WorldWideScience

Sample records for bioresorbable poly-lactide calcium

  1. Polymeric Nanomedicines Based on Poly(lactide) and Poly(lactide-co-glycolide)

    OpenAIRE

    Tong, Rong; Gabrielson, Nathan P.; Fan, Timothy M.; Cheng, Jianjun

    2012-01-01

    Small molecule chemotherapeutics often have undesired physiochemical and pharmacological properties, such as low solubility, severe side effect and narrow therapeutic index. To address these challenges, polymeric nanomedicine drug delivery technology has been routinely employed, in particular with the use of biodegradable and biocompatible polyesters, such as poly(lactide) (PLA) and poly(lactide-co-glycolide) (PLGA). Here we review the development and use of PLA and PLGA for the delivery of c...

  2. Nanoporous poly(lactide) by olefin metathesis degradation.

    Science.gov (United States)

    Bertrand, Arthur; Hillmyer, Marc A

    2013-07-31

    We describe an approach to ordered nanoporous poly(lactide) that relies on self-assembly of poly(butadiene)-poly(lactide) (PB-PLA) diblock copolymers followed by selective degradation of PB using olefin metathesis. The block copolymers were obtained by a combination of anionic and ring-opening transesterification polymerizations. The molar mass of each block was tailored to target materials with either a lamellar or cylindrical microphase-separated morphology. Orientation of these nanoscale domains was induced in thin films and monolithic samples through solvent annealing and mechanical deformation, respectively. Selective degradation of PB was achieved by immersing the samples in a solution of Grubbs first-generation catalyst in cyclohexane, a nonsolvent for PLA. Successful elimination of PB was confirmed by size-exclusion chromatography and (1)H NMR spectroscopy. Direct imaging of the resulting nanoporous PLA was obtained by scanning electron microscopy.

  3. Nanoporous poly(lactide) by olefin metathesis degradation.

    Science.gov (United States)

    Bertrand, Arthur; Hillmyer, Marc A

    2013-07-31

    We describe an approach to ordered nanoporous poly(lactide) that relies on self-assembly of poly(butadiene)-poly(lactide) (PB-PLA) diblock copolymers followed by selective degradation of PB using olefin metathesis. The block copolymers were obtained by a combination of anionic and ring-opening transesterification polymerizations. The molar mass of each block was tailored to target materials with either a lamellar or cylindrical microphase-separated morphology. Orientation of these nanoscale domains was induced in thin films and monolithic samples through solvent annealing and mechanical deformation, respectively. Selective degradation of PB was achieved by immersing the samples in a solution of Grubbs first-generation catalyst in cyclohexane, a nonsolvent for PLA. Successful elimination of PB was confirmed by size-exclusion chromatography and (1)H NMR spectroscopy. Direct imaging of the resulting nanoporous PLA was obtained by scanning electron microscopy. PMID:23869876

  4. Moisture curable toughened poly(lactide utilizing vinyltrimethoxysilane based crosslinks

    Directory of Open Access Journals (Sweden)

    J. Schneider

    2016-10-01

    Full Text Available Vinyltrimethoxysilane (VTMOS was grafted on to the backbone of poly(lactide (PLA through a free radical grafting reaction using reactive extrusion (REX processing. The methoxy groups of the silane provide the modified PLA sites for crosslinking through a moisture induced pathway. VTMOS grafting efficiencies of up to 90% were obtained. The newly created methoxy functionality of the modified PLA readily undergoes hydrolysis and condensation forming siloxane crosslinks in the material. Crosslinking with VTMOS exhibited improved modulus, strength, and impact toughness while showing a decrease in ductility. Incorporating silanol-terminated poly(dimethylsiloxane (OH-PDMS resulted in the formation of longer siloxane crosslinks. These samples showed an increase in modulus and impact toughness due to the crosslinking, while the longer siloxane linkages resulted in improved ductility and tensile toughness. This is unusual for polymers toughened through crosslinking reactions. Scanning Electron Microscopy (SEM of the fractured surfaces showed the presence of these elongated siloxane crosslinks. This enhanced ability for the modified PLA to deform and absorb energy results in the increase in both impact and tensile toughness.

  5. Poly(lactide-co-glycolide/Hydroxyapatite Porous Scaffold with Microchannels for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2016-06-01

    Full Text Available Mass transfer restrictions of scaffolds are currently hindering the development of three-dimensional (3D, clinically viable, and tissue-engineered constructs. For this situation, a 3D poly(lactide-co-glycolide/hydroxyapatite porous scaffold, which was very favorable for the transfer of nutrients to and waste products from the cells in the pores, was developed in this study. The 3D scaffold had an innovative structure, including macropores with diameters of 300–450 μm for cell ingrowth and microchannels with diameters of 2–4 μm for nutrition and waste exchange. The mechanical strength in wet state was strong enough to offer structural support. The typical structure was more beneficial for the attachment, proliferation, and differentiation of rabbit bone marrow mesenchymal stem cells (rBMSCs. The alkaline phosphatase (ALP activity and calcium (Ca deposition were evaluated on the differentiation of rBMSCs, and the results indicated that the microchannel structure was very favorable for differentiating rBMSCs into maturing osteoblasts. For repairing rabbit radius defects in vivo, there was rapid healing in the defects treated with the 3D porous scaffold with microchannels, where the bridging by a large bony callus was observed at 12 weeks post-surgery. Based on the results, the 3D porous scaffold with microchannels was a promising candidate for bone defect repair.

  6. [Reaction of bone tissue elements on synthetic bioresorbable materials based on lactic and glycolic acids].

    Science.gov (United States)

    Kulakov, A A; Grigor'ian, A S

    2014-01-01

    The aim of the study was to evaluate the adverse effects of synthetic polymeric bioresorbable materials based on lactic and glycolic acids on the bone tissue. The study was carried-out on 40 Wister-line rats. Four types of bioresorbable polymeric materials were implanted: PolyLactide Glycolide Acid (PLGA), Poly-L-Lactide Acid (PLLA); Poly-96L/4D-Lactide Acid (96/4 PLDLA); Poly-70L/30D-Lactide Acid (70/30 PLDLA). The results showed connective tissue formation (fibrointegration) bordering bone adjacent to implanted materials. This proved the materials to cause pathogenic influence on the bone which mechanisms are described in the article.

  7. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Doğan, Ayşegül; Demirci, Selami [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University 34755 Istanbul (Turkey); Bayir, Yasin [Department of Biochemistry, Faculty of Pharmacy, Ataturk University, 25240, Erzurum (Turkey); Halici, Zekai [Department of Pharmacology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Karakus, Emre [Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum (Turkey); Aydin, Ali [Department of Orthopedics and Traumatology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Cadirci, Elif [Department of Pharmacology, Faculty of Pharmacy, Ataturk University, 25240, Erzurum (Turkey); Albayrak, Abdulmecit [Department of Pharmacology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Demirci, Elif [Department of Pathology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Karaman, Adem [Department of Radiology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Ayan, Arif Kursat [Department of Nuclear Medicine, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Gundogdu, Cemal [Department of Pathology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Şahin, Fikrettin, E-mail: fsahin@yeditepe.edu.tr [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University 34755 Istanbul (Turkey)

    2014-11-01

    Scaffold-based bone defect reconstructions still face many challenges due to their inadequate osteoinductive and osteoconductive properties. Various biocompatible and biodegradable scaffolds, combined with proper cell type and biochemical signal molecules, have attracted significant interest in hard tissue engineering approaches. In the present study, we have evaluated the effects of boron incorporation into poly-(lactide-co-glycolide-acid) (PLGA) scaffolds, with or without rat adipose-derived stem cells (rADSCs), on bone healing in vitro and in vivo. The results revealed that boron containing scaffolds increased in vitro proliferation, attachment and calcium mineralization of rADSCs. In addition, boron containing scaffold application resulted in increased bone regeneration by enhancing osteocalcin, VEGF and collagen type I protein levels in a femur defect model. Bone mineralization density (BMD) and computed tomography (CT) analysis proved that boron incorporated scaffold administration increased the healing rate of bone defects. Transplanting stem cells into boron containing scaffolds was found to further improve bone-related outcomes compared to control groups. Additional studies are highly warranted for the investigation of the mechanical properties of these scaffolds in order to address their potential use in clinics. The study proposes that boron serves as a promising innovative approach in manufacturing scaffold systems for functional bone tissue engineering. - Highlights: • Boron containing PLGA scaffolds were developed for bone tissue engineering. • Boron incorporation increased cell viability and mineralization of stem cells. • Boron containing scaffolds increased bone-related protein expression in vivo. • Implantation of stem cells on boron containing scaffolds improved bone healing.

  8. Modified composite microspheres of hydroxyapatite and poly(lactide-co-glycolide) as an injectable scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xixue [BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190 (China); Shen, Hong, E-mail: shenhong516@iccas.ac.cn [BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Fei [BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liang, Xinjie [CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190 (China); Wang, Shenguo, E-mail: wangsg@iccas.ac.cn [BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Decheng, E-mail: dcwu@iccas.ac.cn [BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-02-15

    The compound of hydroxyapatite-poly(lactide-co-glycolide) (HA-PLGA) was prepared by ionic bond between HA and PLGA. HA-PLGA was more stable than the simple physical blend of hydroxyapatite and poly(lactide-co-glycolide) (HA/PLGA). The surface of HA-PLGA microsphere fabricated by an emulsion–solvent evaporation method was rougher than that of HA/PLGA microspheres. Moreover, surface HA content of HA-PLGA microspheres was more than that of HA/PLGA microspheres. In vitro mouse OCT-1 osteoblast-like cell culture results showed that the HA-PLGA microspheres clearly promoted osteoblast attachment, proliferation and alkaline phosphatase activity. It was considered that surface rich HA component and rough surface of HA-PLGA microsphere enhanced cell growth and differentiation. The good cell affinity of the HA-PLGA microspheres indicated that they could be used as an injectable scaffold for bone tissue engineering.

  9. Understanding the adsorption mechanism of chitosan onto poly(lactide-co-glycolide) particles

    OpenAIRE

    Guo, Chunqiang; Gemeinhart, Richard A.

    2008-01-01

    Polyelectrolyte-coated nanoparticles or microparticles interact with bioactive molecules (peptides, proteins or nucleic acids) and have been proposed as delivery systems for these molecules. However, the mechanism of adsorption of polyelectrolyte onto particles remains unsolved. In this study, cationic poly(lactide-co-glycolide) (PLGA) nanoparticles were fabricated by adsorption of various concentrations of a biodegradable polysaccharide, chitosan (0–2.4 g/L), using oil-in-water emulsion and ...

  10. Poly(lactide-co-trimethylene carbonate) and Polylactide/Polytrimethylene Carbonate Blown Films

    OpenAIRE

    Li, Hongli; Chang, Jiangping; Qin, Yuyue; Wu, Yan; Yuan, Minglong; Zhang, Yingjie

    2014-01-01

    In this work, poly(lactide-co-trimethylene carbonate) and polylactide/ polytrimethylene carbonate films are prepared using a film blowing method. The process parameters, including temperature and screw speed, are studied, and the structures and properties of the P(LA-TMC) and PLA/PTMC films are investigated. The scanning electron microscope (SEM) images show that upon improving the content of TMC and PTMC, the lamellar structures of the films are obviously changed. With increasing TMC monomer...

  11. Impact of crystallinity of poly(lactide) on helium and oxygen barrier properties

    OpenAIRE

    GUINAULT, A; SOLLOGOUB, C; DUCRUET, VIOLETTE; DOMENEK, Sandra

    2012-01-01

    The helium and oxygen gas barrier properties of poly(lactide) were investigated as a function of stereochemistry and crystallinity degree. Poly(l-lactide) and poly(d,l-lactide) films were obtained by extrusion and thermally cold crystallized in either α′- or α-crystalline form with increasing crystallinity degree. Annealing of the films at low temperatures yielded to α′-crystals as well as the creation of a rigid amorphous fraction in the amorphous phase. Unexpectedly, the quantity of the rig...

  12. Synchrotron X-ray Scattering Studies of Poly(lactide) Electrospun Fibers Containing Carbon Nanotubes

    Science.gov (United States)

    Zhu, Yazhe; Cebe, Peggy

    2014-03-01

    Carbon nanotubes(CNTs) often serve as an effective nucleating agent that facilitates the crystallization of semicrystalline polymers. Here we study the influence of CNTs on thermal and structural properties of Poly-lactide (PLA), which is well-known as a biodegradable and biocompatible thermoplastic polymer. The effect of CNTs on the crystallization and melting behavior of electrospun fibers of poly (L-lactide) (PLLA, with 100% L-isomer) and poly (D-lactide) (PDLA, containing 4% D-isomer) was systemically studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform spectroscopy(FT-IR) and real time synchrotron wide-angle X-ray scattering (WAXS) . Multi-walled CNTs were co-electrospun with the poly(lactides) in weight ratios ranging from 0.1 to 4.0 wt% MW-CNT. PLA/carbon nanotubes composite electrospun fibers were successfully produced by appropriate choice of processing conditions and solution concentration. The morphologies of neat and CNT-filled electrospun nanofibers were observed by scanning electron microscopy. WAXS and DSC results show that lower content of CNTs contributes to higher speed of crystallization. However the results also showed that at the highest concentration of CNTs the ultimate crystallinity was reduced. FTIR and X-ray results show that PLA fibers have different crystal forms at high and low crystallization temperature. DSC results also show that D-lactide has reduced crystallinity compared to L-lactide.

  13. Repair and reconstruction of common bile duct by poly(lactide stent

    Directory of Open Access Journals (Sweden)

    Xiaoyi Xu

    2010-01-01

    Full Text Available To investigate the effect of repair of bioabsorbable poly(lactide (PLA biliary stent in common bile duct (CBD transection injury in canine prior to the clinical application. Circular tubing CBD stent was prepared by melt extraction technique using PLA. A transection incision was made on CBD of the normal canine, and then closed the incision with laser welding followed the implantation of PLA tubular stent into it. The stent was obtained to determine degradation of PLA in vivo at postoperative week 1, 4, and 12, respectively. The changes of outer diameter and burst pressure of CBD were investigated. Furthermore, serum liver enzyme values and CBD histopathological analysis were examined in the animals. The results noted that the polymer stent exhibited the same biomedical functions as T tubes and no significant tissue response. Therefore, biodegradable PLA stent matches the requirements in repair and reconstruction of CBD to support the duct, guide bile drainage and reduce T-tube-related complications.

  14. Morphology of Poly lactide/Polycaprolactone (PLA/PCL) Nano composite by Scanning Electron Microscopy (SEM)

    International Nuclear Information System (INIS)

    In this study, Octadecylamine Modified Montmorillonites (ODAMMT) were used to prepare Poly lactide/ Polycaprolactone (PLA/ PCL) nano composites. PLA and PCL mix in 90:10 ratios, using an internal mixer by melt blending technique. The other sample was blend with Natrium Montmorillonite (NaMMT) and Octadecylamine Modified Montmorillonite (ODA-MMT) to produce PLA/ PCL-NaMMT and PLA/ PCL ODAMMT. To characterize the polymer nano composites, X-ray diffraction (XRD), FTIR and SEM analysis were conducted. Comparison of morphology were made up between PLA/ PCL, PLA/ PCL with presence of 7 % of Na-MMT and 7 % ODA-MMT respectively based on SEM micrograph by calculate the number-average diameter. (author)

  15. The formation and characterization of hydrocortisone-loaded poly((+/-)-lactide) microspheres.

    Science.gov (United States)

    Cavalier, M; Benoit, J P; Thies, C

    1986-04-01

    The solvent evaporation process has been used to form hydrocortisone-loaded microspheres from poly((+/-)-lactide) (PLA) and a lactide-glycolide copolymer (65/35). Methylene chloride was the casting solvent. Partially hydrolysed (88%) poly(vinyl alcohol) and methylcellulose were used as aqueous phase emulsifiers. Methylcellulose was preferred, because it gave stable emulsions as the amount of hydrocortisone being encapsulated increased whereas poly(vinyl alcohol) did not. With methylcellulose as the emulsifier, a broad size range of spherical microspheres containing up to 50% (w/w) hydrocortisone could be prepared. Thermal and X-ray analyses established that poly((+/-)-lactide) microspheres containing hydrocortisone retained thermal events characteristic of both materials. This is evidence that such microspheres contain, to some extent, crystalline hydrocortisone domains dispersed in a PLA matrix. But most of the encapsulated drug was molecularly dispersed in the PLA glass. The stability of hydrocortisone in microspheres was evaluated in different storage conditions: no degradation of drug was found. The release of hydrocortisone from 250-350 microns diameter microspheres into agitated 37 degrees C water (nitrogen atmosphere) was determined by HPLC analysis. The microspheres evaluated had initial hydrocortisone payloads of 12 to 47% (w/w). The rate of drug release increased as the initial drug payload carried by the microspheres increased. The release data are not adequately described by zero order, first order, or square-root-of-time release kinetics. Drug release from microspheres that contain 12% (w/w) hydrocortisone approached a plateau value well below the amount of drug actually carried by the microspheres. This is particularly true for hydrocortisone encapsulated in lactide-glycolide polymer. PMID:2872287

  16. New epoxy thermosets modified with multiarm star poly(lactide) with poly(ethyleneimine) as core of different molecular weight

    OpenAIRE

    Acebo Gorostiza, Cristina; Fernández Francos, Xavier; Ferrando Piera, Francesc; Serra Albet, Àngels; Ramis Juan, Xavier

    2013-01-01

    Multiarm stars containing a hyperbranched poly(ethyleneimine) core of different molecular weight and poly(lactide) arms were synthesized by cationic ring-opening polymerization of lactide from a hyperbranched poly(ethyleneimine) core. After characterization by rheometry, calorimetry, thermogravimetry and nuclear magnetic resonance, these polymers were used as chemically modifiers in the anionic curing of diglycidylether of bisphenol A epoxy resin. The curing process was studied by dynamic sca...

  17. Generating Elastic, Biodegradable Polyurethane/Poly(lactide-co-glycolide) Fibrous Sheets with Controlled Antibiotic Release via Two-Stream Electrospinning

    OpenAIRE

    Hong, Yi; FUJIMOTO, KAZURO; Hashizume, Ryotaro; Guan, Jianjun; Stankus, John J.; Tobita, Kimimasa; Wagner, William R.

    2008-01-01

    Damage control laparotomy is commonly applied to prevent compartment syndrome following trauma but is associated with new risks to the tissue, including infection. To address the need for biomaterials to improve abdominal laparotomy management, we fabricated an elastic, fibrous composite sheet with two distinct submicrometer fiber populations: biodegradable poly(ester urethane) urea (PEUU) and poly(lactide-co-glycolide) (PLGA), where the PLGA was loaded with the antibiotic tetracycline hydroc...

  18. Gelatin Tight-Coated Poly(lactide-co-glycolide) Scaffold Incorporating rhBMP-2 for Bone Tissue Engineering

    OpenAIRE

    Juan Wang; Dongsong Li; Tianyi Li; Jianxun Ding; Jianguo Liu; Baosheng Li; Xuesi Chen

    2015-01-01

    Surface coating is the simplest surface modification. However, bioactive molecules can not spread well on the commonly used polylactone-type skeletons; thus, the surface coatings of biomolecules are typically unstable due to the weak interaction between the polymer and the bioactive molecules. In this study, a special type of poly(lactide-co-glycolide) (PLGA)-based scaffold with a loosened skeleton was fabricated by phase separation, which allowed gelatin molecules to more readily diffuse th...

  19. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone nanofibrous scaffolds for bone regeneration

    Directory of Open Access Journals (Sweden)

    Wang Z

    2016-04-01

    Full Text Available Zi Wang,1,* Ming Lin,1,* Qing Xie,1 Hao Sun,1 Yazhuo Huang,1 DanDan Zhang,1 Zhang Yu,1 Xiaoping Bi,1 Junzhao Chen,1 Jing Wang,2 Wodong Shi,1 Ping Gu,1 Xianqun Fan1 1Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 2Biomaterials and Tissue Engineering Laboratory, College of Chemistry & Chemical Engineering and Biotechnology, Donghua University, Shanghai, People’s Republic of China *These authors contributed equally to this work Background: Tissue engineering has become a promising therapeutic approach for bone regeneration. Nanofibrous scaffolds have attracted great interest mainly due to their structural similarity to natural extracellular matrix (ECM. Poly(lactide-co-ε-caprolactone (PLCL has been successfully used in bone regeneration, but PLCL polymers are inert and lack natural cell recognition sites, and the surface of PLCL scaffold is hydrophobic. Silk fibroin (SF is a kind of natural polymer with inherent bioactivity, and supports mesenchymal stem cell attachment, osteogenesis, and ECM deposition. Therefore, we fabricated hybrid nanofibrous scaffolds by adding different weight ratios of SF to PLCL in order to find a scaffold with improved properties for bone regeneration.Methods: Hybrid nanofibrous scaffolds were fabricated by blending different weight ratios of SF with PLCL. Human adipose-derived stem cells (hADSCs were seeded on SF/PLCL nanofibrous scaffolds of various ratios for a systematic evaluation of cell adhesion, proliferation, cytotoxicity, and osteogenic differentiation; the efficacy of the composite of hADSCs and scaffolds in repairing critical-sized calvarial defects in rats was investigated.Results: The SF/PLCL (50/50 scaffold exhibited favorable tensile strength, surface roughness, and hydrophilicity, which facilitated cell adhesion and proliferation. Moreover, the SF/PLCL (50/50 scaffold promoted the osteogenic differentiation of hADSCs by elevating the

  20. Optimization of size controlled poly (lactide-co-glycolic acid nanoparticles using quality by design concept

    Directory of Open Access Journals (Sweden)

    Padmanabha R. V. Reddy

    2015-01-01

    Full Text Available Quality by design (QbD is a risk management and science-based approach laid down by the ICH as well as other Regulatory agencies to enhance pharmaceutical development throughout a product′s lifecycle. Poly(lactide-co-glycolic acid (PLGA is the material of choice for development of depot particulate formulations due to its biodegradable nature and is also considered as the ′green′ eco-friendly material due its biocompatibility and non-toxic properties. Further, PLGA based formulations are approved by regulatory agencies and currently in clinical practice. The aim of the current investigation involves formulation, optimization and in vitro characterization of size controlled PLGA based nanoparticles by employing modified nanoprecipitation technique. An initial risk-assessment analysis was conducted with different formulation and process variables along with their impact on critical quality attributes of the formulation which were identified as particle size and percentage process yield. The Ishikawa diagram was employed to determine the potential risk factors and subsequently optimized by statistical experimental design concept. Box-Behnken design was utilized to optimize nanoparticles and further characterizing the optimized nanoparticulate formulation in vitro. From the present study, it can be concluded that PLGA based nanoparticles with controlled particle size and process yield can be obtained by inculcating the concept of QbD in the product development.

  1. Magnetic poly(lactide-co-glycolide) and cellulose particles for MRI-based cell tracking.

    Science.gov (United States)

    Nkansah, Michael K; Thakral, Durga; Shapiro, Erik M

    2011-06-01

    Biodegradable, superparamagnetic microparticles and nanoparticles of poly(lactide-co-glycolide) (PLGA) and cellulose were designed, fabricated, and characterized for magnetic cell labeling. Monodisperse nanocrystals of magnetite were incorporated into microparticles and nanoparticles of PLGA and cellulose with high efficiency using an oil-in-water single emulsion technique. Superparamagnetic cores had high magnetization (72.1 emu/g). The resulting polymeric particles had smooth surface morphology and high magnetite content (43.3 wt % for PLGA and 69.6 wt % for cellulose). While PLGA and cellulose nanoparticles displayed highest r 2* values per millimole of iron (399 sec(-1) mM(-1) for cellulose and 505 sec(-1) mM(-1) for PLGA), micron-sized PLGA particles had a much higher r 2* per particle than either. After incubation for a month in citrate buffer (pH 5.5), magnetic PLGA particles lost close to 50% of their initial r 2* molar relaxivity, while magnetic cellulose particles remained intact, preserving over 85% of their initial r 2* molar relaxivity. Lastly, mesenchymal stem cells and human breast adenocarcinoma cells were magnetically labeled using these particles with no detectable cytotoxicity. These particles are ideally suited for noninvasive cell tracking in vivo via MRI and due to their vastly different degradation properties, offer unique potential for dedicated use for either short (PLGA-based particles) or long-term (cellulose-based particles) experiments. PMID:21404328

  2. Antibacterial activity on electrospun poly(lactide-co-glycolide) based membranes via Magainin II grafting

    Energy Technology Data Exchange (ETDEWEB)

    Yüksel, Emre; Karakeçili, Ayşe, E-mail: akarakecili@eng.ankara.edu.tr

    2014-12-01

    An antimicrobial peptide (AMP), Magainin II (Mag II) was covalently immobilized on poly(lactide-co-glycolide) (PLGA) and PLGA/gelatin electrospun fibrous membranes. The surface immobilization was characterized by X-ray Photoelectron Spectroscopy (XPS). Scanning Electron Microscopy (SEM) and Atomic Force Microscopy studies showed that the surface morphology of the fibers at micron scale was not affected by the immobilization process. The antibacterial activity of the bound Mag II was tested against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Bacterial adhesion tests, SEM and confocal analyses revealed that the attachment and survival of bacteria were inhibited on Mag II functionalized membranes. AMP immobilization strategy was introduced as a new perspective for the modulation of antibacterial properties on PLGA based materials prepared by electrospinning. - Highlights: • PLGA and PLGA/gelatin fibrous membranes were prepared by electrospinning. • Antimicrobial peptide Mag II was successfully immobilized on PLGA based membranes. • The antibacterial activity was tested against E. coli and S. aureus. • Bacterial adhesion was inhibited on Mag II functionalized membranes.

  3. Vancomycin release from poly(D,L-lactide) and poly(lactide-co-glycolide) disks.

    Science.gov (United States)

    Ozalp, Y; Ozdemir, N; Hasirci, V

    2002-01-01

    A biodegradable and biocompatible polymeric system was developed for the controlled release of vancomycin for the treatment of brain abscesses. Poly(D,L-lactic acid) (PLA) and its copolymers poly(lactide-co-glycolide) PLGA 90:10 and PLGA 70:30, were prepared. Polymer disks containing vancomycin (VN) were prepared by solvent casting from methylene chloride solutions. Degradation of the polymer disk was studied by scanning electron microscopy, NMR and GPC. SEM revealed an increasing degree of degradation with time with both PLGAs, the effect being more distinct in the PLGA with the higher glycolide content (PLGA 70:30), which was confirmed with GPC, which showed both a decrease in the molecular weights of PLGA and a decrease in the heterogeneity index (chain length distribution) upon incubation in isotonic phosphate buffer at 37 degrees C for up to 5 weeks. NMR showed a decrease in the CH2 contents of the copolymers, implying that the glycolide component of the copolymers is being preferentially degraded. In situ, vancomycin release behaviour of the disks in pH 7.4 phosphate buffer saline (PBS) was followed for approximately 2 months in a static system. It was observed that release was according to Higuchi kinetics (Q vs. t(1/2)), and introduction of low molecular weight PLA or hydrophilic compounds like PEG increased the release rate. PMID:11811762

  4. Cholesterol-modified poly(lactide-co-glycolide) nanoparticles for tumor-targeted drug delivery.

    Science.gov (United States)

    Lee, Jeong-Jun; Lee, Song Yi; Park, Ju-Hwan; Kim, Dae-Duk; Cho, Hyun-Jong

    2016-07-25

    Poly(lactide-co-glycolide)-cholesterol (PLGA-C)-based nanoparticles (NPs) were developed for the tumor-targeted delivery of curcumin (CUR). PLGA-C/CUR NPs with ∼200nm mean diameter, narrow size distribution, and neutral zeta potential were fabricated by a modified emulsification-solvent evaporation method. The existence of cholesterol moiety in PLGA-C copolymer was confirmed by proton nuclear magnetic resonance ((1)H NMR) analysis. In vitro stability of developed NPs after 24h incubation was confirmed in phosphate buffered saline (PBS) and serum media. Sustained (∼6days) and pH-responsive drug release profiles from PLGA-C NPs were presented. Blank PLGA and PLGA-C NPs exhibited a negligible cytotoxicity in Hep-2 (human laryngeal carcinoma) cells in the tested concentration range. According to the results of flow cytometry and confocal laser scanning microscopy (CLSM) studies, PLGA-C NPs presented an improved cellular accumulation efficiency, compared to PLGA NPs, in Hep-2 cells. Enhanced in vivo tumor targetability of PLGA-C NPs, compared to PLGA NPs, in Hep-2 tumor-xenografted mouse model was also verified by a real-time near-infrared fluorescence (NIRF) imaging study. Developed PLGA-C NPs may be a candidate of efficient and biocompatible nanosystems for tumor-targeted drug delivery and cancer imaging. PMID:27286639

  5. Poly(lactide-co-trimethylene carbonate) and polylactide/polytrimethylene carbonate blown films.

    Science.gov (United States)

    Li, Hongli; Chang, Jiangping; Qin, Yuyue; Wu, Yan; Yuan, Minglong; Zhang, Yingjie

    2014-01-01

    In this work, poly(lactide-co-trimethylene carbonate) and polylactide/ polytrimethylene carbonate films are prepared using a film blowing method. The process parameters, including temperature and screw speed, are studied, and the structures and properties of the P(LA-TMC) and PLA/PTMC films are investigated. The scanning electron microscope (SEM) images show that upon improving the content of TMC and PTMC, the lamellar structures of the films are obviously changed. With increasing TMC monomer or PTMC contents, the elongation at the break is improved, and the maximum is up to 525%. The water vapor permeability (WVP) results demonstrate that the WVP of the PLA/PTMC film increased with the increase in the PTMC content, whereas the WVP of the P(LA-TMC) film decreased. Thermogravimetric (TG) measurements reveal that the decomposition temperatures of the P(LA-TMC) and PLA/PTMC films decrease with increases in the TMC and PTMC contents, respectively, but the processing temperature is significantly lower than the initial decomposition temperature. P(LA-TMC) or PLA/PTMC film can extend the shelf life of apples, for instance, like commercial LDPE film used in fruit packaging in supermarkets. PMID:24534806

  6. Poly(cyclohexylethylene)-block-Poly(lactide) Oligomers for Ultrasmall Nanopatterning Using Atomic Layer Deposition.

    Science.gov (United States)

    Yao, Li; Oquendo, Luis E; Schulze, Morgan W; Lewis, Ronald M; Gladfelter, Wayne L; Hillmyer, Marc A

    2016-03-23

    Poly(cyclohexylethylene)-block-poly(lactide) (PCHE-PLA) block polymers were synthesized through a combination of anionic polymerization, heterogeneous catalytic hydrogenation and controlled ring-opening polymerization. Ordered thin films of PCHE-PLA with ultrasmall hexagonally packed cylinders oriented perpendicularly to the substrate surface were prepared by spin-coating and subsequent solvent vapor annealing for use in two distinct templating strategies. In one approach, selective hydrolytic degradation of the PLA domains generated nanoporous PCHE templates with an average pore diameter of 5 ± 1 nm corroborated by atomic force microscopy and grazing incidence small-angle X-ray scattering. Alternatively, sequential infiltration synthesis (SIS) was employed to deposit Al2O3 selectively into the PLA domains of PCHE-PLA thin films. A combination of argon ion milling and O2 reactive ion etching (RIE) enabled the replication of the Al2O3 nanoarray from the PCHE-PLA template on diverse substrates including silicon and gold with feature diameters less than 10 nm.

  7. Enhanced Antibacterial Activity of Roxithromycin Loaded Pegylated Poly Lactide-co-glycolide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mona Noori Koopaei

    2012-12-01

    Full Text Available Background and the purpose of the study The purpose of this study was to prepare pegylated poly lactide-co-glycolide (PEG-PLGAnanoparticles (NPs loaded with roxithromycin (RXN with appropriate physicochemical properties and antibacterial activity. Roxithromycin, a semi-synthetic derivative of erythromycin, is more stable than erythromycin under acidic conditions and exhibits improved clinical effects. Methods RXN was loaded in pegylated PLGA NPs in different drug;polymer ratios by solvent evaporation technique and characterized for their size and size distribution, surface charge,surface morphology, drug loading, in vitro drug release profile, and in vitro antibacterial effects on S. aureus, B. subtilis, and S. epidermidis.Results and conclusion NPs were spherical with a relatively mono-dispersed size distribution. The particle size ofnanoparticles ranged from 150 to 200 nm. NPs with entrapment efficiency of up to 80.0±6.5% and drug loading of up to 13.0±1.0% were prepared. In vitro release study showedan early burst release of about 50.03±0.99% at 6.5 h and then a slow and steady release of RXN was observed after the burst release. In vitro antibacterial effects determined that theminimal inhibitory concentration (MIC of RXN loaded PEG-PLGA NPs were 9 times lower on S. aureus, 4.5 times lower on B. subtilis, and 4.5 times lower on S. epidermidis compared to RXN solution. In conclusion it was shown that polymeric NPs enhanced the antibacterialefficacy of RXN substantially.

  8. Structure-Property Relationships of Poly(lactide)-based Triblock and Multiblock Copolymers

    Science.gov (United States)

    Panthani, Tessie Rose

    Replacing petroleum-based plastics with alternatives that are degradable and synthesized from annually renewable feedstocks is a critical goal for the polymer industry. Achieving this goal requires the development of sustainable analogs to commodity plastics which have equivalent or superior properties (e.g. mechanical, thermal, optical etc.) compared to their petroleum-based counterparts. This work focuses on improving and modulating the properties of a specific sustainable polymer, poly(lactide) (PLA), by incorporating it into triblock and multiblock copolymer architectures. The multiblock copolymers in this work are synthesized directly from dihydroxy-terminated triblock copolymers by a simple step-growth approach: the triblock copolymer serves as a macromonomer and addition of stoichiometric quantities of either an acid chloride or diisocyanate results in a multiblock copolymer. This work shows that over wide range of compositions, PLA-based multiblock copolymers have superior mechanical properties compared to triblock copolymers with equivalent chemical compositions and morphologies. The connectivity of the blocks within the multiblock copolymers has other interesting consequences on properties. For example, when crystallizable poly(L-lactide)-based triblock and multiblock copolymers are investigated, it is found that the multiblock copolymers have much slower crystallization kinetics. Additionally, the total number of blocks connected together is found to effect the linear viscoelastic properties as well as the alignment of lamellar domains under uniaxial extension. Finally, the synthesis and characterization of pressure-sensitive adhesives based upon renewable PLA-containing triblock copolymers and a renewable tackifier is detailed. Together, the results give insight into the effect of chain architecture, composition, and morphology on the mechanical behavior, thermal properties, and rheological properties of PLA-based materials.

  9. Preparation, characterization, and in vitro release studies of insulin-loaded double-walled poly(lactide-co-glycolide) microspheres.

    Science.gov (United States)

    Ansary, Rezaul H; Rahman, Mokhlesur M; Awang, Mohamed B; Katas, Haliza; Hadi, Hazrina; Doolaanea, Abd Almonen

    2016-06-01

    The purpose of this study was to fabricate insulin-loaded double-walled and single-polymer poly(lactide-co-glycolide) (PLGA) microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA), and a moderate degrading carboxyl-terminated PLGA polymers. A modified water-in-oil-in-oil-in-water (w/o/o/w) emulsion solvent evaporation technique was employed to prepare double-walled microspheres, whereas single-polymer microspheres were fabricated by a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The effect of fabrication techniques and polymer characteristics on microspheres size, morphology, encapsulation efficiency, in vitro release, and insulin stability was evaluated. The prepared double-walled microspheres were essentially non-porous, smooth surfaced, and spherical in shape, whereas single-polymer microspheres were highly porous. Double-walled microspheres exhibited a significantly reduced initial burst followed by sustained and almost complete release of insulin compared to single-polymer microspheres. Initial burst release was further suppressed from double-walled microspheres when the mass ratio of the component polymers was increased. In conclusion, double-walled microspheres made of Glu-PLGA and PLGA can be a potential delivery system of therapeutic insulin. PMID:26817478

  10. Solvent selection causes remarkable shifts of the ``Ouzo region'' for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation

    Science.gov (United States)

    Beck-Broichsitter, Moritz; Nicolas, Julien; Couvreur, Patrick

    2015-05-01

    Polymer nanoparticles (NPs) offer versatile novel biological features of interest for drug delivery applications. ``Ouzo diagrams'' allowed for a systematic manufacture of specified colloidal formulations by the widely used nanoprecipitation process. Surprisingly, despite the well-documented relevance of the applied organic solvent for nanoprecipitation, its effect on the actual status of the ``Ouzo region'' was so far not studied. Herein, investigations were undertaken to account for the potential impact of the solvent type on the ``Ouzo diagrams'' for poly(lactide-co-glycolide) (PLGA) and tetrahydrofuran (THF), 1,4-dioxane, acetone and dimethyl sulfoxide (DMSO). The ``Ouzo region'' shifted considerably to higher polymer fractions upon solvent change (rank order: THF documented relevance of the applied organic solvent for nanoprecipitation, its effect on the actual status of the ``Ouzo region'' was so far not studied. Herein, investigations were undertaken to account for the potential impact of the solvent type on the ``Ouzo diagrams'' for poly(lactide-co-glycolide) (PLGA) and tetrahydrofuran (THF), 1,4-dioxane, acetone and dimethyl sulfoxide (DMSO). The ``Ouzo region'' shifted considerably to higher polymer fractions upon solvent change (rank order: THF Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01695a

  11. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration

    Science.gov (United States)

    Wang, Zi; Lin, Ming; Xie, Qing; Sun, Hao; Huang, Yazhuo; Zhang, DanDan; Yu, Zhang; Bi, Xiaoping; Chen, Junzhao; Wang, Jing; Shi, Wodong; Gu, Ping; Fan, Xianqun

    2016-01-01

    Background Tissue engineering has become a promising therapeutic approach for bone regeneration. Nanofibrous scaffolds have attracted great interest mainly due to their structural similarity to natural extracellular matrix (ECM). Poly(lactide-co-ε-caprolactone) (PLCL) has been successfully used in bone regeneration, but PLCL polymers are inert and lack natural cell recognition sites, and the surface of PLCL scaffold is hydrophobic. Silk fibroin (SF) is a kind of natural polymer with inherent bioactivity, and supports mesenchymal stem cell attachment, osteogenesis, and ECM deposition. Therefore, we fabricated hybrid nanofibrous scaffolds by adding different weight ratios of SF to PLCL in order to find a scaffold with improved properties for bone regeneration. Methods Hybrid nanofibrous scaffolds were fabricated by blending different weight ratios of SF with PLCL. Human adipose-derived stem cells (hADSCs) were seeded on SF/PLCL nanofibrous scaffolds of various ratios for a systematic evaluation of cell adhesion, proliferation, cytotoxicity, and osteogenic differentiation; the efficacy of the composite of hADSCs and scaffolds in repairing critical-sized calvarial defects in rats was investigated. Results The SF/PLCL (50/50) scaffold exhibited favorable tensile strength, surface roughness, and hydrophilicity, which facilitated cell adhesion and proliferation. Moreover, the SF/PLCL (50/50) scaffold promoted the osteogenic differentiation of hADSCs by elevating the expression levels of osteogenic marker genes such as BSP, Ocn, Col1A1, and OPN and enhanced ECM mineralization. In vivo assays showed that SF/PLCL (50/50) scaffold improved the repair of the critical-sized calvarial defect in rats, resulting in increased bone volume, higher trabecular number, enhanced bone mineral density, and increased new bone areas, compared with the pure PLCL scaffold. Conclusion The SF/PLCL (50/50) nanofibrous scaffold facilitated hADSC proliferation and osteogenic differentiation in

  12. Poly(lactide-co-glycolide) encapsulated hydroxyapatite microspheres for sustained release of doxycycline

    International Nuclear Information System (INIS)

    Highlights: ► PLGA encapsulated HAP-MSs were used for the sustained delivery of Doxycycline (Doxy, a broad spectrum tetracycline antibiotic). ► Sustained Doxy release without obvious burst was observed. ► Mechanism of the sustained Doxy release was illustrated. ► Sustained Doxy release character in vivo was also obtained, the plasma Doxy levels were relatively lower and steady compared to that of the un-encapsulated HAP-MSs. - Abstract: The purpose of this study was to prepare a poly(lactide-co-glycolide) (PLGA) encapsulated hydroxyapatite microspheres (HAP-MSs) as injectable depot for sustained delivery of Doxycycline (Doxy). Doxy loaded HAP-MSs (Doxy-HAP-MSs) were encapsulated with PLGA by solid-in-oil-in-water (S/O/W) emulsion-solvent evaporation technique, the effects of the PLGA used (various intrinsic viscosity and LA/GA ratio) and ratio of PLGA/HAP-MSs on the formation of Doxy-HAP-MSs and in vitro release of Doxy were studied. The results showed that sustained drug release without obvious burst was obtained by using PLGA encapsulated HAP-MSs as the carrier, also the drug release rate could be tailored by changing the ratio of PLGA/HAP-MSs, or PLGA of various intrinsic viscosities or LA/GA ratio. Lower ratio of PLGA/HAP-MSs corresponded faster Doxy release, e.g. for the microspheres of PLGA/HAP-MSs ratio of 8 and 0.25, the in vitro Doxy release percents at the end of 7days were about 23% and 76%, respectively. Higher hydrophilicity (higher ratio of GA to LA) and lower molecular weight of PLGA corresponded to higher Doxy release rates. For in vivo release study, PLGA encapsulated HAP-MSs were subcutaneously injected to the back of mice, and the results showed good correlation between the in vivo and in vitro drug release. Meanwhile, the plasma Doxy levels after subcutaneous administration of PLGA encapsulated Doxy-HAP-MSs were relatively lower and steady compared to that of the un-encapsulated microspheres. In conclusion, PLGA encapsulated HAP-MSs may

  13. Poly(lactide-co-glycolide) encapsulated hydroxyapatite microspheres for sustained release of doxycycline

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaoyun [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Department of Pharmacy, Shandong Drug and Food Vocational College, Science and Technology Town, Hightech Industrial Development Zone, Weihai 264210 (China); Xu Hui; Zhao Yanqiu [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Wang Shaoning, E-mail: wsn-xh@126.com [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Abe, Hiroya; Naito, Makio [Joining and Welding Research Institute, Osaka University, 11-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Liu Yanli [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Wang Guoqing [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer PLGA encapsulated HAP-MSs were used for the sustained delivery of Doxycycline (Doxy, a broad spectrum tetracycline antibiotic). Black-Right-Pointing-Pointer Sustained Doxy release without obvious burst was observed. Black-Right-Pointing-Pointer Mechanism of the sustained Doxy release was illustrated. Black-Right-Pointing-Pointer Sustained Doxy release character in vivo was also obtained, the plasma Doxy levels were relatively lower and steady compared to that of the un-encapsulated HAP-MSs. - Abstract: The purpose of this study was to prepare a poly(lactide-co-glycolide) (PLGA) encapsulated hydroxyapatite microspheres (HAP-MSs) as injectable depot for sustained delivery of Doxycycline (Doxy). Doxy loaded HAP-MSs (Doxy-HAP-MSs) were encapsulated with PLGA by solid-in-oil-in-water (S/O/W) emulsion-solvent evaporation technique, the effects of the PLGA used (various intrinsic viscosity and LA/GA ratio) and ratio of PLGA/HAP-MSs on the formation of Doxy-HAP-MSs and in vitro release of Doxy were studied. The results showed that sustained drug release without obvious burst was obtained by using PLGA encapsulated HAP-MSs as the carrier, also the drug release rate could be tailored by changing the ratio of PLGA/HAP-MSs, or PLGA of various intrinsic viscosities or LA/GA ratio. Lower ratio of PLGA/HAP-MSs corresponded faster Doxy release, e.g. for the microspheres of PLGA/HAP-MSs ratio of 8 and 0.25, the in vitro Doxy release percents at the end of 7days were about 23% and 76%, respectively. Higher hydrophilicity (higher ratio of GA to LA) and lower molecular weight of PLGA corresponded to higher Doxy release rates. For in vivo release study, PLGA encapsulated HAP-MSs were subcutaneously injected to the back of mice, and the results showed good correlation between the in vivo and in vitro drug release. Meanwhile, the plasma Doxy levels after subcutaneous administration of PLGA encapsulated Doxy-HAP-MSs were relatively lower and steady

  14. Poly(lactide)-containing multifunctional nanoparticles: Synthesis, domain-selective degradation and therapeutic applicability

    Science.gov (United States)

    Samarajeewa, Sandani

    Construction of nanoassemblies from degradable components is desired for packaging and controlled release of active therapeutics, and eventual biodegradability in vivo. In this study, shell crosslinked micelles composed of biodegradable poly(lactide) (PLA) core were prepared by the self-assembly of an amphiphilic diblock copolymer synthesized by a combination of ring opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) polymerization. Enzymatic degradation of the PLA cores of the nanoparticles was achieved upon the addition of proteinase K (PK). Kinetic analyses and comparison of the properties of the nanomaterials as a function of degradation extent will be discussed. Building upon our findings from selective-excavation of the PLA core, enzyme- and redox-responsive nanoparticles were constructed for the encapsulation and stimuli-responsive release of an antitumor drug. This potent chemotherapeutic, otherwise poorly soluble in water was dispersed into aqueous solution by the supramolecular co-assembly with an amphiphilic block copolymer, and the release from within the core of these nanoparticles were gated by crosslinking the hydrophilic shell region with a reduction-responsive crosslinker. Enzyme- and reduction-triggered release behavior of the antitumor drug was demonstrated along with their remarkably high in vitro efficacy. As cationic nanoparticles are a promising class of transfection agents for nucleic acid delivery, in the next part of the study, synthetic methodologies were developed for the conversion of the negatively-charged shell of the enzymatically-degradable shell crosslinked micelles to positively-charged cationic nanoparticles for the complexation of nucleic acids. These degradable cationic nanoparticles were found to efficiently deliver and transfect plasmid DNA in vitro. The hydrolysis of the PLA core and crosslinkers of the nanocarriers may provide a mechanism for their programmed disassembly within

  15. Glycosaminoglycan-functionalized poly-lactide-co-glycolide nanoparticles: synthesis, characterization, cytocompatibility, and cellular uptake

    Directory of Open Access Journals (Sweden)

    Lamichhane SP

    2015-01-01

    Full Text Available Surya P Lamichhane,1 Neha Arya,1,2 Nirdesh Ojha,3 Esther Kohler,1 V Prasad Shastri1,2,41Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, 2Helmholtz Virtual Institute on “Multifunctional Biomaterials for Medicine”, 3Laboratory for Process Technology, Department of Microsystems Engineering, University of Freiburg, Freiburg, 4Centre for Biological Signaling Studies (BIOSS, University of Freiburg, Freiburg, GermanyAbstract: The efficient delivery of chemotherapeutics to the tumor via nanoparticle (NP-based delivery systems remains a significant challenge. This is compounded by the fact that the tumor is highly dynamic and complex environment composed of a plurality of cell types and extracellular matrix. Since glycosaminoglycan (GAG production is altered in many diseases (or pathologies, NPs bearing GAG moieties on the surface may confer some unique advantages in interrogating the tumor microenvironment. In order to explore this premise, in the study reported here poly-lactide-co-glycolide (PLGA NPs in the range of 100–150 nm bearing various proteoglycans were synthesized by a single-step nanoprecipitation and characterized. The surface functionalization of the NPs with GAG moieties was verified using zeta potential measurements and X-ray photoelectron spectroscopy. To establish these GAG-bearing NPs as carriers of therapeutics, cellular toxicity assays were undertaken in lung epithelial adenocarcinoma (A549 cells, human pulmonary microvascular endothelial cells (HPMEC, and renal proximal tubular epithelial cells. In general NPs were well tolerated over a wide concentration range (100–600 µg/mL by all cell types and were taken up to appreciable extents without any adverse cell response in A549 cells and HPMEC. Further, GAG-functionalized PLGA NPs were taken up to different extents in A459 cells and HPMEC. In both cell systems, the uptake of heparin-modified NPs was diminished by 50%–65% in comparison to that of

  16. Design of biobased and biodegradable - compostable engineered plastics based on poly(lactide)

    Science.gov (United States)

    Schneider, Jeffrey Samuelson

    Poly(lactide) (PLA) is a biobased and biodegradable - compostable plastic that is derived from renewable resources such as corn and sugar cane. It possesses excellent strength and stiffness properties and is recognized as safe for biomedical and food packaging applications. Commercially, it costs $1/lb and is now competitive with petroleum based polymers that have dominated the industry for decades. However, the material has some inherently weak properties that prevent it from certain applications - most notably, its rheological properties, brittleness, and poor high temperature performance. Cost effective modifications of the polymer to enhance these deficiencies could allow for increased applications and further its commercial growth. Multiple synthetic strategies have been developed to address PLA's performance property deficiencies. PLA typically exhibits poor melt strength and does not have the ability to strain harden, partially a result of its highly linear nature. Strain hardening and high melt strength are crucial elements of a material when producing blown films, a large untapped market for PLA. By increasing molecular weight and introducing long-chain branching into the material, these properties can be improved. Epoxy-functionalized PLA (EF-PLA) was synthesized by reacting PLA with a multifunctional epoxy polymer (MEP) using reactive extrusion processing (REX). These modified PLA polymers can function as a rheology modifier for PLA and a compatibilizer for blends with other biopolyesters. The modified PLA showed an increased melt strength and exhibited significant strain hardening, thus making it more suited for blown film applications. Blown films comprised of PLA and poly(butylene adipate-co-terephthalate) (PBAT) were produced using EF-PLA as a reactive modifier for rheological enhancement and compatibilization. This resulted in films with better processability (as seen by increased bubble stability) and improved mechanical properties, compared to a

  17. A HYBRID SCAFFOLD OF POLY(LACTIDE-CO-GLYCOLIDE) SPONGE FILLED WITH FIBRIN GEL FOR CARTILAGE TISSUE ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    Wei Wang; Dan Li; Mei-cong Wang; Yang-lin Li; Chang-you Gao

    2011-01-01

    The poly(lactide-co-glycolide) (PLGA) sponge fabricated by a gelatin porogen leaching method was filled with fibrin gel to obtain a hybrid scaffold for chondrocytes culture in vitro. The fibrin gel evenly distributed in the hybrid scaffold with visible fibrinogen fibers after drying. In vitro culture it was found that in the hybrid scaffold the chondrocytes distributed more evenly and kept a round morphology as that in the normal cartilage. Although the chondrocytes seeded in the control PLGA sponges showed similar proliferation behavior with that in the hybrid scaffolds, they were remarkably elongated, forming a fibroblast-like morphology. Moreover, a larger amount of glycosaminoglycans was secreted in the hybrid scaffolds than that in the PLGA sponges after in vitro culture of chondrocytes for 4 weeks. The results suggest that the fibrin/PLGA hybrid scaffold may be favorably applied for cartilage tissue engineering.

