To improve our understanding of how clay-organic carbon dynamics affect soil aggregate strength and physical resilience, we selected three nearby soils (MFC,Mixed Forage Cropping; MCC,Mixed Cash Cropping; CCC, Cereal Cash Cropping)with identical clay content and increasing contents of organic...

  4. Influences of recovery from wildfire and thinning on soil respiration of a Mediterranean mixed forest.

    Science.gov (United States)

    López-Serrano, F R; Rubio, E; Dadi, T; Moya, D; Andrés-Abellán, M; García-Morote, F A; Miettinen, H; Martínez-García, E

    2016-12-15

    The ecosystem recovery after wildfire and thinning practices are both key processes that have great potential to influence fluxes and storage of carbon within Mediterranean semiarid ecosystems. In this study, started 7years after a wildfire, soil respiration (SR) patterns measured from 2008 to 2010 were compared between an unmanaged-undisturbed mature forest stand (UB site) and a naturally regenerated post-wildfire stand (B site) in a Mediterranean mixed forest in Spain. The disturbed stand included a control zone (unthinned forest, BUT site) and a thinned zone (BT site). Our results indicated that SR was lower at naturally regenerated after fire sites (BUT and BT) than at unburnt one. Soil under the canopy layer of pine and oak trees exhibited higher SR rates than bare or herbaceous layer soils, regardless of the site. The effect of thinning was only manifest, with a significant increase of SR, during the 1st year after thinning practices. SR showed a clear soil temperature-dependent seasonal pattern, which was strongly modulated by soil water content (SWC), especially in summer. Site-specific polynomial regression models were defined to describe SR responses, being mainly controlled by both soil temperature (Ts) and SWC at UB site, or Ts at burnt sites. The sensitivity of SR rate to Ts variations (Q 10 ) ranged between 0.20 and 6.89, with mean annual values varying between 0.92 and 1.35. Q 10 values were higher at BT than at UB-BUT sites. The results revealed a significant, non-linear dependence, of Q 10 on both Ts and SWC at UB site, and on Ts at both burnt sites. This study contributes to (i) improve the understanding of how natural recovery and management practices affect soil respiration in a Mediterranean forest during their early stages after fire disturbance and (ii) highlight the importance of Q 10 values <1 which emphasizes drought stress effect on SR temperature sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Soil mixing design methods and construction techniques for use in high organic soils : [summary].

    Science.gov (United States)

    2015-10-01

    The soils which serve as foundations for construction projects may be roughly classified as : inorganic or organic. Inorganic soils vary in firmness and suitability for construction. Soft : or loose inorganic soils may be stabilized using cement or s...

  6. Remediation of gasoline-contaminated soil by passive volatilization

    International Nuclear Information System (INIS)

    Donaldson, S.G.; Miller, G.C.; Miller, W.W.

    1992-01-01

    Loss of 10 hydrocarbons characteristic of those found in gasoline (benzene; n-heptane; toluene; m-xylene; n-nonane; n-propylbenzene; 1,2,4-trimethylbenzene; n-butylbenzene; 1,2,4,5-tetramethylbenzene; and n-dodecane) from 20-cm soil layers was investigated in several field experiments. Soil was spiked with 50 mg kg -1 of each compound, placed in pans outdoors, and subjected to one of five treatments: dry, unmixed soil; dry soil mixed weekly; soil watered once only; soil watered periodically; and soil watered and mixed periodically. Significantly greater rates of loss occurred from wet soils, with an average of 5.7% remaining in wet and mixed treatments at the 18- to 20-cm depth on Day 32 of the spring experiment, compared with 61% remaining in dry, unmixed soils. Following wetting of the soil by rain, less than 8% overall remained in any soil layer by Day 64. Loss was greatest during the summer experiment. By Day 32, only tetramethylbenzene and dodecane were measurable for the wet treatments, with totals below 5% at the 18- to 20-cm depth. An average of 48.6% remained in the dry soils. The final experiment during fall 1989 demonstrated loss of 500 mg kg -1 of unleaded gasoline from spiked soil. No measurable amounts remained after 8 d in wet and mixed treatments and 16 d in wet, unmixed treatments, bu 3.5% remained after 32 d in initially dry soil

  7. A mixed implicit/explicit procedure for soil-structure interaction

    International Nuclear Information System (INIS)

    Kunar, R.R.

    1982-01-01

    This paper describes an efficient method for the solution of dynamic soil-structure interaction problems. The method which combines implicit and explicit time integration procedures is ideally suited to problems in which the structure is considered linear and the soil non-linear. The equations relating to the linear structures are integrated using an unconditionally stable implicit scheme while the non-linear soil is treated explicitly. The explicit method is ideally suited to non-linear calculations as there is no need for iterative techniques. The structural equations can also be integrated explicitly, but this generally requires a time step that is much smaller than that for the soil. By using an unconditionally stable implicit algorithm for the structure, the complete analysis can be performed using the time step for the soil. The proposed procedure leads to economical solutions with the soil non-linearities handled accurately and efficiently. (orig.)

  8. Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH

    Energy Technology Data Exchange (ETDEWEB)

    Komonweeraket, Kanokwan [Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706 (United States); Cetin, Bora, E-mail: bora.cetin@sdsmt.edu [College of Engineering, University of Georgia, Athens, GA 30602 (United States); Benson, Craig H., E-mail: chbenson@wisc.edu [Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706 (United States); Aydilek, Ahmet H., E-mail: aydilek@umd.edu [Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742 (United States); Edil, Tuncer B., E-mail: edil@engr.wisc.edu [Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706 (United States)

    2015-04-15

    Highlights: • The impact of pH on the leaching of elements and metals from fly ash mixed soils. • Generally Ca, Cd, Mg, and Sr follows a cationic leaching pattern. • The leaching of As and Se shows an oxyanionic leaching pattern. • The leaching behavior of elements does not change based on material type. • Different fly ash types show different abilities in immobilizing trace elements. - Abstract: Leaching behaviors of Arsenic (As), Barium (Ba), Calcium (Ca), Cadmium (Cd), Magnesium (Mg), Selenium (Se), and Strontium (Sr) from soil alone, coal fly ash alone, and soil-coal fly ash mixtures, were studied at a pH range of 2–14 via pH-dependent leaching tests. Seven different types of soils and coal fly ashes were tested. Results of this study indicated that Ca, Cd, Mg, and Sr showed cationic leaching pattern while As and Se generally follows an oxyanionic leaching pattern. On the other hand, leaching of Ba presented amphoteric-like leaching pattern but less pH-dependent. In spite of different types and composition of soil and coal fly ash investigated, the study reveals the similarity in leaching behavior as a function of pH for a given element from soil, coal fly ash, and soil-coal fly ash mixtures. The similarity is most likely due to similar controlling mechanisms (e.g., solubility, sorption, and solid-solution formation) and similar controlling factors (e.g., leachate pH and redox conditions). This offers the opportunity to transfer knowledge of coal fly ash that has been extensively characterized and studied to soil stabilized with coal fly ash. It is speculated that unburned carbon in off-specification coal fly ashes may provide sorption sites for Cd resulting in a reduction in concentration of these elements in leachate from soil-coal fly ash mixture. Class C fly ash provides sufficient CaO to initiate the pozzolanic reaction yielding hydrated cement products that oxyanions, including As and Se, can be incorporated into.

  9. Prompt Gamma Ray Analysis of Soil Samples

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A.; Khiari, F.Z.; Haseeb, S.M.A.; Hussein, Tanvir; Khateeb-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Isab, A.H. [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2015-07-01

    Neutron moderation effects were measured in bulk soil samples through prompt gamma ray measurements from water and benzene contaminated soil samples using 14 MeV neutron inelastic scattering. The prompt gamma rays were measured using a cylindrical 76 mm x 76 mm (diameter x height) LaBr{sub 3}:Ce detector. Since neutron moderation effects strongly depend upon hydrogen concentration of the sample, for comparison purposes, moderation effects were studied from samples containing different hydrogen concentrations. The soil samples with different hydrogen concentration were prepared by mixing soil with water as well as benzene in different weight proportions. Then, the effects of increasing water and benzene concentrations on the yields of hydrogen, carbon and silicon prompt gamma rays were measured. Moderation effects are more pronounced in soil samples mixed with water as compared to those from soil samples mixed with benzene. This is due to the fact that benzene contaminated soil samples have about 30% less hydrogen concentration by weight than the water contaminated soil samples. Results of the study will be presented. (authors)

  10. Experimental Research on Foamed Mixture Lightweight Soil Mixed with Fly-Ash and Quicklime as Backfill Material behind Abutments of Expressway Bridge

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-01-01

    Full Text Available To promote the utilization of fly-ash, based on the orthogonal experiment method, wet density and unconfined compressive strength of Foamed Mixture Lightweight Soil mixed with fly-ash and quicklime (FMLSF are studied. It is shown that the wet density and unconfined compressive strength of FMLSF increase with the increase of cement content, while decreasing with the increase of foam content. With the mixing content of fly-ash increase, the wet density and unconfined compressive strength of FMLSF increase firstly and then decrease. Scanning Electron Microscope (SEM tests show that ball effect or microaggregate effect of fly-ash improves the wet density and unconfined compressive strength of FMLSF. With the mixing content of quicklime increase, the wet density and unconfined compressive strength of FMLSF increase firstly within a narrow range and then decrease. In addition, the primary and secondary influence order on wet density and 28-day compressive strength of FMLSF are obtained, as well as the optimal mixture combination. Finally, based on two abutments in China, behind which they are filled with FMLSF and Foamed Mixture Lightweight Soil (FMLS, the construction techniques and key points of quality control behind abutment are compared and discussed in detail, and the feasibility of utilization fly-ash as FMLSF is verified by the experimental results.

  11. Laboratory Electrical Resistivity Studies on Cement Stabilized Soil

    Science.gov (United States)

    Lokesh, K. N.; Jacob, Jinu Mary

    2017-01-01

    Electrical resistivity measurement of freshly prepared uncured and cured soil-cement materials is done and the correlations between the factors controlling the performance of soil-cement and electrical resistivity are discussed in this paper. Conventional quality control of soil-cement quite often involves wastage of a lot of material, if it does not meet the strength criteria. In this study, it is observed that, in soil-cement, resistivity follows a similar trend as unconfined compressive strength, with increase in cement content and time of curing. Quantitative relations developed for predicting 7-day strength of soil-cement mix, using resistivity of the soil-cement samples at freshly prepared state, after 1-hour curing help to decide whether the soil-cement mix meets the desired strength and performance criteria. This offers the option of the soil-cement mix to be upgraded (possibly with additional cement) in its fresh state itself, if it does not fulfil the performance criteria, rather than wasting the material after hardening. PMID:28540364

  12. Stress-strain response of plastic waste mixed soil.

    Science.gov (United States)

    Babu, G L Sivakumar; Chouksey, Sandeep Kumar

    2011-03-01

    Recycling plastic waste from water bottles has become one of the major challenges worldwide. The present study provides an approach for the use plastic waste as reinforcement material in soil. The experimental results in the form of stress-strain-pore water pressure response are presented. Based on experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with addition of a small percentage of plastic waste to the soil. The use of the improvement in strength and compressibility response due to inclusion of plastic waste can be advantageously used in bearing capacity improvement and settlement reduction in the design of shallow foundations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Tree Stress and Mortality from Emerald Ash Borer Does Not Systematically Alter Short-Term Soil Carbon Flux in a Mixed Northeastern U.S. Forest

    Directory of Open Access Journals (Sweden)

    Jaclyn Hatala Matthes

    2018-01-01

    Full Text Available Invasive insect pests are a common disturbance in temperate forests, but their effects on belowground processes in these ecosystems are poorly understood. This study examined how aboveground disturbance might impact short-term soil carbon flux in a forest impacted by emerald ash borer (Agrilus planipennis Fairmaire in central New Hampshire, USA. We anticipated changes to soil moisture and temperature resulting from tree mortality caused by emerald ash borer, with subsequent effects on rates of soil respiration and methane oxidation. We measured carbon dioxide emissions and methane uptake beneath trees before, during, and after infestation by emerald ash borer. In our study, emerald ash borer damage to nearby trees did not alter soil microclimate nor soil carbon fluxes. While surprising, the lack of change in soil microclimate conditions may have been a result of the sandy, well-drained soil in our study area and the diffuse spatial distribution of canopy ash trees and subsequent canopy light gaps after tree mortality. Overall, our results indicate that short-term changes in soil carbon flux following insect disturbances may be minimal, particularly in forests with well-drained soils and a mixed-species canopy.

  14. Mixed Production of Filamentous Fungal Spores for Preventing Soil-Transmitted Helminth Zoonoses: A Preliminary Analysis

    Directory of Open Access Journals (Sweden)

    M. S. Arias

    2013-01-01

    Full Text Available Helminth zoonoses are parasitic infections shared by humans and animals, being the soil-transmitted helminths (STHs mainly caused by roundworms (ascarids and hookworms. This study was aimed to assess the individual and/or mixed production of two helminth-antagonistic fungi, one ovicide (Mucor circinelloides and other predator (Duddingtonia flagrans. Fungi were grown both in Petri plates and in a submerged culture (composed by water, NaCl, Na2HPO4 · 12 H2O, and wheat (Triticum aestivum. A Fasciola hepatica recombinant protein (FhrAPS was incorporated to the cultures to improve fungal production. All the cultured plates showed fungal growth, without difference in the development of the fungi when grown alone or mixed. High counts of Mucor spores were produced in liquid media cultures, and no significant differences were achieved regarding single or mixed cultures, or the incorporation of the FhrAPS. A significantly higher production of Duddingtonia spores after the incorporation of the FhrAPS was observed. When analyzing the parasiticide efficacy of the fungal mixture, viability of T. canis eggs reduced to 51%, and the numbers of third stage cyathostomin larvae reduced to 4%. It is concluded, the capability of a fungal mixture containing an ovicide (Mucor and a predator species (Duddingtonia for growing together in a submerged medium containing the FhrAPS offers a very interesting tool for preventing STHs.

  15. Effects of warming and drying of soils on the ectomycorrhizal community of a mixed Pinus contorta/Picea engelmannii stand in Yellowstone Park

    Science.gov (United States)

    Cullings, Kenneth; Finley, S. K.; Parker, V. T.; Makhija, S.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Restriction Fragment Length Polymorphisms (RFLPs) analyses were used to determine patterns of change in ectomycorrhizal community structure response to seasonal warming and drying of soils. Soil cores (42 total, 21 from cold and wet soil in early June, and 21 from dry, warm soil in late August) were collected from replicate blocks in a mixed-conifer forest stand in Yellowstone. Results indicated no significant differences in species richness (2.62 species/core, SE 0.2 in June; 3.25, SE 0.2 in August), however there was a significant effect on ectomycorrhizal infection (P<0.05), mean number of EM tips/core was significantly lower in June (185.8, SE 34) than in August (337 SE 78). Data indicated no difference in overall EM fungal species composition, however among system dominants, two species (Cortinarius 9 and Cortinarius 10) were more abundant in August than in June (P<0.02). The remaining dominant fungal species exhibited no differences in relative abundance. Results are discussed in relation to soil fertility and composition.

  16. Remediation of diesel-oil-contaminated soil using peat

    International Nuclear Information System (INIS)

    Ghaly, R.A.; Pyke, J.B.; Ghaly, A.E.; Ugursal, V.I.

    1999-01-01

    We investigated a remediation process for diesel-contaminated soil, in which water was used to remove the diesel from the soil and peat was used to absorb the diesel layer formed on the surface of the water. The percolation of water through the soil was uniform. The time required for water to percolate the soil and for the layers (soil, water, and diesel) to separate depended on the soil depth. Both the depth of soil and mixing affected the thickness of the diesel layer and thus diesel recovery from the contaminated soil. Higher diesel recovery was achieved with smaller soil depth and mixing. The initial moisture content and the lower heating value of the peat were 7.1% and 17.65 MJ/kg, respectively. The final moisture content and lower heating value of the diesel-contaminated peat obtained from the experiment with mixing were 8.65 - 10.80% and 32.57 - 35.81 MJ/kg, respectively. The energy content of the diesel-contaminated peat is much higher than that of coal, and the moisture content is within the range recommended for biomass gasification. (author)

  17. Dry powder mixes comprising phase change materials

    Science.gov (United States)

    Salyer, I.O.

    1994-02-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 2 figures.

  18. Bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    Autry, A.R.; Ellis, G.M.

    1992-01-01

    This paper reports on bioremediation, which offers a cost-competitive, effective remediation alternative for soil contaminated with petroleum products. These technologies involve using microorganisms to biologically degrade organic constituents in contaminated soil. All bioremediation applications must mitigate various environmental rate limiting factors so that the biodegradation rates for petroleum hydrocarbons are optimized in field-relevant situations. Traditional bioremediation applications include landfarming, bioreactors, and composting. A more recent bioremediation application that has proven successful involves excavation of contaminated soil. The process involves the placement of the soils into a powerscreen, where it is screened to remove rocks and larger debris. The screened soil is then conveyed to a ribbon blender, where it is mixed in batch with nutrient solution containing nitrogen, phosphorus, water, and surfactants. Each mixed soil batch is then placed in a curing pile, where it remains undisturbed for the remainder of the treatment process, during which time biodegradation by naturally occurring microorganisms, utilizing biochemical pathways mediated by enzymes, will occur

  19. Timescales of carbon turnover in soils with mixed crystalline mineralogies

    Science.gov (United States)

    Khomo, Lesego; Trumbore, Susan; Bern, Carleton R.; Chadwick, Oliver A.

    2017-01-01

    Organic matter-mineral associations stabilize much of the carbon (C) stored globally in soils. Metastable short-range-order (SRO) minerals such as allophane and ferrihydrite provide one mechanism for long-term stabilization of organic matter in young soil. However, in soils with few SRO minerals and a predominance of crystalline aluminosilicate or Fe (and Al) oxyhydroxide, C turnover should be governed by chemisorption with those minerals. Here, we correlate mineral composition from soils containing small amounts of SRO minerals with mean turnover time (TT) of C estimated from radiocarbon (14C) in bulk soil, free light fraction and mineral-associated organic matter. We varied the mineral amount and composition by sampling ancient soils formed on different lithologies in arid to subhumid climates in Kruger National Park (KNP), South Africa. Mineral contents in bulk soils were assessed using chemical extractions to quantify Fe oxyhydroxides and SRO minerals. Because of our interest in the role of silicate clay mineralogy, particularly smectite (2 : 1) and kaolinite (1 : 1), we separately quantified the mineralogy of the clay-sized fraction using X-ray diffraction (XRD) and measured 14C on the same fraction. Density separation demonstrated that mineral associated C accounted for 40-70 % of bulk soil organic C in A and B1 horizons for granite, nephelinite and arid-zone gabbro soils, and > 80 % in other soils. Organic matter strongly associated with the isolated clay-sized fraction represented only 9-47 % of the bulk soil C. The mean TT of C strongly associated with the clay-sized fraction increased with the amount of smectite (2 : 1 clays); in samples with > 40 % smectite it averaged 1020 ± 460 years. The C not strongly associated with clay-sized minerals, including a combination of low-density C, the C associated with minerals of sizes between 2 µm and 2 cm (including Fe oxyhydroxides as coatings), and C removed from clay-sized material by 2 % hydrogen peroxide had

  20. Comportamento à compressão de solo estabilizado com cimento utilizado em colunas de DEEP Soil Mixing

    OpenAIRE

    Geraldo Vanzolini Moretti

    2012-01-01

    Resumo: Apresenta-se neste trabalho o estudo comportamento à compressão não confinada de um solo argiloso aluvionar estabilizado segundo a metodologia Deep Soil Mixing (DSM). Esta técnica consiste no tratamento de solos moles através da mistura deste com agentes químicos estabilizantes, podendo-se utilizar cal e/ou cimento. Para a condução deste trabalho foram executadas colunas de DSM sob um aterro rodoviário localizado no nordeste do Brasil, com aproximadamente 300m de extensão. O sítio de ...

  1. Greenhouse gas emissions from a Cu-contaminated soil remediated by in situ stabilization and phytomanaged by a mixed stand of poplar, willows, and false indigo-bush.

    Science.gov (United States)

    Šimek, M; Elhottová, D; Mench, M; Giagnoni, L; Nannipieri, P; Renella, G

    2017-11-02

    Phytomanagement of trace element-contaminated soils can reduce soil toxicity and restore soil ecological functions, including the soil gas exchange with the atmosphere. We studied the emission rate of the greenhouse gases (GHGs) CO 2 , CH 4 , and N 2 O; the potential CH 4 oxidation; denitrification enzyme activity (DEA), and glucose mineralization of a Cu-contaminated soil amended with dolomitic limestone and compost, alone or in combination, after a 2-year phytomanagement with a mixed stand of Populus nigra, Salix viminalis, S. caprea, and Amorpha fruticosa. Soil microbial biomass and microbial community composition after analysis of the phospholipid fatty acids (PLFA) profile were determined. Phytomanagement significantly reduced Cu availability and soil toxicity, increased soil microbial biomass and glucose mineralization capacity, changed the composition of soil microbial communities, and increased the CO 2 and N 2 O emission rates and DEA. Despite such increases, microbial communities were evolving toward less GHG emission per unit of microbial biomass than in untreated soils. Overall, the aided phytostabilization option would allow methanotrophic populations to establish in the remediated soils due to decreased soil toxicity and increased nutrient availability.

  2. Soiled-based uranium disequilibrium and mixed uranium-thorium series radionuclide reference materials

    International Nuclear Information System (INIS)

    Donivan, S.; Chessmore, R.

    1988-12-01

    The US Department of Energy (DOE) Office of Remedial Action and Waste Technology has assigned the Technical Measurements Center (TMC), located at the DOE Grand Junction Colorado, Projects Office and operated by UNC Geotech (UNC), the task of supporting ongoing remedial action programs by providing both technical guidance and assistance in making the various measurements required in all phases of remedial action work. Pursuant to this task, the Technical Measurements Center prepared two sets of radionuclide reference materials for use by remedial action contractors and cognizant federal and state agencies. A total of six reference materials, two sets comprising three reference materials each, were prepared with varying concentrations of radionuclides using mill tailings materials, ores, and a river-bottom soil diluent. One set (disequilibrium set) contains varying amounts of uranium with nominal amounts of radium-226. The other set (mixed-nuclide set) contains varying amounts of uranium-238 and thorium-232 decay series nuclides. 14 refs., 10 tabs

  3. Biodegradation of low-density polyethylene (LDPE by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil.

    Directory of Open Access Journals (Sweden)

    Atefeh Esmaeili

    Full Text Available In this study, two strains of Aspergillus sp. and Lysinibacillus sp. with remarkable abilities to degrade low-density polyethylene (LDPE were isolated from landfill soils in Tehran using enrichment culture and screening procedures. The biodegradation process was performed for 126 days in soil using UV- and non-UV-irradiated pure LDPE films without pro-oxidant additives in the presence and absence of mixed cultures of selected microorganisms. The process was monitored by measuring the microbial population, the biomass carbon, pH and respiration in the soil, and the mechanical properties of the films. The carbon dioxide measurements in the soil showed that the biodegradation in the un-inoculated treatments were slow and were about 7.6% and 8.6% of the mineralisation measured for the non-UV-irradiated and UV-irradiated LDPE, respectively, after 126 days. In contrast, in the presence of the selected microorganisms, biodegradation was much more efficient and the percentages of biodegradation were 29.5% and 15.8% for the UV-irradiated and non-UV-irradiated films, respectively. The percentage decrease in the carbonyl index was higher for the UV-irradiated LDPE when the biodegradation was performed in soil inoculated with the selected microorganisms. The percentage elongation of the films decreased during the biodegradation process. The Fourier transform infra-red (FT-IR, x-ray diffraction (XRD and scanning electron microscopy (SEM were used to determine structural, morphological and surface changes on polyethylene. These analyses showed that the selected microorganisms could modify and colonise both types of polyethylene. This study also confirmed the ability of these isolates to utilise virgin polyethylene without pro-oxidant additives and oxidation pretreatment, as the carbon source.

  4. Biodegradation of Low-Density Polyethylene (LDPE) by Mixed Culture of Lysinibacillus xylanilyticus and Aspergillus niger in Soil

    Science.gov (United States)

    Esmaeili, Atefeh; Pourbabaee, Ahmad Ali; Alikhani, Hossein Ali; Shabani, Farzin; Esmaeili, Ensieh

    2013-01-01

    In this study, two strains of Aspergillus sp. and Lysinibacillus sp. with remarkable abilities to degrade low-density polyethylene (LDPE) were isolated from landfill soils in Tehran using enrichment culture and screening procedures. The biodegradation process was performed for 126 days in soil using UV- and non-UV-irradiated pure LDPE films without pro-oxidant additives in the presence and absence of mixed cultures of selected microorganisms. The process was monitored by measuring the microbial population, the biomass carbon, pH and respiration in the soil, and the mechanical properties of the films. The carbon dioxide measurements in the soil showed that the biodegradation in the un-inoculated treatments were slow and were about 7.6% and 8.6% of the mineralisation measured for the non-UV-irradiated and UV-irradiated LDPE, respectively, after 126 days. In contrast, in the presence of the selected microorganisms, biodegradation was much more efficient and the percentages of biodegradation were 29.5% and 15.8% for the UV-irradiated and non-UV-irradiated films, respectively. The percentage decrease in the carbonyl index was higher for the UV-irradiated LDPE when the biodegradation was performed in soil inoculated with the selected microorganisms. The percentage elongation of the films decreased during the biodegradation process. The Fourier transform infra-red (FT-IR), x-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine structural, morphological and surface changes on polyethylene. These analyses showed that the selected microorganisms could modify and colonise both types of polyethylene. This study also confirmed the ability of these isolates to utilise virgin polyethylene without pro-oxidant additives and oxidation pretreatment, as the carbon source. PMID:24086254

  5. Soil quality in a cropland soil treated with wood ash containing charcoal

    Science.gov (United States)

    Omil, Beatriz; Balboa, Miguel A.; Fonturbel, M. Teresa; Gartzia-Bengoetxea, Nahia; Arias-González, Ander; Vega, Jose A.; Merino, Agustin

    2014-05-01

    The strategy of the European Union "Europe 2020" states that by 2020, 20% of final energy consumption must come from renewables. In this scenario, there is an increasing use of biomass utilization for energy production. Indeed, it is expected that the production of wood-ash will increase in coming years. Wood ash, a mixture of ash and charcoal, generated as a by-product of biomass combustion in power plants, can be applied to soil to improve the soil quality and crop production. Since the residue contains significant content of charcoal, the application of mixed wood ash may also improve the SOM content and soil quality in the long term, in soils degraded as a consequence of intensive management. The objective of this study was asses the changes in SOM quality and soil properties in a degraded soils treated with wood ash containing charcoal. The study was carried out in a field devoted to cereal crops during the last decades. The soil was acidic (pH 4.5) with a low SOC content (3 %) and fine texture. The experiment was based on a randomised block design with four replicates. Each block included the following four treatments: Control, 16 Mg fly wood ash ha-1, 16 Mg mixed wood ash ha-1 (16 Mg) and 32 Mg mixed wood ash ha-1 (32 Mg). The application was carried out once. The ash used in the study was obtained from a thermal power plant and was mainly derived from the combustion of Pinus radiata bark and branches. The wood ash is highly alkaline (pH= 10), contains 10 % of highly condensed black carbon (atomic H/C ratio solid state 13C CPMAS NMR and Differential Scanning Calorimetry (DSC). These techniques were applied in bulk samples and aggregates of different sizes. The changes in microbial activity were studied by analysis of microbial biomass C and basal respiration. The soil bacterial community was studied by the Biolog method. Several physical properties, such soil aggregate distribution, hydraulic conductivity and available water contente were also determined

  6. Timescales of carbon turnover in soils with mixed crystalline mineralogies

    Science.gov (United States)

    Khomo, Lesego; Trumbore, Susan E.; Bern, Carleton R.; Chadwick, Oliver A.

    2017-01-01

    Organic matter–mineral associations stabilize much of the carbon (C) stored globally in soils. Metastable short-range-order (SRO) minerals such as allophane and ferrihydrite provide one mechanism for long-term stabilization of organic matter in young soil. However, in soils with few SRO minerals and a predominance of crystalline aluminosilicate or Fe (and Al) oxyhydroxide, C turnover should be governed by chemisorption with those minerals. Here, we correlate mineral composition from soils containing small amounts of SRO minerals with mean turnover time (TT) of C estimated from radiocarbon (14C) in bulk soil, free light fraction and mineral-associated organic matter. We varied the mineral amount and composition by sampling ancient soils formed on different lithologies in arid to subhumid climates in Kruger National Park (KNP), South Africa. Mineral contents in bulk soils were assessed using chemical extractions to quantify Fe oxyhydroxides and SRO minerals. Because of our interest in the role of silicate clay mineralogy, particularly smectite (2 : 1) and kaolinite (1 : 1), we separately quantified the mineralogy of the clay-sized fraction using X-ray diffraction (XRD) and measured 14C on the same fraction. Density separation demonstrated that mineral associated C accounted for 40–70 % of bulk soil organic C in A and B1 horizons for granite, nephelinite and arid-zone gabbro soils, and > 80 % in other soils. Organic matter strongly associated with the isolated clay-sized fraction represented only 9–47 % of the bulk soil C. The mean TT of C strongly associated with the clay-sized fraction increased with the amount of smectite (2 : 1 clays); in samples with > 40 % smectite it averaged 1020 ± 460 years. The C not strongly associated with clay-sized minerals, including a combination of low-density C, the C associated with minerals of sizes between 2 µm and 2 cm (including Fe oxyhydroxides as coatings), and C removed from clay

  7. Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation

    Science.gov (United States)

    Grossiord, Charlotte; Gessler, Arthur; Granier, André; Berger, Sigrid; Bréchet, Claude; Hentschel, Rainer; Hommel, Robert; Scherer-Lorenzen, Michael; Bonal, Damien

    2014-11-01

    Interactions between tree species in forests can be beneficial to ecosystem functions and services related to the carbon and water cycles by improving for example transpiration and productivity. However, little is known on below- and above-ground processes leading to these positive effects. We tested whether stratification in soil water uptake depth occurred between four tree species in a 10-year-old temperate mixed species plantation during a dry summer. We selected dominant and co-dominant trees of European beech, Sessile oak, Douglas fir and Norway spruce in areas with varying species diversity, competition intensity, and where different plant functional types (broadleaf vs. conifer) were present. We applied a deuterium labelling approach that consisted of spraying labelled water to the soil surface to create a strong vertical gradient of the deuterium isotope composition in the soil water. The deuterium isotope composition of both the xylem sap and the soil water was measured before labelling, and then again three days after labelling, to estimate the soil water uptake depth using a simple modelling approach. We also sampled leaves and needles from selected trees to measure their carbon isotope composition (a proxy for water use efficiency) and total nitrogen content. At the end of the summer, we found differences in the soil water uptake depth between plant functional types but not within types: on average, coniferous species extracted water from deeper layers than did broadleaved species. Neither species diversity nor competition intensity had a detectable influence on soil water uptake depth, foliar water use efficiency or foliar nitrogen concentration in the species studied. However, when coexisting with an increasing proportion of conifers, beech extracted water from progressively deeper soil layers. We conclude that complementarity for water uptake could occur in this 10-year-old plantation because of inherent differences among functional groups (conifers

  8. Mixed artificial grasslands with more roots improved mine soil infiltration capacity

    Science.gov (United States)

    Wu, Gao-Lin; Yang, Zheng; Cui, Zeng; Liu, Yu; Fang, Nu-Fang; Shi, Zhi-Hua

    2016-04-01

    Soil water is one of the critical limiting factors in achieving sustainable revegetation. Soil infiltration capacity plays a vital role in determining the inputs from precipitation and enhancing water storage, which are important for the maintenance and survival of vegetation patches in arid and semi-arid areas. Our study investigated the effects of different artificial grasslands on soil physical properties and soil infiltration capacity. The artificial grasslands were Medicago sativa, Astragalus adsurgens, Agropyron mongolicum, Lespedeza davurica, Bromus inermis, Hedysarum scoparium, A. mongolicum + Artemisia desertorum, A. adsurgens + A. desertorum and M. sativa + B. inermis. The soil infiltration capacity index (SICI), which was based on the average infiltration rate of stage I (AIRSI) and the average infiltration rate of stage III (AIRS III), was higher (indicating that the infiltration capacity was greater) under the artificial grasslands than that of the bare soil. The SICI of the A. adsurgens + A. desertorum grassland had the highest value (1.48) and bare soil (-0.59) had the lowest value. It was evident that artificial grassland could improve soil infiltration capacity. We also used principal component analysis (PCA) to determine that the main factors that affected SICI were the soil water content at a depth of 20 cm (SWC20), the below-ground root biomasses at depths of 10 and 30 cm (BGB10, BGB30), the capillary porosity at a depth of 10 cm (CP10) and the non-capillary porosity at a depth of 20 cm (NCP20). Our study suggests that the use of Legume-poaceae mixtures and Legume-shrub mixtures to create grasslands provided an effective ecological restoration approach to improve soil infiltration properties due to their greater root biomasses. Furthermore, soil water content, below-ground root biomass, soil capillary porosity and soil non-capillary porosity were the main factors that affect the soil infiltration capacity.

  9. Dry powder mixes comprising phase change materials

    Science.gov (United States)

    Salyer, Ival O.

    1992-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  10. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos; Sun, Zhonghao

    2017-01-01

    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration

  11. The Treatment of Mixed Waste with GeoMelt In-Container Vitrification

    International Nuclear Information System (INIS)

    Finucane, K.G.; Campbell, B.E.

    2006-01-01

    AMEC's GeoMelt R In-Container Vitrification (ICV) TM has been used to treat diverse types of mixed low-level radioactive waste. ICV is effective in the treatment of mixed wastes containing polychlorinated biphenyls (PCBs) and other semi-volatile organic compounds, volatile organic compounds (VOCs) and heavy metals. The GeoMelt vitrification process destroys organic compounds and immobilizes metals and radionuclides in an extremely durable glass waste form. The process is flexible allowing for treatment of aqueous, oily, and solid mixed waste, including contaminated soil. In 2004, ICV was used to treat mixed radioactive waste sludge containing PCBs generated from a commercial cleanup project regulated by the Toxic Substances Control Act (TSCA), and to treat contaminated soil from Rocky Flats Environmental Technology Site. The Rocky Flats soil contained cadmium, PCBs, and depleted uranium. In 2005, AMEC completed a treatability demonstration of the ICV technology on Mock High Explosive from Sandia National Laboratories. This paper summarizes results from these mixed waste treatment projects. (authors)

  12. Migration and bioavailability of 137Cs in forest soil of southern Germany

    International Nuclear Information System (INIS)

    Konopleva, I.; Klemt, E.; Konoplev, A.; Zibold, G.

    2009-01-01

    To give a quantitative description of the radiocaesium soil-plant transfer for fern (Dryopteris carthusiana) and blackberry (Rubus fruticosus), physical and chemical properties of soils in spruce and mixed forest stands were investigated. Of special interest was the selective sorption of radiocaesium, which was determined by measuring the Radiocaesium Interception Potential (RIP). Forest soil and plants were taken at 10 locations of the Altdorfer Wald (5 sites in spruce forest and 5 sites in mixed forest). It was found that the bioavailability of radiocaesium in spruce forest was on average seven times higher than in mixed forest. It was shown that important factors determining the bioavailability of radiocaesium in forest soil were its exchangeability and the radiocaesium interception potential (RIP) of the soil. Low potassium concentration in soil solution of forest soils favors radiocaesium soil-plant transfer. Ammonium in forest soils plays an even more important role than potassium as a mobilizer of radiocaesium. The availability factor - a function of RIP, exchangeability and cationic composition of soil solution - characterized reliably the soil-plant transfer in both spruce and mixed forest. For highly organic soils in coniferous forest, radiocaesium sorption at regular exchange sites should be taken into account when its bioavailability is considered

  13. Effects of artificial defoliation of pines on the structure and physiology of the soil fungal community of a mixed pine-spruce forest

    Science.gov (United States)

    Cullings, Ken; Raleigh, Christopher; New, Michael H.; Henson, Joan

    2005-01-01

    Loss of photosynthetic area can affect soil microbial communities by altering the availability of fixed carbon. We used denaturing gradient gel electrophoresis (DGGE) and Biolog filamentous-fungus plates to determine the effects of artificial defoliation of pines in a mixed pine-spruce forest on the composition of the fungal community in a forest soil. As measured by DGGE, two fungal species were affected significantly by the defoliation of pines (P soil fungus increased. The decrease in the amount of Cenococcum organisms may have occurred because of the formation of extensive hyphal networks by species of this genus, which require more of the carbon fixed by their host, or because this fungus is dependent upon quantitative differences in spruce root exudates. The defoliation of pines did not affect the overall composition of the soil fungal community or fungal-species richness (number of species per core). Biolog filamentous-fungus plate assays indicated a significant increase (P soil fungi and the rate at which these substrates were used, which could indicate an increase in fungal-species richness. Thus, either small changes in the soil fungal community give rise to significant increases in physiological capabilities or PCR bias limits the reliability of the DGGE results. These data indicate that combined genetic and physiological assessments of the soil fungal community are needed to accurately assess the effect of disturbance on indigenous microbial systems.

  14. Soil does not explain monodominance in a Central African tropical forest.

    Directory of Open Access Journals (Sweden)

    Kelvin S-H Peh

    2011-02-01

    Full Text Available Soil characteristics have been hypothesised as one of the possible mechanisms leading to monodominance of Gilbertiodendron dewerei in some areas of Central Africa where higher-diversity forest would be expected. However, the differences in soil characteristics between the G. dewevrei-dominated forest and its adjacent mixed forest are still poorly understood. Here we present the soil characteristics of the G. dewevrei forest and quantify whether soil physical and chemical properties in this monodominant forest are significantly different from the adjacent mixed forest.We sampled top soil (0-5, 5-10, 10-20, 20-30 cm and subsoil (150-200 cm using an augur in 6 × 1 ha areas of intact central Africa forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450-800 m apart, all chosen to be topographically homogeneous. Analysis--subjected to Bonferroni correction procedure--revealed no significant differences between the monodominant and mixed forests in terms of soil texture, median particle size, bulk density, pH, carbon (C content, nitrogen (N content, C:N ratio, C:total NaOH-extractable P ratio and concentrations of labile phosphorous (P, inorganic NaOH-extractable P, total NaOH-extractable P, aluminium, barium, calcium, copper, iron, magnesium, manganese, molybdenum, nickel, potassium, selenium, silicon, sodium and zinc. Prior to Bonferroni correction procedure, there was a significant lower level of silicon concentration found in the monodominant than mixed forest deep soil; and a significant lower level of nickel concentration in the monodominant than mixed forest top soil. Nevertheless, these were likely to be the results of multiple tests of significance.Our results do not provide clear evidence of soil mediation for the location of monodominant forests in relation to adjacent mixed forests. It is also likely that G. dewevrei does not influence soil chemistry in the monodominant forests.

  15. Soil does not explain monodominance in a Central African tropical forest.

    Science.gov (United States)

    Peh, Kelvin S-H; Sonké, Bonaventure; Lloyd, Jon; Quesada, Carlos A; Lewis, Simon L

    2011-02-10

    Soil characteristics have been hypothesised as one of the possible mechanisms leading to monodominance of Gilbertiodendron dewerei in some areas of Central Africa where higher-diversity forest would be expected. However, the differences in soil characteristics between the G. dewevrei-dominated forest and its adjacent mixed forest are still poorly understood. Here we present the soil characteristics of the G. dewevrei forest and quantify whether soil physical and chemical properties in this monodominant forest are significantly different from the adjacent mixed forest. We sampled top soil (0-5, 5-10, 10-20, 20-30 cm) and subsoil (150-200 cm) using an augur in 6 × 1 ha areas of intact central Africa forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450-800 m apart), all chosen to be topographically homogeneous. Analysis--subjected to Bonferroni correction procedure--revealed no significant differences between the monodominant and mixed forests in terms of soil texture, median particle size, bulk density, pH, carbon (C) content, nitrogen (N) content, C:N ratio, C:total NaOH-extractable P ratio and concentrations of labile phosphorous (P), inorganic NaOH-extractable P, total NaOH-extractable P, aluminium, barium, calcium, copper, iron, magnesium, manganese, molybdenum, nickel, potassium, selenium, silicon, sodium and zinc. Prior to Bonferroni correction procedure, there was a significant lower level of silicon concentration found in the monodominant than mixed forest deep soil; and a significant lower level of nickel concentration in the monodominant than mixed forest top soil. Nevertheless, these were likely to be the results of multiple tests of significance. Our results do not provide clear evidence of soil mediation for the location of monodominant forests in relation to adjacent mixed forests. It is also likely that G. dewevrei does not influence soil chemistry in the monodominant forests.

  16. Comparison of vegetation patterns and soil nutrient relations in an oak-pine forest and a mixed deciduous forest on Long Island, New York

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, S.C.; Curtis, P.S.

    1980-11-01

    An analysis of soil nutrient relations in two forest communities on Long Island, NY, yielded a correlation between the fertility of the top-soil and vegetational composition. The oak-pine forest soils at Brookhaven National Laboratory contain lower average concentrations of NH/sub 3/, Ca, K, and organic matter than the mixed deciduous forest soils in the Stony Brook area. The pH of the topsoil is also more acidic at Brookhaven. The observed differences between localities are greater than within-locality differences between the two soil series tested (Plymouth and Riverhead), which are common to both localities. Nutrient concentrations in the subsoil are not consistently correlated with either locality or soil series, although organic matter and NH/sub 3/ show significantly higher concentrations at Stony Brook. Supporting data on density and basal area of trees and coverage of shrubs and herbs also reveals significant variation between the two forest communities. An ordination of the vegetation data shows higher similarity within than between localities, while no obvious pattern of within-locality variation due to soil series treatments is apparent. These data support the hypothesis that fertility gradients may influence forest community composition and structure. This hypothesis is discussed with reference to vegetation-soil interactions and other factors, such as frequency of burning, which may direct the future development of the Brookhaven oak-pine forest.

  17. Mixed functional monomers-based monolithic adsorbent for the effective extraction of sulfonylurea herbicides in water and soil samples.

    Science.gov (United States)

    Pei, Miao; Zhu, Xiangyu; Huang, Xiaojia

    2018-01-05

    Effective extraction is a key step in the determination of sulfonylurea herbicides (SUHs) in complicated samples. According to the chemical properties of SUHs, a new monolithic adsorbent utilizing acrylamidophenylboronic acid and vinylimidazole as mixed functional monomers was synthesized. The new adsorbent was employed as the extraction phase of multiple monolithic fiber solid-phase microextraction (MMF-SPME) of SUHs, and the extracted SUHs were determined by high-performance liquid chromatography with diode array detection (HPLC-DAD). Results well evidence that the prepared adsorbent could extract SUHs in environmental waters and soil effectively through multiply interactions such as boronate affinity, dipole-dipole and π-π interactions. Under the optimized extraction conditions, the limits of detection for target SUHs in environmental water and soil samples were 0.018-0.17μg/L and 0.14-1.23μg/kg, respectively. At the same time, the developed method also displayed some analytical merits including wide linear dynamic ranges, good method reproducibility, satisfactory sensitivity and low consume of organic solvent. Finally, the developed were successfully applied to monitor trace SUHs in environmental water and soil samples. The recoveries at three fortified concentrations were in the range of 70.6-119% with RSD below 11% in all cases. The obtained results well demonstrate the excellent practical applicability of the developed MMF-SPME-HPLC-DAD method for the monitoring of SUHs in water and soil samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Geotechnical properties of clayey soil stabilized with cement ...

    African Journals Online (AJOL)

    The study was conducted to investigate the different effects of cement-sawdust ash and cement on a clayey soil sampled from Mandate Lodge, Landmark University, Omu-Aran, Nigeria. The binder mix of cementsawdust ash (CSDA) was mixed in a ratio of 1:1. The CSDA and cement were added to the soil samples at ...

  19. Migration and bioavailability of {sup 137}Cs in forest soil of southern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Konopleva, I.; Klemt, E. [Hochschule Ravensburg-Weingarten, University of Applied Sciences, 88250 Weingarten (Germany); Konoplev, A. [Scientific Production Association ' TYPHOON' , Obninsk (Russian Federation); Zibold, G. [Hochschule Ravensburg-Weingarten, University of Applied Sciences, 88250 Weingarten (Germany)], E-mail: zibold@hs-weingarten.de

    2009-04-15

    To give a quantitative description of the radiocaesium soil-plant transfer for fern (Dryopteris carthusiana) and blackberry (Rubus fruticosus), physical and chemical properties of soils in spruce and mixed forest stands were investigated. Of special interest was the selective sorption of radiocaesium, which was determined by measuring the Radiocaesium Interception Potential (RIP). Forest soil and plants were taken at 10 locations of the Altdorfer Wald (5 sites in spruce forest and 5 sites in mixed forest). It was found that the bioavailability of radiocaesium in spruce forest was on average seven times higher than in mixed forest. It was shown that important factors determining the bioavailability of radiocaesium in forest soil were its exchangeability and the radiocaesium interception potential (RIP) of the soil. Low potassium concentration in soil solution of forest soils favors radiocaesium soil-plant transfer. Ammonium in forest soils plays an even more important role than potassium as a mobilizer of radiocaesium. The availability factor - a function of RIP, exchangeability and cationic composition of soil solution - characterized reliably the soil-plant transfer in both spruce and mixed forest. For highly organic soils in coniferous forest, radiocaesium sorption at regular exchange sites should be taken into account when its bioavailability is considered.

  20. Decreased Soil Nitrification Rate with Addition of Biochar to Acid Soils

    Institute of Scientific and Technical Information of China (English)

    Shiyu LI; Xiangshu DONG; Dandan LIU; Li LIU; Feifei HE

    2017-01-01

    This study was conducted to investigate the effects of mixed biochar on the nitrification rate in acidic soils. A 15N tracer experiment with (15NH4)2SO4 was conducted to determine the nitrification rates of 4 acidic agricultural soils with pH 4.03-6.02in Yunnan Province, Southern China. The accumulation of 15N-NO3 - and nitrification rates decreased with the addition of biochar at the end of incubation, suggesting that biochar could be a nitrification inhibitor in acidic fertilized soil. Nitrification rates in soil with pH 4.03 were evidently lower than those in soil with pH 4.81 -6.02 with or without biochar. Decreased nitrification rates were detected in the acidic soils with biochar. Soil pH controlled nitrification more than biochar in certain strongly acidic soils.

  1. Soil-restoration rate and initial soil formation trends on example of anthropogenically affected soils of opencast mine in Kursk region, Russian Federation

    Science.gov (United States)

    Pigareva, Tatiana

    2015-04-01

    The mining industry is one of the main factors which anthropogenically change the environment. Mining process results in removing of the rocks and mechanical changes of considerable amounts of ground. One of the main results of mining arising of antropic ecosystems as well as increasing of the new created soils total area is technosols. The main factor controlling the soil formation in postmining environment is the quality of spoiled materials. Initial soil formation has been investigated on spoils of the largest iron ore extraction complex in Russia - Mikhailovsky mining and concentration complex which is situated in Kursk region, Russia. Investigated soils are presented by monogenetic weak developed soils of different age (10-15-20 years). Young soils are formed on the loess parent materials (20 year-old soil), or on a mix of sand and clay overburdens (15 and 10-year-old soils). Anthropogenically affected soils are characterized by well-developed humus horizon which is gradually replaced by weakly changed soil-building rocks (profile type A-C for 10-, 15-years old soils, and A-AC-C for 20 years old soils). Gray-humus soils are characterized by presence of diagnostic humus horizon gradually replaced by soil-building rock. The maximum intensity of humus accumulation has been determined in a semi-hydromorphic 10-year-old soil developed on the mixed heaps which is connected with features of water-air conditions complicating mineralization of plant remnants. 20-year-old soil on loess is characterized by rather high rate of organic substances accumulation between all the automorphous soils. It was shown that one of the most effective restoration ways for anthropogenically affected soils is a biological reclamation. Since overburdens once appeared on a day surface are overgrown badly in the first years, they are subject to influence of water and wind erosion. Our researchers have found out that permanent grasses are able to grow quickly; they accumulate a considerable

  2. Stabilization of soil using plastic waste

    International Nuclear Information System (INIS)

    Khan, S.A.

    2005-01-01

    The economy in a soil stabilization project depends on the cost of the stabilizing material. Cheaper the stabilizing material, lesser will be the project cost. Specially manufactured geotextiles are successfully being used for soil stabilization, but the cost is higher. In this study, the cuttings of the waste polyethylene shopper bags have been used to stabilize the soil. The polyethylene shopper bags are transformed to cuttings for easy mixing with the soil by conventional methods. The plastic cuttings acted similar to the non-woven geotextile fibers. Different quantities of the shopper bag cuttings were mixed with the soil. The soil was compacted in the California Bearing Ratio (CBR) test molds according to the British Standards. CBR values of the soil with varying quantities of the plastic cuttings were determined both for the un-soaked and soaked conditions. The tests showed significant increase in the CBR values of the stabilized soil under un-soaked conditions. However, the improvement in the CBR values under the soaked condition was comparatively lesser than that of the un-soaked condition. This method of stabilization proved economical due to low cost of the waste shopper bags. (author)

  3. Mitigation of soil N2O emission by inoculation with a mixed culture of indigenous Bradyrhizobium diazoefficiens

    Science.gov (United States)

    Akiyama, Hiroko; Hoshino, Yuko Takada; Itakura, Manabu; Shimomura, Yumi; Wang, Yong; Yamamoto, Akinori; Tago, Kanako; Nakajima, Yasuhiro; Minamisawa, Kiwamu; Hayatsu, Masahito

    2016-09-01

    Agricultural soil is the largest source of nitrous oxide (N2O), a greenhouse gas. Soybean is an important leguminous crop worldwide. Soybean hosts symbiotic nitrogen-fixing soil bacteria (rhizobia) in root nodules. In soybean ecosystems, N2O emissions often increase during decomposition of the root nodules. Our previous study showed that N2O reductase can be used to mitigate N2O emission from soybean fields during nodule decomposition by inoculation with nosZ++ strains [mutants with increased N2O reductase (N2OR) activity] of Bradyrhizobium diazoefficiens. Here, we show that N2O emission can be reduced at the field scale by inoculation with a mixed culture of indigenous nosZ+ strains of B. diazoefficiens USDA110 group isolated from Japanese agricultural fields. Our results also suggested that nodule nitrogen is the main source of N2O production during nodule decomposition. Isolating nosZ+ strains from local soybean fields would be more applicable and feasible for many soybean-producing countries than generating mutants.

  4. Remediation of Soil Contaminated with Uranium using a Biological Method

    International Nuclear Information System (INIS)

    Park, Hye Min; Kim, Gye Nam; Shon, Dong Bin; Lee, Ki Won; Chung, Un Soo; Moon, Jai Kwon

    2011-01-01

    Bioremediation is a method to cleanup contaminants in soil or ground water with microorganisms. The biological method can reduce the volume of waste solution and the construction cost and operation cost of soil remediation equipment. Bioremediation can be divided into natural attenuation, bioaugmentation, biostimulation. Biostimulation is technology to improve natural purification by adding nutritional substances, supplying oxygen and controlling pH. In this study, penatron, that is a nutritional substances, was mixed with soil. Optimum conditions for mixing ratios of penatron and soil, and the pH of soil was determined through several bioremediation experiments with soil contaminated with uranium. Also, under optimum experiment conditions, the removal efficiencies of soil and concrete according to reaction time were measured for feasibility analysis of soil and concrete bioremediations

  5. Chemical Modification of Uniform Soils and Soils with High/Low Plasticity Index

    OpenAIRE

    Li, Xuanchi; Tao, Fei; Bobet, Antonio

    2015-01-01

    Lime and/or cement are used to treat weak subgrade soils during construction of highways. These chemicals are mixed with the soil to improve its workability, compactability and engineering properties. INDOT (Indiana Department of Transportation) has been using chemical modification of native soils for the past 20 years. In fact, 90% of current subgrade is treated, typically with quick lime, lime byproducts or cement. For pavement design, it is customary to not include any improvement of the s...

  6. Ectomycorrhizal Community Structure and Soil Characteristics of Mature Lodgepole Pine (Pinus Contorta) and Adjacent Stands of Old Growth Mixed Conifer in Yellowstone National Park, Wyoming USA

    Science.gov (United States)

    Douglas, Robert B.; Parker, V. Thomas; Cullings, Kenneth W.; Sun, Sidney (Technical Monitor)

    2003-01-01

    Forest development patterns following disturbance are known to influence the physical and chemical attributes of soils at different points in time. Changes in soil resources are thought to have a corresponding effect on ectomycorrhizal (ECM) community structure. We used molecular methods to compare below-ground ECM species richness, composition, and abundance between adjacent stands of homogenous lodgepole pine and old growth mixed conifer in Yellowstone National Park (YNP). In each stand-type we collected soil cores to both identify mycorrhizae and assess soil chemistry. Although no statistical difference was observed in the mean number of ECM root tips per core between stand types, the total number of species identified (85 versus 35) and the mean number of species per core (8.8 +/- 0.6 versus 2.5 +/- 0.3) were significantly higher in lodgepole pine. Differences between the actual and estimated species richness levels indicated that these forest types support a high number of ECM species and that undersampling was severe. Species compositions were widely disparate between stands where only four species were shared out of a total of 116. Soil analysis also revealed that mixed conifer was significantly lower in pH, but higher in organic matter, potassium, phosphorus, and ammonium when compared to lodgepole pine stands. Species richness per core was correlated with these chemical data, however, analysis of covariance indicated that stand type was the only statistically significant factor in the observed difference in species richness. Our data suggest that ECM fungal richness increases as homogenous lodgepole pine stands grow and mature, but declines after Engelmann spruce and subalpine fir colonize. Despite difficulties linking species composition with soil chemistry, there are a variety of physical and chemical factors that could be influencing ECM community structure. Future field experiments are necessary to test some of the mechanisms potentially operating

  7. The origin of lead in the organic horizon of tundra soils: Atmospheric deposition, plant translocation from the mineral soil or soil mineral mixing?