  18. Preparation and Evaluation of Poly(Ethylene Glycol)-Poly(Lactide) Micelles as Nanocarriers for Oral Delivery of Cyclosporine A

    Science.gov (United States)

    Zhang, Yanhui; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Fan, Yating; Huang, Yanqing; Liu, Yan

    2010-06-01

    A series of monomethoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) diblock copolymers were designed according to polymer-drug compatibility and synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and oral delivery of Cyclosporine A (CyA). CyA was efficiently encapsulated into the micelles with nanoscaled diameter ranged from 60 to 96 nm with a narrow size distribution. The favorable stabilities of CyA-loaded polymeric micelles were observed in simulated gastric and intestinal fluids. The in vitro drug release investigation demonstrated that drug release was retarded by polymeric micelles. The enhanced intestinal absorption of CyA-loaded polymeric micelles, which was comparable to the commercial formulation of CyA (Sandimmun Neoral®), was found. These suggested that polymeric micelles might be an effective nanocarrier for solubilization of poorly soluble CyA and further improving oral absorption of the drug.

  19. The effects of swift heavy ion irradiation on the structural properties of poly(lactide-co-glycolide)/clay nanocomposite

    Science.gov (United States)

    Kaur, Manpreet; Singh, Surinder; Mehta, Rajeev

    2016-05-01

    Radiation has been used as a processing technique to modify structural, chemical, physical and morphological properties of polymers and its nanocomposite and can thus be used as a method to control the rate of degradation. The swift heavy ions (SHI) irradiation effects on the structural properties of poly(lactide-co-glycolide) nanocomposites containing 5wt% organo-montmorillonite (OMMT) clay by irradiating with 50 MeV Li3+ and 180 MeV Ag8+ ions has been studied at different fluences. The structural responses of PLGA nanocomposite under the influence of SHI were studied using Fourier transform infrared (FTIR) spectroscopy. The presence of clay and irradiation by swift heavy ions (SHI) brings out interesting changes in structural properties of nanocomposite.

  20. Poly (lactide-co-glycolide nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Reza Tavakoli-Darestani

    2013-05-01

    Full Text Available Please cite this article as: Tavakoli-Darestani R, Kazemian GH, Emami M, Kamrani-Rad A. Poly (lactide-co-glycolide nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering. Novel Biomed 2013;1:8-15.Background: A combination of polymeric nanofibrous scaffold and bioactive materials is potentially useful in bone regeneration applications.Materials and Methods: In the present study, Poly (lactide-co-glycolide (PLGA nanofibrous scaffolds, fabricated via electrospinning, were initially coated with Type I collagen and then with nano-hydroxyapatite. The prepared scaffolds were then characterized using SEM and their ability for bone regeneration was investigated in a rat critical size bone defect using digital mammography, multislice spiral-computed tomography (MSCT imaging, and histological analysis.Results: Electrospun scaffolds had nanofibrous structure with homogenous distribution of n-HA on collagen-grafted PLGA. After 8 weeks of implantation, no sign of inflammation or complication was observed at the site of surgery. According to digital mammography and MSCT, PLGA nanofibers coated simultaneously with collagen and HA showed the highest regeneration in rat calvarium. In addition, no significant difference was observed in bone repair in the group which received PLGA and the untreated control. This amount was lower than that observed in the group implanted with collagen-coated PLGA. Histological studies confirmed these data and showed osteointegration to the surrounding tissue.Conclusion: Taking all together, it was demonstrated that nanofibrous structures can be used as appropriate support for tissue-engineered scaffolds, and coating them with bioactive materials will provide ideal synthetic grafts. Fabricated PLGA coated with Type I collagen and HA can be used as new bone graft substitutes in orthopaedic surgery and is capable of enhancing bone regeneration via characteristics such as osteoconductivity and

  1. Recent advances in high performance poly(lactide): from “green” plasticization to super-tough materials via (reactive) compounding

    OpenAIRE

    Kfoury, Georgio; Raquez, Jean-Marie; Hassouna, Fatima; Odent, Jérémy; Toniazzo, Valérie; Ruch, David; Dubois, Philippe

    2013-01-01

    Due to its origin from renewable resources, its biodegradability, and recently, its industrial implementation at low costs, poly(lactide) (PLA) is considered as one of the most promising ecological, bio-sourced and biodegradable plastic materials to potentially and increasingly replace traditional petroleum derived polymers in many commodity and engineering applications. Beside its relatively high rigidity [high tensile strength and modulus compared with many common thermoplastics such as pol...

  2. Recent Trends in Preparation of Poly(lactide-co-glycolide Nanoparticles by Mixing Polymeric Organic Solution with Antisolvent

    Directory of Open Access Journals (Sweden)

    Edel Sah

    2015-01-01

    Full Text Available In recent years, there have been a plethora of nanoengineering approaches for the development of poly(lactide-co-glycolide (PLGA nanoparticulate carrier systems. However, overlooking the multifaceted issues in the preparation and characterization of PLGA-based nanoparticles, many reports have been focused on their in vivo behaviors. It is imperative to fully assess technological aspects of a nanoencapsulation method of choice and to carefully evaluate the nanoparticle quality. The selection of a nanoencapsulation technique should consider drug property, nanoparticle quality, scale-up feasibility, manufacturing costs, personnel safety, environmental impact, waste disposal, and the like. Made in this review are the fundamentals of classical emulsion-templated nanoencapsulation methods used to prepare PLGA nanoparticles. More specifically, this review provides insight into emulsion solvent evaporation/extraction, salting-out, nanoprecipitation, membrane emulsification, microfluidic technology, and flow focusing. Innovative nanoencapsulation techniques are being developed to address many challenges existing in the production of PLGA-based nanoparticles. In addition, there are various out-of-the-box approaches for the development of novel PLGA hybrid systems that could deliver multiple drugs. Latest trends in these areas are also dealt with in this review. Relevant information might be helpful to those who prepare and develop PLGA-based nanoparticles that meet their specific demands.

  3. The Effect of Temozolomide/Poly(lactide-co-glycolide (PLGA/Nano-Hydroxyapatite Microspheres on Glioma U87 Cells Behavior

    Directory of Open Access Journals (Sweden)

    Anhua Wu

    2012-01-01

    Full Text Available In this study, we investigated the effects of temozolomide (TMZ/Poly (lactide-co-glycolide(PLGA/nano-hydroxyapatite microspheres on the behavior of U87 glioma cells. The microspheres were fabricated by the “Solid/Water/Oil” method, and they were characterized by using X-Ray diffraction, scanning electron microscopy and differential scanning calorimetry. The proliferation, apoptosis and invasion of glioma cells were evaluated by MTT, flow cytometry assay and Transwell assay. The presence of the key invasive gene, αVβ3 integrin, was detected by the RT-PCR and Western blot method. It was found that the temozolomide/PLGA/nano-hydroxyapatite microspheres have a significantly diminished initial burst of drug release, compared to the TMZ laden PLGA microspheres. Our results suggest they can significantly inhibit the proliferation and invasion of glioma cells, and induce their apoptosis. Additionally, αVβ3 integrin was also reduced by the microspheres. These data suggest that by inhibiting the biological behavior of glioma cells in vitro, the newly designed temozolomide/PLGA/nano-hydroxyapatite microspheres, as controlled drug release carriers, have promising potential in treating glioma.

  4. Recent advances in high performance poly(lactide: From green plasticization to super-tough materials via (reactive compounding

    Directory of Open Access Journals (Sweden)

    Georgio eKfoury

    2013-12-01

    Full Text Available Due to its origin from renewable resources, its biodegradability, and recently, its industrial implementation at low costs, poly(lactide (PLA is considered as one of the most promising ecological, bio-sourced and biodegradable plastic materials to potentially and increasingly replace traditional petroleum derived polymers in many commodity and engineering applications. Beside its relatively high rigidity (high tensile strength and modulus compared with many common thermoplastics such as poly(ethylene terephthalate (PET, high impact poly(styrene (HIPS and poly(propylene (PP, PLA suffers from an inherent brittleness, which can limit its applications especially where mechanical toughness such as plastic deformation at high impact rates or elongation is required. Therefore, the curve plotting stiffness vs. impact resistance and ductility must be shifted to higher values for PLA-based materials, while being preferably fully bio-based and biodegradable upon the application.This review aims to establish a state of the art focused on the recent progresses and preferably economically viable strategies developed in the literature for significantly improve the mechanical performances of PLA. A particular attention is given to plasticization as well as to impact resistance modification of PLA in the case of (reactive blending PLA-based systems.

  5. Recent advances in high performance poly(lactide): From ``green'' plasticization to super-tough materials via (reactive) compounding

    Science.gov (United States)

    Kfoury, Georgio; Raquez, Jean-Marie; Hassouna, Fatima; Odent, Jérémy; Toniazzo, Valérie; Ruch, David; Dubois, Philippe

    2013-12-01

    Due to its origin from renewable resources, its biodegradability, and recently, its industrial implementation at low costs, poly(lactide) (PLA) is considered as one of the most promising ecological, bio-sourced and biodegradable plastic materials to potentially and increasingly replace traditional petroleum derived polymers in many commodity and engineering applications. Beside its relatively high rigidity (high tensile strength and modulus compared with many common thermoplastics such as poly(ethylene terephthalate) (PET), high impact poly(styrene) (HIPS) and poly(propylene) (PP)), PLA suffers from an inherent brittleness, which can limit its applications especially where mechanical toughness such as plastic deformation at high impact rates or elongation is required. Therefore, the curve plotting stiffness vs. impact resistance and ductility must be shifted to higher values for PLA-based materials, while being preferably fully bio-based and biodegradable upon the application. This review aims to establish a state of the art focused on the recent progresses and preferably economically viable strategies developed in the literature for significantly improve the mechanical performances of PLA. A particular attention is given to plasticization as well as to impact resistance modification of PLA in the case of (reactive) blending PLA-based systems.

  6. Paclitaxel-loaded poly(lactide-co-glycolide)/poly(ethylene vinyl acetate) composite for stent coating by ultrasonic atomizing spray

    Science.gov (United States)

    Yuk, Soon Hong; Oh, Keun Sang; Park, Jinah; Kim, Soon-Joong; Kim, Jung Ho; Kwon, Il Keun

    2012-04-01

    The mixture of poly(lactide-co-glycolide) (PLGA) and poly(ethylene vinyl acetate) (PEVA) forms a homogeneous liquid in an organic solvent such as tetrahydrofuran, and a phase-separated PLGA/PEVA composite can be prepared from it by evaporating the organic solvent. Exploiting this phenomenon, we designed a novel method of preparing a drug-loaded PLGA/PEVA composite and used it for coating drug-eluting stents (DESs). Paclitaxel (PTX), an anticancer drug, was chosen as a model drug. PLGA acts as a microdepot for PTX, and PEVA provides mechanical strength to the coating material. The presence of PLGA in the PLGA/PEVA composite suppressed PTX crystallization in the coating material, and PTX showed a sustained release rate over more than 30 days. The mechanical strength of the PLGA/PEVA composite was better than that of PEVA used as a control. After coating the stent with a PLGA/PEVA composite using ultrasonic atomizing spray, the morphology of the coated material was observed by scanning electron microscopy, and the release pattern of PTX was measured by high-performance liquid chromatography.

  7. Preparation and Evaluation of Poly(Ethylene Glycol–Poly(Lactide Micelles as Nanocarriers for Oral Delivery of Cyclosporine A

    Directory of Open Access Journals (Sweden)

    Huang Yanqing

    2010-01-01

    Full Text Available Abstract A series of monomethoxy poly(ethylene glycol–poly(lactide (mPEG–PLA diblock copolymers were designed according to polymer–drug compatibility and synthesized, and mPEG–PLA micelle was fabricated and used as a nanocarrier for solubilization and oral delivery of Cyclosporine A (CyA. CyA was efficiently encapsulated into the micelles with nanoscaled diameter ranged from 60 to 96 nm with a narrow size distribution. The favorable stabilities of CyA-loaded polymeric micelles were observed in simulated gastric and intestinal fluids. The in vitro drug release investigation demonstrated that drug release was retarded by polymeric micelles. The enhanced intestinal absorption of CyA-loaded polymeric micelles, which was comparable to the commercial formulation of CyA (Sandimmun Neoral®, was found. These suggested that polymeric micelles might be an effective nanocarrier for solubilization of poorly soluble CyA and further improving oral absorption of the drug.

  8. Effect of a low-molecular-weight cross-linkable macromer on electrospinning of poly(lactide-co-glycolide) fibers.

    Science.gov (United States)

    Xu, Weijie; He, Xuezhong; Sarvestani, Alireza S; Jabbari, Esmaiel

    2007-01-01

    A mixture of low-molecular-weight poly(L-lactide-co-glycolide ethylene oxide fumarate) (PLGEOF) macromer and high-molecular-weight poly(lactide-co-glycolide) (PLGA) was used to produce fibers by electrospinning. PLGEOF is a biodegradable and in situ cross-linkable terpolymer made from building blocks with excellent biocompatibility. PLGA provides the required elongational viscosity to the spinning jet while the unsaturated PLGEOF macromers contribute to in situ crosslinking of fibers and attachment of bioactive functional groups. Mechanical rheometry demonstrated that PLGEOF macromers cross-link in situ by ultraviolet radiation. The addition of PLGEOF macromer to PLGA solutions had a significant effect on size and morphology of the electrospun fibers. The morphology of the electrospun fibers changed from bead- to fiber-like with increasing PLGEOF concentration. As PLGEOF was added to 12 wt% PLGA solutions, the fiber diameter first decreased with 2% PLGEOF and then increased with the addition of 5% and 10% PLGEOF. Our results demonstrate that the fiber size initially is decreased with the addition of PLGEOF due to an increase in solution conductivity and then is increased with further PLGEOF addition due to higher viscosity of the polymerizing mixture. PMID:17961321

  9. Poly-Lactide/Exfoliated C30B Interactions and Influence on Thermo-Mechanical Properties Due to Artificial Weathering

    Directory of Open Access Journals (Sweden)

    Wendy Margarita Chávez-Montes

    2016-04-01

    Full Text Available Thermal stability as well as enhanced mechanical properties of poly-lactide (PLA can increase PLA applications for short-use products. The conjunction of adequate molecular weight (MW as well as satisfactory thermo-mechanical properties, together, can lead to the achievement of suitable properties. However, PLA is susceptible to thermal degradation and thus an undesired decay of MW and a decrease of its mechanical properties during processing. To avoid this PLA degradation, nanofiller is incorporated as reinforcement to increase its thermo-mechanical properties. There are many papers focusing on filler effects on the thermal stability and mechanical properties of PLA/nanocomposites; however, these investigations lack an explanation of polymer/filler interactions. We propose interactions between PLA and Cloisite30B (C30B as nanofiller. We also study the effects on the thermal and mechanical properties due to molecular weight decay after exposure to artificial weathering. PLA blank and nanocomposites were subjected to three time treatments (0, 176, and 360 h of exposure to artificial weathering in order to achieve comparable materials with different MW. MW was acquired by means of Gel Permeation Chromatography (GPC. Thermo-mechanical properties were investigated through Thermogravimetric Analysis (TGA, Differential Scanning Calorimetry (DSC, X-ray Diffraction (XRD, Dynamic Mechanical Thermal Analysis (DMTA and Fourier Transform Infrared Spectroscopy (FTIR.

  10. Gelatin Tight-Coated Poly(lactide-co-glycolide Scaffold Incorporating rhBMP-2 for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Juan Wang

    2015-03-01

    Full Text Available Surface coating is the simplest surface modification. However, bioactive molecules can not spread well on the commonly used polylactone-type skeletons; thus, the surface coatings of biomolecules are typically unstable due to the weak interaction between the polymer and the bioactive molecules. In this study, a special type of poly(lactide-co-glycolide (PLGA-based scaffold with a loosened skeleton was fabricated by phase separation, which allowed gelatin molecules to more readily diffuse throughout the structure. In this application, gelatin modified both the internal substrate and external surface. After cross-linking with glutaraldehyde, the surface layer gelatin was tightly bound to the diffused gelatin, thereby preventing the surface layer gelatin coating from falling off within 14 days. After gelatin modification, PLGA scaffold demonstrated enhanced hydrophilicity and improved mechanical properties (i.e., increased compression strength and elastic modulus in dry and wet states. Furthermore, a sustained release profile of recombinant human bone morphogenetic protein-2 (rhBMP-2 was achieved in the coated scaffold. The coated scaffold also supported the in vitro attachment, proliferation, and osteogenesis of rabbit bone mesenchymal stem cells (BMSCs, indicating the bioactivity of rhBMP-2. These results collectively demonstrate that the cross-linked-gelatin-coated porous PLGA scaffold incorporating bioactive molecules is a promising candidate for bone tissue regeneration.

  11. Targeted drug delivery nanosystems based on copolymer poly(lactide)-tocopheryl polyethylene glycol succinate for cancer treatment

    Science.gov (United States)

    Thu Ha, Phuong; Nguyen, Hoai Nam; Doan Do, Hai; Thong Phan, Quoc; Nguyet Tran Thi, Minh; Phuc Nguyen, Xuan; Nhung Hoang Thi, My; Huong Le, Mai; Nguyen, Linh Toan; Quang Bui, Thuc; Hieu Phan, Van

    2016-03-01

    Along with the development of nanotechnology, drug delivery nanosystems (DDNSs) have attracted a great deal of concern among scientists over the world, especially in cancer treatment. DDNSs not only improve water solubility of anticancer drugs but also increase therapeutic efficacy and minimize the side effects of treatment methods through targeting mechanisms including passive and active targeting. Passive targeting is based on the nano-size of drug delivery systems while active targeting is based on the specific bindings between targeting ligands attached on the drug delivery systems and the unique receptors on the cancer cell surface. In this article we present some of our results in the synthesis and testing of DDNSs prepared from copolymer poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS), which carry anticancer drugs including curcumin, paclitaxel and doxorubicin. In order to increase the targeting effect to cancer cells, active targeting ligand folate was attached to the DDNSs. The results showed copolymer PLA-TPGS to be an excellent carrier for loading hydrophobic drugs (curcumin and paclitaxel). The fabricated DDNSs had a very small size (50-100 nm) and enhanced the cellular uptake and cytotoxicity of drugs. Most notably, folate-decorated paclitaxel-loaded copolymer PLA-TPGS nanoparticles (Fol/PTX/PLA-TPGS NPs) were tested on tumor-bearing nude mice. During the treatment time, Fol/PTX/PLA-TPGS NPs always exhibited the best tumor growth inhibition compared to free paclitaxel and paclitaxel-loaded copolymer PLA-TPGS nanoparticles. All results evidenced the promising potential of copolymer PLA-TPGS in fabricating targeted DDNSs for cancer treatment.

  12. Morphological and surface compositional changes in poly(lactide-co-glycolide) tissue engineering scaffolds upon radio frequency glow discharge plasma treatment

    International Nuclear Information System (INIS)

    Chemical functionalisation of polymeric scaffolds with functional groups such as amine could provide optimal conditions for loading of signalling biomolecules over the entire volume of the porous scaffolds. Three-dimensional (both surface and bulk) functionlisation of large volume scaffolds is highly desirable, but preferably without any change to the basic morphological, structural and bulk chemical properties of the scaffolds. In this work, we have carried out and compared treatments of poly(lactide-co-glycolide) tissue engineering scaffolds by two methods, that is, a wet chemical method using ethylenediamine and a glow discharge plasma method using heptylamine as a precursor. The samples thus prepared were analysed by scanning electron microscopy and X-ray photoelectron spectroscopy. The plasma treatment generated amide and protonated amine (NH+) groups which were present in the bulk and on the surface of the scaffold. Amination also occurred for the wet chemical treatments but the structural and chemical integrity were adversely affected

  13. Comparative evaluation of in vitro parameters of tamoxifen citrate loaded poly(lactide-co-glycolide), poly(epsilon-caprolactone) and chitosan nanoparticles.

    Science.gov (United States)

    Cirpanli, Y; Yerlikaya, F; Ozturk, K; Erdogar, N; Launay, M; Gegu, C; Leturgez, T; Bilensoy, E; Calis, S; Capan, Y

    2010-12-01

    Tamoxifen (TAM), the clinical choice for the antiestrogen treatment of advanced or metastatic breast cancer, was formulated in nanoparticulate carrier systems in the form of poly(lactide-co-glycolide) (PLGA), poly-epsilon-caprolactone (PCL) and chitosan (CS) nanoparticles. The PLGA and PCL nanoparticles were prepared by a nanoprecipitation technique whereas the CS nanoparticles were prepared by the ionic gelation method. Mean particle sizes were under 260 nm for PLGA and PCL nanoparticles and around 400 nm for CS nanoparticles. Polydispersity indices were less than 0.4 for all formulations. Zeta potential values were positive for TAM loaded nanoparticles because of the positive charge of the drug. Drug loading values were significantly higher for PCL nanoparticles when compared to PLGA and CS nanoparticles. All nanoparticle formulations exhibited controlled release properties. These results indicate that TAM loaded PLGA, PCL and CS nanoparticles may provide promising carrier systems for tumor targeting. PMID:21284254

  14. Modeling and experimental investigation of rheological properties of injectable poly(lactide ethylene oxide fumarate)/hydroxyapatite nanocomposites.

    Science.gov (United States)

    Sarvestani, Alireza S; Jabbari, Esmaiel

    2006-05-01

    Injectable multiphasic polymer/ceramic composites are attractive as bioresorbable scaffolds for bone regeneration because they can be cross-linked in situ and are osteoconductive. The injectability of the composite depends on the nanoparticle content and the energetic interactions at the polymer/particle interface. The objective of this research was to determine experimentally the rheological properties of the PLEOF/apatite composite as an injectable biomaterial and to compare the viscoelastic response with the predictions of a linear elastic dumbbell model. A degradable in situ cross-linkable terpolymer based on low molecular weight poly(L-lactide) and poly(ethylene oxide) linked by unsaturated fumarate groups is synthesized. The poly(L-lactide-co-ethylene oxide-co-fumarate) (PLEOF) terpolymer interacts with the surface of the apatite nanoparticles by polar interactions and hydrogen bonding. A kinetic model is developed that takes into account the adsorption/desorption of polymer chains to/from the nanoparticle surface. Rheological properties of the aqueous dispersion of PLEOF terpolymer reinforced with nanosized hydroxyapatite (HA) particles are investigated using mechanical rheometry. To this end, we performed a series of rheological experiments on un-cross-linked PLEOF reinforced with different volume fractions of HA nanoparticles. The results demonstrate that the observed nonlinear viscoelasticity at higher shear rates is controlled by the energetic interactions between the polymer chains and dispersed particle aggregates and by the rate of the adsorption/desorption of the chains to/from the surface of the nanoparticles. PMID:16677041

  15. Irradiation of bioresorbable biomaterials for controlled surface degradation

    DEFF Research Database (Denmark)

    Simpson, M.; Gilmore, B.F.; Miller, Arne;

    2014-01-01

    Bioresorbable polymers increasingly are the materials of choice for implantable orthopaedic fixation devices. Controlled degradation of these polymers is vital for preservation of mechanical properties during tissue repair and controlled release of incorporated agents such as osteoconductive...... or anti-microbial additives. The work outlined in this paper investigates the use of low energy electron beam irradiation to surface modify polyhydroxyacid samples incorporating beta tricalcium phosphate (β-TCP). This work uniquely demonstrates that surface modification of bioresorbable polymers through...... bioresorption, followed by characterisation. The results show that low energy e-beam irradiation enhances surface hydrolytic degradation in comparison to bulk and furthermore allows for earlier release of incorporated calcium via dissolution into the surrounding medium....

  16. EFFECT OF MINERAL FILLERS ON CRYSTALLIZATION AND MELTING BEHAVIOR OF POLY(LACTID ACID)/MINERAL FILLER COMPOSITES%聚乳酸/矿物填料复合材料的示差扫描量热研究

    Institute of Scientific and Technical Information of China (English)

    邹国享; 张鑫; 李炳健; 赵彩霞; 李锦春

    2012-01-01

    A series of poly ( lactid acid) ( PLA )/mineral filler composites have been prepared by melt blending. Crystallization and melting behaviors of PLA composites containing calcium carbonate ( CaCO3) , montmorillonite (MMT) and attapulgite (AT) have been studied by differential scanning calorimetry (DSC) , respectively. The results exhibited that MMT and AT did not obviously influence the slow-cooling crystallization of PLA, whereas CaCO3 effectively facilitated the crystallization of PLA in this process. The crystallization enthalpy (△Hc) increased with increasing the content of CaCO3 at a cooling rate of 2. 5 K/min. Moreover, the type and content of the fillers played an important role in the cold crystallization and melting remarkably. Low-content mineral fillers would promote the nucleation in the cold crystallization of PLA, among which MMT was the best effective. Meanwhile, different mineral fillers with relatively high contents would affect the crystal structures of PLA, yielding various types of DSC curves.%通过熔融共混法制备了一系列聚乳酸( PLA)/矿物填料复合材料.采用示差扫描量热(DSC)研究了含有碳酸钙( CaCO3)、蒙脱土(MMT)和凹凸棒土(AT)的聚乳酸复合材料在不同热历程中的结晶和熔融行为.研究发现,MMT和AT对PLA的慢速降温结晶无明显影响,而碳酸钙在慢速降温过程中能够有效促进PLA结晶;在2.5 K/min的降温速率下,结晶热焓随碳酸钙含量增加而增加;填料种类和含量会对复合材料升温过程的冷结晶和熔融产生较大影响,低含量矿物填料主要对PLA的冷结晶起成核作用,其中MMT成核效果最好.较高含量下不同填料会对PLA晶体形态产生影响,从而得到多样的DSC曲线变化.

  17. Addition of Zinc Improves the Physical Stability of Insulin in the Primary Emulsification Step of the Poly(lactide-co-glycolide Microsphere Preparation Process

    Directory of Open Access Journals (Sweden)

    Chandrasekar Manoharan

    2015-04-01

    Full Text Available In this study, the effect of zinc on insulin stability during the primary emulsification step of poly(lactide-co-glycolide microspheres preparation by the water-in-oil-in-water (w/o/w double emulsion solvent evaporation technique was evaluated. Insulin was emulsified at homogenization speeds of 5000 and 10,000 rpm. Insulin was extracted from the primary w/o emulsion by a method previously reported from our laboratory and analyzed by comprehensive analytical techniques. The differential scanning calorimetry thermograms of insulin with zinc showed a single peak around 83 °C with calorimetric enthalpy values similar to native insulin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE of extracted insulin showed a single intense band around 6 kDa, demonstrating the preservation of primary structure. High performance liquid chromatography (HPLC analysis revealed that no degradation products were formed during the homogenization process. Insulin aggregates residing at the w/o interfaces were found to be of non-covalent nature. In addition, observation of a single characteristic peak for insulin at m/z 5808 in the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF mass spectrum confirmed the absence of insulin degradation products and covalent dimers. Presence of zinc preserved the secondary structure of insulin as indicated by circular dichroism. In conclusion, these results show that with the addition of zinc, insulin stability can be improved during the primary emulsification step.

  18. Enhanced Germicidal Efficacy by Co-Delivery of Validamycin and Hexaconazole with Methoxy Poly(ethylene glycol)-Poly(lactide-co-glycolide) Nanoparticles.

    Science.gov (United States)

    Zhang, Jiakun; Liu, Yajing; Zhao, Caiyan; Cao, Lidong; Huang, Qiliang; Wu, Yan

    2016-01-01

    Co-delivery system has been proposed in pharmaceutical field aim to synergistic treatments. The combination formulation is also important in traditional pesticides formulations based on the low pest resistance risk and wide fungicidal spectrum. However, co-delivery nanoparticles (NPs) tend to be more environmentally friendly for the sustained-release behaviour and none of toxic organic solvents or dusts. Hence, we constructed co-delivery NPs which could delivery two kinds of pesticides, which function was similar with pesticides combination formulation. The co-delivery NPs of validamycin and hexaconazole were prepared with the amphiphilic copolymer methoxy poly(ethylene glycol)- poly(lactide-co-glycolide) (mPEG-PLGA) used an improved double emulsion method. The chemical structure of mPEG-PLGA copolymer was confirmed using fourier transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance spectroscopy (NMR). The co-delivery NPs all exhibited good size distribution and held sustained-release property. Germicidal efficacy of the co-delivery NPs against Rhizoctonia cerealis was also studied. The germicidal efficacy of co-delivery NPs against Rhizoctonia cerealis was better than that of traditional pesticides formulation. In addition, co-delivery NPs showed a lasting impact against Rhizoctonia cerealis. PMID:27398440

  19. Effect of Chain-Extenders on the Properties and Hydrolytic Degradation Behavior of the Poly(lactide/ Poly(butylene adipate-co-terephthalate Blends

    Directory of Open Access Journals (Sweden)

    Mingqing Chen

    2013-10-01

    Full Text Available Biodegradable poly(lactide/poly(butylene adipate-co-terephthalate (PLA/PBAT blends were prepared by reactive blending in the presence of chain-extenders. Two chain-extenders with multi-epoxy groups were studied. The effect of chain-extenders on the morphology, mechanical properties, thermal behavior, and hydrolytic degradation of the blends was investigated. The compatibility between the PLA and PBAT was significantly improved by in situ formation of PLA-co-PBAT copolymers in the presence of the chain-extenders, results in an enhanced ductility of the blends, e.g., the elongation at break was increased to 500% without any decrease in the tensile strength. The differential scanning calorimeter (DSC results reveal that cold crystallization of PLA was enhanced due to heterogeneous nucleation effect of the in situ compatibilized PBAT domains. As known before, PLA is sensitive to hydrolysis and in the presence of PBAT and the chain-extenders, the hydrolytic degradation of the blend was evident. A three-stage hydrolysis mechanism for the system is proposed based on a study of weight loss and molecular weight reduction of the samples and the pH variation of the degradation medium.

  20. Electrospun Poly(lactide-co-glycolide-co-3(S-methyl-morpholine-2,5-dione Nanofibrous Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Yakai Feng

    2016-01-01

    Full Text Available Biomimetic scaffolds have been investigated in vascular tissue engineering for many years. Excellent biodegradable materials are desired as temporary scaffolds to support cell growth and disappear gradually with the progress of guided tissue regeneration. In the present paper, a series of biodegradable copolymers were synthesized and used to prepared micro/nanofibrous scaffolds for vascular tissue engineering. Poly(lactide-co-glycolide-co-3(S-methyl-morpholine-2,5-dione [P(LA-co-GA-co-MMD] copolymers with different l-lactide (LA, glycolide (GA, and 3(S-methyl-2,5-morpholinedione (MMD contents were synthesized using stannous octoate as a catalyst. Moreover, the P(LA-co-GA-co-MMD nanofibrous scaffolds were prepared by electrospinning technology. The morphology of scaffolds was analyzed by scanning electron microscopy (SEM, and the results showed that the fibers are smooth, regular, and randomly oriented with diameters of 700 ± 100 nm. The weight loss of scaffolds increased significantly with the increasing content of MMD, indicating good biodegradable property of the scaffolds. In addition, the cytocompatibility of electrospun nanofibrous scaffolds was tested by human umbilical vein endothelial cells. It is demonstrated that the cells could attach and proliferate well on P(LA-co-GA-co-MMD scaffolds and, consequently, form a cell monolayer fully covering on the scaffold surface. Furthermore, the P(LA-co-GA-co-MMD scaffolds benefit to excellent cell infiltration after subcutaneous implantation. These results indicated that the P(LA-co-GA-co-MMD nanofibrous scaffolds could be potential candidates for vascular tissue engineering.

  1. Effect of a new surface-grafting method for nano-hydroxyapatite on the dispersion and the mechanical enhancement for poly(lactide-co-glycolide

    Directory of Open Access Journals (Sweden)

    L. Y. Jiang

    2014-02-01

    Full Text Available In this paper, a new surface-grafting D, L-lactide (DLLA for nano-hydroxyapatite (n-HA with the assist of citric acid was designed. The dispersion of new surface modified n-HA was characterized by Fourier transformation infrared (FTIR spectroscopy, thermal gravimetric analysis (TGA, X-ray powder diffraction (XRD, transmission electron microscopy (TEM and dispersion test, and the mechanical enhancement effect for poly(lactide-co-glycolide (PLGA was evaluated by scanning electron microscopy (SEM, differential scanning calorimeter measurements (DSC and electromechanical universal tester. The results showed that citric acid played a critical role in surface-grafting, which could greatly increase grafting amount and improve dispersion of n-HA, so that it resulted in better interfacial adhesion throughout PLGA matrix, higher crystallinity and better mechanical enhancement for PLGA than the surface-grafting method for n-HA without citric acid, whose bending strength and tensile strength were both over 20% higher than those of pure PLGA when 3 wt% n-HA was added, and it still enhanced 8 and 6% higher than those of pure PLGA even the introduction of 15 wt% n-HA, respectively. The above results suggested that the surface-grafting for n-HA with the aid of citric acid was an ideal novel surface modification method, which could greatly improve the dispersion of n-HA and exhibit excellent mechanical enhancement effect for PLGA, suggesting it has a great potential in the bone fracture internal fixation application in future.

  2. Enhanced oral bioavailability of acetylpuerarin by poly(lactide-co-glycolide nanoparticles optimized using uniform design combined with response surface methodology

    Directory of Open Access Journals (Sweden)

    Sun D

    2016-06-01

    Full Text Available Deqing Sun,1,2 Aiying Xue,3 Bin Zhang,1 Xia Xue,1 Jie Zhang,1 Wenjie Liu1 1Department of Pharmacy, the Second Hospital of Shandong University, Jinan, People’s Republic of China; 2School of Pharmaceutical Sciences, Shandong University, Jinan, People’s Republic of China; 3Department of Cardiology, the Second Hospital of Shandong University, Jinan, People’s Republic of China Abstract: Acetylpuerarin (AP, an acetylated derivative of puerarin, shows brain-protective effects in animals. However, AP has low oral bioavailability because of its poor water solubility. The objective of this study was to design and develop poly(lactide-co-glycolide (PLGA nanoparticles (NPs to enhance the oral bioavailability of AP. The NPs were prepared using a solvent diffusion method optimized via uniform design (UD combined with response surface methodology (RSM and characterized by their morphology, particle size, zeta (ζ-potential, encapsulation efficiency (EE, drug loading (DL, and in vitro drug release. A pharmacokinetic study was conducted in Wistar rats administered a single oral dose of 30 mg/kg AP. The optimized NPs were spherical and uniform in shape, with an average particle size of 145.0 nm, a polydispersity index (PI of 0.153, and a ζ-potential of -14.81 mV. The release of AP from the PLGA NPs showed an initial burst release followed by a sustained release, following Higuchi’s model. The EE and DL determined in the experiments were 90.51% and 17.07%, respectively. The area under the plasma concentration-time curve (AUC0-∞ of AP-PLGA-NPs was 6,175.66±350.31 h ng/mL, which was 2.75 times greater than that obtained from an AP suspension. This study showed that PLGA NPs can significantly enhance the oral bioavailability of AP. Keywords: acetylpuerarin, nanoparticles, poly(lactic-co-glycolic acid, pharmacokinetics, bioavailability

  3. Viscoelastic characterization and modeling of gelation kinetics of injectable in situ cross-linkable poly(lactide-co-ethylene oxide-co-fumarate) hydrogels.

    Science.gov (United States)

    Sarvestani, Alireza S; He, Xuezhong; Jabbari, Esmaiel

    2007-02-01

    Cell transplantation by injection of biodegradable hydrogels is a recently developed strategy for the treatment of degenerated tissues. A cell carrier should be cytocompatible, have suitable working time and rheological properties for injection, and harden in situ to attain dimensional stability and the desired mechanical strength. Hydrophilic macromer/cross-linker polymerizing systems, due to the relatively high molecular weight of the macromer and its inability to cross the cell membrane, are very attractive as injectable cell carriers. The objective of this research was to determine the effects of cross-linker, initiator, and accelerator concentrations on the gelation kinetics and ultimate modulus of a biodegradable, in situ cross-linkable poly(lactide-co-ethylene oxide-co-fumarate) (PLEOF) macromer. The in situ polymerizing mixture consisted of PLEOF macromer, methylene bisacrylamide cross-linker, and a neutral redox initiation system of ammonium persulfate initiator and tetramethylethylenediamine accelerator. Measurement of the time evolution of the viscoelastic properties of the network during the sol-gel transition showed the important influence of each component on the gel time and stiffness of the hydrogels. A kinetic model was developed to predict the modulus as a function of composition. Model predictions were consistent with most of the experimental findings. The values of the storage and loss moduli at the gel point were found to be approximately equal for samples with equal PLEOF concentrations, resulting in a simple method to predict the gelation time based on the Winter--Chambon criterion, with the use of the proposed kinetic model. The results of this study can be coupled with component cytocompatibility measurements to predict the effect of composition on the viability of the cells encapsulated in the hydrogel matrix. PMID:17253761

  4. Pleurocidin Peptide Enhances Grouper Anti-Vibrio harveyi Immunity Elicited by Poly(lactide-co-glycolide-Encapsulated Recombinant Glyceraldehyde-3-phosphate Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Shu-Chun Chuang

    2014-05-01

    Full Text Available Outer membrane proteins, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH, are considered immunodominant antigens for eliciting protective immunity against Vibrio harveyi, the main etiological agent of vibriosis in fish. Cationic antimicrobial peptides (AMPs, such as pleurocidin (PLE, play important roles in activating and recruiting immune cells, thereby contributing to subsequent innate and adaptive immune responses. In the present study, we aimed to use PLE peptide as a potent adjuvant to improve the immunogenicity of V. harveyi recombinant GAPDH (rGAPDH. In order to prepare a controlled-release vaccine, PLE peptide and rGAPDH protein were simultaneously encapsulated into polymeric microparticles made from the biodegradable poly(lactide-co-glycolide (PLG polymer. The resulting PLG-encapsulated PLE plus rGAPDH (PLG-PLE/rGAPDH microparticles, 3.21–6.27 μm in diameter, showed 72%–83% entrapment efficiency and durably released both PLE and rGAPDH for a long 30-day period. Following peritoneal immunization in grouper (Epinephelus coioides, PLG-PLE/rGAPDH microparticles resulted in significantly higher (p < 0.05, nested design long-lasting GAPDH-specific immunity (serum titers and lymphocyte proliferation than PLG-encapsulated rGAPDH (PLG-rGAPDH microparticles. After an experimental challenge of V. harveyi, PLG-PLE/rGAPDH microparticles conferred a high survival rate (85%, which was significantly higher (p < 0.05, chi-square test than that induced by PLG-rGAPDH microparticles (67%. In conclusion, PLE peptide exhibits an efficacious adjuvant effect to elicit not only improved immunity, but also enhanced protection against V. harveyi in grouper induced by rGAPDH protein encapsulated in PLG microparticles.

  5. Implantable biomedical devices on bioresorbable substrates

    Science.gov (United States)

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo; Kaplan, David L; Litt, Brian; Viventi, Jonathan; Huang, Yonggang; Amsden, Jason

    2014-03-04

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.

  6. In vivo evaluation of a conjugated poly(lactide-ethylene glycol nanoparticle depot formulation for prolonged insulin delivery in the diabetic rabbit model

    Directory of Open Access Journals (Sweden)

    Tomar L

    2013-02-01

    concentrations of polymers with respect to each other. Incorporation of insulin within the polymeric matrix was modeled using Connolly molecular surfaces. The computational results corroborated the experimental and analytical data. The ability to control blood glucose levels effectively coupled with the nontoxic behavior of the nanoparticles indicates that these nanoparticles are a potential candidate for insulin delivery.Keywords: parenteral delivery, insulin, nanoparticles, poly(lactide-ethylene glycol diblock copolymer, molecular mechanics energy relationship

  7. Facile Layer-by-Layer Self-Assembly toward Enantiomeric Poly(lactide) Stereocomplex Coated Magnetite Nanocarrier for Highly Tunable Drug Deliveries.

    Science.gov (United States)

    Li, Zibiao; Yuan, Du; Jin, Guorui; Tan, Beng H; He, Chaobin

    2016-01-27

    A highly tunable nanoparticle (NP) system with multifunctionalities was developed as drug nanocarrier via a facile layer-by-layer (LbL) stereocomplex (SC) self-assembly of enantiomeric poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) in solution using silica-coated magnetite (Fe3O4@SiO2) as template. The poly(lactide) (PLA) SC coated NPs (Fe3O4@SiO2@-SC) were further endowed with different stimuli-responsiveness by controlling the outermost layer coatings with respective pH-sensitive poly(lactic acid)-poly(2-dimethylaminoethyl methacrylate) (PLA-D) and temperature-sensitive poly(lactic acid)-poly(N-isopropylacrylamide) (PLA-N) diblock copolymers to yield Fe3O4@SiO2@SC-D and Fe3O4@SiO2@SC-N NPs, respectively, while the superparamagnetic properties of Fe3O4 were maintained. TEM images show a clearly resolved core-shell structure with a silica layer and sequential PLA SC co/polymer coating layers in the respective NPs. The well-designed NPs possess a size distribution in a range of 220-270 nm and high magnetization of 70.8-72.1 emu/g [Fe3O4]. More importantly, a drug release study from the as-constructed stimuli-responsive NPs exhibited sustained release profiles and the rates of release can be tuned by variation of external environments. Further cytotoxicity and cell culture studies revealed that PLA SC coated NPs possessed good cell biocompatibility and the doxorubicin (DOX)-loaded NPs showed enhanced drug delivery efficiency toward MCF-7 cancer cells. Together with the strong magnetic sensitivity, the developed hybrid NPs demonstrate a great potential of control over the drug release at a targeted site. The developed coating method can be further optimized to finely tune the nanocarrier size and operating range of pHs and temperatures for in vivo applications.

  8. SUPERTOUGH POLY(LACTIDE)S

    NARCIS (Netherlands)

    JOZIASSE, CAP; TOPP, MDC; VEENSTRA, H; GRIJPMA, DW; PENNINGS, AJ

    1994-01-01

    Semi-crystalline and amorphous copolymers of lactide and glycolide were rubber modified with degradable rubbers based on epsilon-caprolactone. The influence of crystallinity of the matrix, type of rubber and chain architecture on the impact resistance of the resulting materials was investigated. Wit

  9. Modelling degradation of bioresorbable polymeric medical devices

    CERN Document Server

    Pan, J

    2015-01-01

    The use of bioresorbable polymers in stents, fixation devices and tissue engineering is revolutionising medicine. Both industry and academic researchers are interested in using computer modelling to replace some experiments which are costly and time consuming. This book provides readers with a comprehensive review of modelling polymers and polymeric medical devices as an alternative to practical experiments. Chapters in part one provide readers with an overview of the fundamentals of biodegradation. Part two looks at a wide range of degradation theories for bioresorbable polymers and devices.

  10. Controlling the Degradation of Bioresorbable Polymers

    Science.gov (United States)

    Moritz, Istvan; Crowley, Brian; Brundage, Elizabeth; Rende, Deniz; Ozisik, Rahmi

    Bioresorbable polymers play a vital role in the development of implantable materials that are used in surgical procedures, controlled drug delivery systems; and tissue engineering scaffolds. The half-life of common bioresorbable polymers ranges from 3 to over 12 months and slow bioresorption rates of these polymers restrict their use to a limited set of applications. The use of embedded enzymes was previously proposed to control the degradation rate of bioresorbable polymers, and was shown to decrease average degradation time to about 0.5 months. In this study, electromagnetic actuation of iron oxide magnetic nanoparticles embedded in an encapsulant polymer, poly(ethyleneoxide), PEO, was employed to initiate enzyme assisted degradation of bioresorbable polymer poly(caprolactone), PCL. Results indicate that the internal temperature of iron oxide magnetic nanoparticle doped PEO samples can be increased via an alternating magnetic field, and temperature increase depends strongly on nanoparticle concentration and magnetic field parameters. The temperature achieved is sufficient to relax the PEO matrix and to enable the diffusion of enzymes from PEO to a surrounding PCL matrix. Current studies are directed at measuring the degradation rate of PCL due to the diffused enzyme. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.

  11. Effect of recombinant human bone morphogenetic protein 2/poly-lactide-co-glycolic acid (rhBMP-2/PLGA) with core decompression on repair of rabbit femoral head necrosis

    Institute of Scientific and Technical Information of China (English)

    Zhao-Xun Pan; Hong-Xin Zhang; Ye-Xin Wang; Long-Di Zhai; Wei Du

    2014-01-01

    Objective:To observe the effect of recombinant human bone morphogenetic protein 2/poly-lactide-co-glycolic acid (rhBMP-2/PLGA) with core decompression on repair of rabbit femoral head necrosis. Methods: Bilateral femoral head necrosis models of rabbit were established by steroid injection. A total of 48 rabbits (96 femoral head necrosis) were randomly divided into 4 groups: Group A, control group with12 rabbits, 24 femoral head necrosis;Group B, treated with rhBMP-2/PLGA implantation after core depression, with 12 rabbits, 24 femoral head necrosis;Group C, treated with rhBMP-2 implantation after core depression, with 12 rabbits, 24 femoral head necrosis;Group D treated with core depression group without implantation, with 12 rabbits, 24 femoral head necrosis. All animals were sacrificed after 12 weeks. The ability of repairing bone defect was evaluated by X-ray radiograph. Bone mineral density analysis of the defect regions were used to evaluate the level of ossification. The morphologic change and bone formation was assessed by HE staining. The angiogenesis was evaluated by VEGF immunohistochemistry. Results: The osteogenetic ability and quality of femoral head necrosis in group B were better than those of other groups after 12 weeks by X-ray radiograph and morphologic investigation. And the angiogenesis in group B was better than other groups. Group C had similar osteogenetic quality of femoral head necrosis and angiogenesis with group D. Conclusions:The treatment of rhBMP-2/PLGA implantation after core depression can promote the repair of rabbit femoral head necrosis. It is a promising and efficient synthetic bone material to treat the femoral head necrosis.

  12. Bioresorbable polymers: heading for a new generation of spinal cages

    OpenAIRE

    Wuisman, P.I.J.M.; Smit, T. H.

    2005-01-01

    The use of polymer-based bioresorbable materials is now expanding to the realm of spinal interbody fusion. Bioresorbable polymers have important advantages over metals, because they are temporary, much less stiff, and radiolucent. Most promising is a group of α-polyesters, in particular polylactide acids (PLAs). Their biocompatibility is excellent, and they have sufficient stiffness and strength to provide initial and intermediate-term stability required for bone healing. However, polylactide...

  13. Bioresorbable stent restenosis: new devices, novel situations.

    Science.gov (United States)

    Núñez-Gil, Iván J; Echavarría, Mauro; Escaned, Javier; Biagioni, Corina; Feltes, Gisela; Fernández-Ortiz, Antonio

    2014-12-01

    A 58-year-old man presented to our hospital with effort angina. Ten months prior, he was treated with a Bioresorbable vascular scaffold (BVS). During the current admission, an image angiographically compatible with in-BVS restenosis at the circumflex ostium with a radiolucent image in the ostial left anterior descending artery was shown. BVS failure is very infrequent and this is one of the first cases of BVS restenosis described. Thus, data on the best management option are scarce. We treated it like a drug-eluting stent restenosis, performing first an intracoronary optical coherence tomography scan in order to identify the left descending radiolucent image and to prepare the best treatment strategy. PMID:25480999

  14. Construction of paclitaxel-loaded poly (2-hydroxyethyl methacrylate-g-poly (lactide- 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine copolymer nanoparticle delivery system and evaluation of its anticancer activity

    Directory of Open Access Journals (Sweden)

    Liang XJ

    2012-03-01

    Full Text Available Xiaowei Ma*, Huan Wang*, Shubin Jin, Yan Wu, Xing-Jie LiangLaboratory of Nanomedicine and Nanosafety, Division of Nanomedicine and Nanobiology, National Center for Nanoscience and Technology, People’s Republic of China; and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing, People’s Republic of China *These authors contributed equally to this workBackground: There is an urgent need to develop drug-loaded biocompatible nanoscale packages with improved therapeutic efficacy for effective clinical treatment. To address this need, a novel poly (2-hydroxyethyl methacrylate-poly (lactide-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine [PHEMA-g-(PLA-DPPE] copolymer was designed and synthesized to enable these nanoparticles to be pH responsive under pathological conditions.Methods: The structural properties and thermal stability of the copolymer was measured and confirmed by Fourier transform infrare d spectroscopy, nuclear magnetic resonance, and thermogravimetric analysis. In order to evaluate its feasibility as a drug carrier, paclitaxel-loaded PHEMA-g-(PLA-DPPE nanoparticles were prepared using the emulsion-solvent evaporation method.Results: The PHEMA-g-(PLA-DPPE nanoparticles could be efficiently loaded with paclitaxel and controlled to release the drug gradually and effectively. In vitro release experiments demonstrated that drug release was faster at pH 5.0 than at pH 7.4. The anticancer activity of the PHEMA-g-(PLA-DPPE nanoparticles was measured in breast cancer MCF-7 cells in vivo and in vitro. In comparison with the free drug, the paclitaxel-loaded PHEMA-g-(PLA-DPPE nanoparticles could induce more significant tumor regression.Conclusion: This study indicates that PHEMA-g-(PLA-DPPE nanoparticles are promising carriers for hydrophobic drugs. This system can passively target cancer tissue and release drugs in a controllable manner, as determined by the pH value of the area in

  15. 聚(乳酸-天冬氨酸)的合成及性能研究%The Synthesis and Property Study of the Poly(Lactide-alt-Aspartic Acid)

    Institute of Scientific and Technical Information of China (English)

    余飞; 刘文明

    2013-01-01

    3-[(benzyloxycarbonyl) methyl] morpholine-2,5-dione (MMD) was synthesized via aspartic acid and chloroacetyl chloride as the raw materials.Afterwards,poly(lactide-alt-aspartic acid) was obtained by copolymerizing lactide and MMD of which structure was confirmed by FTIR,1 H-NMR.Effects of catalyst amount,polymerization time and temperature on the inherent viscosity of the product were studied.In addition,the water absorption and degradation between this copolymer and PLA were investigated.It was revealed that at 160 ℃ for 8 h,with 0.3% (wt) catalyst amount of the total reactants,co-polymer with the highest inherent viscosity can be achieved.The synthesized copolymer in this paper had improved water absorption and weight loss rate in comparison with PLA.%以天冬氨酸和氯乙酰氯为原料合成了3-[(苄氧羰基)-甲基]-吗啉-2,5-二酮,再与丙交酯共聚合成聚(乳酸-天冬氨酸),并用FTIR、1H NMR对其进行结构表征.研究了3-[(苄氧羰基)-甲基]-吗啉-2,5-二酮与丙交酯的共聚反应,探讨了不同催化剂用量、聚合时间、聚合温度对聚合物特性黏数的影响;并对共聚物与PLA的亲水性以及降解性能进行了对比.结果表明,催化剂用量为反应物质量的0.3%,聚合时间8h,聚合温度160℃时,共聚物的特性黏数最大;改性后的聚乳酸亲水性能、降解性能都优于聚乳酸.

  16. Bioresorbable polymers: heading for a new generation of spinal cages.

    Science.gov (United States)

    Wuisman, P I J M; Smit, T H

    2006-02-01

    The use of polymer-based bioresorbable materials is now expanding to the realm of spinal interbody fusion. Bioresorbable polymers have important advantages over metals, because they are temporary, much less stiff, and radiolucent. Most promising is a group of alpha-polyesters, in particular polylactide acids (PLAs). Their biocompatibility is excellent, and they have sufficient stiffness and strength to provide initial and intermediate-term stability required for bone healing. However, polylactides have characteristics that make them vulnerable to complications if not properly controlled. Degradation rate strongly depends on polymer type, impurities, manufacturing process, sterilization, device size, and the local environment. The fact that larger implants degrade faster is contra-intuitive, and should be considered in the design process. Also optimal surgical techniques, such as careful bone bed preparation, are required for a successful application of these materials. The purpose of this paper is to highlight the specific properties of these bioresorbable polymers and to discuss their potential and limitations. This is illustrated with early preclinical and clinical data.Bioresorbable cage technology is just emerging: their time-engineered degradation characteristics allow controlled dynamization in interbody applications, facilitating spinal fusion. Their radiolucency improves image assessment of fusion healing. Acceptance and use of bioresorbable implants may increase as further research and clinical studies report on their safety, efficacy, and proper usage. PMID:16292588

  17. Intracortical polyimide electrodes with a bioresorbable coating.

    Science.gov (United States)

    Hassler, Christina; Guy, Julien; Nietzschmann, Max; Plachta, Dennis T T; Staiger, Jochen F; Stieglitz, Thomas

    2016-10-01

    Polyimide based shaft electrodes were coated with a bioresorbable layer to stiffen them for intracortical insertion and to reduce the mechanical mismatch between the target tissue and the implanted device after degradation of the coating. Molten saccharose was used as coating material. In a proof-of-concept study, the electrodes were implanted into the cortex of Wistar rats and the insertion forces during implantation were recorded. Electrochemical impedance spectroscopy was performed immediately after implantation and up to 13 weeks after implantation to monitor the tissue response to the implanted electrodes. The recorded spectra were modeled with an equivalent circuit to differentiate the influence of the single components. In one rat, a peak in the encapsulation resistance was observable after two weeks of implantation, indicating the peak of the acute inflammatory response. In another rat, the lowest resistances were observed after four weeks, indicating the termination of the acute inflammatory response. Multiunit activity was recorded with an adequate signal to noise ratio to allow spike sorting. Histology was performed after 7, 45 and 201 days of implantation. The results showed the highest tissue reaction after 45 days and confirmed impedance data that acute inflammatory reactions terminate over time. PMID:27534649

  18. A constitutive law for degrading bioresorbable polymers.

    Science.gov (United States)

    Samami, Hassan; Pan, Jingzhe

    2016-06-01

    This paper presents a constitutive law that predicts the changes in elastic moduli, Poisson's ratio and ultimate tensile strength of bioresorbable polymers due to biodegradation. During biodegradation, long polymer chains are cleaved by hydrolysis reaction. For semi-crystalline polymers, the chain scissions also lead to crystallisation. Treating each scission as a cavity and each new crystal as a solid inclusion, a degrading semi-crystalline polymer can be modelled as a continuum solid containing randomly distributed cavities and crystal inclusions. The effective elastic properties of a degrading polymer are calculated using existing theories for such solid and the tensile strength of the degrading polymer is predicted using scaling relations that were developed for porous materials. The theoretical model for elastic properties and the scaling law for strength form a complete constitutive relation for the degrading polymers. It is shown that the constitutive law can capture the trend of the experimental data in the literature for a range of biodegradable polymers fairly well. PMID:26971070

  19. Bioresorbable vascular scaffolds—what does the future bring?

    Science.gov (United States)

    Gil, Robert J.

    2016-01-01

    Bioresorbable vascular scaffolds (BVS) have emerged as an interesting alternative since the presence of the prosthesis in the coronary artery is transient. This technology enables to restore the normal vasomotor tone and allows positive remodeling, simultaneously reducing the trigger for persistent inflammation and facilitating further interventions by percutaneous or surgical means. Absorb BVS® is the first generation everolimus-eluting poly-L-lactide (PLLA) bioresorbable scaffold. In recent meta-analyses Absorb BVS® was definitely proved to be safe and effective device in the treatment of symptomatic coronary artery disease. This was recently confirmed by FDA advisory panel of experts who recommended approval of the device based on an analysis of its risks and rewards. Nevertheless, still there are some concerns regarding stent thrombosis, and the real vessel functionality restoration at long-term observation. Worth mentioning is the fact that apart from stable coronary disease Absorb BVS® is used successfully in a series of off-label clinical settings such as acute coronary syndromes including STEMI, in-stent restenosis, coronary bifurcations, left main stenting or chronic total occlusions. Moreover, new bioresorbable scaffolds are under development with DEsolve® and DREAM 2G®, which are the most advanced.

  20. Membranas de poli (ácido lático-co-ácido glicólico como curativos para pele: degradação in vitro e in vivo Poly (lactide-co-glycolide membranes as skin repair: in vitro and in vivo degradation

    Directory of Open Access Journals (Sweden)

    Camila A. Rezende

    2005-07-01

    Full Text Available O poli (ácido lático-co-ácido glicólico é um copolímero biodegradável e bioreabsorvível. Suas propriedades físico-químicas têm sido estudadas com o intuito de modular sua suscetibilidade à degradação e suas interações com células e fluidos biológicos para aplicações na área médica e odontológica. Neste trabalho, membranas de poli (ácido lático-co-ácido glicólico com e sem plastificante foram preparadas pela técnica de evaporação do solvente e caracterizadas in vitro e in vivo. Os resultados in vitro mostraram que a adição de plastificante diminui a temperatura de transição vítrea (Tg das membranas e, conseqüentemente, aumenta a flexibilidade das mesmas. Com o avanço da degradação, verifica-se o aparecimento de regiões cristalinas e de poros. Os estudos in vivo mostraram que o polímero degradou rapidamente em contato com a pele sem causar inflamações sérias e protegeu a área ulcerada da ação de agentes externos. Além disso, a cicatrização das feridas foi mais rápida na presença das membranas mostrando que as mesmas podem ser potencialmente utilizadas como curativos para pele.Poly (lactide-co-glycolide is a polymer with bioabsorption and biodegradation properties. The physical and chemical properties of this polymer have been studied in order to modulate its susceptibility to degradation and its interaction with cells and biological fluids, aiming at medical and dental applications. In this work, membranes of poly (lactide-co-glycolide with and without plasticizer were prepared by solvent evaporation and characterized by in vitro and in vivo experiments. In vitro studies showed that the glass transition temperature decreased due to the addition of plasticizer and, consequently, their flexibility increased. During degradation, crystalline areas and porous appear. In vivo studies showed that the polymer degraded rapidly without causing inflammation and protected areas that were exposed to external

  1. In vitro comparison of bioresorbable and titanium anterior cervical plates in the immediate postoperative condition.

    Science.gov (United States)

    Freeman, Andrew L; Derincek, Alihan; Beaubien, Brian P; Buttermann, Glenn R; Lew, William D; Wood, Kirkham B

    2006-12-01

    Bioresorbable plates have recently been used with anterior cervical discectomy and fusion (ACDF). Compared with metallic plates, bioresorbable plates provide segmental stabilization with minimal imaging artifact, eventual resorption, and increased load sharing. The objectives of the present study were to determine whether a bioresorbable plate can withstand simulated physiologic static and cyclic loading, to compare the reduction in flexibility provided by bioresorbable and titanium plates, and to quantify load sharing between the plate and spine with graft. Sixteen human cervical motion segments were tested to +/-2.5 Nm in flexion-extension, lateral bending, and axial rotation. Range of motion (ROM) was measured (1) in the intact state, (2) with ACDF without plating, (3) after addition of either a bioresorbable or titanium plate, and (4) after 500 cycles of combined flexion-extension and axial torsion. Load sharing was evaluated by applying the same fixed rotation both without and with the plate, and was calculated as the moment resisted by the uninstrumented ACDF expressed as a percentage of the plated ACDF state. No plate failures or graft migration occurred during testing. Compared with the uninstrumented ACDF, bioresorbable plates reduced mean ROM by 49% in flexion-extension and 25% in lateral bending, with very little change in torsion. Titanium plates reduced uninstrumented ACDF ROM by 69% in flexion-extension, 45% in lateral bending, and 27% in torsion. Differences between bioresorbable and titanium plates were significant in flexion-extension and lateral bending. Cyclic loading did not significantly change ROM for either plate. More moment was shared in lateral bending by the spine/graft with bioresorbable plates (78%) compared with titanium plating (63%). Bioresorbable plates contained an intervertebral graft, provided some stabilization, remained intact throughout the simulated immediate postoperative loading, and shared more load with the graft and

  2. Mechanical properties and in vitro degradation of bioresorbable knitted stents.

    Science.gov (United States)

    Nuutinen, Juha-Pekka; Välimaa, Tero; Clerc, Claude; Törmälä, Pertti

    2002-01-01

    The aim of this study was to characterize the mechanical properties and in vitro degradation of bioresorbable knitted stents. Each stent was knitted using a single self-reinforced fibre made out of either PLLA or 96L/4D PLA or 80L/20G PLGA. The mechanical and physical properties of the fibres and stents were measured before and after gamma sterilization, as well as during in vitro degradation. The mechanical properties of the knitted stents made out of bioresorbable fibres were similar to those of commercially available metallic stents. The knitting geometry (loop height) had a marked effect on the mechanical properties of the stents. The rate of in vitro degradation in mechanical and physical properties for the PLLA and 96L/4D PLA stents was similar and significantly lower than that of the 80L/20G PLGA stents. The 80L/20G PLGA stents lost about 35% of their initial weight at 11 weeks. At this time, they had lost all their compression resistance strength. These data can be used as a guideline in planning further studies in vivo. PMID:12555898

  3. Improved bioresorbable microporous intravascular stents for gene therapy.

    Science.gov (United States)

    Ye, Y W; Landau, C; Meidell, R S; Willard, J E; Moskowitz, A; Aziz, S; Carlisle, E; Nelson, K; Eberhart, R C

    1996-01-01

    Drug imbibing microporous stents are under development at a number of centers to enhance healing of the arterial wall after balloon coronary angioplasty procedures. The authors improved the mechanical strength and reservoir properties of a biodegradable microporous stent reported to this Society in 1994. A combined tubular/helical coil stent is readily fabricated by flotation/precipitation and casting/ winding techniques. A two stage solvent swelling technique allows precise adjustment of the surface hydrophilic/hydrophobic balance. These developments permit seven-fold improvement in drug capacity without significantly altering mechanical properties. Stents modified in this manner retain tensile and compressive strength and are suitable for remote deployment. Elution kinetics of these modified stents suggest they are suitable for gene delivery. Successful gene transfer and transmural expression have been demonstrated after implantation of stents impregnated with a recombinant adenovirus carrying a nuclear localizing beta-galactosidase reporter gene into rabbit carotid arteries. These studies suggest that surface modified, bioresorbable polymer stents ultimately may be useful adjunctive devices for gene transfer during percutaneous transluminal revascularization.

  4. Fixation performance of an ultrasonically fused, bioresorbable osteosynthesis implant: A biomechanical and biocompatibility study.

    Science.gov (United States)

    Augat, P; Robioneck, P B; Abdulazim, A; Wipf, F; Lips, K S; Alt, V; Schnettler, R; Heiss, C

    2016-01-01

    Bioresorbable implants may serve as an alternative option for the fixation of bone fractures. Because of their minor inherent mechanical properties and insufficient anchorage within bone bioresorbable implants have so far been limited to mechanically nondemanding fracture types. By briefly liquefying the surface of the biomaterial during insertion, bioresorbable implants can be ultrasonically fused with bone to improve their mechanical fixation. The objective of this study was to investigate the biomechanical fixation performance and in vivo biocompatibility of an ultrasonically fused bioresorbable polymeric pin (SonicPin). First, we biomechanically compared the fused pin with press fitted metallic and bioresorbable polymeric implants for quasi-static and fatigue strength under shear and tensile loading in a polyurethane foam model. Second, fused implants were inserted into cancellous bovine bone and tested biomechanically to verify the reproducibility of their fusion behavior. Finally, the fused pins were tested in a lapine model of femoral condyle osteotomies and were histologically examined by light and transmission electron microscopy. While comparable under static shear loads, fixation performance of ultrasonically fused pins was significantly (p = 0.001) stronger under tensile loading than press fit implants and showed no pull-out. Both bioresorbable implants withstood comparable fatigue shear strength, but less than the K-wire. In bovine bone the ultrasonic fusion process worked highly reproducible and provided consistent mechanical fixation. In vivo, the polymeric pin produced no notable foreign body reactions or resorption layers. Ultrasonic fusion of polymeric pins achieved adequate and consistent mechanical fixation with high reproducibility and exhibits good short-term resorption and biocompatibility. PMID:25678144

  5. Calcium Orthophosphates as Bioceramics: State of the Art

    OpenAIRE

    Sergey V. Dorozhkin

    2010-01-01

    In the late 1960s, much interest was raised in regard to biomedical applications of various ceramic materials. A little bit later, such materials were named bioceramics. This review is limited to bioceramics prepared from calcium orthophosphates only, which belong to the categories of bioactive and bioresorbable compounds. There have been a number of important advances in this field during the past 30–40 years. Namely, by structural and compositional control, it became possible to choose whet...

  6. Preparation and characterization of polyLactide-hydroxyapatite biocomposites

    OpenAIRE

    Gültekin, Naz; Tıhmınlıoğlu, Funda; Çiftçioğlu, Rukiye; Çiftçioğlu, Muhsin; Harsa, Hayriye Şebnem

    2004-01-01

    In the present study, the preparation and characterization of polylactide-Hydroxyapatite(HA) composite films for biomedical applications have been studied. The effects of number of parameters such as polymer type, HA loading, surface modification and its concentration on the mechanical and microstructural properties of the composites were investigated. Poly-L-Lactide and 96/4 Poly(L-Lactide co D-Lactide) copolymer-HA composites containing 10-40 wt% HA particles have been prepared by solvent c...

  7. A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications.

    Science.gov (United States)

    Hutmacher, D; Hürzeler, M B; Schliephake, H

    1996-01-01

    Use of bioresorbable and biodegradable materials for guided tissue and guided bone regeneration is under intense investigation and is being tested in clinical trials. This study presents a basic overview of material properties of bioresorbable and biodegradable polymers and devices for guided tissue and guided bone regeneration treatment. Collagens and aliphatic polyesters, such as poly(glycolic acid), poly(lactic acid), and poly(epsilon-caprolactone), are discussed, as well as biocompatibility, mechanical properties, and sterilization. PMID:8908867

  8. Bioresorbable vascular scaffold for the treatment of coronary bifurcations: What have we learned?

    Science.gov (United States)

    Belardi, Jorge A; Albertal, Mariano

    2015-10-01

    Bioresorbable vascular scaffolds (BVS) remain experimental for the treatment of coronary bifurcations (B) and further clinical data is needed before widespread adoption in this setting. Preliminary, clinical outcome in B using a provisional stenting or double stenting approach with BVS is encouraging and close to the one observed with next-generation drug-eluting stent. Improvements in device navigability, reduction in strut bulk and reabsorption time may render the device more predictable and simpler to use.

  9. Vascular Response of the Segments Adjacent to the Proximal and Distal Edges of the ABSORB Everolimus-Eluting Bioresorbable Vascular Scaffold

    DEFF Research Database (Denmark)

    Gogas, Bill D; Serruys, Patrick W; Diletti, Roberto;

    2012-01-01

    This study sought to investigate in vivo the vascular response at the proximal and distal edges of the second-generation ABSORB everolimus-eluting bioresorbable vascular scaffold (BVS).......This study sought to investigate in vivo the vascular response at the proximal and distal edges of the second-generation ABSORB everolimus-eluting bioresorbable vascular scaffold (BVS)....

  10. Mechanical properties and in vitro degradation of self-reinforced radiopaque bioresorbable polylactide fibres.

    Science.gov (United States)

    Nuutinen, Juha-Pekka; Clerc, Claude; Törmälä, Pertti

    2003-01-01

    The aim of this study was to evaluate the effect of the radiopaque filler, barium sulfate (BaSO4), on the mechanical properties of self-reinforced bioresorbable fibres. The bioresorbable polymer was a copolymer of L- and D-lactide with an L/D monomer ratio of 96:4 (96L/4D PLA). The fibres were manufactured using an extrusion and a drawing process. Three different methods of processing the composites were studied. The materials were blended prior to extrusion. In the first method, the BaSO4 powder was mixed with the polymer granulates by hand (manual blending). The blend was then processed using a twin-screw extruder. The second and third methods utilized a single-screw extruder. In the second method, the BaSO4 powder was manually mixed with the polymer prior to extrusion. In the third method, the BaSO4 powder was mechanically attached on the polymer granulates (mechanical blending) prior to extrusion. The mechanical and chemical properties of the radiopaque bioresorbable fibres were measured after processing and during in vitro degradation. The fibres were gamma, plasma or EtO sterilized. There was no statistical difference in the mechanical properties of the fibres when manufactured using the twin-screw extrusion with manual blending or the single-screw extrusion with mechanical blending. The gamma sterilization markedly decreased the initial intrinsic viscosity of all fibres, whereas the plasma and EtO sterilization methods had no effect on the initial intrinsic viscosity. During in vitro testing, the loss in the intrinsic viscosity occurred at the same rate whether the fibres were loaded with the barium sulfate or not. PMID:12903735

  11. Rheological techniques for determining degradation of polylactic acid in bioresorbable medical polymer systems

    Science.gov (United States)

    Choong, Gabriel Y. H.; Parsons, Andrew J.; Grant, David M.; De Focatiis, Davide S. A.

    2015-05-01

    A method developed in the 1980s for the conversion of linear rheological data to molar mass distribution is revisited in the context of degradable polymers. The method is first applied using linear rheology for a linear polystyrene, for which all conversion parameters are known. A proof of principle is then carried out on four polycarbonate grades. Finally, preliminary results are shown on degradable polylactides. The application of this method to degrading polymer systems, and to systems containing nanofillers, is also discussed. This work forms part of a wider study of bioresorbable nanocomposites using polylactides, novel hydroxyapatite nanoparticles and tailored dispersants for medical applications.

  12. Bioresorbable screws reinforced with phosphate glass fibre: manufacturing and mechanical property characterisation.

    Science.gov (United States)

    Felfel, R M; Ahmed, I; Parsons, A J; Rudd, C D

    2013-01-01

    Use of bioresorbable screws could eliminate disadvantages associated with metals such as removal operations, corrosion, MRI interference and stress shielding. Mechanical properties of bioresorbable polymers alone are insufficient for load bearing applications application as screws. Thus, reinforcement is necessary to try and match or surpass the mechanical properties of cortical bone. Phosphate based glass fibres were used to reinforce polylactic acid (PLA) in order to produce unidirectionally aligned (UD) and unidirectionally plus randomly distributed (UD/RM) composite screws (P40 UD and P40 UD/RM). The maximum flexural and push-out properties for the composite screws (P40 UD and P40 UD/RM) increased by almost 100% in comparison with the PLA screws. While the pull-out strength and stiffness of the headless composite screws were ∼80% (strength) and ∼130% (stiffness) higher than for PLA, those with heads exhibited properties lower than those for PLA alone as a result of failure at the heads. An increase in the maximum shear load and stiffness for the composite screws (∼30% and ∼40%) in comparison to the PLA screws was also seen. Maximum torque for the PLA screws was ∼1000 mN m, while that for the composite screws were slightly lower. The SEM micrographs for P40 UD and P40 UD/RM screws revealed small gaps around the fibres, which were suggested to be due to buckling of the UD fibres during the manufacturing process.

  13. The Development of Coronary Artery Stents: From Bare-Metal to Bio-Resorbable Types

    Directory of Open Access Journals (Sweden)

    Ming-Yun Ho

    2016-07-01

    Full Text Available Coronary artery disease is the leading cause of death worldwide. Conventional balloon angioplasty is associated with high rates of complications such as coronary dissection and vessel recoil. The deployment of bare-metal stents (BMSs can overcome these problems and achieve a better patency rate than simple balloon angioplasty. It has been shown that the stent design including structure platform, size, length, and strut thickness has a major influence on the clinical results. Even though angioplasty with BMS implantation is widely used in coronary interventions, the restenosis rate due to neointimal hyperplasia remains high. Therefore, drug-eluting stents (DESs coated with anti-proliferative agents and polymers have been developed to reduce the restenosis rate and improve the clinical outcomes. Although the repeat revascularization rate of DESs is lower than that of BMSs, the long-term stent thrombosis rate is higher than for BMSs. Therefore, new and emerging generations of stents, in which, for example, thinner struts and bioresorbable polymers are used, are available for clinical use. However, there are only a limited number of clinical trials, in which these newer stents have been compared with BMSs and first- and second-generation DESs. The purpose of this review was to provide up-to-date information on the evolution of coronary artery stents from BMSs to DESs to bioresorbable stents (BRSs.

  14. PRELIMINARILY DEVELOPMENT OF A MOISTURE-ACTIVATED BIORESORBABLE POLYMERIC PLATFORM FOR DRUG DELIVERY

    Directory of Open Access Journals (Sweden)

    Renê O. do Couto

    2015-08-01

    Full Text Available Bioresorbable polymeric films were prepared by solvent casting using a tyrosine-derived polycarbonate and metronidazole (MDZ as the model drug at 2.5%, 5% and 10% (w/w. Drug loading did not affect the water uptake, drug release, polymer degradation or erosion profiles. All devices released approximately 85% (w/w of the drug within a 1.5 h period. This may be attributed to the rapid water uptake of the polymer. An increase in the water uptake correlated with a linear rate increase of the polymer degradation (0.968 ≤ R2 ≤ 0.999. Moreover, MDZ presented a remarkable plasticizing effect for the polymer and drug loading exerted a significant impact on the mechanical properties of the obtained films. The results obtained can be used to further the development of novel biocompatible and biodegradable polymeric platforms for the delivery of metronidazole and other drugs in a broad range of pharmaceutical applications.

  15. Bioactivity of bioresorbable composite based on bioactive glass and poly-L-lactide

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-hua; RUAN Jian-ming; ZOU Jian-peng; ZHOU Zhong-cheng; SHEN Xiong-jun

    2007-01-01

    Bioactive and bioresorbable composite was fabricated by a solvent evaporation technique using poly-L-lactide(PLLA) and bioactive glass (average particle size: 6.8 μm). Bioactive glass granules are homogeneously distributed in the composite with microcrack structure. The formation of hydroxyapatite(HA) on the composite in simulated body fluid(SBF) was analyzed by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), X-ray diffraction(XRD), and Raman spectra. Rod-like HA crystals deposit on the surface of PLLA/bioactive glass composite after soaking for 3 d. Both rod-like crystals and HA layer form on the surface for 14 d in SBF. The high bioactivity of PLLA/bioactive glass composite indicates the potential of materials for integration with bone.

  16. The influence of different loads on the remodeling process of a bone and bioresorbable material mixture with voids

    Science.gov (United States)

    Giorgio, Ivan; Andreaus, Ugo; Madeo, Angela

    2016-03-01

    A model of a mixture of bone tissue and bioresorbable material with voids was used to numerically analyze the physiological balance between the processes of bone growth and resorption and artificial material resorption in a plate-like sample. The adopted model was derived from a theory for the behavior of porous solids in which the matrix material is linearly elastic and the interstices are void of material. The specimen—constituted by a region of bone living tissue and one of bioresorbable material—was acted by different in-plane loading conditions, namely pure bending and shear. Ranges of load magnitudes were identified within which physiological states become possible. Furthermore, the consequences of applying different loading conditions are examined at the end of the remodeling process. In particular, maximum value of bone and material mass densities, and extensions of the zones where bone is reconstructed were identified and compared in the two different load conditions. From the practical view point, during surgery planning and later rehabilitation, some choice of the following parameters is given: porosity of the graft, material characteristics of the graft, and adjustment of initial mixture tissue/bioresorbable material and later, during healing and remodeling, optimal loading conditions.

  17. Resorbable composites with bioresorbable glass fibers for load-bearing applications. In vitro degradation and degradation mechanism.

    Science.gov (United States)

    Lehtonen, Timo J; Tuominen, Jukka U; Hiekkanen, Elina

    2013-01-01

    An in vitro degradation study of three bioresorbable glass fiber-reinforced poly(l-lactide-co-dl-lactide) (PLDLA) composites was carried out in simulated body fluid (SBF), to simulate body conditions, and deionized water, to evaluate the nature of the degradation products. The changes in mechanical and chemical properties were systematically characterized over 52 weeks dissolution time to determine the degradation mechanism and investigate strength retention by the bioresorbable glass fiber-reinforced PLDLA composite. The degradation mechanism was found to be a combination of surface and bulk erosion and does not follow the typical core-accelerated degradation mechanism of poly(α-hydroxyacids). Strength retention by bioresorbable glass fiber-reinforced PLDLA composites can be tailored by changing the oxide composition of the glass fibers, but the structure-property relationship of the glass fibers has to be understood and controlled so that the phenomenon of ion leaching can be utilized to control the degradation rate. Therefore, these high performance composites are likely to open up several new possibilities for utilizing resorbable materials in clinical applications which could not be realized in the past. PMID:22963847

  18. Calcium - urine

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003603.htm Calcium - urine To use the sharing features on this ... enable JavaScript. This test measures the amount of calcium in urine. All cells need calcium in order ...

  19. Calcium supplements

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007477.htm Calcium supplements To use the sharing features on this page, please enable JavaScript. WHO SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the ...

  20. Effects of lactic acid and glycolic acid on human osteoblasts: a way to understand PLGA involvement in PLGA/calcium phosphate composite failure.

    Science.gov (United States)

    Meyer, Florent; Wardale, John; Best, Serena; Cameron, Ruth; Rushton, Neil; Brooks, Roger

    2012-06-01

    The use of degradable composite materials in orthopedics remains a field of intense research due to their ability to support new bone formation and degrade in a controlled manner, broadening their use for orthopedic applications. Poly (lactide-co-glycolide) acid (PLGA), a degradable biopolymer, is now a popular material for different orthopedic applications and is proposed for use in tissue engineering scaffolds either alone or combined with bioactive ceramics. Interference screws composed of calcium phosphates and PLGA are readily available in the market. However, some reports highlight problems of screw migration or aseptic cyst formation following screw degradation. In order to understand these phenomena and to help to improve implant formulation, we have evaluated the effects of PLGA degradation products: lactic acid and glycolic acid on human osteoblasts in vitro. Cell proliferation, differentiation, and matrix mineralization, important for bone healing were studied. It was found that the toxicity of polymer degradation products under buffering conditions was limited to high concentrations. However, non-toxic concentrations led to a decrease in cell proliferation, rapid cell differentiation, and mineralization failure. Calcium, whilst stimulating cell proliferation was not able to overcome the negative effects of high concentrations of lactic and glycolic acids on osteoblasts. These effects help to explain recently reported clinical failures of calcium phosphate/PLGA composites, but further in vitro analyses are needed to mimic the dynamic situation which occurs in the body by, for example, culture of osteoblasts with materials that have been pre-degraded to different extents and thus be able to relate these findings to the degradation studies that have been performed previously.

  1. Two-layer membranes of calcium phosphate/collagen/PLGA nanofibres: in vitro biomineralisation and osteogenic differentiation of human mesenchymal stem cells

    Science.gov (United States)

    Hild, Nora; Schneider, Oliver D.; Mohn, Dirk; Luechinger, Norman A.; Koehler, Fabian M.; Hofmann, Sandra; Vetsch, Jolanda R.; Thimm, Benjamin W.; Müller, Ralph; Stark, Wendelin J.

    2011-02-01

    The present study evaluates the in vitro biomedical performance of an electrospun, flexible, anisotropic bilayer with one layer containing a collagen to mineral ratio similar to that in bone. The double membrane consists of a poly(lactide-co-glycolide) (PLGA) layer and an amorphous calcium phosphate (a-CaP)/collagen (Col)/PLGA layer. In vitro biomineralisation and a cell culture study with human mesenchymal stem cells (hMSC) were conducted to characterise such membranes for possible application as biomaterials. Nanofibres with different a-CaP/Col/PLGA compositions were synthesised by electrospinning to mimic the actual composition of bone tissue. Immersion in simulated body fluid and in cell culture medium resulted in the deposition of a hydroxyapatite layer. Incubation of hMSC for 4 weeks allowed for assessment of the proliferation and osteogenic differentiation of the cells on both sides of the double membrane. Confocal laser scanning microscopy was used to observe the proper adhesion of the cells. Calcium and collagen content was proven by Alizarin red S and Sirius red assays. Acute cytotoxic effects of the nanoparticles or the chemicals used in the scaffold preparation could be excluded based on viability assays (alamarBlue and alkaline phosphatase activity). The findings suggest possible application of such double membranes is in treatment of bone defects with complex geometries as wound dressing material.The present study evaluates the in vitro biomedical performance of an electrospun, flexible, anisotropic bilayer with one layer containing a collagen to mineral ratio similar to that in bone. The double membrane consists of a poly(lactide-co-glycolide) (PLGA) layer and an amorphous calcium phosphate (a-CaP)/collagen (Col)/PLGA layer. In vitro biomineralisation and a cell culture study with human mesenchymal stem cells (hMSC) were conducted to characterise such membranes for possible application as biomaterials. Nanofibres with different a

  2. Calcium Orthophosphates as Bioceramics: State of the Art

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2010-11-01

    Full Text Available In the late 1960s, much interest was raised in regard to biomedical applications of various ceramic materials. A little bit later, such materials were named bioceramics. This review is limited to bioceramics prepared from calcium orthophosphates only, which belong to the categories of bioactive and bioresorbable compounds. There have been a number of important advances in this field during the past 30–40 years. Namely, by structural and compositional control, it became possible to choose whether calcium orthophosphate bioceramics were biologically stable once incorporated within the skeletal structure or whether they were resorbed over time. At the turn of the millennium, a new concept of calcium orthophosphate bioceramics—which is able to promote regeneration of bones—was developed. Presently, calcium orthophosphate bioceramics are available in the form of particulates, blocks, cements, coatings, customized designs for specific applications and as injectable composites in a polymer carrier. Current biomedical applications include artificial replacements for hips, knees, teeth, tendons and ligaments, as well as repair for periodontal disease, maxillofacial reconstruction, augmentation and stabilization of the jawbone, spinal fusion and bone fillers after tumor surgery. Exploratory studies demonstrate potential applications of calcium orthophosphate bioceramics as scaffolds, drug delivery systems, as well as carriers of growth factors, bioactive peptides and/or various types of cells for tissue engineering purposes.

  3. Use of bioresorbable vascular scaffold: a meta-analysis of patients with coronary artery disease

    Science.gov (United States)

    Farag, Mohamed; Spinthakis, Nikolaos; Gorog, Diana A; Prasad, Abhiram; Sullivan, Keith; Akhtar, Zaki; Kukreja, Neville; Srinivasan, Manivannan

    2016-01-01

    Background Differences in outcomes between bioresorbable vascular scaffold (BVS) systems and drug-eluting metal stents (DES) have not been fully evaluated. We aimed to compare clinical and angiographic outcomes in randomised studies of patients with coronary artery disease (CAD), with a secondary analysis performed among registry studies. Methods A meta-analysis comparing outcomes between BVS and DES in patients with CAD. Overall estimates of treatment effect were calculated with random-effects model and fixed-effects model. Results In 6 randomised trials (3818 patients), BVS increased the risk of subacute stent thrombosis (ST) over and above DES (OR 2.14; CI 1.01 to 4.53; p=0.05), with a trend towards an increase in the risk of myocardial infarction (MI) (125 events in those assigned to BVS and 50 to DES; OR 1.36; CI 0.97 to 1.91; p=0.07). The risk of in-device late lumen loss (LLL) was higher with BVS than DES (mean difference 0.08 mm; CI 0.03 to 0.13; p=0.004). There was no difference in the risk of death or target vessel revascularisation (TVR) between the two devices. In 6 registry studies (1845 patients), there was no difference in the risk of death, MI, TVR or subacute ST between the two stents. Final BVS dilation pressures were higher in registry than in randomised studies (18.7±4.6 vs 15.2±3.3 atm; pimplantation techniques, in particular device underexpansion. PMID:27621831

  4. Bioresorbable microporous stents deliver recombinant adenovirus gene transfer vectors to the arterial wall.

    Science.gov (United States)

    Ye, Y W; Landau, C; Willard, J E; Rajasubramanian, G; Moskowitz, A; Aziz, S; Meidell, R S; Eberhart, R C

    1998-01-01

    The use of intravascular stents as an adjunct for percutaneous transluminal revascularization is limited by two principal factors, acute thrombosis and neointimal proliferation, resulting in restenosis. To overcome these limitations, we have investigated the potential of microporous bioresorbable polymer stents formed from poly(L-lactic acid) (PLLA)/poly(epsilon-caprolactone) (PCL) blends to function both to provide mechanical support and as reservoirs for local delivery of therapeutic molecules and particles to the vessel wall. Tubular PLLA/PCL stents were fabricated by the flotation-precipitation method, and helical stents were produced by a casting/winding technique. Hybrid structures in which a tubular sheath is deposited on a helical skeleton were also generated. Using a two-stage solvent swelling technique, polyethylene oxide has been incorporated into these stents to improve hydrophilicity and water uptake, and to facilitate the ability of these devices to function as drug carriers. Stents modified in this manner retain axial and radial mechanical strength sufficient to stabilize the vessel wall against elastic recoil caused by vasoconstrictive and mechanical forces. Because of the potential of direct gene transfer into the vessel wall to ameliorate thrombosis and neointimal proliferation, we have investigated the capacity of these polymer stents to function in the delivery of recombinant adenovirus vectors to the vessel wall. In vitro, virus stock was observed to readily absorb into, and elute from these devices in an infectious form, with suitable kinetics. Successful gene transfer and expression has been demonstrated following implantation of polymer stents impregnated with a recombinant adenovirus carrying a nuclear-localizing betaGal reporter gene into rabbit carotid arteries. These studies suggest that surface-modified polymer stents may ultimately be useful adjunctive devices for both mechanical support and gene transfer during percutaneous

  5. Spatial distribution and temporal evolution of scattering centers by optical coherence tomography in the poly(L-lactide) backbone of a bioresorbable vascular scaffold

    DEFF Research Database (Denmark)

    Gutiérrez-Chico, Juan Luis; Radu, Maria D; Diletti, Roberto;

    2012-01-01

    Scattering centers (SC) are often observed with optical coherence tomography (OCT) in some struts of bioresorbable vascular scaffolds (BVS). These SC might be caused by crazes in the polymer during crimp-deployment (more frequent at inflection points) or by other processes, such as physiological...

  6. Does magnesium compromise the high temperature processability of novel biodegradable and bioresorbables PLLA/Mg composites?

    Directory of Open Access Journals (Sweden)

    Cifuentes, Sandra C.

    2014-06-01

    Full Text Available This paper addresses the influence of magnesium on melting behaviour and thermal stability of novel bioresorbable PLLA/Mg composites as a way to investigate their processability by conventional techniques, which likely will require a melt process at high temperature to mould the material by using a compression, extrusion or injection stage. For this purpose, and to avoid any high temperature step before analysis, films of PLLA loaded with magnesium particles of different sizes and volume fraction were prepared by solvent casting. DSC, modulated DSC and thermogravimetry analysis demonstrate that although thermal stability of PLLA is reduced, the temperature window for processing the PLLA/Mg composites by conventional thermoplastic routes is wide enough. Moreover, magnesium particles do not alter the crystallization behaviour of the polymer from the melt, which allows further annealing treatments to optimize the crystallinity in terms of the required combination of mechanical properties and degradation rate.Este trabajo aborda la influencia de magnesio en el comportamiento a fusión y en la estabilidad térmica de nuevos compuestos de PLLA / Mg biorreabsorbibles como una forma de investigar su procesabilidad mediante técnicas convencionales, lo que probablemente requerirá una etapa en estado fundido a alta temperatura para moldear el material mediante el uso de una etapa de compresión, extrusión o inyección. Para este fin, los materiales de PLLA cargados con partículas de magnesio, de diferentes tamaños y fracción de volumen, se prepararon por la técnica de disolución y colada, evitando así el procesado a alta temperatura antes del análisis. El análisis mediante DSC, DSC modulada y termogravimetría demuestra que, aunque la estabilidad térmica de PLLA se reduce, el intervalo de temperatura para su procesado por rutas convencionales es suficientemente amplio. Además, las partículas de magnesio no alteran la cristalización del pol

  7. Does magnesium compromise the high temperature process ability of novel biodegradable and bioresorbables PLLA/Mg composites?

    Energy Technology Data Exchange (ETDEWEB)

    Cifuentes, S. C.; Benavemente, R.; Gonzalez-Carrasco, J. L.

    2014-10-01

    This paper addresses the influence of magnesium on melting behaviour and thermal stability of novel bioresorbable PLLA/Mg composites as a way to investigate their processability by conventional techniques, which likely will require a melt process at high temperature to mould the material by using a compression, extrusion or injection stage. For this purpose, and to avoid any high temperature step before analysis, films of PLLA loaded with magnesium particles of different sizes and volume fraction were prepared by solvent casting. DSC, modulated DSC and thermogravimetry analysis demonstrate that although thermal stability of PLLA is reduced, the temperature window for processing the PLLA/Mg composites by conventional thermoplastic routes is wide enough. Moreover, magnesium particles do not alter the crystallization behaviour of the polymer from the melt, which allows further annealing treatments to optimize the crystallinity in terms of the required combination of mechanical properties and degradation rate. (Author)

  8. Biodegradable poly(lactide-co-glycolide) coatings on magnesium alloys for orthopedic applications.

    Science.gov (United States)

    Ostrowski, Nicole J; Lee, Boeun; Roy, Abhijit; Ramanathan, Madhumati; Kumta, Prashant N

    2013-01-01

    Polymeric film coatings were applied by dip coating on two magnesium alloy systems, AZ31 and Mg4Y, in an attempt to slow the degradation of these alloys under in vitro conditions. Poly(lactic-co-glycolic acid) polymer in solution was explored at various concentrations, yielding coatings of varying thicknesses on the alloy substrates. Electrochemical corrosion studies indicate that the coatings initially provide some corrosion protection. Degradation studies showed reduced degradation over 3 days, but beyond this time point however, do not maintain a reduction in corrosion rate. Scanning electron microscopy indicates inhomogeneous coating durability, with gas pocket formation in the polymer coating, resulting in eventual detachment from the alloy surface. In vitro studies of cell viability utilizing mouse osteoblast cells showed improved biocompatibility of polymer coated substrates over the bare AZ31 and Mg4Y substrates. Results demonstrate that while challenges remain for long term degradation control, the developed polymeric coatings nevertheless provide short term corrosion protection and improved biocompatibility of magnesium alloys for possible use in orthopedic applications. PMID:23053803

  9. IN-VITRO PREDEGRADATION AT ELEVATED-TEMPERATURES OF POLY(LACTIDE)

    NARCIS (Netherlands)

    BERGSMA, JE; ROZEMA, FR; BOS, RRM; BOERING, G; JOZIASSE, CAP; PENNINGS, AJ

    1995-01-01

    In this study in vitro predegradation at elevated temperatures, used to obtain an increased degradation rate, was investigated. The in vitro degradation was followed by mass loss, molecular weight loss and changes in thermal properties. Two biodegradable polymers, the homopolymer PLLA and a copolyme

  10. Nanoimaging: photophysical and pharmaceutical characterization of poly-lactide-co-glycolide nanoparticles engineered with quantum dots

    Science.gov (United States)

    Pederzoli, F.; Ruozi, B.; Pracucci, E.; Signore, G.; Zapparoli, Mauro; Forni, F.; Vandelli, M. A.; Ratto, G.; Tosi, G.