    International Nuclear Information System (INIS)

    Klaminder, Jonatan; Farmer, John G.; MacKenzie, Angus B.

    2011-01-01

    Knowledge of the anthropogenic contribution to lead (Pb) concentrations in surface soils in high latitude ecosystems is central to our understanding of the extent of atmospheric Pb contamination. In this study, we reconstructed fallout of Pb at a remote sub-arctic region by using two ombrotrophic peat cores and assessed the extent to which this airborne Pb is able to explain the isotopic composition ( 206 Pb/ 207 Pb ratio) in the O-horizon of tundra soils. In the peat cores, long-range atmospheric fallout appeared to be the main source of Pb as indicated by temporal trends that followed the known European pollution history, i.e. accelerated fallout at the onset of industrialization and peak fallout around the 1960s-70s. The Pb isotopic composition of the O-horizon of podzolic tundra soil ( 206 Pb/ 207 Pb = 1.170 ± 0.002; mean ± SD) overlapped with that of the peat ( 206 Pb/ 207 Pb = 1.16 ± 0.01) representing a proxy for atmospheric aerosols, but was clearly different from that of the parent soil material ( 206 Pb/ 207 Pb = 1.22-1.30). This finding indicated that long-range fallout of atmospheric Pb is the main driver of Pb accumulation in podzolic tundra soil. In O-horizons of tundra soil weakly affected by cryoturbation (cryosols) however, the input of Pb from the underlying mineral soil increased as indicated by 206 Pb/ 207 Pb ratios of up to 1.20, a value closer to that of local soil minerals. Nevertheless, atmospheric Pb appeared to be the dominant source in this soil compartment. We conclude that Pb concentrations in the O-horizon of studied tundra soils - despite being much lower than in boreal soils and representative for one of the least exposed sites to atmospheric Pb contaminants in Europe - are mainly controlled by atmospheric inputs from distant anthropogenic sources. - Highlights: → We used Pb isotopic composition to aid interpretation of Pb profiles in tundra soils. → Ombrotrophic peat cores were used as records of atmospheric inputs of Pb.

  8. In situ vitrification of a mixed radioactive and hazardous waste site

    International Nuclear Information System (INIS)

    Koegler, S.S.

    1990-01-01

    This paper reports on a large-scale test of the in situ vitrification (ISV) process being performed on a mixed radioactive and hazardous-chemical contaminated waste site on the Hanford Site in southeastern Washington state. A mixed-waste site was selected for this large-scale test to demonstrate the applicability of ISV to mixed wastes common to many U.S. Department of Energy (DOE) sites. In situ vitrification is a thermal process that converts contaminated soil into a durable, leach-resistant product. Electrodes are inserted into the ground to the desired treatment depth, and a layer of electrically conductive material (a starter path) is placed between the electrodes. Electrical power is applied to the electrodes causing the conductive material to melt, thus melting the surrounding soil. Electrical energy is transferred to the molten soil through Joule (resistance) heating and the soil continues to melt to the desired depth, at which time the power to the electrodes is discontinued. A hood placed over the area to be vitrified allows the off gases from the process to be treated before their release to the atmosphere. After completion of the melt, the molten-soil cools and solidifies, and soil is backfilled over the subsided area

  9. Microbial communities in litter and soil - particles size fractionation, C- and N-pools and soil enzymes

    International Nuclear Information System (INIS)

    Stemmer, M.; Gerzabek, M.H.; Pichlmayer, F.; Kandeler, E.

    1995-08-01

    In this study we try to correlate C and N pool investigations to enzyme activities in particle size fractions of soils. Soil incubations in the lab (for one year) simulate two different conventional tillage treatments : (i) soil mixed with maize straw (GSF-mixed) and (ii) soil with maize straw lying on the top (home-mixed). The control soil is incubated without any amendment. The separation of the particle size fractions (2000 - 200 μm, 200 - 63 μm, 63 - 2 μm, 2 - 0.1 μm and 0.1 - 0 μm) is realized by a combination of wet-sieving and centrifugation. To disrupt aggregates we use a defined low-energy ultrasonication, which partly preserves microaggregates. The decomposition of organic C during the incubation can be observed clearly, the small amount of N in the added maize straw complicates the analysis. The isotopic measurements of δ13C and δ15N provide valuable additional informations in this context. Both enzymes, saccharase and xylanase, seem to react in a more sensitive way on the incorporation of the maize litter, than the chemical analysis of the pools. The saccharase activity, which seems to be a sensitive indicator for microbial biomass, shows different behaviour between the mix- and top-treatment. The xylanase activity is mainly located in the coarse sand fraction, this extracellular enzyme might be adsorbed by the particulate organic matter. The transfer of adhering coatings and small particles of the added maize to small sized particles during the fractionation procedure and the 'passive role' of the silt fraction, which could be due to the used method, are nonexpected results. (author)

  10. Effects of artificial defoliation of pines on the structure and physiology of the soil fungal community of a mixed pine-spruce forest

    Science.gov (United States)

    Cullings, Ken; Raleigh, Christopher; New, Michael H.; Henson, Joan

    2005-01-01

    Loss of photosynthetic area can affect soil microbial communities by altering the availability of fixed carbon. We used denaturing gradient gel electrophoresis (DGGE) and Biolog filamentous-fungus plates to determine the effects of artificial defoliation of pines in a mixed pine-spruce forest on the composition of the fungal community in a forest soil. As measured by DGGE, two fungal species were affected significantly by the defoliation of pines (P the frequency of members of the ectomycorrhizal fungus genus Cenococcum decreased significantly, while the frequency of organisms of an unidentified soil fungus increased. The decrease in the amount of Cenococcum organisms may have occurred because of the formation of extensive hyphal networks by species of this genus, which require more of the carbon fixed by their host, or because this fungus is dependent upon quantitative differences in spruce root exudates. The defoliation of pines did not affect the overall composition of the soil fungal community or fungal-species richness (number of species per core). Biolog filamentous-fungus plate assays indicated a significant increase (P the number of carbon substrates utilized by the soil fungi and the rate at which these substrates were used, which could indicate an increase in fungal-species richness. Thus, either small changes in the soil fungal community give rise to significant increases in physiological capabilities or PCR bias limits the reliability of the DGGE results. These data indicate that combined genetic and physiological assessments of the soil fungal community are needed to accurately assess the effect of disturbance on indigenous microbial systems.

  11. The origin of lead in the organic horizon of tundra soils: Atmospheric deposition, plant translocation from the mineral soil or soil mineral mixing?

    Energy Technology Data Exchange (ETDEWEB)

    Klaminder, Jonatan, E-mail: jonatan.klaminder@emg.umu.se [Department of Ecology and Environmental Science, Umea University, 90187 Umea (Sweden); Farmer, John G. [School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JN, Scotland (United Kingdom); MacKenzie, Angus B. [Scottish Universities Environmental Research Centre, East Kilbride, G75 0QF, Scotland (United Kingdom)

    2011-09-15

    Knowledge of the anthropogenic contribution to lead (Pb) concentrations in surface soils in high latitude ecosystems is central to our understanding of the extent of atmospheric Pb contamination. In this study, we reconstructed fallout of Pb at a remote sub-arctic region by using two ombrotrophic peat cores and assessed the extent to which this airborne Pb is able to explain the isotopic composition ({sup 206}Pb/{sup 207}Pb ratio) in the O-horizon of tundra soils. In the peat cores, long-range atmospheric fallout appeared to be the main source of Pb as indicated by temporal trends that followed the known European pollution history, i.e. accelerated fallout at the onset of industrialization and peak fallout around the 1960s-70s. The Pb isotopic composition of the O-horizon of podzolic tundra soil ({sup 206}Pb/{sup 207}Pb = 1.170 {+-} 0.002; mean {+-} SD) overlapped with that of the peat ({sup 206}Pb/{sup 207}Pb = 1.16 {+-} 0.01) representing a proxy for atmospheric aerosols, but was clearly different from that of the parent soil material ({sup 206}Pb/{sup 207}Pb = 1.22-1.30). This finding indicated that long-range fallout of atmospheric Pb is the main driver of Pb accumulation in podzolic tundra soil. In O-horizons of tundra soil weakly affected by cryoturbation (cryosols) however, the input of Pb from the underlying mineral soil increased as indicated by {sup 206}Pb/{sup 207}Pb ratios of up to 1.20, a value closer to that of local soil minerals. Nevertheless, atmospheric Pb appeared to be the dominant source in this soil compartment. We conclude that Pb concentrations in the O-horizon of studied tundra soils - despite being much lower than in boreal soils and representative for one of the least exposed sites to atmospheric Pb contaminants in Europe - are mainly controlled by atmospheric inputs from distant anthropogenic sources. - Highlights: {yields} We used Pb isotopic composition to aid interpretation of Pb profiles in tundra soils. {yields} Ombrotrophic peat

  12. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type

    DEFF Research Database (Denmark)

    Gomes, Helena I.; Dias-Ferreira, Celia; Ottosen, Lisbeth M.

    2015-01-01

    Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero...... nanoparticles. Remediation experiments are made with two different historically PCB contaminated soils, which differ in both soil composition and contamination source. Soil 1 is a mix of soils with spills of transformer oils, while Soil 2 is a superficial soil from a decommissioned school where PCB were used...... as windows sealants. Saponin, a natural surfactant, was also tested to increase the PCB desorption from soils and enhance dechlorination. Remediation of Soil 1 (with highest pH, carbonate content, organic matter and PCB concentrations) obtained the maximum 83% and 60% PCB removal with the two...

  13. How do peat type, sand addition and soil moisture influence the soil organic matter mineralization in anthropogenically disturbed organic soils?

    Science.gov (United States)

    Säurich, Annelie; Tiemeyer, Bärbel; Don, Axel; Burkart, Stefan

    2017-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. As a consequence of both drainage induced mineralization and anthropogenic sand mixing, large areas of former peatlands under agricultural use contain soil organic carbon (SOC) at the boundary between mineral and organic soils. Studies on SOC dynamics of such "low carbon organic soils" are rare as the focus of previous studies was mainly either on mineral soils or "true" peat soil. However, the variability of CO2 emissions increases with disturbance and therefore, we have yet to understand the reasons behind the relatively high CO2 emissions of these soils. Peat properties, soil organic matter (SOM) quality and water content are obviously influencing the rate of CO2 emissions, but a systematic evaluation of the hydrological and biogeochemical drivers for mineralization of disturbed peatlands is missing. With this incubation experiment, we aim at assessing the drivers of the high variability of CO2 emissions from strongly anthropogenically disturbed organic soil by systematically comparing strongly degraded peat with and without addition of sand under different moisture conditions and for different peat types. The selection of samples was based on results of a previous incubation study, using disturbed samples from the German Agricultural Soil Inventory. We sampled undisturbed soil columns from topsoil and subsoil (three replicates of each) of ten peatland sites all used as grassland. Peat types comprise six fens (sedge, Phragmites and wood peat) and four bogs (Sphagnum peat). All sites have an intact peat horizon that is permanently below groundwater level and a strongly disturbed topsoil horizon. Three of the fen and two of the bog sites have a topsoil horizon altered by sand-mixing. In addition the soil profile was mapped and samples for the determination of soil hydraulic properties were collected. All 64 soil columns (including four additional reference samples) will be installed

  14. Redistribution of soil nitrogen, carbon and organic matter by mechanical disturbance during whole-tree harvesting in northern hardwoods

    Science.gov (United States)

    Ryan, D.F.; Huntington, T.G.; Wayne, Martin C.

    1992-01-01

    To investigate whether mechanical mixing during harvesting could account for losses observed from forest floor, we measured surface disturbance on a 22 ha watershed that was whole-tree harvested. Surface soil on each 10 cm interval along 81, randomly placed transects was classified immediately after harvesting as mineral or organic, and as undisturbed, depressed, rutted, mounded, scarified, or scalped (forest floor scraped away). We quantitatively sampled these surface categories to collect soil in which preharvest forest floor might reside after harvest. Mechanically mixed mineral and organic soil horizons were readily identified. Buried forest floor under mixed mineral soil occurred in 57% of mounds with mineral surface soil. Harvesting disturbed 65% of the watershed surface and removed forest floor from 25% of the area. Mechanically mixed soil under ruts with organic or mineral surface soil, and mounds with mineral surface soil contained organic carbon and nitrogen pools significantly greater than undisturbed forest floor. Mechanical mixing into underlying mineral soil could account for the loss of forest floor observed between the preharvest condition and the second growing season after whole-tree harvesting. ?? 1992.

  15. [Effects of organic-inorganic mixed fertilizers on rice yield and nitrogen use efficiency].

    Science.gov (United States)

    Zhang, Xiao-li; Meng, Lin; Wang, Qiu-jun; Luo, Jia; Huang, Qi-wei; Xu, Yang-chun; Yang, Xing-ming; Shen, Qi-rong

    2009-03-01

    A field experiment was carried to study the effects of organic-inorganic mixed fertilizers on rice yield, nitrogen (N) use efficiency, soil N supply, and soil microbial diversity. Rapeseed cake compost (RCC), pig manure compost (PMC), and Chinese medicine residue compost (MRC) were mixed with chemical N, P and K fertilizers. All the treatments except CK received the same rate of N. The results showed that all N fertilizer application treatments had higher rice yield (7918.8-9449.2 kg x hm(-2)) than the control (6947.9 kg x hm(-2)). Compared with that of chemical fertilizers (CF) treatment (7918.8 kg x hm(-2)), the yield of the three organic-inorganic mixed fertilizers treatments ranged in 8532.0-9449.2 kg x hm(-2), and the increment was 7.7%-19.3%. Compared with treatment CF, the treatments of organic-inorganic mixed fertilizers were significantly higher in N accumulation, N transportation efficiency, N recovery rate, agronomic N use efficiency, and physiological N use efficiency. These mixed fertilizers treatments promoted rice N uptake and improved soil N supply, and thus, increased N use efficiency, compared with treatments CF and CK. Neighbor joining analysis indicated that soil bacterial communities in the five treatments could be classified into three categories, i.e., CF and CK, PMC and MRC, and RCC, implying that the application of exogenous organic materials could affect soil bacterial communities, while applying chemical fertilizers had little effect on them.

  16. compaction delay versus properties of cement-bound lateritic soil

    African Journals Online (AJOL)

    hp

    hour intervals on soil-cement mixes 3,5,8; and 1, 3, 5 percent cement contents by weight of dry soils, for ... stabilized soils were the Compaction test (Standard Proctor), the Unconfined Compressive. Strength .... Plastic limit (%). % passing BS ...

  17. Pilot tests of microbe-soil combined treatment of waste drilling sludge

    OpenAIRE

    Lirong Chen; Min Huang; Xuebin Jiang; Hui Li; Qiang Chen; Min Zhang; Shenglin Li

    2015-01-01

    Microbe-soil combined treatment is a newly developed technology in view of the defects of the curing process and waste drilling mud slag properties. In particular, 0.3%–0.5% bioremediation reagents were fully mixed with the waste drilling sludge according to its wet and dry degree, and 1.5 folds to twice weight of more finely ground soil was added in the mix, which was covered by soil of 5–15 cm thick and thereby grasses or greeneries were planted on the soil. The process was successfully app...

  18. A critical assessment of asphalt batching as a viable remedial option for hydrocarbon contaminated soils

    International Nuclear Information System (INIS)

    Elliott, E.J.; Brashears, D.F.

    1991-01-01

    Hot mix asphalt production equipment has been successfully utilized in the remediation of soils contaminated with petroleum hydrocarbons. This paper reports that there are two major ways in which this equipment can be used to remediate the petroleum contaminated soils; by incorporating the contaminated soil in the hot mix asphalt product or by using the equipment to clean the soil thermally of the contaminant, leaving a clean soil material. Both of these processes have limitations encompassing technical, political, and certainly liability problems. The remediation of contaminated soil in hot mix asphalt facilities is primarily a physical phenomenon relying on laws of heat and mass transfer. Although chemical changes do occur, the primary function of the process is to cause a physical separation of the contaminant from the soils

  19. Accumulation of soil organic C and N in planted forests fostered by tree species mixture

    Science.gov (United States)

    Liu, Yan; Lei, Pifeng; Xiang, Wenhua; Yan, Wende; Chen, Xiaoyong

    2017-09-01

    With the increasing trend of converting monocultures into mixed forests, more and more studies have been carried out to investigate the admixing effects on tree growth and aboveground carbon storage. However, few studies have considered the impact of mixed forests on belowground carbon sequestration, particularly changes in soil carbon and nitrogen stocks as a forest grows. In this study, paired pure Pinus massoniana plantations, Cinnamomum camphora plantations and mixed Pinus massoniana-Cinnamomum camphora plantations at ages of 10, 24 and 45 years were selected to test whether the mixed plantations sequestrate more organic carbon (OC) and nitrogen (N) in soils and whether this admixing effect becomes more pronounced with stand ages. The results showed that tree species identification, composition and stand age significantly affected soil OC and N stocks. The soil OC and N stocks were the highest in mixed Pinus-Cinnamomum stands compared to those in counterpart monocultures with the same age in the whole soil profile or specific soil depth layers (0-10, 10-20 and 20-30 cm) for most cases, followed by Cinnamomum stands and Pinus stands with the lowest. These positive admixing effects were mostly nonadditive. Along the chronosequence, the soil OC stock peaked in the 24-year-old stand and was maintained as relatively stable thereafter. The admixing effects were also the highest at this stage. However, in the topsoil layer, the admixing effects increased with stand ages in terms of soil OC stocks. When comparing mixed Pinus-Cinnamomum plantations with corresponding monocultures within the same age, the soil N stock in mixed stands was 8.30, 11.17 and 31.45 % higher than the predicted mean value estimated from counterpart pure species plantations in 10-, 24- and 45-year-old stands, respectively. This suggests that these admixing effects were more pronounced along the chronosequence.

  20. Feasilbility of phytoextraction to remediate cadmium and zinc contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Romkens, P.F.A.M.; Fokkema, M.J.; Song, J.; Luo, Y.M.; Japenga, J.; Zhao, F.J.

    2008-01-01

    A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and

  1. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Romkens, P.F.A.M.; Fokkema, M.J.; Song, J.; Luo, Y.; Japenga, J.; Zhao, F.J.

    2008-01-01

    A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and

  2. Effects of simulated acid rain on soil respiration and its components in a subtropical mixed conifer and broadleaf forest in southern China.

    Science.gov (United States)

    Liang, Guohua; Hui, Dafeng; Wu, Xiaoying; Wu, Jianping; Liu, Juxiu; Zhou, Guoyi; Zhang, Deqiang

    2016-02-01

    Soil respiration is a major pathway in the global carbon cycle and its response to environmental changes is an increasing concern. Here we explored how total soil respiration (RT) and its components respond to elevated acid rain in a mixed conifer and broadleaf forest, one of the major forest types in southern China. RT was measured twice a month in the first year under four treatment levels of simulated acid rain (SAR: CK, the local lake water, pH 4.7; T1, water pH 4.0; T2, water pH 3.25; and T3, water pH 2.5), and in the second year, RT, litter-free soil respiration (RS), and litter respiration (RL) were measured simultaneously. The results indicated that the mean rate of RT was 2.84 ± 0.20 μmol CO2 m(-2) s(-1) in the CK plots, and RS and RL contributed 60.7% and 39.3% to RT, respectively. SAR marginally reduced (P = 0.08) RT in the first year, but significantly reduced RT and its two components in the second year (P rain, the decline trend of RT in the forests in southern China appears to be attributable to the decline of soil respiration in the litter layer.

  3. Elemental and mineralogical changes in soils due to bioturbation along an earthworm invasion chronosequence in Northern Minnesota

    International Nuclear Information System (INIS)

    Resner, Kathryn; Yoo, Kyungsoo; Hale, Cindy; Aufdenkampe, Anthony; Blum, Alex; Sebestyen, Stephen

    2011-01-01

    Minnesota forested soils have evolved without the presence of earthworms since the last glacial retreat. When exotic earthworms arrive, enhanced soil bioturbation often results in dramatic morphological and chemical changes in soils with negative implications for the forests' sustainability. However, the impacts of earthworm invasion on geochemical processes in soils are not well understood. This study attempts to quantify the role of earthworm invasion in mineral chemical weathering and nutrient dynamics along an earthworm invasion chronosequence in a sugar maple forest in Northern Minnesota. Depth and rates of soil mixing can be tracked with atmospherically derived short lived radioisotopes 210 Pb and 137 Cs. Their radioactivities increase in the lower A horizon at the expense of the peak activities near the soil surface, which indicate that soil mixing rate and its depth reach have been enhanced by earthworms. Enhanced soil mixing by earthworms is consistent with the ways that the vertical profiles of elemental and mineralogical compositions were affected by earthworm invasion. Biologically cycled Ca and P have peak concentrations near the soil surface prior to earthworm invasion. However, these peak abundances significantly declined in the earthworm invaded soils presumably due to enhanced soil mixing. It is clear that enhanced soil mixing due to earthworms also profoundly altered the vertical distribution of most mineral species within A horizons. Though the mechanisms are not clear yet, earthworm invasion appears to have contributed to net losses of clay mineral species and opal from the A horizons. As much as earthworms vertically relocated minerals and elements, they also intensify the contacts between organic matter and cations as shown in the increased amount of Ca and Fe in organically complexed and in exchangeable pools. With future studies on soil mixing rates and elemental leaching, this study will quantitatively and mechanically address the role of

  4. Effects of tree species on soil properties in a forest of the Northeastern United States

    NARCIS (Netherlands)

    Dijkstra, F.A.

    2001-01-01

    Large differences in soil pH and available Ca in the surface soil exist among tree species growing in a mixed hardwood forest in northwestern Connecticut. The observed association between tree species and specific soil chemical properties within mixed-species stands implies that changes in

  5. Effects of sole and mixed culture of wheat crop and phosphorus fertilization on the solubility of phosphorus in the soil

    International Nuclear Information System (INIS)

    Mahmood, H. R.; Ali, M. A.; Ahmad, N.

    2016-01-01

    Farmers face a challenging task to harvest yield potential of crops as well as improving fertilizer use-efficiency under their limited farm resources. Among the macronutrients, the relative efficiency of phosphorus fertilizer is very low in alkaline-calcareous soils under arid and semi-arid environments. Therefore, a field study was undertaken to quantify the interactive effects of wheat varieties and phosphorous fertilization on grain yield and solubility of phosphorous nutrient in the rhizosphere. The treatments consisted of (a) two wheat varieties (Sehr-2006, Shafaq-2006, mixed culture) and (b) three phosphorus levels (0, 45, 85 kg P/sub 2/O/sub 5/ per hectare) were arranged in randomized complete block design and replicated four times. The Results showed that biological grain yield and 1000-grain weight of wheat increased by 8.7 percent, 14.46 percent and 8.48 percent under mixed culture of varieties sehr-2006 and shafaq-2006, respectively over the solely grown varieties. The application of phosphorus at the rate 85 kg P/sub 2/O/sub 5/ ha/sup -1/ resulted in increased quantity of total biological yield, grain yield and 1000-grain weight compared to unfertilized crop. The uptake of nitrogen and phosphorus contents were substantially enhanced under mixed culture cropping pattern over sole wheat cultivars. The availability of phosphorus was increased by 19.70 percent under mixed cropping over sole culture. It is inferred from the study that mixed cropping produced synergetic effects on the availability of nutrients in the rhizosphere, and thereby resulted in the higher production of wheat crop. (author)

  6. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils

    Science.gov (United States)

    Delgado-Balbuena, Laura; Bello-López, Juan M.; Navarro-Noya, Yendi E.; Rodríguez-Valentín, Analine; Luna-Guido, Marco L.; Dendooven, Luc

    2016-01-01

    Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826)) accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485) inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100%) > earthworms applied (92%) > organic material applied (77%) > untreated soil (57%) > surfactant applied (34%) after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes), Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes) and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil, but the

  7. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils.

    Directory of Open Access Journals (Sweden)

    Laura Delgado-Balbuena

    Full Text Available Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826 accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485 inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100% > earthworms applied (92% > organic material applied (77% > untreated soil (57% > surfactant applied (34% after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes, Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil

  8. Pysical Properties of Soil with Addition of Sewage Dried with Heated Edible Oil

    OpenAIRE

    大坪, 政美; 中司, 敬; 中園, 修三; 中園, 英司; 徳留, 斉将

    2000-01-01

    The present study investigates the water holding capacity, density, permeability, and swelling properties of the soil samples mixed with the sewage that was dried with heated edible oil. For comparison similar experiments were conducted for the soil samples mixed with sun-dried sewage and sewage compost. The water holding capacity was higher for the soil samples with oil-dried and sun-dried sewage addition than for those with sewage-compost addition. For statically compacted soil samples, wit...

  9. Biodegradation of blend films PVA/PVC, PVA/PCL in soil and soil with landfill leachate

    Directory of Open Access Journals (Sweden)

    Adriana de Campos

    2011-12-01

    Full Text Available This study investigated the biodegradation of blends films of poly(vinyl alcohol/poly(vinyl chloride (PVA/PVC and poly(vinyl alcohol/poly(caprolactone (PVA/PCL blends films prepared with dimethylformamide under a variety of conditions by respirometry, spectrophotometry (FTIR, scanning electron microscopy (SEM, and contact angle. The films were buried in the garden soil and in the soil mixed with the landfill leachate for 120 days at 28ºC. Significant levels of biodegradation were achieved in fairly short incubation times in the soil. The results indicated that PVA was the most biodegradable film in the soil and in the soil with the leachate.

  10. A study on the chopping and mixing of cotton stalks with soil

    African Journals Online (AJOL)

    USER

    2010-07-26

    Jul 26, 2010 ... INTRODUCTION ... porating plant residues into soil reduces the risk of soil ... stalks into soil increases the productivity of the field. ... producers were asked about the total area of their agricultural fields .... are made of forged steel in one piece. ... maintenance works such as thinning, weeding and irrigation.

  11. Radiocarbon enrichment of soil organic matter fractions in New Zealand soils

    International Nuclear Information System (INIS)

    Goh, K.M.; Stout, J.D.; Rafter, T.A.

    1977-01-01

    Soil organic matter was extracted using the classical procedure and fractionated into humin (nonextractable), humic acid, and fulvic acid. The masses of total organic carbon in the whole soil samples and in the fractions, together with their 14 C content and 13 C/ 12 C ratios, were also determined. The following New Zealand soils were studied: a Fluvaquent, with experimental pasture plots, formed from deeply mixing subsoils of low organic carbon content; a Typic Fragiaqualf and a Typic Dystrochrept with moderately productive pastures; and an Umbric Vitrandept at two sites under native tussock and under introduced grasses of low productivity. The degree of radiocarbon enrichment of the different fractions in both topsoil and subsoil samples was examined in relation to differences in soil type, soil biological activity, and vegetation history. There was variation in the distribution and enrichment of the organic matter fractions both within the same soil type and between soil types, as well as between the topsoil and subsoil of the same soil. Differences appeared to be primarily a function of the stage of decomposition and translocation of the fractions through the soil rather than due to vegetation differences

  12. Relationship between soil cellulolytic activity and suppression of seedling blight of barley in arable soils

    DEFF Research Database (Denmark)

    Rasmussen, Peter Have; Knudsen, I.; Elmholt, S.

    2002-01-01

    the Hanes-Wolf transformation of the Michaelis-Menten equation. Soil samples from 6 to 13 cm depth were collected in the early spring as undisturbed blocks from 10 arable soils with different physico-chemical properties and cultivation history. Significant correlations were found between soil suppresiveness......The objective was to investigate the relationship between soil suppression of seedling blight of barley caused by Fusarium culmorum (W.G. Smith) Sacc. and the soil cellulolytic activity of beta-glucosidase, cellobiohydrolase and endocellulase. Disease suppression was investigated in bioassays...... with test soils mixed with sand, and barley seeds inoculated with F. culmorum. After 19 days, disease severity was evaluated on the barley seedlings. Soil cellulolytic activities were measured using 4-methylumbelliferyl-labelled fluorogenic substrates, and were expressed as V-max values obtained by using...

  13. Calcium-based stabilizer induced heave in Oklahoma sulfate-bearing soils.

    Science.gov (United States)

    2011-06-01

    The addition of lime stabilizers can create problems in soils containing sulfates. In most cases, lime is mixed with expansive soils rendering them non-expansive; however, when a certain amount of sulfate is present naturally in expansive soils, the ...

  14. Omaha Soil Mixing Study: Redistribution of Lead in Remediated Residential Soils Due to Excavation or Homeowner Disturbance.

    Science.gov (United States)

    Urban soils within the Omaha Lead Superfund Site have been contaminated with lead (Pb) from atmospheric deposition of particulate materials from lead smelting and recycling activities. In May of 2009 the Final Record of Decision stated that any residential soil exceeding the pre...

  15. BIOCHEMICAL PROCESSES IN CHERNOZEM SOIL UNDER DIFFERENT FERTILIZATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Ecaterina Emnova

    2012-06-01

    Full Text Available The paper deals with the evaluation of the intensity of certain soil biochemical processes (e.g. soil organic C mineralization at Organic and mixed Mineral+Organic fertilization of typical chernozem in crop rotation dynamics (for 6 years by use of eco-physiological indicators of biological soil quality: microbial biomass carbon, basal soil respiration, as well as, microbial and metabolic quotients. Soil sampling was performed from a long-term field crop experiment, which has been established in 1971 at the Balti steppe (Northern Moldova. The crop types had a more considerable impact on the soil microbial biomass accumulation and community biochemical activity compared to long-term Organic or mixed Mineral + Organic fertilizers amendments. The Org fertilization system doesn’t make it possible to avoid the loss of organic C in arable typical chernozem. The organic fertilizer (cattle manure is able to mitigate the negative consequences of long-term mineral fertilization.

  16. Urban tree effects on soil organic carbon.

    Directory of Open Access Journals (Sweden)

    Jill L Edmondson

    Full Text Available Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered.

  17. Closed depression topography and Harps soil, revisited

    Science.gov (United States)

    The Harps soil (Fine-loamy, mixed superactive, mesic Typic Calciaquoll) developed around wetland depressions. The purpose of this study is 1) to delineate surface deposition of carbonates representing Harps soil which results from outward and upward flow around closed depressions, and 2) to relate t...

  18. Effect of waste synthetic bag pieces on the CBR value of expansive Soil

    Directory of Open Access Journals (Sweden)

    Ajay Kumar Agarwal

    2015-03-01

    Full Text Available Expansive soils such as black cotton soil which are widely distributed in India have a tendency for volume changes due to change in moisture content. Also exhibits very low bearing capacity and high compressibility. Stabilization of such soil by admixture is used commonly now days. But no mix is suitable to improve all the types of soil. But it is obvious that depending on type of soil & type of admixture the optimum mix can be designed.  In this paper a mix has been designed to improve the bearing capacity of soil by using fly ash and lime mixture, reinforced with waste synthetic bag pieces. Various tests are carried out to determine the CBR value and other soil properties with and without using any admixture and reinforcement. The maximum value of CBR was found to be23.82% for 2.5 mm penetration and 22.21% for 5 mm penetration, when waste synthetic bag pieces of size 2 cm * 2 cm were used at a proportion of 0.1%.

  19. Sustainable stabilization of sulfate-bearing soils with expansive soil-rubber technology.

    Science.gov (United States)

    2013-03-01

    The beneficial use of scrap tire rubber mixed with expansive soils is of interest to civil engineering : applications since the swell percent and the swell pressure can be potentially reduced with no deleterious : effect to the shear strength of the ...

  20. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. I. From the tree crown to leaf cell level

    International Nuclear Information System (INIS)

    Vollenweider, Pierre; Menard, Terry; Guenthardt-Goerg, Madeleine S.

    2011-01-01

    In order to achieve efficient phytoextraction of heavy metals using trees, the metal allocation to aboveground tissues needs to be characterised. In his study, the distribution of heavy metals, macro- and micronutrients and the metal micro-localisation as a function of the leaf position and heavy metal treatment were analysed in poplars grown on soil with mixed metal contamination. Zinc was the most abundant contaminant in both soil and foliage and, together with cadmium, was preferentially accumulated in older foliage whereas excess copper and lead were not translocated. Changes in other element concentrations indicated an acceleration in aging as a consequence of the metal treatment. Excess zinc was irregularly accumulated inside leaf tissues, tended to saturate the veins and was more frequently stored in cell symplast than apoplast. Storage compartments including metabolically safe and sensitive subcellular sites resulted in sizable metal accumulation as well as stress reactions. - Within foliage of poplars growing on contaminated soils, Zinc was stored at metabolically safe as well as sensitive subcellular sites, ensuring sizable bioaccumulation but also causing injuries.

  1. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. I. From the tree crown to leaf cell level

    Energy Technology Data Exchange (ETDEWEB)

    Vollenweider, Pierre, E-mail: pierre.vollenweider@wsl.c [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Menard, Terry; Guenthardt-Goerg, Madeleine S. [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2011-01-15

    In order to achieve efficient phytoextraction of heavy metals using trees, the metal allocation to aboveground tissues needs to be characterised. In his study, the distribution of heavy metals, macro- and micronutrients and the metal micro-localisation as a function of the leaf position and heavy metal treatment were analysed in poplars grown on soil with mixed metal contamination. Zinc was the most abundant contaminant in both soil and foliage and, together with cadmium, was preferentially accumulated in older foliage whereas excess copper and lead were not translocated. Changes in other element concentrations indicated an acceleration in aging as a consequence of the metal treatment. Excess zinc was irregularly accumulated inside leaf tissues, tended to saturate the veins and was more frequently stored in cell symplast than apoplast. Storage compartments including metabolically safe and sensitive subcellular sites resulted in sizable metal accumulation as well as stress reactions. - Within foliage of poplars growing on contaminated soils, Zinc was stored at metabolically safe as well as sensitive subcellular sites, ensuring sizable bioaccumulation but also causing injuries.

  2. Degradation of Total Petroleum Hydrocarbon (TPH) in Contaminated Soil Using Bacillus pumilus MVSV3.

    Science.gov (United States)

    Varma, Surendra Sheeba; Lakshmi, Mahalingam Brinda; Rajagopal, Perumalsam; Velan, Manickam

    2017-01-01

     A study on bioremediation of soil contaminated with petroleum sludge was performed using Bacillus pumilus/MVSV3 (Accession number JN089707). In this study, 5 kg of agricultural soil was mixed well with 5% oil sludge and fertilizers containing nitrogen, phosphorus and potassium (N:P:K). The treatment resulted in 97% removal of total petroleum hydrocarbon (TPH) in 122 d in bacteria mixed contaminated soil when compared to 12% removal of TPH in uninoculated contaminated soil. The population of the microorganism remained stable after introduced into the oil environment. The physical and chemical parameters of the soil mixed with sludge showed variation indicating improvement and the pH level decreased during the experiment period. Elemental analysis and Gas Chromatography-Mass Spectroscopy (GC-MS) analysis revealed the bacterial ability to degrade oil sludge components. Growth experiments with Trigonellafoenumgraecum (Fenugreek) showed the applicability of bioremediated soil for the production.

  3. Transfer of 137Cs from soil to plants in different types of soils

    International Nuclear Information System (INIS)

    Todorovic, D.; Radenkovic, M.; Popovic, D.; Djuric, G.

    1998-01-01

    The investigations were carried out in two mountainous regions in the West and South region of the country). Three main types of soils were examined: shale, limestone and the mixed type, and several plants: grass, meadow flora, pinewood, blueberries, an endemic species of Mt. Sara and the bioindicators: moss and lichen. The transfer factors lay in the range of 0.1 - 2.0 in dependence on the type of soil and plant (3.0 - 10.0 for the bioindicator plants). The vertical distribution of 13' 7Cs in the first 15 cm layer of the soil indicates a slow migration of Chernobyl cesium through soil, except on riversides where the wash-out effect plays a role. Generally, the concentration of 137 Cs in soils strongly depends on the configuration of the ground

  4. Radioisotope tracer approach for understanding the impacts of global change-induced pedoturbation on soil C dynamics

    Science.gov (United States)

    Gonzalez-Meler, M. A.; Sturchio, N. C.; Sanchez-de Leon, Y.; Blanc-Betes, E.; Taneva, L.; Poghosyan, A.; Norby, R. J.; Filley, T. R.; Guilderson, T. P.; Welker, J. M.

    2010-12-01

    Biogeochemical carbon-cycle feedbacks to climate are apparent but uncertain, primarily because of gaps in mechanistic understanding on the ecosystem processes that drive carbon cycling and storage in terrestrial ecosystems, particularly in soils. Recent findings are increasingly recognizing the interaction between soil biota and the soil physical environment. Soil carbon turnover is partly determined by burial of organic matter and its physical and chemical protection. These factors are potentially affected by changes in climate (freezing-thawing or wet-drying cycles) or ecosystem structure including biological invasions. A major impediment to understanding dynamics of soil C in terrestrial systems is our inability to measure soil physical processes such as soil mixing rates or turnover of soil structures, including aggregates. Here we present a multiple radioisotope tracer approach (naturally occurring and man-made) to measure soil mixing rates in response to global change. We will present evidence of soil mixing rate changes in a temperate forest exposed to increased levels of atmospheric CO2 and in a tundra ecosystem exposed to increased thermal insulation. In both cases, radioisotope tracers proved to be an effective way to measure effects of global change on pedoturbation. Results also provided insights into the specific mechanisms involved in the responses. Elevated CO2 resulted in deeper soil mixing cells (increased by about 5cm on average) when compared to control soils as a consequence of changes in biota (increased root growth, higher earthworm density). In the tundra, soil warming induced higher rates of cryoturbation, resulting in what appears to be a net uplift of organic matter to the surface thereby exposing deeper C to decomposers. In both cases, global change factors affected the vertical distribution of C and changed the amount of bulk soil actively involved in soil processes. As a consequence, comparisons of C budgets to a given soil depth in

  5. Elemental and mineralogical changes in soils due to bioturbation along an earthworm invasion chronosequence in Northern Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Resner, Kathryn [Dept. of Soil, Water, and Climate, University of Minnesota, 439 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN, 55108-6028 (United States); Yoo, Kyungsoo, E-mail: kyoo@umn.edu [Dept. of Soil, Water, and Climate, University of Minnesota, 439 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN, 55108-6028 (United States); Hale, Cindy [University of Minnesota Duluth, The Natural Resources Research Institute, 5013 Miller Trunk Hwy. Duluth, MN 55811 (United States); Aufdenkampe, Anthony [Assistant Research Scientist - Isotope and Organic Geochemistry, Stroud Water Research Center, 970 Spencer Road, Avondale, PA 19311 (United States); Blum, Alex [US Geological Survey, 3215 Marine St., Boulder, CO 80303 (United States); Sebestyen, Stephen [Research Hydrologist, USDA Forest Service, Northern Research Station, Grand Rapids, MN 55744-3399 (United States)

    2011-06-15

    Minnesota forested soils have evolved without the presence of earthworms since the last glacial retreat. When exotic earthworms arrive, enhanced soil bioturbation often results in dramatic morphological and chemical changes in soils with negative implications for the forests' sustainability. However, the impacts of earthworm invasion on geochemical processes in soils are not well understood. This study attempts to quantify the role of earthworm invasion in mineral chemical weathering and nutrient dynamics along an earthworm invasion chronosequence in a sugar maple forest in Northern Minnesota. Depth and rates of soil mixing can be tracked with atmospherically derived short lived radioisotopes {sup 210}Pb and {sup 137}Cs. Their radioactivities increase in the lower A horizon at the expense of the peak activities near the soil surface, which indicate that soil mixing rate and its depth reach have been enhanced by earthworms. Enhanced soil mixing by earthworms is consistent with the ways that the vertical profiles of elemental and mineralogical compositions were affected by earthworm invasion. Biologically cycled Ca and P have peak concentrations near the soil surface prior to earthworm invasion. However, these peak abundances significantly declined in the earthworm invaded soils presumably due to enhanced soil mixing. It is clear that enhanced soil mixing due to earthworms also profoundly altered the vertical distribution of most mineral species within A horizons. Though the mechanisms are not clear yet, earthworm invasion appears to have contributed to net losses of clay mineral species and opal from the A horizons. As much as earthworms vertically relocated minerals and elements, they also intensify the contacts between organic matter and cations as shown in the increased amount of Ca and Fe in organically complexed and in exchangeable pools. With future studies on soil mixing rates and elemental leaching, this study will quantitatively and mechanically

  6. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling.

    Directory of Open Access Journals (Sweden)

    Bing Mao

    Full Text Available Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling.

  7. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling.

    Science.gov (United States)

    Mao, Bing; Mao, Rong; Zeng, De-Hui

    2017-01-01

    Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling.

  8. Peat soils stabilization using Effective Microorganisms (EM)

    Science.gov (United States)

    Yusof, N. Z.; Samsuddin, N. S.; Hanif, M. F.; Syed Osman, S. B.

    2018-04-01

    Peat soil is known as geotechnical problematic soil since it is the softest soil having highly organic and moisture content which led to high compressibility, low shear strength and long-term settlement. The aim of this study was to obtain the stabilized peat soils using the Effective Microorganisms (EM). The volume of EM added and mixed with peat soils varied with 2%, 4%, 6%, 8% and 10% and then were cured for 7, 14 and 21 days. The experiment was done for uncontrolled and controlled moisture content. Prior conducting the main experiments, the physical properties such as moisture content, liquid limit, specific gravity, and plastic limit etc. were measure for raw peat samples. The Unconfined Compressive Strength (UCS) test was performed followed by regression analysis to check the effect of EM on the soil strength. Obtained results have shown that the mix design for controlled moisture contents showed the promising improvement in their compressive strength. The peat soil samples with 10% of EM shows the highest increment in UCS value and the percentage of increments are in the range of 44% to 65% after curing for 21 days. The regression analysis of the EM with the soil compressive strength showed that in controlled moisture conditions, EM significantly improved the soil stability as the value of R2 ranged between 0.97 – 0.78. The results have indicated that the addition of EM in peat soils provides significant improving in the strength of the soil as well as the other engineering properties.

  9. [Soil hydrolase characteristics in late soil-thawing period in subalpine/alpine forests of west Sichuan].

    Science.gov (United States)

    Tan, Bo; Wu, Fu-Zhong; Yang, Wan-Qin; Yu, Sheng; Yang, Yu-Lian; Wang, Ao

    2011-05-01

    Late soil-thawing period is a critical stage connecting winter and growth season. The significant temperature fluctuation at this stage might have strong effects on soil ecological processes. In order to understand the soil biochemical processes at this stage in the subalpine/alpine forests of west Sichuan, soil samples were collected from the representative forests including primary fir forest, fir and birch mixed forest, and secondary fir forest in March 5-April 25, 2009, with the activities of soil invertase, urease, and phosphatase (neutral, acid and alkaline phosphatases) measured. In soil frozen period, the activities of the three enzymes in test forests still kept relatively higher. With the increase of soil temperature, the activities of hydrolases at the early stage of soil-thawing decreased rapidly after a sharp increase, except for neutral phosphatease. Thereafter, there was an increase in the activities of urease and phosphatase. Relative to soil mineral layer, soil organic layer had higher hydrolase activity in late soil-thawing period, and showed more obvious responses to the variation of soil temperature.

  10. Hydroxyatrazine in soils and sediments

    Science.gov (United States)

    Lerch, R.N.; Thurman, E.M.; Blanchard, P.E.

    1999-01-01

    Hydroxyatrazine (HA) is the major metabolite of atrazine in most surface soils. Knowledge of HA sorption to soils, and its pattern of stream water contamination suggest that it is persistent in the environment. Soils with different atrazine use histories were collected from four sites, and sediments were collected from an agricultural watershed. Samples were exhaustively extracted with a mixed-mode extractant, and HA was quantitated using high performance liquid chromatography with UV detection. Atrazine, deethylatrazine (DEA), and deisopropylatrazine (DIA) were also measured in all samples. Concentrations of HA were considerably greater than concentrations of atrazine, DEA, and DIA in all soils and sediments studied. Soil concentrations of HA ranged from 14 to 640 ??g/kg with a median concentration of 84 ??g/kg. Sediment concentrations of HA ranged from 11 to 96 ??g/kg, with a median concentration of 14 ??g/kg. Correlations of HA and atrazine concentrations to soil properties indicated that HA levels in soils were controlled by sorption of atrazine. Because atrazine hydrolysis is known to be enhanced by sorption and pH extremes, soils with high organic matter (OM) and clay content and low pH will result in greater atrazine sorption and subsequent hydrolysis. Significant correlation of HA concentrations to OM, pH, and cation exchange capacity of sediments indicated that mixed-mode sorption (i.e., binding by cation exchange and hydrophobic interactions) was the mechanism controlling HA levels in sediment. The presence of HA in soils and stream sediments at the levels observed support existing hypotheses regarding its transport in surface runoff. These results also indicated that persistence of HA in terrestrial and aquatic ecosystems is an additional risk factor associated with atrazine usage.

  11. Release of chlorinated, brominated and mixed halogenated dioxin-related compounds to soils from open burning of e-waste in Agbogbloshie (Accra, Ghana).

    Science.gov (United States)

    Tue, Nguyen Minh; Goto, Akitoshi; Takahashi, Shin; Itai, Takaaki; Asante, Kwadwo Ansong; Kunisue, Tatsuya; Tanabe, Shinsuke

    2016-01-25

    Although complex mixtures of dioxin-related compounds (DRCs) can be released from informal e-waste recycling, DRC contamination in African e-waste recycling sites has not been investigated. This study examined the concentrations of DRCs including chlorinated, brominated, mixed halogenated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs, PBDD/Fs, PXDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in surface soil samples from the Agbogbloshie e-waste recycling site in Ghana. PCDD/F and PBDD/F concentrations in open burning areas (18-520 and 83-3800 ng/g dry, respectively) were among the highest reported in soils from informal e-waste sites. The concentrations of PCDFs and PBDFs were higher than those of the respective dibenzo-p-dioxins, suggesting combustion and PBDE-containing plastics as principal sources. PXDFs were found as more abundant than PCDFs, and higher brominated analogues occurred at higher concentrations. The median total WHO toxic equivalent (TEQ) concentration in open burning soils was 7 times higher than the U.S. action level (1000 pg/g), with TEQ contributors in the order of PBDFs>PCDD/Fs>PXDFs. DRC emission to soils over the e-waste site as of 2010 was estimated, from surface soil lightness based on the correlations between concentrations and lightness, at 200mg (95% confidence interval 93-540 mg) WHO-TEQ over three years. People living in Agbogbloshie are potentially exposed to high levels of not only chlorinated but also brominated DRCs, and human health implications need to be assessed in future studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    Science.gov (United States)

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  13. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles.

    Science.gov (United States)

    Vollenweider, Pierre; Bernasconi, Petra; Gautschi, Hans-Peter; Menard, Terry; Frey, Beat; Günthardt-Goerg, Madeleine S

    2011-01-01

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing β-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles

    Energy Technology Data Exchange (ETDEWEB)

    Vollenweider, Pierre, E-mail: pierre.vollenweider@wsl.c [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Bernasconi, Petra [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Environmental Protection Office (AfU), Aabachstrasse 5, 6300 Zug (Switzerland); Gautschi, Hans-Peter [Centre for Microscopy and Image Analysis (CMI), University of Zurich, Gloriastrasse 30, 8006 Zuerich (Switzerland); Menard, Terry; Frey, Beat; Guenthardt-Goerg, Madeleine S. [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2011-01-15

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing {beta}-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. - Zinc contaminants translocated to symplast of aged leaves were detoxified by phytic acid ligands.

  15. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles

    International Nuclear Information System (INIS)

    Vollenweider, Pierre; Bernasconi, Petra; Gautschi, Hans-Peter; Menard, Terry; Frey, Beat; Guenthardt-Goerg, Madeleine S.

    2011-01-01

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing β-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. - Zinc contaminants translocated to symplast of aged leaves were detoxified by phytic acid ligands.

  16. Proximal sensing for soil carbon accounting

    OpenAIRE

    England, Jacqueline R.; Viscarra Rossel, Raphael A.

    2018-01-01

    Maintaining or increasing soil organic carbon (C) is vital for securing food production and for mitigating greenhouse gas (GHG) emissions, climate change, and land degradation. Some land management practices in cropping, grazing, horticultural, and mixed farming systems can be used to increase organic C in soil, but to assess their effectiveness, we need accurate and cost-efficient methods for measuring and monitoring the change. To determine the stock of organic C in soil, one requires...

  17. Superfund Innovative Technology Evaluation - Demonstration Bulletin: In-Situ Soil Stabilization

    Science.gov (United States)

    In-situ stabilization technology immobilizes organics and inorganic compounds in wet or dry soils by using reagents (additives) to polymerize with the soils and sludges producing a cement-like mass. Two basic components of this technology are the Geo-Con/DSM Deep Soil Mixing Sy...

  18. CLASSIFICATION OF ANTHROPOGENIC TRANSFORMATIONS SOILS URBOECOSYSTEMS OF DNEPROPETROVSK

    Directory of Open Access Journals (Sweden)

    YAKOVYSHYNA T.F.

    2015-12-01

    Full Text Available Raising of problem. The functioning of the city, as artificially created system of the result of the anthropogenic activity, promotes degradation and, sometimes, destruction of the environment, with change it to the technogenic replacement. First of all suffers the soil, as a basic component of any ecosystem, where the circulation of materials close, because it is a powerful biogeochemical barrier to their migration, able to deposit toxicants a long time through its protective functions. The leading role of the formation of the urban soil plays an anthropogenic factor, which is able to influence directly – the destruction of the soil profile due to construction activity and indirectly – with aerogenic or hydrogenous pollution xenobiotics contained in the emissions and discharges of the industrial enterprises; and it is determined by the type of economic use and history of area developing. The variability of using the urban soil is reflected in the soil profile and contributed to the creation of the organic-mineral layer by the mixing, mound, burial and (or contamination of the different substances on the surface. Therefore, classification of the urban soils by the anthropogenic destruction degree of the soil profile is very important scientific and practical task for the urban ecology to the achievement standards of the ecological safety of the modern city, because the restoring of their protective functions is impossible without knowledge of the morphological structure. Purpose. Classify the anthropogenical soils of city Dnipropetrovsk disturbed by the construction activities by the determining of the morphological characteristics of the soil profile structure with separation of the anthropogenic and technogenic surface formations compared to the zonal soil – ordinery chernozem. Conclusion. Within urboecosystem city Dnipropetrovsk long-term human impact to the zonal soil – chernozem led to its transformation into urbanozem witch

  19. [Soil quality assessment of forest stand in different plantation esosystems].

    Science.gov (United States)

    Huang, Yu; Wang, Silong; Feng, Zongwei; Gao, Hong; Wang, Qingkui; Hu, Yalin; Yan, Shaokui

    2004-12-01

    After a clear-cutting of the first generation Cunninghamia lanceolata plantation in 1982, three plantation ecosystems, pure Michelia macclurei stand (PMS), pure Chinese-fir stand (PCS) and their mixed stand, were established in spring 1983, and their effects on soil characteristics were evaluated by measuring some soil physical, chemical, microbiological and biochemical parameters. After 20 years' plantation, all test indices showed differences among different forest management models. Both PMS and MCM had a favorable effect on soil fertility maintenance. Soil quality assessment showed that some soil functions, e.g., water availability, nutrient availability, root suitability and soil quality index were all in a moderate level under the mixed and pure PMS stands, whereas in a relatively lower level under successive PCS stand. The results also showed that there existed close correlations between soil total organic C (TOC), cation exchange capacity (CEC), microbial biomass-C (Cmic) and other soil physical, chemical and biological indices. Therefore, TOC, CEC and Cmic could be used as the indicators in assessing soil quality in this study area. In addition, there were also positive correlations between soil microbial biomass-C and TOC, soil microbial biomass-N and total N, and soil microbial biomass-P and total P in the present study.

  20. Soil water content plays an important role in soil-atmosphere exchange of carbonyl sulfide (OCS)

    Science.gov (United States)

    Yi, Zhigang; Behrendt, Thomas; Bunk, Rüdiger; Wu, Dianming; Kesselmeier, Jürgen

    2016-04-01

    Carbonyl sulfide (OCS) is a quite stable gas in the troposphere and is transported up to the stratosphere, where it contributes to the sulfate aerosol layer (Crutzen 1976). The tropospheric concentration seems to be quite constant, indicating a balance between sinks and sources. Recent work by Sandoval-Soto et al. (2005) demonstrated the enormous strength of the vegetation sink and the urgent needs to understand the sinks and sources. The role of soils is a matter of discussion (Kesselmeier et al., 1999; Van Diest and Kesselmeier, 2008; Maseyk et al., 2014; Whelan et al., 2015). To better understand the influence of soil water content and OCS mixing ratio on OCS fluxes, we used an OCS analyzer (LGR COS/CO Analyzer 907-0028, Los Gatos, CA, USA) coupled with automated soil chamber system (Behrendt et al., 2014) to measure the OCS fluxes with a slow drying of four different types of soil (arable wheat soil in Mainz, blueberry soil in Waldstein, spruce soil in Waldstein and needle forest soil in Finland). Results showed that OCS fluxes as well as the optimum soil water content for OCS uptake varied significantly for different soils. The net production rates changed significantly with the soil drying out from 100% to about 5% water holding capacity (WHC), implying that soil water content play an important role in the uptake processes. The production and uptake processes were distinguished by the regression of OCS fluxes under different OCS mixing ratios. OCS compensation points (CP) were found to differ significantly for different soil types and water content, with the lowest CP at about 20% WHC, implying that when estimating the global budgets of OCS, especially for soils fluxes, soil water content should be taken into serious consideration. References Crutzen, P. J. 1976, Geophys. Res. Lett., 3, 73-76. Sandoval-Soto, L. et al., 2005, Biogeosciences, 2, 125-132. Kesselmeier, J. et al., 1999, J. Geophys. Res., 104, 11577-11584. Van Diest, H. and Kesselmeier, J. 2008

  1. Mixed contaminant interactions in soil: Implications for bioavailability ...

    African Journals Online (AJOL)

    user

    Liu H, Zhang D, Li M, Tong L, Feng L (2013b). Competitive adsorption and transport of phthalate esters in the clay layer of JiangHan plain,. China. Chemosphere 92(11):1542-1549. Loffredo E, Senesi N (2006). Fate of anthropogenic organic pollutants in soils with emphasis on adsorption/desorption processes of endocrine.

  2. Effect of biochar on soil properties and lead (Pb) availability in a ...

    African Journals Online (AJOL)

    jan

    Soil sample was collected from military camp of Jimma .... Physicochemical properties of soil sample and the soil-biochar mixture. The particle size ..... Elements uptake by metal ... solidification/stabilization of hazardous, radioactive, and mixed.

  3. Organochlorine pesticides in soils of Mexico and the potential for soil-air exchange

    International Nuclear Information System (INIS)

    Wong, Fiona; Alegria, Henry A.; Bidleman, Terry F.

    2010-01-01

    The spatial distribution of organochlorine pesticides (OCs) in soils and their potential for soil-air exchange was examined. The most prominent OCs were the DDTs (Geometric Mean, GM = 1.6 ng g -1 ), endosulfans (0.16 ng g -1 ), and toxaphenes (0.64 ng g -1 ). DDTs in soils of southern Mexico showed fresher signatures with higher F DDTe = p,p'-DDT/(p,p'-DDT + p,p'-DDE) and more racemic o,p'-DDT, while the signatures in the central and northern part of Mexico were more indicative of aged residues. Soil-air fugacity fractions showed that some soils are net recipients of DDTs from the atmosphere, while other soils are net sources. Toxaphene profiles in soils and air showed depletion of Parlar 39 and 42 which suggests that soil is the source to the atmosphere. Endosulfan was undergoing net deposition at most sites as it is a currently used pesticide. Other OCs showed wide variability in fugacity, suggesting a mix of net deposition and volatilization. - Chemical profiles of residues and soil-air fugacities are used to assess the potential of soil as a source of organochlorine pesticides to the air of Mexico.

  4. Organochlorine pesticides in soils of Mexico and the potential for soil-air exchange.

    Science.gov (United States)

    Wong, Fiona; Alegria, Henry A; Bidleman, Terry F

    2010-03-01

    The spatial distribution of organochlorine pesticides (OCs) in soils and their potential for soil-air exchange was examined. The most prominent OCs were the DDTs (Geometric Mean, GM=1.6 ng g(-1)), endosulfans (0.16 ng g(-1)), and toxaphenes (0.64 ng g(-1)). DDTs in soils of southern Mexico showed fresher signatures with higher FDDTe=p,p'-DDT/(p,p'-DDT+p,p'-DDE) and more racemic o,p'-DDT, while the signatures in the central and northern part of Mexico were more indicative of aged residues. Soil-air fugacity fractions showed that some soils are net recipients of DDTs from the atmosphere, while other soils are net sources. Toxaphene profiles in soils and air showed depletion of Parlar 39 and 42 which suggests that soil is the source to the atmosphere. Endosulfan was undergoing net deposition at most sites as it is a currently used pesticide. Other OCs showed wide variability in fugacity, suggesting a mix of net deposition and volatilization. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  5. Soil gas radon response to environmental and soil physics variables

    International Nuclear Information System (INIS)

    Thomas, D.M.; Chen, C.; Holford, D.

    1991-01-01

    During the last three years a field study of soil gas radon activities conducted at Poamoho, Oahu, has shown that the primary environmental variables that control radon transport in shallow tropical soils are synoptic and diurnal barometric pressure changes and soil moisture levels. Barometric pressure changes drive advective transport and mixing of soil gas with atmospheric air; soil moisture appears to control soil porosity and permeability to enhance or inhibit advective and diffusive radon transport. An advective barrier test/control experiment has shown that advective exchange of soil gas and air may account for a substantial proportion of the radon loss from shallow soils but does not significantly affect radon activities at depths greater than 2.3 m. An irrigation test/control experiment also suggests that, at soil moisture levels approaching field capacity, saturation of soil macroporosity can halt all advective transport of radon and limit diffusive mobility to that occurring in the liquid phase. The results of the authors field study have been used to further refine and extend a numerical model, RN3D, that has been developed by Pacific Northwest Laboratories to simulate subsurface transport of radon. The field data have allowed them to accurately simulate the steady state soil gas radon profile at their field site and to track transient radon activities under the influence of barometric pressure changes and in response to changes in soil permeability that result from variations in soil moisture levels. Further work is continuing on the model to enable it to properly account for the relative effects of advective transport of soil gas through cracks and diffusive mobility in the bulk soils

  6. Bentonite-amended soil special study

    International Nuclear Information System (INIS)

    1989-12-01

    This special study was conducted to assess the viability of soil with a high percentage of bentonite added as an infiltration barrier in the cover of Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cells. To achieve maximum concentration limits (MCLs) at several UMTRA Project sites, covers with a very low permeability are needed. If alternate concentration limits (ACLs) are the appropriate site groundwater compliance strategy, the US Department of Energy (DOE) is required to demonstrate, among other things, that the infiltration to the disposal cell is as low as reasonably achievable, and hence that the cover has a very low permeability. When the study discussed here was begun, the lowest permeability element available was CLAYMAX R , a manufactured liner material constructed of natural material (bentonite clay) between two geosynthetics.The strength of soil-bentonite mixes was measured to see if they could be placed on sideslopes and not pose stability problems. Also evaluated were the hydraulic conductivities of soil-bentonite mixes. If the strengths and permeabilities of soils with a high percentage of bentonite are favorable, the soils may be used as infiltration barriers in current cover designs without changing pile geometries. The scope of work for this study called for a literature review and a two-phased laboratory testing program. This report presents the results of the literature review and the first phase of the testing program

  7. Performance evaluation soil samples utilizing encapsulation technology

    Science.gov (United States)

    Dahlgran, James R.

    1999-01-01

    Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

  8. Soil handling methods should be selected based on research questions and goals

    NARCIS (Netherlands)

    Gundale, Michael J.; Wardle, David A.; Kardol, Paul; Putten, Van Der Wim H.; Lucas, Richard W.

    2017-01-01

    A response to Reinhart & Rinella (2016) and Rinella & Reinhart (2017) ‘A common soil handling technique can generate incorrect estimates of soil biota effects on plants’ and ‘Mixing soil samples across experi- mental units ignores uncertainty and generates incorrect estimates of soil biota

  9. Effect of gravel on hydraulic conductivity of compacted soil liners

    International Nuclear Information System (INIS)

    Shelley, T.L.; Daniel, D.E.

    1993-01-01

    How much gravel should be allowed in low-hydraulic-conductivity, compacted soil liners? To address this question, two clayey soils are uniformly mixed with varying percentages of gravel that, by itself, has a hydraulic conductivity of 170 cm/s. Soil/gravel mixtures are compacted and then permeated. Hydraulic conductivity of the compacted gravel/soil mixtures is less than 1 x 10 -7 cm/s for gravel contents as high as 50-60%. For gravel contents ≤ 60%, gravel content is not important: all test specimens have a low hydraulic conductivity. For gravel contents > 50-60%, the clayey soils does not fill voids between gravel particles, and high hydraulic conductivity results. The water content of the nongravel fraction is found to be a useful indicator of proper moisture conditions during compaction. From these experiments in which molding water content and compactive energy are carefully controlled, and gravel is uniformly mixed with the soil, it is concluded that the maximum allowable gravel content is approximately 50%

  10. Soil-plant transfer of Cs-137 and Sr-90 in digestate amended agricultural soils- a lysimeter scale experiment

    Science.gov (United States)

    Mehmood, Khalid; Berns, Anne E.; Pütz, Thomas; Burauel, Peter; Vereecken, Harry; Zoriy, Myroslav; Flucht, Reinhold; Opitz, Thorsten; Hofmann, Diana

    2014-05-01

    Radiocesium and radiostrontium are among the most problematic soil contaminants following nuclear fallout due to their long half-lives and high fission yields. Their chemical resemblance to potassium, ammonium and calcium facilitates their plant uptake and thus enhances their chance to reach humans through the food-chain dramatically. The plant uptake of both radionuclides is affected by the type of soil, the amount of organic matter and the concentration of competitive ions. In the present lysimeter scale experiment, soil-plant transfer of Cs-137 and Sr-90 was investigated in an agricultural silty soil amended with digestate, a residue from a biogas plant. The liquid fraction of the digestate, liquor, was used to have higher nutrient competition. Digestate application was done in accordance with the field practice with an application rate of 34 Mg/ha and mixing it in top 5 cm soil, yielding a final concentration of 38 g digestate/Kg soil. The top 5 cm soil of the non-amended reference soil was also submitted to the same mixing procedure to account for the physical disturbance of the top soil layer. Six months after the amendment of the soil, the soil contamination was done with water-soluble chloride salts of both radionuclides, resulting in a contamination density of 66 MBq/m2 for Cs-137 and 18 MBq/m2 for Sr-90 in separate experiments. Our results show that digestate application led to a detectable difference in soil-plant transfer of the investigated radionuclides, effect was more pronounced for Cs-137. A clear difference was observed in plant uptake of different plants. Pest plants displayed higher uptake of both radionuclides compared to wheat. Furthermore, lower activity values were recorded in ears compared to stems for both radionuclides.

  11. Long-Term Soil Chemistry Changes in Aggrading Forest Ecosystems

    Science.gov (United States)

    Jennifer D. Knoepp; Wayne T. Swank

    1994-01-01

    Assessing potential long-term forest productivity requires identification of the processes regulating chemical changes in forest soils. We resampled the litter layer and upper two mineral soil horizons, A and AB/BA, in two aggrading southern Appalachian watersheds 20 yr after an earlier sampling. Soils from a mixed-hardwood watershed exhibited a small but significant...

  12. Simple Bioremediation Treatments for the Removal of Polycyclic Aromatic Hydrocarbons (PAHs) from the Polluted Desert Soil of Kuwait

    International Nuclear Information System (INIS)

    Al-Gounaim, Marzooq Yousuf; Abu-Shady, Abdulsatar

    2004-01-01

    A soil microcosm test was designed to evaluate the influence of mixing polluted desert soil with clay soil (which is used as an amendment material and for immobilization of bacterial cells) on the biodegradation of petroleum polycyclic aromatic hydrocarbons (PAHs). Residual PAHs in this type of polluted soil were quantified by using GC analysis. At the begining of experiment 16 PAHs were resolved, of which the mutagenic and carcinogenic compounds flouranthene and pyrene were more frequent than the otherPAHs (14% and 12.4% respectively). Results of total PAH biodegradation show that mixing this polluted desert soil with clay soil or its water extract stimulated the biodegradation of 85.8%-89.1% of these compounds. This is contrast to 61.7%-75.5% in the absence of clay soil. Moreover when the mixed bacterial culture was immobilized in this clay soil 94.4% of total of total PAHs were degraded. On the other hand, the free cells of mixed culture succeeded to remove only 75.5% of these compounds. In this study the six-ranged PAHs were completely degraded in the presence of clay soil. A particularly notable distinction between the immobilized culture (T3) and other treatment in this biodegradation study is the greater efficiency of the immobilized culture to degrade the individuals of the 16 PAHs, especially the carcinogenic compounds: flouranthene, pyrene, chrysene, benzo(a) pyrene and dibenzo (a,h) anthracene. These results lead to the conclusion that mixing the polluted desert soil with clay soil and/or its water extract seems to be a simple cost effective bioremediation method. (author)

  13. Changes of the water isotopic composition in unsaturated soils

    International Nuclear Information System (INIS)

    Feurdean, Victor; Feurdean, Lucia

    2001-01-01

    Based on the spatial and temporal variations of the stable isotope content in precipitation - as input in subsurface - and the mixing processes, the deuterium content in the water that moves in unsaturated zones was used to determine the most conducive season to recharge, the mechanisms for infiltration of snow or rain precipitation in humid, semi-arid or arid conditions, the episodic cycles of infiltration water mixing with the already present soil water and water vapor and whether infiltration water is or is not from local precipitation. Oscillations in the isotopic profiles of soil moisture can be used to estimate the following aspects: where piston or diffusive flow is the dominant mechanisms of water infiltration; the average velocities of the water movement in vadose zone; the influence of vegetation cover, soil type and slope exposure on the dynamics of water movement in soil; the conditions required for infiltration such as: the matrix, gravity, pressure and osmotic potentials during drainage in unsaturated soil. (authors)

  14. Effect of miscibility and soil water content in movement of mixed waste

    International Nuclear Information System (INIS)

    Park, W.J.

    1989-01-01

    Since commercial low-level waste sites will not accept mixed low level wastes for disposal any longer, safer disposal of these wastes as well as hazardous waste becomes the growing concern. The objective of this study were to estimate the effect of some characteristics of organic material, such as solubility, density and volatility, on the movement in soil under various moisture contents. Attempts were made to fit the measured data to theoretical models for the movement of aqueous and airborne components through the vadose zone. Four different C-14 labeled organic materials, Methyl Alcohol, Toluene, Formic Acid, and Bromobenzene, differing in density, solubility, and volatility, were injected into test columns packed with a mixture of sands having known particles sizes and porosity. The method employed to make calibrated unsaturated conditions proved to be adequate for four different designated moisture contents, permitting sampling of both airborne and aqueous components at the same time. Significant solubility and density effects were found for the different organic materials associated with movement through water channels or air-filled pores, which became available at various unsaturated conditions. To analyze this mobility mechanism as a function of inherent properties of organic materials, a couple of mathematical equations were presented to describe both airborne release and aqueous migration and their wider applicability was discussed

  15. ER Operations Installation of Three FLUTe Soil-Vapor Monitoring Wells (MWL-SV03 MWL-SV04 and MWL-SV05) at the Mixed Waste Landfill.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John Robin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    This installation report describes the May through July 2014 drilling activities performed for the installation of three multi-port soil-vapor monitoring wells (MWL-SV03, MWL-SV04, and MWL-SV05) at the Mixed Waste Landfill (MWL), which is located at Sandia National Laboratories, New Mexico (SNL/NM). SNL/NM is managed and operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy (DOE)/National Nuclear Security Administration. The MWL is designated as Solid Waste Management Unit (SWMU) 76 and is located in Technical Area (TA) III (Figure 1-1). The locations of the three soil-vapor monitoring wells (MWL-SV03, MWL-SV04, and MWL-SV05) are shown in Figure 1-2

  16. Life's Impact on the Soil Production Function

    Science.gov (United States)

    Harrison, Emma; Willenbring, Jane; Brocard, Gilles

    2016-04-01

    ]. The depth of soil mixing in the soil profiles we collect is shown by the homogenization of 10Be concentrations in grains. Mixing changes the residence time of grains in soil. The length of this residence time is a critical component in the rate of weathering reactions, the mechanism by which material is lost to chemical dissolution and leaching. Additionally, mixing may drive the value of the diffusion coefficient, which determines the flux of sediment out of the soil mantle in the geomorphic soil production function. Life actively impacts the soil-hillslope system, and quantifying these effects is an essential modification of a fundamental paradigm in the geomorphology of soil-mantled landscapes. [1] Heimsath et al. 1997. Nature 388:358-361 [2] Zou et al., 1995. Forest Ecol. and Management 78:147-157 [3] Pett-Ridge et al., 2009. Geochim. Cosmochim. Acta 73:25-43 [4] Hidy et al. 2010. Geochem. Geophys., Geosys. 11 [5] González et al. 2007. Eur. J. Soil Biol. 43:S24-S32

  17. Bench Scale Treatability Studies of Contaminated Soil Using Soil Washing Technique

    Directory of Open Access Journals (Sweden)

    M. K. Gupta

    2010-01-01

    Full Text Available Soil contamination is one of the most widespread and serious environmental problems confronting both the industrialized as well as developing nations like India. Different contaminants have different physicochemical properties, which influence the geochemical reactions induced in the soils and may bring about changes in their engineering and environmental behaviour. Several technologies exist for the remediation of contaminated soil and water. In the present study soil washing technique using plain water with surfactants as an enhancer was used to study the remediation of soil contaminated with (i an organic contaminant (engine lubricant oil and (ii an inorganic contaminant (heavy metal. The lubricant engine oil was used at different percentages (by dry weight of the soil to artificially contaminate the soil. It was found that geotechnical properties of the soil underwent large modifications on account of mixing with the lubricant oil. The sorption experiments were conducted with cadmium metal in aqueous medium at different initial concentration of the metal and at varying pH values of the sorbing medium. For the remediation of contaminated soil matrices, a nonionic surfactant was used for the restoration of geotechnical properties of lubricant oil contaminated soil samples, whereas an anionic surfactant was employed to desorb cadmium from the contaminated soil matrix. The surfactant in case of soil contaminated with the lubricant oil was able to restore properties to an extent of 98% vis-à-vis the virgin soil, while up to 54% cadmium was desorbed from the contaminated soil matrix in surfactant aided desorption experiments.

  18. Air separation of heavy metal contaminants from soil

    International Nuclear Information System (INIS)

    Nelson, M.E.; Harper, M.J.; Buckon, A.D.

    1995-01-01

    Several heavy metal separation techniques are currently being developed for soil remediation at various Department of Defense and Department of Energy (DOE) Facilities. The majority of these techniques involve a wet process using water, pH modifiers or other compounds. The US Naval Academy (USNA) has developed a dry process for heavy metal separation. The process uses air classification technology to concentrate the metal contaminant into a fraction of the soil. The advantages of this dry process are that it creates no contaminated byproduct and uses commercially available technology. The USNA process is based on using a Gayco-Reliance air classifier. Tests have been conducted with the system at the Naval Academy and the University of Nevada-Reno (UNR). The USNA tests used soil from the Nevada Test Site mixed with bismuth at a concentration of 500--1,000 ppm. The UNR tests used soil from four DOE sites mixed with uranium oxides and plutonium at an activity level of 100--700 pCi per gram. Concentration of activities and volume reduction percentages are presented for the various soils and contaminants tested

  19. Remediation of Soil at Nuclear Sites

    International Nuclear Information System (INIS)

    Holmes, R.; Boardman, C.; Robbins, R; Fox, Robert Vincent; Mincher, Bruce Jay

    2000-01-01

    As the major nuclear waste and decontamination and decommissioning projects progress, one of the remaining problems that faces the nuclear industry is that of site remediation. The range of contamination levels and contaminants is wide and varied and there is likely to be a significant volume of soil contaminated with transuranics and hazardous organic materials that could qualify as mixed TRU waste. There are many technologies that offer the potential for remediating this waste but few that tackle all or most of the contaminants and even fewer that have been deployed with confidence. This paper outlines the progress made in proving the ability of Supercritical Fluid Extraction as a method of remediating soil, classified as mixed (TRU) transuranic waste

  20. Soil Aggregate Stability and Grassland Productivity Associations in a Northern Mixed-Grass Prairie.

    Directory of Open Access Journals (Sweden)

    Kurt O Reinhart

    Full Text Available Soil aggregate stability data are often predicted to be positively associated with measures of plant productivity, rangeland health, and ecosystem functioning. Here we revisit the hypothesis that soil aggregate stability is positively associated with plant productivity. We measured local (plot-to-plot variation in grassland community composition, plant (aboveground biomass, root biomass, % water-stable soil aggregates, and topography. After accounting for spatial autocorrelation, we observed a negative association between % water-stable soil aggregates (0.25-1 and 1-2 mm size classes of macroaggregates and dominant graminoid biomass, and negative associations between the % water-stable aggregates and the root biomass of a dominant sedge (Carex filifolia. However, variation in total root biomass (0-10 or 0-30 cm depths was either negatively or not appreciably associated with soil aggregate stabilities. Overall, regression slope coefficients were consistently negative thereby indicating the general absence of a positive association between measures of plant productivity and soil aggregate stability for the study area. The predicted positive association between factors was likely confounded by variation in plant species composition. Specifically, sampling spanned a local gradient in plant community composition which was likely driven by niche partitioning along a subtle gradient in elevation. Our results suggest an apparent trade-off between some measures of plant biomass production and soil aggregate stability, both known to affect the land's capacity to resist erosion. These findings further highlight the uncertainty of plant biomass-soil stability associations.

  1. Comparative Microbiome Analysis of a Fusarium Wilt Suppressive Soil and a Fusarium Wilt Conducive Soil From the Châteaurenard Region

    Directory of Open Access Journals (Sweden)

    Katarzyna Siegel-Hertz

    2018-04-01

    Full Text Available Disease-suppressive soils are soils in which specific soil-borne plant pathogens cause only limited disease although the pathogen and susceptible host plants are both present. Suppressiveness is in most cases of microbial origin. We conducted a comparative metabarcoding analysis of the taxonomic diversity of fungal and bacterial communities from suppressive and non-suppressive (conducive soils as regards Fusarium wilts sampled from the Châteaurenard region (France. Bioassays based on Fusarium wilt of flax confirmed that disease incidence was significantly lower in the suppressive soil than in the conducive soil. Furthermore, we succeeded in partly transferring Fusarium wilt-suppressiveness to the conducive soil by mixing 10% (w/w of the suppressive soil into the conducive soil. Fungal diversity differed significantly between the suppressive and conducive soils. Among dominant fungal operational taxonomic units (OTUs affiliated to known genera, 17 OTUs were detected exclusively in the suppressive soil. These OTUs were assigned to the Acremonium, Chaetomium, Cladosporium, Clonostachys, Fusarium, Ceratobasidium, Mortierella, Penicillium, Scytalidium, and Verticillium genera. Additionally, the relative abundance of specific members of the bacterial community was significantly higher in the suppressive and mixed soils than in the conducive soil. OTUs found more abundant in Fusarium wilt-suppressive soils were affiliated to the bacterial genera Adhaeribacter, Massilia, Microvirga, Rhizobium, Rhizobacter, Arthrobacter, Amycolatopsis, Rubrobacter, Paenibacillus, Stenotrophomonas, and Geobacter. Several of the fungal and bacterial genera detected exclusively or more abundantly in the Fusarium wilt-suppressive soil included genera known for their activity against F. oxysporum. Overall, this study supports the potential role of known fungal and bacterial genera in Fusarium wilt suppressive soils from Châteaurenard and pinpoints new bacterial and fungal

  2. Nutrient leaching when soil is part of plant growth media

    Science.gov (United States)

    Soils can serve as sorbents for phosphorus (P) within plant growth media, negating the need for artificial sorbents. The purpose of this study was to compare soils with different properties, as part of plant growth media, for their effect on nutrient levels in effluent. Four soils were mixed with sa...

  3. [Comparison of soil fertility among open-pit mine reclaimed lands in Antaibao regenerated with different vegetation types].

    Science.gov (United States)

    Wang, Xiang; Li, Jin-chuan; Yue, Jian-ying; Zhou, Xiao-mei; Guo, Chun-yan; Lu, Ning; Wang, Yu-hong; Yang, Sheng-quan

    2013-09-01

    Re-vegetation is mainly applied into regeneration in opencast mine to improve the soil quality. It is very important to choose feasible vegetation types for soil restoration. In this study, three typical forest restoration types were studied at Antaibao mine, namely, Medicago sativa, mixed forests Pinus taebelaefolius-Robinia pseudoacacia-Caragana korshinskii and Elaeagnus angustifolia-Robinia pseudoacacia-Caragana korshinskii-Hipophae rhamnoides, to determine the nutrient contents and enzyme activities in different soil layers. The results showed that re-vegetation markedly increased soil nutrient contents and the enzyme activities during the restoration process. The nutrient content of soil in the P. taebelaefolius-R. pseudoacacia-C. korshinskii mixed forest field was significantly higher than those in other plots. It was found that the soil of the P. taebelaefolius-R. pseudoacacia-C. korshinskii mixed forest had the highest integrated fertility index values. In conclusion, the restoration effects of the P. zaebelaefolius-R. pseudoacacia-C. Korshinskii mixed forest was better than that of E. angustifolia-R. pseudoacacia-C. korshinskii-H. rhamnoides, while M. sativa grassland had the least effect.

  4. Effects of differnt juvenile mixed plantations on growth and photosynthetic physiology of pinus yunnanensis franch

    International Nuclear Information System (INIS)

    Zheng, Y.; Ou, G. L.; Chen, D. D.; Liu, G. Y.; Li, Q. Q.; Zhang, S. H.; Han, M. Y.; Chen, J. L.

    2017-01-01

    The growth characteristics, photosynthetic gas exchange features, physiological and biochemical resistance, and soil nutrition contents of different juvenile mixed plantations were analyzed. Moreover, the synergic effect mechanism of the different species was elucidated to improve the stand quality of Pinus yunnanensis Franch. plantations and guide the screening of P. yunnanensis mixed plantations. The mixed plantations were P. yunnanensis-Alnus nepalensis-Quercus acutissima, P. yunnanensis-A. nepalensis-Cyclobalanopsis glaucoides, and P. yunnanensis-Q. acutissima-C. glaucoides. Individual juvenile plantations of pure P. yunnanensis, A. nepalensis, Q. acutissima, and C. glaucoides were used as control groups. Results showed that pure P. yunnanensis juvenile plantation consumed more soil organic matter, total nitrogen (TN), total phosphorus (TP), and total potassium (TK) than the other plantations. This plantation also showed poorer growth characteristics, poorer photosynthetic capability, lower water utilization efficiency (WUE), and biochemical resistance in infertile soil, as shown by the nutrition and water competition. Increasing soil organic matters, TN, TP, and TK of the different mixed plantations evidently enhanced height, ground diameter growth rate, net photosynthetic rate (Pn), transpiration rate (Tr), WUE, carboxylation efficiency (CE), soluble sugar (SS) content, and superoxide dismutase (SOD) activity. Moreover, different mixed forests slightly influenced the characteristics of photosynthetic gas exchange and physiological and biochemical resistance of A. nepalensis. All stand types facilitated growth of tree height and basal diameter of Q. acutissima sapling. Although Q. acutissima inhibited physiological and biochemical resistance of leaves to a certain extent, they increased WUE significantly. Different stand types slightly influenced growth features, Pn, Tr, and WUE of C. glaucoides sapling. Moreover, they inhibited the osmotic adjustment system

  5. Influence of Height Waterlogging on Soil Physical Properties of Potential and Actual Acid Sulphate Soils

    Directory of Open Access Journals (Sweden)

    Arifin Fahmi

    2014-06-01

    Full Text Available Water management is main factor that determines the successful of rice cultivation in acid sulphate soil. Soil waterlogging determines the direction and rate of chemical, geochemical and biological reaction in the soil, indirectly these reactions may influence to the changes of soil psycal properties during soil waterlogging process. The experiment was aimed to study the changes of two type of acid sulphate soils physical properties during rice straw decomposition processes. The research was conducted in the greenhouse consisting of the three treatment factors using the completely randomized design with three replications. The first factor was soil type: potential acid sulphate soil (PASS and actual acid sulphate soil (AASS. The second factor was height of water waterlogging: 0.5-1.0 cm (muddy water–level condition and 4.0 cm from above the soil surface (waterlogged. The third factor was organic matter type: rice straw (RS, purun tikus (Eleocharis dulcis (PT and mixed of RS and PT (MX. Soil physical properties such as aggregate stability, total soil porosity, soil permeability, soil particle density and bulk density were observed at the end of experiment (vegetative maximum stage. The results showed that acid sulphate soil type had large effect on soil physicl properties, soil waterlogging decreased aggregate stability, soil particle density and bulk density both of soil type.

  6. Impact of soil amendments and the plant rhizosphere on PAH behaviour in soil

    DEFF Research Database (Denmark)

    Marchal, Geoffrey; Smith, Kilian E.C.; Mayer, Philipp

    2014-01-01

    Carbonaceous amendments reduce PAH dissolved concentrations (Cfree), limiting their uptake and toxicity. A soil contaminated with PAHs was mixed with activated carbon (AC), charcoal or compost and planted with radish (Raphanus sativus L.), and Cfree, chemical activities and diffusive uptake...

  7. Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil

    International Nuclear Information System (INIS)

    Cao Qing; Hu Qinhong; Khan, Sardan; Wang Zijian; Lin Aijun; Du Xin; Zhu Yongguan

    2007-01-01

    The toxicity of two toxic elements, arsenic (As) and cadmium (Cd) (individually or in combination) on root elongation of wheat seedlings (Triticum aestivum, L.) were investigated both in hydroponics and in soils freshly spiked with the toxic elements. Median effective concentration (EC 50 ) and non-observed effect concentration (NOEC) were used to investigate the toxic thresholds and potencies of the two elements. The EC 50 for As was 0.97 μM in hydroponics and 196 mg kg -1 in soil, and 4.32 μM and 449 mg kg -1 for Cd, respectively. Toxic unit (TU) and additive index (AI) concepts were introduced to determine the combined outcomes, and different behaviors were obtained: synergism in solution culture (EC 50mix = 0.36TU mix and AI: 1.76) and antagonism in soil experiments (EC 50mix = 1.49TU mix and AI: -0.33). Furthermore, the data of soil bioavailable As and Cd cannot explain the discrepancy between the results derived from soil and hydroponics experiments

  8. Organochlorine pesticides in soils of Mexico and the potential for soil-air exchange

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Fiona [Centre for Atmospheric Research Experiments, Science and Technology Branch, Environment Canada, 6248 Eighth Line, Egbert, Ontario L01 1N0 (Canada); Department of Chemistry, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4 (Canada); Alegria, Henry A. [Department of Environmental Science, Policy and Geography, University of South Florida St. Petersburg, 140 7th Ave. S., St. Petersburg, FL 33701 (United States); Bidleman, Terry F., E-mail: terry.bidleman@ec.gc.c [Centre for Atmospheric Research Experiments, Science and Technology Branch, Environment Canada, 6248 Eighth Line, Egbert, Ontario L01 1N0 (Canada)

    2010-03-15

    The spatial distribution of organochlorine pesticides (OCs) in soils and their potential for soil-air exchange was examined. The most prominent OCs were the DDTs (Geometric Mean, GM = 1.6 ng g{sup -1}), endosulfans (0.16 ng g{sup -1}), and toxaphenes (0.64 ng g{sup -1}). DDTs in soils of southern Mexico showed fresher signatures with higher F{sub DDTe} = p,p'-DDT/(p,p'-DDT + p,p'-DDE) and more racemic o,p'-DDT, while the signatures in the central and northern part of Mexico were more indicative of aged residues. Soil-air fugacity fractions showed that some soils are net recipients of DDTs from the atmosphere, while other soils are net sources. Toxaphene profiles in soils and air showed depletion of Parlar 39 and 42 which suggests that soil is the source to the atmosphere. Endosulfan was undergoing net deposition at most sites as it is a currently used pesticide. Other OCs showed wide variability in fugacity, suggesting a mix of net deposition and volatilization. - Chemical profiles of residues and soil-air fugacities are used to assess the potential of soil as a source of organochlorine pesticides to the air of Mexico.

  9. Aspen increase soil moisture, nutrients, organic matter and respiration in Rocky Mountain forest communities.

    Science.gov (United States)

    Buck, Joshua R; St Clair, Samuel B

    2012-01-01

    Development and change in forest communities are strongly influenced by plant-soil interactions. The primary objective of this paper was to identify how forest soil characteristics vary along gradients of forest community composition in aspen-conifer forests to better understand the relationship between forest vegetation characteristics and soil processes. The study was conducted on the Fishlake National Forest, Utah, USA. Soil measurements were collected in adjacent forest stands that were characterized as aspen dominated, mixed, conifer dominated or open meadow, which includes the range of vegetation conditions that exist in seral aspen forests. Soil chemistry, moisture content, respiration, and temperature were measured. There was a consistent trend in which aspen stands demonstrated higher mean soil nutrient concentrations than mixed and conifer dominated stands and meadows. Specifically, total N, NO(3) and NH(4) were nearly two-fold higher in soil underneath aspen dominated stands. Soil moisture was significantly higher in aspen stands and meadows in early summer but converged to similar levels as those found in mixed and conifer dominated stands in late summer. Soil respiration was significantly higher in aspen stands than conifer stands or meadows throughout the summer. These results suggest that changes in disturbance regimes or climate scenarios that favor conifer expansion or loss of aspen will decrease soil resource availability, which is likely to have important feedbacks on plant community development.

  10. Overview: Microbial amendment of remediated soils for effective recycling

    Directory of Open Access Journals (Sweden)

    Kim Soo-Bin

    2017-01-01

    Full Text Available In recent years, various methods are being considered with appropriate amendments, not with conventional reclamation to recycle deteriorated soils after remediation as agricultural addition, backfilling and construction materials etc. Among these amendments, microbial amendments with effective microorganism(EMs are known to improve soil qualities such as fertility, strength and toxicity to be recycled into possible utilizations. This study indicates the possibility of recycling the remediated soils by using these EMs most efficiently. Soil samples will be collected from contaminated sites with either heavy metals or petroleum and will be remediated by bench-scale soil washing and thermal desorption. And then the remediated soils will be treated with easily obtainable inocula, substrates (culture media near our life and they are compared with commercial EM products in terms of the cost and efficiency. Also, after treating with a number of mixing ratios, soil properties of (1 fresh, (2 contaminated, (3 remediated (4 amended soils will be evaluated based on soil quality indicators depending on demands and the optimal mixing ratios which are effective than commercial EM products will be determined. The ratio derived from pre-tests could be applied on the remediated soils with pilot-scale in order to assess suitability for recycling and characterize correlation between soil properties and microbial amendments regarding contaminants and remediation, and furthermore for modelling. In conclusion, application of the established models on recycling remediated soils may help to dispose the remediated soils in future, including environmental and ecological values as well as economical values.

  11. The effect of adding phosphogypsum to cracking soil on plant growth and radionuclides accumulation

    International Nuclear Information System (INIS)

    Al-Oudat, M.

    1999-11-01

    Many studies have reported the positive effects of phosphogypsum applications on physical and chemical properties of agriculture soils and on plant yield. Hence, there is some concern that application of phosphogypsum may result in plant uptake of radionuclides. phosphogypsum, which has radioactivity of 430 Bq/Kg,was mixed with salty-loam soil, at different rates (0, 10, 20, 40, and 80 t/ha), to monitor the effects of mixing phosphogypsum on the cracking, chemical properties of the soil, wheat yield, efficiency of water use, and radionuclides accumulation. The experiments were conducted in two seasons (1997 and 1998) in two sites.The results show that mixing phosphogypsum with the soil increased the Ce, SO 4 , Mg, Ca and P available in the saturated extracts, and decreased the cracking of the soil by 17 - 45%. Also adding phosphogypsum increased grain yield (by 23 - 45%) and water use efficiency. The radioactivity of shoots and grain of wheat were below the detection level (0.1 Bq/Kg/dry weight). (author)

  12. Remediation of soil/concrete contaminated with uranium and radium by biological method

    International Nuclear Information System (INIS)

    Gye-Nam Kim; Seung-Su Kim; Hye-Min Park; Won-Suk Kim; Uk-Ryang Park; Jei-Kwon Moon

    2013-01-01

    Biological method was studied for remediation of soil/concrete contaminated with uranium and radium. Optimum experiment conditions for mixing ratios of penatron and soil, and the pH of soil was obtained through several bioremediations with soil contaminated with uranium and radium. It was found that an optimum mixing ratio of penatron for bioremediation of uranium soil was 1 %. Also, the optimum pH condition for bioremediation of soil contaminated with uranium and radium was 7.5. The removal efficiencies of uranium and radium from higher concentration of soil were rather reduced in comparison with those from lower concentration of soil. Meanwhile, the removal of uranium and radium in concrete by bioremediation is possible but the removal rate from concrete was slower than that from soil. The removal efficiencies of uranium and radium from soil under injection of 1 % penatron at pH 7.5 for 120 days were 81.2 and 81.6 %, respectively, and the removal efficiencies of uranium and radium from concrete under the same condition were 63.0 and 45.2 %, respectively. Beyond 30 days, removal rates of uranium and radium from soil and concrete by bioremediation was very slow. (author)

  13. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid

    Science.gov (United States)

    Long, Tao; Ying, Rongrong; Ye, Mao; Zhang, Shengtian; Li, Qun; Zhou, Yan; Lin, Yusuo

    2015-01-01

    This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximum desorption ratios for lindane, cadmium and lead were 85.4%, 76.4% and 28.1%, respectively, for the mixed agents containing 1% rhamnolipidsand 0.1 mol/L citric acid. The results also suggest that the removal efficiencies of lead and cadmium were strongly related to their speciations in soils, and metals in the exchangeable and carbonate forms were easier to be removed. Our study suggests that the combining use of rhamnolipids and citric acid is a promising alternative to simultaneously remove organochlorine pesticides and heavy metals from soils. PMID:26087302

  14. Soil carbon dioxide fluxes in a mixed floodplain forest in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Acosta, Manuel; Dařenová, Eva; Dušek, Jiří; Pavelka, Marian

    2017-01-01

    Roč. 82, SEP (2017), s. 35-42 ISSN 1164-5563 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LD15040 Institutional support: RVO:67179843 Keywords : CO2 * Soil temperature * Soil moisture * Spatial heterogeneity * Q10 Subject RIV: DF - Soil Science OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 2.445, year: 2016

  15. Impact of soil amendment on phytotoxicity of a 5-month old waste ...

    African Journals Online (AJOL)

    Administrator

    seedlings died within 2 weeks; only those seedlings in unpolluted soils survived. Nine months after soil ... poisonous ... soil and were thoroughly mixed, before taken back into each bucket. ... kilograms (3 kg) of soil was removed from each bucket, and replaced ..... could be killed or injured if it comes in contact with crude oil.

  16. Chitin mixed in potting soil alters lettuce growth, the survival of zoonotic bacteria on the leaves and associated rhizosphere microbiology.

    Directory of Open Access Journals (Sweden)

    Jane eDebode

    2016-04-01

    Full Text Available Chitin is a promising soil amendment for improving soil quality, plant growth and plant resilience. The objectives of this study were twofold. First, to study the effect of chitin mixed in potting soil on lettuce growth and on the survival of two zoonotic bacterial pathogens, Escherichia coli O157:H7 and Salmonella enterica on the lettuce leaves. Second, to assess the related changes in the microbial lettuce rhizosphere, using phospholipid fatty acid (PLFA analysis and amplicon sequencing of a bacterial 16S rRNA gene fragment and the fungal ITS2. As a result of chitin addition, lettuce fresh yield weight was significantly increased. S. enterica survival in the lettuce phyllosphere was significantly reduced. The E. coli O157:H7 survival was also lowered, but not significantly. Moreover, significant changes were observed in the bacterial and fungal community of the lettuce rhizosphere. PLFA analysis showed a significant increase in fungal and bacterial biomass. Amplicon sequencing showed no increase in fungal and bacterial biodiversity, but relative abundances of the bacterial phyla Acidobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, and Proteobacteria and the fungal phyla Ascomycota, Basidiomycota, and Zygomycota were significantly changed. More specifically, a more than tenfold increase was observed for operational taxonomic units (OTUs belonging to the bacterial genera Cellvibrio, Pedobacter, Dyadobacter, and Streptomyces and to the fungal genera Lecanicillium and Mortierella. These genera include several species previously reported to be involved in biocontrol, plant growth promotion, the nitrogen cycle and chitin degradation. These results enhance the understanding of the response of the rhizosphere microbiome to chitin amendment. Moreover, this is the first study to investigate the use of soil amendments to control the survival of S. enterica on plant leaves.

  17. Effect of cryogel on soil properties

    Science.gov (United States)

    Altunina, L. K.; Fufaeva, M. S.; Filatov, D. A.; Svarovskaya, L. I.; Rozhdestvenskii, E. A.; Gan-Erdene, T.

    2014-05-01

    Samples from the A1 and A1A2 horizons of sandy loamy gray forest soil containing 3.1% organic matter have been mixed with a 5% solution of polyvinyl alcohol (PVA) at a ratio of 7 : 1 under laboratory conditions. The samples were frozen at -20°C in a refrigerator; after a freezing-thawing cycle, the evaporation of water from their surface, their thermal conductivity coefficient, their elasticity modulus, and other properties were studied. It has been experimentally found that the thermal conductivity coefficient of cryostructured soil is lower than that of common soil by 25%. It has been shown that the cryostructured soil retains water for a longer time and that the water evaporation rate from its surface is significantly lower compared to the control soil. Cryogel has no negative effect on the catalase activity of soil; it changes the physical properties of soils and positively affects the population of indigenous soil microflora and the growth of the sown plants.

  18. Mechanical Properties of Millet Husk Ash Bitumen Stabilized Soil ...

    African Journals Online (AJOL)

    Akorede

    lateritic soil blocks using Millet Husk Ash (MHA) and Bitumen as additives so as to reduce its high cost and find ... eliminating the need for air-conditioning and are warm during the cold ... The mix properties were used in producing soil bricks of ...

  19. Release behavior of triazine residues in stabilised contaminated soils

    International Nuclear Information System (INIS)

    Ying, G.G.; Kookana, R.S.; Mallavarpu, M.

    2005-01-01

    This paper reports the release behavior of two triazines (atrazine and simazine) in stabilised soils from a pesticide-contaminated site in South Australia. The soils were contaminated with a range of pesticides, especially with triazine herbicides. With multiple extractions of each soil sample with deionised water (eight in total), 15% of atrazine and 4% of simazine residues were recovered, resulting in very high concentrations of the two herbicides in leachate. The presence of small fractions of surfactants was found to further enhance the release of the residues. Methanol content up to 10% did not substantially influence the concentration of simazine and atrazine released. The study demonstrated that while the stabilisation of contaminated soil with particulate activated carbon (5%) and cement mix (15%) was effective in locking the residues of some pesticides, it failed to immobilise triazine herbicides residues completely. Given the higher water solubility of these herbicides than other compounds more effective strategies to immobilise their residues is needed. - Stabilisation of contaminated soil with a mix of activated carbon and cement may fail to immobilise some contaminants like triazines

  20. Carbon mineralization in surface and subsurface soils in a subtropical mixed forest in central China

    Science.gov (United States)

    Liu, F.; Tian, Q.

    2014-12-01

    About a half of soil carbon is stored in subsurface soil horizons, their dynamics have the potential to significantly affect carbon balancing in terrestrial ecosystems. However, the main factors regulating subsurface soil carbon mineralization are poorly understood. As affected by mountain humid monsoon, the subtropical mountains in central China has an annual precipitation of about 2000 mm, which causes strong leaching of ions and nutrition. The objectives of this study were to monitor subsurface soil carbon mineralization and to determine if it is affected by nutrient limitation. We collected soil samples (up to 1 m deep) at three locations in a small watershed with three soil layers (0-10 cm, 10-30 cm, below 30 cm). For the three layers, soil organic carbon (SOC) ranged from 35.8 to 94.4 mg g-1, total nitrogen ranged from 3.51 to 8.03 mg g-1, microbial biomass carbon (MBC) ranged from 170.6 to 718.4 μg g-1 soil. We measured carbon mineralization with the addition of N (100 μg N/g soil), P (50 μg P/g soil), and liable carbon (glucose labeled by 5 atom% 13C, at five levels: control, 10% MBC, 50% MBC, 100% MBC, 200% MBC). The addition of N and P had negligible effects on CO2 production in surface soil layers; in the deepest soil layer, the addition of N and P decreased CO2 production from 4.32 to 3.20 μg C g-1 soil carbon h-1. Glucose addition stimulated both surface and subsurface microbial mineralization of SOC, causing priming effects. With the increase of glucose addition rate from 10% to 200% MBC, the primed mineralization rate increased from 0.19 to 3.20 μg C g-1 soil carbon h-1 (fifth day of glucose addition). The magnitude of priming effect increased from 28% to 120% as soil layers go deep compare to the basal CO2 production (fifth day of 200% MBC glucose addition, basal CO2 production rate for the surface and the deepest soil was 11.17 and 2.88 μg C g-1 soil carbon h-1). These results suggested that the mineralization of subsurface carbon is more

  1. Soil nitrogen mineralization not affected by grass species traits

    Science.gov (United States)

    Maged Ikram Nosshi; Jack Butler; M. J. Trlica

    2007-01-01

    Species N use traits was evaluated as a mechanism whereby Bromus inermis (Bromus), an established invasive, might alter soil N supply in a Northern mixed-grass prairie. We compared soils under stands of Bromus with those from three representative native grasses of different litter C/N: Andropogon...

  2. Soil respiration fluxes in a temperate mixed forest: seasonality and temperature sensitivities differ among microbial and root-rhizosphere respiration.

    Science.gov (United States)

    Ruehr, Nadine K; Buchmann, Nina

    2010-02-01

    Although soil respiration, a major CO(2) flux in terrestrial ecosystems, is known to be highly variable with time, the response of its component fluxes to temperature and phenology is less clear. Therefore, we partitioned soil respiration (SR) into microbial (MR) and root-rhizosphere respiration (RR) using small root exclusion treatments in a mixed mountain forest in Switzerland. In addition, fine root respiration (FRR) was determined with measurements of excised roots. RR and FRR were strongly related to each other (R(2) = 0.92, n = 7), with RR contributing about 46% and FRR about 32% to total SR. RR rates increased more strongly with temperature (Q(10) = 3.2) than MR rates (Q(10) = 2.3). Since the contribution of RR to SR was found to be higher during growing (50%) than during dormant periods (40%), we separated the 2-year data set into phenophases. During the growing period of 2007, the temperature sensitivity of RR (Q(10) = 2.5, R(2) = 0.62) was similar to that of MR (Q(10) = 2.2, R(2) = 0.57). However, during the dormant period of 2006/2007, RR was not related to soil temperature (R(2) = 0.44, n.s.), in contrast to MR (Q(10) = 7.2; R(2) = 0.92). To better understand the influence of plant activity on root respiration, we related RR and FRR rates to photosynthetic active radiation (both R(2) = 0.67, n = 7, P = 0.025), suggesting increased root respiration rates during times with high photosynthesis. During foliage green-up in spring 2008, i.e., from bud break to full leaf expansion, RR increased by a factor of 5, while soil temperature increased only by about 5 degrees C, leading to an extraordinary high Q(10) of 10.6; meanwhile, the contribution of RR to SR increased from 29 to 47%. This clearly shows that root respiration and its apparent temperature sensitivity highly depend on plant phenology and thus on canopy assimilation and carbon allocation belowground.

  3. Measuring soil organic matter turn over and carbon stabilisation in pasture soils using 13C enrichment methodology.

    Science.gov (United States)

    Robinson, J. M.; Barker, S.; Schipper, L. A.

    2017-12-01

    Carbon storage in soil is a balance between photosynthesis and respiration, however, not all C compounds decompose equally in soil. Soil C consists of several fractions of C ranging from, accessible C (rapidly cycling) to stored or protected C (slow cycling). The key to increasing C storage is through the transfer of soil C from this accessible fraction, where it can be easily lost through microbial degradation, into the more stable fraction. With the increasing use of isotope enrichment techniques, 13C may be used to trace the movement of newly incorporated carbon in soil and examine how land management practises affect carbon storage. A laboratory method was developed to rapidly analyse soil respired CO2 for δ13C to determine the temperature sensitivity of newly incorporated 13C enriched carbon. A Horotiu silt loam (2 mm sieved, 60% MWHC) was mixed with 13C enriched ryegrass/clover plant matter in Hungate tubes and incubated for 5 hours at 20 temperatures( 4 - 50 °C) using a temperature gradient method (Robinson J. M., et al, (2017) Biogeochemistry, 13, 101-112). The respired CO2 was analysed using a modified Los Gatos, Off-axis ICOS carbon dioxide analyser. This method was able to analyse the δ13C signature of respired CO2 as long as a minimum concentration of CO2 was produced per tube. Further analysis used a two-component mixing model to separate the CO2 into source components to determine the contribution of added C and soil to total respiration. Preliminary data showed the decomposition of the two sources of C were both temperature dependant. Overall this method is a relatively quick and easy way to analyse δ13C of respired soil CO2 samples, and will allow for the testing of the effects of multiple variables on the decomposition of carbon fractions in future use.

  4. Steam-cured stabilised soil blocks for masonry construction

    Energy Technology Data Exchange (ETDEWEB)

    Venkatarama Reddy, B.V. [Indian Inst. of Science, Bangalore (India). Dept. of Civil Engineering; Lokras, S.S. [Indian Inst. of Science, Bangalore (India). ASTRA

    1998-12-01

    Energy-efficient, economical and durable building materials are essential for sustainable construction practices. The paper deals with production and properties of energy-efficient steam-cured stabilised soil blocks used for masonry construction. Problems of mixing expansive soil and lime, and production of blocks using soil-lime mixtures have been discussed briefly. Details of steam curing of stabilised soil blocks and properties of such blocks are given. A comparison of energy content of steam-cured soil blocks and burnt bricks is presented. It has been shown that energy-efficient steam cured soil blocks (consuming 35% less thermal energy compared to burnt clay bricks) having high compressive strength can be easily produced in a decentralised manner. (orig.)

  5. Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil

    Energy Technology Data Exchange (ETDEWEB)

    Cao Qing [Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Hu Qinhong [Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550 (United States); Khan, Sardan [Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Department of Environmental Sciences, University of Peshawar, 25120 Peshawar (Pakistan); Wang Zijian [Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Lin Aijun [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Du Xin [Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zhu Yongguan [Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)], E-mail: ygzhu@rcees.ac.cn

    2007-09-05

    The toxicity of two toxic elements, arsenic (As) and cadmium (Cd) (individually or in combination) on root elongation of wheat seedlings (Triticum aestivum, L.) were investigated both in hydroponics and in soils freshly spiked with the toxic elements. Median effective concentration (EC{sub 50}) and non-observed effect concentration (NOEC) were used to investigate the toxic thresholds and potencies of the two elements. The EC{sub 50} for As was 0.97 {mu}M in hydroponics and 196 mg kg{sup -1} in soil, and 4.32 {mu}M and 449 mg kg{sup -1} for Cd, respectively. Toxic unit (TU) and additive index (AI) concepts were introduced to determine the combined outcomes, and different behaviors were obtained: synergism in solution culture (EC{sub 50mix} = 0.36TU{sub mix} and AI: 1.76) and antagonism in soil experiments (EC{sub 50mix} = 1.49TU{sub mix} and AI: -0.33). Furthermore, the data of soil bioavailable As and Cd cannot explain the discrepancy between the results derived from soil and hydroponics experiments.

  6. Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Q; Hu, Q; Khan, S; Wang, Z; Lin, A; Du, X; Zhu, Y

    2007-03-05

    The toxicity effect of two deleterious elements of arsenic (As) and cadmium (Cd) (individually or in combination) on root elongation of wheat seedlings (Triticum aestivum, L.) were investigated both in hydroponics and in soils freshly spiked with the toxic elements. Median effective concentration (EC{sub 50}) and non-observed effect concentration (NOEC) were used to investigate the toxic thresholds and potencies of the two elements. The EC{sub 50} for As was 0.97 {mu}M in hydroponics and 196 mg {center_dot} kg{sup -1} in soil, and 4.32 {mu}M and 449 mg {center_dot} kg{sup -1} for Cd, respectively. Toxic unit (TU) and additive index (AI) concepts were introduced to determine the combined outcomes, and different behaviors were obtained: synergism in solution culture (EC{sub 50mix} = 0.36 TU{sub mix} and AI: 1.76) and antagonism in soil experiments (EC{sub 50mix} = 1.49 TU{sub mix} and AI: -0.33). Furthermore, the data of soil bioavailable As and Cd can not explain the discrepancy between the results derived from soil and hydroponics experiments.

  7. Estimating Soil Organic Carbon of Cropland Soil at Different Levels of Soil Moisture Using VIS-NIR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Qinghu Jiang

    2016-09-01

    Full Text Available Soil organic carbon (SOC is an essential property for soil function, fertility and sustainability of agricultural systems. It can be measured with visible and near-infrared reflectance (VIS-NIR spectroscopy efficiently based on empirical equations and spectra data for air/oven-dried samples. However, the spectral signal is interfered with by soil moisture content (MC under in situ conditions, which will affect the accuracy of measurements and calibration transfer among different areas. This study aimed to (1 quantify the influences of MC on SOC prediction by VIS-NIR spectroscopy; and (2 explore the potentials of orthogonal signal correction (OSC and generalized least squares weighting (GLSW methods in the removal of moisture interference. Ninety-eight samples were collected from the Jianghan plain, China, and eight MCs were obtained for each sample by a rewetting process. The VIS-NIR spectra of the rewetted soil samples were measured in the laboratory. Partial least squares regression (PLSR was used to develop SOC prediction models. Specifically, three validation strategies, namely moisture level validation, transferability validation and mixed-moisture validation, were designed to test the potentials of OSC and GLSW in removing the MC effect. Results showed that all of the PLSR models generated at different moisture levels (e.g., 50–100, 250–300 g·kg−1 were moderately successful in SOC predictions (r2pre = 0.58–0.85, RPD = 1.55–2.55. These models, however, could not be transferred to soil samples with different moisture levels. OSC and GLSW methods are useful filter transformations improving model transferability. The GLSW-PLSR model (mean of r2pre = 0.77, root mean square error for prediction (RMSEP = 3.08 g·kg−1, and residual prediction deviations (RPD = 2.09 outperforms the OSC-PLSR model (mean of r2pre = 0.67, RMSEP = 3.67 g·kg−1, and RPD = 1.76 when the moisture-mixed protocol is used. Results demonstrated the use of OSC

  8. Local variation in conspecific plant density influences plant-soil feedback in a natural grassland

    NARCIS (Netherlands)

    Kos, M.; Veendrick, Johan; Bezemer, T.M.