    2016-01-01

    Quantum dots (QDs) and polymeric nanoparticles (NPs) are considered good binomials for the development of multifunctional nanomedicines for multimodal imaging. Fluorescent imaging of QDs can monitor the behavior of QD-labeled NPs in both cells and animals with high temporal and spatial resolutions. The comprehension of polymer interaction with the metallic QD surface must be considered to achieve a complete chemicophysical characterization of these systems and to describe the QD optical properties to be used for their unequivocal identification in the tissue. In this study, by comparing two different synthetic procedures to obtain polymeric nanoparticles labeled with QDs, we investigated whether their optical properties may change according to the formulation methods, as a consequence of the different polymeric environments. Atomic force microscopy, transmission electron microscopy, confocal and fluorescence lifetime imaging microscopy characterization demonstrated that NPs modified with QDs after the formulation process (post-NPs-QDs) conserved the photophysical features of the QD probe. In contrast, by using a polymer modified with QDs to formulate NPs (pre-NPs-QDs), a significant quenching of QD fluorescence and a blueshift in its emission spectra were observed. Our results suggest that the packaging of QDs into the polymeric matrix causes a modification of the QD optical properties: these effects must be characterized in depth and carefully considered when developing nanosystems for imaging and biological applications.

  11. Biocompatibility of intraosseously implanted predegraded poly(lactide) : An animal study

    NARCIS (Netherlands)

    Bos, RRM; Rozema, FR; DeJong, W; Boering, G

    1996-01-01

    During degradation of high molecular weight as-polymerized poly(L-lactide) (PLLA) late complications such as swelling of the subcutaneously implanted bone plates have been observed in patients. However, in the same patients the intraosseously implanted PLLA screws did not give rise to any complicati

  12. Surface modified nano-hydroxyapatite/poly(lactide acid) composite and its osteocyte compatibility

    International Nuclear Information System (INIS)

    In this study, melt blending was used to fabricate poly(lactic acid) (PLA)/ hydroxyapatite (HA) nanocomposites. Surface modifying HA nanoparticles (mHA) with dodecyl alcohol through esterification reaction could effectively improve the dispersibility of HA nanoparticles in PLA matrix and the interfacial interactions between PLA and HA nanoparticles, as revealed by field emission scanning electron microscopy (FESEM), rheology analysis, and dynamic mechanical thermal analysis (DMTA). mHA/PLA nanocomposite film demonstrated better cartilage cell attachment, spreading and proliferation than that of PLA and HA/PLA film. The good cytocompatibility could be due to the good dispersibility of the osteoinductive HA nanoparticles, good interfacial interactions between PLA and HA nanoparticles, and balanced hydrophobic/hydrophilic property. This newly developed mHA/PLA nanocomposites may be considered for bone tissue engineering applications. - Highlights: ► Dodecyl alcohol modifies HA nanoparticles via esterification reaction. ► The modified HA results in good dispersibility in PLA matrix. ► The interfacial interactions are improved because of the modified HA. ► The addition of HA and mHA results in good cell affinity and biocompatibility.

  13. Biomimetic poly(lactide) based fibrous scaffolds for ligament tissue engineering.

    Science.gov (United States)

    Surrao, Denver C; Waldman, Stephen D; Amsden, Brian G

    2012-11-01

    The aim of this study was to fabricate a fibrous scaffold that closely resembled the micro-structural architecture and mechanical properties of collagen fibres found in the anterior cruciate ligament (ACL). To achieve this aim, fibrous scaffolds were made by electrospinning L-lactide based polymers. L-Lactide was chosen primarily due to its demonstrated biocompatibility, biodegradability and high modulus. The electrospun fibres were collected in tension on a rotating wire mandrel. Upon treating these fibres in a heated aqueous environment, they possessed a crimp-like pattern having a wavelength and amplitude similar to that of native ACL collagen. Of the polymer fibre scaffolds studied, those made from poly(L-lactide-co-D,L-lactide) PLDLA exhibited the highest modulus and were also the most resilient to in vitro hydrolytic degradation, undergoing a slight decrease in modulus compared to the other polymeric fibres over a 6 month period. Bovine fibroblasts seeded on the wavy, crimp-like PLDLA fibres attached, proliferated and deposited extracellular matrix (ECM) molecules on the surface of the fibrous scaffold. In addition, the deposited ECM exhibited bundle formation that resembled the fascicles found in native ACL. These findings demonstrate the importance of replicating the geometric microenvironment in developing effective tissue engineering scaffolds. PMID:22828380

  14. Surface modified nano-hydroxyapatite/poly(lactide acid) composite and its osteocyte compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Diao Huaxin; Si Yunfeng [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 (China); Zhu Aiping, E-mail: apzhu@yzu.edu.cn [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 (China); Ji Lijun [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 (China); Shi Hongchan [Clinical Medical College, Yangzhou University, Yangzhou, 225002 (China)

    2012-10-01

    In this study, melt blending was used to fabricate poly(lactic acid) (PLA)/ hydroxyapatite (HA) nanocomposites. Surface modifying HA nanoparticles (mHA) with dodecyl alcohol through esterification reaction could effectively improve the dispersibility of HA nanoparticles in PLA matrix and the interfacial interactions between PLA and HA nanoparticles, as revealed by field emission scanning electron microscopy (FESEM), rheology analysis, and dynamic mechanical thermal analysis (DMTA). mHA/PLA nanocomposite film demonstrated better cartilage cell attachment, spreading and proliferation than that of PLA and HA/PLA film. The good cytocompatibility could be due to the good dispersibility of the osteoinductive HA nanoparticles, good interfacial interactions between PLA and HA nanoparticles, and balanced hydrophobic/hydrophilic property. This newly developed mHA/PLA nanocomposites may be considered for bone tissue engineering applications. - Highlights: Black-Right-Pointing-Pointer Dodecyl alcohol modifies HA nanoparticles via esterification reaction. Black-Right-Pointing-Pointer The modified HA results in good dispersibility in PLA matrix. Black-Right-Pointing-Pointer The interfacial interactions are improved because of the modified HA. Black-Right-Pointing-Pointer The addition of HA and mHA results in good cell affinity and biocompatibility.

  15. RUBBER TOUGHENING OF POLY(LACTIDE) BY BLENDING AND BLOCK COPOLYMERIZATION

    NARCIS (Netherlands)

    GRIJPMA, DW; VANHOFSLOT, RDA; SUPER, H; NIJENHUIS, AJ; PENNINGS, AJ

    1994-01-01

    Copolymers of L-lactide with 15 or more mole % D-lactide are amorphous, noncrystallizable hydrolytically degradable materials. These glassy materials are brittle in tension and bending. To make these materials suitable for use as load-bearing devices in biomedical applications, toughness has to be e

  16. Strategy for optimal side-branch positioning of bioresorbable vascular scaffolds in dedicated 2-stent techniques: Insights from optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Tadashi; Costopoulos, Charis; Sato, Katsumasa; Naganuma, Toru [Interventional Cardiology Unit, San Raffaele Scientific Institute, Milan (Italy); Interventional Cardiology Unit, EMO-GVM Centro Cuore Columbus, Milan (Italy); Panoulas, Vasileios F. [Interventional Cardiology Unit, San Raffaele Scientific Institute, Milan (Italy); Interventional Cardiology Unit, EMO-GVM Centro Cuore Columbus, Milan (Italy); Imperial College London, National Heart and Lung Institute, London (United Kingdom); Figini, Filippo; Latib, Azeem [Interventional Cardiology Unit, San Raffaele Scientific Institute, Milan (Italy); Interventional Cardiology Unit, EMO-GVM Centro Cuore Columbus, Milan (Italy); Colombo, Antonio, E-mail: info@emocolumbus.it [Interventional Cardiology Unit, San Raffaele Scientific Institute, Milan (Italy); Interventional Cardiology Unit, EMO-GVM Centro Cuore Columbus, Milan (Italy)

    2014-07-15

    We present a case of a left anterior descending artery/diagonal branch bifurcation successfully treated with a dedicated 2-stent technique utilizing bioresorbable vascular scaffolds, where the bifurcation angle did not strictly allow a T-stenting approach. We also propose a strategy to avoid or reduce scaffold overlap in the main branch, especially important in view of the bulkier size of these novel devices.

  17. Strategy for optimal side-branch positioning of bioresorbable vascular scaffolds in dedicated 2-stent techniques: insights from optical coherence tomography.

    Science.gov (United States)

    Miyazaki, Tadashi; Costopoulos, Charis; Sato, Katsumasa; Naganuma, Toru; Panoulas, Vasileios F; Figini, Filippo; Latib, Azeem; Colombo, Antonio

    2014-01-01

    We present a case of a left anterior descending artery/diagonal branch bifurcation successfully treated with a dedicated 2-stent technique utilizing bioresorbable vascular scaffolds, where the bifurcation angle did not strictly allow a T-stenting approach. We also propose a strategy to avoid or reduce scaffold overlap in the main branch, especially important in view of the bulkier size of these novel devices.

  18. Clinical and radiographic evaluation of human periodontal osseous defect (mandibular grade II furcation) treated with PepGen P-15 and a bioresorbable membrane (Atrisorb)

    Science.gov (United States)

    Khashu, Himanshu; Vandana, K. L.

    2012-01-01

    Background: The various treatment modalities available to treat furcation involvement either maintain the existing furcation or increases access to furcation or leads to elimination of furcation (root resection, bicuspidization etc). Newer treatment modalities include regenerative procedures like placement of bone graft and organic or synthetic membranes. In this study we have evaluated the use of a new xenograft based tissue engineered bone material which provides both the inorganic and organic component; individually and in conjunction with a synthetic bioresorbable material. Materials and Methods: 6 patients with 18 mandibular grade 2 furcations were selected after the completion of initial phase in all the patients. Selected sites were divided into control and experimental groups randomly and were treated by split mouth design. The control sites were treated with flap debridement and placement of ABM graft, whereas the experimental site received flap debridement, ABM graft and a synthetic bioresorbable membrane. Results: All the parameters recorded showed significant reduction from baseline to 9 months in both the experimental and control group. When compared in between the control and experimental group, all the parameters showed marginally better results in the control group, although none of them were clinically significant. Conclusion: The results of this study suggest that the use of ABM along with a bioresorbable membrane and without membrane is both beneficial for the treatment of grade 2 furcation. On the cost benefit basis, the bone graft alone seems to be a better choice for regenerative treatment of furcation involvement. PMID:23493651

  19. Calcium Carbonate

    Science.gov (United States)

    ... before being swallowed; do not swallow them whole. Drink a full glass of water after taking either the regular or chewable tablets or capsules. Some liquid forms of calcium carbonate must be shaken well before use.Do not ...

  20. Calcium Calculator

    Science.gov (United States)

    ... Latvia - Lebanon - Libya - Lithuania - Luxembourg - Macedonia, Republic of - Malaysia - Malta - Mexico - Moldova - Morocco - Netherlands - New Zealand - Nigeria - ... and Statistics Popular content Calcium content of common foods What is Osteoporosis? The Board Introduction to Bone ...

  1. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha;

    2015-01-01

    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p

  2. In-situ polymerisation of fully bioresorbable polycaprolactone/phosphate glass fibre composites: In vitro degradation and mechanical properties.

    Science.gov (United States)

    Chen, Menghao; Parsons, Andrew J; Felfel, Reda M; Rudd, Christopher D; Irvine, Derek J; Ahmed, Ifty

    2016-06-01

    Fully bioresorbable composites have been investigated in order to replace metal implant plates used for hard tissue repair. Retention of the composite mechanical properties within a physiological environment has been shown to be significantly affected due to loss of the integrity of the fibre/matrix interface. This study investigated phosphate based glass fibre (PGF) reinforced polycaprolactone (PCL) composites with 20%, 35% and 50% fibre volume fractions (Vf) manufactured via an in-situ polymerisation (ISP) process and a conventional laminate stacking (LS) followed by compression moulding. Reinforcing efficiency between the LS and ISP manufacturing process was compared, and the ISP composites revealed significant improvements in mechanical properties when compared to LS composites. The degradation profiles and mechanical properties were monitored in phosphate buffered saline (PBS) at 37°C for 28 days. ISP composites revealed significantly less media uptake and mass loss (pcomposites were substantially higher (pcomposites, which showed that the ISP manufacturing process provided a significantly enhanced reinforcement effect than the LS process. During the degradation study, statistically higher flexural property retention profiles were also seen for the ISP composites compared to LS composites. SEM micrographs of fracture surfaces for the LS composites revealed dry fibre bundles and poor fibre dispersion with polymer rich zones, which indicated poor interfacial bonding, distribution and adhesion. In contrast, evenly distributed fibres without dry fibre bundles or polymer rich zones, were clearly observed for the ISP composite samples, which showed that a superior fibre/matrix interface was achieved with highly improved adhesion.

  3. A Combination of Drug-Eluting Stents and Bioresorbable Vascular Scaffolds in the Treatment of Multivessel Coronary Artery Disease

    Science.gov (United States)

    Al-Mamary, Ahmed; Zilio, Filippo; Napodano, Massimo

    2016-01-01

    Optimal management of multivessel coronary artery disease can be complex. We report a 67-year-old male patient who was admitted to the Padua University Hospital, Padua, Italy, in 2014 with a non-ST-elevation myocardial infarction. Coronary angiography showed diffuse multiple sub-occlusive lesions of the proximal and distal left coronary vessels involving a long segment of the vessel. On intravascular ultrasonography (IVUS), the left main artery was moderately diseased with critically stenotic and calcified branch ostia. A successful percutaneous coronary intervention using the T-stenting and small protrusion technique with two drug-eluting stents (DES) was performed on the left main artery and its main branches. Two bioresorbable vascular scaffolds were also deployed in overlap at the mid to distal segments of the left anterior descending artery and overlapping a previous DES at the proximal segment. The full expansion and apposition of the struts and scaffolds to the vessel wall without residual stenosis was confirmed by IVUS. PMID:27606119

  4. The influence of ArF excimer laser micromachining on physicochemical properties of bioresorbable poly(L-lactide)

    Science.gov (United States)

    Stepak, Bogusz D.; Antończak, Arkadiusz J.; Szustakiewicz, Konrad; Pezowicz, Celina; Abramski, Krzysztof M.

    2016-03-01

    The main advantage of laser processing is a non-contact character of material removal and high precision attainable thanks to low laser beam dimensions. This technique enables forming a complex, submillimeter geometrical shapes such as vascular stents which cannot be manufactured using traditional techniques e.g. injection moulding or mechanical treatment. In the domain of nanosecond laser sources, an ArF excimer laser appears as a good candidate for laser micromachining of bioresorbable polymers such as poly(L-lactide). Due to long pulse duration, however, there is a risk of heat diffusion and accumulation in the material. In addition, due to short wavelength (193 nm) photochemical process can modify the chemical composition of ablated surfaces. The motivation for this research was to evaluate the influence of laser micromachining on physicochemical properties of poly(L-lactide). We performed calorimetric analysis of laser machined samples by using differential scanning calorimetry (DSC). It allowed us to find the optimal process parameters for heat affected zone (HAZ) reduction. The chemical composition of the ablated surface was investigated by FTIR in attenuated total reflectance (ATR) mode.

  5. Zero-order controlled release of ciprofloxacin-HCl from a reservoir-based, bioresorbable and elastomeric device.

    Science.gov (United States)

    Tobias, Irene S; Lee, Heejin; Engelmayr, George C; Macaya, Daniel; Bettinger, Christopher J; Cima, Michael J

    2010-09-15

    A reservoir-based device constructed of a completely biodegradable elastomer can enable several new implantation and insertion options for localized drug therapy, particularly in the case of urological therapies. We performed an in vitro performance evaluation of an implantable, bio-resorbable device that supplies short-term controlled release of ciprofloxacin-HCl (CIP). The proposed device functions through a combination of osmosis and diffusion mechanisms to release CIP for short-term therapies of a few weeks duration. Poly(glycerol-co-sebacic acid) (PGS) was cast in a tubular geometry with solid drug powder packed into its core and a micro-machined release orifice drilled through its wall. Drug release experiments were performed to determine the effective release rate from a single orifice and the range of orifice sizes in which controlled zero-order release was the main form of drug expulsion from the device. It is demonstrated that PGS is sufficiently permeable to water to allow the design of an elementary osmotic pump for drug delivery. Indeed, PGS's water permeability is several orders of magnitude larger than commonly used cellulose acetate for elementary osmotic pumps. PMID:20566343

  6. A Combination of Drug-Eluting Stents and Bioresorbable Vascular Scaffolds in the Treatment of Multivessel Coronary Artery Disease.

    Science.gov (United States)

    Al-Mamary, Ahmed; Zilio, Filippo; Napodano, Massimo

    2016-08-01

    Optimal management of multivessel coronary artery disease can be complex. We report a 67-year-old male patient who was admitted to the Padua University Hospital, Padua, Italy, in 2014 with a non-ST-elevation myocardial infarction. Coronary angiography showed diffuse multiple sub-occlusive lesions of the proximal and distal left coronary vessels involving a long segment of the vessel. On intravascular ultrasonography (IVUS), the left main artery was moderately diseased with critically stenotic and calcified branch ostia. A successful percutaneous coronary intervention using the T-stenting and small protrusion technique with two drug-eluting stents (DES) was performed on the left main artery and its main branches. Two bioresorbable vascular scaffolds were also deployed in overlap at the mid to distal segments of the left anterior descending artery and overlapping a previous DES at the proximal segment. The full expansion and apposition of the struts and scaffolds to the vessel wall without residual stenosis was confirmed by IVUS. PMID:27606119

  7. Calcium and bones

    Science.gov (United States)

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  8. Calcium carbonate overdose

    Science.gov (United States)

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Some products that contain calcium carbonate are certain: ... and mineral supplements Other products may also contain calcium ...

  9. Get Enough Calcium

    Science.gov (United States)

    ... Calcium Print This Topic En español Get Enough Calcium Browse Sections The Basics Overview Foods and Vitamins ... 2 of 4 sections Take Action! Take Action: Calcium Sources Protect your bones – get plenty of calcium ...

  10. Comparison of polymethylmethacrylate (PMMA, native calcium sulfate, and high porous calcium sulfate beads as gentamicin carriers and osteoblast attachment

    Directory of Open Access Journals (Sweden)

    Chaiyakorn Thitiyanaporn

    2013-06-01

    Full Text Available Calcium sulfate, a bioresorbable material, has been used as a bone substitute material and antibiotic vehicle. The increasing porosity of calcium sulfate beads might improve drug delivery capacity as well as enhance the antibiotic elution property. High porous calcium sulfate (HPCS beads were fabricated using a salt leaching technique as a new bead type for antibiotic delivery system. Gentamicin-based antibiotic beads were conducted by impregnating gentamicin (3.8% w/w with polymethylmethacrylate (PMMA, or coating of PMMA, native calcium sulfate (NCS, and HPCS with gentamicin solution. Physical properties, microstructure, and gentamicin elution from gentamicin-impregnated PMMA (GI-PMMA, gentamicincoated PMMA (G-PMMA, gentamicin-coated NCS (G-NCS, and gentamicin-coated HPCS (G-HPCS were compared. The osteoblast attachment revealed that PMMA, NCS, and HPCS beads were not toxic to h-OBs after co-incubation for sevendays. Furthermore, more h-OBs attachment appeared in HPCS beads compared to PMMA and NCS beads after co-culture for 7 days. Eluted gentamicin from G-NCS and G-HPCS beads were greater than those from GI-PMMA and G-PMMA beads during the experimental period. All types of beads were able to elute gentamicin for 10 days except G-PMMA, which released gentamicin only for four days. The highest to lowest total concentrations of eluted gentamicin were from G-NCS, G-HPCS,G-PMMA, and GI-PMMA, respectively. These results suggested that the HPCS beads improved local antibiotic delivery and improved h-OBs attachment.

  11. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.

    1984-01-01

    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture, exhausti

  12. Novel intramedullary-fixation technique for long bone fragility fractures using bioresorbable materials.

    Directory of Open Access Journals (Sweden)

    Takanobu Nishizuka

    Full Text Available Almost all of the currently available fracture fixation devices for metaphyseal fragility fractures are made of hard metals, which carry a high risk of implant-related complications such as implant cutout in severely osteoporotic patients. We developed a novel fracture fixation technique (intramedullary-fixation with biodegradable materials; IM-BM for severely weakened long bones using three different non-metallic biomaterials, a poly(l-lactide (PLLA woven tube, a nonwoven polyhydroxyalkanoates (PHA fiber mat, and an injectable calcium phosphate cement (CPC. The purpose of this work was to evaluate the feasibility of IM-BM with mechanical testing as well as with an animal experiment. To perform mechanical testing, we fixed two longitudinal acrylic pipes with four different methods, and used them for a three-point bending test (N = 5. The three-point bending test revealed that the average fracture energy for the IM-BM group (PLLA + CPC + PHA was 3 times greater than that of PLLA + CPC group, and 60 to 200 times greater than that of CPC + PHA group and CPC group. Using an osteoporotic rabbit distal femur incomplete fracture model, sixteen rabbits were randomly allocated into four experimental groups (IM-BM group, PLLA + CPC group, CPC group, Kirschner wire (K-wire group. No rabbit in the IM-BM group suffered fracture displacement even under full weight bearing. In contrast, two rabbits in the PLLA + CPC group, three rabbits in the CPC group, and three rabbits in the K-wire group suffered fracture displacement within the first postoperative week. The present work demonstrated that IM-BM was strong enough to reinforce and stabilize incomplete fractures with both mechanical testing and an animal experiment even in the distal thigh, where bone is exposed to the highest bending and torsional stresses in the body. IM-BM can be one treatment option for those with severe osteoporosis.

  13. Arterial healing following primary PCI using the Absorb everolimus-eluting bioresorbable vascular scaffold (Absorb BVS) versus the durable polymer everolimus-eluting metallic stent (XIENCE) in patients with acute ST-elevation myocardial infarction

    DEFF Research Database (Denmark)

    Räber, Lorenz; Onuma, Yoshinobu; Brugaletta, Salvatore;

    2015-01-01

    AIMS: The Absorb bioresorbable vascular scaffold (Absorb BVS) provides similar clinical outcomes compared with a durable polymer-based everolimus-eluting metallic stent (EES) in stable coronary artery disease patients. ST-elevation myocardial infarction (STEMI) lesions have been associated...

  14. Incidence and Potential Mechanism(s) of Post-Procedural Rise of Cardiac Biomarker in Patients With Coronary Artery Narrowing After Implantation of an Everolimus-Eluting Bioresorbable Vascular Scaffold or Everolimus-Eluting Metallic Stent

    DEFF Research Database (Denmark)

    Ishibashi, Yuki; Muramatsu, Takashi; Nakatani, Shimpei;

    2015-01-01

    to Compare the Safety, Efficacy, and Performance of Absorb Everolimus Eluting Bioresorbable Vascular Scaffold System Against Xience Everolimus Eluting Coronary Stent System in the Treatment of Subjects With Ischemic Heart Disease Caused by De Novo Native Coronary Artery Lesions [ABSORB II]; NCT01425281)....

  15. Calcium source (image)

    Science.gov (United States)

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  16. Calcium hydroxide poisoning

    Science.gov (United States)

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  17. Calcium and bones (image)

    Science.gov (United States)

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...

  18. Coronary Calcium Scan

    Science.gov (United States)

    ... the NHLBI on Twitter. What Is a Coronary Calcium Scan? A coronary calcium scan is a test ... you have calcifications in your coronary arteries. Coronary Calcium Scan Figure A shows the position of the ...

  19. Calcium Pyrophosphate Deposition (CPPD)

    Science.gov (United States)

    ... Patient / Caregiver Diseases & Conditions Calcium Pyrophosphate Deposition (CPPD) Calcium Pyrophosphate Deposition (CPPD) Fast Facts The risk of ... young people, too. Proper diagnosis depends on detecting calcium pyrophosphate crystals in the fluid of an affected ...

  20. Calcium and Vitamin D

    Science.gov (United States)

    ... Home › Patients › Treatment › Calcium/Vitamin D Calcium/Vitamin D Getting enough calcium and vitamin D is essential ... counter medications and calcium supplements. What is Vitamin D and What Does it Do? Vitamin D plays ...

  1. Everolimus-eluting bioresorbable stent vs. durable polymer everolimus-eluting metallic stent in patients with ST-segment elevation myocardial infarction

    DEFF Research Database (Denmark)

    Sabaté, Manel; Windecker, Stephan; Iñiguez, Andres;

    2015-01-01

    AIMS: Patients with ST-segment elevation myocardial infarction (STEMI) feature thrombus-rich lesions with large necrotic core, which are usually associated with delayed arterial healing and impaired stent-related outcomes. The use of bioresorbable vascular scaffolds (Absorb) has the potential...... to overcome these limitations owing to restoration of native vessel lumen and physiology at long term. The purpose of this randomized trial was to compare the arterial healing response at short term, as a surrogate for safety and efficacy, between the Absorb and the metallic everolimus-eluting stent (EES...... was the 6-month optical frequency domain imaging healing score (HS) based on the presence of uncovered and/or malapposed stent struts and intraluminal filling defects. Main secondary endpoint included the device-oriented composite endpoint (DOCE) according to the Academic Research Consortium definition...

  2. Cytocompatibility, mechanical and dissolution properties of high strength boron and iron oxide phosphate glass fibre reinforced bioresorbable composites.

    Science.gov (United States)

    Sharmin, Nusrat; Hasan, Muhammad S; Parsons, Andrew J; Rudd, Chris D; Ahmed, Ifty

    2016-06-01

    In this study, Polylactic acid (PLA)/phosphate glass fibres (PGF) composites were prepared by compression moulding. Fibres produced from phosphate based glasses P2O5-CaO-MgO-Na2O (P45B0), P2O5-CaO-MgO-Na2O-B2O3 (P45B5), P2O5-CaO-MgO-Na2O-Fe2O3 (P45Fe3) and P2O5-CaO-MgO-Na2O-B2O3-Fe2O3 (P45B5Fe3) were used to reinforce the bioresorbable polymer PLA. Fibre mechanical properties and degradation rate were investigated, along with the mechanical properties, degradation and cytocompatibility of the composites. Retention of the mechanical properties of the composites was evaluated during degradation in PBS at 37°C for four weeks. The fibre volume fraction in the composite varied from 19 to 23%. The flexural strength values (ranging from 131 to 184MPa) and modulus values (ranging from 9.95 to 12.29GPa) obtained for the composites matched those of cortical bone. The highest flexural strength (184MPa) and modulus (12.29GPa) were observed for the P45B5Fe3 composite. After 28 days of immersion in PBS at 37°C, ~35% of the strength profile was maintained for P45B0 and P45B5 composites, while for P45Fe3 and P45B5Fe3 composites ~40% of the initial strength was maintained. However, the overall wet mass change of P45Fe3 and P45B5Fe3 remained significantly lower than that of the P45B0 and P45B5 composites. The pH profile also revealed that the P45B0 and P45B5 composites degraded quicker, correlating well with the degradation profile. From SEM analysis, it could be seen that after 28 days of degradation, the fibres in the fractured surface of P45B5Fe3 composites remain fairly intact as compared to the other formulations. The in vitro cell culture studies using MG63 cell lines revealed both P45Fe3 and P45B5Fe3 composites maintained and showed higher cell viability as compared to the P45B0 and P45B5 composites. This was attributed to the slower degradation rate of the fibres in P45Fe3 and P45B5Fe3 composites as compared with the fibres in P45B0 and P45B5 composites.

  3. Implantable, multifunctional, bioresorbable optics.

    Science.gov (United States)

    Tao, Hu; Kainerstorfer, Jana M; Siebert, Sean M; Pritchard, Eleanor M; Sassaroli, Angelo; Panilaitis, Bruce J B; Brenckle, Mark A; Amsden, Jason J; Levitt, Jonathan; Fantini, Sergio; Kaplan, David L; Omenetto, Fiorenzo G

    2012-11-27

    Advances in personalized medicine are symbiotic with the development of novel technologies for biomedical devices. We present an approach that combines enhanced imaging of malignancies, therapeutics, and feedback about therapeutics in a single implantable, biocompatible, and resorbable device. This confluence of form and function is accomplished by capitalizing on the unique properties of silk proteins as a mechanically robust, biocompatible, optically clear biomaterial matrix that can house, stabilize, and retain the function of therapeutic components. By developing a form of high-quality microstructured optical elements, improved imaging of malignancies and of treatment monitoring can be achieved. The results demonstrate a unique family of devices for in vitro and in vivo use that provide functional biomaterials with built-in optical signal and contrast enhancement, demonstrated here with simultaneous drug delivery and feedback about drug delivery with no adverse biological effects, all while slowly degrading to regenerate native tissue. PMID:23150544

  4. Evaluation of effectiveness of hyaluronic acid in combination with bioresorbable membrane (poly lactic acid-poly glycolic acid for the treatment of infrabony defects in humans: A clinical and radiographic study

    Directory of Open Access Journals (Sweden)

    Bhumika Sehdev

    2016-01-01

    Full Text Available Background: The combination of biomaterials, bone graft substitutes along with guided tissue regeneration (GTR has been shown to be an effective modality of periodontal regenerative therapy for infrabony defects. Therefore, the present randomized controlled clinical study was undertaken to evaluate the effectiveness of hyaluronic acid (HA in combination with bioresorbable membrane for the treatment of human infrabony defects. Materials and Methods: Twenty four infrabony defects in 20 systemically healthy patients were randomly assigned to test (HA in combination with bioresorbable membrane and control (bioresorbable membrane alone treatment groups. Probing pocket depth (PPD, relative attachment level, and relative gingival margin level were measured with a computerized Florida disc probe at baseline and at 6 months follow-up. Radiographic measurements were also evaluated at baseline and at 6 months of postsurgery. Results: At 6 months, the mean reduction in PPD in test group and control group was 4.52 mm and 2.97 mm, respectively. Significantly higher clinical attachment level with a gain of 2.20 mm was found in the test group as compared to control group. In addition, statistically significant greater reduction of radiographic defect depth was observed in the test group. Conclusion: Regenerative approach using hyaloss in combination with GTR for the treatment of human infrabony defects resulted in a significant added benefit in terms of CAL gains, PPD reductions and radiographic defect fill, as well as LBG, compared to the GTR alone.

  5. Calcium channel blocker overdose

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002580.htm Calcium channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium channel blockers are a type of medicine used ...

  6. Fenoprofen calcium overdose

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002649.htm Fenoprofen calcium overdose To use the sharing features on this page, please enable JavaScript. Fenoprofen calcium is a type of medicine called a nonsteroidal ...

  7. Calcium and Mitosis

    Science.gov (United States)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  8. Combining oxygen plasma treatment with anchorage of cationized gelatin for enhancing cell affinity of poly(lactide-co-glycolide).

    Science.gov (United States)

    Shen, Hong; Hu, Xixue; Yang, Fei; Bei, Jianzhong; Wang, Shenguo

    2007-10-01

    Surface characteristics greatly influence attachment and growth of cells on biomaterials. Although polylactone-type biodegradable polymers have been widely used as scaffold materials for tissue engineering, lack of cell recognition sites, poor hydrophilicity and low surface energy lead to a bad cell affinity of the polymers, which limit the usage of polymers as scaffolds in tissue engineering. In the present study, surface of poly (L-lactide-co-glycolide) (PLGA) was modified by a method of combining oxygen plasma treatment with anchorage of cationized gelatin. Modification effect of the method was compared with other methods of oxygen plasma treatment, cationized gelatin or gelatin coating and combining oxygen plasma treatment with anchorage of gelatin. The change of surface property was compared by contact angles, surface energy, X-ray photoelectron spectra (XPS), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM) measurement. The optimum oxygen pretreatment time determined by surface energy was 10 min when the power was 50 W and the oxygen pressure was 20 Pa. Analysis of the stability of gelatin and cationized gelatin anchored on PLGA by XPS, ATR-FTIR, contact angles and surface energy measurement indicated the cationized gelatin was more stable than gelatin. The result using mouse NIH 3T3 fibroblasts as model cells to evaluate cell affinity in vitro showed the cationized gelatin-anchored PLGA (OCG-PLGA) was more favorable for cell attachment and growth than oxygen plasma treated PLGA (O-PLGA) and gelatin-anchored PLGA (OG-PLGA). Moreover cell affinity of OCG-PLGA could match that of collagen-anchored PLGA (AC-PLGA). So the surface modification method combining oxygen plasma treatment with anchorage of cationized gelatin provides a universally effective way to enhance cell affinity of polylactone-type biodegradable polymers. PMID:17618682

  9. Preparation and characterization of a stereocomplex of poly(lactide-co-ε-caprolactone/tricalcium phosphate biocomposite using supercritical fluid technology

    Directory of Open Access Journals (Sweden)

    P. Purnama

    2013-12-01

    Full Text Available A novel biocomposite material from a stereocomplex of poly (L-lactide-co-ε-caprolactone (PLLCL and poly (D-lactide-co-ε-caprolactone (PDLCL and inorganic tricalcium phosphate (TCP was prepared by supercritical fluid method. Both pristine and poly (L-lactide-grafted-TCP (PLLA-g-TCP were used. PLLA-g-TCP was produced by ringopening polymerization of L-lactide in the presence of surface-activated TCP. Infrared (IR spectroscopy and scanning electron microscopic (SEM images confirm the attachment of PLLA onto the activated TCP surface. The stereocomplex formation of biocomposite was confirmed by differential scanning calorimetry (DSC and wide-angle X-ray diffraction (WAXD. The biocomposite containing PLLA-g-TCP has higher stereocomplex degree and more homogeneous TCP distribution compared to the biocomposite containing pristine TCP. The presence of PLLA-g-TCP in the stereocomplex PLLCLPDLCL (s-PDLCL enhance the stereocomplex degree up to a certain content and also supports the homogeneous TCP dispersion in the stereocomplex matrix. These phenomena support the improvement in mechanical properties of the s-PDLCL composite the optimum content of PLLA-g-TCP being 10%. The biocomposites containing TCP materials are promising materials for biomedical application, especially for bone tissue engineering.

  10. A novel route for the production of chitosan/poly(lactide-co-glycolide) graft copolymers for electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Xie Deming [Tissue Engineering Laboratory, Department of Biomedical Engineering, Jinan University, Guangzhou, 510630 (China); Huang Huamei [Morphological Experiments Center of Medical College, Jinan University, Guangzhou, 510630 (China); Blackwood, Keith; MacNeil, Sheila [Tissue Engineering Group, Department of Engineering Materials and Division of Biomedical Sciences and Medicine, Kroto Research Institute, University of Sheffield North Campus, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2010-12-15

    Both chitosan and polylactide/polyglycolide have good biocompatibility and can be used to produce tissue engineering scaffolds for cultured cells. However the synthetic scaffolds lack groups that would facilitate their modification, whereas chitosan has extensive active amide and hydroxyl groups which would allow it to be subsequently modified for the attachment of peptides, proteins and drugs. Also chitosan is very hydrophilic, whereas PLGA is relatively hydrophobic. Accordingly there are many situations where it would be ideal to have a copolymer of both, especially one that could be electrospun to provide a versatile range of scaffolds for tissue engineering. Our aim was to develop a novel route of chitosan-g-PLGA preparation and evaluate the copolymers in terms of their chemical characterization, their performance on electrospinning and their ability to support the culture of fibroblasts as an initial biological evaluation of these scaffolds. Chitosan was first modified with trimethylsilyl chloride, and catalyzed by dimethylamino pyridine. PLGA-grafted chitosan copolymers were prepared by reaction with end-carboxyl PLGA (PLGA-COOH). FT-IR and{sup 1}H-NMR characterized the copolymer molecular structure as being substantially different to that of the chitosan or PLGA on their own. Elemental analysis showed an average 18 pyranose unit intervals when PLGA-COOH was grafted into the chitosan molecular chain. Differential scanning calorimetry results showed that the copolymers had different thermal properties from PLGA and chitosan respectively. Contact angle measurements demonstrated that copolymers became more hydrophilic than PLGA. The chitosan-g-PLGA copolymers were electrospun to produce either nano- or microfibers as desired. A 3D fibrous scaffold of the copolymers gave good fibroblast adhesion and proliferation which did not differ significantly from the performance of the cells on the chitosan or PLGA electrospun scaffolds. In summary this work presents a methodology for making a hybrid material of natural and synthetic polymers which can be electrospun and reacts well as a substrate for cell culture.

  11. Poly(lactide)-g-poly(butylene succinate-co-adipate) with High Crystallization Capacity and Migration Resistance

    OpenAIRE

    Xi Yang; Huan Xu; Karin Odelius; Minna Hakkarainen

    2016-01-01

    Plasticized polylactide (PLA) with increased crystallization ability and prolonged life-span in practical applications due to the minimal plasticizer migration was prepared. Branched plasticized PLA was successfully obtained by coupling poly(butylene succinate-co-adipate) (PBSA) to crotonic acid (CA) functionalized PLA. The plasticization behavior of PBSA coupled PLA (PLA-CA-PBSA) and its counterpart PBSA blended PLA (PLA/PBSA) were fully elucidated. For both PLA-CA-PBSA and PLA/PBSA, a decre...

  12. Poly(lactide-g-poly(butylene succinate-co-adipate with High Crystallization Capacity and Migration Resistance

    Directory of Open Access Journals (Sweden)

    Xi Yang

    2016-04-01

    Full Text Available Plasticized polylactide (PLA with increased crystallization ability and prolonged life-span in practical applications due to the minimal plasticizer migration was prepared. Branched plasticized PLA was successfully obtained by coupling poly(butylene succinate-co-adipate (PBSA to crotonic acid (CA functionalized PLA. The plasticization behavior of PBSA coupled PLA (PLA-CA-PBSA and its counterpart PBSA blended PLA (PLA/PBSA were fully elucidated. For both PLA-CA-PBSA and PLA/PBSA, a decrease of Tg to around room temperature and an increase in the elongation at break of PLA from 14% to 165% and 460%, respectively, were determined. The crystallinity was increased from 2.1% to 8.4% for PLA/PBSA and even more, to 10.6%, for PLA-CA-PBSA. Due to the inherent poor miscibility between the PBSA and PLA, phase separation occurred in the blend, while PLA-CA-PBSA showed no phase separation which, together with the higher crystallinity, led to better oxygen barrier properties compared to neat PLA and PLA/PBSA. A higher resistance to migration during hydrolytic degradation for the PLA-CA-PBSA compared to the PLA/PBSA indicated that the plasticization effect of PBSA in the coupled material would be retained for a longer time period.

  13. Hollow fibers of poly(lactide-co-glycolide) and poly(epsilon-caprolactone) blends for vascular tissue engineering applications

    NARCIS (Netherlands)

    Diban, Nazely; Haimi, Suvi; Bolhuis-Versteeg, Lydia; Teixeira, Sandra; Miettinen, Susanna; Poot, Andre; Grijpma, Dirk; Stamatialis, Dimitrios

    2013-01-01

    At present the manufacture of small-diameter blood vessels is one of the main challenges in the field of vascular tissue engineering. Currently available vascular grafts rapidly fail due to development of intimal hyperplasia and thrombus formation. Poly(lactic-co-glycolic acid) (PLGA) hollow fiber (

  14. Preparation, characterization, and in vitro testing of poly(lactide-co-glycolide) and dextran magnetic microspheres for in vivo applications

    Science.gov (United States)

    Leamy, Patrick J.

    Many research groups are investigating degradable magnetic particles for magnetic resonance imaging (MRI) contrast agents and as carriers for magnetic drug guidance. These particles are composite materials with a degradable polymer matrix and iron oxide nanoparticles for magnetic properties. The degradable polymer matrix acts to provide colloidal stability and, for drug delivery applications, provides a reservoir for the storage and release of drugs. Natural polymers, like albumin and dextran, which degrade by the action of enzymes; have been used for the polymer matrix. Iron oxide nanoparticles are used for magnetic properties since they can be digested in vivo and have low toxicities. Polylactic acid (PLA) and its copolymers with polyglycolic acid (PLGA) are versatile polymers that degrade by simple hydrolysis without the aid of enzymes. Microspheres are easily formed using the solvent extraction/evaporation method and a wide range of drugs can be encapsulated in them. Magnetic PLGA microspheres suitable for applications were synthesized for the first time in this dissertation. This was accomplished by coating iron oxide nanoparticles with oleic acid to make them dispersible in the organic solvents used in the extraction/evaporation microsphere preparation method. In addition to the magnetic PLGA microspheres, a novel all-aqueous method for preparing crosslinked dextran magnetic microspheres was developed in this dissertation. This method uses free radical polymerization for crosslinking and does not require the use of flammable and harmful solvents. For efficient MRI contrast and magnetic drug guidance, maximized iron oxide content of microspheres is desirable. The two different microsphere preparation methods were optimized for iron oxide content. The effect of iron oxide content on microsphere size and morphology was studied. In addition, an in vitro circulation model was used to evaluate the ability of magnetic microspheres to be guided at physiologic blood flow velocities. The MRI contrast effect was studied as a function of microsphere concentration.

  15. [Influence of curcumin--loaded poly (lactide-co-glycolide) films on the proliferation of vascular smooth muscle cells].

    Science.gov (United States)

    Ren, Ling; Wang, Jin; Tang, Jiaju; Pan, Changjiang; Huang, Nan

    2008-08-01

    In-stent restenosis is the major problem of percutaneous coronary interventions. Drug-eluting stent became a landmark in the treatment of coronary disease. Curcumin could be used for drug-eluting stent due to its antithrombogenity and antiproliferative properties. In this paper, 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays were performed to decide the optimal concentration of curcumin for inhibiting the proliferation of vascular smooth muscle cells (VSMC). The result disclosed that more than 80% of VSMC were inhibited when the concentration of curcumin ranged from 2.5 microg/ml to 10 microg/ml (P 316 stainless steel (SS). Therefore, these films may be used for stent coating to inhibit the in-stent restenosis induced by VSMC proliferation. PMID:18792454

  16. A novel route for the production of chitosan/poly(lactide-co-glycolide) graft copolymers for electrospinning

    International Nuclear Information System (INIS)

    Both chitosan and polylactide/polyglycolide have good biocompatibility and can be used to produce tissue engineering scaffolds for cultured cells. However the synthetic scaffolds lack groups that would facilitate their modification, whereas chitosan has extensive active amide and hydroxyl groups which would allow it to be subsequently modified for the attachment of peptides, proteins and drugs. Also chitosan is very hydrophilic, whereas PLGA is relatively hydrophobic. Accordingly there are many situations where it would be ideal to have a copolymer of both, especially one that could be electrospun to provide a versatile range of scaffolds for tissue engineering. Our aim was to develop a novel route of chitosan-g-PLGA preparation and evaluate the copolymers in terms of their chemical characterization, their performance on electrospinning and their ability to support the culture of fibroblasts as an initial biological evaluation of these scaffolds. Chitosan was first modified with trimethylsilyl chloride, and catalyzed by dimethylamino pyridine. PLGA-grafted chitosan copolymers were prepared by reaction with end-carboxyl PLGA (PLGA-COOH). FT-IR and1H-NMR characterized the copolymer molecular structure as being substantially different to that of the chitosan or PLGA on their own. Elemental analysis showed an average 18 pyranose unit intervals when PLGA-COOH was grafted into the chitosan molecular chain. Differential scanning calorimetry results showed that the copolymers had different thermal properties from PLGA and chitosan respectively. Contact angle measurements demonstrated that copolymers became more hydrophilic than PLGA. The chitosan-g-PLGA copolymers were electrospun to produce either nano- or microfibers as desired. A 3D fibrous scaffold of the copolymers gave good fibroblast adhesion and proliferation which did not differ significantly from the performance of the cells on the chitosan or PLGA electrospun scaffolds. In summary this work presents a methodology for making a hybrid material of natural and synthetic polymers which can be electrospun and reacts well as a substrate for cell culture.

  17. Encapsulation of superparamagnetic iron oxide nanoparticles in poly-(lactide-co-glycolic acid) microspheres for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gun, Sumeyra; Edirisinghe, Mohan [Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom); Stride, Eleanor, E-mail: Eleanor.stride@eng.ox.ac.uk [Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus, University of Oxford, Oxford OX3 7DQ (United Kingdom)

    2013-08-01

    Magnetic microspheres were prepared using a single step coaxial electrohydrodynamic atomization technique at ambient temperature and pressure, with poly(lactic-co-glycolic acid) as the coating and iron oxide (Fe{sub 3}O{sub 4}) nanoparticles dispersed in polyethylene glycol as the encapsulated material. The morphology and particle size distributions of the prepared magnetic microspheres were investigated by scanning electron microscopy. The particles were spherical with mean diameters ranging from ∼ 2 μm to 18 μm, depending on the combination of processing parameters (flow rate and applied voltage). Analysis by infrared spectroscopy and focused ion-beam sectioning confirmed incorporation of iron oxide nanoparticles into the microspheres and the prepared samples were shown to be responsive to an applied magnetic field. This study demonstrates a convenient method for the preparation of nanoparticle loaded microspheres, which could be used potentially as transverse relaxation contrast agents in magnetic resonance imaging, as well as for magnetically guided drug delivery. Highlights: • Polymer microspheres embedding magnetic nanoparticles were prepared by coaxial electrospraying. • Particle size and uniformity could be controlled by varying the processing parameters. • Superparamagnetic characteristics were retained. • Particle formation required a single processing step at ambient temperature and pressure.

  18. Calcium en cardioplegie

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Meijler, F.L.

    1985-01-01

    Coronary perfusion with a calcium-free solution, followed by reperfusion with a calcium containing solution, may result in acute myocardial cell death and in irreversible loss of the e1ectrical and mechanical activity of the heart. This phenomenon is known as the calcium paradox. A number of cardiop

  19. Calcium signaling and epilepsy.

    Science.gov (United States)

    Steinlein, Ortrud K

    2014-08-01

    Calcium signaling is involved in a multitude of physiological and pathophysiological mechanisms. Over the last decade, it has been increasingly recognized as an important factor in epileptogenesis, and it is becoming obvious that the excess synchronization of neurons that is characteristic for seizures can be linked to various calcium signaling pathways. These include immediate effects on membrane excitability by calcium influx through ion channels as well as delayed mechanisms that act through G-protein coupled pathways. Calcium signaling is able to cause hyperexcitability either by direct modulation of neuronal activity or indirectly through calcium-dependent gliotransmission. Furthermore, feedback mechanisms between mitochondrial calcium signaling and reactive oxygen species are able to cause neuronal cell death and seizures. Unravelling the complexity of calcium signaling in epileptogenesis is a daunting task, but it includes the promise to uncover formerly unknown targets for the development of new antiepileptic drugs.

  20. Smoking, calcium, calcium antagonists, and aging.

    Science.gov (United States)

    Nicita-Mauro, V

    1990-01-01

    Aging is characterized, besides other changes, by a progressive increase in calcium content in the arterial wall, which is enhanced by diabetes mellitus, osteoporosis, arterial hypertension, and tabagism. As to tabagism, experiments in animals have shown that nicotine can increase calcium content of the arterial wall, and clinical studies have demonstrated that cigarette smoking induces peripheral vasoconstriction, with consequent increase in blood pressure levels. In order to study the role of calcium ions in the pathogenesis of the vasoconstrictive lesions caused by "acute" smoking, the author has studied the peripheral vascular effects of the calcium-channel antagonist nifedipine, a dihydropyridine derivative, and calcitonin, a hypocalcemizing hormone which possess vasoactive actions on 12 elderly regular smokers (mean age 65.8 years). The results demonstrated that both nifedipine (10 mg sublingually 20 min before smoking) and salmon calcitonin (100 MRC U/daily intramuscularly for three days) are able to prevent peripheral vasoconstriction evaluated by Doppler velocimetry, as well as the increase of blood pressure induced by smoking. On the basis of our results, the author proposes that cigarette smoking-induced vasoconstriction is a calcium-mediated process, which can be hindered by drugs with calcium antagonist action. PMID:2226675

  1. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  2. Measurements of intracellular calcium

    International Nuclear Information System (INIS)

    Intracellular calcium concentration ([Ca2+]i) has been measured in cultured cells by using Fura-2 load cells and a computer-controlled Perkin Elmer LS-5B spectrofluorometer. Increased [Ca2+]i in cells exposed to extracellular bilirubin was observed both with and without extracellular calcium. However, the increase was considerable larger with extracellular calcium. The enhancement of [Ca2+]i became smaller with decreasing bilirubin/BSA (bovine serum albumine) ratio. 5 refs., 5 figs

  3. Polylactic acid based materials and nanostructured multilayers for cardiovascular devices and wound healing

    OpenAIRE

    Carmagnola, Irene

    2013-01-01

    i. Poly(L-lactic acid), which is the current gold standard to fabricate bioresorbable stents, was modified by blending, with the aim to prepare a material with lower degradation time and improved mechanical properties. Binary blends of poly(L-lactic) acid (PLLA1: 80428 Da and PLLA2: 201790 Da) and poly(lactide-co-glycolide) (PLGA1) (LA:GA = 50:50 mol:mol; 32030 Da) with various compositions (100/0; 75/25: 50/50; 25/75; 0/100 wt./wt.) were prepared by solution casting. SEM analysis showed a bi...

  4. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  5. Bioresorbable cage for interbody fusion Progress in research and clinical application%可吸收椎间融合器的理论研究及临床应用

    Institute of Scientific and Technical Information of China (English)

    孙浩林; 李淳德

    2008-01-01

    学术背景:椎间融合器在脊柱外科手术中应用发展迅速.传统椎间融合器的内在缺陷(包括术后沉降、不透光性、应力遮挡效应、手术节段迟发性炎症和骨质疏松等)给与可吸收椎间融合器发展的契机.相比传统椎间融合器,它具有更好的刚度和弹性系数,对影像学评估干扰更小等诸多优势.目的:介绍可吸收椎间融合器的材料类别与属性、动物实验、临床应用以及目前存在的问题和发展前景,为可吸收椎间融合器的研究和临床应用提供客观依据.检索策略:由该论文的研究人员应用计算机检索Pubmed数据库1990-12/2006-12的相关文献,检索词"Bioresorbable cage,spine, SCI",并限定文章语言种类为English.共检索到550篇文献,对资料进行初审,纳入标准:有关可吸收椎间融合器的材料研究、动物实验研究、临床研究.排除标准:重复研究.文献评价:文献的来源主要是关于可吸收椎间融合器的材料研究、动物实验研究、临床研究.所选用的27篇文献中,1篇为综述,其余均为临床或基础实验研究.资料综合:①材料研究:多聚乳酸是目前研究最多的应用于可吸收椎间融合器的材料;可吸收材料的属性包括结晶性、平均分子量、分子量分布性(多分散性)以及玻璃转化温度.当其应用于椎间融合器时还要考虑降解相关参数、功能降解速度、周围炎症反应以及降解后周围组织填充等因素.②动物实验:四足动物作为动物模型有重要的研究价值也存在一定缺陷;离体实验研究集中在可吸收椎间融合器降解特性及维持脊柱弹性方面的特性;体内实验研究包括其生物力学特性、降解特性、融合特性及异物反应等方面的属性.③临床应用:可吸收椎间融合器在腰椎PLIF,TLIF术及颈椎ACDF术中临床应用短期随访临床效果满意.④可吸收椎间融合器也存在一些应用风险,为降低这些

  6. Calcium D-saccharate

    DEFF Research Database (Denmark)

    Garcia, André Castilho; Hedegaard, Martina Vavrusova; Skibsted, Leif Horsfelt

    2016-01-01

    Molar conductivity of saturated aqueous solutions of calcium d-saccharate, used as a stabilizer of beverages fortified with calcium d-gluconate, increases strongly upon dilution, indicating complex formation between calcium and d-saccharate ions, for which, at 25 °C, Kassoc = 1032 ± 80, ΔHassoc......° = -34 ± 6 kJ mol-1, and ΔSassoc° = -55 ± 9 J mol-1 K-1, were determined electrochemically. Calcium d-saccharate is sparingly soluble, with a solubility product, Ksp, of (6.17 ± 0.32) × 10-7 at 25 °C, only moderately increasing with the temperature: ΔHsol° = 48 ± 2 kJ mol-1, and ΔSassoc° = 42 ± 7 J mol-1...... K-1. Equilibria in supersaturated solutions of calcium d-saccharate seem only to adjust slowly, as seen from calcium activity measurements in calcium d-saccharate solutions made supersaturated by cooling. Solutions formed by isothermal dissolution of calcium d-gluconate in aqueous potassium d...

  7. HYPERTHERMIA, INTRACELLULAR FREE CALCIUM AND CALCIUM IONOPHORES

    NARCIS (Netherlands)

    STEGE, GJJ; WIERENGA, PK; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    It is shown that heat-induced increase of intracellular calcium does not correlate with hyperthermic cell killing. Six different cell lines were investigated; in four (EAT, HeLa S3, L5178Y-R and L5178Y-S) heat treatments killing 90% of the cells did not affect the levels of intracellular free calciu

  8. Disintegration and cancer immunotherapy efficacy of a squalane-in-water delivery system emulsified by bioresorbable poly(ethylene glycol)-block-polylactide.

    Science.gov (United States)

    Chen, Wei-Lin; Liu, Shih-Jen; Leng, Chih-Hsiang; Chen, Hsin-Wei; Chong, Pele; Huang, Ming-Hsi

    2014-02-01

    Vaccine adjuvant is conferred on the substance that helps to enhance antigen-specific immune response. Here we investigated the disintegration characteristics and immunotherapy potency of an emulsified delivery system comprising bioresorbable polymer poly(ethylene glycol)-polylactide (PEG-PLA), phosphate buffer saline (PBS), and metabolizable oil squalane. PEG-PLA-stabilized oil-in-water emulsions show good stability at 4 °C and at room temperature. At 37 °C, squalane/PEG-PLA/PBS emulsion with oil/aqueous weight ratio of 7/3 (denominated PELA73) was stable for 6 weeks without phase separation. As PEG-PLA being degraded, 30% of free oil at the surface layer and 10% of water at the bottom disassociated from the PELA73 emulsion were found after 3 months. A MALDI-TOF MS study directly on the DIOS plate enables us to identify low molecular weight components released during degradation. Our results confirm the loss of PLA moiety of the emulsifier PEG-PLA directly affected the stability of PEG-PLA-stabilized emulsion, leading to emulsion disintegration and squalane/water phase separation. As adjuvant for cancer immunotherapeutic use, an HPV16 E7 peptide antigen formulated with PELA73 plus immunostimulatory CpG molecules could strongly enhance antigen-specific T-cell responses as well as anti-tumor ability with respected to non-formulated or Alum-formulated peptide. Accordingly, these advances may be a potential immunoregulatory strategy in manipulating the immune responses induced by tumor-associated antigens.

  9. Calcium binding by dietary fibre

    International Nuclear Information System (INIS)

    Dietary fibre from plants low in phytate bound calcium in proportion to its uronic-acid content. This binding by the non-cellulosic fraction of fibre reduces the availability of calcium for small-intestinal absorption, but the colonic microbial digestion of uronic acids liberates the calcium. Thus the ability to maintain calcium balance on high-fibre diets may depend on the adaptive capacity on the colon for calcium. (author)

  10. Acidosis and Urinary Calcium Excretion

    DEFF Research Database (Denmark)

    Alexander, R Todd; Cordat, Emmanuelle; Chambrey, Régine;

    2016-01-01

    Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone...... and inhibition of calcium transport processes within the renal tubule. The mechanisms whereby acid alters the integrity and stability of bone have been examined extensively in the published literature. Here, after briefly reviewing this literature, we consider the effects of acid on calcium transport...

  11. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.

    2012-01-01

    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate ab

  12. A randomized multicenter comparison of hybrid sirolimus-eluting stents with bioresorbable polymer versus everolimus-eluting stents with durable polymer in total coronary occlusion: rationale and design of the Primary Stenting of Occluded Native Coronary Arteries IV study

    Directory of Open Access Journals (Sweden)

    Teeuwen Koen

    2012-12-01

    Full Text Available Abstract Background Percutaneous recanalization of total coronary occlusion (TCO was historically hampered by high rates of restenosis and reocclusions. The PRISON II trial demonstrated a significant restenosis reduction in patients treated with sirolimus-eluting stents compared with bare metal stents for TCO. Similar reductions in restenosis were observed with the second-generation zotarolimus-eluting stent and everolimus-eluting stent. Despite favorable anti-restenotic efficacy, safety concerns evolved after identifying an increased rate of very late stent thrombosis (VLST with drug-eluting stents (DES for the treatment of TCO. Late malapposition caused by hypersensitivity reactions and chronic inflammation was suggested as a probable cause of these VLST. New DES with bioresorbable polymer coatings were developed to address these safety concerns. No randomized trials have evaluated the efficacy and safety of the new-generation DES with bioresorbable polymers in patients treated for TCO. Methods/Design The prospective, randomized, single-blinded, multicenter, non-inferiority PRISON IV trial was designed to evaluate the safety, efficacy, and angiographic outcome of hybrid sirolimus-eluting stents with bioresorbable polymers (Orsiro; Biotronik, Berlin, Germany compared with everolimus-eluting stents with durable polymers (Xience Prime/Xpedition; Abbott Vascular, Santa Clara, CA, USA in patients with successfully recanalized TCOs. In total, 330 patients have been randomly allocated to each treatment arm. Patients are eligible with estimated duration of TCO ≥4 weeks with evidence of ischemia in the supply area of the TCO. The primary endpoint is in-segment late luminal loss at 9-month follow-up angiography. Secondary angiographic endpoints include in-stent late luminal loss, minimal luminal diameter, percentage of diameter stenosis, in-stent and in-segment binary restenosis and reocclusions at 9-month follow-up. Additionally, optical coherence

  13. CALCIUM-INDUCED SUPRAMOLECULAR STRUCTURES IN THE CALCIUM CASEINATE SYSTEM

    Science.gov (United States)

    The molecular details deciphering the spontaneous calcium-induced protein aggregation process in the calcium caseinate system remain obscure. Understanding this complex process could lead to potential new applications of this important food ingredient. In this work, we studied calcium-induced supra...

  14. A sensor for calcium uptake

    OpenAIRE

    Collins, Sean; Meyer, Tobias

    2010-01-01

    Mitochondria — the cell’s power plants — increase their energy production in response to calcium signals in the cytoplasm. A regulator of the elusive mitochondrial calcium channel has now been identified.

  15. Children's Bone Health and Calcium

    Science.gov (United States)

    ... Trials Resources and Publications Children's Bone Health and Calcium: Condition Information Skip sharing on social media links ... straight, walk, run, and lead an active life. Calcium is one of the key dietary building blocks ...

  16. Calcium ion channel and epilepsy

    Institute of Scientific and Technical Information of China (English)

    Yudan Lü; Weihong Lin; Dihui Ma

    2006-01-01

    OBJECTIVE: To review the relationship between calcium ion channel and epilepsy for well investigating the pathogenesis of epilepsy and probing into the new therapeutic pathway of epilepsy.DATA SOURCES: A computer-based online research Calcium ion channel and epilepsy related articles published between January 1994 and December 2006 in the CKNI and Wanfang database with the key words of "calcium influxion, epilepsy, calcium-channel blocker". The language was limited to Chinese. At the same time,related articles published between January 1993 and December 2006 in Pubmed were searched for on online with the key words of "calcium influxion, epilepsy" in English.STUDY SELECTION: The materials were selected firstly. Inclusive criteria: ① Studies related to calcium ion channel and the pat1hogenesis of epilepsy. ② Studies on the application of calcium ion channel blocker in the treatment of epilepsy. Exclusive criteria: repetitive or irrelated studies.DATA EXTRACTION: According to the criteria, 123 articles were retrieved and 93 were excluded due to repetitive or irrelated studies. Altogether 30 articles met the inclusive criteria, 11 of them were about the structure and characters of calcium ion channel, 10 about calcium ion channel and the pathogenesis of epilepsy and 9 about calcium blocker and the treatment of epilepsy.DATA SYNTHESIS: Calcium ion channels mainly consist of voltage dependent calcium channel and receptor operated calcium channel. Depolarization caused by voltage gating channel-induced influxion is the pathological basis of epileptic attack, and it is found in many studies that many anti-epileptic drugs have potential and direct effect to rivalizing voltage-dependent calcium ion channel.CONCLUSION: Calcium influxion plays an important role in the seizure of epilepsy. Some calcium antagonists seen commonly are being tried in the clinical therapy of epilepsy that is being explored, not applied in clinical practice. If there are enough evidences to

  17. Solar Imagery - Chromosphere - Calcium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of full-disk images of the sun in Calcium (Ca) II K wavelength (393.4 nm). Ca II K imagery reveal magnetic structures of the sun from about...

  18. Calcium aluminate in alumina

    Science.gov (United States)

    Altay, Arzu

    The properties of ceramic materials are determined not only by the composition and structure of the phases present, but also by the distribution of impurities, intergranular films and second phases. The phase distribution and microstructure both depend on the fabrication techniques, the raw materials used, the phase-equilibrium relations, grain growth and sintering processes. In this dissertation research, various approaches have been employed to understand fundamental phenomena such as grain growth, impurity segregation, second-phase formation and crystallization. The materials system chosen was alumina intentionally doped with calcium. Atomic-scale structural analyses of grain boundaries in alumina were carried on the processed samples. It was found that above certain calcium concentrations, CA6 precipitated as a second phase at all sintering temperatures. The results also showed that abnormal grain growth can occur after precipitation and it is not only related to the calcium level, but it is also temperature dependent. In order to understand the formation mechanism of CA6 precipitates in calcium doped alumina samples, several studies have been carried out using either bulk materials or thin films The crystallization of CA2 and CA6 powders has been studied. Chemical processing techniques were used to synthesize the powders. It was observed that CA2 powders crystallized directly, however CA6 powders crystallized through gamma-Al 2O3 solid solution. The results of energy-loss near-edge spectrometry confirmed that gamma-Al2O3 can dissolve calcium. Calcium aluminate/alumina reaction couples have also been investigated. All reaction couples were heat treated following deposition. It was found that gamma-Al2O3 was formed at the interface as a result of the interfacial reaction between the film and the substrate. gamma-Al 2O3 at the interface was stable at much higher temperatures compared to the bulk gamma-Al2O3 formed prior to the CA6 crystallization. In order to

  19. In vitro elution of vancomycin from biodegradable osteoconductive calcium phosphate-polycaprolactone composite beads for treatment of osteomyelitis.

    Science.gov (United States)

    Makarov, C; Cohen, V; Raz-Pasteur, A; Gotman, I

    2014-10-01

    In this work, osteoconductive composite materials comprising a large volume fraction of a bioresorbable calcium phosphate ceramic (CaP) and a smaller amount of a polycaprolactone polymer (PCL) were studied as a degradable antibiotic carrier material for treatment of osteomyelitis. Beads loaded with 1 and 4wt.% vancomycin were prepared by admixing dissolved drug to an in situ synthesized dicalcium phosphate (DCP)-PCL or solution-mixed beta-tricalcium phosphate (βTCP)-PCL composite powder followed by high pressure consolidation of the blend at room temperature. Vancomycin release was measured in phosphate-buffered saline (PBS) at 37°C. All the beads gradually released the drug over the period of 4-11weeks, depending on the composite matrix homogeneity and porosity. Mathematical modeling using the Peppas equation showed that vancomycin elution was diffusion controlled. The stability of the antibiotic after high pressure application at room temperature was demonstrated by high-performance liquid chromatography-mass spectrometry (HPLC-MS) studies and MIC testing. The preservation of the structure and activity of vancomycin during the processing of composite beads and its sustained in vitro release profile suggest that high pressure consolidated CaP-PCL beads may be useful in the treatment of chronic bone infections as resorbable delivery vehicles of vancomycin and even of thermally unstable drug substances.

  20. Calcium signaling in taste cells.

    Science.gov (United States)

    Medler, Kathryn F

    2015-09-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

  1. Fruit Calcium: Transport and Physiology

    Directory of Open Access Journals (Sweden)

    Bradleigh eHocking

    2016-04-01

    Full Text Available Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact fruit development, physical traits and disease susceptibility through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to ripening and the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g. blossom end rot in tomatoes or bitter pit in apples. This review works towards an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved

  2. DISTILLATION OF CALCIUM

    Science.gov (United States)

    Barton, J.

    1954-07-27

    This invention relates to an improvement in the process for the purification of caicium or magnesium containing an alkali metal as impurity, which comprises distiiling a batch of the mixture in two stages, the first stage distillation being carried out in the presence of an inert gas at an absolute pressure substantially greater than the vapor pressure of calcium or maguesium at the temperature of distillation, but less than the vaper pressure at that temperature of the alkali metal impurity so that only the alkali metal is vaporized and condensed on a condensing surface. A second stage distilso that substantially only the calcium or magnesium distills under its own vapor pressure only and condenses in solid form on a lower condensing surface.

  3. Models of calcium signalling

    CERN Document Server

    Dupont, Geneviève; Kirk, Vivien; Sneyd, James

    2016-01-01

    This book discusses the ways in which mathematical, computational, and modelling methods can be used to help understand the dynamics of intracellular calcium. The concentration of free intracellular calcium is vital for controlling a wide range of cellular processes, and is thus of great physiological importance. However, because of the complex ways in which the calcium concentration varies, it is also of great mathematical interest.This book presents the general modelling theory as well as a large number of specific case examples, to show how mathematical modelling can interact with experimental approaches, in an interdisciplinary and multifaceted approach to the study of an important physiological control mechanism. Geneviève Dupont is FNRS Research Director at the Unit of Theoretical Chronobiology of the Université Libre de Bruxelles;Martin Falcke is head of the Mathematical Cell Physiology group at the Max Delbrück Center for Molecular Medicine, Berlin;Vivien Kirk is an Associate Professor in the Depar...

  4. Calcium phosphate/porous silicon biocomposites prepared by cyclic deposition methods: Spin coating vs electrochemical activation

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Montelongo, J., E-mail: jacobo.hernandez@uam.es [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Gallach, D.; Naveas, N.; Torres-Costa, V. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Climent-Font, A. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Centro de Microanálisis de Materiales (CMAM), Universidad Autónoma de Madrid, Madrid 28049 (Spain); García-Ruiz, J.P. [Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 (Spain); Manso-Silvan, M. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2014-01-01

    Porous silicon (PSi) provides an excellent platform for bioengineering applications due to its biocompatibility, biodegradability, and bioresorbability. However, to promote its application as bone engineering scaffold, deposition of calcium phosphate (CaP) ceramics in its hydroxyapatite (HAP) phase is in progress. In that sense, this work focuses on the synthesis of CaP/PSi composites by means of two different techniques for CaP deposition on PSi: Cyclic Spin Coating (CSC) and Cyclic Electrochemical Activation (CEA). Both techniques CSC and CEA consisted on alternate Ca and P deposition steps on PSi. Each technique produced specific morphologies and CaP phases using the same independent Ca and P stem-solutions at neutral pH and at room temperature. The brushite (BRU) phase was favored with the CSC technique and the hydroxyapatite (HAP) phase was better synthesized using the CEA technique. Analyses by elastic backscattering spectroscopy (EBS) on CaP/PSi structures synthesized by CEA supported that, by controlling the CEA parameters, an HAP coating with the required Ca/P atomic ratio of 1.67 can be promoted. Biocompatibility was evaluated by bone-derived progenitor cells, which grew onto CaP/PSi prepared by CSC technique with a long-shaped actin cytoskeleton. The density of adhered cells was higher on CaP/PSi prepared by CEA, where cells presented a normal morphological appearance and active mitosis. These results can be used for the design and optimization of CaP/PSi composites with enhanced biocompatibility for bone-tissue engineering. - Highlights: • Proposed cyclic methods produce specific morphologies and CaP phases in biocomposites. • The brushite phase is favored in the biocomposite produced by Cyclic Spin Coating. • The hydroxyapatite phase is favored in the biocomposite produced by Cyclic Electrochemical Activation. • The Ca/P atomic ratio of hydroxyapatite was validated by elastic backscattering spectroscopy. • Cells grown showed morphological and

  5. Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yufu, E-mail: Yufu.Ren@rockets.utoledo.edu [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Zhou, Huan [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu (China); Nabiyouni, Maryam [Department of Bioengineering, The University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Division of Dentistry, The University of Toledo, Toledo, OH (United States)

    2015-04-01

    Due to their unique biodegradability, magnesium alloys have been recognized as suitable metallic implant materials for degradable bone implants and bioresorbable cardiovascular stents. However, the extremely high degradation rate of magnesium alloys in physiological environment has restricted its practical application. This paper reports the use of a novel microwave assisted coating technology to improve the in vitro corrosion resistance and biocompatibility of Mg alloy AZ31. Results indicate that a dense calcium deficient hydroxyapatite (CDHA) layer was uniformly coated on a AZ31 substrate in less than 10 min. Weight loss measurement and SEM were used to evaluate corrosion behaviors in vitro of coated samples and of non-coated samples. It was seen that CDHA coatings remarkably reduced the mass loss of AZ31 alloy after 7 days of immersion in SBF. In addition, the prompt precipitation of bone-like apatite layer on the sample surface during immersion demonstrated a good bioactivity of the CDHA coatings. Proliferation of osteoblast cells was promoted in 5 days of incubation, which indicated that the CDHA coatings could improve the cytocompatibility of the AZ31 alloy. All the results suggest that the CDHA coatings, serving as a protective layer, can enhance the corrosion resistance and biological response of magnesium alloys. Furthermore, this microwave assisted coating technology could be a promising method for rapid surface modification of biomedical materials. - Highlights: • A microwave assisted coating process for biodegradable Mg alloy. • CDHA coatings were successfully developed on AZ31 alloy in minutes. • The as-deposited CDHA coatings significantly reduced the degradation rate of AZ31 alloy. • The CDHA coated AZ31 alloy showed good bioactivity and biocompatibility in vitro. • The microwave assisted coating process can be used as rapid surface modification for bioimplants.

  6. Reactive calcium-phosphate-containing poly(ester-co-ether) methacrylate bone adhesives: setting, degradation and drug release considerations.

    Science.gov (United States)

    Zhao, Xin; Olsen, Irwin; Pratten, Jonathan; Knowles, Jonathan C; Young, Anne M

    2011-09-01

    This study has investigated novel bone adhesives consisting of fluid photo-polymerizable poly(lactide-co-propylene glycol-co-lactide)dimethacrylate (PGLA-DMA) mixed with systematically varying fillers of β-tricalcium phosphate (β-TCP) and monocalcium phosphate monohydrate (MCPM), for the delivery of an antibacterial drug chlorhexidine (CHX). All formulations were found to polymerize fully within 200 s after exposure to blue light. In addition, water sorption by the polymerized materials catalyzed varying filler conversion to dicalcium phosphate (DCP) (i.e. brushite and monetite). With greater DCP levels, faster degradation was observed. Moreover, increase in total filler content enhanced CHX release, associated with higher antibacterial activity. These findings thus suggest that such rapid-setting and degradable adhesives with controllable drug delivery property could have potential clinical value as bone adhesives with antibacterial activity.

  7. Calcium – how and why?

    Indian Academy of Sciences (India)

    J K Jaiswal

    2001-09-01

    Calcium is among the most commonly used ions, in a multitude of biological functions, so much so that it is impossible to imagine life without calcium. In this article I have attempted to address the question as to how calcium has achieved this status with a brief mention of the history of calcium research in biology. It appears that during the origin and early evolution of life the Ca2+ ion was given a unique opportunity to be used in several biological processes because of its unusual physical and chemical properties.

  8. Calcium Phosphate Biomaterials: An Update

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Current calcium phosphate (CaP) biomaterials for bone repair, substitution, augmentation and regeneration include hydroxyapatite ( HA ) from synthetic or biologic origin, beta-tricalcium phosphate ( β-TCP ) , biphasic calcium phosphate (BCP), and are available as granules, porous blocks, components of composites (CaP/polymer) cements, and as coatings on orthopedic and dental implants. Experimental calcium phosphate biomaterials include CO3- and F-substituted apatites, Mg-and Zn-substituted β-TCP, calcium phosphate glasses. This paper is a brief review of the different types of CaP biomaterials and their properties such as bioactivity, osteoconductivity, osteoinductivity.

  9. Cardiovascular Effects of Calcium Supplements

    Directory of Open Access Journals (Sweden)

    Ian R. Reid

    2013-07-01

    Full Text Available Calcium supplements reduce bone turnover and slow the rate of bone loss. However, few studies have demonstrated reduced fracture incidence with calcium supplements, and meta-analyses show only a 10% decrease in fractures, which is of borderline statistical and clinical significance. Trials in normal older women and in patients with renal impairment suggest that calcium supplements increase the risk of cardiovascular disease. To further assess their safety, we recently conducted a meta-analysis of trials of calcium supplements, and found a 27%–31% increase in risk of myocardial infarction, and a 12%–20% increase in risk of stroke. These findings are robust because they are based on pre-specified analyses of randomized, placebo-controlled trials and are consistent across the trials. Co-administration of vitamin D with calcium does not lessen these adverse effects. The increased cardiovascular risk with calcium supplements is consistent with epidemiological data relating higher circulating calcium concentrations to cardiovascular disease in normal populations. There are several possible pathophysiological mechanisms for these effects, including effects on vascular calcification, vascular cells, blood coagulation and calcium-sensing receptors. Thus, the non-skeletal risks of calcium supplements appear to outweigh any skeletal benefits, and are they appear to be unnecessary for the efficacy of other osteoporosis treatments.

  10. Calcium measurement methods

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-09-01

    Full Text Available Rightly stressed by prof. Wolfgang Walz in the Preface to the series Neuromethods series, the “careful application of methods is probably the most important step in the process of scientific inquiry”. Thus, I strongly suggest to all those interested in calcium signaling and especially to the new-comers in the hot topic of neuroscience (which has so much space even in science-society debate for its implications in legal issues and in the judge-decision process to take profit from this so well edited book. I am saying this since prof. Verkhratsky and prof. Petersen......

  11. 21 CFR 573.240 - Calcium periodate.

    Science.gov (United States)

    2010-04-01

    ... with calcium hydroxide or calcium oxide to form a substance consisting of not less than 60 percent by... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium periodate. 573.240 Section 573.240 Food... Additive Listing § 573.240 Calcium periodate. The food additive calcium periodate may be safely used...

  12. 21 CFR 573.260 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does...

  13. Extracellular calcium sensing and extracellular calcium signaling

    Science.gov (United States)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    , localized changes in Ca(o)(2+) within the ECF can originate from several mechanisms, including fluxes of calcium ions into or out of cellular or extracellular stores or across epithelium that absorb or secrete Ca(2+). In any event, the CaR and other receptors/sensors for Ca(o)(2+) and probably for other extracellular ions represent versatile regulators of numerous cellular functions and may serve as important therapeutic targets.

  14. Calcium, vitamin D, and your bones

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000490.htm Calcium, vitamin D, and your bones To use the sharing ... and maintain strong bones. How Much Calcium and Vitamin D Do I Need? Amounts of calcium are ...

  15. Vitamin D, Calcium, and Bone Health

    Science.gov (United States)

    ... Balance › Vitamin D, Calcium, and Bone Health Vitamin D, Calcium, and Bone Health March 2012 Download PDFs ... helps keep your bones strong. Why are vitamin D and calcium important to bone health? Vitamin D ...

  16. 可吸收性脊柱椎间融合器的理论研究与临床应用%Research development of the bioresorbable intervertebral fusion cage

    Institute of Scientific and Technical Information of China (English)

    张翊; 张超; 曹聪; 董宇启

    2011-01-01

    BACKGROUND: Bioabsorbable intervertebral fusion cage has similar strength and modulus of elasticity with bone tissues and possesses ray permeability. It can be absorbed gradually by human tissues which is apt to fusion.OBJECTIVE: To introduce the characters in different materials of the bioresorbable intervertebral fusion cage, illustrate results of animal researches and investigate effects of different fusion cages in clinical application.METHODS: Literatures about the bioresorbable intervertebral fusion cage published in English and those published in domestic core magazines were selected from PubMed, and those articles were analyzed, classified, summarized and reviewed.RESULTS AND CONCLUSION: With the development of materials science, absorbing materials in spinal surgery are widely applied . Although they have shown remarkable clinical result and prospect as an emerging technology, they still need to be gradually developed, and more research should be carried out.%背景:生物可吸收椎间融合器材料具有与骨组织相似的强度及弹性模量,具有射线可透过性,且能随着时间推移逐渐被人体组织吸收替代并更易于融合.目的:介绍各种可吸收性椎间融合器材料的特点、动物实验以及临床应用效果.方法:主要选择被PubMed收录的外文文献和在国内核心杂志上发表的有关可吸收性椎间融合器的文献,就其内容进行分析、分类、归纳及总结.结果与结论:尽管可吸收材料椎间融合器相对于传统椎间融合器来说具有许多优点,目前的实验研究和临床使用也取得了比较满意的结果,但其材料本身属性所致的风险仍然不可忽视,比如pH值降低、存在产生无菌性炎症反应和局部骨吸收的危险等.另外大多数聚合物材料脆性高,由其加工制成的融合器置入人体后可能出现融合器断裂,导致融合失败,尚需逐步发展完善.

  17. CALCIUM ENHANCES ANTIINFLAMMATORY ACTIVITY OF ASPIRIN

    OpenAIRE

    Choksi Krishna; Shenoy Ashoka M; A. R. Shabharaya; Lala Minaxi

    2011-01-01

    The objective of present study is to evaluate the effects of calcium carbonate and calcium gluconate on acute and subacute inflammation and to study their possible interactions with Aspirin. Calcium carbonate (10 mg/kg) and calcium gluconate (5 mg/kg) were administered individually and also co-administered along with sub therapeutic dose Aspirin (50mg/kg) to study their interaction. The inflammation was induced by carrageenan or a foreign body. Both calcium carbonate and calcium gluconate cou...

  18. Calcium addition in straw gasification

    DEFF Research Database (Denmark)

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk;

    2003-01-01

    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...... affected the ash chemistry and the ash sintering tendency but much less the char reactivity. Thermo balance test are made and high-temperature X-ray diffraction measurements are performed, the experimental results indicate that with calcium addition major inorganic¿inorganic reactions take place very late...... in the char conversion process. Comprehensive global equilibrium calculations predicted important characteristics of the inorganic ash residue. Equilibrium calculations predict the formation of liquid salt if sufficient amounts of Ca are added and according to experiments as well as calculations calcium binds...

  19. Amniotic epithelial stem cell biocompatibility for electrospun poly(lactide-co-glycolide), poly(ε-caprolactone), poly(lactic acid) scaffolds.

    Science.gov (United States)

    Russo, Valentina; Tammaro, Loredana; Di Marcantonio, Lisa; Sorrentino, Andrea; Ancora, Massimo; Valbonetti, Luca; Turriani, Maura; Martelli, Alessandra; Cammà, Cesare; Barboni, Barbara

    2016-12-01

    Three biodegradable thermoplastic polymers, poly(ε-caprolactone) (PCL), poly(l-lactide-co-d,l-lactide) (PLA) and poly(l-lactide-co-glycolide) (PLGA), have been used to produce nonwovens scaffolds with uniform micrometer fibres. Scaffolds' physical and morphological characterization was performed by X-ray diffraction, Scanning Electron Microscopy and Contact-Angle test. Morphological investigations revealed that all produced fibres were randomly orientated with interconnected pores ranging between 5 and 12μm in diameter. An average fibre diameter of 1.5, 0.75 and 1.2μm was found for PCL, PLA and PLGA, respectively. Moreover, experiments were designed to verify whether the fabricated electrospun substrates were biocompatible for ovine amniotic epithelial stem cells (oAECs) under in vitro conditions. Cell adhesion, survival, spatial organization on fibres, proliferation index, and DNA quantification after 48h culture, showed an enhanced adhesion and proliferation, especially for PLGA scaffolds. The favourable interaction between oAECs and the fibrous scaffolds was attributed to the greatly improved porosity and pore size distribution of the electrospun scaffolds. In addition, AECs can be considered ideal for tissue engineering especially when using biocompatible and opportunely produced scaffolds. PMID:27612719

  20. Safety of poly (ethylene glycol-coated perfluorodecalin-filled poly (lactide-co-glycolide microcapsules following intravenous administration of high amounts in rats

    Directory of Open Access Journals (Sweden)

    Katja B. Ferenz

    2014-01-01

    Intravenous infusion of high amounts of PFD-filled PLGA microcapsules was tolerated temporarily but associated with severe side effects such as hypotension and organ damage. Short-chained PVA displays excellent biocompatibility and thus, can be utilized as emulsifier for the preparation of drug carriers designed for intravenous use.

  1. The synthesis of poly(lactide)-vitamin E TPGS (PLA-TPGS) copolymer and its utilization to formulate a curcumin nanocarrier

    Science.gov (United States)

    Thu Ha, Phuong; Nguyet Tran, Thi Minh; Duong Pham, Hong; Huan Nguyen, Quang; Phuc Nguyen, Xuan

    2010-03-01

    Curcumin is a natural substance that exhibits the ability to inhibit and/or treat carcinogenesis in a variety of cell lines, but because of its poor solubility in water the treatment efficacy is limited. In this paper we report on the fabrication of self-assembled micelle nanoparticles loaded with a curcumin drug by use of a biocompatible copolymer of PLA-TPGS (d-a-tocopheryl polyethylene glycol 1000 succinate—vitamin E TPGS) conjugate. The polylactide (PLA)-TPGS copolymer synthesized by ring-opening polymerization was characterized by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (1H NMR) techniques. The surface morphology of PLA-TPGS and curcumin loaded PLA-TPGS was determined by field emission scanning electron microscopy (FE-SEM). The absorption and fluorescence examinations indicated that due to micellar capsulation the intensity of both types of spectra increased by about 4 times in comparison with those of the free curcumin sample.

  2. The synthesis of poly(lactide)-vitamin E TPGS (PLA-TPGS) copolymer and its utilization to formulate a curcumin nanocarrier

    International Nuclear Information System (INIS)

    Curcumin is a natural substance that exhibits the ability to inhibit and/or treat carcinogenesis in a variety of cell lines, but because of its poor solubility in water the treatment efficacy is limited. In this paper we report on the fabrication of self-assembled micelle nanoparticles loaded with a curcumin drug by use of a biocompatible copolymer of PLA-TPGS (d-a-tocopheryl polyethylene glycol 1000 succinate—vitamin E TPGS) conjugate. The polylactide (PLA)-TPGS copolymer synthesized by ring-opening polymerization was characterized by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (1H NMR) techniques. The surface morphology of PLA-TPGS and curcumin loaded PLA-TPGS was determined by field emission scanning electron microscopy (FE-SEM). The absorption and fluorescence examinations indicated that due to micellar capsulation the intensity of both types of spectra increased by about 4 times in comparison with those of the free curcumin sample

  3. Antibiotic-loaded plaster of Paris implants coated with poly lactide-co-glycolide as a controlled release delivery system for the treatment of bone infections

    OpenAIRE

    Benoit, M.-A.; Mousset, B.; Delloye, C.; Bouillet, R.; Gillard, J.

    1998-01-01

    m) of PLA45GA10. This delivery system was implanted into the femoral condyle of rabbits. It was shown that the in vivo release was also closely regulated by the coating depth. In all bone tissues (bone marrow and cortical bone) surrounding the pellets, the drug concentration exceeded the Minimum Inhibitory Concentration for the common causative organisms of bone infections (Staphylococcus aureus) for at least four weeks without inducing serum toxic levels. Due to its cheapness, facility of us...

  4. The application of layered double hydroxide clay (LDH)-poly(lactide-co-glycolic acid) (PLGA) film composites for the controlled release of antibiotics

    DEFF Research Database (Denmark)

    Chakraborti, Michelle; Jackson, John K.; Plackett, David;

    2012-01-01

    /clay complexes in poly(lactic-co-glycolic acid) films resulted in a reduced burst phase of release and a slow continuous release for many weeks with effective antimicrobial amounts of VAN and SF released at later time points. Layered double hydroxide clays may be useful for controlled release applications...

  5. Evolution of the Calcium Paradigm: The Relation between Vitamin D, Serum Calcium and Calcium Absorption

    Directory of Open Access Journals (Sweden)

    Borje E. Christopher Nordin

    2010-09-01

    Full Text Available Osteoporosis is the index disease for calcium deficiency, just as rickets/osteomalacia is the index disease for vitamin D deficiency, but there is considerable overlap between them. The common explanation for this overlap is that hypovitaminosis D causes malabsorption of calcium which then causes secondary hyperparathyroidism and is effectively the same thing as calcium deficiency. This paradigm is incorrect. Hypovitaminosis D causes secondary hyperparathyroidism at serum calcidiol levels lower than 60 nmol/L long before it causes malabsorption of calcium because serum calcitriol (which controls calcium absorption is maintained until serum calcidiol falls below 20 nmol/L. This secondary hyperparathyroidism, probably due to loss of a “calcaemic” action of vitamin D on bone first described in 1957, destroys bone and explains why vitamin D insufficiency is a risk factor for osteoporosis. Vitamin D thus plays a central role in the maintenance of the serum (ionised calcium, which is more important to the organism than the preservation of the skeleton. Bone is sacrificed when absorbed dietary calcium does not match excretion through the skin, kidneys and bowel which is why calcium deficiency causes osteoporosis in experimental animals and, by implication, in humans.

  6. Sensitivity to calcium intake in calcium stone forming patients.

    Science.gov (United States)

    Heilberg, I P; Martini, L A; Draibe, S A; Ajzen, H; Ramos, O L; Schor, N

    1996-01-01

    The absorptive or renal origin of hypercalciuria can be discriminated using an acute oral calcium load test (ACLT). Of 86 patients with calcium oxalate kidney stones, 28 (23%) were found to be hypercalciuric (HCa) and 58 (67%) normocalciuric (NCa) on their customary free diet, containing 542 +/- 29 mg/day (mean +/- SE) of calcium. Since the apparently normal 24-hour calcium excretion of many calcium stone formers (CSF) may be due to a combination of high calcium absorption with moderately low calcium intake, all patients were investigated by ACLT. Of 28 HCa patients, 13 (46%) were classified as absorptive (AH) and 15 (54%) as renal hypercalciuria (RH). Of the 58 NCa patients, 38 (65%) presented features of intestinal hyperabsorption and were therefore designated as AH-like, and 20 (35%) as RH-like. To further elucidate the role of dietary calcium in these CSF, a chronic calcium load test (CCLT), consisting of 1 g/day of oral Ca for 7 days, was designed. A positive response to the CCLT was considered to occur when urinary calcium (uCa) was > or = 4 mg/ kg/24 h on the 7th day. Among NCa patients, 29% of AH-like subjects responded to the CCLT and 71% did not; 50% of RH-like subjects also responded and 50% did not. In HCa patients, 85% of AH and 67% of RH subjects maintained uCa > or = 4 mg/kg/24 h after the CCLT and 15% of AH and 23% of RH subjects did not. However, a significant additional increase in mean uCa was not observed among HCa patients. All patients were submitted to a second evaluation of fasting calciuria (Ca/Cr). A modification of this parameter was noticed in 89% of RH-like and 78% of RH patients. In conclusion, these data suggest the presence of subpopulations of patients sensitive or not to calcium intake, regardless of whether the acute response to a calcium overload test suggested AH or RH. The CCLT disclosed dietary hypercalciuria in 21/58 (36%) of previously NCa patients. In these NCa patients, the ACLT may be replaced by the CCLT. The distinction

  7. Limestone reaction in calcium aluminate cement–calcium sulfate systems

    Energy Technology Data Exchange (ETDEWEB)

    Bizzozero, Julien, E-mail: julien.bizzozero@gmail.com; Scrivener, Karen L.

    2015-10-15

    This paper reports a study of ternary blends composed of calcium aluminate cement, calcium sulfate hemihydrate and limestone. Compressive strength tests and hydration kinetics were studied as a function of limestone and calcium sulfate content. The phase evolution and the total porosity were followed and compared to thermodynamic simulation to understand the reactions involved and the effect of limestone on these binders. The reaction of limestone leads to the formation of hemicarboaluminate and monocarboaluminate. Increasing the ratio between sulfate and aluminate decreases the extent of limestone reaction.

  8. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases

    Institute of Scientific and Technical Information of China (English)

    Nasrin NFJATBAKHSH; Zhong-ping FENG

    2011-01-01

    Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel regulation in human diseases.

  9. Echogenicity as a surrogate for bioresorbable everolimus-eluting scaffold degradation: analysis at 1-, 3-, 6-, 12- 18, 24-, 30-, 36- and 42-month follow-up in a porcine model.

    Science.gov (United States)

    Campos, Carlos M; Ishibashi, Yuki; Eggermont, Jeroen; Nakatani, Shimpei; Cho, Yun Kyeong; Dijkstra, Jouke; Reiber, Johan H C; Sheehy, Alexander; Lane, Jennifer; Kamberi, Marika; Rapoza, Richard; Perkins, Laura; Garcia-Garcia, Hector M; Onuma, Yoshinobu; Serruys, Patrick W

    2015-03-01

    The objective of the study is to validate intravascular quantitative echogenicity as a surrogate for molecular weight assessment of poly-l-lactide-acid (PLLA) bioresorbable scaffold (Absorb BVS, Abbott Vascular, Santa Clara, California). We analyzed at 9 time points (from 1- to 42-month follow-up) a population of 40 pigs that received 97 Absorb scaffolds. The treated regions were analyzed by echogenicity using adventitia as reference, and were categorized as more (hyperechogenic or upperechogenic) or less bright (hypoechogenic) than the reference. The volumes of echogenicity categories were correlated with the measurements of molecular weight (Mw) by gel permeation chromatography. Scaffold struts appeared as high echogenic structures. The quantification of grey level intensity in the scaffold-vessel compartment had strong correlation with the scaffold Mw: hyperechogenicity (correlation coefficient = 0.75; P < 0.01), upperechogenicity (correlation coefficient = 0.63; P < 0.01) and hyper + upperechogenicity (correlation coefficient = 0.78; P < 0.01). In the linear regression, the R(2) for high echogenicity and Mw was 0.57 for the combination of hyper and upper echogenicity. IVUS high intensity grey level quantification is correlated to Absorb BVS residual molecular weight and can be used as a surrogate for the monitoring of the degradation of semi-crystalline polymers scaffolds. PMID:25627777

  10. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-01

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness. PMID:7488645

  11. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-01

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  12. Variability of calcium absorption

    International Nuclear Information System (INIS)

    Variability in calcium absorption was estimated in three groups of normal subjects in whom Ca absorption was measured by standard isotopic-tracer methods at interstudy intervals ranging from 1 to 4 mo. Fifty absorption tests were performed in 22 subjects. Each was done in the morning after an overnight fast with an identical standard breakfast containing a Ca load of approximately 250 mg. Individual fractional absorption values were normalized to permit pooling of the data. The coefficient of variation (CVs) for absorption for the three groups ranged from 10.57 to 12.79% with the size of the CV increasing with interstudy duration. One other published study presenting replicate absorption values was analyzed in a similar fashion and was found to have a CV of absorption of 9.78%. From these data we estimate that when the standard double-isotope method is used to measure Ca absorption there is approximately 10% variability around any given absorption value within an individual human subject and that roughly two-thirds of this represents real biological variability in absorption

  13. Mitochondrial calcium uptake.

    Science.gov (United States)

    Williams, George S B; Boyman, Liron; Chikando, Aristide C; Khairallah, Ramzi J; Lederer, W J

    2013-06-25

    Calcium (Ca(2+)) uptake into the mitochondrial matrix is critically important to cellular function. As a regulator of matrix Ca(2+) levels, this flux influences energy production and can initiate cell death. If large, this flux could potentially alter intracellular Ca(2+) ([Ca(2+)]i) signals. Despite years of study, fundamental disagreements on the extent and speed of mitochondrial Ca(2+) uptake still exist. Here, we review and quantitatively analyze mitochondrial Ca(2+) uptake fluxes from different tissues and interpret the results with respect to the recently proposed mitochondrial Ca(2+) uniporter (MCU) candidate. This quantitative analysis yields four clear results: (i) under physiological conditions, Ca(2+) influx into the mitochondria via the MCU is small relative to other cytosolic Ca(2+) extrusion pathways; (ii) single MCU conductance is ∼6-7 pS (105 mM [Ca(2+)]), and MCU flux appears to be modulated by [Ca(2+)]i, suggesting Ca(2+) regulation of MCU open probability (P(O)); (iii) in the heart, two features are clear: the number of MCU channels per mitochondrion can be calculated, and MCU probability is low under normal conditions; and (iv) in skeletal muscle and liver cells, uptake per mitochondrion varies in magnitude but total uptake per cell still appears to be modest. Based on our analysis of available quantitative data, we conclude that although Ca(2+) critically regulates mitochondrial function, the mitochondria do not act as a significant dynamic buffer of cytosolic Ca(2+) under physiological conditions. Nevertheless, with prolonged (superphysiological) elevations of [Ca(2+)]i, mitochondrial Ca(2+) uptake can increase 10- to 1,000-fold and begin to shape [Ca(2+)]i dynamics.