    2013-01-01

    Several studies have argued that under field conditions plant–soil feedback may be related to the local density of a plant species, but plant–soil feedback is often studied by comparing conspecific and heterospecific soils or by using mixed soil samples collected from different locations and plant

  9. The effect of soil type on the bioremediation of petroleum contaminated soils.

    Science.gov (United States)

    Haghollahi, Ali; Fazaelipoor, Mohammad Hassan; Schaffie, Mahin

    2016-09-15

    In this research the bioremediation of four different types of contaminated soils was monitored as a function of time and moisture content. The soils were categorized as sandy soil containing 100% sand (type I), clay soil containing more than 95% clay (type II), coarse grained soil containing 68% gravel and 32% sand (type III), and coarse grained with high clay content containing 40% gravel, 20% sand, and 40% clay (type IV). The initially clean soils were contaminated with gasoil to the concentration of 100 g/kg, and left on the floor for the evaporation of light hydrocarbons. A full factorial experimental design with soil type (four levels), and moisture content (10 and 20%) as the factors was employed. The soils were inoculated with petroleum degrading microorganisms. Soil samples were taken on days 90, 180, and 270, and the residual total petroleum hydrocarbon (TPH) was extracted using soxhlet apparatus. The moisture content of the soils was kept almost constant during the process by intermittent addition of water. The results showed that the efficiency of bioremediation was affected significantly by the soil type (Pvalue soil with the initial TPH content of 69.62 g/kg, and the lowest for the clay soil (23.5%) with the initial TPH content of 69.70 g/kg. The effect of moisture content on bioremediation was not statistically significant for the investigated levels. The removal percentage in the clay soil was improved to 57% (within a month) in a separate experiment by more frequent mixing of the soil, indicating low availability of oxygen as a reason for low degradation of hydrocarbons in the clay soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    International Nuclear Information System (INIS)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal

  11. Effect of Biochar on Soil Physical Characteristics

    DEFF Research Database (Denmark)

    Sun, Zhencai; Møldrup, Per; Vendelboe, Anders Lindblad

    Biochar addition to agricultural soil has been reported to reduce climate gas emission, as well as improve soil fertility and crop productivity. Little, however, is known about biochar effects on soil structural characteristics. This study investigates if biochar-application changes soil structural...... characteristics, as indicated from water retention and gas transport measurements on intact soil samples. Soil was sampled from a field experiment on a sandy loam with four control plots (C) without biochar and four plots (B) with incorporated biochar at a rate of 20 tons per hectare (plot size, 6 x 8 m). The C...... and B plots were placed in a mixed sequence (C-B-C-B-C-B-C-B) and at the same time the eight plots formed a natural pH gradient ranging from pH 7.7 to 6.3. We determined bulk density, saturated hydraulic conductivity (K-sat), soil water retention characteristics, soil-air permeability, and soil...

  12. Soil properties influence kinetics of soil acid phosphatase in response to arsenic toxicity.

    Science.gov (United States)

    Wang, Ziquan; Tan, Xiangping; Lu, Guannan; Liu, Yanju; Naidu, Ravi; He, Wenxiang

    2018-01-01

    Soil phosphatase, which plays an important role in phosphorus cycling, is strongly inhibited by Arsenic (As). However, the inhibition mechanism in kinetics is not adequately investigated. In this study, we investigated the kinetic characteristics of soil acid phosphatase (ACP) in 14 soils with varied properties, and also explored how kinetic properties of soil ACP changed with different spiked As concentrations. The results showed that the Michaelis constant (K m ) and maximum reaction velocity (V max ) values of soil ACP ranged from 1.18 to 3.77mM and 0.025-0.133mMh -1 in uncontaminated soils. The kinetic parameters of soil ACP in different soils changed differently with As contamination. The K m remained unchanged and V max decreased with increase of As concentration in most acid and neutral soils, indicating a noncompetitive inhibition mechanism. However, in alkaline soils, the K m increased linearly and V max decreased with increase of As concentration, indicating a mixed inhibition mechanism that include competitive and noncompetitive. The competitive inhibition constant (K ic ) and noncompetitive inhibition constant (K iu ) varied among soils and ranged from 0.38 to 3.65mM and 0.84-7.43mM respectively. The inhibitory effect of As on soil ACP was mostly affected by soil organic matter and cation exchange capacity. Those factors influenced the combination of As with enzyme, which resulted in a difference of As toxicity to soil ACP. Catalytic efficiency (V max /K m ) of soil ACP was a sensitive kinetic parameter to assess the ecological risks of soil As contamination. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Enhance soil bioremediation with electric fields

    International Nuclear Information System (INIS)

    Acar, Y.B.; Rabbi, M.F.; Gale, R.J.; Ozsu, E.E.; Alshawabkeh, A.N.

    1996-01-01

    Electrokinetic remediation is an in situ remediation technique that uses low-level direct-current electric potential differences (on the order of volts per centimeter) or an electric current (on the order of milliamps per square centimeter of cross-sectional area between electrodes) applied across a soil mass by electrodes placed in an open- or closed-flow arrangement. In electrokinetic methods, the groundwater in the boreholes or an externally supplied fluid (processing fluid) is used as the conductive medium. Electrokinetic remediation technology for metal extraction is expected to decrease the cost of remediating contaminated soils to the lower end of the $100--$1,000/m 3 range. This would be a significant savings in the $350 billion hazardous waste site cleanup and remediation market. The environmental restoration cost for the mixed (radioactive)-waste market is separately estimated to be $65 billion. The potential of the electrokinetic remediation technique in remediating soils contaminated with radioactive mixed waste using depolarization agents and complexing agents is noteworthy. The authors have removed uranyl ions from spiked kaolinite using the technique

  14. Occurrence and Sources of Aliphatic Hydrocarbons in Soils within ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Keywords: Asphalt Plants; Soil; Aliphatic hydrocarbons; Pristane; Phytane. Hot mix asphalt (HMA) plant is an assemblage of mechanical equipment where aggregates or inert mineral materials such as sand, gravel, crushed stones, Slag, rock dust or powder are blended, heated, dried and mixed with bitumen in measured ...

  15. Do Smallholder, Mixed Crop-Livestock Livelihoods Encourage Sustainable Agricultural Practices? A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Thomas K. Rudel

    2016-02-01

    Full Text Available As calls for bolstering ecosystem services from croplands have grown more insistent during the past two decades, the search for ways to foster these agriculture-sustaining services has become more urgent. In this context we examine by means of a meta-analysis the argument, proposed by Robert McC. Netting, that small-scale, mixed crop-livestock farming, a common livelihood among poor rural peoples, leads to environmentally sustainable agricultural practices. As predicted, mixed crop-livestock farms exhibit more sustainable practices, but, contrary to predictions, a small scale of operation does not predict sustainability. Many smallholders on mixed crop-livestock farms use sustainable practices, but other smallholders practice a degrading, input-scarce agriculture. Some large farm operators use soil-conserving, minimum-tillage techniques while other large operators ignore soil-conserving techniques and practice an industrialized, high chemical input agriculture. The strength and pervasiveness of the link in the data between mixed crop-livestock farming and sustainable agricultural practices argues for agricultural policies that promote mixed crop-livestock livelihoods.

  16. EXPERIMENTAL STUDY OF SOIL CEMENT BRICKS AND CHARACTERISTICS COMPRESSIVESTRENGTH OF BRICK MASONRY WALL

    OpenAIRE

    S. Divya; K. Nithya; S. Manoj Kumar; K. Saravanakumar

    2017-01-01

    This research is intended to provide detailed technical and economic information on the production of compressed cement stabilised soil bricks. These include information on suitable soil types, local stabilisers, stabilization techniques, production of compressed stabilized soil bricks and their economical value and potential. Critical review of related literatures show that soil types, proportions between soil and stabilizer and compaction pressure applied to the moist soil mix affects the q...

  17. Characterization of Heavy metals from banana farming soils

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dian; Huang, Cheng He; Huang, Dong Yi [College of Agronomy, Hainan University, Haikou City, Hainan Province (China); Ouyang, Ying [Department of Water Resources, St. Johns River Water Management District, Palatka, FL (United States)

    2010-06-15

    There is a growing public concern about the contamination of heavy metals in agricultural soils in China due to the increasingly applications of chemical fertilizers and pesticides during the last two decades. This study characterized the variability of heavy metals, including copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), and nickel (Ni), from the banana farming soils in western Hainan Island, China. Five banana farms from different locations in the island were selected to collect 69 mixed-soil samples in this study. Experimental data showed that concentrations of Cu ranged from 3.38 to 54.52, Zn from 24.0 to 189.8, Pb from 15.98 to 58.42, Cd from 0.43 to 3.21, and Ni from 3.47 to 121.86 mg kg{sup -1} dry wt. In general, concentrations of the heavy metals varied with metal species and changed from location to location, which occurred presumably due to the variations of soil parent materials and to a certain extent due to the use of different types of agrochemicals. Our study further revealed that concentrations of Cu and Zn were higher in the banana farming soils than in the natural (control) soils among all of the five locations, whereas mixed results were observed for Pb, Cd, and Ni in both the banana farming and control soils, depending on the locations. Comparisons of the heavy metal concentrations with the Chinese Soil Quality Standards (CSQSs) showed that Cu, Zn, and Pb contents were lower but Cd and Ni contents were higher in the banana farming soils than the Class II standard of the CSQSs. Results suggested that accumulation of Cu, Zn, and Pb in the soils is safe for banana fruit production, whereas accumulation of Cd and Ni in the same soils could potentially pose threats to banana fruit safety. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Influence of Water Content on the Flow Consistency of Dredged Marine Soils

    Directory of Open Access Journals (Sweden)

    Rosman M. Z.

    2016-01-01

    Full Text Available In present time, dredged marine soils (DMS are generally considered as geo-waste in Malaysia. It is also known to contain high value of water and low shear strength. Lightly solidified soils such as soilcement slurry and flowable fill are known as controlled low strength materials (CLSM. On site, the CLSM was tested for its consistency by using an open-ended cylinder pipe. The vertical and lateral displacement from the test would determine the quality and workability of the CLSM. In this study, manufactured kaolin powder was mixed with different percentages of water. Cement was also added to compare the natural soil with solidified soil samples. There are two methods of flowability test used, namely the conventional lift method and innovative drop method. The lateral displacement or soil spread diameter values were recorded and averaged. Tests showed that the soil spread diameter corresponded almost linear with the increasing amount of water. The binder-added samples show no significant difference with non-binder sample. Also, the mixing water content and percentage of fines had influenced the soil spread diameter.

  19. A Proposed Extension to the Soil Moisture and Ocean Salinity Level 2 Algorithm for Mixed Forest and Moderate Vegetation Pixels

    Science.gov (United States)

    Panciera, Rocco; Walker, Jeffrey P.; Kalma, Jetse; Kim, Edward

    2011-01-01

    The Soil Moisture and Ocean Salinity (SMOS)mission, launched in November 2009, provides global maps of soil moisture and ocean salinity by measuring the L-band (1.4 GHz) emission of the Earth's surface with a spatial resolution of 40-50 km.Uncertainty in the retrieval of soilmoisture over large heterogeneous areas such as SMOS pixels is expected, due to the non-linearity of the relationship between soil moisture and the microwave emission. The current baseline soilmoisture retrieval algorithm adopted by SMOS and implemented in the SMOS Level 2 (SMOS L2) processor partially accounts for the sub-pixel heterogeneity of the land surface, by modelling the individual contributions of different pixel fractions to the overall pixel emission. This retrieval approach is tested in this study using airborne L-band data over an area the size of a SMOS pixel characterised by a mix Eucalypt forest and moderate vegetation types (grassland and crops),with the objective of assessing its ability to correct for the soil moisture retrieval error induced by the land surface heterogeneity. A preliminary analysis using a traditional uniform pixel retrieval approach shows that the sub-pixel heterogeneity of land cover type causes significant errors in soil moisture retrieval (7.7%v/v RMSE, 2%v/v bias) in pixels characterised by a significant amount of forest (40-60%). Although the retrieval approach adopted by SMOS partially reduces this error, it is affected by errors beyond the SMOS target accuracy, presenting in particular a strong dry bias when a fraction of the pixel is occupied by forest (4.1%v/v RMSE,-3.1%v/v bias). An extension to the SMOS approach is proposed that accounts for the heterogeneity of vegetation optical depth within the SMOS pixel. The proposed approach is shown to significantly reduce the error in retrieved soil moisture (2.8%v/v RMSE, -0.3%v/v bias) in pixels characterised by a critical amount of forest (40-60%), at the limited cost of only a crude estimate of the

  20. [Diversity of soil nematode communities in the subalpine and alpine forests of western Sichuan, China.

    Science.gov (United States)

    Chen, Ya; Yang, Wan Qin; Wu, Fu Zhong; Yang, Fan; Lan, Li Ying; Liu, Yu Wei; Guo, Cai Hong; Tan, Bo

    2017-10-01

    In order to understand the diversity of soil nematodes in the subalpine/alpine forests of the eastern Qinghai-Tibet Plateau, soil nematodes in the primary forest, mixed forest and secondary forest of Abies faxoniana were extracted by elutriation and sugar-centrifugation method in July 2015, and the composition and structure characteristics of soil nematode communities were studied in the three forests at different altitudes. A total of 37950 soil nematodes were collected, which belonged to 20 families and 27 genera, and the mean density was 4217 ind·100 g -1 dry soil. Filenchus was the dominant genus in the primary forest, and Filenchus and Pararotylenchus in the mixed forest and secondary forest, respectively. The individual number of each dominant genus was significantly affected by forest type. All nematode individuals were classified into the four trophic groups of bacterivores, fungivores, plant-parasites and omnivore-predators. The fungivores were dominant in the primary and secondary forest and the bacterivores in the mixed forest. The number of soil nematode c-p (colonizer-persister) groups of c-p 1, c-p 2, c-p 3 and c-p 4 accounted for 6.1%, 51.1%, 30.0% and 12.7% of the total nematode abundance, respectively. The maturity index (MI), the total maturity index (∑MI) and the plant parasitic index (PPI) of soil nematodes decreased gradually with the increase of altitude. The nematode channel ratio in the mixed forest was higher than 0.5, but that in the primary forest and secondary forest was below 0.5. The forest type significantly affected the soil nematode maturity index and channel ratio, but the forest type, soil layer and their interaction had no significant effect on the diversity index. There were obvious diffe-rences in the composition, nutrient structure and energy flow channel of soil nematodes in the subalpine/alpine forests of western Sichuan, providing an important reference for understanding the function of soil nematodes in soil processes

  1. EXPERIMENTAL DETERMINATION OF VARIABILITY IN PERMEABILITY OF SANDY SILT SOIL MIXED WITH FLY ASH IN PROPORTIONATE

    OpenAIRE

    Rasna Sharma*, Dr. M.K. Trivedi

    2016-01-01

    This paper presents the experimental determination of variability in permeability of sandy silt soil by blending with fly ash. The grain size, porosity, structure of the soil, specific gravity of the soil, viscosity and temperature are important factors in varying the permeability of the soil. Permeability is the flow conduction property of the soil. The void ratio with in the soil plays a vital role in varying the permeability. By blending with finer grains like fly ash in the soil with sand...

  2. Effect of Simulated N Deposition on Soil Exchangeable Cations in Three Forest Types of Subtropical China

    Institute of Scientific and Technical Information of China (English)

    LU Xian-Kai; MO Jiang-Ming; P.GUNDERSERN; ZHU Wei-Xing; ZHOU Guo-Yi; LI De-Jun; ZHANG Xu

    2009-01-01

    The effects of simulated nitrogen (N) deposition on soil exchangeable cations were studied in three forest types of subtropical China.Four N treatments with three replications were designed for the monsoon evergreen broadleaf forest (mature forest):control (0 kg N ha-1 year-1),low N (50 kg N ha-1 year-1),medium N (100 kg N ha-1 year-1) and high N (150 kg N ha-1 ycar-1),and only three treatments (i.e.,control,low N,medium N) were established for the pine and mixed forests.Nitrogen had been applied continuously for 26 months before the measurement.The mature forest responded more rapidly and intensively to N additions than the pine and mixed forests,and exhibited some significant negative symptoms,e.g.,soil acidification,Al mobilization and leaching of base cations from soil.The pine and mixed forests responded slowly to N additions and exhibited no significant response of soil cations.Response of soil exchangeable cations to N deposition varied in the forests of subtropical China,depending on soil N status and land-nse history.

  3. Decomposition of oak leaf litter and millipede faecal pellets in soil under temperate mixed oak forest

    Science.gov (United States)

    Tajovský, Karel; Šimek, Miloslav; Háněl, Ladislav; Šantrůčková, Hana; Frouz, Jan

    2015-04-01

    The millipedes Glomeris hexasticha (Diplopoda, Glomerida) were maintained under laboratory conditions and fed on oak leaf litter collected from a mixed oak forest (Abieto-Quercetum) in South Bohemia, Czech Republic. Every fourth day litter was changed and produced faecal pellets were separated and afterwards analysed. Content of organic carbon and C:N ratio lowered in faecal pellets as compared with consumed litter. Changes in content of chemical elements (P, K, Ca, Mg, Na) were recognised as those characteristic for the first stage of degradation of plant material. Samples of faecal pellets and oak leaf litter were then exposed in mesh bags between the F and H layers of forest soil for up to one year, subsequently harvested and analysed. A higher rate of decomposition of exposed litter than that of faecal pellets was found during the first two weeks. After 1-year exposure, the weight of litter was reduced to 51%, while that of pellets to 58% only, although the observed activity of present biotic components (algae, protozoans, nematodes; CO2 production, nitrogenase activity) in faecal pellets was higher as compared with litter. Different micro-morphological changes were observed in exposed litter and in pellets although these materials originated from the same initial sources. Comparing to intact leaf litter, another structural and functional processes occurred in pellets due to the fragmentation of plant material by millipedes. Both laboratory and field experiments showed that the millipede faecal pellets are not only a focal point of biodegradation activity in upper soil layers, but also confirmed that millipede feces undergo a slower decomposition than original leaf litter.

  4. Differences in nitrogen cycling and soil mineralisation between a ...

    African Journals Online (AJOL)

    Differences in nitrogen cycling and soil mineralisation between a eucalypt plantation and a mixed eucalypt and Acacia mangium plantation on a sandy tropical soil. ... An ecological intensification of eucalypt plantations was tested with the replacement of half of the Eucalyptus urophylla × E. grandis by Acacia mangium in the ...

  5. Ground cover and tree growth on calcareous minesoils: Greater influence of soil surface than nitrogen rate or seed mix

    International Nuclear Information System (INIS)

    Kost, D.A.; Vimmerstedt, J.P.

    1994-01-01

    Growth of ground cover and trees was evaluated for five growing seasons on calcareous coal minesoil surfaces (standard graded topsoil, graded and ripped topsoil, graded gray cast overburden) in southeastern Ohio. Soil surface plots were seeded in September 1987 with either a standard herbaceous seed mix [orchardgrass (Dactylis glomerata L.), timothy (Phleum pratense L.), perennial ryegrass (Lolium perenne L.), Kentucky bluegrass (Poa pratensis L.), Ranger alfalfa (Medicago sativa L.), Mammoth red clover (Trifolium pratense L.), Empire birdsfoot trefoil (Lotus corniculatus L.), and wheat (Triticum aestivum L.)], or a modified mix using no alfalfa and half the rate of orchardgrass. Nitrogen (45, 90, or 135 kg ha/N) was applied as ammonium nitrate in September 1987 and April 1989. White ash (Fraxinus americana L.), silver maple (Acer saccharinum L.), northern red oak (Quercus rubra L.), and eastern white pine (Pinus strobus L.) were planted in spring 1989 into 0.8 m-wide strips sprayed with glyphosate herbicide at 2.24 kg/ha in October 1988. Total cover and total biomass were highest in July 1989, following the last application of nitrogen fertilizer in April 1989. Total cover ranged from 44% to 56%, and total biomass ranged from 102 to 162 g/0.5 m 2 from 1990 to 1993. Total cover and total biomass were lower at the lowest nitrogen rate in 1989 only. Type of herbaceous seed mix did not affect growth of ground cover or trees. Overall tree survival was 82.0% the first year but declined to 40.6% after 5 yr. Survival varied significantly among all tree species (3.5% for pine, 22.2% for oak, 38.5% for maple, 98.1% for ash)

  6. Mineralization of soil organic matter in biochar amended agricultural landscape

    Science.gov (United States)

    Chintala, R.; Clay, D. E.; Schumacher, T. E.; Kumar, S.; Malo, D. D.

    2015-12-01

    Pyrogenic biochar materials have been identified as a promising soil amendment to enhance climate resilience, increase soil carbon recalcitrance and achieve sustainable crop production. A three year field study was initiated in 2013 to study the impact of biochar on soil carbon and nitrogen storage on an eroded Maddock soil series - Sandy, Mixed, Frigid Entic Hapludolls) and deposition Brookings clay loam (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) landscape positions. Three biochars produced from corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were incorporated at 9.75 Mg ha-1 rate (≈7.5 cm soil depth and 1.3 g/cm3 soil bulk density) with a rototiller. The changes in chemical fractionation of soil carbon (soluble C, acid hydrolyzable C, total C, and δ13 C) and nitrogen (soluble N, acid hydrolyzable N, total N, and δ14 N) were monitored for two soil depths (0-7.5 and 7.5 - 15 cm). Soluble and acid hydrolyzable fractions of soil C and N were influenced by soil series and were not significantly affected by incorporation of biochars. Based on soil and plant samples to be collected in the fall of 2015, C and N budgets are being developed using isotopic and non-isotopic techniques. Laboratory studies showed that the mean residence time for biochars used in this study ranged from 400 to 666 years. Laboratory and field studies will be compared in the presentation.

  7. Treatment of chromium contaminated soil using bioremediation

    Science.gov (United States)

    Purwanti, Ipung Fitri; Putri, Tesya Paramita; Kurniawan, Setyo Budi

    2017-11-01

    Chromium contamination in soil occurs due to the disposal of chromium industrial wastewater or sludge that excess the quality standard. Chromium concentration in soil is ranged between 1 to 300 mg/kg while the maximum health standard is 2.5 mg/kg. Bioremediation is one of technology that could be used for remediating heavy metal contamination in soil. Bacteria have an ability to remove heavy metal from soil. One bacteria species that capable to remove chromium from soil is Bacillus subtilis. The aim of this research was to know the chromium removal percentage in contaminated soil by Bacillus subtilis. Artificial chromium contaminated soil was used by mixing 425gram sand and chromium trichloride solution. Concentration of chromium added into the spiked soil were 50, 75, and 100 mg/L. During 14 days, pH, soil temperature and soil moisture were tested. Initial and final number of bacterial colony and chromium concentration analysed. The result showed that the highest percentage of chromium removal was 11% at a chromium concentration of 75 mg/L

  8. Behavior of oxyfluorfen in soils amended with different sources of organic matter. Effects on soil biology.

    Science.gov (United States)

    Gómez, Isidoro; Rodríguez-Morgado, Bruno; Parrado, Juan; García, Carlos; Hernández, Teresa; Tejada, Manuel

    2014-05-30

    We performed a laboratory study on the effect of oxyfluorfen at a rate of 4lha(-1) on biological properties of a soil amended with four organic wastes (two biostimulants/biofertilizers, obtained from rice bran, RB1 and RB2; municipal solid waste, MSW; and sheep manure, SM). Soil was mixed with SM at a rate of 1%, MSW at a rate of 0.52%, RB1 at a rate of 0.39% and RB2 at a rate of 0.30%, in order to apply the same amount of organic matter to the soil. The enzymatic activities and microbial community in the soil were determined during the incubation times. The application of RB1 and RB2 to soil without oxyfluorfen increased the enzymatic activities and biodiversity, peaking at day 10 of the incubation period. This stimulation was higher in the soil amended with RB2 than in that amended with RB1. In SM and CF-amended soils, the stimulation of enzymatic activities and soil biodiversity increased during the experiment. The application of herbicide in organic-amended soils decreased the inhibition of soil enzymatic activities and soil biodiversity. Possibly the low molecular weight protein content easily assimilated by soil microorganisms and the higher fat content in the biostimulants/biofertilizers are responsible for the lower inhibition of these soil biological properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Soil CO2 response to organic and amino acids

    Science.gov (United States)

    Soil samples were obtained from under actively growing Austrian winter peas and from 2 m away in a plot that had no winter peas or other legumes growing in its cover crop mix. Soils were treated with 5 carbon compounds (oxalic, malic, citric, glycine and arginine) including a control (DI water) and...

  10. carryover of soil-applied herbicides on flue-cured tobacco

    African Journals Online (AJOL)

    user1

    2003-10-15

    Oct 15, 2003 ... soil horizon, the samples were thoroughly mixed to produce one single composite sample. Entire leaf samples exhibiting the characteristic interveinal yellowing were also collected at different plant positions and made up to 1 kg of fresh weight. Both soil and leaf samples contained in liquid CO2 under ...

  11. Soil restoration under pasture after lignite mining - management effects on soil biochemical properties and their relationships with herbage yields

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.J.; Speir, T.W.; Cowling, J.C.; Feltham, C.W. (DSIR, Lower Hutt (New Zealand))

    1992-01-01

    The recovery of soil biochemical properties under grazed, grass-clover pasture after simulated lignite mining was studied over a 5-year period in a mesic Typic Dystrochrept soil at Waimumu, Southland, New Zealand. Restoration procedures involved four replacement treatments, after A,B and C horizon materials had been separately removed, from all except the control, and stockpiled for 2-3 weeks. Replacement treatment markedly influenced the recovery of herbage production and soil organic C and total N contents, N mineralization, microbial biomass (as indicated by mineral-N flush) and invertase and sulphatase activities. The effectiveness of replacement treatments decreased in the order: 1. control (no stripping or replacement). 2. A,B and C horizon materials replaced in the same order. 3. A,B and C horizon materials each mixed with an equal amount of siltstone overburden and replaced in order, 4. A and B horizon materials mixed before replacing over C horizon materials. Ripping increased herbage production, net N mineralization and microbial biomass. Fertilizer N also stimulated herbage production but depressed clover growth. Increases in soil invertase and, to a lesser extent, sulphatase activity were closely related to changes in herbage production. Microbial biomass increased more rapidly than soil organic C in early stages in the trial. Rates of net N mineralization suggest that N availability would have limited pasture growth.

  12. Deformational mass transport and invasive processes in soil evolution

    Science.gov (United States)

    Brimhall, George H.; Chadwick, Oliver A.; Lewis, Chris J.; Compston, William; Williams, Ian S.; Danti, Kathy J.; Dietrich, William E.; Power, Mary E.; Hendricks, David; Bratt, James

    1992-01-01

    Channels left in soil by decayed roots and burrowing animals allow organic and inorganic precipitates and detritus to move through soil from above, to depths at which the minuteness of pores restricts further passage. Consecutive translocation-and-root-growth phases stir the soil, constituting an invasive, dilatational process which generates cumulative strains. Below the depths thus affected, mineral dissolution by descending organic acids leads to internal collapse; this softened/condensed precursor horizon is then transformed into soil via biological activity that mixes and expands the evolving residuum through root and micropore-network invasion.

  13. Mitigation of dimethazone residues in soil and runoff water from agricultural field.

    Science.gov (United States)

    Antonious, George F

    2011-01-01

    Dimethazone, also known as clomazone [2-[(2-chlorophenyl) methyl]- 4,4-dimethyl-3-isoxaolidinone] is a pre-emergent nonionic herbicide commonly used in agriculture. A field study was conducted on a silty-loam soil of 10 % slope to monitor off-site movement and persistence of dimethazone in soil under three management practices. Eighteen plots of 22 x 3.7 m each were separated using stainless steel metal borders and the soil in six plots was mixed with municipal sewage sludge (MSS) and yard waste (YW) compost (MSS+YW) at 15 t acre⁻¹ on dry weight basis, six plots were mixed with MSS at 15 t acre⁻¹, and six unamended plots (NM) were used for comparison purposes. The objectives of this investigation were to: (i) monitor the dissipation and half-life (T₁/₂) of dimethazone in soil under three management practices; (ii) determine the concentration of dimethazone residues in runoff and infiltration water following natural rainfall events; and (iii) assess the impact of soil amendments on the transport of NO₃, NH₄, and P into surface and subsurface water. Gas chromatography/mass spectrometery (GC/MS) analyses of soil extracts indicated the presence of ion fragments at m/z 125 and 204 that can be used for identification of dimethazone residues. Intitial deposits of dimethazone varied from 1.3 μg g⁻¹ dry native soil to 3.2 and 11.8 μg g⁻¹ dry soil in MSS and MSS+YW amended soil, respectively. Decline of dimethazone residues in the top 15 cm native soil and soil incorporated with amendments revealed half-life (T₁/₂) values of 18.8, 25.1, and 43.0 days in MSS+YW, MSS, and NM treatments, respectively. Addition of MSS+YW mix and MSS alone to native soil increased water infiltration, lowering surface runoff water volume and dimethazone residues in runoff following natural rainfall events.

  14. Influence of red mud on soil microbial communities: Application and comprehensive evaluation of the Biolog EcoPlate approach as a tool in soil microbiological studies.

    Science.gov (United States)

    Feigl, Viktória; Ujaczki, Éva; Vaszita, Emese; Molnár, Mónika

    2017-10-01

    Red mud can be applied as soil ameliorant to acidic, sandy and micronutrient deficient soils. There are still knowledge gaps regarding the effects of red mud on the soil microbial community. The Biolog EcoPlate technique is a promising tool for community level physiological profiling. This study presents a detailed evaluation of Biolog EcoPlate data from two case studies. In experiment "A" red mud from Ajka (Hungary) was mixed into acidic sandy soil in soil microcosms at 5-50 w/w%. In experiement "B" red mud soil mixture was mixed into low quality subsoil in a field experiment at 5-50 w/w%. According to average well color development, substrate average well color development and substrate richness 5-20% red mud increased the microbial activity of the acidic sandy soil over the short term, but the effect did not last for 10months. Shannon diversity index showed that red mud at up to 20% did not change microbial diversity over the short term, but the diversity decreased by the 10th month. 30-50% red mud had deteriorating effect on the soil microflora. 5-20% red mud soil mixture in the low quality subsoil had a long lasting enhancing effect on the microbial community based on all Biolog EcoPlate parameters. However, 50% red mud soil mixture caused a decrease in diversity and substrate richness. With the Biolog EcoPlate we were able to monitor the changes of the microbial community in red mud affected soils and to assess the amount of red mud and red mud soil mixture applicable for soil treatment in these cases. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Soil modification by invasive plants: Effects on native and invasive species of mixed-grass prairies

    Science.gov (United States)

    Jordan, N.R.; Larson, D.L.; Huerd, S.C.

    2008-01-01

    Invasive plants are capable of modifying attributes of soil to facilitate further invasion by conspecifics and other invasive species. We assessed this capability in three important plant invaders of grasslands in the Great Plains region of North America: leafy spurge (Euphorbia esula), smooth brome (Bromus inermis) and crested wheatgrass (Agropyron cristatum). In a glasshouse, these three invasives or a group of native species were grown separately through three cycles of growth and soil conditioning in both steam-pasteurized and non-pasteurized soils, after which we assessed seedling growth in these soils. Two of the three invasive species, Bromus and Agropyron, exhibited significant self-facilitation via soil modification. Bromus and Agropyron also had significant facilitative effects on other invasives via soil modification, while Euphorbia had significant antagonistic effects on the other invasives. Both Agropyron and Euphorbia consistently suppressed growth of two of three native forbs, while three native grasses were generally less affected. Almost all intra- and interspecific effects of invasive soil conditioning were dependent upon presence of soil biota from field sites where these species were successful invaders. Overall, these results suggest that that invasive modification of soil microbiota can facilitate plant invasion directly or via 'cross-facilitation' of other invasive species, and moreover has potential to impede restoration of native communities after removal of an invasive species. However, certain native species that are relatively insensitive to altered soil biota (as we observed in the case of the forb Linum lewisii and the native grasses), may be valuable as 'nurse'species in restoration efforts. ?? 2007 Springer Science+Business Media B.V.

  16. Cohesive Soil Stabilized Using Sewage Sludge Ash/Cement and Nano Aluminum Oxide

    Directory of Open Access Journals (Sweden)

    Huan-Lin Luo

    2012-03-01

    Full Text Available In order to improve soft soil strength, a mixture of incinerated sewage sludge ash (SSA and cement was applied as a soil stabilizer. The intended mix ratio for SSA and cement was 3:1. A-6 clay was selected as the untreated soil. In this study, 15% of clay soil was replaced by SSA/cement to produce the treated soil specimens. Then, four different volumes, namely 0, 1, 2, and 3%, of nano-Al2O3 were mixed with the treated soil as an additive. Tests such as compaction, pH values, Atterberg limits, unconfined compressive strength (UCS, swell potential, California bearing ratio (CBR, and permeability were performed. The results indicate that both UCSs and CBR values of untreated soil were greatly improved by the use of 15% SSA/cement. Moreover, a 1% addition of nano-Al2O3 enhanced the treated soil in terms of both UCS and CBR values. Furthermore, the swell potential was effectively reduced by the use of 15% SSA/cement as compared with untreated soil and the 1% nano-Al2O3 additive fraction offered the best performance. From this study, we conclude that 15% of SSA/cement replacement could effectively stabilize A-6 clay soil, and 1% of nano-Al2O3 additive may be the optimum amount to add to the soil.

  17. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    Science.gov (United States)

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  18. Hydrological Implication of Bamboo And Mixed Garden In The upper Citarum Watershed

    Directory of Open Access Journals (Sweden)

    Chay Asdak

    2013-07-01

    Full Text Available The assessment of important factors affecting runoff and erosion was carried out by collecting runoff and soil loss from four runoff/erosion plots. The runoff/erosion plots were set up in sloping areas of about 40% slope in the upper area of Ciwidey sub-watershed (upper Citarum watershed, West Java. The plots (6 x 10 m were established in the following four sets of conditions: bamboo plantation, mixed garden, small shrub, and agricultural field with different species and stand structures. After 20 rainfall events, a treatment in the form of removing undergrowth and litter were applied to bamboo and mixed garden plots. The result of this before and after treatment are the following: runoff from bamboo plantation was increased from 0.40 to 1.02 litre/m2 and erosion was increased from 1.47 to 11.65 gr/m2. While the runoff and erosion in mixed garden were increased from 0.36 to 1.65 litre/m2 and from 1.36 to 10.88 65 gr/m2, respectively. When this compared to the runoff and soil loss in the agricultural plot, the soil erosion is much higher, 50.5 gr/m2 (about 50 times higher. Stand/canopy structure appeared to be the important factors that determine the magnitude of soil erosion. While the role of these factors were less significant compared to rainfall in determining the magnitude of runoff.

  19. Use of additive material to stabilize the soil swelling

    Science.gov (United States)

    Parsaee, B.; Estabragh, A. R.; Bordbar, A. T.; Eskandari, G. H.

    2009-04-01

    Change volume increasing of soil, because of increase in its humidity content causes appearing of swelling phenomenon in the soil. This phenomenon has created a lot of damages in the building which is constructed on this kind of soils. Usage the additive materials which stabilize the swelling, has been the subject of many researches. In this research the Potential expansibility of the expansive soils, which were stabilized by additive materials such as Lime, cement and coal ash, was investigated. To get this purpose, by preparing soil samples mixed with upper additive material, changes of potential swelling of stabilized soils were compared. The results revealed that usage of these stabilizing materials caused the decrease in destructive effects due to swelling of soils to some extent. Keywords: swelling, soil stabilizing, additive material, coal ash

  20. Adaptation of ammonia-oxidizing microorganisms to environment shift of paddy field soil.

    Science.gov (United States)

    Ke, Xiubin; Lu, Yahai

    2012-04-01

    Adaptation of microorganisms to the environment is a central theme in microbial ecology. The objective of this study was to investigate the response of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) to a soil medium shift. We employed two rice field soils collected from Beijing and Hangzhou, China. These soils contained distinct AOB communities dominated by Nitrosomonas in Beijing rice soil and Nitrosospira in Hangzhou rice soil. Three mixtures were generated by mixing equal quantities of Beijing soil and Hangzhou soil (BH), Beijing soil with sterilized Hangzhou soil (BSH), and Hangzhou soil with sterilized Beijing soil (HSB). Pure and mixed soils were permanently flooded, and the surface-layer soil where ammonia oxidation occurred was collected to determine the response of AOB and AOA to the soil medium shift. AOB populations increased during the incubation, and the rates were initially faster in Beijing soil than in Hangzhou soil. Nitrosospira (cluster 3a) and Nitrosomonas (communis cluster) increased with time in correspondence with ammonia oxidation in the Hangzhou and Beijing soils, respectively. The 'BH' mixture exhibited a shift from Nitrosomonas at day 0 to Nitrosospira at days 21 and 60 when ammonia oxidation became most active. In 'HSB' and 'BSH' mixtures, Nitrosospira showed greater stimulation than Nitrosomonas, both with and without N amendment. These results suggest that Nitrosospira spp. were better adapted to soil environment shifts than Nitrosomonas. Analysis of the AOA community revealed that the composition of AOA community was not responsive to the soil environment shifts or to nitrogen amendment. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Soil treatment to remove uranium and related mixed radioactive contaminants. Final report September 1992--October 1995

    International Nuclear Information System (INIS)

    1996-07-01

    A research and development project to remove uranium and related radioactive contaminants from soil by an ultrasonically-aided chemical leaching process began in 1993. The project objective was to develop and design, on the basis of bench-scale and pilot-scale experimental studies, a cost-effective soil decontamination process to produce a treated soil containing less than 35 pCi/g. The project, to cover a period of about thirty months, was designed to include bench-scale and pilot-scale studies to remove primarily uranium from the Incinerator Area soil, at Fernald, Ohio, as well as strontium-90, cobalt-60 and cesium-137 from a Chalk River soil, at the Chalk River Laboratories, Ontario. The project goal was to develop, design and cost estimate, on the basis of bench-scale and pilot-scale ex-situ soil treatment studies, a process to remove radionuclides form the soils to a residual level of 35 pCi/g of soil or less, and to provide a dischargeable water effluent as a result of soil leaching and a concentrate that can be recovered for reuse or solidified as a waste for disposal. In addition, a supplementary goal was to test the effectiveness of in-situ soil treatment through a field study using the Chalk River soil

  2. Soil respiration response to experimental disturbances over 3 years

    Science.gov (United States)

    Amy Concilio; Siyan Ma; Soung-Ryoul Ryu; Malcolm North; Jiquan Chen

    2006-01-01

    Soil respiration is a major pathway for carbon cycling in terrestrial ecosystems yet little is known about its response to natural and anthropogenic disturbances. This study examined soil respiration response to prescribed burning and thinning treatments in an old-growth, mixed-conifer forest on the western slope of the Sierra Nevada Mountains. Experimental treatments...

  3. Environmental radiation safety: plutonium/soil interactions for plutonium particles in soil

    International Nuclear Information System (INIS)

    Moss, O.R.; Rossingnol, E.J.; Cannon, W.C.; Stevens, D.L.

    1980-12-01

    The goal of this project is to provide information useful in estimating hazards related to resuspension characteristics and subsequent aerodynamic behavior of aerosols from a mixing of soil and 238 PuO 2 . Experiments were carried out to determine whether simple models, used to predict the total activity concentration of resuspended particles, need to be modified to account for changes in the 238 PuO 2 activity distribution on resuspended particles due to aging of the soil mixture under humid or dry conditions. A literature search revealed that one model, based on the suspension factors, S/sub f/, may be a useful predictor of hazard reduction irrespective of site. Our experiments demonstrated little or no change in the activity of resuspended particles following humid or dry aging of the soil- 238 PuO 2 mixture. Additional terms for activity distribution changes should not be needed for the simple resuspension hazard model

  4. Stabilization treatment of soft subgrade soil by sewage sludge ash and cement.

    Science.gov (United States)

    Chen, Li; Lin, Deng-Fong

    2009-02-15

    In this study, incinerated sewage sludge ash (ISSA) is mixed with cement in a fixed ratio of 4:1 for use as a stabilizer to improve the strength of soft, cohesive, subgrade soil. Five different ratios (in wt%: 0%, 2%, 4%, 8%, and 16%) of ISSA/cement admixture are mixed with cohesive soil to make soil samples. In order to understand the influences of admixtures on the soil properties, tests of the pH value, Atterberg limits, compaction, California bearing ratio (CBR), unconfined compressive strength, and triaxial compression were performed on those samples. The study shows that the unconfined compressive strength of specimens with the ISSA/cement addition was improved to approximately 3-7 times better than that of the untreated soil; furthermore, the swelling behavior was also effectively reduced as much as 10-60% for those samples. In some samples, the ISSA/cement additive improved the CBR values by up to 30 times that of untreated soil. This suggests that ISSA/cement has many potential applications in the field of geotechnical engineering.

  5. Fractal Characteristics of Soil Retention Curve and Particle Size Distribution with Different Vegetation Types in Mountain Areas of Northern China

    Directory of Open Access Journals (Sweden)

    Xiang Niu

    2015-12-01

    Full Text Available Based on fractal theory, the fractal characteristics of soil particle size distribution (PSD and soil water retention curve (WRC under the five vegetation types were studied in the mountainous land of Northern China. Results showed that: (1 the fractal parameters of soil PSD and soil WRC varied greatly under each different vegetation type, with Quercus acutissima Carr. and Robina pseudoacacia Linn. mixed plantation (QRM > Pinus thunbergii Parl. and Pistacia chinensis Bunge mixed plantation (PPM > Pinus thunbergii Parl. (PTP > Juglans rigia Linn. (JRL > abandoned grassland (ABG; (2 the soil fractal dimensions of woodlands (QRM, PPM, PTP and JRL were significantly higher than that in ABG, and mixed forests (QRM and PPM were higher than that in pure forests (PTP and JRL; (3 the fractal dimension of soil was positively correlated with the silt and clay content but negatively correlated with the sand content; and (4 the fractal dimension of soil PSD was positively correlated with the soil WRC. These indicated that the fractal parameters of soil PSD and soil WRC could act as quantitative indices to reflect the physical properties of the soil, and could be used to describe the influences of the Return Farmland to Forests Projects on soil structure.

  6. Fractal Characteristics of Soil Retention Curve and Particle Size Distribution with Different Vegetation Types in Mountain Areas of Northern China

    Science.gov (United States)

    Niu, Xiang; Gao, Peng; Wang, Bing; Liu, Yu

    2015-01-01

    Based on fractal theory, the fractal characteristics of soil particle size distribution (PSD) and soil water retention curve (WRC) under the five vegetation types were studied in the mountainous land of Northern China. Results showed that: (1) the fractal parameters of soil PSD and soil WRC varied greatly under each different vegetation type, with Quercus acutissima Carr. and Robina pseudoacacia Linn. mixed plantation (QRM) > Pinus thunbergii Parl. and Pistacia chinensis Bunge mixed plantation (PPM) > Pinus thunbergii Parl. (PTP) > Juglans rigia Linn. (JRL) > abandoned grassland (ABG); (2) the soil fractal dimensions of woodlands (QRM, PPM, PTP and JRL) were significantly higher than that in ABG, and mixed forests (QRM and PPM) were higher than that in pure forests (PTP and JRL); (3) the fractal dimension of soil was positively correlated with the silt and clay content but negatively correlated with the sand content; and (4) the fractal dimension of soil PSD was positively correlated with the soil WRC. These indicated that the fractal parameters of soil PSD and soil WRC could act as quantitative indices to reflect the physical properties of the soil, and could be used to describe the influences of the Return Farmland to Forests Projects on soil structure. PMID:26633458

  7. Effects of biochars on hydraulic properties of clayey soil

    Science.gov (United States)

    Zhen, Jingbo; Palladino, Mario; Lazarovitch, Naftali; Bonanomi, Giuliano; Battista Chirico, Giovanni

    2017-04-01

    Biochar has gained popularity as an amendment to improve soil hydraulic properties. Since biochar properties depend on feedstocks and pyrolysis temperatures used for its production, proper selection of biochar type as soil amendment is of great importance for soil hydraulic properties improvement. This study investigated the effects of eight types of biochar on physical and hydraulic properties of clayey soil. Biochars were derived from four different feedstocks (Alfalfa hay, municipal organic waste, corn residues and wood chip) pyrolyzed at two different temperatures (300 and 550 °C). Clayey soil samples were taken from Leone farm (40° 26' 15.31" N, 14° 59' 45.54" E), Italy, and were oven-dried at 105 °C to determine dry bulk density. Biochars were mixed with the clayey soil at 5% by mass. Bulk densities of the mixtures were also determined. Saturated hydraulic conductivities (Ks) of the original clayey soil and corresponding mixtures were measured by means of falling-head method. Soil water retention measurements were conducted for clayey soil and mixtures using suction table apparatus and Richards' plate with the pressure head (h) up to 12000 cm. van Genuchten retention function was selected to evaluate the retention characteristics of clayey soil and mixtures. Available water content (AWC) was calculated by field capacity (h = - 500 cm) minus wilting pointing (h = -12000 cm). The results showed that biochar addition decreased the bulk density of clayey soil. The Ks of clayey soil increased due to the incorporation of biochars except for waste and corn biochars pyrolyzed at 550 °C. AWC of soils mixed with corn biochar pyrolyzed at 300 °C and wood biochar pyrolyzed at 550 °C, increased by 31% and 7%, respectively. Further analysis will be conducted in combination of biochar properties such as specific surface area and total pore volume. Better understanding of biochar impact on clayey soil will be helpful in biochar selection for soil amendment and

  8. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling

    OpenAIRE

    Mao, Bing; Mao, Rong; Zeng, De-Hui

    2017-01-01

    Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N ...

  9. Peat Soil Stabilization using Lime and Cement

    Directory of Open Access Journals (Sweden)

    Mohd Zambri Nadhirah

    2018-01-01

    Full Text Available This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  10. Peat Soil Stabilization using Lime and Cement

    Science.gov (United States)

    Zambri, Nadhirah Mohd; Ghazaly, Zuhayr Md.

    2018-03-01

    This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  11. Role of carboxydobacteria in consumption of atmospheric carbon monoxide by soil

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, R. (Max-Planck-Institut fuer Chemie, Mainz, Germany); Meyer, O.; Seiler, W.

    1981-08-01

    The carbon monoxide consumption rates of the carboxydobacteria Pseudomonas (Seliberia) carboxydohydrogena, P. carboxydovorans, and P. carboxydoflava were measured at high (50%) and low (0.5 ..mu..l liter/sup -1/) mixing ratios of CO in air. CO was only consumed when the bacteria had been grown under CO-autotrophic conditions. At low cell densities the CO comsumption rates measured at low CO mixing ratios were similar in cell suspensions and in mixtures of bacteria in soil. CO consumption observed in natural soil (loess, eolian sand, chernozem) as well as in suspensions or soil mixtures of carboxydobacteria showed Michaelis-Menten kinetics. Considering the difference of the K/sub m/, values and the observed V/sub max/ values, carboxydobacteria cannot contribute significantly to the consumption of atmospheric CO.

  12. Soil Characterization by Large Scale Sampling of Soil Mixed with Buried Construction Debris at a Former Uranium Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Nardi, A.J.; Lamantia, L.

    2009-01-01

    Recent soil excavation activities on a site identified the presence of buried uranium contaminated building construction debris. The site previously was the location of a low enriched uranium fuel fabrication facility. This resulted in the collection of excavated materials from the two locations where contaminated subsurface debris was identified. The excavated material was temporarily stored in two piles on the site until a determination could be made as to the appropriate disposition of the material. Characterization of the excavated material was undertaken in a manner that involved the collection of large scale samples of the excavated material in 1 cubic meter Super Sacks. Twenty bags were filled with excavated material that consisted of the mixture of both the construction debris and the associated soil. In order to obtain information on the level of activity associated with the construction debris, ten additional bags were filled with construction debris that had been separated, to the extent possible, from the associated soil. Radiological surveys were conducted of the resulting bags of collected materials and the soil associated with the waste mixture. The 30 large samples, collected as bags, were counted using an In-Situ Object Counting System (ISOCS) unit to determine the average concentration of U-235 present in each bag. The soil fraction was sampled by the collection of 40 samples of soil for analysis in an on-site laboratory. A fraction of these samples were also sent to an off-site laboratory for additional analysis. This project provided the necessary soil characterization information to allow consideration of alternate options for disposition of the material. The identified contaminant was verified to be low enriched uranium. Concentrations of uranium in the waste were found to be lower than the calculated site specific derived concentration guideline levels (DCGLs) but higher than the NRC's screening values. The methods and results are presented

  13. Bioremediation of endosulfan contaminated soil and water-Optimization of operating conditions in laboratory scale reactors

    International Nuclear Information System (INIS)

    Kumar, Mathava; Philip, Ligy

    2006-01-01

    A mixed bacterial culture consisted of Staphylococcus sp., Bacillus circulans-I and -II has been enriched from contaminated soil collected from the vicinity of an endosulfan processing industry. The degradation of endosulfan by mixed bacterial culture was studied in aerobic and facultative anaerobic conditions via batch experiments with an initial endosulfan concentration of 50 mg/L. After 3 weeks of incubation, mixed bacterial culture was able to degrade 71.58 ± 0.2% and 75.88 ± 0.2% of endosulfan in aerobic and facultative anaerobic conditions, respectively. The addition of external carbon (dextrose) increased the endosulfan degradation in both the conditions. The optimal dextrose concentration and inoculum size was estimated as 1 g/L and 75 mg/L, respectively. The pH of the system has significant effect on endosulfan degradation. The degradation of alpha endosulfan was more compared to beta endosulfan in all the experiments. Endosulfan biodegradation in soil was evaluated by miniature and bench scale soil reactors. The soils used for the biodegradation experiments were identified as clayey soil (CL, lean clay with sand), red soil (GM, silty gravel with sand), sandy soil (SM, silty sand with gravel) and composted soil (PT, peat) as per ASTM (American society for testing and materials) standards. Endosulfan degradation efficiency in miniature soil reactors were in the order of sandy soil followed by red soil, composted soil and clayey soil in both aerobic and anaerobic conditions. In bench scale soil reactors, endosulfan degradation was observed more in the bottom layers. After 4 weeks, maximum endosulfan degradation efficiency of 95.48 ± 0.17% was observed in red soil reactor where as in composted soil-I (moisture 38 ± 1%) and composted soil-II (moisture 45 ± 1%) it was 96.03 ± 0.23% and 94.84 ± 0.19%, respectively. The high moisture content in compost soil reactor-II increased the endosulfan concentration in the leachate. Known intermediate metabolites of

  14. Sediment fingerprinting experiments to test the sensitivity of multivariate mixing models

    Science.gov (United States)

    Gaspar, Leticia; Blake, Will; Smith, Hugh; Navas, Ana

    2014-05-01

    Sediment fingerprinting techniques provide insight into the dynamics of sediment transfer processes and support for catchment management decisions. As questions being asked of fingerprinting datasets become increasingly complex, validation of model output and sensitivity tests are increasingly important. This study adopts an experimental approach to explore the validity and sensitivity of mixing model outputs for materials with contrasting geochemical and particle size composition. The experiments reported here focused on (i) the sensitivity of model output to different fingerprint selection procedures and (ii) the influence of source material particle size distributions on model output. Five soils with significantly different geochemistry, soil organic matter and particle size distributions were selected as experimental source materials. A total of twelve sediment mixtures were prepared in the laboratory by combining different quantified proportions of the Kruskal-Wallis test, Discriminant Function Analysis (DFA), Principal Component Analysis (PCA), or correlation matrix). Summary results for the use of the mixing model with the different sets of fingerprint properties for the twelve mixed soils were reasonably consistent with the initial mixing percentages initially known. Given the experimental nature of the work and dry mixing of materials, geochemical conservative behavior was assumed for all elements, even for those that might be disregarded in aquatic systems (e.g. P). In general, the best fits between actual and modeled proportions were found using a set of nine tracer properties (Sr, Rb, Fe, Ti, Ca, Al, P, Si, K, Si) that were derived using DFA coupled with a multivariate stepwise algorithm, with errors between real and estimated value that did not exceed 6.7 % and values of GOF above 94.5 %. The second set of experiments aimed to explore the sensitivity of model output to variability in the particle size of source materials assuming that a degree of

  15. COMBINING SOURCES IN STABLE ISOTOPE MIXING MODELS: ALTERNATIVE METHODS

    Science.gov (United States)

    Stable isotope mixing models are often used to quantify source contributions to a mixture. Examples include pollution source identification; trophic web studies; analysis of water sources for soils, plants, or water bodies; and many others. A common problem is having too many s...

  16. Water repellency of two forest soils after biochar addition

    Science.gov (United States)

    D. S. Page-Dumroese; P. R. Robichaud; R. E. Brown; J. M. Tirocke

    2015-01-01

    Practical application of black carbon (biochar) to improve forest soil may be limited because biochar is hydrophobic. In a laboratory, we tested the water repellency of biochar application (mixed or surface applied) to two forest soils of varying texture (a granitic coarse-textured Inceptisol and an ash cap fine-textured Andisol) at four different application rates (0...

  17. Modeling the vertical soil organic matter profile using Bayesian parameter estimation

    NARCIS (Netherlands)

    Braakhekke, M.C.; Wutzler, T.; Beer, C.; Kattge, J.; Schrumpf, M.; Schöning, I.; Hoosbeek, M.R.; Kruijt, B.; Kabat, P.

    2012-01-01

    The vertical distribution of soil organic matter (SOM) in the profile may constitute a significant factor for soil carbon cycling. However, the formation of the SOM profile is currently poorly understood due to equifinality, caused by the entanglement of several processes: input from roots, mixing

  18. Modeling the vertical soil organic matter profile using Bayesian parameter estimation

    NARCIS (Netherlands)

    Braakhekke, M.C.; Wutzler, T.; Beer, C.; Kattge, J.; Schrumpf, M.; Ahrens, B.; Schoning, I.; Hoosbeek, M.R.; Kruijt, B.; Kabat, P.; Reichstein, M.

    2013-01-01

    The vertical distribution of soil organic matter (SOM) in the profile may constitute an important factor for soil carbon cycling. However, the formation of the SOM profile is currently poorly understood due to equifinality, caused by the entanglement of several processes: input from roots, mixing

  19. Mixed waste treatment using the ChemChar thermolytic detoxification technique

    Energy Technology Data Exchange (ETDEWEB)

    Kuchynka, D. [Mirage Systems, Sunnyvale, CA (United States)

    1995-10-01

    The diversity of mixed waste matrices contained at Department of Energy sites that require treatment preclude a single, universal treatment technology capable of handling sludges, solids, heterogeneous debris, aqueous and organic liquids and soils. This report describes the ChemChar thermolytic detoxification process. The process is a thermal, chemically reductive technology that converts the organic portion of mixed wastes to a synthesis gas, while simultaneously absorbing volatile inorganics on a carbon-based char.