  14. Aging and calcium as an environmental factor.

    Science.gov (United States)

    Fujita, T

    1985-12-01

    Calcium deficiency is a constant menace to land-abiding animals, including mammals. Humans enjoying exceptional longevity on earth are especially susceptible to calcium deficiency in old age. Low calcium and vitamin D intake, short solar exposure, decreased intestinal absorption, and falling renal function with insufficient 1,25(OH)2 vitamin D biosynthesis all contribute to calcium deficiency, secondary hyperparathyroidism, bone loss and possibly calcium shift from the bone to soft tissue, and from the extracellular to the intracellular compartment, blunting the sharp concentration gap between these compartments. The consequences of calcium deficiency might thus include not only osteoporosis, but also arteriosclerosis and hypertension due to the increase of calcium in the vascular wall, amyotrophic lateral sclerosis and senile dementia due to calcium deposition in the central nervous system, and a decrease in cellular function, because of blunting of the difference in extracellular-intracellular calcium, leading to diabetes mellitus, immune deficiency and others (Fig. 6). PMID:2943880

  15. Optimizing calcium selective fluorimetric nanospheres.

    Science.gov (United States)

    Kisiel, Anna; Kłucińska, Katarzyna; Gniadek, Marianna; Maksymiuk, Krzysztof; Michalska, Agata

    2015-11-01

    Recently it was shown that optical nanosensors based on alternating polymers e.g. poly(maleic anhydride-alt-1-octadecene) were characterized by a linear dependence of emission intensity on logarithm of concentration over a few of orders of magnitude range. In this work we focus on the material used to prepare calcium selective nanosensors. It is shown that alternating polymer nanosensors offer competitive performance in the absence of calcium ionophore, due to interaction of the nanospheres building blocks with analyte ions. The emission increase corresponds to increase of calcium ions contents in the sample within the range from 10(-4) to 10(-1) M. Further improvement in sensitivity (from 10(-6) to 10(-1) M) and selectivity can be achieved by incorporating calcium ionophore in the nanospheres. The optimal results were obtained for core-shell nanospheres, where the core was prepared from poly(styrene-co-maleic anhydride) and the outer layer from poly(maleic anhydride-alt-1-octadecene). Thus obtained chemosensors were showing linear dependence of emission on logarithm of calcium ions concentration within the range from 10(-7) to 10(-1) M. PMID:26452839

  16. Calcium release-activated calcium current in rat mast cells.

    Science.gov (United States)

    Hoth, M; Penner, R

    1993-06-01

    1. Whole-cell patch clamp recordings of membrane currents and fura-2 measurements of free intracellular calcium concentration ([Ca2+]i) were used to study the biophysical properties of a calcium current activated by depletion of intracellular calcium stores in rat peritoneal mast cells. 2. Calcium influx through an inward calcium release-activated calcium current (ICRAC) was induced by three independent mechanisms that result in store depletion: intracellular infusion of inositol 1,4,5-trisphosphate (InsP3) or extracellular application of ionomycin (active depletion), and intracellular infusion of calcium chelators (ethylene glycol bis-N,N,N',N'-tetraacetic acid (EGTA) or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)) to prevent reuptake of leaked-out calcium into the stores (passive depletion). 3. The activation of ICRAC induced by active store depletion has a short delay (4-14 s) following intracellular infusion of InsP3 or extracellular application of ionomycin. It has a monoexponential time course with a time constant of 20-30 s and, depending on the complementary Ca2+ buffer, a mean normalized amplitude (at 0 mV) of 0.6 pA pF-1 (with EGTA) and 1.1 pA pF-1 (with BAPTA). 4. After full activation of ICRAC by InsP3 in the presence of EGTA (10 mM), hyperpolarizing pulses to -100 mV induced an instantaneous inward current that decayed by 64% within 50 ms. This inactivation is probably mediated by [Ca2+]i, since the decrease of inward current in the presence of the fast Ca2+ buffer BAPTA (10 mM) was only 30%. 5. The amplitude of ICRAC was dependent on the extracellular Ca2+ concentration with an apparent dissociation constant (KD) of 3.3 mM. Inward currents were nonsaturating up to -200 mV. 6. The selectivity of ICRAC for Ca2+ was assessed by using fura-2 as the dominant intracellular buffer (at a concentration of 2 mM) and relating the absolute changes in the calcium-sensitive fluorescence (390 nm excitation) with the calcium current integral

  17. The effect of variable calcium and very low calcium diets on human calcium metabolism. Ph.D. Thesis. Final Report

    Science.gov (United States)

    Chu, J.

    1971-01-01

    The effects of a very low calcium diet, with variable high and low protein intake, on the dynamics of calcium metabolism and the mechanism of calciuretics, are examined. The experiment, using male subjects, was designed to study the role of intestinal calcium absorption on urinary calcium excretion, and the rate of production of endogeneously secreted calcium in the gastrointestinal tract. The study showed an average of 70% fractional absorption rate during very low calcium intake, and that a decrease in renal tubular reabsorption of calcium is responsible for calciuretic effects of high protein intake. The study also indicates that there is a tendency to develop osteoporosis after long periods of low calcium intake, especially with a concurrent high protein intake.

  18. The effect of calcium gluconate and other calcium supplements as a dietary calcium source on magnesium absorption in rats.

    Science.gov (United States)

    Chonan, O; Takahashi, R; Yasui, H; Watanuki, M

    1997-01-01

    The effects of commercially available calcium supplements (calcium carbonate, calcium gluconate, oyster shell preparation and bovine bone preparation) and gluconic acid on the absorption of calcium and magnesium were evaluated for 30 days in male Wistar rats. There were no differences in the apparent absorption ratio of calcium among rats fed each calcium supplement; however, the rats fed the calcium gluconate diet had a higher apparent absorption ratio of magnesium than the rats fed the other calcium supplements. Dietary gluconic acid also more markedly stimulated magnesium absorption than the calcium carbonate diet, and the bone (femur and tibia) magnesium contents of rats fed the gluconic acid diet were significantly higher than those of the rats fed the calcium carbonate diet. Furthermore, the weight of cecal tissue and the concentrations of acetic acid and butyric acid in cecal digesta of rats fed the calcium gluconate diet or the gluconic acid diet were significantly increased. We speculate that the stimulation of magnesium absorption in rats fed the calcium gluconate diet is a result of the gluconic acid component and the effect of gluconic acid on magnesium absorption probably results from cecal hypertrophy, magnesium solubility in the large intestine and the effects of volatile fatty acids on magnesium absorption.

  19. Decalcification of calcium polycarbophil in rats.

    Science.gov (United States)

    Yamada, T; Saito, T; Takahara, E; Nagata, O; Tamai, I; Tsuji, A

    1997-03-01

    The in vivo decalcification of calcium polycarbophil was examined. The decalcification ratio of [45Ca]calcium polycarbophil in the stomach after oral dosing to rats was more than 70% at each designated time and quite closely followed in the in vitro decalcification curve, indicating that the greater part of the calcium ion is released from calcium polycarbophil under normal gastric acidic conditions. The residual radioactivity in rat gastrointestine was nearly equal to that after oral administration of either [45Ca]calcium chloride + polycarbophil. The serum level of radioactivity was nearly equal to that after oral dosing of [45Ca]calcium lactate. These results indicate that the greater part of orally administered calcium polycarbophil released calcium ions to produce polycarbophil in vivo.

  20. Familial hypocalciuric hypercalcemia and calcium sensing receptor

    DEFF Research Database (Denmark)

    Mrgan, Monija; Nielsen, Sanne; Brixen, Kim

    2014-01-01

    Familial hypocalciuric hypercalcemia (FHH) is a lifelong, benign autosomal dominant disease characterized by hypercalcemia, normal to increased parathyroid hormone level, and a relatively low renal calcium excretion. Inactivation of the calcium-sensing receptor in heterozygous patients results in...

  1. Calcium, vitamin D, and your bones

    Science.gov (United States)

    ... can break easily, even without an obvious injury. Vitamin D helps your body absorb calcium. Eat foods that provide the right amounts of calcium, vitamin D, and protein. This kind of diet will give ...

  2. Dairy Dilemma: Are You Getting Enough Calcium?

    Science.gov (United States)

    ... Dairy Dilemma Dairy Dilemma Are You Getting Enough Calcium? You may be avoiding dairy products because of ... But dairy products are a major source of calcium, vitamin D and other nutrients that are important ...

  3. Mechanism of store-operated calcium entry

    Indian Academy of Sciences (India)

    Devkanya Dutta

    2000-12-01

    Activation of receptors coupled to the phospholipase C/IP3 signalling pathway results in a rapid release of calcium from its intracellular stores, eventually leading to depletion of these stores. Calcium store depletion triggers an influx of extracellular calcium across the plasma membrane, a mechanism known as the store-operated calcium entry or capacitative calcium entry. Capacitative calcium current plays a key role in replenishing calcium stores and activating various physiological processes. Despite considerable efforts, very little is known about the molecular nature of the capacitative channel and the signalling pathway that activates it. This review summarizes our current knowledge about store operated calcium entry and suggests possible hypotheses for its mode of activation.

  4. An atomic finite element model for biodegradable polymers. Part 2. A model for change in Young's modulus due to polymer chain scission.

    Science.gov (United States)

    Gleadall, Andrew; Pan, Jingzhe; Kruft, Marc-Anton

    2015-11-01

    Atomic simulations were undertaken to analyse the effect of polymer chain scission on amorphous poly(lactide) during degradation. Many experimental studies have analysed mechanical properties degradation but relatively few computation studies have been conducted. Such studies are valuable for supporting the design of bioresorbable medical devices. Hence in this paper, an Effective Cavity Theory for the degradation of Young's modulus was developed. Atomic simulations indicated that a volume of reduced-stiffness polymer may exist around chain scissions. In the Effective Cavity Theory, each chain scission is considered to instantiate an effective cavity. Finite Element Analysis simulations were conducted to model the effect of the cavities on Young's modulus. Since polymer crystallinity affects mechanical properties, the effect of increases in crystallinity during degradation on Young's modulus is also considered. To demonstrate the ability of the Effective Cavity Theory, it was fitted to several sets of experimental data for Young's modulus in the literature.

  5. Calcium channel blockers and Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Yi Tan; Yulin Deng; Hong Qing

    2012-01-01

    Alzheimer's disease is characterized by two pathological hallmarks: amyloid plaques and neurofi-brillary tangles. In addition, calcium homeostasis is disrupted in the course of human aging. Recent research shows that dense plaques can cause functional alteration of calcium signals in mice with Alzheimer's disease. Calcium channel blockers are effective therapeutics for treating Alzheimer's disease. This review provides an overview of the current research of calcium channel blockers in-volved in Alzheimer's disease therapy.

  6. 21 CFR 184.1210 - Calcium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium oxide. 184.1210 Section 184.1210 Food and... Substances Affirmed as GRAS § 184.1210 Calcium oxide. (a) Calcium oxide (CaO, CAS Reg. No. 1305-78-8) is also known as lime, quick lime, burnt lime, or calx. It is produced from calcium carbonate, limestone,...

  7. 21 CFR 184.1185 - Calcium acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium acetate. 184.1185 Section 184.1185 Food and... Substances Affirmed as GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It may...

  8. The Electronic Structure of Calcium

    DEFF Research Database (Denmark)

    Jan, J.-P.; Skriver, Hans Lomholt

    1981-01-01

    The electronic structure of calcium under pressure is re-examined by means of self-consistent energy band calculations based on the local density approximation and using the linear muffin-tin orbitals (LMTO) method with corrections to the atomic sphere approximation included. At zero pressure...

  9. Teaching Calcium-Induced Calcium Release in Cardiomyocytes Using a Classic Paper by Fabiato

    Science.gov (United States)

    Liang, Willmann

    2008-01-01

    This teaching paper utilizes the materials presented by Dr. Fabiato in his review article entitled "Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum." In the review, supporting evidence of calcium-induced calcium release (CICR) is presented. Data concerning potential objections to the CICR theory are discussed as well. In…

  10. 21 CFR 582.1205 - Calcium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium hydroxide. 582.1205 Section 582.1205 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1205 Calcium hydroxide. (a) Product. Calcium hydroxide. (b) Conditions of use....

  11. 21 CFR 182.2227 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2227 Calcium silicate. (a) Product. Calcium silicate....

  12. 21 CFR 582.2227 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  13. 21 CFR 582.5210 - Calcium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium oxide. 582.5210 Section 582.5210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5210 Calcium oxide. (a) Product. Calcium oxide. (b) Conditions of use. This substance...

  14. Lactulose stimulates calcium absorption in postmenopausal women

    NARCIS (Netherlands)

    Heuvel, E.G.H.M. van den; Muijs, T.; Dokkum, W. van; Schaafsma, G.

    1999-01-01

    Animal studies have indicated that calcium absorption is increased by lactulose, a synthetic disaccharide. Therefore, the influence of lactulose on calcium absorption was measured in postmenopausal women who may benefit from the possible enhancing effect of lactulose on calcium absorption. Twelve po

  15. 21 CFR 582.1210 - Calcium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium oxide. 582.1210 Section 582.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1210 Calcium oxide. (a) Product. Calcium oxide. (b) Conditions of use. This substance is...

  16. 21 CFR 582.6185 - Calcium acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is...

  17. 21 CFR 582.1217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  18. 21 CFR 182.1217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  19. 21 CFR 582.5217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  20. Calcium electroporation in three cell lines; a comparison of bleomycin and calcium, calcium compounds, and pulsing conditions

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gissel, Hanne; Hojman, Pernille;

    2013-01-01

    BACKGROUND: Electroporation with calcium (calcium electroporation) can induce ATP depletion-associated cellular death. In the clinical setting, the cytotoxic drug bleomycin is currently used with electroporation (electrochemotherapy) for palliative treatment of tumors. Calcium electroporation...... offers several advantages over standard treatment options: calcium is inexpensive and may readily be applied without special precautions, as is the case with cytostatic drugs. Therefore, details on the use of calcium electroporation are essential for carrying out clinical trials comparing calcium...... electroporation and electrochemotherapy. METHODS: The effects of calcium electroporation and bleomycin electroporation (alone or in combination) were compared in three different cell lines (DC-3F, transformed Chinese hamster lung fibroblast; K-562, human leukemia; and murine Lewis Lung Carcinoma). Furthermore...

  1. Calcium signals and calcium channels in osteoblastic cells

    Science.gov (United States)

    Duncan, R. L.; Akanbi, K. A.; Farach-Carson, M. C.

    1998-01-01

    Calcium (Ca2+) channels are present in non-excitable as well as in excitable cells. In bone cells of the osteoblast lineage, Ca2+ channels play fundamental roles in cellular responses to external stimuli including both mechanical forces and hormonal signals. They are also proposed to modulate paracrine signaling between bone-forming osteoblasts and bone-resorbing osteoclasts at local sites of bone remodeling. Calcium signals are characterized by transient increases in intracellular Ca2+ levels that are associated with activation of intracellular signaling pathways that control cell behavior and phenotype, including patterns of gene expression. Development of Ca2+ signals is a tightly regulated cellular process that involves the concerted actions of plasma membrane and intracellular Ca2+ channels, along with Ca2+ pumps and exchangers. This review summarizes the current state of knowledge concerning the structure, function, and role of Ca2+ channels and Ca2+ signals in bone cells, focusing on the osteoblast.

  2. Computational study of a calcium release-activated calcium channel

    Science.gov (United States)

    Talukdar, Keka; Shantappa, Anil

    2016-05-01

    The naturally occurring proteins that form hole in membrane are commonly known as ion channels. They play multiple roles in many important biological processes. Deletion or alteration of these channels often leads to serious problems in the physiological processes as it controls the flow of ions through it. The proper maintenance of the flow of ions, in turn, is required for normal health. Here we have investigated the behavior of a calcium release-activated calcium ion channel with pdb entry 4HKR in Drosophila Melanogaster. The equilibrium energy as well as molecular dynamics simulation is performed first. The protein is subjected to molecular dynamics simulation to find their energy minimized value. Simulation of the protein in the environment of water and ions has given us important results too. The solvation energy is also found using Charmm potential.

  3. Store-operated calcium signaling in neutrophils.

    Science.gov (United States)

    Clemens, Regina A; Lowell, Clifford A

    2015-10-01

    Calcium signals in neutrophils are initiated by a variety of cell-surface receptors, including formyl peptide and other GPCRs, FcRs, and integrins. The predominant pathway by which calcium enters immune cells is termed SOCE, whereby plasma membrane CRAC channels allow influx of extracellular calcium into the cytoplasm when intracellular ER stores are depleted. The identification of 2 key families of SOCE regulators, STIM calcium "sensors" and ORAI calcium channels, has allowed for genetic manipulation of SOCE pathways and provided valuable insight into the molecular mechanism of calcium signaling in immune cells, including neutrophils. This review focuses on our current knowledge of the molecules involved in neutrophil SOCE and how study of these molecules has further informed our understanding of the role of calcium signaling in neutrophil activation.

  4. CALCIUM ENHANCES ANTIINFLAMMATORY ACTIVITY OF ASPIRIN

    Directory of Open Access Journals (Sweden)

    Choksi Krishna

    2011-03-01

    Full Text Available The objective of present study is to evaluate the effects of calcium carbonate and calcium gluconate on acute and subacute inflammation and to study their possible interactions with Aspirin. Calcium carbonate (10 mg/kg and calcium gluconate (5 mg/kg were administered individually and also co-administered along with sub therapeutic dose Aspirin (50mg/kg to study their interaction. The inflammation was induced by carrageenan or a foreign body. Both calcium carbonate and calcium gluconate could not show significant anti-inflammatory activity on their own in acute as well as subacute inflammation models. Aspirin at sub-anti-inflammatory dose (50mg/Kg when co-administered along with calcium salts produced the significant anti-inflammatory response which was comparable to anti-inflammatory response of aspirin at therapeutic dose (200mg/Kg. Also co-adminostration minimized the gastro-toxicity of aspirin.

  5. [Calcium pyrophosphate dihydrate deposition disease].

    Science.gov (United States)

    Koitschev, C; Kaiserling, E; Koitschev, A

    2003-08-01

    Calcium pyrophosphate dihydrate deposition disease (CPPD) of the temporomandibular joint is rare. The disorder is characterized by the presence of crystal deposits within the affected joint. The deposition of crystals in adjacent soft tissue may lead to the formation of pseudotumors. This form of the disease is called tophaceous pseudogout and typically affects the temporomandibular joint. It is difficult to differentiate the disease, particularly from malignant tumors, on the clinical and radiographic findings alone. The diagnosis is based on histological identification of the calcium pyrophosphate crystals. We present an unusually advanced case of tophaceous pseudogout of the temporomandibular joint. The etiology, clinical and diagnostic criteria as well as treatment options are discussed on the basis of our own experience and a review of the literature. PMID:12942180

  6. Serum calcium in pulmonary tuberculosis

    OpenAIRE

    Subhash C. Sharma

    1981-01-01

    Serum calcium was studied serially in 94 patients with active pulmonary tuberculosis. An equal number of age- and sex-matched patients with chronic obstructive pulmonary disease were controls. Seventy patients in the study group were normocalcaemic and 10 were hypercalcaemic. These 10 were on a higher supplement of vitamin D than the 70 normocalcaemic patients. There was a positive correlation between the daily vitamin intake and the degree and duration of hypercalcaemia. None of the controls...

  7. Influence of calcium oxalate crystal accumulation on the calcium content of seeds from Medicago truncatula.

    Science.gov (United States)

    Nakata, Paul A

    2012-04-01

    Crystals of calcium oxalate often form in cells adjacent to the vascular bundles in the tissues along the xylem stream. This spatial crystal pattern suggests a role for calcium oxalate formation in regulating calcium transport and partitioning to edible organs such as seeds. To investigate this potential role, microscopic and biochemical comparisons were conducted on the different tissues of Medicago truncatula wild-type and the calcium oxalate defective (cod) 5 which lacks the ability to accumulate prismatic crystals in the cells adjacent to the vascular bundles. Calcium measurements showed that cod5 seeds had more calcium and cod5 pods contained less calcium than the corresponding wild-type tissues. Roots, stems, and leaves from cod5 and wild-type had similar calcium content. Although cod5 was devoid of prismatic crystals, cod5 pods were observed to form druse crystals of calcium oxalate not found in wild-type pods. Taken together these findings suggest a functional role for calcium oxalate formation in regulating calcium transport to the seeds. Regulating calcium uptake at the roots also appeared to be another point of control in determining seed calcium content. Overall, regulating the long distance transport and partitioning of calcium to the seeds appears to be a complex process with multiple points of control. PMID:22325887

  8. CCN3 and calcium signaling

    Directory of Open Access Journals (Sweden)

    Li Chang Long

    2003-08-01

    Full Text Available Abstract The CCN family of genes consists presently of six members in human (CCN1-6 also known as Cyr61 (Cystein rich 61, CTGF (Connective Tissue Growth Factor, NOV (Nephroblastoma Overexpressed gene, WISP-1, 2 and 3 (Wnt-1 Induced Secreted Proteins. Results obtained over the past decade have indicated that CCN proteins are matricellular proteins, which are involved in the regulation of various cellular functions, such as proliferation, differentiation, survival, adhesion and migration. The CCN proteins have recently emerged as regulatory factors involved in both internal and external cell signaling. CCN3 was reported to physically interact with fibulin-1C, integrins, Notch and S100A4. Considering that, the conformation and biological activity of these proteins are dependent upon calcium binding, we hypothesized that CCN3 might be involved in signaling pathways mediated by calcium ions. In this article, we review the data showing that CCN3 regulates the levels of intracellular calcium and discuss potential models that may account for the biological effects of CCN3.

  9. Calcium channel as a potential anticancer agent.

    Science.gov (United States)

    Kriazhev, L

    2009-11-01

    Anticancer treatment in modern clinical practices includes chemotherapy and radiation therapy with or without surgical interventions. Efficiency of both methods varies greatly depending on cancer types and stages. Besides, chemo- and radiotherapy are toxic and damaging that causes serious side effects. This fact prompts the search for alternative methods of antitumor therapy. It is well known that prolonged or high increase of intracellular calcium concentration inevitably leads to the cell death via apoptosis or necrosis. However, stimulation of cell calcium level by chemical agents is hardly achievable because cells have very sophisticated machinery for maintaining intracellular calcium in physiological ranges. This obstacle can be overridden, nevertheless. It was found that calcium channels in so called calcium cells in land snails are directly regulated by extracellular calcium concentration. The higher the concentration the higher the calcium intake is through the channels. Bearing in mind that extracellular/intracellular calcium concentration ratio in human beings is 10,000-12,000 fold the insertion of the channel into cancer cells would lead to fast and uncontrollable by the cells calcium intake and cell death. Proteins composing the channel may be extracted from plasma membrane of calcium cells and sequenced by mass-spectrometry or N-terminal sequencing. Either proteins or corresponding genes could be used for targeted delivery into cancer cells.

  10. 生物可吸收室间隔缺损封堵器的体外降解和力学性能%In vitro degradation property and mechanical force test of a bioresorbable ventricular septal defect occluder

    Institute of Scientific and Technical Information of China (English)

    朱玉峰; 陈文瑶; 黄新苗; 白元; 吴弘; 张瑾; 秦永文; 赵仙先

    2013-01-01

    目的 设计和制作生物可吸收室间隔缺损(ventricular septal defect,VSD)封堵器,观察其体外降解特性并对其机械力学性能进行测试,为下一步经导管闭合VSD的动物实验打下基础.方法 采用可降解高分子聚合材料聚对二氧环己酮(polydioxanone,PDO)单丝、聚左旋乳酸(poly-L-lactic acid,PLA)无纺布和聚乙醇酸(polyglycolic acid,PGA)缝线制作生物可吸收VSD封堵器,在封堵器盘片上对称部位缝上金属钽颗粒为X线下显影标记,右侧盘片尾部设计一环形小襻供配套输送系统钳夹输送.体外测试可吸收VSD封堵器的相关力学性能,行体外降解试验,测定封堵器盘片支撑力和质量衰减情况.结果 可吸收VSD封堵器的机械力学性能包括压缩/弹性恢复性能、尾部环形襻极限拉力、左侧盘片支撑力皆满足经导管输送的封堵力学要求.体外降解实验显示,可吸收封堵器8周内结构和形状仍保持不变,12周时PDO丝出现断裂、崩解,盘片结构不完整.左侧盘片支撑力在体外降解2周和3周时支撑力比初始时增强(分别为初始支撑力的121.7%和107.8%),4周和6周时支撑力比初始时下降(分别降至88.6%和85.3%).封堵器质量最初4周下降不到1%,6周以后质量明显下降.结论 用生物可吸收材料制作的VSD封堵器满足经导管植入体内的生物力学要求,可进行下一步的动物实验研究.%Objective To design and prepare a ventricular septal defect (VSD) occluder with bioabsorbable materials and to evaluate its in vitro degradation and mechanical force.Methods A bioresorbable VSD occluder was made of polymeric materials polydioxanone (PDO) monofilament,poly-L-lactic acid (PLA) fabrics and polyglycolic acid(PGA) sutures.Tantalum particles were sewn on the symmetrical parts of the occluder disc as tracers for X-ray,and the end of the right side of the disc was designed with a circular loop for the matched delivery system to clamp and

  11. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-07-01

    Full Text Available Abstract Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types. Results Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border. Conclusion Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events.

  12. Binding of calcium and carbonate to polyacrylates.

    Science.gov (United States)

    Tribello, Gareth A; Liew, CheeChin; Parrinello, Michele

    2009-05-21

    Polyacrylate molecules can be used to slow the growth of calcium carbonate. However, little is known about the mechanism by which the molecules impede the growth rate. A recent computational study (Bulo et al. Macromolecules 2007, 40, 3437) used metadynamics to investigate the binding of calcium to polyacrylate chains and has thrown some light on the coiling and precipitation of these polymers. We extend these simulations to examine the binding of calcium and carbonate to polyacrylate chains. We show that calcium complexed with both carbonate and polyacrylate is a very stable species. The free energies of calcium-carbonate-polyacrylate complexes, with different polymer configurations, are calculated, and differences in the free energy of the binding of carbonate are shown to be due to differences in the amount of steric hindrance about the calcium, which prevents the approach of the carbonate ion. PMID:19400592

  13. Altered calcium signaling in cancer cells.

    Science.gov (United States)

    Stewart, Teneale A; Yapa, Kunsala T D S; Monteith, Gregory R

    2015-10-01

    It is the nature of the calcium signal, as determined by the coordinated activity of a suite of calcium channels, pumps, exchangers and binding proteins that ultimately guides a cell's fate. Deregulation of the calcium signal is often deleterious and has been linked to each of the 'cancer hallmarks'. Despite this, we do not yet have a full understanding of the remodeling of the calcium signal associated with cancer. Such an understanding could aid in guiding the development of therapies specifically targeting altered calcium signaling in cancer cells during tumorigenic progression. Findings from some of the studies that have assessed the remodeling of the calcium signal associated with tumorigenesis and/or processes important in invasion and metastasis are presented in this review. The potential of new methodologies is also discussed. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  14. Biphasic calcium phosphate in periapical surgery

    OpenAIRE

    Suneelkumar, Chinni; Datta, Krithika; Manali R Srinivasan; Kumar, Sampath T

    2008-01-01

    Calcium phosphate ceramics like hydroxyapatite and β -tricalcium phosphate (β -TCP) possess mineral composition that closely resembles that of the bone. They can be good bone substitutes due to their excellent biocompatibility. Biphasic calcium phosphate is a bone substitute which is a mixture of hydroxyapatite and β -tricalcium phosphate in fixed ratios. Studies have demonstrated the osteoconductive potential of this composition. This paper highlights the clinical use of biphasic calcium pho...

  15. Overbased Calcium sulfonate Detergent Technology Overview

    Institute of Scientific and Technical Information of China (English)

    MA Qing-gao; MUIR Ronald J.

    2009-01-01

    Overbased calcium sulfonate is used widely as detergent in automotive and marine lubricants, as well as various industrial oil applications. In this paper, the process to produce overbased calcium sulfonate is overviewed. The sulfonate structure and molecular weight and its molecular weight distribution, the enclosed calcium carbonate nanoparticle size and crystalline structure, properties of the carrier oil, all influence its properties, such as stability, viscosity, and detergency of the system.

  16. [Calcium carbide of different crystal formation synthesized by calcium carbide residue].

    Science.gov (United States)

    Lu, Zhong-yuan; Kang, Ming; Jiang, Cai-rong; Tu, Ming-jing

    2006-04-01

    To recycle calcium carbide residue effectively, calcium carbide of different crystal form, including global aragonite, calcite and acicular calcium carbide was synthesized. Both the influence of pretreatment in the purity of calcium carbide, and the influence of temperatures of carbonization reaction, release velocity of carbon dioxide in the apparition of calcium carbide of different crystal form were studied with DTA-TG and SEM. The result shows that calcium carbide residue can take place chemistry reaction with ammonia chlorinate straight. Under the condition that pH was above 7, the purity of calcium carbide was above 97%, and the whiteness was above 98. Once provided the different temperatures of carbonization reaction and the proper release velocity of carbon dioxide, global aragonite, calcite and acicular calcium carbide were obtained.

  17. Calcium binding proteins and calcium signaling in prokaryotes.

    Science.gov (United States)

    Domínguez, Delfina C; Guragain, Manita; Patrauchan, Marianna

    2015-03-01

    With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.

  18. Osteoblasts detect pericellular calcium concentration increase via neomycin-sensitive voltage gated calcium channels.

    Science.gov (United States)

    Sun, Xuanhao; Kishore, Vipuil; Fites, Kateri; Akkus, Ozan

    2012-11-01

    The mechanisms underlying the detection of critically loaded or micro-damaged regions of bone by bone cells are still a matter of debate. Our previous studies showed that calcium efflux originates from pre-failure regions of bone matrix and MC3T3-E1 osteoblasts respond to such efflux by an increase in the intracellular calcium concentration. The mechanisms by which the intracellular calcium concentration increases in response to an increase in the pericellular calcium concentration are unknown. Elevation of the intracellular calcium may occur via release from the internal calcium stores of the cell and/or via the membrane bound channels. The current study applied a wide range of pharmaceutical inhibitors to identify the calcium entry pathways involved in the process: internal calcium release from endoplasmic reticulum (ER, inhibited by thapsigargin and TMB-8), calcium receptor (CaSR, inhibited by calhex), stretch-activated calcium channel (SACC, inhibited by gadolinium), voltage-gated calcium channels (VGCC, inhibited by nifedipine, verapamil, neomycin, and ω-conotoxin), and calcium-induced-calcium-release channel (CICRC, inhibited by ryanodine and dantrolene). These inhibitors were screened for their effectiveness to block intracellular calcium increase by using a concentration gradient induced calcium efflux model which mimics calcium diffusion from the basal aspect of cells. The inhibitor(s) which reduced the intracellular calcium response was further tested on osteoblasts seeded on mechanically loaded notched cortical bone wafers undergoing damage. The results showed that only neomycin reduced the intracellular calcium response in osteoblasts, by 27%, upon extracellular calcium stimulus induced by concentration gradient. The inhibitory effect of neomycin was more pronounced (75% reduction in maximum fluorescence) for osteoblasts seeded on notched cortical bone wafers loaded mechanically to damaging load levels. These results imply that the increase in

  19. Sintering of calcium phosphate bioceramics.

    Science.gov (United States)

    Champion, E

    2013-04-01

    Calcium phosphate ceramics have become of prime importance for biological applications in the field of bone tissue engineering. This paper reviews the sintering behaviour of these bioceramics. Conventional pressureless sintering of hydroxyapatite, Ca10(PO4)6(OH)2, a reference compound, has been extensively studied. Its physico-chemistry is detailed. It can be seen as a competition between two thermally activated phenomena that proceed by solid-state diffusion of matter: densification and grain growth. Usually, the objective is to promote the first and prevent the second. Literature data are analysed from sintering maps (i.e. grain growth vs. densification). Sintering trajectories of hydroxyapatite produced by conventional pressureless sintering and non-conventional techniques, including two-step sintering, liquid phase sintering, hot pressing, hot isostatic pressing, ultrahigh pressure, microwave and spark plasma sintering, are presented. Whatever the sintering technique may be, grain growth occurs mainly during the last step of sintering, when the relative bulk density reaches 95% of the maximum value. Though often considered very advantageous, most assisted sintering techniques do not appear very superior to conventional pressureless sintering. Sintering of tricalcium phosphate or biphasic calcium phosphates is also discussed. The chemical composition of calcium phosphate influences the behaviour. Similarly, ionic substitutions in hydroxyapatite or in tricalcium phosphate create lattice defects that modify the sintering rate. Depending on their nature, they can either accelerate or slow down the sintering rate. The thermal stability of compounds at the sintering temperature must also be taken into account. Controlled atmospheres may be required to prevent thermal decomposition, and flash sintering techniques, which allow consolidation at low temperature, can be helpful. PMID:23212081

  20. Altered calcium signaling following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    John Thomas Weber

    2012-04-01

    Full Text Available Cell death and dysfunction after traumatic brain injury (TBI is caused by a primary phase, related to direct mechanical disruption of the brain, and a secondary phase which consists of delayed events initiated at the time of the physical insult. Arguably, the calcium ion contributes greatly to the delayed cell damage and death after TBI. A large, sustained influx of calcium into cells can initiate cell death signaling cascades, through activation of several degradative enzymes, such as proteases and endonucleases. However, a sustained level of intracellular free calcium is not necessarily lethal, but the specific route of calcium entry may couple calcium directly to cell death pathways. Other sources of calcium, such as intracellular calcium stores, can also contribute to cell damage. In addition, calcium-mediated signal transduction pathways in neurons may be perturbed following injury. These latter types of alterations may contribute to abnormal physiology in neurons that do not necessarily die after a traumatic episode. This review provides an overview of experimental evidence that has led to our current understanding of the role of calcium signaling in death and dysfunction following TBI.

  1. Calcium supplements: do they help or harm?

    Science.gov (United States)

    Manson, Joann E; Bassuk, Shari S

    2014-01-01

    Current recommendations for calcium intake call for 1,000 mg per day for women ages 19-50 and 1,200 mg per day for women over age 50 to ensure bone health. Given recent concerns that calcium supplements may raise risk for cardiovascular disease and kidney stones, women should aim to meet this recommendation primarily by eating a calcium-rich diet and taking calcium supplements only if needed to reach the RDA goal (often only approximately 500 mg per day in supplements is required). PMID:23880796

  2. Peroxisome is a reservoir of intracellular calcium.

    Science.gov (United States)

    Raychaudhury, Bikramjit; Gupta, Shreedhara; Banerjee, Shouvik; Datta, Salil C

    2006-07-01

    We have examined fura 2-loaded purified peroxisomes under confocal microscope to prove that this mammalian organelle is a store of intracellular calcium pool. Presence of calcium channel and vanadate sensitive Ca(2+)-ATPase in the purified peroxisomal membrane has been demonstrated. We have further observed that machineries to maintain calcium pool in this mammalian organelle are impaired during infection caused by Leishmania donovani. Results reveal that peroxisomes have a merit to play a significant role in the metabolism of intracellular calcium. PMID:16713100

  3. Calcium Imaging Perspectives in Plants

    Directory of Open Access Journals (Sweden)

    Chidananda Nagamangala Kanchiswamy

    2014-03-01

    Full Text Available The calcium ion (Ca2+ is a versatile intracellular messenger. It provides dynamic regulation of a vast array of gene transcriptions, protein kinases, transcription factors and other complex downstream signaling cascades. For the past six decades, intracellular Ca2+ concentration has been significantly studied and still many studies are under way. Our understanding of Ca2+ signaling and the corresponding physiological phenomenon is growing exponentially. Here we focus on the improvements made in the development of probes used for Ca2+ imaging and expanding the application of Ca2+ imaging in plant science research.

  4. Calcium Absorption from Fortified Ice Cream Formulations Compared with Calcium Absorption from Milk

    OpenAIRE

    van der Hee, Regine M.; Miret, Silvia; Slettenaar, Marieke; Duchateau, Guus S.M.J.E.; Rietveld, Anton G.; Wilkinson, Joy E.; Quail, Patricia J.; Berry, Mark J.; Dainty, Jack R.; Teucher, Birgit; Fairweather-Tait, Susan J

    2009-01-01

    Objective Optimal bone mass in early adulthood is achieved through appropriate diet and lifestyle, thereby protecting against osteoporosis and risk of bone fracture in later life. Calcium and vitamin D are essential to build adequate bones, but calcium intakes of many population groups do not meet dietary reference values. In addition, changes in dietary patterns are exacerbating the problem, thereby emphasizing the important role of calcium-rich food products. We have designed a calcium-fort...

  5. Association of Urinary Calcium Excretion with Serum Calcium and Vitamin D Levels

    OpenAIRE

    A Rathod; Bonny, O; Guessous, I; Suter, P M; Conen, D; Erne, P; Binet, I; Gabutti, L; Gallino, A; Muggli, F; Hayoz, D; Pechere-Bertschi, A; Paccaud, F.; Burnier, M.; Bochud, M

    2015-01-01

    BACKGROUND AND OBJECTIVES: Population-based data on urinary calcium excretion are scarce. The association of serum calcium and circulating levels of vitamin D [25(OH)D2 or D3] with urinary calcium excretion in men and women from a population-based study was explored. DESIGN, SETTINGS, PARTICIPANTS, & MEASUREMENTS: Multivariable linear regression was used to explore factors associated with square root-transformed 24-hour urinary calcium excretion (milligrams per 24 hours) taken as the dep...

  6. Calcium

    Science.gov (United States)

    ... for lunch; and beans, salsa, taco sauce, and cheese for dinner. Create mini-pizzas by topping whole-wheat English muffins or bagels with pizza sauce and low-fat mozzarella or soy cheese. Try whole-grain crackers with low-fat cheese ...

  7. Calcium

    Science.gov (United States)

    ... tingling in the fingers, convulsions, and abnormal heart rhythms that can lead to death if not corrected. ... that includes weight-bearing physical activity (such as walking and running). Osteoporosis is a disease of the ...

  8. Effect of lowering dietary calcium intake on fractional whole body calcium retention

    Energy Technology Data Exchange (ETDEWEB)

    Dawson-Hughes, B.; Stern, D.T.; Shipp, C.C.; Rasmussen, H.M.

    1988-07-01

    Although fractional calcium absorption is known to vary inversely with calcium intake, the extent and timing of individual hormonal and calcium absorption responses to altered calcium intake have not been defined. We measured fractional whole body retention of orally ingested /sup 47/Ca, an index of calcium absorption, in nine normal women after they had eaten a 2000-mg calcium diet for 8 weeks and a 300-mg calcium diet for 1, 2, 4, and 8 weeks. After the diet change, serum intact PTH (32.2% increase; P = 0.005), serum 1,25-dihydroxyvitamin D (1,25-(OH)2D; 43.8% increase; P = 0.003), and fractional whole body calcium retention (42.8% increase; P = 0.004) increased within 1 week. Although the PTH and calcium retention responses remained fairly constant throughout the low calcium intake period, serum 1,25-(OH)2D concentrations declined toward baseline after week 1. Thus, the late increase in calcium retention may have resulted from calcium absorption that was independent of 1,25-(OH)2D stimulation.

  9. Protein intake and calcium absorption – Potential role of the calcium sensor receptor

    Science.gov (United States)

    Dietary protein induces calcium excretion but the source of this calcium is unclear. Evidence from short-term studies indicates that protein promotes bone resorption, but many epidemiologic studies do not corroborate this. Evidence is also mixed on weather protein promotes calcium absorption. Stud...

  10. Calcium signaling in pluripotent stem cells.

    Science.gov (United States)

    Apáti, Ágota; Pászty, Katalin; Erdei, Zsuzsa; Szebényi, Kornélia; Homolya, László; Sarkadi, Balázs

    2012-04-28

    Pluripotent stem cells represent a new source of biological material allowing the exploration of signaling phenomena during normal cell development and differentiation. Still, the calcium signaling pathways and intracellular calcium responses to various ligands or stress conditions have not been sufficiently explored as yet in embryonic or induced pluripotent stem cells and in their differentiated offspring. This is partly due to the special culturing conditions of these cell types, the rapid morphological and functional changes in heterogeneous cell populations during early differentiation, and methodological problems in cellular calcium measurements. In this paper, we review the currently available data in the literature on calcium signaling in pluripotent stem cells and discuss the potential shortcomings of these studies. Various assay methods are surveyed for obtaining reliable data both in undifferentiated embryonic stem cells and in specific, stem cell-derived human tissues. In this paper, we present the modulation of calcium signaling in human embryonic stem cells (hESC) and in their derivates; mesenchymal stem cell like (MSCl) cells and cardiac tissues using the fluorescent calcium indicator Fluo-4 and confocal microscopy. LPA, trypsin and angiotensin II were effective in inducing calcium signals both in HUES9 and MSCl cells. Histamine and thrombin induced calcium signal exclusively in the MSCl cells, while ATP was effective only in HUES9 cells. There was no calcium signal evoked by GABA, even at relatively high concentrations. In stem cell-derived cardiomyocytes a rapid increase in the beating rate and an increase of the calcium signal peaks could be observed after the addition of adrenaline, while verapamil led to a strong decrease in cellular calcium and stopped spontaneous contractions in a relaxed state.

  11. Presynaptic calcium signalling in cerebellar mossy fibres

    Directory of Open Access Journals (Sweden)

    Louiza B Thomsen

    2010-02-01

    Full Text Available Whole-cell recordings were obtained from mossy fibre terminals in adult turtles in order to characterize the basic membrane properties. Calcium imaging of presynaptic calcium signals was carried out in order to analyse calcium dynamics and presynaptic GABA B inhibition. A TTX-sensitive fast Na+ spike faithfully followed repetitive depolarizing pulses with little change in spike duration or amplitude, while a strong outward rectification dominated responses to long-lasting depolarizations. High-threshold calcium spikes were uncovered following addition of potassium channel blockers. Calcium imaging using Calcium-Green dextran revealed a stimulus-evoked all-or-none tetrodotoxin (TTX -sensitive calcium signal in simple and complex rosettes. All compartments of a complex rosette were activated during electrical activation of the mossy fibre, while individual simple and complex rosettes along an axon appeared to be isolated from one another in terms of calcium signalling. CGP55845 application showed that GABA B receptors mediated presynaptic inhibition of the calcium signal over the entire firing frequency range of mossy fibres. A paired-pulse depression of the calcium signal lasting more than one second affected burst firing in mossy fibres; this paired-pulse depression was reduced by GABA B antagonists. While our results indicated that a presynaptic rosette electrophysiologically functioned as a unit, topical GABA application showed that calcium signals in the branches of complex rosettes could be modulated locally, suggesting that cerebellar glomeruli may be dynamically sub-compartmentalized due to ongoing inhibition mediated by Golgi cells. This could provide a fine-grained control of mossy fibre-granule cell information transfer and synaptic plasticity within a mossy fibre rosette.

  12. An Intracellular Calcium Oscillations Model Including Mitochondrial Calcium Cycling

    Institute of Scientific and Technical Information of China (English)

    SHI Xiao-Min; LIU Zeng-Rong

    2005-01-01

    @@ Calcium is a ubiquitous second messenger. Mitochondria contributes significantly to intracellular Ca2+ dynamics.The experiment of Kaftan et al. [J. Biol. Chem. 275(2000) 25465] demonstrated that inhibiting mitochondrial Ca2+ uptake can reduce the frequency of cytosolic Ca2+ concentration oscillations of gonadotropes. By considering the mitochondrial Ca2+ cycling we develop a three-variable model of intracellular Ca2+ oscillations based on the models of Atri et al. [Biophys. J. 65 (1993) 1727] and Falcke et al. [Biophys. J. 77 (1999) 37]. The model reproduces the fact that mitochondrial Ca2+ cycling increases the frequency of cytosolic Ca2+ oscillations, which accords with Kaftan's results. Moreover the model predicts that when the mitochondria overload with Ca2+, the cytosolic Ca2+ oscillations vanish, which may trigger apoptosis.

  13. Calcium and Vitamin D: Important at Every Age

    Science.gov (United States)

    ... supported by your browser. Home Bone Basics Nutrition Calcium and Vitamin D: Important at Every Age Publication ... Osteoporosis Program For Your Information The Role of Calcium Calcium is needed for our heart, muscles, and ...

  14. Bone Up on the Need for Calcium.

    Science.gov (United States)

    Mann, Peggy

    1987-01-01

    Most grade-schoolers drink milk at each meal, but teens, especially girls, often switch to carbonated soda at mealtime just as they should be building up their bone bank of calcium. Why calcium is important and how to get enough of it are covered. (MT)

  15. Stochastic models of intracellular calcium signals

    International Nuclear Information System (INIS)

    Cellular signaling operates in a noisy environment shaped by low molecular concentrations and cellular heterogeneity. For calcium release through intracellular channels–one of the most important cellular signaling mechanisms–feedback by liberated calcium endows fluctuations with critical functions in signal generation and formation. In this review it is first described, under which general conditions the environment makes stochasticity relevant, and which conditions allow approximating or deterministic equations. This analysis provides a framework, in which one can deduce an efficient hybrid description combining stochastic and deterministic evolution laws. Within the hybrid approach, Markov chains model gating of channels, while the concentrations of calcium and calcium binding molecules (buffers) are described by reaction–diffusion equations. The article further focuses on the spatial representation of subcellular calcium domains related to intracellular calcium channels. It presents analysis for single channels and clusters of channels and reviews the effects of buffers on the calcium release. For clustered channels, we discuss the application and validity of coarse-graining as well as approaches based on continuous gating variables (Fokker–Planck and chemical Langevin equations). Comparison with recent experiments substantiates the stochastic and spatial approach, identifies minimal requirements for a realistic modeling, and facilitates an understanding of collective channel behavior. At the end of the review, implications of stochastic and local modeling for the generation and properties of cell-wide release and the integration of calcium dynamics into cellular signaling models are discussed

  16. Stochastic Kinetics of Intracellular Calcium Oscillations

    Institute of Scientific and Technical Information of China (English)

    陈昌胜; 曾仁端

    2003-01-01

    A stochastic model of intracellular calcium oscillations is put forward by taking into account the random opening-closing of Ca2+ channels in endoplasmic reticulum (ER) membrane. The numerical results of the stochastic model show simple and complex calcium oscillations, which accord with the experiment results.

  17. Calcium Impact on Milk Gels Formation

    DEFF Research Database (Denmark)

    Koutina, Glykeria

    salts. The perturbation of calcium equilibria by these factors will affect the final properties of acid, calcium and rennet milk gels. By decreasing the pH from 6.0 to 5.2 (acid gels), the calcium equilibrium was significantly affected by temperature (4, 20, 30, 40 oC), and different combinations...... of temperature and pH may result in different final structure properties in dairy products such as cheese. A significant amount of calcium remained in the micelles between pH 4.8 and 4.6, this can contribute to the final strength of acid milk gels, such as in yogurt or in cream cheeses. After the gelation point...... enriched dairy products. Calcium gels can be produced by addition of a calcium salt and heat treatment at temperatures higher than 70 oC for several minutes. The combination of heat treatment and calcium addition to milk with pH values between 6.6 and 5.6, will produce calcium milk gels with unique...