  20. 1-D Compression Behaviour of Acid Sulphate Soils Treated with Alkali-Activated Slag.

    Science.gov (United States)

    Islam, Shahidul; Haque, Asadul; Bui, Ha Hong

    2016-04-15

    Improvements of soft soils by mechanically mixing cementitious additives have been widely practised for construction of infrastructure. Mixing of additives improves strength and compressibility properties of soils through the development of soil structure. This study investigates the 1-D compression behaviour of alkali-activated slag treated acid sulphate soils (ASS) cured up to 365 days. The void ratio-logarithm of pressure (e-logσ') behaviour of treated ASS, including the destructuration behaviour, with additive contents and curing time have been analysed. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses have been undertaken to explain the observed variations of the 1-D compression behaviour. This paper presents the results of these analyses in view of obtaining an insight into the 1-D compression behaviour of treated ASS with the help of mineralogical analysis.

  1. Measurements of flux and isotopic composition of soil carbon dioxide

    International Nuclear Information System (INIS)

    Gorczyca, Z.; Rozanski, K.; Kuc, T.

    2002-01-01

    The flux and isotope composition of soil CO 2 has been regularly measured at three sites located in the southern Poland, during the time period: January 1998 - October 2000. They represent typical ecosystems appearing in central Europe: (i) mixed forest; (ii) cultivated agricultural field; (iii) grassland. To monitor the flux and isotopic composition of soil CO 2 , a method based on the inverted cup principle was adopted. The flux of soil CO 2 reveals distinct seasonal fluctuations, with maximum values up to ca. 25 mmol/m 2 /h during sommer months and around ten times lower values during winter time. Also significant differences among the monitored sites were detected, the flux density of this gas being highest for the mixed forest site and ca. two times lower for the cultivated grassland. Carbon-13 content of the soil CO 2 reveals little seasonal variability, with δ 13 C values essentially reflecting the isotopic composition of the soil organic matter and the vegetation type. The carbon-14 content of soil CO 2 flux also reveals slight seasonality, with lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values were recorded at depth. (author)

  2. Ascribing soil erosion of hillslope components to river sediment yield.

    Science.gov (United States)

    Nosrati, Kazem

    2017-06-01

    In recent decades, soil erosion has increased in catchments of Iran. It is, therefore, necessary to understand soil erosion processes and sources in order to mitigate this problem. Geomorphic landforms play an important role in influencing water erosion. Therefore, ascribing hillslope components soil erosion to river sediment yield could be useful for soil and sediment management in order to decrease the off-site effects related to downstream sedimentation areas. The main objectives of this study were to apply radionuclide tracers and soil organic carbon to determine relative contributions of hillslope component sediment sources in two land use types (forest and crop field) by using a Bayesian-mixing model, as well as to estimate the uncertainty in sediment fingerprinting in a mountainous catchment of western Iran. In this analysis, 137 Cs, 40 K, 238 U, 226 Ra, 232 Th and soil organic carbon tracers were measured in 32 different sampling sites from four hillslope component sediment sources (summit, shoulder, backslope, and toeslope) in forested and crop fields along with six bed sediment samples at the downstream reach of the catchment. To quantify the sediment source proportions, the Bayesian mixing model was based on (1) primary sediment sources and (2) combined primary and secondary sediment sources. The results of both approaches indicated that erosion from crop field shoulder dominated the sources of river sediments. The estimated contribution of crop field shoulder for all river samples was 63.7% (32.4-79.8%) for primary sediment sources approach, and 67% (15.3%-81.7%) for the combined primary and secondary sources approach. The Bayesian mixing model, based on an optimum set of tracers, estimated that the highest contribution of soil erosion in crop field land use and shoulder-component landforms constituted the most important land-use factor. This technique could, therefore, be a useful tool for soil and sediment control management strategies. Copyright

  3. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method

    Energy Technology Data Exchange (ETDEWEB)

    Ouhadi, V.R., E-mail: vahidouhadi@yahoo.ca [Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Yong, R.N. [RNY Geoenvironmental Research, North Saanich (Canada); Shariatmadari, N. [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Saeidijam, S.; Goodarzi, A.R.; Safari-Zanjani, M. [Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2010-01-15

    While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of 'calcite or carbonate' (CaCO{sub 3}) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments were conducted to determine the efficiency of electrokinetic remediation. The results showed that an increase in the quantity of carbonate caused a noticeable increase on the contaminant retention of soil and on the resistance of soil to the contaminant removal by electrokinetic method. Because the presence of carbonates in the soil increases its buffering capacity, acidification is reduced, resulting in a decrease in the rate of heavy metal removed from the contaminant soil. This conclusion was validated by the evaluation of efficiency of electrokinetic method on a soil sample from the liner of a waste disposal site, with 28% carbonates.

  4. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method

    International Nuclear Information System (INIS)

    Ouhadi, V.R.; Yong, R.N.; Shariatmadari, N.; Saeidijam, S.; Goodarzi, A.R.; Safari-Zanjani, M.

    2010-01-01

    While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of 'calcite or carbonate' (CaCO 3 ) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments were conducted to determine the efficiency of electrokinetic remediation. The results showed that an increase in the quantity of carbonate caused a noticeable increase on the contaminant retention of soil and on the resistance of soil to the contaminant removal by electrokinetic method. Because the presence of carbonates in the soil increases its buffering capacity, acidification is reduced, resulting in a decrease in the rate of heavy metal removed from the contaminant soil. This conclusion was validated by the evaluation of efficiency of electrokinetic method on a soil sample from the liner of a waste disposal site, with 28% carbonates.

  5. Tree species effects on calcium cycling: The role of calcium uptake in deep soils

    NARCIS (Netherlands)

    Dijkstra, F.A.; Smits, M.M.

    2002-01-01

    Soil acidity and calcium (Ca) availability in the surface soil differ substantially beneath sugar maple (Acer saccharum) and eastern hemlock (Tsuga canadensis) trees in a mixed forest in northwestern Connecticut. We determined the effect of pumping of Ca from deep soil (rooting zone below 20-cm

  6. Using a hybrid model to predict solute transfer from initially saturated soil into surface runoff with controlled drainage water.

    Science.gov (United States)

    Tong, Juxiu; Hu, Bill X; Yang, Jinzhong; Zhu, Yan

    2016-06-01

    The mixing layer theory is not suitable for predicting solute transfer from initially saturated soil to surface runoff water under controlled drainage conditions. By coupling the mixing layer theory model with the numerical model Hydrus-1D, a hybrid solute transfer model has been proposed to predict soil solute transfer from an initially saturated soil into surface water, under controlled drainage water conditions. The model can also consider the increasing ponding water conditions on soil surface before surface runoff. The data of solute concentration in surface runoff and drainage water from a sand experiment is used as the reference experiment. The parameters for the water flow and solute transfer model and mixing layer depth under controlled drainage water condition are identified. Based on these identified parameters, the model is applied to another initially saturated sand experiment with constant and time-increasing mixing layer depth after surface runoff, under the controlled drainage water condition with lower drainage height at the bottom. The simulation results agree well with the observed data. Study results suggest that the hybrid model can accurately simulate the solute transfer from initially saturated soil into surface runoff under controlled drainage water condition. And it has been found that the prediction with increasing mixing layer depth is better than that with the constant one in the experiment with lower drainage condition. Since lower drainage condition and deeper ponded water depth result in later runoff start time, more solute sources in the mixing layer are needed for the surface water, and larger change rate results in the increasing mixing layer depth.

  7. Long-Term benefits of stabilizing soil subgrades.

    Science.gov (United States)

    2002-06-01

    The main intent of this study was an attempt to address questions concerning bearing strengths, longevity, durability, structural credit, economics, and performance of pavements resting on soil subgrades mixed with chemical admixtures. In-depth field...

  8. Ammonia loss, ammonium and nitrate accumulation from mixing ...

    African Journals Online (AJOL)

    Ammonia loss from urea significantly hinders efficient use of urea in agriculture. In order to reduce ammonia loss and, at the same time, improve beneficial accumulation of soil exchangeable ammonium and nitrate for efficient utilization by plants, this laboratory study was conducted to determine the effect of mixing urea with ...

  9. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type.

    Science.gov (United States)

    Gomes, Helena I; Dias-Ferreira, Celia; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2015-07-01

    Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero valent iron particles in a two-compartment cell is tested and compared to a more conventional combination of electrokinetic remediation and nZVI in a three-compartment cell. In the new two-compartment cell, the soil is suspended and stirred simultaneously with the addition of zero valent iron nanoparticles. Remediation experiments are made with two different historically PCB contaminated soils, which differ in both soil composition and contamination source. Soil 1 is a mix of soils with spills of transformer oils, while Soil 2 is a superficial soil from a decommissioned school where PCB were used as windows sealants. Saponin, a natural surfactant, was also tested to increase the PCB desorption from soils and enhance dechlorination. Remediation of Soil 1 (with highest pH, carbonate content, organic matter and PCB concentrations) obtained the maximum 83% and 60% PCB removal with the two-compartment and the three-compartment cell, respectively. The highest removal with Soil 2 were 58% and 45%, in the two-compartment and the three-compartment cell, respectively, in the experiments without direct current. The pH of the soil suspension in the two-compartment treatment appears to be a determining factor for the PCB dechlorination, and this cell allowed a uniform distribution of the nanoparticles in the soil, while there was iron accumulation in the injection reservoir in the three-compartment cell. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Impact of wheat / faba bean mixed cropping or rotation systems on soil microbial functionalities

    Directory of Open Access Journals (Sweden)

    Sanâa Wahbi

    2016-09-01

    Full Text Available Cropping systems based on carefully designed species mixtures reveal many potential advantages in terms of enhancing crop productivity, reducing pest and diseases and enhacing ecological serices. Associating cereals and legume production either through intercropping or rotations might be a relevant strategy of producing both type of culture, while benefiting from combined nitrogen fixed by the legume through its symbiotic association with nitrogen-fixing bacteria, and from a better use of P and water through mycorrhizal associations. These practices also participate to the diversification of agricultural productions, enabling to secure the regularity of income returns across the seasonal and climatic uncertainties. In this context, we designed a field experiment aiming to estimate the two years impact of these practices on wheat yield and on soil microbial activities as estimated through Substrate Induced Respiration (SIR method and mycorrhizal soil infectivity (MSI measurement. It is expected that understanding soil microbial functionalities in response to these agricultural practices might allows to target the best type of combination, in regard to crop productivity. We found that the tested cropping systems largely impacted soil microbial functionalities and mycorrhizal soil infectivity. Intercropping gave better results in terms of crop productivity than the rotation practice after 2 cropping seasons. Benefits resulting from intercrop should be highly linked with changes recorded on soil microbial functionalities.

  11. Potential of different AM fungi (native from As-contaminated and uncontaminated soils) for supporting Leucaena leucocephala growth in As-contaminated soil.

    Science.gov (United States)

    Schneider, Jerusa; Bundschuh, Jochen; Rangel, Wesley de Melo; Guilherme, Luiz Roberto Guimarães

    2017-05-01

    Arbuscular mycorrhizal (AM) fungi inoculation is considered a potential biotechnological tool for an eco-friendly remediation of hazardous contaminants. However, the mechanisms explaining how AM fungi attenuate the phytotoxicity of metal(oid)s, in particular arsenic (As), are still not fully understood. The influence of As on plant growth and the antioxidant system was studied in Leucaena leucocephala plants inoculated with different isolates of AM fungi and exposed to increasing concentrations of As (0, 35, and 75 mg dm -3 ) in a Typic Quartzipsamment soil. The study was conducted under greenhouse conditions using isolates of AM fungi selected from uncontaminated soils (Acaulospora morrowiae, Rhizophagus clarus, Gigaspora albida; and a mixed inoculum derived from combining these isolates, named AMF Mix) as well as a mix of three isolates from an As-contaminated soil (A. morrowiae, R. clarus, and Paraglomus occultum). After 21 weeks, the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) were determined in the shoots in addition to measuring plant height and mineral contents. In general, AM fungi have shown multiple beneficial effects on L. leucocephala growth. Although the activity of most of the stress-related enzymes increased in plants associated with AM fungi, the percentage increase caused by adding As to the soil was even greater for non-mycorrhizal plants when compared to AM-fungi inoculated ones, which highlights the phytoprotective effect provided by the AM symbiosis. The highest P/As ratio observed in AM-fungi plants, compared to non-mycorrhizal ones, can be considered a good indicator that the AM fungi alter the pattern of As(V) uptake from As-contaminated soil. Our results underline the role of AM fungi in increasing the tolerance of L. leucocephala to As stress and emphasize the potential of the symbiosis L. leucocephala-R. clarus for As-phytostabilization at moderately As

  12. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity.

    Science.gov (United States)

    Hamels, Fanny; Malevé, Jasmina; Sonnet, Philippe; Kleja, Dan Berggren; Smolders, Erik

    2014-11-01

    Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3  > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3  > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits. © 2014 SETAC.

  13. Factors affecting the determination of the isotopically exchangeable phosphorus in soils

    International Nuclear Information System (INIS)

    Morales, L.E.M.

    1981-06-01

    In order to evaluate the factors that affect the determination of the isotopically exchangeable phosphorus in soils (L value), various greenhouse experiments were carried out. The following factors were considered: carrier level; plant species; harvest time; nitrogen doses; nitrogen sources; culture conditions and soil type. A radioactive solution with an activity level of approximately 10 μCi 32 p/3 kg soil with different carrier levels was located in layers or mixed completely with the soil depending upon the experiment. (author)

  14. Light and soil humidity influencing oak seedling growth and physiology in mixed hardwood gaps

    Directory of Open Access Journals (Sweden)

    Raddi S

    2009-06-01

    Full Text Available In “S. Rossore, Migliarino, Massaciuccoli” Natural Park (Pisa, I six-month-old pedunculate oak seedlings (Quercus robur L. were transplanted within natural gaps of a mixed oak forest. Micro-environmental variability for radiation and water soil content were measured for 145 seedlings during the year. Irradiation relative to the open field (IR ranged from 5% to 57%. Seven classes of IR each with 20 seedlings were selected. Leaf mass per area was strongly influenced by IR. In the first 3 years survival was high (95, 76 and 75%, respectively and seedling reached 14±6 cm, 27±13 cm and 39±19 (sd cm of height. Even if IR and soil water content (SWC were negatively associated, indicating a lower SWC at the centre of the gaps, height and its relative growth rate increased with IR (explored range: 8-40% with a significant interaction with SWC in the 1st year, indicating the positive effect of soil moisture. In the 3rd year dimensional traits were higher in L+W+ (high light and humidity followed by L-W+ (low light and high humidity, L+W- and finally by L-W-. Summer drought typical of the Mediterranean climate was evaluated by chlorophyll fluorescence of PSII on apical leaves of seedlings and mature trees at the beginning (21 June and in mid-summer (20 July. While in June physiological traits did not differ between low and high IR, in mid-summer (at the peak of water-stress seedlings of the two highest light classes showed chronic photoinhibition (Fv/Fm<0.75 and an increase in thermal dissipation (D by constitutive term (Dc=1-Fv/Fm and by regulated mechanisms of dissipation through xanthophyll-cycle term (Dx. Moreover, in July seedling leaf physiology largely differed with IR: leaves acclimated to high IR have higher photosynthetic potentialities, as shown by electron transport rate (ETR and quantum yield (P at saturating light maintained by an increase of the fraction of open reaction centres (qP, counterbalancing the efficiency decrease of the

  15. Positive relationship detected between soil bioaccessible organic pollutants and antibiotic resistance genes at dairy farms in Nanjing, Eastern China

    International Nuclear Information System (INIS)

    Sun, Mingming; Ye, Mao; Wu, Jun; Feng, Yanfang; Wan, Jinzhong; Tian, Da; Shen, Fangyuan; Liu, Kuan; Hu, Feng; Li, Huixin; Jiang, Xin; Yang, Linzhang; Kengara, Fredrick Orori

    2015-01-01

    Co-contaminated soils by organic pollutants (OPs), antibiotics and antibiotic resistance genes (ARGs) have been becoming an emerging problem. However, it is unclear if an interaction exists between mixed pollutants and ARG abundance. Therefore, the potential relationship between OP contents and ARG and class 1 integron-integrase gene (intI1) abundance was investigated from seven dairy farms in Nanjing, Eastern China. Phenanthrene, pentachlorophenol, sulfadiazine, roxithromycin, associated ARG genes, and intI1 had the highest detection frequencies. Correlation analysis suggested a stronger positive relationship between the ARG abundance and the bioaccessible OP content than the total OP content. Additionally, the significant correlation between the bioaccessible mixed pollutant contents and ARG/intI1 abundance suggested a direct/indirect impact of the bioaccessible mixed pollutants on soil ARG dissemination. This study provided a preliminary understanding of the interaction between mixed pollutants and ARGs in co-contaminated soils. - Highlights: • Coexistence of OPs, antibiotics, and ARGs in dairy farm soils was ubiquitous. • Bioaccessible pollutants exhibited positive correlation with ARG abundance. • ARGs significantly correlated with intI1. • Bioaccessible pollutants demonstrated strong correlation with intI1. • The intI1 gene might serve as a potential proxy for mixed pollution. - Coexistence of mixed OPs and ARGs in dairy farm soils was ubiquitous; a positive correlation can be found between the bioaccessible OP fractions and ARG/intI1 abundance.

  16. Nondestructive evaluation of warm mix asphalt through resonant column testing.

    Science.gov (United States)

    2014-02-01

    Non-destructive testing has been used for decades to characterize engineering properties of hot-mix asphalt. Among such tests is the resonant column (RC) test, which is commonly used to characterize soil materials. The resonant column device at Penn ...

  17. Arsenic adsorption of lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Wuthiphun, L.

    2007-05-01

    Full Text Available Arsenic adsorption efficiency of soil covering materials (lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil obtained from Ronpiboon District, Nakhon Sri Thammarat Province tosolve arsenic air pollution problem was investigated using batch experiments. The four types of the aforementioned soil covering materials were examined to determine their arsenic adsorption efficiency, equilibriumtime as well as adsorption isotherms.The results revealed that among soil covering materials mixed with arsenic-contaminated soil at 10% w/w, the efficiency of arsenic adsorption of fly ash, lateritic soil, lime and limestone powder were 84, 60,38 and 1% respectively. The equilibrium time for lateritic soil at pH 4 was achieved within 4 hrs, whereas pH 7 and 12, the equilibrium time was 6 hrs. For fly ash, 2 hrs were required to reach the equilibrium at pH 12, while the equilibrium time was attained within 6 hrs at pH 4 and 7. Furthermore, lateritic soil possessedhigh arsenic adsorption efficiency at pH 7 and 4 and best fit with the Langmuir isotherm. The fly ash showing high arsenic adsorption efficiency at pH 12 and 7 fit the Freundlich isotherm at pH 12 and Langmuirisotherm at pH 7.This indicated that lateritic soil was suitable for arsenic adsorption at low pH, whilst at high pH,arsenic was well adsorbed by fly ash. The Freundlich and Langmuir isotherm could be used to determine quantities of soil covering materials for arsenic adsorption to prevent arsenic air pollution from arseniccontaminated soils.

  18. A soil washing pilot plant for removing petroleum hydrocarbons from contaminated soils

    International Nuclear Information System (INIS)

    Toor, I.A.; Roehrig, G.R.

    1992-01-01

    A soil washing pilot plant was built and tested for its ability to remove petroleum hydrocarbons from certain soils. The ITEX soil washing pilot plant is a trailer mountable mobile unit which has a washing capacity of two tons per hour of contaminated soils. A benchscale study was carried out prior to the fabrication of the pilot plant. The first sample was contaminated with diesel fuel while the second sample was contaminated with crude oil. Various nonionic, cationic and anionic cleaning agents were evaluated for their ability to remove petroleum hydrocarbons from these materials. The nonionic cleaning agents were more successful in cleaning the soils in general. The ultimate surfactant choice was based on several factors including cost, biodegradability, cleaning efficiency and other technical considerations. The soil samples were characterized in terms of their particle size distributions. Commercial diesel fuel was carefully mixed in this sand to prepare a representative sample for the pilot plant study. Two pilot runs were made using this material. A multistage washing study was also conducted in the laboratory which indicates that the contamination level can be reduced to 100 ppm using only four stages. Because the pilot plant washing efficiency is twice as high, it is believed that ultimate contamination levels can be reduced to lower levels using the same number of stages. However, this hypothesis has not been demonstrated to date

  19. Principal chemical properties of artificial soil composed of fly ash and furfural residue

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Y.J.; Li, F.; Wang, X.L.; Liu, X.M.; Zhang, L.N. [Shandong Agricultural University, Tai An (China). College of Resources & Environments

    2006-10-15

    To solve soil shortage in reclaiming subsided land of coal mines, the principal chemical properties of artificial soil formed by mixing organic furfural residue and inorganic fly ash were examined. The results indicated that the artificial soil was suitable for agriculture use after irrigation and desalination, the available nutrients in the artificial soil could satisfy the growth demand of plants, and the pH tended to the neutrality.

  20. In Situ Evaluation of Crop Productivity and Bioaccumulation of Heavy Metals in Paddy Soils after Remediation of Metal-Contaminated Soils.

    Science.gov (United States)

    Kim, Shin Woong; Chae, Yooeun; Moon, Jongmin; Kim, Dokyung; Cui, Rongxue; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2017-02-15

    Soils contaminated with heavy metals have been reused for agricultural, building, and industrial uses following remediation. This study assesses plant growth and bioaccumulation of heavy metals following remediation of industrially contaminated soil. The soil was collected from a field site near a nonferrous smelter and was subjected to laboratory- and field-scale studies. Soil from the contaminated site was remediated by washing with acid or mixed with soil taken from a distant uncontaminated site. The activities of various soil exoenzymes, the rate of plant growth, and the bioaccumulations of six heavy metals were measured to assess the efficacy of these bioremediation techniques. Growth of rice (Oryza sativa) was unaffected in acid-washed soil or the amended soil compared to untreated soil from the contaminated site. The levels of heavy metals in the rice kernels remained within safe limits in treated and untreated soils. Rice, sorghum (Sorghum bicolor), and wheat (Triticum aestivum) cultivated in the same soils in the laboratory showed similar growth rates. Soil exoenzyme activities and crop productivity were not affected by soil treatment in field experiments. In conclusion, treatment of industrially contaminated soil by acid washing or amendment did not adversely affect plant productivity or lead to increased bioaccumulation of heavy metals in rice.

  1. Heavy metals in summer squash fruits grown in soil amended with municipal sewage sludge.

    Science.gov (United States)

    Antonious, George F; Snyder, John C; Dennis, Sam O

    2010-02-01

    The increasing awareness of the value of vegetables and fruits in the human diet requires monitoring of heavy metals in food crops. The effects of amending soil with compost made from municipal sewage sludge (MSS) and MSS mixed with yard waste (MSS-YW) on Cd, Cr, Mo, Cu, Zn, Pb, and Ni concentrations in soil and the potential bioaccumulation of heavy metals in squash fruits at harvest were investigated. A field study was conducted in a silty-loam soil at Kentucky State University Research Farm. Eighteen plots of 22 x 3.7 m each were separated using metal borders and the soil in six plots was mixed with MSS at 15 t acre(-1), six plots were mixed with MSS-YW at 15 t acre(-1) (on dry weight basis), and six unamended plots (no-mulch) were used for comparison purposes. Plots were planted with summer squash and heavy metals were analyzed in soil and mature fruits at harvest. Analysis of heavy metals in squash fruits was conducted using inductively coupled plasma spectrometry. Zinc and Cu concentrations in soil mixed with MSS were extremely high compared to other metals. In squash fruits, concentrations of Zn were generally greater than Cu. Total squash marketable yield was greatest in MSS-YW and MSS treatments compared to no-mulch conventional soil. Concentrations of Cd and Pb in soil amended with MSS averaged 0.1 and 1.4 mg kg(-1), respectively. These levels were much lower than the limits in the U.S. guidelines for using MSS in land farming. Data revealed that maximum concentrations of Cd and Pb in squash fruits were 0.03 and 0.01 microg g(-1) dry fruit, respectively. Nickel concentration in squash fruits fluctuated among harvest dates reaching a maximum of 2.5 microg g(-1) dry fruit. However, these concentrations were far below their permissible limits in edible fruits.

  2. Tracking control of WMRs on loose soil based on mixed H2/H∞ control with longitudinal slip ratio estimation

    Science.gov (United States)

    Gao, Haibo; Chen, Chao; Ding, Liang; Li, Weihua; Yu, Haitao; Xia, Kerui; Liu, Zhen

    2017-11-01

    Wheeled mobile robots (WMRs) often suffer from the longitudinal slipping when moving on the loose soil of the surface of the moon during exploration. Longitudinal slip is the main cause of WMRs' delay in trajectory tracking. In this paper, a nonlinear extended state observer (NESO) is introduced to estimate the longitudinal velocity in order to estimate the slip ratio and the derivative of the loss of velocity which are used in modelled disturbance compensation. Owing to the uncertainty and disturbance caused by estimation errors, a multi-objective controller using the mixed H2/H∞ method is employed to ensure the robust stability and performance of the WMR system. The final inputs of the trajectory tracking consist of the feedforward compensation, compensation for the modelled disturbances and designed multi-objective control inputs. Finally, the simulation results demonstrate the effectiveness of the controller, which exhibits a satisfactory tracking performance.

  3. Consideration of reinforcement mechanism in the short fiber mixing granular materials by granular element simulations

    Science.gov (United States)

    Mori, Kentaro; Kaneko, Kenji; Hashizume, Yutaka

    2017-06-01

    The short fiber mixing method is well known as one of the method to improve the strength of gran- ular soils in geotechnical engineering. Mechanical properties of the short fiber mixing granular materials are influenced by many factors, such as the mixture ratio of the short fiber, the material of short fiber, the length, and the orientation. In particular, the mixture ratio of the short fibers is very important in mixture design. In the past study, we understood that the strength is reduced by too much short fiber mixing by a series of tri-axial compression experiments. Namely, there is "optimum mixture ratio" in the short fiber mixing granular soils. In this study, to consider the mechanism of occurrence of the optimum mixture ratio, we carried out the numerical experiments by granular element method. As the results, we can understand that the strength decrease when too much grain-fiber contact points exist, because a friction coefficient is smaller than the grain-grain contact points.

  4. 1-D Compression Behaviour of Acid Sulphate Soils Treated with Alkali-Activated Slag

    Directory of Open Access Journals (Sweden)

    Shahidul Islam

    2016-04-01

    Full Text Available Improvements of soft soils by mechanically mixing cementitious additives have been widely practised for construction of infrastructure. Mixing of additives improves strength and compressibility properties of soils through the development of soil structure. This study investigates the 1-D compression behaviour of alkali-activated slag treated acid sulphate soils (ASS cured up to 365 days. The void ratio-logarithm of pressure (e-logσ′ behaviour of treated ASS, including the destructuration behaviour, with additive contents and curing time have been analysed. X-ray diffraction (XRD and scanning electron microscopy (SEM analyses have been undertaken to explain the observed variations of the 1-D compression behaviour. This paper presents the results of these analyses in view of obtaining an insight into the 1-D compression behaviour of treated ASS with the help of mineralogical analysis.

  5. Laser-induced breakdown spectroscopy for the real-time analysis of mixed waste samples containing Sr

    International Nuclear Information System (INIS)

    Barefield, J.E. II; Koskelo, A.C.; Multari, R.A.; Cremers, D.A.; Gamble, T.K.; Han, C.Y.

    1995-01-01

    In this report, the use of Laser-induced breakdown spectroscopy to analyze mixed waste samples containing Sr is discussed. The mixed waste samples investigated include vitrified waste glass and contaminated soil. Compared to traditional analysis techniques, the laser-based method is fast (i.e., analysis times on the order of minutes) and essentially waste free since little or no sample preparation is required. Detection limits on the order of pmm Sr were determined. Detection limits obtained using a fiber optic cable to deliver laser pulses to soil samples containing Cr, Zr, Pb, Be, Cu, and Ni will also be discussed

  6. Contribution of root respiration to soil respiration in a C3/C4 mixed ...

    Indian Academy of Sciences (India)

    Unknown

    The linear regression relationship between soil respiration and root biomass was used to determine the .... 10 days, sieved 50 g soil samples were placed in a 100 ml beaker and a 250 ..... Comparatively, the method can take multi-samples by ...

  7. Carbonyl sulfide (OCS) as a proxy for GPP: Complications derived from studies on the impact of CO2, soil humidity and sterilization on the OCS exchange between soils and atmosphere

    Science.gov (United States)

    Bunk, Rüdiger; Behrendt, Thomas; Yi, Zhigang; Kesselmeier, Jürgen

    2016-04-01

    Carbonyl sulfide is discussed to be used as a proxy for gross primary productivity (GPP) of forest ecosystems. However, soils may interfere. Soils play an important role in budgeting global and local carbonyl sulfide (OCS) fluxes, yet the available data on the uptake and emission behavior of soils in conjunction with environmental factors is limited. The work of many authors has shown that the OCS exchange of soils depends on various factors, such as soil type, atmospheric OCS concentrations, temperature or soil water content (Kesselmeier et al., J. Geophys. Res., 104, No. D9, 11577-11584, 1999; Van Diest & Kesselmeier, Biogeosciences, 5, 475-483, 2008; Masyek et al., PNAS, 111, No 25, 9064-9069, doi: 10.1073/pnas.1319132111, 2014; Whelan and Rhew, J. Geophys. Res. Biogeosciences., 120, 54-62, doi: 10.1002/2014JG002661, 2015) and the light dependent and obviously abiotic OCS production as reported by Whelan and Rhew (2015). To get a better constraint on the impact of some environmental factors on the OCS exchange of soils we used a new laser based integrated cavity output spectroscopy instrument (LGR COS/CO Analyzer Model 907-0028, Los Gatos, Mountain View, California, USA) in conjunction with an automated soil chamber system (as described in Behrendt et al, Biogeosciences, 11, 5463-5492, doi: 10.5194/bg-11-5463-2014, 2014). The OCS exchange of various soils under the full range of possible soil humidity and various CO2 mixing ratios was examined. Additionally OCS exchange of chloroform sterilized subsamples was compared to their live counterparts to illuminate the influence of microorganisms. Results were quite heterogeneous between different soils. With few exceptions, all examined soils show dependence between OCS exchange and soil humidity, usually with strongest uptake at a certain humidity range and less uptake or even emission at higher and lower humidity. Differences in CO2 mixing ratio also clearly impacts on OCS exchange, but trends for different soils

  8. Growth Response of Seedling Yellow Birch to Humus-Soil Mixtures

    Science.gov (United States)

    Carl H. Tubbs; Robert R. Oberg

    1966-01-01

    Previous observations of the establishment of yellow birch have cited the importance of mixed humus-mineral soil seedbeds. Godman and Krefting pointed out that both germination and growth were enhanced. Subsequent studies have shown that while germination in the absence of competition is adequate on mineral soil of a Podzol A under a wide variety of light and...

  9. compressibility characteristics of black cotton soil admixed

    African Journals Online (AJOL)

    user

    The engineering properties of the soil are adversely affected by the extreme poor nature ..... seen from the figure that the shape of the curves for all mixed ratio appears .... [3] Purushothama, P. R. Ground Improvement. Techniques. New Delhi ...

  10. Shear Strength of Stabilized Kaolin Soil Using Liquid Polymer

    Science.gov (United States)

    Azhar, A. T. S.; Fazlina, M. I. S.; Nizam, Z. M.; Fairus, Y. M.; Hakimi, M. N. A.; Riduan, Y.; Faizal, P.

    2017-08-01

    The purpose of this research is to investigate the suitability of polymer in soil stabilization by examining its strength to withstand compressive strength. Throughout this research study, manufactured polymer was used as a chemical liquid soil stabilizer. The liquid polymer was diluted using a proposed dilution factor of 1 : 3 (1 part polymer: 3 parts distilled water) to preserve the workability of the polymer in kaolin mixture. A mold with a diameter of 50 mm and a height of 100 mm was prepared. Kaolin soil was mixed with different percentages of polymer from 10%, 15%, 20%, 25%, 30% and 35% of the mass of the kaolin clay sample. Kaolin mixtures were tested after a curing period of 3 days, 7 days, 14 days and 28 days respectively. The physical properties were determined by conducting a moisture content test and Atterberg limit test which comprise of liquid limit, plastic limit and shrinkage limit. Meanwhile, the mechanical properties of the soil shear strength were identified through an unconfined compressive strength (UCS) test. Stabilized kaolin soil showed the highest compressive strength value when it was mixed with 35% of polymer compared to other percentages that marked an increment in strength which are 45.72% (3 days), 67.57% (7 days), 81.73% (14 days) and 77.84% (28 days). Hence, the most effective percentage of liquid polymer which should be used to increase the strength of kaolin soil is 35%.

  11. Enhanced removal of lead from contaminated soil by polyol-based deep eutectic solvents and saponin

    Science.gov (United States)

    Mukhopadhyay, Soumyadeep; Mukherjee, Sumona; Hayyan, Adeeb; Hayyan, Maan; Hashim, Mohd Ali; Sen Gupta, Bhaskar

    2016-11-01

    Deep eutectic solvents (DESs) are a class of green solvents analogous to ionic liquids, but less costly and easier to prepare. The objective of this study is to remove lead (Pb) from a contaminated soil by using polyol based DESs mixed with a natural surfactant saponin for the first time. The DESs used in this study were prepared by mixing a quaternary ammonium salt choline chloride with polyols e.g. glycerol and ethylene glycol. A natural surfactant saponin obtained from soapnut fruit pericarp, was mixed with DESs to boost their efficiency. The DESs on their own did not perform satisfactory due to higher pH; however, they improved the performance of soapnut by up to 100%. Pb removal from contaminated soil using mixture of 40% DES-Gly and 1% saponin and mixture of 10% DES-Gly and 2% saponin were above 72% XRD and SEM studies did not detect any major corrosion in the soil texture. The environmental friendliness of both DESs and saponin and their affordable costs merit thorough investigation of their potential as soil washing agents.

  12. Physical Properties of Sandy Soil Affected by Soil Conditioner Under Wetting and Drying cycles

    Directory of Open Access Journals (Sweden)

    M.I. Choudhary

    1998-06-01

    Full Text Available Information on the effectiveness of soil conditioners over a prolonged period is scarce. A laboratory experiment was undertaken to evaluate the effectiveness of a polyacrylamide (Broadleaf P4 soil conditioner on the physical properties of sandy soil subjected to wetting and drying cycles. Four concentrations of Broadleaf P4 0, 0.2, 0.4, and 0.6% on dry weight basis were uniformly mixed with a calcareous sandy soil. Addition of Broadleaf P4 to sandy soil increased the water holding capacity, decreased the bulk density, and increased the porosity and void ratio at 0 and 16 wetting and drying cycles. The coefficient of linear extensibility increased considerably with increasing concentrations of the polymer. The addition of polymer at 0 and 16 cycles increased considerably the retention and availability of water in sandy soil. Saturated hydraulic conductivity decreased with increasing concentrations of Broadleaf P4 whereas unsaturated hydraulic conductivity at 0 and 16 cycles showed an increase with increasing soil moisture contents. After I6 wetting and drying cycles, the capacity of the soil to hold water was lost on average by 15.8% when compared to the 0 wetting and drying cycle. The effectiveness of the soil conditioner on bulk density, coefficient of linear extensibility, available water and saturated hydraulic conductivity was reduced on average by 14.1, 24.5, 21.l and 53.7% respectively. The significant changes in soil properties between 0 and 16 cycles suggested that the effectiveness of the conditioner decreased with the application of wetting and drying cycles. However, its effect was still considerable when compared to untreated soil under laboratory conditions.

  13. [Leaching Remediation of Copper and Lead Contaminated Lou Soil by Saponin Under Different Conditions].

    Science.gov (United States)

    Deng, Hong-xia; Yang, Ya-li; Li, Zhen; Xu, Yan; Li, Rong-hua; Meng, Zhao-fu; Yang, Ya-ti

    2015-04-01

    In order to investigate the leaching remediation effect of the eco-friendly biosurfactant saponin for Cu and Pb in contaminated Lou soil, batch tests method was used to study the leaching effect of saponin solution on single Cu, Pb contaminated Lou soil and mixed Cu and Pb contaminated Lou soil under different conditions such as reaction time, mass concentration of saponin, pH, concentration of background electrolyte and leaching times. The results showed that the maximum leaching removal effect of Cu and Pb in contaminated Lou soil was achieved by complexation of the heavy metals with saponin micelle, when the mass concentration of saponin solution was 50 g x L(-1), pH was 5.0, the reaction time was 240 min, and there was no background electrolyte. In single and mixed contaminated Lou soil, the leaching percentages of Cu were 29.02% and 25.09% after a single leaching with 50 g x L(-1) saponin under optimal condition, while the single leaching percentages of Pb were 31.56% and 28.03%, respectively. The result indicated the removal efficiency of Pb was more significant than that of Cu. After 4 times of leaching, the cumulative leaching percentages of Cu reached 58.92% and 53.11%, while the cumulative leaching percentages of Pb reached 77.69% and 65.32% for single and mixed contaminated Lou soil, respectively. The fractionation results of heavy metals in soil before and after a single leaching showed that the contents of adsorbed and exchangeable Cu and Pb increased in the contaminated soil, while the carbonate-bound, organic bound and sulfide residual Cu and Pb in the contaminated Lou soil could be effectively removed by saponin.

  14. Pore structure of natural and regenerated soil aggregates

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Arthur, Emmanuel; de Jonge, Lis Wollesen

    2014-01-01

    Quantitative characterization of aggregate pore structure can reveal the evolution of aggregates under different land use and management practices and their effects on soil processes and functions. Advances in X-ray Computed Tomography (CT) provide powerful means to conduct such characterization....... This study examined aggregate pore structure of three differently managed same textured Danish soils (mixed forage cropping, MFC; mixed cash cropping, MCC; cereal cash cropping, CCC) for (i) natural aggregates, and (ii) aggregates regenerated after 20 months of incubation. In total, 27 aggregates (8-16 mm...... pore diameter of 200 and 170 Hm, respectively. Pore shape analysis indicated that CCC and MFC aggregates had an abundance of rounded and elongated pores, respectively, and those of MCC were in-between CCC and MFC. Aggregate pore structure development in the lysimeters was nearly similar irrespective...

  15. Physical, chemical and mineralogical characteristics of some selected gardud soils of kordofan region

    International Nuclear Information System (INIS)

    Elgubshawi, Abdelmoneim Ahmed Ismail

    1995-05-01

    Recently much of the attention is given to gardud soil as the main alternative for the depleted marginal sandy soils. A lack of exact knowledge regarding these soils are evident. For studying gardud soil four sites were chosen according to the annual rainfall. Two pits were excavated in each site to represent the concaved and convexed locations plus composite samples to cover the area between two pits. Morphological, physical, chemical and mineralogical investigations were made. The results showed that the gardud soils were relatively differed within and between sites due to the climate and the topography. The dominant clay minerals are kaolinite, montmorillonite and illte. The chemical and physical characteristics were poor. Some of the restrictions limiting the use of these soils such as erosion, hardness, fertility, stoniness, drought and acidity. According to the American system of soil classification, the soils studied were given the following classification: (1) Bardab soil: (A) Kanhablic rhodustalf-fine clay, kaolinite, isohyperthermic (concaved). (B) Kandic paleustalf-very fine clay, kaolinite, isohyperthermic (convexed). (2) Sodari: (A) Typic comborthid-coarse loamy, mixed hyperthermic (concave). (B) Typic comborthid-coarse loamy, mixed hyperthermic (convexed). (3) Nihud (Rahad Elsilk): (A) Rhodic paleustalf-fine loamy, kaolinite isohyperthermic (concaved). (B) Aridic paleustalf-fine loamy kaolinite isohyperthermic (convexed). (4) Umgamalla: (A) Ustic hapustalf-fine loamy kaolinite isohyperthermic (concaved). (B)Ustic hapustalf-fine loamy kaolinite isohyperthermic (convexed). (Author)

  16. Physical, chemical and mineralogical characteristics of some selected gardud soils of kordofan region

    Energy Technology Data Exchange (ETDEWEB)

    Elgubshawi, Abdelmoneim Ahmed Ismail [Department of Biochemistry and Soil Science, Faculty of agriculture, University of Khartoum, Khartoum (Sudan)

    1995-05-01

    Recently much of the attention is given to gardud soil as the main alternative for the depleted marginal sandy soils. A lack of exact knowledge regarding these soils are evident. For studying gardud soil four sites were chosen according to the annual rainfall. Two pits were excavated in each site to represent the concaved and convexed locations plus composite samples to cover the area between two pits. Morphological, physical, chemical and mineralogical investigations were made. The results showed that the gardud soils were relatively differed within and between sites due to the climate and the topography. The dominant clay minerals are kaolinite, montmorillonite and illte. The chemical and physical characteristics were poor. Some of the restrictions limiting the use of these soils such as erosion, hardness, fertility, stoniness, drought and acidity. According to the American system of soil classification, the soils studied were given the following classification: (1) Bardab soil: (A) Kanhablic rhodustalf-fine clay, kaolinite, isohyperthermic (concaved). (B) Kandic paleustalf-very fine clay, kaolinite, isohyperthermic (convexed). (2) Sodari: (A) Typic comborthid-coarse loamy, mixed hyperthermic (concave). (B) Typic comborthid-coarse loamy, mixed hyperthermic (convexed). (3) Nihud (Rahad Elsilk): (A) Rhodic paleustalf-fine loamy, kaolinite isohyperthermic (concaved). (B) Aridic paleustalf-fine loamy kaolinite isohyperthermic (convexed). (4) Umgamalla: (A) Ustic hapustalf-fine loamy kaolinite isohyperthermic (concaved). (B)Ustic hapustalf-fine loamy kaolinite isohyperthermic (convexed). (Author) 39 refs. , 8 tabs. , 35 figs.

  17. European Mixed Forests: definition and research perspectives

    Directory of Open Access Journals (Sweden)

    Andres Bravo-Oviedo

    2014-12-01

    Full Text Available Aim of study: We aim at (i developing a reference definition of mixed forests in order to harmonize comparative research in mixed forests and (ii review the research perspectives in mixed forests.Area of study: The definition is developed in Europe but can be tested worldwide.Material and Methods: Review of existent definitions of mixed forests based and literature review encompassing dynamics, management and economic valuation of mixed forests.Main results: A mixed forest is defined as a forest unit, excluding linear formations, where at least two tree species coexist at any developmental stage, sharing common resources (light, water, and/or soil nutrients. The presence of each of the component species is normally quantified as a proportion of the number of stems or of basal area, although volume, biomass or canopy cover as well as proportions by occupied stand area may be used for specific objectives. A variety of structures and patterns of mixtures can occur, and the interactions between the component species and their relative proportions may change over time.The research perspectives identified are (i species interactions and responses to hazards, (ii the concept of maximum density in mixed forests, (iii conversion of monocultures to mixed-species forest and (iv economic valuation of ecosystem services provided by mixed forests.Research highlights: The definition is considered a high-level one which encompasses previous attempts to define mixed forests. Current fields of research indicate that gradient studies, experimental design approaches, and model simulations are key topics providing new research opportunities.Keywords: COST Action; EuMIXFOR; mixed-species forests; admixtures of species.

  18. Evaluation of carbon storage in soil and plant biomass of primary ...

    African Journals Online (AJOL)

    Carbon sequestration in a forest ecosystem is an important determinant of the local and regional carbon stock. This study monitored forest types and carbon storage in both biomass and soil within primary mixed deciduous forests (PMDF) and secondary mixed deciduous forests (SMDF). One study plot measuring 50 x 50 m ...

  19. Spectral induced polarization (SIP) measurement of NAPL contaminated soils

    Science.gov (United States)

    Schwartz, N.; Huisman, J. A.; Furman, A.

    2010-12-01

    The potential applicability of spectral induce polarization (SIP) as a tool to map NAPLs (non aqueous phase liquids) contaminants at the subsurface lead researchers to investigate the electric signature of those contaminant on the spectral response. However, and despite the cumulative efforts, the effect of NAPL on the electrical properties of soil, and the mechanisms that control this effect are largely unknown. In this work a novel experiment is designed to further examine the effect of NAPL on the electrical properties of partially saturated soil. The measurement system that used is the ZEL-SIP04 impedance meter developed at the Forschungszentrum Julich, Germany. The system accurately (nominal phase precision of 0.1 mrad below 1 kHz) measures the phase and the amplitude of a material possessing a very low polarization (such as soil). The sample holder has a dimension of 60 cm long and 4.6 cm in diameter. Current and potential electrodes were made of brass, and while the current electrodes were inserted in full into the soil, the contact between the potential electrode and the soil was made through an Agarose bridge. Two types of soils were used: clean quartz sand, and a mixture of sand with clean Bentonite. Each soil (sandy or clayey) was mixed with water to get saturation degree of 30%. Following the mixture with water, NAPL was added and the composite were mixed again. Packing was done by adding and compressing small portions of the soil to the column. A triplicate of each mixture was made with a good reproducible bulk density. Both for the sandy and clayey soils, the results indicate that additions of NAPL decrease the real part of the complex resistivity. Additionally, for the sandy soil this process is time depended, and that a further decrease in resistivity develops over time. The results are analyzed considering geometrical factors: while the NAPL is electrically insulator, addition of NAPL to the soil is expected to increase the connectivity of the

  20. Leaching of arsenic, copper and chromium from thermally treated soil.

    Science.gov (United States)

    Kumpiene, Jurate; Nordmark, Désirée; Hamberg, Roger; Carabante, Ivan; Simanavičienė, Rūta; Aksamitauskas, Vladislovas Česlovas

    2016-12-01

    Thermal treatment, if properly performed, is an effective way of destroying organic compounds in contaminated soil, while impact on co-present inorganic contaminants varies depending on the element. Leaching of trace elements in thermally treated soil can be altered by co-combusting different types of materials. This study aimed at assessing changes in mobility of As, Cr and Cu in thermally treated soil as affected by addition of industrial by-products prior to soil combustion. Contaminated soil was mixed with either waste of gypsum boards, a steel processing residue (Fe 3 O 4 ), fly ash from wood and coal combustion or a steel abrasive (96.5% Fe 0 ). The mixes and unamended soil were thermally treated at 800 °C and divided into a fine fraction 0.125 mm to simulate particle separation occurring in thermal treatment plants. The impact of the treatment on element behaviour was assessed by a batch leaching test, X-ray absorption spectroscopy and dispersive X-ray spectrometry. The results suggest that thermal treatment is highly unfavourable for As contaminated soils as it increased both the As leaching in the fine particle size fraction and the mass of the fines (up to 92%). Soil amendment with Fe-containing compounds prior to the thermal treatment reduced As leaching to the levels acceptable for hazardous waste landfills, but only in the coarse fraction, which does not justify the usefulness of such treatment. Among the amendments used, gypsum most effectively reduced leaching of Cr and Cu in thermally treated soil and could be recommended for soils that do not contain As. Fly ash was the least effective amendment as it increased leaching of both Cr and As in majority of samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Specific Features of Profile Distribution and Crystallochemistry of Phyllosilicates in Soils of the Cisbaikal Forest-Steppe

    Science.gov (United States)

    Chizhikova, N. P.; Gamzikov, G. P.; Chechetko, E. S.

    2018-01-01

    The mineralogical composition of agrogray, dark gray, and agro-dark gray soils (Luvic Greyzemic Retic Phaeozems); agro-dark gray residual-calcareous soils (Calcaric Cambic Phaeozems); clay-illuvial agrochernozems (Luvic Chernic Phaeozems); and agrochernozems with migrational-mycelial carbonates (Haplic Chernozems) developed in the forest-steppe of Central Siberia within the Irkutsk Depression has been studied. The clay (smectite, vermiculite, and chlorite; the proportions between them change within the soil profiles. The clay fraction also contains hydromicas, kaolinite, chlorite, and some admixture of the fine-dispersed quartz. Each type of the soils is characterized by its own distribution pattern of clay material with specific alternation of layers in the mixed-layer formations. Mixed-layer minerals of the chlorite-vermiculite type predominate in the upper horizons of texture-differentiated soils. Down the soil profile, the content of mixed-layer mica-smectitic minerals increases. In the clay fraction of arable dark gray-humus soils with residual carbonates, the distribution of the clay fraction and major mineral phases in the soil profile is relatively even. An increased content of well-crystallized kaolinite is typical of these soils. The parent material of agrochernozems has a layered character: the upper horizons are generally depleted of clay, and the middle-profile and lower horizons are characterized by the considerable kaolinite content. In general, the clay material of soils of the Tulun-Irkutsk forest-steppe differs considerably from the clay material of foreststeppe soils developed from loesslike and mantle loams in the European part of Russia. In particular, this difference is seen in the proportions between major mineral phases and between biotitic and muscovitic components, as well as in the degree of crystallinity and behavior of kaolinite and chlorite.

  2. Soil moisture response to snowmelt and rainfall in a Sierra Nevada mixed-conifer forest

    Science.gov (United States)

    Roger C. Bales; Jan W. Hopmans; Anthony T. O’Geen; Matthew Meadows; Peter C. Hartsough; Peter Kirchner; Carolyn T. Hunsaker; Dylan. Beaudette

    2011-01-01

    Using data from a water-balance instrument cluster with spatially distributed sensors we determined the magnitude and within-catchment variability of components of the catchment-scale water balance, focusing on the relationship of seasonal evapotranspiration to changes in snowpack and soil moisture storage. Co-located, continuous snow depth and soil moisture...

  3. Nitrous oxide emission inventory of German forest soils

    Science.gov (United States)

    Schulte-Bisping, Hubert; Brumme, Rainer; Priesack, Eckart

    2003-02-01

    Annual fluxes of N2O trace gas emissions were assessed after stratifying German forest soils into Seasonal Emission Pattern (SEP) and Background Emission Pattern (BEP). Broad-leaved forests with soil pH(KCl) ≤ 3.3 were assigned to have SEP, broad-leaved forests with soil pH(KCl) > 3.3 and all needle-leaved forests to have BEP. BEPs were estimated by a relationship between annual N2O emissions and carbon content of the O-horizon. SEPs were primarily controlled by temperature and moisture and simulated by the model Expert-N after calibration to a 9-year record of N2O measurements. Analysis with different climate and soil properties indicated that the model reacts highly sensitive to changes in soil temperature, soil moisture, and soil texture. A geographic information system (ARC/INFO) was used for a spatial resolution of 1 km × 1 km grid where land cover, dominant soil units, and hygro climate classes were combined. The mean annual N2O emission flux from German forest soils was estimated as 0.32 kg ha-1 yr-1. Broad-leaved forests with SEP had the highest emissions (2.05 kg ha-1 yr-1) followed by mixed forests (0.38 kg ha-1 yr-1), broad-leaved forests (0.37 kg ha-1 yr-1), and needle-leaved forests with BEP (0.17 kg ha-1 yr-1). The annual N2O emission from German forest soils was calculated as 3.26 Gg N2O-N yr-1. Although needle-leaved trees cover about 57% of the entire forest area in Germany, their contribution is low (0.96 Gg N2O-N yr-1). Broad-leaved forests cover about 22% of the forest area but have 55% higher emissions (1.49 Gg N2O-N yr-1) than needle-leaved. Mixed forests cover 21% of the area and contribute 0.81 Gg N2O-N yr-1. Compared to the total N2O emissions in Germany of 170 Gg N yr-1, forest soils contribute only 1.9%. However, there are some uncertainties in this emission inventory, which are intensely discussed.

  4. Electrokinetic remediation of contaminated soils

    International Nuclear Information System (INIS)

    Lindgren, E.R.; Kozak, M.W.; Mattson, E.D.

    1991-01-01

    Electrokinetic remediation of contaminated soil has been demonstrated for saturated and unsaturated sand in preliminary experiments using a novel transport visualization technique. Large anionic organic dyes were mixed with a portion of soil and the rate of electromigration of the dye in an imposed electric field was monitored photographically. One of the fastest current-normalized electromigration rates was measured in the driest sand, which contained 7% water by weight. This moisture content is typical of the moisture content in the unsaturated zone of subsurface native soils found in New Mexico. The characteristics of the electromigration were similar in both the saturated and unsaturated sand. The leading edge of the dye migration front was diffuse while the trailing edge was sharp and concentrated. This and other observed behavior may indicate a concentration effect, where the electromigration rate of dilute dye is greater than that of concentrated dye. The soil left after the trailing edge passed seemed to contain no residual dye in both the saturated and unsaturated cases. The success of demonstrating electromigration of large molecules in unsaturated soil is encouraging and indicates that it may be feasible to remediate in situ anionic heavy metals such as chromate from unsaturated soil with electrokinetic techniques. 23 refs., 7 figs

  5. Electrokinetic remediation of contaminated soils

    International Nuclear Information System (INIS)

    Lindgren, E.R.; Kozak, M.W.; Mattson, E.D.

    1991-01-01

    Electrokinetic remediation of contaminated soil has been demonstrated for saturated and unsaturated sand in preliminary experiments using a novel transport visualization technique. Large anionic organic dyes were mixed with a portion of soil and the rate of electromigration of the dye in an imposed electric field was monitored photographically. One of the fastest current-normalized electromigration rates was measured in the driest sand, which contained 7% water by-weight. This moisture content is typical of the moisture content in the unsaturated zone of subsurface native soils found in New Mexico. The characteristics of the electromigration were similar in both the saturated and unsaturated sand. The leading edge of the dye migration front was diffuse while the trailing edge was sharp and concentrated. This and other observed behavior may indicate a concentration effect, where the electromigration rate of dilute dye is greater than that of concentrated dye. The soil left after the trailing edge passed seemed to contain no residual dye in both the saturated and unsaturated cases. The success of demonstrating electromigration of large molecules in unsaturated soil is encouraging and indicates that it may be feasible to remediate in situ anionic heavy metals such as chromate from unsaturated soil with electrokinetic techniques

  6. Strength and Compressibility Characteristics of Reconstituted Organic Soil at Khulna Region of Bangladesh

    OpenAIRE

    Tahia Rabbee; Islam M. Rafizul

    2012-01-01

    This study depicts the experimental investigations into the effect of organic content on the shear strength and compressibility parameters of reconstituted soil. To these attempts, disturbed soil samples were collected from two selected locations of Khulna region. The reconstituted soil having organic content of 5-35 % were prepared in the laboratory to mix at various proportions of inorganic and organic soil at the water content equal to 1.25 times of liquid limits of collected samples .The ...