  18. CALCIUM AND THE PREVENTION OF COLON CANCER

    NARCIS (Netherlands)

    WELBERG, JWM; KLEIBEUKER, JH; VANDERMEER, R; MULDER, NH; DEVRIES, EGE

    1991-01-01

    Diet is a major determinant of colon cancer risk. Calcium may protect against colon cancer, presumably by binding cytotoxic bile acids and fatty acids. Numerous studies support this proposition. In subjects at risk for colon cancer oral calcium supplementation has been shown to reduce rectal epithel

  19. Elements from chlorine to calcium nuclear reactions

    CERN Document Server

    Kunz, Wunibald

    1968-01-01

    Nuclear Tables: Part II Nuclear Reactions, Volume 3: The Elements from Chlorine to Calcium contains tabulations of the nuclear reaction values of elements chlorine, argon, potassium, and calcium. These tabulations provide the calculated Q-values of the elements and their isotopes. This book will be of value to general chemistry researchers.

  20. Stochastic models of intracellular calcium signals

    Energy Technology Data Exchange (ETDEWEB)

    Rüdiger, Sten, E-mail: sten.ruediger@physik.hu-berlin.de

    2014-01-10

    Cellular signaling operates in a noisy environment shaped by low molecular concentrations and cellular heterogeneity. For calcium release through intracellular channels–one of the most important cellular signaling mechanisms–feedback by liberated calcium endows fluctuations with critical functions in signal generation and formation. In this review it is first described, under which general conditions the environment makes stochasticity relevant, and which conditions allow approximating or deterministic equations. This analysis provides a framework, in which one can deduce an efficient hybrid description combining stochastic and deterministic evolution laws. Within the hybrid approach, Markov chains model gating of channels, while the concentrations of calcium and calcium binding molecules (buffers) are described by reaction–diffusion equations. The article further focuses on the spatial representation of subcellular calcium domains related to intracellular calcium channels. It presents analysis for single channels and clusters of channels and reviews the effects of buffers on the calcium release. For clustered channels, we discuss the application and validity of coarse-graining as well as approaches based on continuous gating variables (Fokker–Planck and chemical Langevin equations). Comparison with recent experiments substantiates the stochastic and spatial approach, identifies minimal requirements for a realistic modeling, and facilitates an understanding of collective channel behavior. At the end of the review, implications of stochastic and local modeling for the generation and properties of cell-wide release and the integration of calcium dynamics into cellular signaling models are discussed.

  1. Calcium, snails, and birds: a case study

    Directory of Open Access Journals (Sweden)

    R. Mänd

    2000-10-01

    Full Text Available Recent studies have shown that wild birds breeding in acidified areas have difficulties with obtaining sufficient calcium for their eggshells, and that the cause of it is the shortage of land snails. Many birds have to search for Ca-rich snail shells on a daily basis during egg production. Molluscs depend on litter calcium, which has decreased due to acidification of the environment. Calcium limitation may be a widespread phenomenon also in non-acidified, naturally Ca-poor areas. The problem is that while in the latter areas the time for development of specific adaptations may have been sufficient, then in acidified areas, on the contrary, calcium shortage is a recent phenomenon. Therefore, since the extent of calcium limitation in non-acidified areas is hard to derive from observational data, experimental approach is needed. We provide experimental evidence that specific calcium deficit does affect reproductive traits also in the birds breeding in naturally base-poor habitats. Our study was conducted in a heterogeneous woodland area in Estonia containing deciduous forest patches as well as base-poor pine forest with low snail abundance. Ca supplementation, using snail shell and chicken eggshell fragments, was carried out for pied flycatchers and great tits. Extra calcium affected positively several reproductive traits like egg volume and eggshell thickness, start of breeding, and fledglings’ parameters. The negative relationship between calcium availability and lay-date suggests that birds adjust their breeding tactics to conditions of Ca deficiency, for example, by postponing laying.

  2. 21 CFR 182.8217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  3. Calcium and caffeine interaction in increased calcium balance in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Sandra Tavares da Silva

    2013-06-01

    Full Text Available OBJECTIVE: This study investigated the effects of caffeine intake associated with inadequate or adequate calcium intake in laparotomized or ovariectomized rats by means of the calcium balance. Forty adults Wistar rats were ovariectomized or laparotomized. METHODS: The animals (n=40 were randomly placed in eight groups receiving the AIN-93 diet with 100% or 50% of the recommended calcium intake with or without added caffeine (6mg/kg/day. The animals were kept in individuals metabolic cages at a temperature of 24°±2ºC, light/dark cycles of 12/12 hours, and deionized water available ad libitum. On the 8th week of the experiment, food consumption was measured and 24-hour urine and 4-day feces were collected to determine calcium balance [Balance=Ca intake-(Urinary Ca+Fecal Ca]. RESULTS: Animals with adequate calcium intake presented higher balances and rates of calcium absorption and retention (p<0.05 than those with inadequate calcium intake, regardless of caffeine intake (p<0.05. Caffeine intake did not affect urinary calcium excretion but increased balance (p<0.05 in the groups with adequate calcium intake. CONCLUSION: Adequate calcium intake attenuated the negative effects of estrogen deficiency and improved calcium balance even in the presence of caffeine.

  4. Calcium-sensing receptor: a key target for extracellular calcium signaling in neurons

    Directory of Open Access Journals (Sweden)

    Brian L Jones

    2016-03-01

    Full Text Available Though both clinicians and scientists have long recognized the influence of extracellular calcium on the function of muscle and nervous tissue, recent insights reveal that the mechanisms allowing changes in extracellular calcium to alter cellular excitability have been incompletely understood. For many years the effects of calcium on neuronal signaling were explained only in terms of calcium entry through voltage-gated calcium channels and biophysical charge screening. More recently however, it has been recognized that the calcium-sensing receptor is prevalent in the nervous system and regulates synaptic transmission and neuronal activity via multiple signaling pathways. Here we review the multiplicity of mechanisms by which changes in extracellular calcium alter neuronal signaling and propose that multiple mechanisms are required to describe the full range of experimental observations.

  5. Optogenetic Control of Calcium Oscillation Waveform Defines NFAT as an Integrator of Calcium Load.

    Science.gov (United States)

    Hannanta-Anan, Pimkhuan; Chow, Brian Y

    2016-04-27

    It is known that the calcium-dependent transcription factor NFAT initiates transcription in response to pulsatile loads of calcium signal. However, the relative contributions of calcium oscillation frequency, amplitude, and duty cycle to transcriptional activity remain unclear. Here, we engineer HeLa cells to permit optogenetic control of intracellular calcium concentration using programmable LED arrays. This approach allows us to generate calcium oscillations of constant peak amplitude, in which frequency is varied while holding duty cycle constant, or vice versa. Using this setup and mathematical modeling, we show that NFAT transcriptional activity depends more on duty cycle, defined as the proportion of the integrated calcium concentration over the oscillation period, than on frequency alone. This demonstrates that NFAT acts primarily as a signal integrator of cumulative load rather than a frequency-selective decoder. This approach resolves a fundamental question in calcium encoding and demonstrates the value of optogenetics for isolating individual dynamical components of larger signaling behaviors. PMID:27135540

  6. Application of Calcium Phosphate Materials in Dentistry

    Directory of Open Access Journals (Sweden)

    Jabr S. Al-Sanabani

    2013-01-01

    Full Text Available Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1 application of calcium phosphate into various fields in dentistry; (2 improving mechanical properties of calcium phosphate; (3 biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields.

  7. Effects of Nickel on Calcium Phosphate Formation

    Science.gov (United States)

    Guerra-López, J.; González, R.; Gómez, A.; Pomés, R.; Punte, G.; Della Védova, C. O.

    2000-05-01

    We have investigated the effect of nickel on calcium phosphate formation from aqueous solutions. The calcium phosphates prepared under different reaction conditions (pH, temperature, and nickel concentration) were characterized by X-ray diffraction, FTIR spectroscopy, and chemical analysis. The apatite compounds were also studied thermogravimetrically. From the combined results of the techniques employed we have determined that nickel favors the formation of brushite and amorphous calcium phosphate. We have found, as well, that the presence of nickel in the solution inhibits calcium hydroxyapatite (CaHAP) and octacalcium phosphate formation. However in the synthesis performed at basic pH and 95°C the apatitic phase (HAP) could be obtained. The present results suggest that the presence of nickel may modify the precipitation of oral calcium phosphate.

  8. Calcium Forms,Subcelluar Distribution and Ultrastructure of Pulp Cells as Influenced by Calcium Deficiency in Apple (Malus pumila) Fruits

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-hui; ZHOU Wei

    2004-01-01

    Calcium in Red Fuji and Starkrimson apples during storage were fractionated by sequent extracting. Localization and distribution of calcium and influence of calcium nutrition on cell ultrastructure were observed by transmission electron microscopy combined with in situ precipitation of calcium with an improved method of potassium pyroantimonate technique. Results indicated that spraying calcium solution on surface of young fruits increased contents of calcium in all forms. During storage, contents of soluble calcium and pectic calcium declined and thosein calcium phosphate, calcium oxalate and calcium silicate increased. Calcium contents of Red Fuji in all forms were higher than those of Starkrimson, indicating that calcium accumulating capability of Red Fuji fruits preceded that of Starkrimson. Under transmission electron microscopy, calcium antimonite precipitates (CaAP) was mainly distributed in cell wall, tonoplast, nuclear membrane and nucleoplasm,much more CaAP deposited in vacuole. Calcium deficiency during storage leads to decrease of CaAP in locations mentioned above, disappearance of compartmentation, and entrance of CaAP to cytoplasm. Transformation from soluble calcium and pectic calcium to calcium phosphate,oxalate and damages of biomembranes structuraly and functionally resulted from calcium deficiency during storage were the crucial causation of physiological disorder.

  9. Expert review on coronary calcium

    Directory of Open Access Journals (Sweden)

    Matthew J Budoff

    2008-04-01

    Full Text Available Matthew J Budoff, Khawar M GulDivision of Cardiology, Saint John’s Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, California, USAAbstract: While there is no doubt that high risk patients (those with >20% ten year risk of future cardiovascular event need more aggressive preventive therapy, a majority of cardiovascular events occur in individuals at intermediate risk (10%–20% ten year risk. Accurate risk assessment may be helpful in decreasing cardiovascular events through more appropriate targeting of preventive measures. It has been suggested that traditional risk assessment may be refined with the selective use of coronary artery calcium (CAC or other methods of subclinical atherosclerosis measurement. Coronary calcification is a marker of atherosclerosis that can be quantified with the use of cardiac CT and it is proportional to the extent and severity of atherosclerotic disease. The published studies demonstrate a high sensitivity of CAC for the presence of coronary artery disease but a lower specificity for obstructive CAD depending on the magnitude of the CAC. Several large clinical trials found clear, incremental predictive value of CAC over the Framingham risk score when used in asymptomatic patients. Based on multiple observational studies, patients with increased plaque burdens (increased CAC are approximately ten times more likely to suffer a cardiac event over the next 3–5 years. Coronary calcium scores have outperformed conventional risk factors, highly sensitive C-reactive protein (CRP and carotid intima media thickness (IMT as a predictor of cardiovascular events. The relevant prognostic information obtained may be useful to initiate or intensify appropriate treatment strategies to slow the progression of atherosclerotic vascular disease. Current data suggests intermediate risk patients may benefit most from further risk stratification with cardiac CT, as CAC testing is

  10. Diagnosis and assessment of skeletal related disease using calcium 41

    Science.gov (United States)

    Hillegonds, Darren J.; Vogel, John S.; Fitzgerald, Robert L.; Deftos, Leonard J.; Herold, David; Burton, Douglas W.

    2012-05-15

    A method of determining calcium metabolism in a patient comprises the steps of administering radioactive calcium isotope .sup.41Ca to the patient, allowing a period of time to elapse sufficient for dissemination and reaction of the radioactive calcium isotope .sup.41Ca by the patient, obtaining a sample of the radioactive calcium isotope .sup.41Ca from the patient, isolating the calcium content of the sample in a form suitable for precise measurement of isotopic calcium concentrations, and measuring the calcium content to determine parameters of calcium metabolism in the patient.

  11. Calcium-imaging with Fura-2 in isolated cerebral microvessels

    DEFF Research Database (Denmark)

    Hess, Jörg; Jensen, Claus V.; Diemer, Nils Henrik

    1991-01-01

    Neuropathology, cytoplasmic free calcium, Fura-2 fluorescence, image analysis, blood-brain barrier......Neuropathology, cytoplasmic free calcium, Fura-2 fluorescence, image analysis, blood-brain barrier...

  12. Calcium: a code coupling tool

    International Nuclear Information System (INIS)

    Today, the calculation performances of computers allow the precise and global simulation of complex industrial processes such as the functioning of a nuclear reactor core. One can question the need for the elaboration of new global numerical models in order to make use of the overall capability of computers. Another less time consuming solution consist in the coupling of existing well validated numerical models in order to make them working together. This paper presents the basic principles of the coupling of numerical codes, the tools required, the Calcium tool for codes coupling and an example of application of this tool in the coupling of the THYC (EdF), COCCINELLE (EdF) and CATHARE (CEA-EdF-Framatome) codes for the modeling of the thermal-hydraulic and neutronic behaviour of a reactor core during accidental situation. (J.S.)

  13. Calcium-sensitive immunoaffinity chromatography

    DEFF Research Database (Denmark)

    Henriksen, Maiken L; Lindhardt Madsen, Kirstine; Skjoedt, Karsten;

    2014-01-01

    Immunoaffinity chromatography is a powerful fractionation technique that has become indispensable for protein purification and characterization. However, it is difficult to retrieve bound proteins without using harsh or denaturing elution conditions, and the purification of scarce antigens...... to homogeneity may be impossible due to contamination with abundant antigens. In this study, we purified the scarce, complement-associated plasma protein complex, collectin LK (CL-LK, complex of collectin liver 1 and kidney 1), by immunoaffinity chromatography using a calcium-sensitive anti-collectin-kidney-1 m...... chromatography was superior to the traditional immunoaffinity chromatographies and resulted in a nine-fold improvement of the purification factor. The technique is applicable for the purification of proteins in complex mixtures by single-step fractionation without the denaturation of eluted antigens...

  14. Bioresorbable silicon electronic sensors for the brain.

    Science.gov (United States)

    Kang, Seung-Kyun; Murphy, Rory K J; Hwang, Suk-Won; Lee, Seung Min; Harburg, Daniel V; Krueger, Neil A; Shin, Jiho; Gamble, Paul; Cheng, Huanyu; Yu, Sooyoun; Liu, Zhuangjian; McCall, Jordan G; Stephen, Manu; Ying, Hanze; Kim, Jeonghyun; Park, Gayoung; Webb, R Chad; Lee, Chi Hwan; Chung, Sangjin; Wie, Dae Seung; Gujar, Amit D; Vemulapalli, Bharat; Kim, Albert H; Lee, Kyung-Mi; Cheng, Jianjun; Huang, Younggang; Lee, Sang Hoon; Braun, Paul V; Ray, Wilson Z; Rogers, John A

    2016-02-01

    Many procedures in modern clinical medicine rely on the use of electronic implants in treating conditions that range from acute coronary events to traumatic injury. However, standard permanent electronic hardware acts as a nidus for infection: bacteria form biofilms along percutaneous wires, or seed haematogenously, with the potential to migrate within the body and to provoke immune-mediated pathological tissue reactions. The associated surgical retrieval procedures, meanwhile, subject patients to the distress associated with re-operation and expose them to additional complications. Here, we report materials, device architectures, integration strategies, and in vivo demonstrations in rats of implantable, multifunctional silicon sensors for the brain, for which all of the constituent materials naturally resorb via hydrolysis and/or metabolic action, eliminating the need for extraction. Continuous monitoring of intracranial pressure and temperature illustrates functionality essential to the treatment of traumatic brain injury; the measurement performance of our resorbable devices compares favourably with that of non-resorbable clinical standards. In our experiments, insulated percutaneous wires connect to an externally mounted, miniaturized wireless potentiostat for data transmission. In a separate set-up, we connect a sensor to an implanted (but only partially resorbable) data-communication system, proving the principle that there is no need for any percutaneous wiring. The devices can be adapted to sense fluid flow, motion, pH or thermal characteristics, in formats that are compatible with the body's abdomen and extremities, as well as the deep brain, suggesting that the sensors might meet many needs in clinical medicine.

  15. Bioresorbable polyelectrolytes for smuggling drugs into cells.

    Science.gov (United States)

    Jaganathan, Sripriya

    2016-06-01

    There is ample evidence that biodegradable polyelectrolyte nanocapsules are multifunctional vehicles which can smuggle drugs into cells, and release them upon endogenous activation. A large number of endogenous stimuli have already been tested in vitro, and in vivo research is escalating. Thus, the interest in the design of intelligent polyelectrolyte multilayer (PEM) drug delivery systems is clear. The need of the hour is a systematic translation of PEM-based drug delivery systems from the lab to clinical studies. Reviews on multifarious stimuli that can trigger the release of drugs from such systems already exist. This review summarizes the available literature, with emphasis on the recent progress in PEM-based drug delivery systems that are receptive in the presence of endogenous stimuli, including enzymes, glucose, glutathione, pH, and temperature, and addresses different active and passive drug targeting strategies. Insights into the current knowledge on the diversified endogenous approaches and methodological challenges may bring inspiration to resolve issues that currently bottleneck the successful implementation of polyelectrolytes into the catalog of third-generation drug delivery systems. PMID:25961363

  16. Bioresorbable silicon electronic sensors for the brain

    Science.gov (United States)

    Kang, Seung-Kyun; Murphy, Rory K. J.; Hwang, Suk-Won; Lee, Seung Min; Harburg, Daniel V.; Krueger, Neil A.; Shin, Jiho; Gamble, Paul; Cheng, Huanyu; Yu, Sooyoun; Liu, Zhuangjian; McCall, Jordan G.; Stephen, Manu; Ying, Hanze; Kim, Jeonghyun; Park, Gayoung; Webb, R. Chad; Lee, Chi Hwan; Chung, Sangjin; Wie, Dae Seung; Gujar, Amit D.; Vemulapalli, Bharat; Kim, Albert H.; Lee, Kyung-Mi; Cheng, Jianjun; Huang, Younggang; Lee, Sang Hoon; Braun, Paul V.; Ray, Wilson Z.; Rogers, John A.

    2016-02-01

    Many procedures in modern clinical medicine rely on the use of electronic implants in treating conditions that range from acute coronary events to traumatic injury. However, standard permanent electronic hardware acts as a nidus for infection: bacteria form biofilms along percutaneous wires, or seed haematogenously, with the potential to migrate within the body and to provoke immune-mediated pathological tissue reactions. The associated surgical retrieval procedures, meanwhile, subject patients to the distress associated with re-operation and expose them to additional complications. Here, we report materials, device architectures, integration strategies, and in vivo demonstrations in rats of implantable, multifunctional silicon sensors for the brain, for which all of the constituent materials naturally resorb via hydrolysis and/or metabolic action, eliminating the need for extraction. Continuous monitoring of intracranial pressure and temperature illustrates functionality essential to the treatment of traumatic brain injury; the measurement performance of our resorbable devices compares favourably with that of non-resorbable clinical standards. In our experiments, insulated percutaneous wires connect to an externally mounted, miniaturized wireless potentiostat for data transmission. In a separate set-up, we connect a sensor to an implanted (but only partially resorbable) data-communication system, proving the principle that there is no need for any percutaneous wiring. The devices can be adapted to sense fluid flow, motion, pH or thermal characteristics, in formats that are compatible with the body’s abdomen and extremities, as well as the deep brain, suggesting that the sensors might meet many needs in clinical medicine.

  17. Bioresorbable vascular scaffolds—time to vanish?

    Science.gov (United States)

    Arroyo, Diego; Cook, Stéphane

    2016-01-01

    The fully bioabsorbable vascular scaffold (BVS) has been developed to reduce late adverse events after coronary stenting such as device thrombosis. The device consists of polylactic acid, which is gradually absorbed within the first few years after its implantation. The initial experience with the device in low-risk patients presenting with simple lesions was satisfying and generated optimism among interventional cardiologists by promising better patient outcomes. However, the unrestricted use of the device in patients presenting with a higher baseline risk and more complex lesions came at the cost of alarmingly high rates of early device thrombosis. The performance of the device largely depends on an optimal implantation technique, which differs from that employed with metallic drug-eluting stents due to the device’s distinct physical propensity. Mid-term outcomes in large-scale randomized clinical trial were disappointing. Although its non-inferiority compared to metallic everolimus-eluting stents was formally met, there was a clear trend towards an increased occurrence of myocardial infarction and device thrombosis during the first year after device implantation. However, the BVS’s putative advantages are expected to manifest themselves at long-term, that is 3 to 5 years after the device has been implanted. Evidence pertaining to these long-term outcomes is eagerly awaited. PMID:27293872

  18. Fast kinetics of calcium signaling and sensor design.

    Science.gov (United States)

    Tang, Shen; Reddish, Florence; Zhuo, You; Yang, Jenny J

    2015-08-01

    Fast calcium signaling is regulated by numerous calcium channels exhibiting high spatiotemporal profiles which are currently measured by fluorescent calcium sensors. There is still a strong need to improve the kinetics of genetically encoded calcium indicators (sensors) to capture calcium dynamics in the millisecond time frame. In this review, we summarize several major fast calcium signaling pathways and discuss the recent developments and application of genetically encoded calcium indicators to detect these pathways. A new class of genetically encoded calcium indicators designed with site-directed mutagenesis on the surface of beta-barrel fluorescent proteins to form a pentagonal bipyramidal-like calcium binding domain dramatically accelerates calcium binding kinetics. Furthermore, novel genetically encoded calcium indicators with significantly increased fluorescent lifetime change are advantageous in deep-field imaging with high light-scattering and notable morphology change.

  19. Relationship of calcium absorption with 25(OH)D and calcium intake in children with rickets.

    Science.gov (United States)

    Thacher, Tom D; Abrams, Steven A

    2010-11-01

    Nutritional rickets has long been considered a disease caused by vitamin D deficiency, but recent data indicate that inadequate dietary calcium intake is an important cause of rickets, particularly in tropical countries. Children with rickets due to calcium deficiency do not have very low 25(OH)D concentrations, and serum 1,25(OH)(2) D values are markedly elevated. Studies of Nigerian children with rickets demonstrated they have high fractional calcium absorption. A high-phytate diet was demonstrated to increase calcium absorption compared with the fasting state, and enzymatic dephytinization did not significantly improve calcium absorption. When given vitamin D, children with rickets have a marked increase in 1,25(OH)(2) D concentrations without any change in fractional calcium absorption. No positive relationship was found between fractional calcium absorption and serum 25(OH)D concentrations in children on low-calcium diets. More research is needed to understand the interaction between calcium and vitamin D and the role of vitamin D in calcium absorption.

  20. Effect of calcium intake on urinary oxalate excretion in calcium stone-forming patients

    Directory of Open Access Journals (Sweden)

    Nishiura J.L.

    2002-01-01

    Full Text Available Dietary calcium lowers the risk of nephrolithiasis due to a decreased absorption of dietary oxalate that is bound by intestinal calcium. The aim of the present study was to evaluate oxaluria in normocalciuric and hypercalciuric lithiasic patients under different calcium intake. Fifty patients (26 females and 24 males, 41 ± 10 years old, whose 4-day dietary records revealed a regular low calcium intake (<=500 mg/day, received an oral calcium load (1 g/day for 7 days. A 24-h urine was obtained before and after load and according to the calciuria under both diets, patients were considered as normocalciuric (NC, N = 15, diet-dependent hypercalciuric (DDHC, N = 9 or diet-independent hypercalciuric (DIHC, N = 26. On regular diet, mean oxaluria was 30 ± 14 mg/24 h for all patients. The 7-day calcium load induced a significant decrease in mean oxaluria compared to the regular diet in NC and DIHC (20 ± 12 vs 26 ± 7 and 27 ± 18 vs 32 ± 15 mg/24 h, respectively, P<0.05 but not in DDHC patients (22 ± 10 vs 23 ± 5 mg/24 h. The lack of an oxalate decrease among DDHC patients after the calcium load might have been due to higher calcium absorption under higher calcium supply, with a consequent lower amount of calcium left in the intestine to bind with oxalate. These data suggest that a long-lasting regular calcium consumption <500 mg was not associated with high oxaluria and that a subpopulation of hypercalciuric patients who presented a higher intestinal calcium absorption (DDHC tended to hyperabsorb oxalate as well, so that oxaluria did not change under different calcium intake.

  1. Calcium signaling in physiology and pathophysiology

    Institute of Scientific and Technical Information of China (English)

    He-ping CHENG; Sheng WEI; Li-ping WEI; Alexei VERKHRATSKY

    2006-01-01

    Calcium ions are the most ubiquitous and pluripotent cellular signaling molecules that control a wide variety of cellular processes.The calcium signaling system is represented by a relatively limited number of highly conserved transporters and channels,which execute Ca2+ movements across biological membranes and by many thousands of Ca2+-sensitive effectors.Molecular cascades,responsible for the generation of calcium signals,are tightly controlled by Ca2+ ions themselves and by genetic factors,which tune the expression of different Ca2+-handling molecules according to adaptational requirements.Ca2+ ions determine normal physiological reactions and the development of many pathological processes.

  2. Calcium Signaling Is Required for Erythroid Enucleation.

    Science.gov (United States)

    Wölwer, Christina B; Pase, Luke B; Russell, Sarah M; Humbert, Patrick O

    2016-01-01

    Although erythroid enucleation, the property of erythroblasts to expel their nucleus, has been known for 7ore than a century, surprisingly little is known regarding the molecular mechanisms governing this unique developmental process. Here we show that similar to cytokinesis, nuclear extrusion requires intracellular calcium signaling and signal transduction through the calmodulin (CaM) pathway. However, in contrast to cytokinesis we found that orthochromatic erythroblasts require uptake of extracellular calcium to enucleate. Together these functional studies highlight a critical role for calcium signaling in the regulation of erythroid enucleation.

  3. Calcium Signaling Is Required for Erythroid Enucleation.

    Directory of Open Access Journals (Sweden)

    Christina B Wölwer

    Full Text Available Although erythroid enucleation, the property of erythroblasts to expel their nucleus, has been known for 7ore than a century, surprisingly little is known regarding the molecular mechanisms governing this unique developmental process. Here we show that similar to cytokinesis, nuclear extrusion requires intracellular calcium signaling and signal transduction through the calmodulin (CaM pathway. However, in contrast to cytokinesis we found that orthochromatic erythroblasts require uptake of extracellular calcium to enucleate. Together these functional studies highlight a critical role for calcium signaling in the regulation of erythroid enucleation.

  4. Calcium Signaling Is Required for Erythroid Enucleation

    Science.gov (United States)

    Russell, Sarah M.; Humbert, Patrick O.

    2016-01-01

    Although erythroid enucleation, the property of erythroblasts to expel their nucleus, has been known for 7ore than a century, surprisingly little is known regarding the molecular mechanisms governing this unique developmental process. Here we show that similar to cytokinesis, nuclear extrusion requires intracellular calcium signaling and signal transduction through the calmodulin (CaM) pathway. However, in contrast to cytokinesis we found that orthochromatic erythroblasts require uptake of extracellular calcium to enucleate. Together these functional studies highlight a critical role for calcium signaling in the regulation of erythroid enucleation. PMID:26731108

  5. Dysbalance of astrocyte calcium under hyperammonemic conditions.

    Directory of Open Access Journals (Sweden)

    Nicole Haack

    Full Text Available Increased brain ammonium (NH4(+/NH3 plays a central role in the manifestation of hepatic encephalopathy (HE, a complex syndrome associated with neurological and psychiatric alterations, which is primarily a disorder of astrocytes. Here, we analysed the influence of NH4(+/NH3 on the calcium concentration of astrocytes in situ and studied the underlying mechanisms of NH4(+/NH3-evoked calcium changes, employing fluorescence imaging with Fura-2 in acute tissue slices derived from different regions of the mouse brain. In the hippocampal stratum radiatum, perfusion with 5 mM NH4(+/NH3 for 30 minutes caused a transient calcium increase in about 40% of astrocytes lasting about 10 minutes. Furthermore, the vast majority of astrocytes (∼ 90% experienced a persistent calcium increase by ∼ 50 nM. This persistent increase was already evoked at concentrations of 1-2 mM NH4(+/NH3, developed within 10-20 minutes and was maintained as long as the NH4(+/NH3 was present. Qualitatively similar changes were observed in astrocytes of different neocortical regions as well as in cerebellar Bergmann glia. Inhibition of glutamine synthetase resulted in significantly larger calcium increases in response to NH4(+/NH3, indicating that glutamine accumulation was not a primary cause. Calcium increases were not mimicked by changes in intracellular pH. Pharmacological inhibition of voltage-gated sodium channels, sodium-potassium-chloride-cotransporters (NKCC, the reverse mode of sodium/calcium exchange (NCX, AMPA- or mGluR5-receptors did not dampen NH4(+/NH3-induced calcium increases. They were, however, significantly reduced by inhibition of NMDA receptors and depletion of intracellular calcium stores. Taken together, our measurements show that sustained exposure to NH4(+/NH3 causes a sustained increase in intracellular calcium in astrocytes in situ, which is partly dependent on NMDA receptor activation and on release of calcium from intracellular stores. Our study

  6. Thermochemistry of calcium oxide and calcium hydroxide in fluoride slags

    Science.gov (United States)

    Chattopadhyay, S.; Mitchell, A.

    1990-08-01

    Calcium oxide activity in binary CaF2-CaO and ternary CaF2-CaO-Al2O3 and CaF2-CaO-SiO2 slags has been determined by CO2-slag equilibrium experiments at 1400 °C. The carbonate ca-pacity of these slags has also been computed and compared with sulfide capacity data available in the literature. The similarity in trends suggests the possibility of characterizing carbonate capacity as an alternative basicity index for fluoride-base slags. Slag-D2O equilibrium experi-ments are performed at 1400°C with different fluoride-base slags to determine water solubility at two different partial pressures of D2O, employing a new slag sampling technique. A novel isotope tracer detection technique is employed to analyze water in the slags. The water solubility data found show higher values than the previous literature data by an order of magnitude but show a linear relationship with the square root of water vapor partial pressure. The activity of hydroxide computed from the data is shown to be helpful in estimating water solubility in in-dustrial electroslag remelting (ESR) slags.

  7. Modulation of Intracellular Calcium Levels by Calcium Lactate Affects Colon Cancer Cell Motility through Calcium-Dependent Calpain

    OpenAIRE

    Pasupathi Sundaramoorthy; Jae Jun Sim; Yeong-Su Jang; Siddhartha Kumar Mishra; Keun-Yeong Jeong; Poonam Mander; Oh Byung Chul; Won-Sik Shim; Seung Hyun Oh; Ky-Youb Nam; Hwan Mook Kim

    2015-01-01

    Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstrea...

  8. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond (Toronto); (WU-MED)

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  9. In vivo Calcium Imaging of Evoked Calcium Waves in the Embryonic Cortex

    OpenAIRE

    Yuryev, Mikhail; Pellegrino, Christophe; Jokinen, Ville; Andriichuk, Liliia; Khirug, Stanislav; Khiroug, Leonard; Rivera, Claudio

    2016-01-01

    The dynamics of intracellular calcium fluxes are instrumental in the proliferation, differentiation, and migration of neuronal cells. Knowledge thus far of the relationship between these calcium changes and physiological processes in the developing brain has derived principally from ex vivo and in vitro experiments. Here, we present a new method to image intracellular calcium flux in the cerebral cortex of live rodent embryos, whilst attached to the dam through the umbilical cord. Using this ...

  10. Calcium and caffeine interaction in increased calcium balance in ovariectomized rats

    OpenAIRE

    Sandra Tavares da Silva; Neuza Maria Brunoro Costa; Frederico Souzalima Caldoncelli Franco; Antônio José Natali

    2013-01-01

    OBJECTIVE: This study investigated the effects of caffeine intake associated with inadequate or adequate calcium intake in laparotomized or ovariectomized rats by means of the calcium balance. Forty adults Wistar rats were ovariectomized or laparotomized. METHODS: The animals (n=40) were randomly placed in eight groups receiving the AIN-93 diet with 100% or 50% of the recommended calcium intake with or without added caffeine (6mg/kg/day). The animals were kept in individuals metabolic cages a...

  11. Technology obtaining of nitrogen fertilizer from the calcium is containing waste of production of calcium saltpetre

    OpenAIRE

    Власян, Світлана Варужанівна; Шестозуб, Анатолій Борисович; Волошин, Микола Дмитрович

    2013-01-01

    The new technology of obtaining nitrogen fertilizer from calcium-containing sludge of calcium saltpeter production is considered in the paper. The main objective of the research is the development of processing technology of sludge of calcium saltpeter production into alkaline nitrogen fertilizer, analysis of the composition of initial material and finished product, testing of fertilizer by means of vegeta­tive studies and determination of expenditure of drying agent that is exhaust gases of ...

  12. Calcium and Cancer Prevention: Strengths and Limits of the Evidence

    Science.gov (United States)

    ... calcium carbonate has about 40 percent elemental calcium, meaning that 500 mg of calcium carbonate actually contains ... in this trial also contained vitamin D (400 international units [ IU ]). During ... and calcium in relation to prostate cancer risk among more than 142, ...

  13. 21 CFR 172.120 - Calcium disodium EDTA.

    Science.gov (United States)

    2010-04-01

    ... Food Preservatives § 172.120 Calcium disodium EDTA. The food additive calcium disodium EDTA (calcium... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium disodium EDTA. 172.120 Section 172.120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  14. Astrocyte calcium signaling: the third wave.

    Science.gov (United States)

    Bazargani, Narges; Attwell, David

    2016-02-01

    The discovery that transient elevations of calcium concentration occur in astrocytes, and release 'gliotransmitters' which act on neurons and vascular smooth muscle, led to the idea that astrocytes are powerful regulators of neuronal spiking, synaptic plasticity and brain blood flow. These findings were challenged by a second wave of reports that astrocyte calcium transients did not mediate functions attributed to gliotransmitters and were too slow to generate blood flow increases. Remarkably, the tide has now turned again: the most important calcium transients occur in fine astrocyte processes not resolved in earlier studies, and new mechanisms have been discovered by which astrocyte [Ca(2+)]i is raised and exerts its effects. Here we review how this third wave of discoveries has changed our understanding of astrocyte calcium signaling and its consequences for neuronal function.

  15. Discrete stochastic modeling of calcium channel dynamics

    CERN Document Server

    Baer, M E; Levine, H; Tsimring, L S; Baer, Markus; Falcke, Martin; Levine, Herbert; Tsimring, Lev S.

    1999-01-01

    We propose a simple discrete stochastic model for calcium dynamics in living cells. Specifically, the calcium concentration distribution is assumed to give rise to a set of probabilities for the opening/closing of channels which release calcium thereby changing those probabilities. We study this model in one dimension, analytically in the mean-field limit of large number of channels per site N, and numerically for small N. As the number of channels per site is increased, the transition from a non-propagating region of activity to a propagating one changes in nature from one described by directed percolation to that of deterministic depinning in a spatially discrete system. Also, for a small number of channels a propagating calcium wave can leave behind a novel fluctuation-driven state, in a parameter range where the limiting deterministic model exhibits only single pulse propagation.

  16. Discrete Stochastic Modeling of Calcium Channel Dynamics

    International Nuclear Information System (INIS)

    We propose a discrete stochastic model for calcium dynamics in living cells. A set of probabilities for the opening/closing of calcium channels is assumed to depend on the calcium concentration. We study this model in one dimension, analytically in the limit of a large number of channels per site N , and numerically for small N . As the number of channels per site is increased, the transition from a nonpropagating region of activity to a propagating one changes from one described by directed percolation to that of deterministic depinning in a spatially discrete system. Also, for a small number of channels a propagating calcium wave can leave behind a novel fluctuation-driven state. (c) 2000 The American Physical Society

  17. 21 CFR 184.1195 - Calcium citrate.

    Science.gov (United States)

    2010-04-01

    ... with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, 2101... four moles of water per mole of calcium citrate. (b) The ingredient meets the specifications of...

  18. Calcium signaling in neocortical development.

    Science.gov (United States)

    Uhlén, Per; Fritz, Nicolas; Smedler, Erik; Malmersjö, Seth; Kanatani, Shigeaki

    2015-04-01

    The calcium ion (Ca(2+) ) is an essential second messenger that plays a pivotal role in neurogenesis. In the ventricular zone (VZ) of the neocortex, neural stem cells linger to produce progenitor cells and subsequently neurons and glial cells, which together build up the entire adult brain. The radial glial cells, with their characteristic radial fibers that stretch from the inner ventricular wall to the outer cortex, are known to be the neural stem cells of the neocortex. Migrating neurons use these radial fibers to climb from the proliferative VZ in the inner part of the brain to the outer layers of the cortex, where differentiation processes continue. To establish the complex structures that constitute the adult cerebral cortex, proliferation, migration, and differentiation must be tightly controlled by various signaling events, including cytosolic Ca(2+) signaling. During development, cells regularly exhibit spontaneous Ca(2+) activity that stimulates downstream effectors, which can elicit these fundamental cell processes. Spontaneous Ca(2+) activity during early neocortical development depends heavily on gap junctions and voltage dependent Ca(2+) channels, whereas later in development neurotransmitters and synapses exert an influence. Here, we provide an overview of the literature on Ca(2+) signaling and its impact on cell proliferation, migration, and differentiation in the neocortex. We point out important historical studies and review recent progress in determining the role of Ca(2+) signaling in neocortical development.

  19. Effect of albumin and free calcium concentrations on calcium binding in vitro.

    OpenAIRE

    Besarab, A; DeGuzman, A; Swanson, J W

    1981-01-01

    In vivo equilibrium dialysis studies were performed to define further the characteristics of calcium binding to bovine albumin. The concentration range for albumin (1 to 9 g/dl) as well as ultrafilterable calcium (0.5 to 2.5 mM) studied encompassed those that might be ordinarily encountered in most clinical situations. Major differences in the regressions of total calcium on ultrafilterable calcium occurred at albumin concentrations of 1, 2, and 9 g/dl but only small differences at albumin co...

  20. Characterization of Calcium Compounds in Opuntia ficus indica as a Source of Calcium for Human Diet

    OpenAIRE

    Isela Rojas-Molina; Elsa Gutiérrez-Cortez; Moustapha Bah; Alejandra Rojas-Molina; César Ibarra-Alvarado; Eric Rivera-Muñoz; Alicia del Real; Ma. de los Angeles Aguilera-Barreiro

    2015-01-01

    Analyses of calcium compounds in cladodes, soluble dietary fiber (SDF), and insoluble dietary fiber (IDF) of Opuntia ficus indica are reported. The characterization of calcium compounds was performed by using Scanning Electron Microscopy, Energy Dispersive Spectrometry, X-ray diffraction, and infrared spectroscopy. Atomic Absorption Spectroscopy and titrimetric methods were used for quantification of total calcium and calcium compounds. Whewellite (CaC2O4·H2O), weddellite (CaC2O4·(H2O)2.375),...

  1. Relating a calcium indicator signal to the unperturbed calcium concentration time-course

    Directory of Open Access Journals (Sweden)

    Abarbanel Henry DI

    2007-02-01

    Full Text Available Abstract Background Optical indicators of cytosolic calcium levels have become important experimental tools in systems and cellular neuroscience. Indicators are known to interfere with intracellular calcium levels by acting as additional buffers, and this may strongly alter the time-course of various dynamical variables to be measured. Results By investigating the underlying reaction kinetics, we show that in some ranges of kinetic parameters one can explicitly link the time dependent indicator signal to the time-course of the calcium influx, and thus, to the unperturbed calcium level had there been no indicator in the cell.

  2. Diagnosis and clinical manifestations of calcium pyrophosphate and basic calcium phosphate crystal deposition diseases.

    Science.gov (United States)

    Ea, Hang-Korng; Lioté, Frédéric

    2014-05-01

    Basic calcium phosphate and pyrophosphate calcium crystals are the 2 main calcium-containing crystals that can deposit in all skeletal tissues. These calcium crystals give rise to numerous manifestations, including acute inflammatory attacks that can mimic alarming and threatening differential diagnoses, osteoarthritis-like lesions, destructive arthropathies, and calcific tendinitis. Awareness of uncommon localizations and manifestations such as intraspinal deposition (eg, crowned dens syndrome, tendinitis of longus colli muscle, massive cervical myelopathy compression) prevents inappropriate procedures and cares. Coupling plain radiography, ultrasonography, computed tomography, and synovial fluid analysis allow accurate diagnosis by directly or indirectly identifying the GRAAL of microcrystal-related symptoms.

  3. Effect of Calcium on the Vanadium Extraction from High Calcium Type Stone Coal

    Institute of Scientific and Technical Information of China (English)

    BAO Shenxu; LIANG Liang; ZHANG Yimin; HAN Shihua; HU Yangjia

    2015-01-01

    The high calcium type stone coal from Hubei province was leached by water and dilute acid separately after being roasted with different dosage of NaCl. The water leaching rate of vanadium (WLRV) was low and only 26.8%of vanadium can be leached by water when 4%NaCl was added, but the acid leaching rate of vanadium (ALRV) was relatively high. Calcium in the high calcium type stone coal is greatly superfluous relative to vanadium, hence, the calcium reacts with vanadium to form Ca(VO3)2, Ca2V2O7 and Ca3(VO4)2 orderly during the stone coal roasting process and high temperature is beneficial to the reactions between calcium and vanadium, which was validated by simulated reactions between pure calcium carbonate and vanadium pentoxide. These calcium vanadates are all water insoluble but acid soluble and this causes the low WLRV and relatively high ALRV. After calcium removal by HCl, the WLRV is highly enhanced and reaches about 50%when only 2%NaCl was added. If the HCl content is too high, the stone coal is easily sintered and the formed glass structure can enwrap vanadium, which leads the WLRV to decline. Single water leaching process is not appropriate to extract vanadium from high calcium type stone coal.

  4. Study of calcium chloride and calcium nitrate purification on inorganic sorbents

    International Nuclear Information System (INIS)

    Purification of calcium chloride and calcium nitrate from iron, chromium, manganese and cobalt impurities by sorption on some inorganic collectors are considered in this article. Study was conducted by means of radioactive-tracer technique at concurrent use of several γ-radioactive isotopes. As a collectors were used hydrated aluminium and zirconium oxides. Dependence of effectiveness of precipitation by collectors on ph-value of medium, quantity of collector, nature and concentration of components is studied. Optimal parameters of purification of calcium chloride and calcium nitrate are defined.

  5. ERp57 modulates mitochondrial calcium uptake through the MCU.

    Science.gov (United States)

    He, Jingquan; Shi, Weikang; Guo, Yu; Chai, Zhen

    2014-06-01

    ERp57 participates in the regulation of calcium homeostasis. Although ERp57 modulates calcium flux across the plasma membrane and the endoplasmic reticulum membrane, its functions on mitochondria are largely unknown. Here, we found that ERp57 can regulate the expression of the mitochondrial calcium uniporter (MCU) and modulate mitochondrial calcium uptake. In ERp57-silenced HeLa cells, MCU was downregulated, and the mitochondrial calcium uptake was inhibited, consistent with the effect of MCU knockdown. When MCU was re-expressed in the ERp57 knockdown cells, mitochondrial calcium uptake was restored. Thus, ERp57 is a potent regulator of mitochondrial calcium homeostasis.

  6. Understanding calcium dynamics experiments and theory

    CERN Document Server

    Malchow, Dieter

    2003-01-01

    Intracellular Calcium is an important messenger in living cells. Calcium dynamics display complex temporal and spatial structures created by the concentration patterns which are characteristic for a nonlinear system operating far from thermodynamic equilibrium. Written as a set of tutorial reviews on both experimental facts and theoretical modelling, this volume is intended as an introduction and modern reference in the field for graduate students and researchers in biophysics, biochemistry and applied mathematics.

  7. DETERMINATION OF CALCIUM CONTENT IN DIETARY SUPPLEMENTS

    OpenAIRE

    Marjanović-Balaban, Željka R.; Antunović, Vesna R.; Jelić, Dijana R.; Živković, Tanja M.

    2015-01-01

    Calcium is a macro element that is very important for the human body: its content and circulation in the body is large, it serves as the electrolyte, it has a building role and participates in the process of metabolism. The European Union, the World Health Organization (WHO) and the Ministry of Food and Drug (Food and Drug Administration, FDA) gave the RDA (Recommended Dietary Allowances,) for this macro element. The absorption and bioavailability of the calcium may vary depending on a number...

  8. Gel time of calcium acrylate grouting material.

    Science.gov (United States)

    Han, Tong-Chun

    2004-08-01

    Calcium acrylate is a polymerized grout, and can polymerize in an aqueous solution. The polymerization reaction utilizes ammonium persulfate as a catalyst and sodium thiosulfate as the activator. Based on the theory of reaction kinetics, this study on the relation between gel time and concentration of activator and catalyst showed that gel time of calcium acrylate is inversely proportional to activator and catalyst concentration. A formula of gel time is proposed, and an example is provided to verify the proposed formula. PMID:15236477

  9. Dietary habits of calcium stone formers.

    Science.gov (United States)

    Martini, L A; Heilberg, I P; Cuppari, L; Medeiros, F A; Draibe, S A; Ajzen, H; Schor, N

    1993-08-01

    1. Since dietary factors are known to be related to nephrolithiasis, calcium stone-forming (CSF) patients were evaluated in terms of calcium, total protein of both animal and plant origin, carbohydrate and energy intakes, on the basis of 72-h dietary records during the week plus 24-h dietary records during the week-end. 2. The data for 77 calcium stone formers (57 with absorptive hypercalciuria and 20 with renal hypercalciuria) were compared to those for 29 age-matched healthy subjects. The body mass index of the CSF group was higher than that of healthy subjects (P < 0.05). Consumption of all nutrients was similar for both groups during the week but week-end dietary records for CSF showed higher calcium intake (586 +/- 38 vs 438 +/- 82 mg/day, P < 0.05), protein to body weight ratio (1.2 +/- 0.1 vs 1.0 +/- 0.5 g kg-1 day-1, P < 0.05) and animal protein (56 +/- 3 vs 40 +/- 3 g/day, P < 0.05) when compared with healthy subjects. 3. Comparison of hypercalciuria subtypes (renal hypercalciuria and absorptive hypercalciuria) did not indicate any difference in calcium or energy intake between groups, either during the week or during the week-end. However, the absorptive hypercalciuric group presented higher protein and animal protein consumption during the week-end. 4. These data suggest a low calcium intake in this population, even by stone formers. The higher animal protein consumption by our calcium stone formers observed during week-ends seems to be more important than calcium intake for stone formation. PMID:8298515

  10. Gel time of calcium acrylate grouting material

    Institute of Scientific and Technical Information of China (English)

    韩同春

    2004-01-01

    Calcium acrylate is a polymerized grout, and can polymerize in an aqueous solution. The polymerization reaction utilizes ammonium persulfate as a catalyst and sodium thiosulfate as the activator. Based on the theory of reaction kinetics, this study on the relation between gel time and concentration of activator and catalyst showed that gel time of calcium acrylate is inversely proportional to activator and catalyst concentration. A formula of gel time is proposed, and an example is provided to verify the proposed formula.

  11. Rickets induced by calcium or phosphate depletion.

    OpenAIRE

    Abugassa, S.; Svensson, O.