  7. EFFECT OF INTEGRATED SOIL FERTILITY MANAGEMENT INTERVENTIONS ON THE ABUNDANCE AND DIVERSITY OF SOIL COLLEMBOLA IN EMBU AND TAITA DISTRICTS, KENYA

    Directory of Open Access Journals (Sweden)

    Jamleck Muturi

    2010-10-01

    Full Text Available The study aimed at identifying soil fertility management practices that promote the Collembola population, diversity and survival in the soil. Soil samples were randomly collected from on farm plots amended with: 1-Mavuno ((Ma-is a compound fertilizer containing 26% Potassium, 10% Nitrogen, 10% Calcium, 4% Sulphur, 4% Magnesium and trace elements like Zinc, Copper, Boron, Molybdenum and Manganese, 2-Manure (Mn, 3-Trichoderna (Tr inoculant (is a soil and compost-borne antagonistic fungus used as biological control agent against plant fungal diseases, 4-Farmers practice ((FP where Tripple Super Phosphate (T.S.P. and Calcium Ammonium Nitrate (C.A.N. fertilizers are applied in the soil in mixed form, 5-Tripple Super Phosphate (T.S.P., 6-Calcium Ammonium Nitrate (C.A.N.. These treatments were compared with 7-Control (Co (where soil fertility management interventions where not applied. Soil Collembola were extracted using dynamic behavioural modified Berlese funnel and identified to the genus level. Occurrence of Collembola was significantly affected by soil fertility amendments in both Taita and Embu study sites (P

  8. Potential of Ranunculus acris L. for biomonitoring trace element contamination of riverbank soils: photosystem II activity and phenotypic responses for two soil series.

    Science.gov (United States)

    Marchand, Lilian; Lamy, Pierre; Bert, Valerie; Quintela-Sabaris, Celestino; Mench, Michel

    2016-02-01

    Foliar ionome, photosystem II activity, and leaf growth parameters of Ranunculus acris L., a potential biomonitor of trace element (TE) contamination and phytoavailability, were assessed using two riverbank soil series. R. acris was cultivated on two potted soil series obtained by mixing a TE (Cd, Cu, Pb, and Zn)-contaminated technosol with either an uncontaminated sandy riverbank soil (A) or a silty clay one slightly contaminated by TE (B). Trace elements concentrations in the soil-pore water and the leaves, leaf dry weight (DW) yield, total leaf area (TLA), specific leaf area (SLA), and photosystem II activity were measured for both soil series after a 50-day growth period. As soil contamination increased, changes in soluble TE concentrations depended on soil texture. Increase in total soil TE did not affect the leaf DW yield, the TLA, the SLA, and the photosystem II activity of R. acris over the 50-day exposure. The foliar ionome did not reflect the total and soluble TE concentrations in both soil series. Foliar ionome of R. acris was only effective to biomonitor total and soluble soil Na concentrations in both soil series and total and soluble soil Mo concentrations in the soil series B.

  9. Overestimation of closed-chamber soil CO2 effluxes at low atmospheric turbulence

    DEFF Research Database (Denmark)

    Brændholt, Andreas; Larsen, Klaus Steenberg; Ibrom, Andreas

    2017-01-01

    Soil respiration (R-s) is an important component of ecosystem carbon balance, and accurate quantification of the diurnal and seasonal variation of R-s is crucial for a correct interpretation of the response of R-s to biotic and abiotic factors, as well as for estimating annual soil CO2 efflux rates...... be eliminated if proper mixing of air is ensured, and indeed the use of fans removed the overestimation of R-s rates during low u(*). Artificial turbulent air mixing may thus provide a method to overcome the problems of using closed-chamber gas-exchange measurement techniques during naturally occurring low...

  10. Influence of nano-material on the expansive and shrinkage soil behavior

    International Nuclear Information System (INIS)

    Taha, Mohd Raihan; Taha, Omer Muhie Eldeen

    2012-01-01

    This paper presents an experimental study performed on four types of soils mixed with three types of nano-material of different percentages. The expansion and shrinkage tests were conducted to investigate the effect of three type of nano-materials (nano-clay, nano-alumina, and nano-copper) additive on repressing strains in compacted residual soil mixed with different ratios of bentonite (S1 = 0 % bentonite, S2 = 5 % bentonite, S3 = 10 % bentonite, and S4 = 20 % bentonite). The soil specimens were compacted under the condition of maximum dry unit weight and optimum water content (w opt ) using standard compaction test. The physical and mechanical results of the treated samples were determined. The untreated soil values were used as control points for comparison purposes. It was found that with the addition of optimum percentage of nano-material, both the swell strain and shrinkage strain reduced. The results show that nano-material decreases the development of desiccation cracks on the surface of compacted samples without decrease in the hydraulic conductivity.

  11. ESTIMATING ROOT RESPIRATION IN SPRUCE AND BEECH: DECREASES IN SOIL RESPIRATION FOLLOWING GIRDLING

    Science.gov (United States)

    A study was undertaken to follow seasonal fluxes of CO2 from soil and to estimate the contribution of autotrophic (root + mycorrhizal) to total soil respiration (SR) in a mixed stand of European beech (Fagus sylvatica) and Norway spruce (Picea abies) near Freising, Germany. Matu...

  12. Determination of zinc nutrient in the soil using isotope technique

    International Nuclear Information System (INIS)

    Suwadji, E.

    1975-01-01

    In this experiment the availability of soil Zn nutrient in various soil conditions (dry and submerged), and the efficiency of the application of Zn fertilizer in rice nutrition were measured in glasshouse using isotope dilution technique. The amount of soil Zn nutrient available to plants can be expressed in 'E' and 'L' values. Submerged conditions generally showed an increase in the 'E' and 'L' value compared to dry conditions. Mixed treatment with ZnSO 4 fertilizer is more efficient for Zn absorption than surface treatment. (author)

  13. Initial assessment of intrinsic and assisted bioremediation potential for diesel fuel impacted soils at Eureka, NWT

    International Nuclear Information System (INIS)

    Wilson, J. J.; Yeske, B.; Lee, D.; Nahir, M.

    1999-01-01

    Two diesel fuel-impacted soil columns prepared to simulate in situ conditions for assessing intrinsic bioremediation were studied. The samples were from Eureka in the Northwest Territories. Two soil jars that were mixed periodically to simulate the ex situ land treatment bioremediation option, were also part of the treatability study. Results strongly suggest that bioremediation at Eureka is a viable option, although the slow rate of biodegradation and the short operating season will necessitate treatment over several years to achieve the remediation endpoint. The intrinsic bioremediation process can be accelerated using periodic addition of a water soluble nitrogen fertilizer, as shown by the nitrogen-amended soil column test. Ex situ bioremediation also appears to be possible judged by the response of the natural bacterial population to periodic mixing and oxygen uptake at 5 degrees C. The principal challenge will be to adequately mix the soil at the surface and to prevent it from drying out. The addition of organic bulking material may be required. 1 ref., 3 tabs., 4 figs

  14. Some considerations on the dynamic structure-soil-structure interactions analysis

    International Nuclear Information System (INIS)

    Matthees, W.

    1979-01-01

    A mixed method has been developed for the approximate analysis of soil-structure or structure-soil-structure interaction problems due to earthquakes. In order to produce comparable results of interaction problems as well as for shallow and for deep soils due to the same earthquake excitation (accelerogram) situated always at the lower bedrock boundary, the analysis is performed in two steps: 1) Calculation of the complex transfer function and the response of the upper interior boundary of a layered soil-system which is connected at its top to a soil-structure-system, using the one-dimensional deconvolution. 2) By making a complete interaction analysis of the surface soil-structure-system using the interior boundary excitation of the calculated response from step 1. The depth of the soil-structure-system must be chosen large enough to exclude interaction effects down to the layered soil-system's interior boundary. (orig.)

  15. A mathematical model for the transfer of soil solutes to runoff under water scouring.

    Science.gov (United States)

    Yang, Ting; Wang, Quanjiu; Wu, Laosheng; Zhang, Pengyu; Zhao, Guangxu; Liu, Yanli

    2016-11-01

    The transfer of nutrients from soil to runoff often causes unexpected pollution in water bodies. In this study, a mathematical model that relates to the detachment of soil particles by water flow and the degree of mixing between overland flow and soil nutrients was proposed. The model assumes that the mixing depth is an integral of average water flow depth, and it was evaluated by experiments with three water inflow rates to bare soil surfaces and to surfaces with eight treatments of different stone coverages. The model predicted outflow rates were compared with the experimentally observed data to test the accuracy of the infiltration parameters obtained by curve fitting the models to the data. Further analysis showed that the comprehensive mixing coefficient (ke) was linearly correlated with Reynolds' number Re (R(2)>0.9), and this relationship was verified by comparing the simulated potassium concentration and cumulative mass with observed data, respectively. The best performance with the bias error analysis (Nash Sutcliffe coefficient of efficiency (NS), relative error (RE) and the coefficient of determination (R(2))) showed that the predicted data by the proposed model was in good agreement with the measured data. Thus the model can be used to guide soil-water and fertilization management to minimize nutrient runoff from cropland. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. [Early responses of soil fauna in three typical forests of south subtropical China to simulated N deposition addition].

    Science.gov (United States)

    Xu, Guolian; Mo, Jiangming; Zhou, Guoyi

    2005-07-01

    In this paper, simulated N deposition addition (0, 50, 100 and 150 kg x hm(-2) x yr(-1)) by spreading water or NH4NO3 was conducted to study the early responses of soil fauna in three typical native forests (monsoon evergreen broadleaf forest, pine forest, and broadleaf-pine mixed forest) of subtropical China. The results showed that in monsoon evergreen broadleaf forest, N deposition addition had an obviously negative effect on the three indexes for soil fauna, but in pine forest, the positive effect was significant (P soil fauna community could reach the level in mixed forest, even that in monsoon evergreen broadleaf forest at sometime. The responses in mixed forest were not obvious. In monsoon evergreen broadleaf forest, the negative effects were significant (P soil fauna groups. The results obtained might imply the N saturation-response mechanisms of forest ecosystems in subtropical China, and the conclusions from this study were also consisted with some related researches.

  17. Radiation budget, soil heat flux and latent heat flux at the forest floor in warm, temperate mixed forest

    International Nuclear Information System (INIS)

    Tamai, K.; Abe, T.; Araki, M.; Ito, H.

    1998-01-01

    Seasonal changes in the radiation budget and soil heat flux of a forest floor were measured in a mixed forest located in Kyoto, Japan. The basal area at breast height in the survey forest was about 15·82 m 2 ha −1 , for evergreen trees, and 12·46 m 2 ha −1 , for deciduous trees. The sky view factor was 16 and 22% at the survey site in the foliate and defoliate seasons, respectively. The small difference between the sky view factor in the two seasons was reflected in the seasonal change in the radiation budget of the forest floor. Namely, the net long-wave radiation changed rapidly in leafing and falling days, and the rate of net short-wave radiation was highest in April. The distinctive characteristic of the radiation budget was that the rates of available radiation in the daytime and at night were almost equal in September and October. Latent heat flux at the forest floor was estimated to be around 94 MJ m −2 annually, from our measurement with the simulation model. (author)

  18. Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6

    Energy Technology Data Exchange (ETDEWEB)

    Calder, Alyssa J. [Department of Biological Engineering, Utah State University, Logan, UT 84322 (United States); Dimkpa, Christian O. [Department of Biological Engineering, Utah State University, Logan, UT 84322 (United States); Department of Biology, Utah State University, Logan, UT 84322 (United States); McLean, Joan E. [Utah Water Research Laboratory, Utah State University, Logan, UT 84322 (United States); Britt, David W. [Department of Biological Engineering, Utah State University, Logan, UT 84322 (United States); Johnson, William [Geology and Geophysics, University of Utah, Salt Lake City, UT 84112 (United States); Anderson, Anne J., E-mail: anne.anderson@usu.edu [Department of Biology, Utah State University, Logan, UT 84322 (United States)

    2012-07-01

    Silver nanoparticles (Ag NPs) are widely used for their antimicrobial activity and consequently the particles will become environmental contaminants. This study evaluated in sand and soil matrices the toxicity of 10 nm spherical Ag NPs (1 and 3 mg Ag/L) toward a beneficial soil bacterium, Pseudomonas chlororaphis O6. In sand, both NP doses resulted in loss in bacterial culturability whereas in a loam soil, no cell death was observed. Amendments of sand with clays (30% v/v kaolinite or bentonite) did not protect the bacterium when challenged with Ag NPs. However, culturability of the bacterium was maintained when the Ag NP-amended sand was mixed with soil pore water or humic acid. Imaging by atomic force microscopy revealed aggregation of single nanoparticles in water, and their embedding into background material when suspended in pore water and humic acids. Zeta potential measurements supported aggregation and surface charge modifications with pore water and humic acids. Measurement of soluble Ag in the microcosms and geochemical modeling to deduce the free ion concentration revealed bacterial culturability was governed by the predicted free Ag ion concentrations. Our study confirmed the importance of Ag NPs as a source of ions and illustrated that processes accounting for protection in soil against Ag NPs involved distinct NP- and ion-effects. Processes affecting NP bioactivity involved surface charge changes due to sorption of Ca{sup 2+} from the pore water leading to agglomeration and coating of the NPs with humic acid and other organic materials. Removal of bioactive ions included the formation of soluble Ag complexes with dissolved organic carbon and precipitation of Ag ions with chloride in pore water. We conclude that mitigation of toxicity of Ag NPs in soils towards a soil bacterium resides in several interactions that differentially involve protection from the Ag NPs or the ions they produce. - Highlights: Black-Right-Pointing-Pointer Silver nanoparticles

  19. Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6

    International Nuclear Information System (INIS)

    Calder, Alyssa J.; Dimkpa, Christian O.; McLean, Joan E.; Britt, David W.; Johnson, William; Anderson, Anne J.

    2012-01-01

    Silver nanoparticles (Ag NPs) are widely used for their antimicrobial activity and consequently the particles will become environmental contaminants. This study evaluated in sand and soil matrices the toxicity of 10 nm spherical Ag NPs (1 and 3 mg Ag/L) toward a beneficial soil bacterium, Pseudomonas chlororaphis O6. In sand, both NP doses resulted in loss in bacterial culturability whereas in a loam soil, no cell death was observed. Amendments of sand with clays (30% v/v kaolinite or bentonite) did not protect the bacterium when challenged with Ag NPs. However, culturability of the bacterium was maintained when the Ag NP-amended sand was mixed with soil pore water or humic acid. Imaging by atomic force microscopy revealed aggregation of single nanoparticles in water, and their embedding into background material when suspended in pore water and humic acids. Zeta potential measurements supported aggregation and surface charge modifications with pore water and humic acids. Measurement of soluble Ag in the microcosms and geochemical modeling to deduce the free ion concentration revealed bacterial culturability was governed by the predicted free Ag ion concentrations. Our study confirmed the importance of Ag NPs as a source of ions and illustrated that processes accounting for protection in soil against Ag NPs involved distinct NP- and ion-effects. Processes affecting NP bioactivity involved surface charge changes due to sorption of Ca 2+ from the pore water leading to agglomeration and coating of the NPs with humic acid and other organic materials. Removal of bioactive ions included the formation of soluble Ag complexes with dissolved organic carbon and precipitation of Ag ions with chloride in pore water. We conclude that mitigation of toxicity of Ag NPs in soils towards a soil bacterium resides in several interactions that differentially involve protection from the Ag NPs or the ions they produce. - Highlights: ► Silver nanoparticles (Ag NPs) are widely used for

  20. Bioremediation of Pyrene-Contaminated Soils Using Biosurfactant

    Directory of Open Access Journals (Sweden)

    Jorfi

    2014-10-01

    Full Text Available Background Polycyclic aromatic hydrocarbons (PAHs are persistence organic chemicals with proved carcinogenic and mutagenic hazards. These compounds are usually adsorbed in soils in vicinity of oil and gas industries. Bioremediation of PAHs contaminated soils is difficult due to hydrophobic nature of PAHs. Objectives The main purpose of the current study was to determine the pyrene removal efficiency in synthetically contaminated soil, using biosurfactant. Materials and Methods Four pure bacterial strains capable of pyrene degradation were isolated from contaminated soils via enrichment techniques. The soil samples were spiked with an initial pyrene concentration of 500 mg/kg and subjected to bioremediation using a mixed culture comprised of previously isolated strains, in addition to application of biosurfactant during 63 days. Results The pyrene removal efficiency in samples containing biosurfactant, without biosurfactant and controls, were 86.4%, 59.8% and 14%, respectively, after 63 days. The difference of pyrene removal efficiency between the biosurfactant-containing samples and the ones without it was significant (P < 0.05. Conclusions Application of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa significantly improved pyrene removal in contaminated soils.

  1. COSMOS: the COsmic-ray Soil Moisture Observing System

    Directory of Open Access Journals (Sweden)

    M. Zreda

    2012-11-01

    Full Text Available The newly-developed cosmic-ray method for measuring area-average soil moisture at the hectometer horizontal scale is being implemented in the COsmic-ray Soil Moisture Observing System (or the COSMOS. The stationary cosmic-ray soil moisture probe measures the neutrons that are generated by cosmic rays within air and soil and other materials, moderated by mainly hydrogen atoms located primarily in soil water, and emitted to the atmosphere where they mix instantaneously at a scale of hundreds of meters and whose density is inversely correlated with soil moisture. The COSMOS has already deployed more than 50 of the eventual 500 cosmic-ray probes, distributed mainly in the USA, each generating a time series of average soil moisture over its horizontal footprint, with similar networks coming into existence around the world. This paper is written to serve a community need to better understand this novel method and the COSMOS project. We describe the cosmic-ray soil moisture measurement method, the instrument and its calibration, the design, data processing and dissemination used in the COSMOS project, and give example time series of soil moisture obtained from COSMOS probes.

  2. Clay minerals, metallic oxides and oxy-hydroxides and soil organic carbon distribution within soil aggregates in temperate forest soils

    Science.gov (United States)

    Gartzia-Bengoetxea, Nahia; Fernández-Ugalde, Oihane; Virto, Iñigo; Arias-González, Ander

    2017-04-01

    Soil mineralogy is of primary importance for key environmental services provided by soils like carbon sequestration. However, current knowledge on the effects of clay mineralogy on soil organic carbon (SOC) stabilization is based on limited and conflicting data. In this study, we investigated the relationship between clay minerals, metallic oxides and oxy-hydroxides and SOC distribution within soil aggregates in mature Pinus radiata D.Don forest plantations. Nine forest stands located in the same geographical area of the Basque Country (North of Spain) were selected. These stands were planted on different parent material (3 on each of the following: sandstone, basalt and trachyte). There were no significant differences in climate and forest management among them. Moreover, soils under these plantations presented similar content of clay particles. We determined bulk SOC storage, clay mineralogy, the content of Fe-Si-Al-oxides and oxyhydroxides and the distribution of organic C in different soil aggregate sizes at different soil depths (0-5 cm and 5-20 cm). The relationship between SOC and abiotic factors was investigated using a factor analysis (PCA) followed by stepwise regression analysis. Soils developed on sandstone showed significantly lower concentration of SOC (29 g C kg-1) than soils developed on basalts (97 g C kg-1) and trachytes (119 g C kg-1). The soils on sandstone presented a mixed clay mineralogy dominated by illite, with lesser amounts of hydroxivermiculite, hydrobiotite and kaolinite, and a total absence of interstratified chlorite/vermiculite. In contrast, the major crystalline clay mineral identified in the soils developed on volcanic rocks was interstratified chlorite/vermiculite. Nevertheless, no major differences were observed between basaltic and trachytic soils in the clay mineralogy. The selective extraction of Fe showed that the oxalate extractable iron was significantly lower in soils on sandstone (3.7%) than on basalts (11.2%) and

  3. Application of bark ash to a mixed forest in central Sweden - effects on soil chemistry, composition of the flora and stem growth

    International Nuclear Information System (INIS)

    Nilsson, Torbjoern; Nilsson, Aake; Larsson, Kjell

    2004-02-01

    In a 60-year-old mixed coniferous stand dominated by Norway spruce on a sandy-silty till, the effects on soil chemistry, field vegetation and stem growth of applying two different ash products were studied during 1995-2002. Eight field plots (30x30 m) were established in early summer 1995, 56 km WNW Sundsvall in Central Sweden on forest land belonging to SCA Skog. One year later, in June 1996, 3 tonnes of pelleted bark ash (A) from a pulp mill factory were applied per hectare on four of these plots. During the production of these ash pellets, 8-10 % of tall oil was added.The other four plots were control plots (K). In July 1996, six more plots were established, in connection to the other eight plots. Two of these new plots were control plots (C), the other four plots were treated with granules (AS) of bark ash and sewage sludge from A sewage-treatment plant in Sundsvall. Two different doses of these granules were used; two plots received 300 kg per plot or 3.3 tonnes/ha (AS3) and two plots received 900 kg per plot or 10 tonnes/ha (AS9). The field vegetation in treatment A and K was inventoried one year before treatment, and one and five years after treatment. In the other treatments (C, AS3 and AS9) the field vegetation was inventoried only one and five years after treatment. Growth measurements (diameter at breast height and height of the trees) were made in connection to the treatments in June-July 1996 and six years later in May 2002. Soil samplings (humus layer, 0-5 cm below humus layer) were performed six years after the treatments. The soil samples were analyzed on pH, electrical conductivity, organic matter, organic carbon and total nitrogen. Six years after the treatments, considerable more ash pellets than ash granules were found on or in the humus layer. Apparently the ash granules disintegrated faster than the ash pellets. The effects on soil chemistry, six years after treatment, were also more apparent on plots treated with ash granules than on plots

  4. Electricity Generation in Microbial Fuel Cell (MFC) by Bacterium Isolated from Rice Paddy Field Soil

    Science.gov (United States)

    Fakhirruddin, Fakhriah; Amid, Azura; Salim, Wan Wardatul Amani Wan; Suhaida Azmi, Azlin

    2018-03-01

    Microbial fuel cell (MFC) is an alternative approach in generating renewable energy by utilising bacteria that will oxidize organic or inorganic substrates, producing electrons yielded as electrical energy. Different species of exoelectrogenic bacteria capable of generating significant amount of electricity in MFC has been identified, using various organic compounds for fuel. Soil sample taken from rice paddy field is proven to contain exoelectrogenic bacteria, thus electricity generation using mixed culture originally found in the soil, and pure culture isolated from the soil is studied. This research will isolate the exoelectrogenic bacterial species in the rice paddy field soil responsible for energy generation. Growth of bacteria isolated from the MFC is observed by measuring the optical density (OD), cell density weight (CDW) and viable cell count. Mixed bacterial species found in paddy field soil generates maximum power of 77.62 μW and 0.70 mA of current. In addition, the research also shows that the pure bacterium in rice paddy field soil can produce maximum power and current at 51.32 μW and 0.28 mA respectively.

  5. Occurrence and distribution of soil Fusarium species under wheat crop in zero tillage

    Energy Technology Data Exchange (ETDEWEB)

    Silvestro, L. B.; Stenglein, S. A.; Forjan, H.; Dinolfo, M. I.; Aramburri, A. M.; Manso, L.; Moreno, M. V.

    2013-05-01

    The presence of Fusarium species in cultivated soils is commonly associated with plant debris and plant roots. Fusarium species are also soil saprophytes. The aim of this study was to examine the occurrence and distribution of soil Fusarium spp. at different soil depths in a zero tillage system after the wheat was harvested. Soil samples were obtained at three depths (0-5 cm, 5-10 cm and 10-20 cm) from five crop rotations: I, conservationist agriculture (wheat-sorghum-soybean); II, mixed agriculture/livestock with pastures, without using winter or summer forages (wheat-sorghum-soybean-canola-pastures); III, winter agriculture in depth limited soils (wheat-canola-barley-late soybean); IV, mixed with annual forage (wheat-oat/Vicia-sunflower); V, intensive agriculture (wheat-barley-canola, with alternation of soybean or late soybean). One hundred twenty two isolates of Fusarium were obtained and identified as F. equiseti, F. merismoides, F. oxysporum, F. scirpi and F. solani. The most prevalent species was F. oxysporum, which was observed in all sequences and depths. The Tukey's test showed that the relative frequency of F. oxysporum under intensive agricultural management was higher than in mixed traditional ones. The first 5 cm of soil showed statistically significant differences (p=0.05) with respect to 5-10 cm and 10-20 cm depths. The ANOVA test for the relative frequency of the other species as F. equiseti, F. merismoides, F. scirpi and F. solani, did not show statistically significant differences (p<0.05). We did not find significant differences (p<0.05) in the effect of crop rotations and depth on Shannon, Simpson indexes and species richness. Therefore we conclude that the different sequences and the sampling depth did not affect the alpha diversity of Fusarium community in this system. (Author) 51 refs.

  6. [Community traits of soil fauna in forestlands converted from cultivated lands in limestone red soil region of Ruichang, Jiangxi Province of China].

    Science.gov (United States)

    Li, Tao; Liu, Yuan-Qiug; Guo, Sheng-Mao; Ke, Guo-Qing; Zhang, Zhao; Xiao, Xu-Bao; Liu, Wu

    2012-04-01

    This paper studied the variations of the community composition and individuals' number of soil fauna in limestone red soil region of Ruichang, Jiangxi Province after six years of converting cultivated lands into forestlands. Three converted forestlands, including the lands of mixed multiple-species forest, bamboo-broadleaved forest, and tree-seedling integration, were selected as test objects, with cultivated lands as the comparison. A total of 34 orders, 17 classes, and 6 phyla of soil fauna were observed in the converted forestlands. The dominant group was Nematoda, accounting for 86.7% of the total, whereas Acarina, Enchytraeidae, and Collembola were the common groups. In the cultivated lands, soil fauna had 21 orders, 10 classes, and 5 phyla. The dominant group was also Nematoda, accounting 86.7% of the total, and Acarina and Enchytraeidae were the common groups. In the converted forestlands, the group number of rare species was greater than that in the cultivated lands (30 vs. 18), and, except in winter, the group number and average density were significantly higher than those in the cultivated lands (P soil fauna in the soil profiles showed an obvious surface accumulation, which was more apparent in converted forestlands than in cultivated lands, and the individuals' number had significant differences between the surface (0-5 cm) layer and the 5-10 cm and 10-15 cm layers (P soil fauna in the converted forestlands had a seasonal variation ranked in the order of summer > autumn > spring > winter, and there was a significant difference between summer-autumn and spring-winter. The average density of the soil fauna also had a seasonal variation but ranked as autumn > summer > spring > winter, and the differences among the seasons were significant (P soil fauna was significantly higher in converted forestlands than in cultivated lands, and was the highest in mixed multiple-species forestland and the least in tree-seedling integration land.

  7. Transportable Vitrification System: Operational experience gained during vitrification of simulated mixed waste

    International Nuclear Information System (INIS)

    Whitehouse, J.C.; Burket, P.R.; Crowley, D.A.; Hansen, E.K.; Jantzen, C.M.; Smith, M.E.; Singer, R.P.; Young, S.R.; Zamecnik, J.R.; Overcamp, T.J.; Pence, I.W. Jr.

    1996-01-01

    The Transportable Vitrification System (TVS) is a large-scale, fully-integrated, transportable, vitrification system for the treatment of low-level nuclear and mixed wastes in the form of sludges, soils, incinerator ash, and similar waste streams. The TVS was built to demonstrate the vitrification of actual mixed waste at U. S. Department of Energy (DOE) sites. Currently, Westinghouse Savannah River Company (WSRC) is working with Lockheed Martin Energy Systems (LMES) to apply field scale vitrification to actual mixed waste at Oak Ridge Reservation's (ORR) K-25 Site. Prior to the application of the TVS to actual mixed waste it was tested on simulated K-25 B and C Pond waste at Clemson University. This paper describes the results of that testing and preparations for the demonstration on actual mixed waste

  8. The utilization of ultisol soil for horticulture crops cultivation

    Science.gov (United States)

    Sumono; Parinduri, SM; Huda, N.; Ichwan, N.

    2018-02-01

    Ultisol soil is a marginal soil commonly used for palm oil cultivation in Indonesia, its very potential for cultivation of horticulture crops. The utilization of ultisol soil can be done with adding compost with certain proportions. The research aimed to know best proportion of ultisol soil and compost, and proportion of water concentration, and its relationship with fresh and dry weight of horticulture crops . The research was divided 3 steps. The first, mixed ultisol soil and compost with certain proportion and flooding until steady. The second, watering with different concentration to soil mixture. The last, studied its relationship with fresh and dry weight of crops. The result show that physical properties and nutrient content of ultisol soil was increasing with adding compost. SC4 (70% soil and 30% compost) is the best composition to soil mixture. Watering with different concentration show that trend decreased from reference and the bulk density and porosity decreased not significantly at the significant level ∝ = 0.05. Watering affect mass of pakcoynot significantly at the significant level ∝ = 0.05. Hence, ultisol soil was a potential marginal soil to utilizing as a media for cultivating horticulture crops.

  9. Mixed Waste Landfill Integrated Demonstration

    International Nuclear Information System (INIS)

    1994-02-01

    The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID's success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories' Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque's and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ''dry'' soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater

  10. Decontamination of electronic waste-polluted soil by ultrasound-assisted soil washing.

    Science.gov (United States)

    Chen, Fu; Yang, Baodan; Ma, Jing; Qu, Junfeng; Liu, Gangjun

    2016-10-01

    Laboratorial scale experiments were performed to evaluate the efficacy of a washing process using the combination of methyl-β-cyclodextrin (MCD) and tea saponin (TS) for simultaneous desorption of hydrophobic organic contaminants (HOCs) and heavy metals from an electronic waste (e-waste) site. Ultrasonically aided mixing of the field contaminated soil with a combination of MCD and TS solutions simultaneously mobilizes most of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and the analyte metal (Pb, Cu, and Ni) burdens. It is found that 15 g/L MCD and 10 g/L TS is an efficient reagent combination reconciling extraction performance and reagent costs. Under these conditions, the removal efficiencies of HOCs and heavy metals are 93.5 and 91.2 %, respectively, after 2 cycles of 60-min ultrasound-assisted washing cycles. By contrast, 86.3 % of HOCs and 88.4 % of metals are removed from the soil in the absence of ultrasound after 3 cycles of 120-min washing. The ultrasound-assisted soil washing could generate high removal efficiency and decrease the operating time significantly. Finally, the feasibility of regenerating and reusing the spent washing solution in extracting pollutants from the soil is also demonstrated. By application of this integrated technology, it is possible to recycle the washing solution for a purpose to reduce the consumption of surfactant solutions. Collectively, it has provided an effective and economic treatment of e-waste-polluted soil.

  11. Hillslope Discharge Analysis - Threshold Behavior and Mixing Processes

    Science.gov (United States)

    Dusek, J.; Vogel, T. N.

    2017-12-01

    Reliable quantitative prediction of temporal changes of both the soil water storage and the shallow subsurface runoff for natural forest hillslopes exhibiting high degree of subsurface heterogeneity remains a challenge. The intensity of stormflow determines to a large extent the residence time of water in a hillslope segment, thus also influencing biogeochemical processes and mass fluxes of nutrients. Stormflow, as one of the most important runoff mechanisms in headwater catchments, usually develops above the soil-bedrock interface during prominent rainfall-runoff events as saturated flow. In this study, one- and two-dimensional numerical models were used to analyze hydrological processes at an experimental forest site located in a small headwater catchment under humid temperate climate. The models are based on dual-continuum approach reflecting water flow and isotope transport through the soil matrix and preferential pathways. The threshold relationship between rainfall and stormflow as well as hysteresis in the hillslope stormflow-storage relationship were examined. The hillslope storage analysis was performed for selected individual rainfall-runoff events over the period of several consecutive growing seasons. Furthermore, temporal and spatial variations of pre-event and event water contributions to hillslope stormflow were evaluated using a two-component mass balance approach based on the synthetic oxygen-18 signatures. The results of this analysis showed a mutual interplay of components of hillslope water balance exposing a nonlinear character of the hillslope hydrological response. The results also suggested significant mixing processes in a hillslope segment, in particular mixing of pre-event and event water as well as water exchanged between the soil matrix and preferential pathways. Despite the dominant control of preferential stormflow on overall hillslope runoff response, a rapid and substantial contribution of pre-event water to hillslope runoff was

  12. Interdependence of soil and agricultural practice in a two - year phytoremediation in situ experiment

    Science.gov (United States)

    Nwaichi, Eucharia; Onyeike, Eugene; Frac, Magdalena; Iwo, Godknows

    2016-04-01

    A two - year plant - based soil clean - up was carried out at a crude oil spill agricultural site in a Niger Delta community in Nigeria to access further clean - up potentials of Cymbopogon citratus. Applied diagnostic ratios identified mixed petrogenic and pyrogenic sources as the main contributors of PAHs. Up to 90.8% sequestration was obtained for carcinogenic PAHs especially Benz (a) pyrene in a 2 - phase manner. A community level approach for assessing patterns of sole carbon source utilization by mixed microbial samples was employed to differentiate spatial and temporal changes in the soil microbial communities. In relation to pollution, soil conditioning notably decreased the lag times and showed mixed effects for colour development rates, maximum absorbance and the overall community pattern. For rate and utilization of different carbon substrates in BIOLOG wells, after day 3, in comparison to control soil communities, contamination with hydrocarbons and associated types increased amines and amides consumption. Consumption of carbohydrates in all polluted and unamended regimes decreased markedlyin comparison to those cultivated with C. citratus. We found a direct relationship between cellulose breakdown, measurable with B-glucosidase activity, organic matter content and CO2 realease within all soils in the present study. Organic amendment rendered most studied contaminants unavailable for uptake in preference to inorganic fertilizer in both study years. Generally, phytoremediation improved significantly the microbial community activity and thus would promote ecosystem restoration in relation to most patronised techniques. Supplementation with required nutrients, in a long - term design would present many ecological benefits. Keywords: Agricultural soils; Recovery; Hydrocarbon pollution; Ecology; Management practice.

  13. Intercropped Silviculture Systems, a Key to Achieving Soil Fungal Community Management in Eucalyptus Plantations

    OpenAIRE

    Rachid, Caio T. C. C.; Balieiro, Fabiano C.; Fonseca, Eduardo S.; Peixoto, Raquel Silva; Chaer, Guilherme M.; Tiedje, James M.; Rosado, Alexandre S.

    2015-01-01

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed...

  14. Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs

    Science.gov (United States)

    Toth, David J.; Katz, Brian G.

    2006-06-01

    Large karstic springs in east-central Florida, USA were studied using multi-tracer and geochemical modeling techniques to better understand groundwater flow paths and mixing of shallow and deep groundwater. Spring water types included Ca-HCO3 (six), Na-Cl (four), and mixed (one). The evolution of water chemistry for Ca-HCO3 spring waters was modeled by reactions of rainwater with soil organic matter, calcite, and dolomite under oxic conditions. The Na-Cl and mixed-type springs were modeled by reactions of either rainwater or Upper Floridan aquifer water with soil organic matter, calcite, and dolomite under oxic conditions and mixed with varying proportions of saline Lower Floridan aquifer water, which represented 4-53% of the total spring discharge. Multiple-tracer data—chlorofluorocarbon CFC-113, tritium (3H), helium-3 (3Hetrit), sulfur hexafluoride (SF6)—for four Ca-HCO3 spring waters were consistent with binary mixing curves representing water recharged during 1980 or 1990 mixing with an older (recharged before 1940) tracer-free component. Young-water mixing fractions ranged from 0.3 to 0.7. Tracer concentration data for two Na-Cl spring waters appear to be consistent with binary mixtures of 1990 water with older water recharged in 1965 or 1975. Nitrate-N concentrations are inversely related to apparent ages of spring waters, which indicated that elevated nitrate-N concentrations were likely contributed from recent recharge.

  15. [Effects of Different Reclaimed Scenarios on Soil Microbe and Enzyme Activities in Mining Areas].

    Science.gov (United States)

    Li, Jun-jian; Liu, Feng; Zhou, Xiao-mei

    2015-05-01

    Abstract: Ecological degradation in the mining areas is greatly aggravated in recent several decades, and ecological restoration has become the primary measure for the sustainable development. Soil microbe and enzyme activity are sensitive indices to evaluate soil quality. Ecological reconstruction was initiated in Antaibao mining area, and we tested soil physicochemical properties, microbial populations of azotobacteria, nitrifying-bacteria and denitrifying-bacteria, and enzyme activities (including sucrose, polyphenol oxidase, dehydrogenase and urease) under different regeneration scenarios. Regeneration scenarios had significant effects on soil physicochemical properties, microbial population and enzyme activities. Total nitrogen was strongly correlated with azotobacteria and nitrifying-bacteria, however, total nitrogen was not correlated with denitrifying-bacteria. Phenol oxidase activity was negatively correlated with soil organic carbon and total nitrogen, but other enzyme activities were positively correlated with soil organic carbon and total nitrogen. Principal Component Analysis ( PCA) was applied to analyze the integrated fertility index (IFI). The highest and lowest IFIs were in Robinia pseudoacacia-Pinus tabuliformis mixed forests and un-reclaimed area, respectively. R. pseudoacacia-P. tabuliformis mixed forests were feasible for reclaimed mining areas in semi-arid region Northwest Shanxi.

  16. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils

    International Nuclear Information System (INIS)

    Koopmans, G.F.; Roemkens, P.F.A.M.; Fokkema, M.J.; Song, J.; Luo, Y.M.; Japenga, J.; Zhao, F.J.

    2008-01-01

    A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and Zn exceeded the decrease of the soluble metal concentrations by several orders of magnitude. Hence, desorption of metals must have occurred to maintain the soil solution concentrations. A coupled regression model was developed to describe the transfer of metals from soil to solution and plant shoots. This model was applied to estimate the phytoextraction duration required to decrease the soil Cd concentration from 10 to 0.5 mg kg -1 . A biomass production of 1 and 5 t dm ha -1 yr -1 yields a duration of 42 and 11 yr, respectively. Successful phytoextraction operations based on T. caerulescens require an increased biomass production. - An experimental method is presented to be used to estimate the phytoextraction duration of a metal contaminated soil

  17. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils.

    Science.gov (United States)

    Koopmans, G F; Römkens, P F A M; Fokkema, M J; Song, J; Luo, Y M; Japenga, J; Zhao, F J

    2008-12-01

    A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and Zn exceeded the decrease of the soluble metal concentrations by several orders of magnitude. Hence, desorption of metals must have occurred to maintain the soil solution concentrations. A coupled regression model was developed to describe the transfer of metals from soil to solution and plant shoots. This model was applied to estimate the phytoextraction duration required to decrease the soil Cd concentration from 10 to 0.5 mg kg(-1). A biomass production of 1 and 5 t dm ha(-1) yr(-1) yields a duration of 42 and 11 yr, respectively. Successful phytoextraction operations based on T. caerulescens require an increased biomass production.

  18. Bioremediation of MGP soils with mixed fungal and bacterial cultures

    International Nuclear Information System (INIS)

    Lee, C.J.B.; Fletcher, M.A.; Avila, O.I.; Munnecke, D.M.; Callanan, J.; Yunker, S.

    1995-01-01

    This culture selection study examines the degradation of polycyclic automatic hydrocarbon (PAH) by a number of brown- and white-rot fungi and bacterial cultures for the treatment of coal tar wastes. Cultures were screened for naphthalene degradation in shake flasks, and selected organisms were then examined for their ability to degrade a mixture of PAHs in aqueous culture. PAH degradation in the presence of the surfactant, TWEEN 80, was examined for some cultures. Many of the organisms were observed to be resistant to greater than 10 mg/L free cyanide. Solid substrate growth conditions were optimized for the selected fungal cultures in preparation for manufactured gas plant (MGP) soil microcosm experiments. The fungi generally produced more biomass under conditions of acidic to neutral pH, incubation at 30 C with 90% moisture saturation, and with granulated corncobs or alfalfa pellets supplied as a lignocellulosic substrate. Of the cultures screened, nine fungal cultures were selected based on their ability to degrade at least 40% of naphthalene, fluorene, or benzo(a)pyrene in 2 weeks or less. A bacterial culture capable of degrading 30 mg/L of naphthalene in 1 week was also selected, and the cultures were examined further in PAH-degradation studies in contaminated soils

  19. Effect of biosolid waste compost on soil respiration in salt-affected soils

    Science.gov (United States)

    Raya, Silvia; Gómez, Ignacio; García, Fuensanta; Navarro, José; Jordán, Manuel Miguel; Belén Almendro, María; Martín Soriano, José

    2013-04-01

    A great part of mediterranean soils are affected by salinization. This is an important problem in semiarid areas increased by the use of low quality waters, the induced salinization due to high phreatic levels and adverse climatology. Salinization affects 25% of irrigated agriculture, producing important losses on the crops. In this situation, the application of organic matter to the soil is one of the possible solutions to improve their quality. The main objective of this research was to asses the relation between the salinity level (electrical conductivity, EC) in the soil and the response of microbial activity (soil respiration rate) after compost addition. The study was conducted for a year. Soil samples were collected near to an agricultural area in Crevillente and Elche, "El Hondo" Natural Park (Comunidad de Regantes from San Felipe Neri). The experiment was developed to determine and quantify the soil respiration rate in 8 different soils differing in salinity. The assay was done in close pots -in greenhouse conditions- containing soil mixed with different doses of sewage sludge compost (2, 4 and 6%) besides the control. They were maintained at 60% of water holding capacity (WHC). Soil samples were analyzed every four months for a year. The equipment used to estimate the soil respiration was a Bac-Trac and CO2 emitted by the soil biota was measured and quantified by electrical impedance changes. It was observed that the respiration rate increases as the proportion of compost added to each sample increases as well. The EC was incremented in each sampling period from the beginning of the experiment, probably due to the fact that soils were in pots and lixiviation was prevented, so the salts couldńt be lost from soil. Over time the compost has been degraded and, it was more susceptible to be mineralized. Salts were accumulated in the soil. Also it was observed a decrease of microbial activity with the increase of salinity in the soil. Keywords: soil

  20. Atributos físicos e carbono orgânico em solo sob cerrado convertido para pastagem e sistema misto / Physical attributes and organic carbon in soil under brazilian Savannah converted to pasture and mixed system

    Directory of Open Access Journals (Sweden)

    Thalita Mendes Resende

    2015-12-01

    Full Text Available The pasture is an important economic activity in the brazilian Savannah. From the 1970s and 1980s, the implementation of the programs to improve the productivity of pastures, was introduced grasses, especially Brachiaria. When handled properly, the pasture is an efficient method to contribute to carbon sequestration and to the mitigation of concentrations of greenhouse gases in the atmosphere, which are dependent to the time of the land-use and the properties of each soil type. The microregion of Uberlandia in Triangulo Mineiro (MG is traditionally linked to the pasture. However, the geological and natural soil conditions and climate are factors that can accelerate soil degradation when pasture is not handled properly. The objective of this article was to compare the changes of soil properties and the incorporation of C in covered areas [1] natural brazilian Savannah, [2] mixed system initially converted to agricultural use and the last 15 years of pasture, and [3] pasture cultivated with 30 years of implantation. The results show the influence of the land use on organic matter dynamics, and evaluate the potential degradation of soil by the activity, management and time of land use.

  1. The effects of extreme rainfall events on carbon release from Biological Soil Crusts covered soil in fixed sand dunes in the Tengger Desert, northern China

    Science.gov (United States)

    Zhao, Yang; Li, Xinrong; Pan, Yanxia; Hui, Rong

    2016-04-01

    How soil cover types and extreme rainfall event influence carbon (C) release in temperate desert ecosystems has largely been unexplored. We assessed the effects of extreme rainfall (quantity and intensity) events on the carbon release from soils covered by different types of biological soil crusts (BSCs) in fixed sand dunes in the Tengger Desert, Shapotou regionof northern China. We removed intact crusts down to 10 cm and measured them in PVC mesocosms. A Li-6400-09 Soil Chamber was used to measure the respiration rates of the BSCs immediately after the rainfall stopped, and continued until the respiration rates of the BSCs returned to the pre-rainfall basal rate. Our results showed that almost immediately after extreme rainfall events the respiration rates of algae crust and mixed crust were significantly inhibited, but moss crust was not significantly affected. The respiration rates of algae crust, mixed crust, and moss crust in extreme rainfall quantity and intensity events were, respectively, 0.12 and 0.41 μmolCO2/(m2•s), 0.10 and 0.45 μmolCO2/(m2•s), 0.83 and 1.69 μmolCO2/(m2•s). Our study indicated that moss crust in the advanced succession stage can well adapt to extreme rainfall events in the short term. Keywords: carbon release; extreme rainfall events; biological soil crust

  2. Spatial patterns of soil organic carbon stocks in Estonian arable soils

    Science.gov (United States)

    Suuster, Elsa; Astover, Alar; Kõlli, Raimo; Roostalu, Hugo; Reintam, Endla; Penu, Priit

    2010-05-01

    study area from 0.6 to 45%. Then we constructed a statistical mixed model for predicting bulk density (Db) of humus layer from multiple variables (SOC content, depth, moisture content, texture). Constructed model is not compatible for predicting Db values for peat soils, which was estimated through the degree of peat decomposition. For modelling Db we used a dataset compiled from soil samples collected from 1983-1994 under the framework of national monitoring of arable soils. The dataset consists of 90 different sites all over Estonia holding 17,294 unique Db values. SOC stocks were calculated (also the coarse soil fraction was subtracted from the total soil volume) and integrated to Estonian large scale soil map. Up-scaling from soil mapping units allowed assessing SOC stocks at the regional level. Also it formed a methodology and basis to develop nationwide spatial decision support system for SOC accounting and management. The integration of precise soil map and soil models enables to give more accurate estimates of many soil properties including SOC. Thus our study provides the knowledge of how much carbon is stored in the arable soils, we can take better actions to control SOC fluxes and preventing climate change, e.g. using appropriate land management. Also it helps to construct an upgraded agricultural land use suitability models in which soil organic matter and environmental aspects are more deeply involved.

  3. Evaluation of Bioaugmentation with Entrapped Degrading Cells as a Soil Remediation Technology

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Dechesne, Arnaud; Binning, Philip John

    2010-01-01

    Soil augmentation with microbial degraders immobilized on carriers is evaluated as a potential remediation technology using a mathematical model that includes degradation within spatially distributed carriers and diffusion or advectiondispersion as contaminant mass transfer mechanisms. The total...... degraders have low intrinsic degradation rates and that only limited carrier to soil volume ratios are practically feasible, bioaugmented soils are characterized by low effective degradation ratesandcanbeconsidered fully mixed. A simple exponential model is then sufficient to predict biodegradation...

  4. Assessing cost-effectiveness of specific LID practice designs in response to large storm events

    Science.gov (United States)

    Chui, Ting Fong May; Liu, Xin; Zhan, Wenting

    2016-02-01

    Low impact development (LID) practices have become more important in urban stormwater management worldwide. However, most research on design optimization focuses on relatively large scale, and there is very limited information or guideline regarding individual LID practice designs (i.e., optimal depth, width and length). The objective of this study is to identify the optimal design by assessing the hydrological performance and the cost-effectiveness of different designs of LID practices at a household or business scale, and to analyze the sensitivity of the hydrological performance and the cost of the optimal design to different model and design parameters. First, EPA SWMM, automatically controlled by MATLAB, is used to obtain the peak runoff of different designs of three specific LID practices (i.e., green roof, bioretention and porous pavement) under different design storms (i.e., 2 yr and 50 yr design storms of Hong Kong, China and Seattle, U.S.). Then, life cycle cost is estimated for the different designs, and the optimal design, defined as the design with the lowest cost and at least 20% peak runoff reduction, is identified. Finally, sensitivity of the optimal design to the different design parameters is examined. The optimal design of green roof tends to be larger in area but thinner, while the optimal designs of bioretention and porous pavement tend to be smaller in area. To handle larger storms, however, it is more effective to increase the green roof depth, and to increase the area of the bioretention and porous pavement. Porous pavement is the most cost-effective for peak flow reduction, followed by bioretention and then green roof. The cost-effectiveness, measured as the peak runoff reduction/thousand Dollars of LID practices in Hong Kong (e.g., 0.02 L/103 US s, 0.15 L/103 US s and 0.93 L/103 US s for green roof, bioretention and porous pavement for 2 yr storm) is lower than that in Seattle (e.g., 0.03 L/103 US s, 0.29 L/103 US s and 1.58 L/103 US s for

  5. Treatability of volatile chlorinated hydrocarbon-contaminated soils of different textures along a vertical profile by mechanical soil aeration: A laboratory test.

    Science.gov (United States)

    Ma, Yan; Shi, Yi; Hou, Deyi; Zhang, Xi; Chen, Jiaqi; Wang, Zhifen; Xu, Zhu; Li, Fasheng; Du, Xiaoming

    2017-04-01

    Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons (VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures (silty, clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform (TCM) and trichloroethylene (TCE). Mechanical soil aeration was effective for remediating VCHs (removal efficiency >98%). The volatilization process was described by an exponential kinetic function. In the early stage of treatment (0-7hr), rapid contaminant volatilization followed a pseudo-first order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner. Copyright © 2016. Published by Elsevier B.V.

  6. Application of tritium content isotopic measurements to the investigation of underground water circulations and mixing in different porous media

    International Nuclear Information System (INIS)

    Leguy, C.

    1979-06-01

    This research thesis aims at investigating actual and potential mixing of underground waters in different soil types, and more particularly different porous media. Tritium content measurements of these waters have been performed by liquid scintillation after enrichment. The first part of this report addresses the physical aspect of these measurements. The second one deals with the interpretation of the acquired data, of circulation or mixing schemes which can be deduced with respect to the concerned soils. It highlights the importance of geo-morphological factors for the studied flows

  7. Symbiotic dinitrogen fixation measurement in vetch-barley mixed swards using {sup 15} N methodology

    Energy Technology Data Exchange (ETDEWEB)

    Kurdali, F; Sharabi, N E [Atomic Energy Commission, Damascus (Syrian Arab Republic). Dept. of Radiation Agriculture

    1995-01-01

    Field experiment on vetch and barley grown in monoculture and in mixed culture (3:1) under rain-fed conditions was conducted in 1991-1992 and 1992-1993 growing season. Three harvests were effectuated on one treatment throughout the growing season. Our results showed the importance of mixed cropping system of vetch and barley grown under rain fed conditions in terms of dry matter production, total nitrogen content and land use efficiency expressed as land equivalent ration (L.E.R). This advantage is clear in the plants harvested once at the end of the season. Therefore, it is important to grow legumes and cereals under rain fed conditions and to be left until late stage of growth and fed by animals directly. On the other hand, only two harvests could be done in the season with no additional harvests because this may weaken the plant growth, and as a result of the last approach we obtained poor production due to unpredicated an appropriate rain fall after the second harvest (April). Nitrogen fixation efficiency in vetch measured by {sup 1 5} N isotope dilution method varied with the number of harvests and the procedure adopted in culture. Comparing the results of %Ndfa of vetch between monoculture and mixed culture showed that the values in most cases were higher in mixed culture. The competition between vetch and barley in the mixed stand for soil N-uptake made the barley supplements its N requirements from soil. The poor competitiveness of vetch capability for soil N-uptake enhanced it to fix more nitrogen. On the other hand, N residual after harvest was higher in the mixed treatment than the others. Positive and high final nitrogen balance were observed with the inclusion of vetch in the mixture. We excluded, under the current experimental conditions, the possibility of N-transfer from vetch to barley due to the insignificant differences in the value of {sup 1 5} N atom excess for barley between the two types of farming. 35 refs., 2 figs., 15 tabs.

  8. Soil Microbial Biomass, Basal Respiration and Enzyme Activity of Main Forest Types in the Qinling Mountains

    Science.gov (United States)

    Cheng, Fei; Peng, Xiaobang; Zhao, Peng; Yuan, Jie; Zhong, Chonggao; Cheng, Yalong; Cui, Cui; Zhang, Shuoxin

    2013-01-01

    Different forest types exert essential impacts on soil physical-chemical characteristics by dominant tree species producing diverse litters and root exudates, thereby further regulating size and activity of soil microbial communities. However, the study accuracy is usually restricted by differences in climate, soil type and forest age. Our objective is to precisely quantify soil microbial biomass, basal respiration and enzyme activity of five natural secondary forest (NSF) types with the same stand age and soil type in a small climate region and to evaluate relationship between soil microbial and physical-chemical characters. We determined soil physical-chemical indices and used the chloroform fumigation-extraction method, alkali absorption method and titration or colorimetry to obtain the microbial data. Our results showed that soil physical-chemical characters remarkably differed among the NSFs. Microbial biomass carbon (Cmic) was the highest in wilson spruce soils, while microbial biomass nitrogen (Nmic) was the highest in sharptooth oak soils. Moreover, the highest basal respiration was found in the spruce soils, but mixed, Chinese pine and spruce stands exhibited a higher soil qCO2. The spruce soils had the highest Cmic/Nmic ratio, the greatest Nmic/TN and Cmic/Corg ratios were found in the oak soils. Additionally, the spruce soils had the maximum invertase activity and the minimum urease and catalase activities, but the maximum urease and catalase activities were found in the mixed stand. The Pearson correlation and principle component analyses revealed that the soils of spruce and oak stands obviously discriminated from other NSFs, whereas the others were similar. This suggested that the forest types affected soil microbial properties significantly due to differences in soil physical-chemical features. PMID:23840671

  9. Recycling stabilised/solidified drill cuttings for forage production in acidic soils.

    Science.gov (United States)

    Kogbara, Reginald B; Dumkhana, Bernard B; Ayotamuno, Josiah M; Okparanma, Reuben N

    2017-10-01

    Stabilisation/solidification (S/S), which involves fixation and immobilisation of contaminants using cementitious materials, is one method of treating drill cuttings before final fate. This work considers reuse of stabilised/solidified drill cuttings for forage production in acidic soils. It sought to improve the sustainability of S/S technique through supplementation with the phytoremediation potential of plants, eliminate the need for landfill disposal and reduce soil acidity for better plant growth. Drill cuttings with an initial total petroleum hydrocarbon (TPH) concentration of 17,125 mg kg -1 and low concentrations of metals were treated with 5%, 10%, and 20% cement dosages. The treated drill cuttings were reused in granular form for growing a forage, elephant grass (Pennisetum purpureum), after mixing with uncontaminated soil. The grasses were also grown in uncontaminated soil. The phytoremediation and growth potential of the plants was assessed over a 12-week period. A mix ratio of one part drill cuttings to three parts uncontaminated soil was required for active plant growth. The phytoremediation ability of elephant grass (alongside abiotic losses) reduced the TPH level (up to 8795 mg kg -1 ) in the soil-treated-drill cuttings mixtures below regulatory (1000 mg kg -1 ) levels. There were also decreased concentrations of metals. The grass showed better heights and leaf lengths in soil containing drill cuttings treated with 5% cement dosage than in uncontaminated soil. The results suggest that recycling S/S treated drill cuttings for forage production may be a potential end use of the treated waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Response of Slope Made Up of Soil and Other Waste Materials under Sinusoidal Motion

    OpenAIRE

    Chanda, Nipa; Ghosh, Sima; Pal, Manish

    2017-01-01

    Performance of small scale embankment slopes under dynamic loading is experimentally evaluated in the present work conducting shake table test. Model slopes are made up of soil and soil dust mixtures at various water level conditions. Material dust types as taken in the experiment are saw dust, stone dust, brick dust, and building demolish dust. Shear strength of soil such as cohesion and internal friction angle increases on an average 25% and 23%, respectively, when soil is mixed with 30% bu...

  11. Effect of Mixed Systems on Crop Productivity

    Science.gov (United States)

    Senturklu, Songul; Landblom, Douglas; Cihacek, Larry; Brevik, Eric

    2017-04-01

    The goals of this non-irrigated research has been to determine the effect of mixed systems integration on crop, soil, and beef cattle production in the northern Great Plains region of the United States. Over a 5-year period, growing spring wheat (HRSW-C) continuously year after year was compared to a 5-year crop rotation that included spring wheat (HRSW-R), cover crop (dual crop consisting of winter triticale/hairy vetch seeded in the fall and harvested for hay followed by a 7-species cover crop that was seeded in June after hay harvest), forage corn, field pea/barley, and sunflower. Control 5-year HRSW yield was 2690 kg/ha compared to 2757 kg/ha for HRSW grown in rotation. Available soil nitrogen (N) is often the most important limitation for crop production. Expensive fertilizer inputs were reduced in this study due to the mixed system's complementarity in which the rotation system that included beef cattle grazing sustained N availability and increased nutrient cycling, which had a positive effect on all crops grown in the rotation. Growing HRSW continuously requires less intensive management and in this research was 14.5% less profitable. Whereas, when crop management increased and complementing crops were grown in rotation to produce crops and provide feed for grazing livestock, soil nutrient cycling improved. Increased nutrient cycling increased crop rotation yields and yearling beef cattle steers that grazing annual forages in the rotation gain more body weight than similar steers grazing NGP native range. Results of this long-term research will be presented in a PICO format for participant discussion.

  12. Soil Respiration of Three Mangrove Forests on Sanibel Island, Florida

    Science.gov (United States)

    Cartwright, F.; Bovard, B. D.

    2011-12-01

    Carbon cycling studies conducted in mangrove forests have typically focused on aboveground processes. Our understanding of carbon storage in these systems is therefore limited by the lack information on belowground processes such as fine root production and soil respiration. To our knowledge there exist no studies investigating temporal patterns in and environmental controls on soil respiration in multiple types of mangrove ecosystems concurrently. This study is part of a larger study on carbon storage in three mangrove forests on Sanibel Island, Florida. Here we report on eight months of soil respiration data within these forests that will ultimately be incorporated into an annual carbon budget for each habitat type. Soil respiration was monitored in the following three mangrove habitat types: a fringe mangrove forest dominated by Rhizophora mangle, a basin mangrove forest dominated by Avicennia germinans, and a higher elevation forest comprised of a mix of Avicennia germinans and Laguncularia racemosa, and non-woody salt marsh species. Beginning in June of 2010, we measured soil emissions of carbon dioxide at 5 random locations within three-100 m2 plots within each habitat type. Sampling was performed at monthly intervals and conducted over the course of three days. For each day, one plot from each habitat type was measured. In addition to soil respiration, soil temperature, salinity and gravimetric moisture content were also measured. Our data indicate the Black mangrove forest, dominated by Avicennia germinans, experiences the highest rates of soil respiration with a mean rate of 4.61 ± 0.60 μmol CO2 m-2 s-1. The mixed mangrove and salt marsh habitat has the lowest soil carbon emission rates with a mean of 2.78 ± 0.40 μmol CO2 m-2 s-1. Soil carbon effluxes appear to peak in the early part of the wet season around May to June and are lower and relatively constant the remainder of the year. Our data also suggest there are important but brief periods where

  13. Development of low thermal mass cement-sand block utilizing peat soil and effective microorganism

    Directory of Open Access Journals (Sweden)

    Irham Hameeda Mohamad Idris

    2018-06-01

    Full Text Available The development of low thermal mass cement-sand block by incorporating peat soil and Effective Microorganism (EM was studied systematically. In total, seven mixtures of cement-sand block targeted at a 28-days compressive strength of 7 MPa are designed. One control sample is made with a water/cement ratio (w/c of 0.5, three mixes using 3%, 6% and 10% peat soil replacing sand and three mixes using 10%, 20% and 30% EM replacing water. Modified blocks with 6% of peat soil and 30% of EM are the most optimum blocks to be used in the construction of masonry as they successfully reduced the thermal conductivity of the blocks with the value of 1.275 W/mK and 1.792 W/mK respectively when being compared to the thermal conductivity of the control sample which is 2.400 W/mK. Besides, they are also able to achieve higher strength than the desired compressive strength which is 7 MPa. The compressive strength of the samples with 6% of peat soil is 16.48 MPa at 28-days while 30.39 MPa for samples with 30% of EM. On the other hand, the water absorption rate of samples with 6% of peat soil is 7.6% while 6.1% for samples with 30% EM and both are okay since their rate of water absorption is lower than 20%. In conclusion, the addition of peat soil and EM in the cement-sand mix show promising performance as a low cost material to produce low thermal mass cement-sand block. Keywords: Effective microorganism, Peat soil, Thermal conductivity, Cement brick

  14. Vitrification of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Pickett, J.B.; Ramsey, W.G.

    1992-01-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na 2 O) - Lime (CaO) - Silica (SiO 2 ) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation

  15. Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles.

    Science.gov (United States)

    Mathieu, Jordane A; Hatté, Christine; Balesdent, Jérôme; Parent, Éric

    2015-11-01

    The response of soil carbon dynamics to climate and land-use change will affect both the future climate and the quality of ecosystems. Deep soil carbon (>20 cm) is the primary component of the soil carbon pool, but the dynamics of deep soil carbon remain poorly understood. Therefore, radiocarbon activity (Δ14C), which is a function of the age of carbon, may help to understand the rates of soil carbon biodegradation and stabilization. We analyzed the published 14C contents in 122 profiles of mineral soil that were well distributed in most of the large world biomes, except for the boreal zone. With a multivariate extension of a linear mixed-effects model whose inference was based on the parallel combination of two algorithms, the expectation-maximization (EM) and the Metropolis-Hasting algorithms, we expressed soil Δ14C profiles as a four-parameter function of depth. The four-parameter model produced insightful predictions of soil Δ14C as dependent on depth, soil type, climate, vegetation, land-use and date of sampling (R2=0.68). Further analysis with the model showed that the age of topsoil carbon was primarily affected by climate and cultivation. By contrast, the age of deep soil carbon was affected more by soil taxa than by climate and thus illustrated the strong dependence of soil carbon dynamics on other pedologic traits such as clay content and mineralogy. © 2015 John Wiley & Sons Ltd.

  16. Occurrence of vesicular-arbuscular mycorrhizae in mixed overburden mine spoils of Texas

    Energy Technology Data Exchange (ETDEWEB)

    Mott, J.B.; Zuberer, D.A.

    1987-07-01

    Presently in east Texas, lignite surface mines are reclaimed and revegetated using mixed overburden materials which are equivalent to or better in physical-chemical properties than the poor topsoils removed during mining. Little information is available regarding the biological characteristics of levelled mixed overburden and the re-establishment of endomycorrhizal associations on revegetated mixed overburden sites. Therefore, the authors investigated the occurrence of infection of coastal bermudagrass (Cynodon dactylon), planted vegetatively on reclamation sites (1-10 years post-mining), with vesicular-arbuscular mycorrhizal (VAM) fungi. Numbers of spores were also monitored. For comparison, infection of coastal bermudagrass and spore numbers were determined for an unmined old field succession on soil typical of the region. VAM infection, measured as a percentage of root length infected or as a percentage of root segments exhibiting infection, returned to pre-mining levels by 3-7 years after disturbance. Intensity of infection was not altered by disturbance, age of reclaimed site, or season. Significantly greater numbers of spores (ca. 10-fold) were observed in the unmined soil and no differences were found between numbers of spores from variously aged mine spoil sites. 35 refs., 3 tabs.

  17. Sulfur polymer stabilization/solidification (SPSS) treatment of mixed waste mercury recovered from environmental restoration activities at BNL

    International Nuclear Information System (INIS)

    Kalb, P.; Adams, J.; Milian, L.

    2001-01-01

    Over 1,140 yd 3 of radioactively contaminated soil containing toxic mercury (Hg) and several liters of mixed-waste elemental mercury were generated during a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) removal action at Brookhaven National Laboratory (BNL). The US Department of Energy's (DOE) Office of Science and Technology Mixed Waste Focus Area (DOE MWFA) is sponsoring a comparison of several technologies that may be used to treat these wastes and similar wastes at BNL and other sites across the DOE complex. This report describes work conducted at BNL on the application and pilot-scale demonstration of the newly developed Sulfur Polymer Stabilization/Solidification (SPSS) process for treatment of contaminated mixed-waste soils containing high concentrations (approximately 5,000 mg/L) of mercury and liquid elemental mercury. BNL's SPSS (patent pending) process chemically stabilizes the mercury to reduce vapor pressure and leachability and physically encapsulates the waste in a solid matrix to eliminate dispersion and provide long-term durability. Two 55-gallon drums of mixed-waste soil containing high concentrations of mercury and about 62 kg of radioactive contaminated elemental mercury were successfully treated. Waste loadings of 60 wt% soil were achieved without resulting in any increase in waste volume, while elemental mercury was solidified at a waste loading of 33 wt% mercury. Toxicity Characteristic Leaching Procedure (TCLP) analyses indicate the final waste form products pass current Environmental Protection Agency (EPA) allowable TCLP concentrations as well as the more stringent proposed Universal Treatment Standards. Mass balance measurements show that 99.7% of the mercury treated was successfully retained within the waste form, while only 0.3% was captured in the off gas system

  18. ISOCELL trademark proof-of-concept for retrieval of wastes and contaminated soil

    International Nuclear Information System (INIS)

    Chatwin, T.D.; Krieg, R.K.

    1992-01-01

    ISOCELL TM cryogenic technology is designed to immobilize buried hazardous, radioactive, and mixed waste and contaminated soil by creating a block of frozen waste and soil that can be safely retrieved, stored, transported, and treated with a minimum of dust or aerosol production. A ''proof-of-concept'' test of the ISOCELL process was conducted in clean soil by RKK, Ltd., for the Idaho National Engineering Laboratory (INEL). Results indicate ISOCELL technology successfully froze moist soil into a solid block capable of being lifted and retrieved. Test conditions were compared to characteristics of possible buried waste sites in the INEL

  19. Soil sampling and analytical strategies for mapping fallout in nuclear emergencies based on the Fukushima Dai-ichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Onda, Yuichi; Kato, Hiroaki; Hoshi, Masaharu; Takahashi, Yoshio; Nguyen, Minh-Long

    2015-01-01

    The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident resulted in extensive radioactive contamination of the environment via deposited radionuclides such as radiocesium and 131 I. Evaluating the extent and level of environmental contamination is critical to protecting citizens in affected areas and to planning decontamination efforts. However, a standardized soil sampling protocol is needed in such emergencies to facilitate the collection of large, tractable samples for measuring gamma-emitting radionuclides. In this study, we developed an emergency soil sampling protocol based on preliminary sampling from the FDNPP accident-affected area. We also present the results of a preliminary experiment aimed to evaluate the influence of various procedures (e.g., mixing, number of samples) on measured radioactivity. Results show that sample mixing strongly affects measured radioactivity in soil samples. Furthermore, for homogenization, shaking the plastic sample container at least 150 times or disaggregating soil by hand-rolling in a disposable plastic bag is required. Finally, we determined that five soil samples within a 3 m × 3-m area are the minimum number required for reducing measurement uncertainty in the emergency soil sampling protocol proposed here. - Highlights: • Emergency soil sampling protocol was proposed for nuclear hazards. • Various sampling procedures were tested and evaluated in Fukushima area. • Soil sample mixing procedure was of key importance for measured radioactivity. • Minimum number of sampling was determined for reducing measurement uncertainty

  20. Mixing Construction, Demolition and Excavation Waste and Solid Waste Compost for the Derivation of a Planting Medium for Use in the Rehabilitation of Quarries

    Science.gov (United States)

    Assaf, Eleni

    2015-04-01

    Lebanon's very high population density has been increasing since the end of the civil war in the early 1990s reaching 416.36 people per square kilometer. Furthermore, the influx of refugees from conflicts in the region has increased the resident population significantly. All these are exerting pressure on the country's natural resources, pushing the Lebanese to convert more forest and agricultural land into roads, buildings and houses. This has led to a building boom and rapid urbanization which in turn has created a demand for construction material - mainly rock, gravel, sand, etc. nearly all of which are locally acquired through quarrying to the tune of three million cubic meters annually. This boom has been interrupted by a war with Israel in 2006 which resulted in thousands of tonnes of debris. The increase in population has also led to an increase in solid waste generation with 1.57 million tonnes of solid waste generated in Lebanon per year. The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on the country and on the management of its solid waste. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. The on-going research reported in this paper aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. Excavation and construction debris were ground to several sizes and mixed with compost and soil at different ratios. Replicates of these mixes and a set of control (regular soil) were used. In this mix, native and indicator plants are planted (in pots) from which the most productive mix will be selected for further testing at field level in later experiments. The plant species used are Mathiolla crassifolia, a native Lebanese plant and Zea mays (Corn), which is commonly

  1. Experimental Investigation of Phenanthrene Pollutant Removal Efficiency for Contaminated Sandy Soil by Enhanced Soil Washing

    Directory of Open Access Journals (Sweden)

    Saif salah Alquzweeni

    2016-12-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are environmental concerns that must be removed to acceptable level. This research assesses two agents (Na2EDTA and SDS to remediate contaminated sandy soil, spiked with 500mg/kg phenanthrene. Five sets of experiments (batch are applied to investigate the optimal of five influencing factors on soil remediation: Na2EDTA-SDS concentration, liquid/Solid ratio, stirring speed, pH value of flushing solution and mixing time. The results of batch experiments showed that SDS has high phenanthrene removal efficiency (90%, while Na2EDTA shows no phenanthrene removal. pH has no effect on phenanthrene removal. To study the influence of flow rates on the removal efficiency of contaminants, two column tests with hydraulic gradient of 0.2 and 1.2 conducted by SDS solution. The results illustrate that high phenanthrene removal from soil obtained by 1.2 hydraulic gradient condition. The SDS flushing solution removed approximately 69% and 81% of phenanthrene from soil under low and high hydraulic gradients, respectively. It was concluded that phenanthrene removal depend on surfactant micelles formation. Overall, the study showed that soil flushing removal efficiency for contaminants depends on the flushing agents selectivity and affinity to the contaminants and the condition of hydraulic gradient.

  2. Enhanced bioremediation of PAH contaminated soils from coal processing sites

    International Nuclear Information System (INIS)

    Joshi, M.M.; Lee, S.

    1995-01-01

    The polycyclic aromatic hydrocarbons (PAH) are a potential hazard to health due to their carcinogenic, mutagenic nature and acute toxicity and there is an imminent need for remediation of PAH contaminated soils abounding the several coke oven and town gas sites. Aerobic biological degradation of PAHs is an innovative technology and has shown high decontamination efficiencies, complete mineralization of contaminants, and is environmentally safe. The present study investigates the remediation of PAH contaminated soils achieved using Acinetobacter species and fungal strain Phanerochaete Chrysosporium. The soil used for the experiments was an industrially contaminated soil obtained from Alberta Research Council (ARC) primary cleanup facility, Alberta, Canada. Soil characterization was done using High Performance Liquid Chromatography (HPLC) to qualitatively and quantitatively determine the contaminants in the soil. Artificially contaminated soil was also used for some experiments. All the experiments were conducted under completely mixed conditions with suitable oxygen and nutrient amendments. The removal efficiency obtained for various PAHs using the two microorganisms was compared

  3. Transfer of technetium from soil to plant as a function of the type of soil, mode of contamination and vegetative cover

    International Nuclear Information System (INIS)

    Mousny, J.M.

    1982-01-01

    Study of the soil plant transfer of technetium-99 was made for two plant species (Trifolium pratense and Lolium multiflorum) either as a mixed or pure culture. The experiment was carried out in three European soils contaminated at the beginning of the test either on the surface or homogeneously, with recycling of the percolates. The work is aimed at studying changes in the transfer factors over time. Their gradual decrease is correlated with change in the physico-chemical form of TcO 4 - . (author)

  4. The toxicity of the fungicide Propiconazole to soil flagellates

    DEFF Research Database (Denmark)

    Ekelund, Flemming; Westergaard, Kamma; Søe, Dorthe

    2000-01-01

    We investigated the effects of the ergosterol-inhibiting fungicide, propiconazole {1-[[2-(2,4-dichlorphenyl) - 4 - propyl - 1,3 - dioxolan - 2 - yl]methyl] - 1H - 1,2,4 triazole; Tilt}, on mixed natural populations of bacterivorous and fungivorous flagellates in soil and on single species...... of bacterivorous flagellates in liquid culture. The fungicide affected a mixed natural population of fungivorous flagellates less than the population of bacterivorous flagellates. Our results indicated that the effects of propiconazole on flagellates are direct toxic effects and not effects mediated via their food....... All tested types of flagellates were significantly harmed when exposed to the concentration of propiconazole normally applied to agricultural fields (625¿mg l-1). However, when exposed to the concentration of propiconazole which we expect in the soil water phase after application (ca. 0.6¿mg l-1...

  5. In situ vitrification and the effects of soil additives

    International Nuclear Information System (INIS)

    Piepel, G.F.; Shade, J.W.

    1992-01-01

    This paper presents a case study involving in situ vitrification (ISV), a process for immobilizing chemical or nuclear wastes in soil by melting-dissolving the contaminated soil into a glass block. One goal of the study was to investigate how viscosity and electrical conductivity were affected by mixing CaO and Na 2 O with soil. A three-component constrained-region mixture experiment design was generated and the viscosity and electrical conductivity data collected. Several second-order mixture models were considered, and the Box-Cox transformation technique was applied to select property transformations. The fitted models were used to produce contour and component effects plots

  6. Analysis of soybean crop grown in soils contaminated with four transuranic elements

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The work done in this project has been directed at assessing parameters associated with soil to plant transfer of radionuclides. Seven soils were selected as representing a wide range of soil characteristics, from acidic and mineral soils to alkaline and organic soils. The soils were uniformly contaminated with isotopes of Np, Am, Cm, and Pu, then mixed and placed in 52 gallon containers. Five replicates of each soil were used. The crop investigated was soybeans. The seeds were planted, and the soils were treated with a N fertilizer. The crop was allowed to mature for twenty-seven days, at which time a preliminary harvest was made. The final harvest was taken seventy-three days after planting, except for the plants on the Lyman soil. These were given ninety-one days to mature. The plants were divided into stems, leaves, pods, and seeds, then assayed for neptunium, americium, cerium, and plutonium

  7. Erratum: Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs

    Science.gov (United States)

    Toth, David J.; Katz, Brian G.

    2006-09-01

    Large karstic springs in east-central Florida, USA were studied using multi-tracer and geochemical modeling techniques to better understand groundwater flow paths and mixing of shallow and deep groundwater. Spring water types included Ca-HCO3 (six), Na-Cl (four), and mixed (one). The evolution of water chemistry for Ca-HCO3 spring waters was modeled by reactions of rainwater with soil organic matter, calcite, and dolomite under oxic conditions. The Na-Cl and mixed-type springs were modeled by reactions of either rainwater or Upper Floridan aquifer water with soil organic matter, calcite, and dolomite under oxic conditions and mixed with varying proportions of saline Lower Floridan aquifer water, which represented 4-53% of the total spring discharge. Multiple-tracer data—chlorofluorocarbon CFC-113, tritium (3H), helium-3 (3Hetrit), sulfur hexafluoride (SF6)—for four Ca-HCO3 spring waters were consistent with binary mixing curves representing water recharged during 1980 or 1990 mixing with an older (recharged before 1940) tracer-free component. Young-water mixing fractions ranged from 0.3 to 0.7. Tracer concentration data for two Na-Cl spring waters appear to be consistent with binary mixtures of 1990 water with older water recharged in 1965 or 1975. Nitrate-N concentrations are inversely related to apparent ages of spring waters, which indicated that elevated nitrate-N concentrations were likely contributed from recent recharge.

  8. [Impact of biochar amendment on the sorption and dissipation of chlorantraniliprole in soils].

    Science.gov (United States)

    Wang, Ting-Ting; Yu, Xiang-Yang; Shen, Yaen; Zhang, Chao-Lan; Liu, Xian-Jin

    2012-04-01

    The effects of biochar amendment on sorption and dissipation of chlorantraniliprole (CAP) in 5 different agricultural soils were studied. Red gum wood (Eucalyptus spp.) derived biochar was amended into a black soil, a yellow soil, a red soil, a purplish soil, and a fluvo-aquic soil at the rate of 0.5% (by weight). The sorption and dissipation behaviors of CAP in soils with and without biochar amendment were measured by batch equilibration technique and dissipation kinetic experiment, respectively. The objective was to investigate the impact of biochar application on the environmental fate of pesticides in agricultural soils with different physical-chemical properties, and evaluate the potential ecological impacts of field application of biochar materials. The results showed that biochar application in soils could enhance the sorption of CAP, but the magnitudes were varied among soils with different properties. Amendment of 0.5% (by weight) biochar in the black soil, which have high content of organic matter (4.59%), resulted in an increase of sorption coefficient (K(d)) by 2.17%; while for the fluvo-aquic soil with organic matter content of 1.16%, amendment of biochar at the same level led to an increase of 139.13%. The sorption capacity of biochar was partially suppressed when biochar was mixed with soils. The calculated K(Fbiochar) of biochar after mixed in the black soil, yellow soil, red soil, purplish soil, and fluvo-aquic soil were decreased by 96.94%, 90.6%, 91.31%, 68.26%, and 34.59%, respectively, compared to that of the original biochar. The half-lives of CAP in black soil, yellow soil, red soil, purplish soil, and fluvo-aquic soil were 115.52, 133.30, 154.03, 144.41 and 169.06 d, respectively. In soils amended with biochar, the corresponding half-lives of CAP were extended by 20.39, 35.76, 38.51, 79.19, and 119.75 d, respectively. Similar to the effects of biochar on CAP sorption, in soil with higher content of organic matter, the retardation of CAP

  9. Preliminary data from an instantaneous profile test conducted near the Mixed Waste Landfill, Technical Area 3, Sandia National Laboratories/New Mexico

    International Nuclear Information System (INIS)

    Bayliss, S.C.; Goering, T.J.; McVey, M.D.; Strong, W.R.; Peace, J.L.

    1996-04-01

    This paper presents data from an instantaneous profile test conducted near the Sandia National Laboratories/New Mexico Mixed Waste Landfill in Technical Area 3. The test was performed from December 1993 through 1995 as part of the environmental Restoration Project's Phase 2 RCRA Facility Investigation of the Mixed Waste Landfill. The purpose of the test was to measure the unsaturated hydraulic properties of soils near the Mixed Waste Landfill. The instantaneous profile test and instrumentation are described, and the pressure and moisture content data from the test are presented. These data may be useful for understanding the unsaturated hydraulic properties of soils in Technical Area 3 and for model validation, verification, and calibration

  10. Invasive earthworms deplete key soil inorganic nutrients (Ca, Mg, K, and P) in a northern hardwood forest

    Science.gov (United States)

    Kit Resner; Kyungsoo Yoo; Stephen D. Sebestyen; Anthony Aufdenkampe; Cindy Hale; Amy Lyttle; Alex. Blum

    2015-01-01

    Hardwood forests of the Great Lakes Region have evolved without earthworms since the Last Glacial Maximum, but are now being invaded by exotic earthworms introduced through agriculture, fishing, and logging. These exotic earthworms are known to increase soil mixing, affect soil carbon storage, and dramatically alter soil morphology. Here we show, using an active...

  11. Study the quantitative relation between some sedimentary minerals for syrian soil when mixed in equal rates and study the effect of adding amorphous material by X-Ray diffraction

    International Nuclear Information System (INIS)

    Kanbour, M.

    2012-08-01

    During the work of X ray diffraction lab several kinds of local Syrian soil samples were received, the most of them have the same main mineral contents, some samples consist of one mineral. We have got some pure samples from different Syrian places (Quartz, Calcite, Gypsum and Montmorillonite) which have been analyzed to ensure its purity.These samples were mixed in similar weights. Effect of mixing samples on the diffractograms and the percentage of the minerals has been calculated in tow methods, manually and instrumentally, correction factors needed have been fixed for the used minerals. Amorphous material has been added to the used minerals in different ratios, results showed that adding each mineral affects the intensity of the main peak. Quartz has been chosen to study the effect of adding different ratios of amorphous material, comparing diffractograms with each other showed a clear difference in the intensity of the main peak. (author)

  12. Mixed infections may promote diversification of mutualistic symbionts: why are there ineffective rhizobia?

    Science.gov (United States)

    Friesen, M L; Mathias, A

    2010-02-01

    While strategy variation is a key feature of symbiotic mutualisms, little work focuses on the origin of this diversity. Rhizobia strategies range from mutualistic nitrogen fixers to parasitic nonfixers that hoard plant resources to increase their own survival in soil. Host plants reward beneficial rhizobia with higher nodule growth rates, generating a trade-off between reproduction in nodules and subsequent survival in soil. However, hosts might not discriminate between strains in mixed infections, allowing nonfixing strains to escape sanctions. We construct an adaptive dynamics model of symbiotic nitrogen-fixation and find general situations where symbionts undergo adaptive diversification, but in most situations complete nonfixers do not evolve. Social conflict in mixed infections when symbionts face a survival-reproduction trade-off can drive the origin of some coexisting symbiont strategies, where less mutualistic strains exploit benefits generated by better mutualists.

  13. Restraint effect of water infiltration by soil cover types of LLW disposal facility

    International Nuclear Information System (INIS)

    Park, S. M.; Lee, E. Y.; Lee, C. K.; Kim, C. L.

    2002-01-01

    Since soil cover for LLW disposal vault shows quite different restraint effect of water infiltration depending on its type, four different types of soil cover were studied and simulated using HELP code. Simulation result showed that Profile B1 is the most effective type in restraint of water infiltration to the disposal vault. Profile B1 is totally 6m thick and composed of silt, gravelly sand, pea gravel, sand and clayey soil mixed with bentonite 20%. Profile B1 also includes artificial layers, such as asphalt and geomembrane layers. This profile is designed conceptually by NETEC for the soil cover of the near surface disposal facility of the low-level radioactive waste. For comparison, 3 types of different profile were tested. One profile includes bentonite mixed layer only as water barrier layer, or one as same as profile B1 but without geomembrane layer or one without asphalt layer respectively. The simulation using HELP code showed that the water balance in profile B1 was effectively controlled

  14. Incorporation of Biochar Carbon into Stable Soil Aggregates: The Role of Clay Mineralogy and Other Soil Characteristics

    Institute of Scientific and Technical Information of China (English)

    Charlene N.KELLY; Joseph BENJAMIN; Francisco C.CALDER(O)N; Maysoon M.MIKHA; David W.RUTHERFORD; Colleen E.ROSTAD

    2017-01-01

    Aggregation and structure plav key roles in water-holding capacity and stability of soils.In this study,the incorporation of carbon (C) from switchgrass biochar into stable aggregate size fractions was assessed in an Aridisol (from Colorado,USA) dominated by 2:1 clays and an Alfisol (from Virginia,USA) containing weathered mixed 1∶1 and 2∶1 mineralogy,to evaluate the effect of biochar addition on soil characteristics.The biochar was applied at 4 levels,0,25,50,and 100 g kg-1,to the soils grown with wheat in a growth chamber experiment.The changes in soil strength and water-holding capacity using water release curves were measured.In the Colorado soil,the proportion of soil occurring in large aggregates decreased,with concomitant increases in small size fractions.No changes in aggregate size fractions occurred in the Virginia soil.In the Colorado soil,C content increased from 3.3 to 16.8 g kg-1,whereas in the < 53 μm fraction C content increased from 5.7 to 22.6 g kg-1 with 100 g kg-1 biochar addition.In the Virginia soil,C content within aggregate size fractions increased for each size fraction,except the > 2 000 μm fraction.The greatest increase (from 6.2 to 22.0 g kg-1) occurred in the 53-250 μm fraction.The results indicated that C was incorporated into larger aggregates in the Virginia soil,but remained largely unassociated to soil particles in the Colorado soil.Biochar addition had no significant effect on water-holding capacity or strength measurements.Adding biochar to more weathered soils with high native soil organic content may result in greater stabilization of incorporated C and result in less loss because of erosion and transport,compared with the soils dominated by 2∶1 clays and low native soil organic content.

  15. Factors of influencing dissolved organic carbon stabilization in two cambic forest soils with contrasting soil-forming processes

    Science.gov (United States)

    Kawasaki, M.; Ohte, N.; Asano, Y.; Uchida, T.; Kabeya, N.; Kim, S.

    2004-05-01

    Stabilization of Dissolved Organic Carbon (DOC) in forest soil is a major process of soil organic carbon formation. However, the factors influencing DOC stabilization are poorly understood. To clarify the factors that affect the stabilization of DOC in forest soil mantle, we measured DOC concentrations and soil properties which were DOC adsorption efficiency at two adjacent cambic forest soils with contrasting forest management histories in Tanakami Mountains, central Japan. Matsuzawa was devastated about 1,200 years ago by excessive timber use and remained denuded for a long period. Hillside restoration and reforestation work have been carried out over the last 100 years and soil loss has been reduced. Fudoji is covered with undisturbed forest (mixed stands of cypress and oaks) with developed forest soils (more than 2,600 years old). There was no apparent seasonal variation in DOC concentration in the soil solution in either catchment. In addition, there were no significant relationships between the DOC concentration, soil temperature, and new water ratio. These results indicate that temporal variation in biological activity and rainfall-runoff process have little effect on temporal variation in DOC. The vertical variation in the DOC adsorption efficiency and DOC concentration differed between Matsuzawa and Fudoji, and the highest DOC removal rate occurred at the lowest DOC adsorption efficiency in the 0 to 10-cm soil layer at Fudoji. These results suggest that DOC removal rate is independent of DOC adsorption efficiency. Below 60 cm soil depth, DOC fluxes were constant and dissolved organic Al concentrations were little or zero in either catchment. These results suggest that abiotic precipitation of DOC is a major mechanism for stabilization of DOC. Therefore, DOC content which is able to form metal complexes may be the most important factor of influencing DOC stabilization in cambic forest soil.

  16. Symbiotic dinitrogen fixation measurement in vetch-barley mixed swards using 15 N methodology

    International Nuclear Information System (INIS)

    Kurdali, F.; Sharabi, N.E.

    1995-01-01

    Field experiment on vetch and barley grown in monoculture and in mixed culture (3:1) under rain-fed conditions was conducted in 1991-1992 and 1992-1993 growing season. Three harvests were effectuated on one treatment throughout the growing season. While, other plots were harvested once at physiological maturity stage. Our results showed the importance of mixed cropping system of vetch and barley grown under rain fed conditions in terms of dry matter production, total nitrogen content and land use efficiency expressed as land equivalent ration (L.E.R). This advantage is clear in the plants harvested once at the end of the season. Therefore, it is important to grow legumes and cereals under rain fed conditions and to be left until late stage of growth and fed by animals directly. On the other hand, only two harvests could be done in the season with no additional harvests because this may weaken the plant growth, and as a result of the last approach we will obtained poor production due to unpredicated an appropriate rain fall after the second harvest (April). Nitrogen fixation efficiency in vetch measured by sup 1 sup 5 N isotop dilution method varied with the number of harvests and the procedure adopted in culture. Comparing the results of %Ndfa of vetch between monoculture and mixed culture showed that the values in most cases were higher in mixed culture. The competition between vetch and barley in the mixed stand for soil N-uptake made the barley supplements its N requirements from soil. The poor competitiveness of vetch capability for soil N-uptake enhanced it to fix more nitrogen. On the other hand, N residual after harvest was higher in the mixed treatment than the others. Positive and high final nitrogen balance were observed with the inclusion of vetch in the mixture. We excluded, under the current experimental conditions, the possibility of N-transfer from vetch to barley due to the insignificant differences in the value of sup 1 sup 5 N atom excess for

  17. Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons.

    Science.gov (United States)

    Martinkosky, Luke; Barkley, Jaimie; Sabadell, Gabriel; Gough, Heidi; Davidson, Seana

    2017-02-15

    Crude oil contamination widely impacts soil as a result of release during oil and gas exploration and production activities. The success of bioremediation methods to meet remediation goals often depends on the composition of the crude oil, the soil, and microbial community. Earthworms may enhance bioremediation by mixing and aerating the soil, and exposing soil microorganisms to conditions in the earthworm gut that lead to increased activity. In this study, the common composting earthworm Eisenia fetida was tested for utility to improve remediation of oil-impacted soil. E. fetida survival in soil contaminated with two distinct crude oils was tested in an artificial (lab-mixed) sandy loam soil, and survival compared to that in the clean soil. Crude oil with a high fraction of light-weight hydrocarbons was more toxic to earthworms than the crude oil with a high proportion of heavy polyaromatic and aliphatic hydrocarbons. The heavier crude oil was added to soil to create a 30,000mg/kg crude oil impacted soil, and degradation in the presence of added earthworms and feed, feed alone, or no additions was monitored over time and compared. Earthworm feed was spread on top to test effectiveness of no mixing. TPH degradation rate for the earthworm treatments was ~90mg/day slowing by 200days to ~20mg/day, producing two phases of degradation. With feed alone, the rate was ~40mg/day, with signs of slowing after 500days. Both treatments reached the same end point concentrations, and exhibited faster degradation of aliphatic hydrocarbons C21, decreased. During these experiments, soils were moderately toxic during the first three months, then earthworms survived well, were active and reproduced with petroleum hydrocarbons present. This study demonstrated that earthworms accelerate bioremediation of crude oil in soils, including the degradation of the heaviest polyaromatic fractions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Comparative analysis of tannery-effluent contaminated soil and mixed culture bacterial inoculation on helianthus annuus L. growth

    International Nuclear Information System (INIS)

    Yasin, M.; Faisal, M.

    2012-01-01

    Here we reported the effect of four strains Bacillus pumilus-CrK08, Cellulosimicrobium cellulans-CrK16, Exiguobacterium-CrK19 and Bacillus cereus-CrK20 and tannery contaminated soil on Helianthus annuus L. var Hysun-33 growth parameters. Plants growing in tannery effluent contaminated soil have shown slowed leaf growth, reduced shoot length, burning of leaf margins and tips compared to plants growing in normal garden soil. The inoculated plants had shown overall increase in root length (15%), shoot length (33%) and fresh weight shoot (135%) compared to un-inoculated plants growing in stress conditions. Plants growing in tannery contaminated soil have shown increase in soluble proteins contents (9%), acid phosphatase activity (200%), peroxidase activity (203%) and decrease in chlorophyll a (39%), chlorophyll b (23%) and carotenoids contents (28%) compare to plants growing in normal control soil. Inoculated plants grown in contaminated soil have shown an increased in peroxidase activity, soluble proteins contents, acid phosphatase activity, chlorophyll a, b and carotenoid contents compare to respective un-inoculated plants. (author)

  19. Differential effects of biochar on soils within an eroded field

    Science.gov (United States)

    Schumacher, Thomas; Chintala, Rajesh; Sandhu, Saroop; Kumar, Sandeep; Clay, Dave; Gelderman, Ron; Papiernik, Sharon; Malo, Douglas; Clay, Sharon; Julson, Jim

    2015-04-01

    Future uses of biochar will in part be dependent not only on the effects of biochar on soil processes but also on the availability and economics of biochar production. If pyrolysis for production of bio-oil and syngas becomes wide-spread, biochar as a by-product of bio-oil production will be widely available and relatively inexpensive compared to the production of biochar as primary product. Biochar produced as a by-product of optimized bio-oil production using regionally available feedstocks was examined for properties and for use as an amendment targeted to contrasting soils within an eroded field in an on-farm study initiated in 2013 at Brookings, South Dakota, USA. Three plant based biochar materials produced from carbon optimized gasification of corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were applied at a 1% (w/w) rate to a Maddock soil (Sandy, Mixed, Frigid Entic Hapludolls) located in an eroded upper landscape position and a Brookings soil (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) located in a depositional landscape position. The cropping system within this agricultural landscape was a corn (Zea mays L.) and soybean (Glycine max L.) rotation. Biochar physical and chemical properties for each of the feedstocks were determined including pH, surface area, surface charge potential, C-distribution, ash content, macro and micro nutrient composition. Yields, nutrient content, and carbon isotope ratio measurements were made on the harvested seed. Soil physical properties measured included water retention, bulk density, and water infiltration from a ponded double ring infiltrometer. Laboratory studies were conducted to determine the effects of biochar on partitioning of nitrate and phosphorus at soil surface exchange complex and the extracellular enzymes activity of C and N cycles. Crop yields were increased only in the Maddock soil. Biochar interacted with each

  20. Adding a soil fertility dimension to the global farming systems approach, with cases from Africa

    NARCIS (Netherlands)

    Smaling, E.M.A.; Dixon, J.

    2006-01-01

    The global farming systems (GFS) approach is extended by adding a soil fertility and nutrient management dimension for Africa's forest-based, maize mixed, cereal¿root crop mixed, and agro-pastoral millet/sorghum farming systems. Use is made of sustainable livelihood concepts, translated into farmer

  1. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Koopmans, G.F. [Department of Soil Quality, Wageningen University, Wageningen University and Research Centre (WUR), P.O. Box 47, 6700 AA, Wageningen (Netherlands)], E-mail: gerwin.koopmans@wur.nl; Roemkens, P.F.A.M.; Fokkema, M.J. [Alterra, WUR, P.O. Box 47, 6700 AA, Wageningen (Netherlands); Song, J.; Luo, Y.M. [Soil and Environmental Bioremediation Research Centre, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Japenga, J. [Alterra, WUR, P.O. Box 47, 6700 AA, Wageningen (Netherlands); Zhao, F.J. [Soil Science Department, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom)

    2008-12-15

    A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and Zn exceeded the decrease of the soluble metal concentrations by several orders of magnitude. Hence, desorption of metals must have occurred to maintain the soil solution concentrations. A coupled regression model was developed to describe the transfer of metals from soil to solution and plant shoots. This model was applied to estimate the phytoextraction duration required to decrease the soil Cd concentration from 10 to 0.5 mg kg{sup -1}. A biomass production of 1 and 5 t dm ha{sup -1} yr{sup -1} yields a duration of 42 and 11 yr, respectively. Successful phytoextraction operations based on T. caerulescens require an increased biomass production. - An experimental method is presented to be used to estimate the phytoextraction duration of a metal contaminated soil.

  2. Canopy transpiration of pure and mixed forest stands with variable abundance of European beech

    Science.gov (United States)

    Gebauer, Tobias; Horna, Viviana; Leuschner, Christoph

    2012-06-01

    SummaryThe importance of tree species identity and diversity for biogeochemical cycles in forests is not well understood. In the past, forestry has widely converted mixed forests to pure stands while contemporary forest policy often prefers mixed stands again. However, the hydrological consequences of these changes remain unclear. We tested the hypotheses (i) that significant differences in water use per ground area exist among the tree species of temperate mixed forests and that these differences are more relevant for the amount of stand-level canopy transpiration (Ec) than putative complementarity effects of tree water use, and (ii) that the seasonal patterns of Ec in mixed stands are significantly influenced by the identity of the present tree species. We measured xylem sap flux during 2005 (average precipitation) and 2006 (relatively dry) synchronously in three nearby old-growth forest stands on similar soil differing in the abundance of European beech (pure beech stand, 3-species stand with 70% beech, 5-species stand with sapwood area basis, reflecting a considerable variation in hydraulic architecture and leaf conductance regulation among the co-existing species. Moreover, transpiration per crown projection area (ECA) also differed up to 5-fold among the different species in the mixed stands, probably reflecting contrasting sapwood/crown area ratios. We conclude that Ec is not principally higher in mixed forests than in pure beech stands. However, tree species-specific traits have an important influence on the height of Ec and affect its seasonal variation. Species with a relatively high ECA (notably Tilia) may exhaust soil water reserves early in summer, thereby increasing drought stress in dry years and possibly reducing ecosystem stability in mixed forests.

  3. Intercropped silviculture systems, a key to achieving soil fungal community management in eucalyptus plantations.

    Directory of Open Access Journals (Sweden)

    Caio T C C Rachid

    Full Text Available Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that.

  4. Intercropped Silviculture Systems, a Key to Achieving Soil Fungal Community Management in Eucalyptus Plantations

    Science.gov (United States)

    Rachid, Caio T. C. C.; Balieiro, Fabiano C.; Fonseca, Eduardo S.; Peixoto, Raquel Silva; Chaer, Guilherme M.; Tiedje, James M.; Rosado, Alexandre S.

    2015-01-01

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that. PMID:25706388

  5. Intercropped silviculture systems, a key to achieving soil fungal community management in eucalyptus plantations.

    Science.gov (United States)

    Rachid, Caio T C C; Balieiro, Fabiano C; Fonseca, Eduardo S; Peixoto, Raquel Silva; Chaer, Guilherme M; Tiedje, James M; Rosado, Alexandre S

    2015-01-01

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that.

  6. Mineralization of carbon and nitrogen from fresh and anaerobically stored sheep manure in soils of different texture

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1995-01-01

    A sandy loam soil was mixed with three different amounts of quartz sand and incubated with ((NH4)-N-15)(2)SO4 (60 mu g N g(-1) soil) and fresh or anaerobically stored sheep manure (60 mu g g(-1) soil). The mineralization-immobilization of N and the mineralization of C were studied during 84 days...

  7. Strength Performance Based on Flexibility from Laterite Soil Using Tire Powder and Micro Silica

    Directory of Open Access Journals (Sweden)

    Behrouz Gordan

    2015-01-01

    Full Text Available In terms of environmental issues and human health, one of the advisable techniques to improve soil behavior is the use of scrap tires for soil structures. According to the literature, Tire-Derived Aggregates (TDA are one of the valuable materials in different field of Geotechnical that can be used. TDA properties correspond to some important factors such as high level of flexible, lightweight, high permeability and economic material comparing with sand. Strength performance based on increasing flexibility from laterite soil is the main goal of this study. For this purpose, tropical laterite soil was mixed using TDA and micro silica (MS. As a research method, unconfined tests were carried for thirteen samples based on different percentage of the additives. As a result, the significant reduction for elasticity modulus and strength was observed when soil mixed just using TDA. In addition, the rate of strain at the peak of the curve was dramatically increased. The best performance was found using 6% additives when the ratio was 3% MS and 3% TDA. In fact, the effect of MS was more to increase strength. To recommend, the seepage controlling will investigate at next.

  8. Eleven years' effect of conservation practices for temperate sandy loams: II. Soil pore characteristics

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Munkholm, Lars Juhl

    2017-01-01

    Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore characte......Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore...... characteristics of two Danish sandy loams. Rotation R2 is a rotation of winter crops (mainly cereals) with residues retained, rotation R3 a mix of winter and spring crops (mainly cereals) with residues removed, and rotation R4 the same mix of winter and spring crops, but with residues retained. Each rotation...... included the tillage treatments: moldboard plowing to 20-cm depth (MP), harrowing to 8- to 10-cm depth (H) and direct drilling (D). Soil cores were taken from the topsoil (4–8, 12–16, 18–27 cm) in mid-autumn 2013 and early spring 2014. Water retention, air permeability, and gas diffusivity was determined...

  9. Soil water retention measurements using a combined tensiometer-coiled time domain reflectometry probe

    DEFF Research Database (Denmark)

    Vaz, C.M.P.; Hopmans, J.W.; Macedo, A.

    2002-01-01

    -coiled TDR probe was constructed by wrapping two copper wires (0.8 mm diam. and 35.5 cm long) along a 5-cm long porous cup of a standard tensiometer. The dielectric constant of five different soils (Oso Flaco [coarse-loamy, mixed Typic Cryorthod-fine-loamy, mixed, mesic Ustollic Haplargid], Ottawa sand [F-50...

  10. Utilizing of magnetic parameters for evaluation of soil erosion rates on two different agricultural sites

    Science.gov (United States)

    Kapicka, A.; Grison, H.; Petrovsky, E.; Jaksik, O.; Kodesova, R.

    2015-12-01

    Field measurements of magnetic susceptibility were carried out on regular grid, resulting in 101 data points at Brumovice and 65 at Vidim locality. Mass specific magnetic susceptibility χ and its frequency dependence χFD was used to estimate the significance of SP ferrimagnetic particles of pedogenic origin in topsoil horizons. The lowest magnetic susceptibility was obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). Soil profiles unaffected by erosion were investigated in detail. The vertical distribution of magnetic susceptibility along these "virgin" profiles was measured in laboratory on samples collected with 2-cm spacing. The differences between the distribution of susceptibility in the undisturbed soil profiles and the magnetic signal after uniform mixing of the soil material as a result of erosion and tillage are fundamental for the estimation of soil loss in the studied test fields. Maximum cumulative soil erosion depth in Brumovice and Vidim is around 100 cm and 50 cm respectively. The magnetic method is suitable for mapping at the chernozem localities and measurement of soil magnetic susceptibility is in this case useful and fast technique for quantitative estimation of soil loss caused by erosion. However, it is less suitable (due to lower magnetic differentiation with depth) in areas with luvisol as dominant soil unit. Acknowledgement: This study was supported by NAZV Agency of the Ministry of Agriculture of the Czech Republic through grant No QJ1230319.

  11. Mineralization-immobilization and plant uptake of nitrogen as influenced by the spatial distribution of cattle slurry in soils of different texture

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1995-01-01

    The effect of incorporating cattle slurry in soil, either by mixing or by simulated injection into a hollow in soil, on the ryegrass uptake of total N and (NH4+)-N-15-N was determined in three soils of different textrue. The N accumulation in Italian ryegrass (Lolium multiflorum L.) from slurry N...... and from an equivalent amount of NH4+-N in ((NH4)-N-15) SO4 (control) was measured during 6 months of growth in pots. After this period the total recovery of labelled N in the top soil plus herbage was similar in the slurry and the control treatments. This indicated that gaseous losses from slurry NH4+-N...... were insignificant. Consequently, the availability of slurry N to plants was mainly influenced by the mineralization-immobilization processes. The apparent utilization of slurry NH4+-N mixed into soil was 7%, 14% and 24% lower than the utilization of (NH4)(2)SO4-N in a sand soil, a sandy loam soil...

  12. Application of MCPA herbicide on soils amended with biostimulants: short-time effects on soil biological properties.

    Science.gov (United States)

    Tejada, Manuel; García-Martínez, Ana M; Gómez, Isidoro; Parrado, Juan

    2010-08-01

    In this paper we studied in the laboratory the effect of MCPA herbicide at a rate of 1.5lha(-1) (manufactures rate recommended) on biological properties of a Plagic Antrosol amended with four biostimulants (WCDS, wheat condensed distillers soluble; PA-HE, hydrolyzed poultry feathers; CGHE, carob germ enzymatic extract; and RB, rice bran extract). Seven hundred grams of soil were mixed with WCDS at a rate of 10%, CGHE at a rate of 4.7%, PA-HE at a rate of 4.3%, and RB at a rate of 4.4%, respectively, in order to applying the same amount of organic matter to the soil (16.38 g organic matter). An unamended polluted and amended non-polluted soil were used as control. For all treatments, the soil ergosterol, dehydrogenase, urease, and phosphatase activities were measured at two incubation times (0 and 60 d). The 16S rDNA-DGGE profiles in all treatments were determined at the beginning and end of the incubation period. The results indicated that at the end of the incubation period and compared with the control soil, the dehydrogenase, urease and phosphatase activities and ergosterol decreased 39.3%, 20%, 15.7% and 56.5%, respectively in the non-organic amended polluted soil. The application of organic matter to unpolluted soil increased the enzymatic activities and ergosterol. However, this stimulation was higher in the soil amended with RB, followed by PA-HE, WCDS and CGHE. The application of herbicide in organic-amended soils decreased the enzymatic activities and ergosterol content. However, this decrease was lower than for the non-amended herbicide polluted soil. Possibly the low molecular weight protein content easily assimilated by soil microorganisms and the adsorption capacity of humic substances are responsible for less inhibition of these enzyme activities and soil ergosterol. The 16S rDNA-DGGE profiles indicated that herbicide did not negatively affect soil bacterial biodiversity. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Estimation of Stormwater Interception Rate for various LID Facilities

    Science.gov (United States)

    Kim, S.; Lee, O.; Choi, J.

    2017-12-01

    In this study, the stormwater interception rate is proposed to apply in the design of LID facilities. For this purpose, EPA-SWMM is built with some areas of Noksan National Industrial Complex where long-term observed stormwater data were monitored and stormwater interception rates for various design capacities of various LID facilities are estimated. While the sensitivity of stormwater interception rate according to design specifications of bio-retention and infiltration trench facilities is not large, the sensitivity of stormwater interception rate according to local rainfall characteristics is relatively big. As a result of comparing the present rainfall interception rate estimation method which is officially operated in Korea with the one proposed in this study, it will be presented that the present method is highly likely to overestimate the performance of the bio-retention and infiltration trench facilities. Finally, a new stormwater interception rate formulas for the bio-retention and infiltration trench LID facilities will be proposed. Acknowledgement This research was supported by a grant (2016000200002) from Public Welfare Technology Development Program funded by Ministry of Environment of Korean government.

  14. COMPARATIVE ASSESSMENT OF RICE HUSK ASH, POWDERED GLASS AND CEMENT AS LATERITIC SOIL STABILIZERS

    Directory of Open Access Journals (Sweden)

    Adebisi Ridwan

    2016-10-01

    Full Text Available This paper compares the stabilizing effects of three different materials, namely: rice husk ash, powdered glass, and cement on the properties of lateritic soil. The basic properties of the lateritic soil were first obtained through colour, moisture content determination, specific gravity, particle size distribution and Atterberg limits tests. Each of the stabilizing materials was then mixed with the lateritic soil in varying percentages of 2.5%, 5%, 7.5%, 10%, 12.5% and 15% by weight of the soil. Thereafter, compaction and California bearing ratio (CBR tests were carried out on the sample mixes to determine the effects of the materials on the lateritic soil. Chemical tests were also carried out on the samples to determine their percentage oxides composition. The compaction test showed that the highest maximum dry densities (MDD obtained for the mixed samples were 2.32 g/cm3 (at 2.5% cement addition, 2.28g/cm3 (at 5% powdered glass (PG addition and 2.18 g/cm3 (at 5% rice husk ash (RHA addition with corresponding optimum moisture contents (OMC of 10.06%, 14.3% and 12.31% respectively. The CBR tests showed that the CBR values increased in all cases as the materials were added with those of the cement and powdered glass giving the highest values and showing close semblance under unsoaked conditions. The chemical test showed that the significant oxides present in the cement, powdered glass and rice husk ash were CaO (53.60%, SiO2 (68.45% and SiO2 (89.84% respectively.

  15. Potential reuse of petroleum-contaminated soil: A directory of permitted recycling facilities

    International Nuclear Information System (INIS)

    Rosenthal, S.; Wolf, G.; Avery, M.; Nash, J.H.

    1992-06-01

    Soil contaminated by virgin petroleum products leaking from underground storage tanks is a pervasive problem in the United States. Economically feasible disposal of such soil concerns the responsible party (RP), whether the RP is one individual small business owner, a group of owners, or a large multinational corporation. They may need a starting point in their search for an appropriate solution, such as recycling. The report provides initial assistance in two important areas. First it discusses four potential recycling technologies that manufacture marketable products from recycled petroleum-contaminated soil: the hot mix asphalt process, the cold mix asphalt system, cement production, and brick manufacturing. The report also presents the results of a project survey designed to identify recycling facilities. It lists recycling facilities alphabetically by location within each state, organized by U.S. Environmental Protection Agency (EPA) Region. The report also includes detailed addresses, recycling locations, telephone numbers, and contacts for these facilities. The scope of the project limits listings to fixed facilities or small mobile facility owners that recycle soil contaminated by virgin petroleum products into marketable commodities. It does not address site-specific or commercial hazardous waste remediation facilities

  16. An improved method for removing transuranics from coral soil at Johnston Atoll

    International Nuclear Information System (INIS)

    Moroney, J.D. III.; Johnson, N.R.; Moroney, K.S.; Mercier, J.R.

    1992-01-01

    An improved approach for removing mixed plutonium and americium contamination from coral soil matrix at the Defense Nuclear Agency's (DNA's) Johnston Atoll site has been developed by DNA's contractor, TMA/Eberline. The system uses arrays of sensitive radiation detectors coupled with sophisticated computer software newly designed by Eberline Instrument Corporation. The software controls a unique segmented gate methodology for removing contaminated soil from a moving feed supply on conveyor belts. Contaminated soil is diverted to a metal drum for collecting larger sized 'hot' particles (< 5,000 Becquerels) or to a soil washing process designed to remove dispersed low level contamination from a soil fraction consisting of very small particles. Low to intermediate levels of contamination are removed from the soil to meet DNAs criteria for release for unrestricted use based on US EPA guidelines

  17. Soil respiration dynamics in the middle taiga of Central Siberia region

    Science.gov (United States)

    Makhnykina, Anastasia; Prokushkin, Anatoly; Polosukhina, Daria

    2017-04-01

    A large amount of carbon in soil is released to the atmosphere through soil respiration, which is the main pathway of transferring carbon from terrestrial ecosystems (Comstedt et al., 2011). Considering that boreal forests is a large terrestrial sink (Tans et al., 1990) and represent approximately 11 % of the Earth's total land area (Gower et al., 2001), even a small change in soil respiration could significantly intensify - or mitigate - current atmospheric increases of CO2, with potential feedbacks to climate change. The objectives of the present study are: (a) to study the dynamic of CO2 emission from the soil surface during summer season (from May to October); (b) to identify the reaction of soil respiration to different amount of precipitation as the main limiting factor in the region. The research was located in the pine forests in Central Siberia (60°N, 90°E), Russia. Sample plots were represented by the lichen pine forest, moss pine forest, mixed forest and anthropogenic destroyed area. We used the automated soil CO2 flux system based on the infrared gas analyzer -LI-8100 for measuring the soil efflux. Soil temperature was measured with Soil Temperature Probe Type E in three depths -5, 10, 15 cm. Volumetric soil moisture was measured with Theta Probe Model ML2. The presence and type of ground cover substantially affects the value of soil respiration fluxes. The carbon dioxide emission from the soil surface averaged 5.4 ±2.3 μmol CO2 m-2 s-1. The destroyed area without plant cover demonstrated the lowest soil respiration (0.1-5.6 μmol CO2 m-2 s-1). The lowest soil respiration among forested areas was observed in the feathermoss pine forest. The lichen pine forest was characterized by the intermediate values of soil respiration. The maximum soil respiration values and seasonal fluctuations were obtained in the mixed forest (2.3-29.3 μmol CO2 m-2 s-1). The analysis of relation between soil CO2 efflux and climatic conditions identified the parameters with

  18. Influx of CO2 from Soil Incubated Organic Residues at Constant Temperature

    Directory of Open Access Journals (Sweden)

    Shoukat Ali Abro

    2016-06-01

    Full Text Available Temperature induced CO2 from genotypic residue substances is still less understood. Two types of organic residues (wheat- maize were incubated at a constant temperature (25°C to determine the rate and cumulative influx of CO2 in laboratory experiment for 40 days. Further, the effect of surface and incorporated crop residues with and without phosphorus addition was also studied. Results revealed that mixing of crop residues increased CO2-C evolution significantly & emission rare was 37% higher than that of control. At constant temperature, soil mixed residues, had higher emission rates CO2-C than the residues superimposed. There was linear correlation of CO2-C influxed for phosphorus levels and residue application ways with entire incubation at constant temperature. The mixing of organic residues to soil enhanced SOC levels and biomass of microbially bound N; however to little degree ammonium (NH4-N and nitrate NO3-N nitrogen were decreased.

  19. Sulfur polymer stabilization/solidification (SPSS) treatment of mixed waste mercury recovered from environmental restoration activities at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, P.; Adams, J.; Milian, L.

    2001-01-29

    Over 1,140 yd{sup 3} of radioactively contaminated soil containing toxic mercury (Hg) and several liters of mixed-waste elemental mercury were generated during a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) removal action at Brookhaven National Laboratory (BNL). The US Department of Energy's (DOE) Office of Science and Technology Mixed Waste Focus Area (DOE MWFA) is sponsoring a comparison of several technologies that may be used to treat these wastes and similar wastes at BNL and other sites across the DOE complex. This report describes work conducted at BNL on the application and pilot-scale demonstration of the newly developed Sulfur Polymer Stabilization/Solidification (SPSS) process for treatment of contaminated mixed-waste soils containing high concentrations ({approximately} 5,000 mg/L) of mercury and liquid elemental mercury. BNL's SPSS (patent pending) process chemically stabilizes the mercury to reduce vapor pressure and leachability and physically encapsulates the waste in a solid matrix to eliminate dispersion and provide long-term durability. Two 55-gallon drums of mixed-waste soil containing high concentrations of mercury and about 62 kg of radioactive contaminated elemental mercury were successfully treated. Waste loadings of 60 wt% soil were achieved without resulting in any increase in waste volume, while elemental mercury was solidified at a waste loading of 33 wt% mercury. Toxicity Characteristic Leaching Procedure (TCLP) analyses indicate the final waste form products pass current Environmental Protection Agency (EPA) allowable TCLP concentrations as well as the more stringent proposed Universal Treatment Standards. Mass balance measurements show that 99.7% of the mercury treated was successfully retained within the waste form, while only 0.3% was captured in the off gas system.

  20. Bioremediation of diesel oil-contaminated soil by composting with biowaste

    International Nuclear Information System (INIS)

    Gestel, Kristin van; Mergaert, Joris; Swings, Jean; Coosemans, Jozef; Ryckeboer, Jaak

    2003-01-01

    Composting of biowaste and diesel contaminated-soil is an efficient bioremediation method, with mature compost as a usable end product. - Soil spiked with diesel oil was mixed with biowaste (vegetable, fruit and garden waste) at a 1:10 ratio (fresh weight) and composted in a monitored composting bin system for 12 weeks. Pure biowaste was composted in parallel. In order to discern the temperature effect from the additional biowaste effect on diesel degradation, one recipient with contaminated soil was hold at room temperature, while another was kept at the actual composting temperature. Measurements of composting parameters together with enumerations and identifications of microorganisms demonstrate that the addition of the contaminated soil had a minor impact on the composting process. The first-order rate constant of diesel degradation in the biowaste mixture was four times higher than in the soil at room temperature, and 1.2 times higher than in the soil at composting temperature

  1. Strength and Compaction Analysis of Sand-Bentonite-Coal Ash Mixes

    Science.gov (United States)

    Sobti, Jaskiran; Singh, Sanjay Kumar

    2017-08-01

    This paper deals with the strength and compaction characteristics of sand-bentonite-coal ash mixes prepared by varying percentages of sand, bentonite and coal ash to be used in cutoff walls and as a liner or cover material in landfills. The maximum dry density (MDD) and optimum moisture content (OMC) of sand-bentonite mixes and sand-bentonite-coal ash mixes were determined by conducting the standard proctor test. Also, the strength and stiffness characteristics of soil mixes were furnished using unconfined compressive strength test. The results of the study reveal influence of varying percentages of coal ash and bentonite on the compaction characteristics of the sand-bentonite-coal ash mixes. Also, validation of a statistical analysis of the correlations between maximum dry density (MDD), optimum moisture content (OMC) and Specific Gravity (G) was done using the experimental results. The experimental results obtained for sand-bentonite, sand-bentonite-ash and coal ash-bentonite mixes very well satisfied the statistical relations between MDD, OMC and G with a maximum error in the estimate of MDD being within ±1 kN/m3. The coefficient of determination (R2) ranged from 0.95 to 0.967 in case of sand-bentonite-ash mixes. However, for sand-bentonite mixes, the R2 values are low and varied from 0.48 to 0.56.

  2. Water retention and availability in soils of the State of Santa Catarina-Brazil: effect of textural classes, soil classes and lithology

    Directory of Open Access Journals (Sweden)

    André da Costa

    2013-12-01

    Full Text Available The retention and availability of water in the soil vary according to the soil characteristics and determine plant growth. Thus, the aim of this study was to evaluate water retention and availability in the soils of the State of Santa Catarina, Brazil, according to the textural class, soil class and lithology. The surface and subsurface horizons of 44 profiles were sampled in different regions of the State and different cover crops to determine field capacity, permanent wilting point, available water content, particle size, and organic matter content. Water retention and availability between the horizons were compared in a mixed model, considering the textural classes, the soil classes and lithology as fixed factors and profiles as random factors. It may be concluded that water retention is greater in silty or clayey soils and that the organic matter content is higher, especially in Humic Cambisols, Nitisols and Ferralsol developed from igneous or sedimentary rocks. Water availability is greater in loam-textured soils, with high organic matter content, especially in soils of humic character. It is lower in the sandy texture class, especially in Arenosols formed from recent alluvial deposits or in gravelly soils derived from granite. The greater water availability in the surface horizons, with more organic matter than in the subsurface layers, illustrates the importance of organic matter for water retention and availability.

  3. A Polarimetric First-Order Model of Soil Moisture Effects on the DInSAR Coherence

    Directory of Open Access Journals (Sweden)

    Simon Zwieback

    2015-06-01

    Full Text Available Changes in soil moisture between two radar acquisitions can impact the observed coherence in differential interferometry: both coherence magnitude |Υ| and phase Φ are affected. The influence on the latter potentially biases the estimation of deformations. These effects have been found to be variable in magnitude and sign, as well as dependent on polarization, as opposed to predictions by existing models. Such diversity can be explained when the soil is modelled as a half-space with spatially varying dielectric properties and a rough interface. The first-order perturbative solution achieves–upon calibration with airborne L band data–median correlations ρ at HH polarization of 0.77 for the phase Φ, of 0.50 for |Υ|, and for the phase triplets ≡ of 0.56. The predictions are sensitive to the choice of dielectric mixing model, in particular the absorptive properties; the differences between the mixing models are found to be partially compensatable by varying the relative importance of surface and volume scattering. However, for half of the agricultural fields the Hallikainen mixing model cannot reproduce the observed sensitivities of the phase to soil moisture. In addition, the first-order expansion does not predict any impact on the HV coherence, which is however empirically found to display similar sensitivities to soil moisture as the co-pol channels HH and VV. These results indicate that the first-order solution, while not able to reproduce all observed phenomena, can capture some of the more salient patterns of the effect of soil moisture changes on the HH and VV DInSAR signals. Hence it may prove useful in separating the deformations from the moisture signals, thus yielding improved displacement estimates or new ways for inferring soil moisture.

  4. Stabilization of contaminated soil and wastewater with chemically bonded phosphate ceramics

    International Nuclear Information System (INIS)

    Wagh, A.S.; Jeong, S.Y.; Singh, D.

    1997-01-01

    At Argonne National Laboratory, we have developed chemically Bonded phosphate ceramic (CBPC) technology to stabilize the U.S. Department of Energy's problem mixed waste streams, for which no other stabilization technology is suitable. In this technology, solid waste is mixed with MgO and reacted with aqueous solutions of phosphoric acid or acid phosphates at room temperature to form a slurry that sets in ∼2 h into a hard and dense ceramic waste form. Initial studies involved stabilizing the surrogate waste streams and then testing the waste forms for leaching of contaminants. After achieving satisfactory performance of the waste forms, we next incorporated actual waste streams at bench scale and produced waste forms that were then tested with the Toxicity Characteristic Leaching Procedure (TCLP). This presentation deals with stabilization of soil contaminated with Cd, Cr, Pb, Ag, Ba, and Hg, and of low-level radioactive wastewater. To enhance the contaminant levels in the soil, we further spiked the soil with additional amounts of Cd, Cr, Pb, and Hg. Both the soil and the wastewater were incorporated in the same waste form by stabilizing them with the CBPC process. The waste forms had a total waste loading of ∼77 wt.% and were dense with an open porosity of 2.7 vol.% and a density of 2.17 g/cm 3 . Compression strength was 4910 psi. The TCLP results showed excellent immobilization of all the RCRA metals, and radioactive contaminant levels were below the detection limit of 0.2 pCi/mL. Long-term leaching studies using the ANS 16.1 procedure showed that the retention of contaminants is excellent and comparable to or better than most of other stabilization processes. These results demonstrate that the CBPC process is a very superior process for treatment of low level mixed wastes; we therefore conclude that the CBPC process is well suited to the treatment of low-level mixed waste streams with high waste loading

  5. Bamboo leaf ash as the stabilizer for soft soil treatment

    Science.gov (United States)

    Rahman, A. S. A.; Jais, I. B. M.; Sidek, N.; Ahmad, J.; Rosli, M. I. F.

    2018-04-01

    Soft soil is a type of soil that have the size of particle less than 0.063mm. The strength of the soft soil does not fulfil the requirement for construction. The present of soft soil at the construction site always give a lot of problems and issues to geotechnical sector. Soil settlement is one of the problems that related to soft soil. The determination of the soft soil physical characteristics will provide a detail description on its characteristic. Soft soil need to be treated in order to gain the standard strength for construction. One of the method to strengthen the soft soil is by using pozzolanic material as a treatment method for soft soil. Furthermore bamboo leaf ash is one of the newly founded materials that contain pozzolanic material. Any material that consist of Silicon Dioxide (SiO2) as the main component and followed by Aluminium Oxide (Al2O3) and Iron Oxide (Fe2O3) are consider as pozzolanic material. Bamboo leaf ash is mix with the cement as the treatment material. Bamboo leaf ash will react with the cement to produce additional cement binder. Thus, it will increase the soil strength and will ease the geotechnical sector to achieve high quality of construction product.

  6. Microbial control on decomposition of radionuclides-containing oily waste in soil

    Science.gov (United States)

    Selivanovskaya, Svetlana; Galitskaya, Polina

    2014-05-01

    The oily wastes are formed annually during extraction, refinement, and transportation of the oil and may cause pollution of the environment. These wastes contain different concentrations of waste oil (40-60%), waste water (30-90%), and mineral particles (5-40%). Some oily wastes also contain naturally occurring radionuclides which were incorporated by water that was pumped up with the oil. For assessment of the hazard level of waste treated soil, not only measurements of contaminants content are needed, because bioavailability of oily components varies with hydrocarbon type, and soil properties. As far as namely microbial communities control the decomposition of organic contaminants, biological indicators have become increasingly important in hazard assessment and the efficiency of remediation process. In this study the decomposition of radionuclides-containing oily waste by soil microbial communities were estimated. Waste samples collected at the Tikchonovskii petroleum production yard (Tatarstan, Russia) were mixed with Haplic greyzem soil at ratio 1:4 and incubated for 120 days. During incubation period, the total hydrocarbon content of the soil mixed with the waste reduced from 156 ± 48 g kg-1 to 54 ± 8 g kg-1 of soil. The concentrations of 226Ra and 232Th were found to be 643 ± 127, 254 ± 56 Bq kg-1 and not changed significantly during incubation. Waste application led to a soil microbial biomass carbon decrease in comparison to control (1.9 times after 1 day and 1.3 times after 120 days of incubation). Microbial respiration increased in the first month of incubation (up to 120% and 160% of control after 1 and 30 days, correspondingly) and decreased to the end of incubation period (74% of control after 120 days). Structure of bacterial community in soil and soil/waste mixture was estimated after 120 days of incubation using SSCP method. The band number decreased in contaminated soil in comparison to untreated soil. Besides, several new dominant DNA

  7. Effect of mixing geopolymer and peat on bearing capacity in Ogan Komering Ilir (OKI) by California bearing ratio (CBR) test

    Science.gov (United States)

    Raharja, Danang S.; Hadiwardoyo, Sigit P.; Rahayu, Wiwik; Zain, Nasuhi

    2017-06-01

    Geopolymer is binder material that consists of solid material and the activator solution. Geopolymer material has successfully replaced cement in the manufacture of concrete with aluminosilicate bonding system. Geopolymer concrete has properties similar to cement concrete with high compressive strength, low shrinkage value, relatively low creep value, as well as acid-resistant. Based on these, the addition of polymers in peat soils is expected to improve the bearing capacity of peat soils. A study on the influence of geopolymer addition in peat soils was done by comparing before and after the peat soil was mixed with geopolymer using CBR (California Bearing Ratio) test in unsoaked and soaked conditions. 10% mixture content of the peat dry was used, weighted with a variety of curing time 4 hours, 5 days, and 10 days. There were two methods of mixing: first, peat was mixed with fly ash geopolymer activators and mixed solution (waterglass, NaOH, water), and second, peat was mixed with fly ash and mixed geopolymer (waterglass, NaOH, water, fly ash). Changes were observed in specific gravity, dry density, acidity (pH), and the microscopic structure with Scanning Electron Microscope (SEM). Curing time did not significantly affect the CBR value. It even shows a tendency to decline with longer curing time. The first type mixture obtained CBR value of: 5.4% for 4 hours curing, 4.6% for 5 days curing and 3.6% for 10 days curing. The second type mixture obtained CBR value of: 6.1% for 4 hours curing, 5.2% for 5 days curing and 5.2% for 10 days curing. Furthermore, the specific gravity value, dry density, pH near neutral and swelling percentage increased. From both variants, the second type mixture shows better results than the first type mixture. The results of SEM (Scanning Electron Microscopy) show the structure of the peat which became denser with the fly ash particles filling the peat microporous. Also, the reaction of fly ash with geopolymer is indicated by the solid

  8. VAC*TRAX - Thermal desorption for mixed wastes

    International Nuclear Information System (INIS)

    McElwee, M.J.; Palmer, C.R.

    1995-01-01

    The patented VAC*TRAX process was designed in response to the need to remove organic constituents from mixed waste, waste that contains both a hazardous (RCRA or TSCA regulated) component and a radioactive component. Separation of the mixed waste into its hazardous and radioactive components allows for ultimate disposal of the material at existing, permitted facilities. The VAC*TRAX technology consists of a jacketed vacuum dryer followed by a condensing train. Solids are placed in the dryer and indirectly heated to temperatures as high as 260 degrees C, while a strong vacuum (down to 50 mm Hg absolute pressure) is applied to the system and the dryer is purged with a nitrogen carrier gas. The organic contaminants in the solids are thermally desorbed, swept up in the carrier gas and into the condensing train where they are cooled and recovered. The dryer is fitted with a filtration system that keeps the radioactive constituents from migrating to the condensate. As such, the waste is separated into hazardous liquid and radioactive solid components, allowing for disposal of these streams at a permitted incinerator or a radioactive materials landfill, respectively. The VAC*TRAX system is designed to be highly mobile, while minimizing the operational costs with a simple, robust process. These factors allow for treatment of small waste streams at a reasonable cost. This paper describes the VAC*TRAX thermal desorption process, as well as results from the pilot testing program. Also, the design and application of the full-scale treatment system is presented. Materials tested to date include spiked soil and debris, power plant trash and sludge contaminated with solvents, PCB contaminated soil, solvent-contaminated uranium mill-tailings, and solvent and PCB-contaminated sludge and trash. Over 70 test runs have been performed using the pilot VAC*TRAX system, with more than 80% of the tests using mixed waste as the feed material

  9. EFFECTS OF MIXED ORGANIC AND INORGANIC FERTILIZERS APPLICATION ON SOIL PROPERTIES AND THE GROWTH OF KENAF (HIBISCUS CANNABINUS L.) CULTIVATED ON BRIS SOILS

    OpenAIRE

    Mohd Hadi Akbar Basri; Arifin Abdu; Shamshuddin Jusop; Osumanu Haruna Ahmed; Hazandy Abdul-Hamid; Mohd-Ashadie Kusno; Baharom Zainal; Abdul Latib Senin; Nasima Junejo

    2013-01-01

    The demand for kenaf in the world increases rapidly by the years. Cultivation of the crop in Malaysia is a challenging task, especially when kenaf is grown on sandy soils with low fertility, such as the BRIS Soils (Beach Ridges Interspersed with Swales). A pot study was conducted in a glasshouse at Universiti Putra Malaysia to evaluate the potential of inorganic and organic fertilizers or their combination for growing kenaf on very sandy BRIS Soils, using variety V36. There were altogether si...

  10. Proximal sensing for soil carbon accounting

    Science.gov (United States)

    England, Jacqueline R.; Viscarra Rossel, Raphael A.

    2018-05-01

    Maintaining or increasing soil organic carbon (C) is vital for securing food production and for mitigating greenhouse gas (GHG) emissions, climate change, and land degradation. Some land management practices in cropping, grazing, horticultural, and mixed farming systems can be used to increase organic C in soil, but to assess their effectiveness, we need accurate and cost-efficient methods for measuring and monitoring the change. To determine the stock of organic C in soil, one requires measurements of soil organic C concentration, bulk density, and gravel content, but using conventional laboratory-based analytical methods is expensive. Our aim here is to review the current state of proximal sensing for the development of new soil C accounting methods for emissions reporting and in emissions reduction schemes. We evaluated sensing techniques in terms of their rapidity, cost, accuracy, safety, readiness, and their state of development. The most suitable method for measuring soil organic C concentrations appears to be visible-near-infrared (vis-NIR) spectroscopy and, for bulk density, active gamma-ray attenuation. Sensors for measuring gravel have not been developed, but an interim solution with rapid wet sieving and automated measurement appears useful. Field-deployable, multi-sensor systems are needed for cost-efficient soil C accounting. Proximal sensing can be used for soil organic C accounting, but the methods need to be standardized and procedural guidelines need to be developed to ensure proficient measurement and accurate reporting and verification. These are particularly important if the schemes use financial incentives for landholders to adopt management practices to sequester soil organic C. We list and discuss requirements for developing new soil C accounting methods based on proximal sensing, including requirements for recording, verification, and auditing.

  11. Efficiency calibration and measurement of self-absorption correction of environmental gamma spectroscopy of soils samples using Marinelli beaker

    International Nuclear Information System (INIS)

    Abdi, M. R.; Mostajaboddavati, M.; Hassanzadeh, S.; Faghihian, H.; Rezaee, Kh.; Kamali, M.

    2006-01-01

    A nonlinear function in combination with the method of mixing activity calibrated is applied for fitting the experimental peak efficiency of HPGe spectrometers in 59-2614 keV energy range. The preparation of Marinelli beaker standards of mixed gamma and RG-set at secular equilibrium with its daughter radionuclides was studied. Standards were prepared by mixing of known amounts of 13B a, 241 Am, 152 Eu, 207 Bi, 24 Na, Al 2 O 3 powder and soil. The validity of these standards was checked by comparison with certified standard reference material RG-set and IAEA-Soil-6 Self-absorption was measured for the activity calculation of the gamma-ray lines about series of 238 U daughter, 232 Th series, 137 Cs and 40 K in soil samples. Self-absorption in the sample will depend on a number of factor including sample composition, density, sample size and gamma-ray energy. Seven Marinelli beaker standards were prepared in different degrees of compaction with bulk density ( ρ) of 1.000 to 1.600 g cm -3 . The detection efficiency versus density was obtained and the equation of self-absorption correction factors calculated for soil samples

  12. Use of demolition residues construction in soil-lime bricks

    International Nuclear Information System (INIS)

    Figueiredo, S.S.; Silva, C.G.; Silva, I.A.; Neves, G.A.

    2011-01-01

    Besides being responsible for several environmental damage caused by its residues, the construction industry is also considered the greatest natural resources consumer. When finely ground, such residues can exhibit cementing properties, which may replace part of the lime used in the manufacture of soil-lime bricks. This study aimed to verify the viability of using demolition residues (DR) in soil-lime bricks without structural function. For this, test specimens were prepared using mixes in a 1:10 ratio of lime:soil and embedding residue in partial replacement of lime in the proportions of 25%, 50% and 75%. The test specimens were submitted to curing periods of 28 and 52 days, then it was determined the compression strength. The results showed that when embedded on moderate percentages, demolition residues construction can be used in the production of soil-lime bricks. (author)

  13. The Impact of the Quality of Coal Mine Stockpile Soils on Sustainable Vegetation Growth and Productivity

    Directory of Open Access Journals (Sweden)

    Nicky M Mushia

    2016-06-01

    Full Text Available Stockpiled soils are excavated from the ground during mining activities, and piled on the surface of the soil for rehabilitation purposes. These soils are often characterized by low organic matter (SOM content, low fertility, and poor physical, chemical, and biological properties, limiting their capability for sustainable vegetation growth. The aim of the study was to evaluate the impact of stockpile soils of differing depth and quality on vegetation growth and productivity. Soils were collected at three different depths (surface, mid, and deep as well as mixed (equal proportion of surface, mid and deep from two stockpiles (named Stockpile 1: aged 10 and Stockpile 2: 20 years at the coal mine near Witbank in the Mpumalanga province of South Africa. Soils were amended with different organic and inorganic fertilizer. A 2 × 4 × 5 factorial experiment in a completely randomized blocked design with four replications was established under greenhouse conditions. A grass species (Digiteria eriantha was planted in the pots with unamended and amended soils under greenhouse conditions at 26–28 °C during the day and 16.5–18.5 °C at night. Mean values of plant height, plant cover, total fresh biomass (roots, stems and leaves, and total dry biomass were found to be higher in Stockpile 1 than in Stockpile 2 soils. Plants grown on soils with no amendments had lower mean values for major plant parameters studied. Soil amended with poultry manure and lime was found to have higher growth rate compared with soils with other soil amendments. Mixed soils had better vegetation growth than soil from other depths. Stockpiled soils in the study area cannot support vegetation growth without being amended, as evidenced by low grass growth and productivity in this study.

  14. In-situ remediation system for groundwater and soils

    Science.gov (United States)

    Corey, John C.; Kaback, Dawn S.; Looney, Brian B.

    1993-01-01

    A method and system for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants.

  15. Testing oils in antarctic soils

    International Nuclear Information System (INIS)

    Leufkens, D.

    2001-01-01

    The resident seals, whales and penguins in Antarctica's Ross Sea region have only environmentally friendly ways of getting around. In contrast, wherever humans go in the Antarctic and whatever they do, be it research, tourism or fishing, they need fuel for their planes, icebreaker ships, land vehicles and generators. Because of this, petroleum hydrocarbons are the most likely source of pollution in the Antarctic. Accidental oil spills often occur near scientific stations, where storage and refuelling of aircraft and vehicles can result in spills. Spills also occur as a consequence of drilling activities. Dr Jackie Aislabie, a microbiologist from the New Zealand government's research company Landcare Research, is leading a program aimed at understanding how oil spills impact on Antarctic soils. The properties of pristine soils were compared with oil-contaminated soil at three locations: Scott Base, Marble Point and in the Wright Valley at Bull Pass. Soils in the Scott Base area are impacted by the establishment and continuous habitation of the base over 40 years, and a hydrocarbon-contaminated site was sampled near a former storage area for drums of mixed oils. Soil sampled from Marble Point was taken from near the old Marble Point camp, which was inhabited from 1957 to about 1963. Oil stains were visible on the soil surface, and are assumed to have been there for more than 30 years. The samples selected for analysis from the Wright Valley came from a spill site near Bull Pass that occurred during seismic bore-hole drilling activities in 1985. The contamination levels ranged from below detection to just over 29,000 μg/g of soil. Descriptions and analyse results are included into a Geographic Information System and associated soils database

  16. PCB dechlorination in anaerobic soil slurry reactors

    International Nuclear Information System (INIS)

    Klasson, K.T.; Evans, B.S.

    1993-01-01

    Many industrial locations, including the US Department of Energy's, have identified needs for treatment of polychlorinated biphenyl (PCB) wastes and remediation of PCB-contaminated sites. Biodegradation of PCBs is a potentially effective technology for the treatment of PCB-contaminated soils and sludges, including mixed wastes; however, a practical remediation technology has not yet been demonstrated. In laboratory experiments, soil slurry bioreactors inoculated with microorganisms extracted from PCB-contaminated sediments from the Hudson River have been used to obtain anaerobic dechlorination of PCBS. The onset of dechlorination activity can be accelerated by addition of nutritional amendments and inducers. After 15 weeks of incubation with PCB-contaminated soil and nutrient solution, dechlorination has been observed under several working conditions. The best results show that the average chlorine content steadily dropped from 4.3 to 3.5 chlorines per biphenyl over a 15-week period

  17. Method for in situ or ex situ bioremediation of hexavalent chromium contaminated soils and/or groundwater

    Science.gov (United States)

    Turick, Charles E.; Apel, William W.

    1997-10-28

    A method of reducing the concentration of Cr(VI) in a liquid aqueous residue comprises the steps of providing anaerobic Cr(VI) reducing bacteria, mixing the liquid aqueous residue with a nutrient medium to form a mixture, and contacting the mixture with the anaerobic Cr(VI) reducing bacteria such that Cr(VI) is reduced to Cr(III). The anaerobic Cr(VI) reducing bacteria appear to be ubiquitous in soil and can be selected by collecting a soil sample, diluting the soil sample with a sterile diluent to form a diluted sample, mixing the diluted sample with an effective amount of a nutrient medium and an effective amount of Cr(VI) to form a mixture, and incubating the mixture in the substantial absence of oxygen such that growth of Cr(VI) sensitive microorganisms is inhibited and growth of the anaerobic Cr(VI) reducing bacteria is stimulated. A method of in situ bioremediation of Cr(VI) contaminated soil and/or groundwater is also disclosed.

  18. Enhanced phytoremediation of mixed heavy metal (mercury)-organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1.

    Science.gov (United States)

    Zhang, Yuanyuan; Liu, Junhong; Zhou, Yuanming; Gong, Tingyun; Wang, Jing; Ge, Yinlin

    2013-09-15

    Soil contamination is a global environmental problem and many efforts have been made to find efficient remediation methods over the last decade. Moreover, remediation of mixed contaminated soils are more difficult. In the present study, transgenic alfalfa plants pKHCG co-expressing glutathione S-transferase (GST) and human P450 2E1 (CYP2E1) genes were used for phytoremediation of mixed mercury (Hg)-trichloroethylene (TCE) contaminants. Simultaneous expression of GST and CYP2E1 may produce a significant synergistic effect, and leads to improved resistance and accumulation to heavy metal-organic complex contaminants. Based on the tolerance and accumulation assays, pKHCG transgenic plants were more resistant to Hg/TCE complex pollutants and many folds higher in Hg/TCE-accumulation than the non-transgenic control plants in mixed contaminated soil. It is confirmed that GST and CYP2E1 co-expression may be a useful strategy to help achieve mixed heavy metal-organic pollutants phytoremediation. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The quantitative soil quality assessment tobacco plant in Sindoro mountainous zone

    Directory of Open Access Journals (Sweden)

    Supriyadi

    2014-04-01

    Full Text Available The long-term cultivation of tobacco (Nicotiana tabacum plant in the Sindoro mountainous zone of Central Java has resulted in soil quality degradation that could affect economic development in the region if sustainable production practices are not identified. The objective of the study was to identify appropriate indicators for assessing soil quality on tobacco plant. The quantitative soil quality indicators were total organic-C, pH, available P and available K (chemical, soil depth, bulk density, AWC (available water capacity and soil aggregate stability (physical, and qCO2 (soil respiration, MBC (microbial biomass carbon (biological. The decreases in the soil aggregate stability, available water capacity, cation exchange capacity, soil respiration, microbial biomass carbon and total organic-C; or increases in bulk density (compaction, available P, available K and total nitrogen indicated the decrease in soil quality due to long-term tobacco production. The result of this research showed that the change of soil quality had occurred in Sindoro Mountain. The Soil Quality Index (SQI for three land use systems in Sindoro mountain (forest, mixed farm, and tobacco were 0.60, 0.47, and 0.57, respectively. The comparison of these rates with soil quality classes showed that the soil quality presented moderate to good level of quality; class SQI.

  20. Improvement of clayey soil characteristics by using activated carbon

    Directory of Open Access Journals (Sweden)

    Al-Soudany Kawther

    2018-01-01

    Full Text Available The clay soil is weak and unable to carry the applied loads as a result of the weight of buildings or vehicles on the load performing on the soil. In this research, clay soil was grained and mixed with different percentages of activated carbon additives to investigate its performance. One type of clay soil from Al-Taji city was used. The percentages of activated carbon 3, 5, 7 and 9% were added to the soil and the influence of the admixture was observed by comparing the results with the untreated soil. The selected properties for this comparison were specific gravity, consistency limits, compaction, static compaction, CBR, consolidation, swelling and unconfined compressive strength. The results showed that the plasticity index, maximum dry weight and specific gravity decreased as the percentage of additives increased. The unconfined compressive strength increased as the percentage of additives and curing periods (1, 7, 14 and 28days increased. The amount of increase in soil strength was even more than 100% for the 9% activatedcarbon. The results showed that the addition of activated carbon has a positive effect to the geotechnical properties.

  1. Analysis of PAH in soil samples

    International Nuclear Information System (INIS)

    Haeufel, J.; Weisweiler, W.

    1994-01-01

    The supercritical fluid extraction of polycyclic aromatic hydrocarbons (PAH) from soil samples is described. Carbon dioxide mixed with a small amount of methanol is used for solvent. The results are compared with those obtained by a classical extraction method (that means with the use of organic liquids). The extracted PAH from both procedures can be separated by HPLC and analyzed with UV- and fluorescence detection. (orig.) [de

  2. Nonlinear binding of phenanthrene to the extracted fulvic acid fraction in soil in comparison with other organic matter fractions and to the whole soil sample

    International Nuclear Information System (INIS)

    Liu Wenxin; Xu, Shanshan; Xing, Baoshan; Pan, Bo; Tao, Shu

    2010-01-01

    Fractions of soil organic matter in a natural soil were extracted and sorption (or binding) characteristics of phenanthrene on each fraction and to the whole sample were investigated. The organic carbon normalized single point sorption (or binding) coefficient followed lipid > humin (HM) > humic acid (HA) > fulvic acid (FA) > whole soil sample, while the nonlinear exponent exhibited lipid > FA > HA > whole soil sample > HM. FA showed nonlinear binding of phenanthrene as it often does with other fractions. HM and HA contributed the majority of organic carbon in the soil. The calculated sorption coefficients of the whole soil were about two times greater than the measured values at different equilibrium phenanthrene concentrations. As for phenanthrene, the sorption capacity and nonlinearity of the physically mixed HA-HM mixtures were stronger as compared to the chemically reconstituted HA-HM composite. This was attributed to (besides the conditioning effect of the organic solvents) interactions between HA and HM and acid-base additions during fractionation. - Nonlinear binding of phenanthrene to fulvic acid extracted from soil organic matter was found.

  3. Effects of corn cob ash on lime stabilized lateritic soil

    Science.gov (United States)

    Nnochiri, Emeka Segun

    2018-03-01

    This study assesses the effects of Corn Cob Ash (CCA) on lime-stabilized lateritic soil. Preliminary tests were carried out on the natural soil sample for purpose of identification and classification. Lime being the main stabilizing material was thoroughly mixed with the soil sample to determine the optimum lime requirement of the sample as a basis for evaluating the effects of the CCA. The optimum lime requirement was 10%. The CCA was thereafter added to the lime stabilized soil in varying proportions of 2, 4, 6, 8 and 10%. Unsoaked CBR increased from 83% at 0% CCA to highest value of 94% at 4% CCA. Unconfined Compressive Strength (UCS) values increased from 1123kN/m2 at 0% CCA to highest value of 1180kN/m2 at 4% CCA. It was therefore concluded that CCA can serve as a good complement for lime stabilization in lateritic soil.

  4. Measuring Static and Dynamic Properties of Frozen Silty Soils

    Energy Technology Data Exchange (ETDEWEB)

    Furnish, M.D.

    1998-09-30

    A mechanical characterization of frozen silty soils has been conducted to support computer modeling of penetrators. The soils were obtained from the Eilson AFB (Alaska) vicinity. Quasi-static testing with a multiaxial system in a cold room and intermediate strain rate testing with a split Hopkinson pressure bar were conducted. Maximum stresses achieved were slightly above 1 GPa, apparently limiting the observed behavior primarily to elastic compression and pore crushing phenomena. Lower temperatures seem to increase the strength of the material markedly, although not by a simple factor. Lower temperatures and higher strain rates increase the apparent Young's and bulk moduli as well (an increase of {approximately} a factor of two is observed for strain rate increasing from 0.001 s{sup {minus}1} to 800 s{sup {minus}1}). The strength also depends strongly on strain rate. Increasing the strain rate from 0.001 {sup {minus}1} to 0.07 {sup {minus}1} increases the strength by a factor of five to ten (to values of order 1 GPa). However,only a small increase in strength is seen as strain rate is increased to {approximately} 10{sup 2}--10{sup 3} s{sup {minus}1}. The reliability of the strength measurements at strain rates< 1 s{sup {minus}1} is decreased due to details of the experimental geometry, although general trends are observable. A recipe is provided for a simulant soil based on bentonite, sand, clay-rich soil and water to fit the {approximately} 6% air-filled porosity, density and water content of the Alaska soils, based on benchtop mixing and jacketed compression testing of candidate mixes.

  5. Soil type affects Pinus ponderosa var. scopulorum (Pinaceae) seedling growth in simulated drought experiments 1

    OpenAIRE

    Lindsey, Alexander J.; Kilgore, Jason S.

    2013-01-01

    Premise of the study: Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. Methods and Results: Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite), a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering) produced less sh...

  6. Microbial biomass and activity in litter during the initial development of pure and mixed plantations of Eucalyptus grandis and Acacia mangium

    Directory of Open Access Journals (Sweden)

    Daniel Bini

    2013-02-01

    Full Text Available Studies on microbial activity and biomass in forestry plantations often overlook the role of litter, typically focusing instead on soil nutrient contents to explain plant and microorganism development. However, since the litter is a significant source of recycled nutrients that affect nutrient dynamics in the soil, litter composition may be more strongly correlated with forest growth and development than soil nutrient contents. This study aimed to test this hypothesis by examining correlations between soil C, N, and P; litter C, N, P, lignin content, and polyphenol content; and microbial biomass and activity in pure and mixed second-rotation plantations of Eucalyptus grandis and Acacia mangium before and after senescent leaf drop. The numbers of cultivable fungi and bacteria were also estimated. All properties were correlated with litter C, N, P, lignin and polyphenols, and with soil C and N. We found higher microbial activity (CO2 evolution in litter than in soil. In the E. grandis monoculture before senescent leaf drop, microbial biomass C was 46 % higher in litter than in soil. After leaf drop, this difference decreased to 16 %. In A. mangium plantations, however, microbial biomass C was lower in litter than in soil both before and after leaf drop. Microbial biomass N of litter was approximately 94 % greater than that of the soil in summer and winter in all plantations. The number of cultivable fungi and bacteria increased after leaf drop, especially so in the litter. Fungi were also more abundant in the E. grandis litter. In general, the A. mangium monoculture was associated with higher levels of litter lignin and N, especially after leaf drop. In contrast, the polyphenol and C levels in E. grandis monoculture litter were higher after leaf drop. These properties were negatively correlated with total soil C and N. Litter in the mixed stands had lower C:N and C:P ratios and higher N, P, and C levels in the microbial biomass. This suggests more

  7. The potential roles of biological soil crusts in dryland hydrologic cycles

    Science.gov (United States)

    Belnap, J.

    2006-01-01

    Biological soil crusts (BSCs) are the dominant living cover in many drylands of the world. They possess many features that can influence different aspects of local hydrologic cycles, including soil porosity, absorptivity, roughness, aggregate stability, texture, pore formation, and water retention. The influence of biological soil crusts on these factors depends on their internal and external structure, which varies with climate, soil, and disturbance history. This paper presents the different types of biological soil crusts, discusses how crust type likely influences various aspects of the hydrologic cycle, and reviews what is known and not known about the influence of biological crusts on sediment production and water infiltration versus runoff in various drylands around the world. Most studies examining the effect of biological soil crusts on local hydrology are done by comparing undisturbed sites with those recently disturbed by the researchers. Unfortunately, this greatly complicates interpretation of the results. Applied disturbances alter many soil features such as soil texture, roughness, aggregate stability, physical crusting, porosity, and bulk density in ways that would not necessarily be the same if crusts were not naturally present. Combined, these studies show little agreement on how biological crusts affect water infiltration or runoff. However, when studies are separated by biological crust type and utilize naturally occurring differences among these types, results indicate that biological crusts in hyperarid regions reduce infiltration and increase runoff, have mixed effects in and regions, and increase infiltration and reduce runoff in semiarid cool and cold drylands. However, more studies are needed before broad generalizations can be made on how biological crusts affect infiltration and runoff. We especially need studies that control for sub-surface soil features such as bulk density, micro- and macropores, and biological crust structure. Unlike

  8. Distinctive tropical forest variants have unique soil microbial communities, but not always low microbial diversity

    Directory of Open Access Journals (Sweden)

    Binu M Tripathi

    2016-04-01

    Full Text Available There has been little study of whether different variants of tropical rainforest have distinct soil microbial communities and levels of diversity. We compared bacterial and fungal community composition and diversity between primary mixed dipterocarp, secondary mixed dipterocarp, white sand heath, inland heath, and peat swamp forests in Brunei Darussalam, northwest Borneo by analyzing Illumina Miseq sequence data of 16S rRNA gene and ITS1 region. We hypothesized that white sand heath, inland heath and peat swamp forests would show lower microbial diversity and relatively distinct microbial communities (compared to MDF primary and secondary forests due to their distinctive environments. We found that soil properties together with bacterial and fungal communities varied significantly between forest types. Alpha and beta-diversity of bacteria was highest in secondary dipterocarp and white sand heath forests. Also, bacterial alpha diversity was strongly structured by pH, adding another instance of this widespread pattern in nature. The alpha diversity of fungi was equally high in all forest types except peat swamp forest, although fungal beta-diversity was highest in primary and secondary mixed dipterocarp forests. The relative abundance of ectomycorrhizal (EcM fungi varied significantly between forest types, with highest relative abundance observed in MDF primary forest. Overall, our results suggest that the soil bacterial and fungal communities in these forest types are to a certain extent predictable and structured by soil properties, but that diversity is not determined by how distinctive the conditions are. This contrasts with the diversity patterns seen in rainforest trees, where distinctive soil conditions have consistently lower tree diversity.

  9. Soil and Crop management: Lessons from the laboratory biosphere 2002-2004

    Science.gov (United States)

    Silverstone, S.; Nelson, M.; Alling, A.; Allen, J.

    During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation with "Hoyt" Soy Beans, USU Apogee Wheat and TU-82-155 sweet potato using a 5.37 m2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching and returning crop residues to the soil after each experiment. Between experiment #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. Soil analyses for all three experiments are presented to show how the soils have changed with time and how the changes relate to crop selection and rotation, soil selection and management, water management and pest control. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth facility.

  10. Ultrasonic and mechanical soil washing processes for the remediation of heavy-metal-contaminated soil

    Science.gov (United States)

    Kim, Seulgi; Lee, Wontae; Son, Younggyu

    2016-07-01

    Ultrasonic/mechanical soil washing process was investigated and compared with ultrasonic process and mechanical process using a relatively large lab-scale sonoreactor. It was found that higher removal efficiencies were observed in the combined processes for 0.1 and 0.3 M HCl washing liquids. It was due to the combination effects of macroscale removal for the overall range of slurry by mechanical mixing and microscale removal for the limited zone of slurry by cavitational actions.

  11. 200 Areas soil remediation strategy -- Environmental Restoration Program

    International Nuclear Information System (INIS)

    1996-09-01

    The remediation and waste management activities in the 200 Areas of the Hanford Site (located in Richland, Washington) currently range from remediating groundwater, remediating source units (contaminated soils), decontaminating and decommissioning of buildings and structures, maintaining facilities, managing transuranic, low-level and mixed waste, and operating tank farms that store high-level waste. This strategy focuses on the assessment and remediation of soil that resulted from the discharge of liquids and solids from processing facilities to the ground (e.g., ponds, ditches, cribs, burial grounds) in the 200 Areas and addresses only those waste sites assigned to the Environmental Restoration Program

  12. Priming of soil carbon decomposition in two inner Mongolia grassland soils following sheep dung addition: A study using13C natural abundance approach

    DEFF Research Database (Denmark)

    Ma, Xiuzhi; Ambus, Per; Wang, Shiping

    2013-01-01

    To investigate the effect of sheep dung on soil carbon (C) sequestration, a 152 days incubation experiment was conducted with soils from two different Inner Mongolian grasslands, i.e. a Leymus chinensis dominated grassland representing the climax community (2.1% organic matter content) and a heav......To investigate the effect of sheep dung on soil carbon (C) sequestration, a 152 days incubation experiment was conducted with soils from two different Inner Mongolian grasslands, i.e. a Leymus chinensis dominated grassland representing the climax community (2.1% organic matter content......) and a heavily degraded Artemisia frigida dominated community (1.3% organic matter content). Dung was collected from sheep either fed on L. chinensis (C3 plant with δ13C = -26.8‰; dung δ13C = -26.2‰) or Cleistogenes squarrosa (C4 plant with δ13C = -14.6‰; dung δ13C = -15.7‰). Fresh C3 and C4 sheep dung was mixed......-amended controls. In both grassland soils, ca. 60% of the evolved CO2 originated from the decomposing sheep dung and 40% from the native soil C. Priming effects of soil C decomposition were observed in both soils, i.e. 1.4 g and 1.6 g additional soil C kg-1 dry soil had been emitted as CO2 for the L. chinensis...

  13. Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium.

    Science.gov (United States)

    Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2012-11-01

    Bioremediation of polyaromatic hydrocarbons (PAH) contaminated soils in the presence of heavy metals have proved to be difficult and often challenging due to the ability of toxic metals to inhibit PAH degradation by bacteria. In this study, a mixed bacterial culture designated as consortium-5 was isolated from a former manufactured gas plant (MGP) site. The ability of this consortium to utilise HMW PAHs such as pyrene and BaP as a sole carbon source in the presence of toxic metal Cd was demonstrated. Furthermore, this consortium has proven to be effective in degradation of HMW PAHs even from the real long term contaminated MGP soil. Thus, the results of this study demonstrate the great potential of this consortium for field scale bioremediation of PAHs in long term mix contaminated soils such as MGP sites. To our knowledge this is the first study to isolate and characterize metal tolerant HMW PAH degrading bacterial consortium which shows great potential in bioremediation of mixed contaminated soils such as MGP.

  14. Biostimulation of soil polluted by 40000 ppm of waste motor oil and phytoremediation with Cicer arietinum and Burkholderia cepacia

    Directory of Open Access Journals (Sweden)

    Meza-Ramírez Janitzi Yunuén

    2016-08-01

    Full Text Available Soil polluted by 40000 ppm of waste residual oil (WRO, is a relative high hydrocarbons mix concentration according to Mexican regulation related with as the well know NOM-138-SEMARNAT/SSA1-2003 (NOM-138. Due to cause lost soil´s fertility, inhibiting microbial life and reducing vegetal production. To NOM-138 the highest limit of hydrocarbons mix allowed in soil is equal to 4400 ppm/kg. Aims of this research were: i Biostimulation of soil polluted by 40000 ppm of WRO by vermicompost and/or bovine compost, ii Phytoremediation by Cicer arietinum and Burkholderia cepacia to reduce WRO at below value compared to highest according to NOM-138. Results showed that biostimulation of soil with bovine compost eliminated WRO at 24000 ppm in 49 days. Then phytoremediation by C. arietinum and B. cepacia decreased WRO at 2760 ppm value below to compare to highest concentration allowed to NOM-138. It´s concluded that biore-mediation of soil impacted by relatively high concentration of WRO, the best strategy was to apply both biostimulation/phytoremediation that separate.

  15. Arsenic mobility and speciation in a contaminated urban soil are affected by different methods of green waste compost application

    International Nuclear Information System (INIS)

    Hartley, William; Dickinson, Nicholas M.; Riby, Philip; Leese, Elizabeth; Morton, Jackie; Lepp, Nicholas W.

    2010-01-01

    Application of green waste compost (GWC) to brownfield land is now common practice in soil restoration. However, previous studies have demonstrated both beneficial and detrimental effects on arsenic and metal mobility. In this paper, trace element behaviour was investigated following GWC application, either as surface mulch to, or mixed into soil from a previously described brownfield site in the U.K. Significant differences in arsenic mobility were observed between treatments. Mulching caused most disturbance, significantly increasing soil pore water As, together with Fe, P, Cr, Ni and dissolved organic carbon, the latter was a critical factor enhancing As mobilization. Arsenate was the main inorganic As species in soil pore water, increasing in concentration over time. An initial flush of potentially more toxic arsenite decreased 4 weeks after compost application. Biological processes appeared to play an important role in influencing As mobility. The results point to the necessity for careful management of As-contaminated soils. - A comparison of mulching and mixing of green waste compost to an urban soil results in differences in arsenic and metal leaching.

  16. Arsenic mobility and speciation in a contaminated urban soil are affected by different methods of green waste compost application

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, William, E-mail: w.hartley@ljmu.ac.u [Liverpool John Moores University, Faculty of Science, Byrom Street, Liverpool L3 3AF (United Kingdom); Dickinson, Nicholas M.; Riby, Philip [Liverpool John Moores University, Faculty of Science, Byrom Street, Liverpool L3 3AF (United Kingdom); Leese, Elizabeth; Morton, Jackie [Health and Safety Laboratory, Harpur Hill, Buxton, Derbyshire SK17 9JN (United Kingdom); Lepp, Nicholas W., E-mail: nickandeileenlepp@hotmail.co [35 Victoria Road, Formby L37 7DH (United Kingdom)

    2010-12-15

    Application of green waste compost (GWC) to brownfield land is now common practice in soil restoration. However, previous studies have demonstrated both beneficial and detrimental effects on arsenic and metal mobility. In this paper, trace element behaviour was investigated following GWC application, either as surface mulch to, or mixed into soil from a previously described brownfield site in the U.K. Significant differences in arsenic mobility were observed between treatments. Mulching caused most disturbance, significantly increasing soil pore water As, together with Fe, P, Cr, Ni and dissolved organic carbon, the latter was a critical factor enhancing As mobilization. Arsenate was the main inorganic As species in soil pore water, increasing in concentration over time. An initial flush of potentially more toxic arsenite decreased 4 weeks after compost application. Biological processes appeared to play an important role in influencing As mobility. The results point to the necessity for careful management of As-contaminated soils. - A comparison of mulching and mixing of green waste compost to an urban soil results in differences in arsenic and metal leaching.

  17. Soil microbial responses to nitrogen addition in arid ecosystems

    Directory of Open Access Journals (Sweden)

    Robert L Sinsabaugh

    2015-08-01

    Full Text Available The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts. We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg ha-1 yr-1 from March 2012 to March 2013. In March 2013, biocrust (0-0.5 cm and bulk soils (0-10 cm were collected beneath Ambrosia canopies and in the interspaces between plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities (EEA and rates of N transformation. By most measures, nutrient availability, microbial biomass and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N.

  18. Soil moisture memory at sub-monthly time scales

    Science.gov (United States)

    Mccoll, K. A.; Entekhabi, D.

    2017-12-01

    For soil moisture-climate feedbacks to occur, the soil moisture storage must have `memory' of past atmospheric anomalies. Quantifying soil moisture memory is, therefore, essential for mapping and characterizing land-atmosphere interactions globally. Most previous studies estimate soil moisture memory using metrics based on the autocorrelation function of the soil moisture time series (e.g., the e-folding autocorrelation time scale). This approach was first justified by Delworth and Manabe (1988) on the assumption that monthly soil moisture time series can be modelled as red noise. While this is a reasonable model for monthly soil moisture averages, at sub-monthly scales, the model is insufficient due to the highly non-Gaussian behavior of the precipitation forcing. Recent studies have shown that significant soil moisture-climate feedbacks appear to occur at sub-monthly time scales. Therefore, alternative metrics are required for defining and estimating soil moisture memory at these shorter time scales. In this study, we introduce metrics, based on the positive and negative increments of the soil moisture time series, that can be used to estimate soil moisture memory at sub-monthly time scales. The positive increments metric corresponds to a rapid drainage time scale. The negative increments metric represents a slower drying time scale that is most relevant to the study of land-atmosphere interactions. We show that autocorrelation-based metrics mix the two time scales, confounding physical interpretation. The new metrics are used to estimate soil moisture memory at sub-monthly scales from in-situ and satellite observations of soil moisture. Reference: Delworth, Thomas L., and Syukuro Manabe. "The Influence of Potential Evaporation on the Variabilities of Simulated Soil Wetness and Climate." Journal of Climate 1, no. 5 (May 1, 1988): 523-47. doi:10.1175/1520-0442(1988)0012.0.CO;2.

  19. Chemically enhanced mixed region vapor stripping of TCE-contaminated saturated peat and silty clay soils

    International Nuclear Information System (INIS)

    West, O.R.; Cameron, P.A.; Lucero, A.J.; Koran, L.J. Jr.

    1996-01-01

    The objective of this study was to conduct further testing of MRVS, chemically enhanced with calcium oxide conditioning, on field- contaminated soils collected from beneath the NASA Michoud Rinsewater Impoundment. In this study, residual soil VOC levels as a function of vapor stripping time were measured to quantify VOC removal rates. Physical and chemical soil parameters expected to affect MRVS efficiency were measures. The effects of varying the calcium oxide loadings as well as varying the vapor stripping flow rates on VOC removal were also evaluated. The results of this study will be used to determine whether acceptable removals can be achieved within reasonable treatment times, remediation costs being directly proportional to the latter. The purpose of this report is to document the experimental results of this study, as well as to address issues that were raised after completion of the previous Michoud treatability work

  20. Effects of Low-Temperature Plasma-Sterilization on Mars Analog Soil Samples Mixed with Deinococcus radiodurans

    Directory of Open Access Journals (Sweden)

    Janosch Schirmack

    2016-05-01

    Full Text Available We used Ar plasma-sterilization at a temperature below 80 °C to examine its effects on the viability of microorganisms when intermixed with tested soil. Due to a relatively low temperature, this method is not thought to affect the properties of a soil, particularly its organic component, to a significant degree. The method has previously been shown to work well on spacecraft parts. The selected microorganism for this test was Deinococcus radiodurans R1, which is known for its remarkable resistance to radiation effects. Our results showed a reduction in microbial counts after applying a low temperature plasma, but not to a degree suitable for a sterilization of the soil. Even an increase of the treatment duration from 1.5 to 45 min did not achieve satisfying results, but only resulted in in a mean cell reduction rate of 75% compared to the untreated control samples.