    1990-01-01

    We studied the effects of calciopenia and phosphopenia on longitudinal growth, skeletal mineralization, and development of rickets in young Sprague-Dawley rats. At an age of 21 days, two experimental groups were given diets containing 0.02% calcium or 0.02% phosphorus; otherwise the diets were nutritionally adequate. After 7, 14, and 21 days, five animals from each group were randomly chosen. The animals were anaesthetized and blood samples were drawn for analysis of calcium, phosphorus, and ...

  12. A calcium-induced calcium release mechanism mediated by calsequestrin.

    Science.gov (United States)

    Lee, Young-Seon; Keener, James P

    2008-08-21

    Calcium (Ca(2+))-induced Ca(2+) release (CICR) is widely accepted as the principal mechanism linking electrical excitation and mechanical contraction in cardiac cells. The CICR mechanism has been understood mainly based on binding of cytosolic Ca(2+) with ryanodine receptors (RyRs) and inducing Ca(2+) release from the sarcoplasmic reticulum (SR). However, recent experiments suggest that SR lumenal Ca(2+) may also participate in regulating RyR gating through calsequestrin (CSQ), the SR lumenal Ca(2+) buffer. We investigate how SR Ca(2+) release via RyR is regulated by Ca(2+) and calsequestrin (CSQ). First, a mathematical model of RyR kinetics is derived based on experimental evidence. We assume that the RyR has three binding sites, two cytosolic sites for Ca(2+) activation and inactivation, and one SR lumenal site for CSQ binding. The open probability (P(o)) of the RyR is found by simulation under controlled cytosolic and SR lumenal Ca(2+). Both peak and steady-state P(o) effectively increase as SR lumenal Ca(2+) increases. Second, we incorporate the RyR model into a CICR model that has both a diadic space and the junctional SR (jSR). At low jSR Ca(2+) loads, CSQs are more likely to bind with the RyR and act to inhibit jSR Ca(2+) release, while at high SR loads CSQs are more likely to detach from the RyR, thereby increasing jSR Ca(2+) release. Furthermore, this CICR model produces a nonlinear relationship between fractional jSR Ca(2+) release and jSR load. These findings agree with experimental observations in lipid bilayers and cardiac myocytes. PMID:18538346

  13. Analytical models of calcium binding in a calcium channel

    International Nuclear Information System (INIS)

    The anomalous mole fraction effect of L-type calcium channels is analyzed using a Fermi like distribution with the experimental data of Almers and McCleskey [J. Physiol. 353, 585 (1984)] and the atomic resolution model of Lipkind and Fozzard [Biochemistry 40, 6786 (2001)] of the selectivity filter of the channel. Much of the analysis is algebraic, independent of differential equations. The Fermi distribution is derived from the configuration entropy of ions and water molecules with different sizes, different valences, and interstitial voids between particles. It allows us to calculate potentials and distances (between the binding ion and the oxygen ions of the glutamate side chains) directly from the experimental data using algebraic formulas. The spatial resolution of these results is comparable with those of molecular models, but of course the accuracy is no better than that implied by the experimental data. The glutamate side chains in our model are flexible enough to accommodate different types of binding ions in different bath conditions. The binding curves of Na+ and Ca2+ for [CaCl2] ranging from 10−8 to 10−2 M with a fixed 32 mM background [NaCl] are shown to agree with published Monte Carlo simulations. The Poisson-Fermi differential equation—that includes both steric and correlation effects—is then used to obtain the spatial profiles of energy, concentration, and dielectric coefficient from the solvent region to the filter. The energy profiles of ions are shown to depend sensitively on the steric energy that is not taken into account in the classical rate theory. We improve the rate theory by introducing a steric energy that lumps the effects of excluded volumes of all ions and water molecules and empty spaces between particles created by Lennard-Jones type and electrostatic forces. We show that the energy landscape varies significantly with bath concentrations. The energy landscape is not constant

  14. Contribution of calcium oxalate to soil-exchangeable calcium

    Science.gov (United States)

    Dauer, Jenny M.; Perakis, Steven S.

    2013-01-01

    Acid deposition and repeated biomass harvest have decreased soil calcium (Ca) availability in many temperate forests worldwide, yet existing methods for assessing available soil Ca do not fully characterize soil Ca forms. To account for discrepancies in ecosystem Ca budgets, it has been hypothesized that the highly insoluble biomineral Ca oxalate might represent an additional soil Ca pool that is not detected in standard measures of soil-exchangeable Ca. We asked whether several standard method extractants for soil-exchangeable Ca could also access Ca held in Ca oxalate crystals using spike recovery tests in both pure solutions and soil extractions. In solutions of the extractants ammonium chloride, ammonium acetate, and barium chloride, we observed 2% to 104% dissolution of Ca oxalate crystals, with dissolution increasing with both solution molarity and ionic potential of cation extractant. In spike recovery tests using a low-Ca soil, we estimate that 1 M ammonium acetate extraction dissolved sufficient Ca oxalate to contribute an additional 52% to standard measurements of soil-exchangeable Ca. However, in a high-Ca soil, the amount of Ca oxalate spike that would dissolve in 1 M ammonium acetate extraction was difficult to detect against the large pool of exchangeable Ca. We conclude that Ca oxalate can contribute substantially to standard estimates of soil-exchangeable Ca in acid forest soils with low soil-exchangeable Ca. Consequently, measures of exchangeable Ca are unlikely to fully resolve discrepancies in ecosystem Ca mass balance unless the contribution of Ca oxalate to exchangeable Ca is also assessed.

  15. A theory of Plasma Membrane Calcium Pump stimulation and activity

    CERN Document Server

    Graupner, M; Meyer-Hermann, M; Erler, Frido; Graupner, Michael; Meyer-Hermann, Michael

    2003-01-01

    The ATP-driven Plasma Membrane Calcium (PMCA) pump is characterized by a high affinity to calcium and a low transport rate compared to other transmembrane calcium transport proteins. It plays a crucial role for calcium extrusion from cells. Calmodulin is an intracellular calcium buffering protein which is capable in its Calcium-liganded form to stimulate the PMCA pump by increasing both, the affinity to calcium and the maximum calcium transport rate. We introduce a new model of this stimulation process and deduce analytical expressions for experimental observables in order to determine the model parameter on the basis of specific experiments. Furthermore a model for the pumping activity is developed. In contrast to the biological process we have to describe the pumping rate behavior by assuming a ATP:Calcium stoichiometry of 2 in order to reproduce experimental data. The conjunction of the description of calcium pumping and the stimulation model fully and correctly simulates PMCA pump function. Therewith the ...

  16. Oyster shell calcium induced parotid swelling

    Directory of Open Access Journals (Sweden)

    Muthiah Palaniappan

    2014-01-01

    Full Text Available A 59 year old female consumer was started on therapy with oyster shell calcium in combination with vitamin D3 and she presented with swelling below the ear, after two doses. She stopped the drug by herself and the swelling disappeared in one day. She started the drug one day after recovery and again she developed the swelling. She was advised to stop the drug with a suggestion to take lemon to enhance parotid secretion and the swelling subsided. Calcium plays major role in salivary secretion and studies have shown reduced parotid secretion in rats, deficient of vitamin D. But in humans involvement of calcium and vitamin D3 in parotid secretion is unknown. However, the patient had no history of reaction though she had previously taken vitamin D3 with calcium carbonate which was not from oyster shell. Hence, we ruled out vitamin D3 in this reaction and suspecting oyster shell calcium as a culprit. This adverse drug reaction (ADR was assessed using World Health Organization (WHO causality assessment, Naranjo′s and Hartwig severity scales. As per WHO causality assessment scale, the ADR was classified as "certain". This reaction was analyzed as per Naranjo′s algorithm and was classified as probable. According to Hartwig′s severity scale the reaction was rated as mild. Our case is an example of a mild but rare adverse effect of oyster shell calcium carbonate which is widely used.

  17. Membrane associated complexes in calcium dynamics modelling

    International Nuclear Information System (INIS)

    Mitochondria not only govern energy production, but are also involved in crucial cellular signalling processes. They are one of the most important organelles determining the Ca2+ regulatory pathway in the cell. Several mathematical models explaining these mechanisms were constructed, but only few of them describe interplay between calcium concentrations in endoplasmic reticulum (ER), cytoplasm and mitochondria. Experiments measuring calcium concentrations in mitochondria and ER suggested the existence of cytosolic microdomains with locally elevated calcium concentration in the nearest vicinity of the outer mitochondrial membrane. These intermediate physical connections between ER and mitochondria are called MAM (mitochondria-associated ER membrane) complexes. We propose a model with a direct calcium flow from ER to mitochondria, which may be justified by the existence of MAMs, and perform detailed numerical analysis of the effect of this flow on the type and shape of calcium oscillations. The model is partially based on the Marhl et al model. We have numerically found that the stable oscillations exist for a considerable set of parameter values. However, for some parameter sets the oscillations disappear and the trajectories of the model tend to a steady state with very high calcium level in mitochondria. This can be interpreted as an early step in an apoptotic pathway. (paper)

  18. Increased absolute calcium binding to albumin in hypoalbuminaemia.

    OpenAIRE

    Besarab, A; Caro, J F

    1981-01-01

    The amount of calcium bound to protein was measured in 30 patients with differing diseases and varying degrees of hypoalbuminaemia. Total serum calcium increased directly with both serum albumin and ultrafilterable calcium concentrations. The estimated amount of calcium bound per gram of albumin varied inversely with the albumin concentration, decreasing from 2.1 to 1.0 mg calcium/g albumin as albumin concentration increased from 1.7 to 3.1 g/dl. Circulating parathyroid hormone (PTH) concentr...

  19. The effect of dimethylsulfoxide on the calcium paradox.

    OpenAIRE

    Ruigrok, T. J.; Moes, D.; Slade, A.M.; Nayler, W. G.

    1981-01-01

    Reperfusion of isolated rat hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). Experiments were undertaken to study the effect of dimethylsulfoxide (DMSO) on the occurrence of the calcium paradox in rat heart muscle. DMSO (1.4 mol/l) was added to the calcium-free or the reperfusion medium. Cell damage was quantitated in terms of creatine kinase (CK) release, cardiac electrogram (CEG) changes, and ultras...

  20. Factors to consider in the selection of a calcium supplement.

    OpenAIRE

    Shangraw, R F

    1989-01-01

    Calcium supplements are widely used, yet many questions remain as to the absorption of various calcium salts. Because the solubility of many calcium salts is dependent upon pH, the type of salt used, the condition of the patient, and the time of administration should be considered. Studies show that many calcium supplements on the market today do not meet standards of quality established in the "U.S. Pharmacopeia" (USP). Consumers must be discerning about the products they purchase. Calcium s...

  1. Effect of combining different calcium concentration dialysate on calcium balance in peritoneal dialysis patients

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hui-ping; WU Bei; LU Li-xia; QIAO Jie; WU Xiang-lan; WANG Mei

    2012-01-01

    Background Calcium and phosphorus metabolic disturbance are common in dialysis patients and associated with increased morbidity and mortality.Therefore,maintaining the balance of calcium and phosphate metabolism and suitable intact parathyroid hormone(iPTH)level has become the focus of attention.We investigated the effects of different peritoneal dialysate calcium concentrations on calcium phosphate metabolism and iPTH in continuous ambulatory peritoneal dialysis(CAPD)patients.Methods Forty stable CAPD patients with normal serum calcium were followed for six months of treatment with 1.25 mmol/L calcium dialysate(DCa1.25,PD4,22 patients)or a combination of 1.75 mmol/L calcium dialysate(DCa1.75,PD2)and PD4(18 patients)twice a day respectively.Total serum calcium(after albumin correction),serum phosphorus,iPTH,alkaline phosphatase(ALP)and blood pressure were recorded before and 1,3 and 6 months after treatment commenced.Results No significant difference was found in baseline serum calcium,phosphorus between the two patient groups,but the levels of iPTH were significantly different.No significant changes were found in the dosage of calcium carbonate and active vitamin D during 6 months.In the PD4 group,serum calcium level at the 1st,3rd,6th months were significantly lower than the baseline(P<0.05).There was no significant difference in serum phosphorus after 6 months treatment.iPTH was significantly higher(P<0.001)at the 1st,3rd,and 6th months compared with the baseline.No differences were seen in ALP and blood pressure.In the PD4+PD2 group,no significant changes in serum calcium,phosphorus,iPTH,ALP and BP during the 6-month follow-up period.Conclusions Treatment with 1.25 mmol/L calcium dialysate for six months can decrease serum calcium,increase iPTH,without change in serum phosphorus,ALP,and BP.The combining of PD4 and PD2 can stabilize the serum calcium and avoid fluctuations in iPTH levels.

  2. Expanding the neuron's calcium signaling repertoire: intracellular calcium release via voltage-induced PLC and IP3R activation.

    Directory of Open Access Journals (Sweden)

    Stefanie Ryglewski

    2007-04-01

    Full Text Available Neuronal calcium acts as a charge carrier during information processing and as a ubiquitous intracellular messenger. Calcium signals are fundamental to numerous aspects of neuronal development and plasticity. Specific and independent regulation of these vital cellular processes is achieved by a rich bouquet of different calcium signaling mechanisms within the neuron, which either can operate independently or may act in concert. This study demonstrates the existence of a novel calcium signaling mechanism by simultaneous patch clamping and calcium imaging from acutely isolated central neurons. These neurons possess a membrane voltage sensor that, independent of calcium influx, causes G-protein activation, which subsequently leads to calcium release from intracellular stores via phospholipase C and inositol 1,4,5-trisphosphate receptor activation. This allows neurons to monitor activity by intracellular calcium release without relying on calcium as the input signal and opens up new insights into intracellular signaling, developmental regulation, and information processing in neuronal compartments lacking calcium channels.

  3. Calcium homeostasis in barley aleurone

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.L.

    1990-02-21

    Under the auspices of the Department of Energy we investigated calcium homeostasis in aleurone cells of barley. This investigation was initiated to explore the role played by extracellular Ca{sup 2+} in gibberellic acid (GA)-induced synthesis and secretion of hydrolases in the aleurone layer. We have focused our attention on four topics that relate to the role of Ca{sup 2+} in regulating the synthesis of {alpha}-amylase. First, we determined the stoichiometry of Ca{sup 2+} binding to the two principal classes of barley {alpha}-amylase and examined some of the biochemical and physical properties of the native and Ca{sup 2+}-depleted forms of the enzyme. Second, since {alpha}-amylase is a Ca{sup 2+} containing metalloenzyme that binds one atom of Ca{sup 2+} per molecule, we developed methods to determine the concentration of Ca{sup 2+} in the cytosol of the aleurone cell. We developed a technique for introducing Ca{sup 2+}-sensitive dyes into aleurone protoplasts that allows the measurement of Ca{sup 2+} in both cytosol and endoplasmic reticulum (ER). Third, because the results of our Ca{sup 2+} measurements showed higher levels of Ca{sup 2+} in the ER than in the cytosol, we examined Ca{sup 2+} transport into the ER of control and GA-treated aleurone tissue. And fourth, we applied the technique of patch-clamping to the barley aleurone protoplast to examine ion transport at the plasma membrane. Our results with the patch-clamp technique established the presence of K{sup +} channels in the plasma membrane of the aleurone protoplast, and they showed that this cell is ideally suited for the application of this methodology for studying ion transport. 34 refs.

  4. Update on calcium pyrophosphate deposition.

    Science.gov (United States)

    Abhishek, Abhishek; Doherty, Michael

    2016-01-01

    Calcium pyrophosphate crystal deposition (CPPD) associates with ageing, osteoarthritis (OA), uncommon metabolic diseases, mutations and polymorphisms in the ankylosis human gene (ANKH). CPPD is frequently polyarticular, occurs due to a generalised articular predisposition, and the association between CPPD and OA is joint specific, for example CPPD associates with knee OA, but not with hip OA. Other recently identified associations include knee malalignment (knee CC), low cortical BMD and soft-tissue calcification. CPPD is generally asymptomatic. A recent study reported that knees with OA plus CC at the index joint, or at distant joints (in absence of index joint CC), were more likely to have attrition. CPPD can cause acute CPP crystal arthritis, chronic CPP crystal inflammatory arthritis, and is frequently present in joints with OA. Joint aspiration remains the gold standard for diagnosing CPPD, although other promising techniques are emerging. Patients with polyarticular or young onset CPPD should be screened for underlying metabolic abnormalities, however, such testing can be unrewarding. The treatment of CPPD is symptomatic. Acute CPP crystal arthritis is treated with rest, local application of ice-packs, joint aspiration, colchicine and/or intra-articular corticosteroid injection (once infection is excluded). Colchicine, low-dose corticosteroids, hydroxychloroquine and radiosynovectomy are recommended for the treatment of chronic or recurrent acute CPP crystal arthritis. Recent RCTs did not confirm any benefit from methotrexate, and although there is increasing interest in the use of anti-IL1 agents for acute or chronic CPP crystal arthritis, their efficacy has not been formally examined. Unlike gout, currently there are no treatments to eliminate CPP crystal deposits. PMID:27586801

  5. Eggshell powder, a comparable or better source of calcium than purified calcium carbonate: Piglet studies

    NARCIS (Netherlands)

    Schaafsma, A.; Beelen, G.M.

    1999-01-01

    Powdered chicken eggshells might be an interesting and widely available source of calcium. In two studies using piglets we determined the digestibility of calcium from different diets. The first study compared casein-based diets with CaCO3 (CasCC) or eggshell powder (CasES). The second study compare

  6. Calcium spikes and calcium plateaux evoked by differential polarization in dendrites of turtle motoneurones in vitro

    DEFF Research Database (Denmark)

    Hounsgaard, J; Kiehn, O

    1993-01-01

    The ability of dendrites in turtle motoneurones to support calcium spikes and calcium plateaux was investigated using differential polarization by applied electric fields. 2. Electric fields were generated by passing current through transverse slices of the turtle spinal cord between two plate......+ spikes and Ca2+ plateaux are present in dendrites of spinal motoneurones of the turtle....

  7. Characterization of dihydropyridine-sensitive calcium channels

    International Nuclear Information System (INIS)

    The structural and regulatory properties of the dihydropyridine-sensitive calcium channel were studied by isolating protein components of the channel complex from both cardiac and skeletal muscle. Hydrodynamic characterization of the (+)-(3H)PN200-110-labeled cardiac calcium channel revealed that the protein components of the complex had a total molecular mass of 370,000 daltons, a Stokes radius of 86 angstrom, and a frictional ratio of 1.3. A technique is described for the rapid incorporation of the CHAPS solubilized skeletal muscle calcium channel complex into phospholipid vesicles. 45Ca2+ uptake into phospholipid vesicles containing calcium channels was inhibited by phenylalkalamine calcium antagonists. Wheat germ lectin followed by DEAE chromatography of the CHAPS solubilized complex resulted in the dissociation of regulatory components of the complex from channel components. The DEAE preparation gave rise to 45Ca2+ uptake that was not inhibited by verapamil but was inhibited by GTPgS activated G0. The inhibition of 45Ca2+ uptake by verapamil was restored by co-reconstitution of wash fractions from wheat germ lectin chromatography. Phosphorylation of polypeptides in this fraction by polypeptide-dependent protein kinase prevented the restoration of verapamil sensitivity. The partial purification of an endogenous skeletal muscle ADP-ribosyltransferase is also described. ADP-ribosylation of the α2 subunit of the calcium channel complex is enhanced by polylysine and inhibited by GTPγS, suggesting that regulation of this enzyme is under the control of GTP binding proteins. These results suggest a complex model, involving a number of different protein components, for calcium channel regulation in skeletal muscle

  8. Calcium ferrite formation from the thermolysis of calcium tris (maleato) ferrate(III)

    Indian Academy of Sciences (India)

    B S Randhawa; Kamaljeet Sweety

    2000-08-01

    For preparing calcium ferrite, calcium tris (maleato) ferrate(III) precursor was prepared by mixing aqueous solutions of iron(III) maleate, calcium maleate and maleic acid. Various physico-chemical techniques i.e. TG, DTG, DTA, Mössbauer, XRD, IR etc have been used to study the decomposition behaviour from ambient to 900°C and ferrite formation. Three consecutive decomposition steps leading to the formation of -Fe2O3 and calcium carbonate have been observed at various stages of thermolysis. In the final stage the ferrite, Ca2Fe2O5, is obtained as a result of solid state reaction between -Fe2O3 and calcium carbonate at 788°C, a temperature much lower than for ceramic method. The results have been compared with those of the oxalate precursor.

  9. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter.

    Science.gov (United States)

    Pan, Xin; Liu, Jie; Nguyen, Tiffany; Liu, Chengyu; Sun, Junhui; Teng, Yanjie; Fergusson, Maria M; Rovira, Ilsa I; Allen, Michele; Springer, Danielle A; Aponte, Angel M; Gucek, Marjan; Balaban, Robert S; Murphy, Elizabeth; Finkel, Toren

    2013-12-01

    Mitochondrial calcium has been postulated to regulate a wide range of processes from bioenergetics to cell death. Here, we characterize a mouse model that lacks expression of the recently discovered mitochondrial calcium uniporter (MCU). Mitochondria derived from MCU(-/-) mice have no apparent capacity to rapidly uptake calcium. Whereas basal metabolism seems unaffected, the skeletal muscle of MCU(-/-) mice exhibited alterations in the phosphorylation and activity of pyruvate dehydrogenase. In addition, MCU(-/-) mice exhibited marked impairment in their ability to perform strenuous work. We further show that mitochondria from MCU(-/-) mice lacked evidence for calcium-induced permeability transition pore (PTP) opening. The lack of PTP opening does not seem to protect MCU(-/-) cells and tissues from cell death, although MCU(-/-) hearts fail to respond to the PTP inhibitor cyclosporin A. Taken together, these results clarify how acute alterations in mitochondrial matrix calcium can regulate mammalian physiology.

  10. Effect of dietary calcium and phosphorus on intestinal calcium absorption and vitamin D metabolism

    International Nuclear Information System (INIS)

    To understand better dietary regulation of intestinal calcium absorption, a quantitative assessment of the metabolites in plasma and duodenum of rats given daily doses of radioactive vitamin D3 and diets differing in calcium and phosphorus content was made. All known vitamin D metabolites were ultimately identified by high-pressure liquid chromatography. In addition to the known metabolites (25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D3, 1,25-dihydroxyvitamin D3, 25,26-dihydroxyvitamin D3, and 1,24,25-trihydroxyvitamin D3), several new and unidentified metabolites were found. In addition to 1,25-dihydroxyvitamin D3 and 1,24,25-trihydroxyvitamin D3, the levels of some of the unknown metabolites could be correlated with intestinal calcium transport. However, whether or not any of these metabolites plays a role in the stimulation of intestinal calcium absorption by low dietary calcium or low dietary phosphorus remains unknown

  11. Effects of Adding Chymosin to Milk on Calcium Homeostasis

    DEFF Research Database (Denmark)

    Møller, Ulla Kristine; Jensen, Lars Thorbjørn; Mosekilde, Leif;

    2014-01-01

    Calcium intake and absorption is important for bone health. In a randomized double-blind cross-over trial, we investigated effects of adding chymosin to milk on the intestinal calcium absorption as measured by renal calcium excretion and indices of calcium homeostasis. The primary outcome...... of the study was 24-h renal calcium excretion that is considered a proxy measure of the amount of calcium absorbed from the intestine. We studied 125 healthy men and women, aged 34 (25-45) years on two separate days. On each day, a light breakfast was served together with 500 ml of semi-skimmed milk to which...... not depend on plasma 25-hydroxyvitamin D levels. Chymosin added to milk increases renal calcium excretion in the hours following intake without affecting plasma levels of calcium or calciotropic hormones. The effect most likely represents enhanced intestinal calcium absorption shortly after intake. Further...

  12. Role of mitochondria and network connectivity in intercellular calcium oscillations

    CERN Document Server

    Dokukina, I V; Grachev, E A; Gunton, J D; Dokukina, Irina V.; Gracheva, Maria E.; Grachev, Eugene A.; Gunton, James D.

    2005-01-01

    Mitochondria are large-scale regulators of cytosolic calcium under normal cellular conditions. In this paper we model the complex behavior of mitochondrial calcium during the action of inositol 1,4,5-trisphosphate on a single cell and find results that are in good agreement with recent experimental studies. We also study the influence of the cellular network connectivity on intercellular signalling via gap junction diffusion. We include in our model the dependence of the junctional conductivity on the cytosolic calcium concentrations in adjacent cells. We consider three different mechanisms of calcium wave propagation through gap junctions: via calcium diffusion, inositol 1,4,5-trisphosphate diffusion, and both calcium and inositol 1,4,5-trisphosphate diffusion. We show that inositol 1,4,5-trisphosphate diffusion is the mechanism of calcium wave propagation and that calcium diffusion is the mechanism of synchronization of cytosolic calcium oscillations in adjacent cells. We also study the role of different to...

  13. THERMAL DEGRADATION AND FLAME RETARDANCY OF CALCIUM ALGINATE FIBERS

    Institute of Scientific and Technical Information of China (English)

    Qing-shan Kong; Bing-bing Wang; Quan Ji; Yan-zhi Xia; Zhao-xia Guo; Jian Yu

    2009-01-01

    Calcium alginate fibers were prepared by wet spinning of sodium alginate into a coagulating bath containing calcium chloride. The thermal degradation and flame retardancy of calcium alginate fibers were investigated with thermal gravimetry (TG), X-ray diffraction (XRD), limiting oxygen index (LOI) and cone calorimeter (CONE). The results show that calcium alginate fibers are inherently flame retardant with a LOI value of 34, and the heat release rate (HRR), total heat release (THR), CO and CO_2 concentrations during combustion are much lower compared with those of viscose fibers. Calcium carbonate and calcium oxide were formed during thermal degradation of calcium alginate fibers at different temperatures. The shape of calcium alginate fibers is well kept after LOI test. The rigid combustion residue char acts as an effective barrier to the outward diffusion of flame and heat. The combustion process and flame retardant mechanism of calcium alginate fibers are also discussed.

  14. Role of calcium in gravity perception of plant roots

    Science.gov (United States)

    Evans, Michael L.

    1986-01-01

    Calcium ions may play a key role in linking graviperception by the root cap to the asymmetric growth which occurs in the elongation zone of gravistimulated roots. Application of calcium-chelating agents to the root cap inhibits gravitropic curvature without affecting growth. Asymmetric application of calcium to one side of the root cap induces curvature toward the calcium source, and gravistimulation induces polar movement of applied (Ca-45)(2+) across the root cap toward the lower side. The action of calcium may be linked to auxin movement in roots since: (1) auxin transport inhibitors interfere both with gravitropic curvature and graviinduced polar calcium movement and (2) asymmetric application of calcium enhances auxin movement across the elongation zone of gravistimulated roots. Indirect evidence indicates that the calcium-modulated regulator protein, calmodulin, may be involved in either the transport or action of calcium in the gravitropic response mechanism of roots.

  15. Role of calcium in gravity perception of plant roots

    Science.gov (United States)

    Evans, Michael L.

    Calcium ions may play a key role in linking graviperception by the root cap to the asymmetric growth which occurs in the elongation zone of gravistimulated roots. Application of calcium-chelating agents to the root cap inhibits gravitropic curvature without affecting growth. Asymmetric application of calcium to one side of the root cap induces curvature toward the calcium source, and gravistimulation induces polar movement of applied 45Ca2+ across the root cap toward the lower side. The action of calcium may be linked to auxin movement in roots since 1) auxin transport inhibitors interfere both with gravitropic curvature and gravi-induced polar calcium movement and 2) asymmetric application of calcium enhances auxin movement across the elongation zone of gravistimulated roots. Indirect evidence indicates that the calcium-modulated regulator protein, calmodulin, may be involved in either the transport or action of calcium in the gravitropic response mechanism of roots.

  16. Effects of calcium gluconate on the utilization of magnesium and the nephrocalcinosis in rats fed excess dietary phosphorus and calcium.

    Science.gov (United States)

    Chonan, O; Takahashi, R; Kado, S; Nagata, Y; Kimura, H; Uchida, K; Watanuki, M

    1996-08-01

    The effects of calcium gluconate on the utilization of magnesium and nephrocalcinosis in male Wistar rats made magnesium-deficient by adding excess dietary phosphorus (1.195 g of phosphorus/100 g of diet) and calcium (1.04 g of calcium/100 g of diet) were compared with the effects of calcium carbonate. The effects of dietary magnesium concentration on the magnesium status and nephrocalcinosis were also examined. Adding excess dietary phosphorus and calcium decreased the apparent magnesium absorption ratios and the concentrations of magnesium in the serum and femur and increased the deposition of calcium in the kidney, and the low magnesium condition (0.024 g of magnesium/100 g of diet) aggravated the deposition of calcium and the low magnesium status. The apparent magnesium absorption ratios and femur magnesium concentration in the rats fed a calcium gluconate diet (an equimolar mixture of calcium gluconate and calcium carbonate was used as a source of calcium) were significantly higher than in the rats fed a calcium carbonate diet (only calcium carbonate was used as a source of calcium), irrespective of dietary magnesium concentration. Dietary calcium gluconate lessened the accumulation of calcium in the kidney and increased the serum magnesium concentration compared with dietary calcium carbonate, when the rats were fed the normal magnesium diet (0.049 g of magnesium/100 g of diet) but not the low magnesium diet. We speculate that the increased utilization of magnesium by feeding the calcium gluconate diet to a limited extent prevented the low magnesium status and the severity of nephrocalcinosis caused by adding excess dietary phosphorus and calcium.

  17. Information flow through calcium binding proteins

    Science.gov (United States)

    Bak, Ji Hyun; Bialek, William

    2013-03-01

    Calcium signaling is a ubiquitous mode of biological communication, which regulates a great variety of vital processes in living systems. Such a signal typically begins with an elementary event, in which calcium ions bind to a protein, inducing a change in the protein's structure. Information can only be lost, from what was conveyed through this initial event, as the signal is further transduced through the downstream networks. In the present work we analyze and optimize the information flow in the calcium binding process. We explicitly calculate the mutual information between the calcium concentration and the states of the protein, using a simple model for allosteric regulation in a dimeric protein. The optimal solution depends on the dynamic range of the input as well as on the timescale of signal integration. According to our result, the optimizing strategy involves allowing the calcium-binding protein to be ``activated'' by a partial occupation of its sites, and tuning independently the strengths of cooperative interactions in the binding and unbinding processes.

  18. Calcium's Role in Mechanotransduction during Muscle Development

    Directory of Open Access Journals (Sweden)

    Tatiana Benavides Damm

    2014-01-01

    Full Text Available Mechanotransduction is a process where cells sense their surroundings and convert the physical forces in their environment into an appropriate response. Calcium plays a crucial role in the translation of such forces to biochemical signals that control various biological processes fundamental in muscle development. The mechanical stimulation of muscle cells may for example result from stretch, electric and magnetic stimulation, shear stress, and altered gravity exposure. The response, mainly involving changes in intracellular calcium concentration then leads to a cascade of events by the activation of downstream signaling pathways. The key calcium-dependent pathways described here include the nuclear factor of activated T cells (NFAT and mitogen-activated protein kinase (MAPK activation. The subsequent effects in cellular homeostasis consist of cytoskeletal remodeling, cell cycle progression, growth, differentiation, and apoptosis, all necessary for healthy muscle development, repair, and regeneration. A deregulation from the normal process due to disuse, trauma, or disease can result in a clinical condition such as muscle atrophy, which entails a significant loss of muscle mass. In order to develop therapies against such diseased states, we need to better understand the relevance of calcium signaling and the downstream responses to mechanical forces in skeletal muscle. The purpose of this review is to discuss in detail how diverse mechanical stimuli cause changes in calcium homeostasis by affecting membrane channels and the intracellular stores, which in turn regulate multiple pathways that impart these effects and control the fate of muscle tissue.

  19. Calcium and bone disorders in pregnancy

    Directory of Open Access Journals (Sweden)

    Shriraam Mahadevan

    2012-01-01

    Full Text Available Significant transplacental calcium transfer occurs during pregnancy, especially during the last trimester, to meet the demands of the rapidly mineralizing fetal skeleton. Similarly, there is an obligate loss of calcium in the breast milk during lactation. Both these result in considerable stress on the bone mineral homeostasis in the mother. The maternal adaptive mechanisms to conserve calcium are different in pregnancy and lactation. During pregnancy, increased intestinal absorption of calcium from the gut mainly due to higher generation of calcitriol (1,25 dihydroxy vitamin D helps in maintaining maternal calcium levels. On the other hand, during lactation, the main compensatory mechanism is skeletal resorption due to increased generation of parathormone related peptide (PTHrP from the breast. Previous studies suggest that in spite of considerable changes in bone mineral metabolism during pregnancy, parity and lactation are not significantly associated with future risk for osteoporosis. However, in India, the situation may not be the same as a significant proportion of pregnancies occur in the early twenties when peak bone mass is not yet achieved. Further, malnutrition, anemia and vitamin D deficiency are commonly encountered in this age group. This may have an impact on future bone health of the mother. It may also probably provide an opportunity for health care providers for prevention. Other metabolic bone diseases like hypoparathyroidism, hyperparathyroidism and pseudohypoparathyroidism are rarely encountered in pregnancy. Their clinical implications and management are also discussed.

  20. Calcium And Zinc Deficiency In Preeclamptic Women

    Directory of Open Access Journals (Sweden)

    Sultana Ferdousi

    2011-12-01

    Full Text Available Background: Pre-eclampsia is the most common medical complication of pregnancy associated withincreased maternal and infant mortality and morbidity. Reduced serum calcium and zinc levels arefound associated with elevated blood pressure in preeclampsia. Objective: To observe serum calciumand zinc levels in preeclamptic women. Methods: This cross sectional study was carried out in theDepartment of Physiology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka betweenJuly 2009 to June 2010. In this study, 60 pregnant women of preeclampsia, aged 18-39 years withgestational period more than 20th weeks were included as the study (group B. For comparison ageand gestational period matched 30 normotensive pregnant women control (group A were also studied.All the subjects were selected from Obstetric and Gynae In and Out patient Department of BSMMUand Dhaka Medical College Hospital. Serum calcium was measured by Colorimetric method and serumzinc was measured by Spectrophotometric method. Data were analysed by independent sample t testand Pearson’s correlation coefficient test. Results: Mean serum calcium and zinc levels weresignificantly (p<0.001 lower in study group than those of control group. Again, serum calcium andzinc showed significant negative correlation with SBP and DBP in preeclamptic women. Conclusion:This study concludes that serum calcium and zinc deficiency may be one of the risk factor ofpreeclampsia. Therefore, early detection and supplementation to treat this deficiency may reduce theincidence of preeclampsia.

  1. Association of Urinary Calcium Excretion with Serum Calcium and Vitamin D Levels

    Science.gov (United States)

    Rathod, Anita; Bonny, Olivier; Guessous, Idris; Suter, Paolo M.; Conen, David; Erne, Paul; Binet, Isabelle; Gabutti, Luca; Gallino, Augusto; Muggli, Franco; Hayoz, Daniel; Péchère-Bertschi, Antoinette; Paccaud, Fred

    2015-01-01

    Background and objectives Population-based data on urinary calcium excretion are scarce. The association of serum calcium and circulating levels of vitamin D [25(OH)D2 or D3] with urinary calcium excretion in men and women from a population-based study was explored. Design, settings, participants, & measurements Multivariable linear regression was used to explore factors associated with square root–transformed 24-hour urinary calcium excretion (milligrams per 24 hours) taken as the dependent variable with a focus on month-specific vitamin D tertiles and serum calcium in the Swiss Survey on Salt Study. Results In total, 624 men and 669 women were studied with mean ages of 49.2 and 47.0 years, respectively (age range=15–95 years). Mean urinary calcium excretion was higher in men than in women (183.05 versus 144.60 mg/24 h; P<0.001). In adjusted models, the association (95% confidence interval) of square root urinary calcium excretion with protein–corrected serum calcium was 1.78 (95% confidence interval, 1.21 to 2.34) mg/24 h per milligram per deciliter in women and 0.59 (95% confidence interval, −0.11 to 1.29) mg/24 h per milligram per deciliter in men. Men in the third 25(OH)D3 tertile had higher square root urinary calcium excretion than men in the first tertile (0.99; 95% confidence interval, 0.36 to 1.63 mg/24 h per nanogram per milliliter), and the corresponding association was 0.32 (95% confidence interval, −0.22 to 0.85) mg/24 h per nanogram per milliliter in women. These sex differences were more marked under conditions of high urinary sodium or urea excretions. Conclusions There was a positive association of serum calcium with urinary calcium excretion in women but not men. Vitamin 25(OH)D3 was associated with urinary calcium excretion in men but not women. These results suggest important sex differences in the hormonal and dietary control of urinary calcium excretion. PMID:25518946

  2. Cellular compatibility of a gamma-irradiated modified siloxane-poly(lactic acid)-calcium carbonate hybrid membrane for guided bone regeneration.

    Science.gov (United States)

    Takeuchi, Naoshi; Machigashira, Miho; Yamashita, Daisuke; Shirakata, Yoshinori; Kasuga, Toshihiro; Noguchi, Kazuyuki; Ban, Seiji

    2011-01-01

    A bi-layered silicon-releasable membrane consisting of a siloxane-poly(lactic acid) (PLA)-vaterite hybrid material (Si-PVH) microfiber mesh and a PLA microfiber mesh has been developed by an electrospinning method for guided bone regeneration (GBR) application. The bi-layered membrane was modified to a three-laminar structure by sandwiching an additional PLA microfiber mesh between the Si-PVH and PLA microfiber meshes (Si-PVH/PLA membrane). In this study, the influence of gamma irradiation, used for sterilization, on biological properties of the Si-PVH/PLA membrane was evaluated with osteoblasts and fibroblasts. After gamma irradiation, while the average molecular weight of the Si-PVH/PLA membrane decreased, the Si-PVH/PLA membrane promoted cell proliferation and differentiation (alkaline phosphatase activity and calcification) of osteoblasts, compared with the poly(lactide-co-glycolide) membrane. These results suggest that the gamma-irradiated Si-PVH/PLA membrane is biocompatible with both fibroblasts and osteoblasts, and may have an application for GBR. PMID:21946495

  3. OSTEOPOROSIS IN CALCIUM PYROPHOSPHATE CRYSTAL DEPOSITION DISEASE

    Directory of Open Access Journals (Sweden)

    S A Vladimirov

    2013-01-01

    Full Text Available Objective: to study the incidence of osteoporosis (OP in patients with calcium pyrophosphate crystal deposition disease (CPCDD. Subjects and methods. Eighty patients with CPCDD were examined. Bone mineral density (BMD of the forearm, lumbar spine, and femoral neck was determined by dual-energy X-ray absorptiometry. Laboratory diagnosis involved determination of the blood levels of C-reactive protein, parathyroid hormone, calcium, magnesium, and phosphorus and the daily urinary excretion of calcium and phosphates. Results. The patients with OP were significantly older than those with normal BMD and osteopenia. Forearm bones were the most common isolated location of OP and osteopenia. Injuries in the history, traumatic fractures, and the intake of diuretics were somewhat more common in the patients diagnosed with OP. The incidence of hyperparathyroidism did not differ significantly in the groups.

  4. Glial calcium signaling in physiology and pathophysioilogy

    Institute of Scientific and Technical Information of China (English)

    Alexei VERKHRASKY

    2006-01-01

    Neuronal-glial circuits underlie integrative processes in the nervous system.Function of glial syncytium is,to a very large extent,regulated by the intracellular calcium signaling system.Glial calcium signals are triggered by activation of multiple receptors,expressed in glial membrane,which regulate both Ca2+ entry and Ca2+ release from the endoplasmic reticulum.The endoplasmic reticulum also endows glial cells with intracellular excitable media,which is able to produce and maintain long-ranging signaling in a form of propagating Ca2+ waves.In pathological conditions,calcium signals regulate glial response to injury,which might have both protective and detrimental effects on the nervous tissue.

  5. Calcium carbide poisoning via food in childhood.

    Science.gov (United States)

    Per, Hüseyin; Kurtoğlu, Selim; Yağmur, Fatih; Gümüş, Hakan; Kumandaş, Sefer; Poyrazoğlu, M Hakan

    2007-02-01

    The fast ripening of fruits means they may contain various harmful properties. A commonly used agent in the ripening process is calcium carbide, a material most commonly used for welding purposes. Calcium carbide treatment of food is extremely hazardous because it contains traces of arsenic and phosphorous. Once dissolved in water, the carbide produces acetylene gas. Acetylene gas may affect the neurological system by inducing prolonged hypoxia. The findings are headache, dizziness, mood disturbances, sleepiness, mental confusion, memory loss, cerebral edema and seizures. We report the case of a previously healthy 5 year-old girl with no chronic disease history who was transferred to our Emergency Department with an 8-h history of coma and delirium. A careful history from her father revealed that the patient ate unripe dates treated with calcium carbide.

  6. Impairment of ciprofloxacin absorption by calcium polycarbophil.

    Science.gov (United States)

    Kato, Ryuji; Ueno, Kazuyuki; Imano, Hideki; Kawai, Masayuki; Kuwahara, Shiro; Tsuchishita, Yoshimasa; Yonezawa, Emi; Tanaka, Kazuhiko

    2002-07-01

    The effect of calcium polycarbophil on the absorption of ciprofloxacin, a broad-spectrum antibacterial agent, was evaluated in an in vitro and in vivo study. In the in vitro study, the release of ciprofloxacin from the cellulose membrane in the presence or absence of metal cations was measured using the dissolution test procedure. In the in vivo study, male ST Wistar rats and male volunteers were employed. First, 20 mg/kg of ciprofloxacin alone (Rat Study 1) or 20 mg/kg of ciprofloxacin in combination with 64 mg/kg of calcium chloride (Rat Study 2) was administered orally to 3 rats. Second, a volunteer study was employed and a randomized crossover design with twophases was used. In onephase, volunteers received 400 mg of ciprofloxacin alone (Study 1); in the other phase, they received 400 mg of ciprofloxacin and 1200 mg of fine calcium polycarbophil granules concomitantly (Study 2). The plasma and serum concentrations of ciprofloxacin were measured by high-performance liquid chromatography. The release of ciprofloxacin from the cellulose membrane in the presence of aluminum, calcium, or iron ions was slower than that in the absence of these metal ions. The AUC0-4 and Cmax in Rat Study 2 were lower than those respective values in Rat Study 1. AUC0-4 was approximately 60% lower in Rat Study 2 than Rat Study 1. In the volunteer study, the AUC0-12 and Cmax in Study 2 were lower than those respective values in Study 1. In particular, AUC0-12 was approximately 50% lowerin Study 2 than in Study 1. These findings suggest that when ciprofloxacin and calcium polycarbophil were coadministered concomitantly, a decrease of ciprofloxacin absorption was observed, and this action was caused by the formation of chelate complexes. Therefore, it seems clear that we should avoid the concomitant administration of ciprofloxacin and calcium polycarbophil.

  7. Characterization of Calcium Compounds in Opuntia ficus indica as a Source of Calcium for Human Diet

    Directory of Open Access Journals (Sweden)

    Isela Rojas-Molina

    2015-01-01

    Full Text Available Analyses of calcium compounds in cladodes, soluble dietary fiber (SDF, and insoluble dietary fiber (IDF of Opuntia ficus indica are reported. The characterization of calcium compounds was performed by using Scanning Electron Microscopy, Energy Dispersive Spectrometry, X-ray diffraction, and infrared spectroscopy. Atomic Absorption Spectroscopy and titrimetric methods were used for quantification of total calcium and calcium compounds. Whewellite (CaC2O4·H2O, weddellite (CaC2O4·(H2O2.375, and calcite (CaCO3 were identified in all samples. Significant differences (P≤0.05 in the total calcium contents were detected between samples. CaC2O4·H2O content in cladodes and IDF was significantly higher (P≤0.05 in comparison to that observed in SDF, whereas minimum concentration of CaCO3 was detected in IDF with regard to CaCO3 contents observed in cladodes and SDF. Additionally, molar ratio oxalate : Ca2+ in all samples changed in a range from 0.03 to 0.23. These results support that calcium bioavailability in O. ficus indica modifies according to calcium compounds distribution.

  8. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian

    Science.gov (United States)

    Komar, Nemanja; Zeebe, Richard

    2016-04-01

    Negative carbon and calcium isotope excursions, as well as climate shifts, took place during the most severe mass extinction event in Earth's history, the end-Permian (˜252 Ma). Investigating the connection between carbon and calcium cycles during transient carbon cycle perturbation events, such as the end-Permian, may help resolve the intricacies between the coupled calcium-carbon cycles, as well as provide a tool for constraining the causes of mass extinction. Here, we identify the deficiencies of a simplified calcium model employed in several previous studies and we demonstrate the importance of a fully coupled carbon-cycle model when investigating the dynamics of carbon and calcium cycling. Simulations with a modified version of the LOSCAR model, which includes a fully coupled carbon-calcium cycle, indicate that increased weathering rates and ocean acidification (potentially caused by Siberian Trap volcanism) are not capable of producing trends observed in the record, as previously claimed. Our model results suggest that combined effects of carbon input via Siberian Trap volcanism (12,000 Pg C), the cessation of biological carbon export, and variable calcium isotope fractionation (due to a change in the seawater carbonate ion concentration) represents a more plausible scenario. This scenario successfully reconciles δ13C and δ44Ca trends observed in the sediment record, as well as the proposed warming of >6oC.

  9. ALG-2, a multifunctional calcium binding protein?

    DEFF Research Database (Denmark)

    Tarabykina, Svetlana; Mollerup, Jens; Winding Gojkovic, P.;

    2004-01-01

    ALG-2 was originally discovered as a pro-apoptotic protein in a genetic screen. Due to its ability to bind calcium with high affinity it was postulated to provide a link between the known effect of calcium in programmed cell death and the molecular death execution machinery. This review article...... discusses the current knowledge on the structure and potential function of this protein. Several putative binding partners of ALG-2 have been identified hinting to functions of ALG-2 in apoptosis and possibly also in proliferation, endocytosis and transcriptional regulation during development. Gene deletion...

  10. NMR study of hydrated calcium silicates

    International Nuclear Information System (INIS)

    Radioactive wastes storage methods are developed by the CEA. As cements are important materials as well for hours living radioisotopes than for years living radioisotopes, a better knowledge of this material will allow to anticipate its behaviour and to obtain safer storage methods. The structure of calcium silicates (C-S-H) (main constituent of cements) have then been determined in this thesis by nuclear magnetic resonance. This method has allow to explain in structural terms, the different calcium rates that can be measured in the C-S-H too. (O.M.)

  11. Calcium and weight control-Publications summaries

    Directory of Open Access Journals (Sweden)

    Feride Çelebi

    2011-08-01

    Full Text Available Obesity is a public health problem. And it is known that both energy balance and nutritional factors are effective on it. The effects of dietary calcium on bone health are known however with recent studies, it has become a food item that focused on the effect on body weight control. Most epidemiyolojik studies claim that there is a relationship between long-term consumption of diary milk and milk products and the decrease of body weight and fat mass. In this article, there are different studies that support or do not support this idea. However the effect mechanism of calcium on weight control is tried to be explained.

  12. Avian eggshell formation in calcium-rich and calcium-poor habitats: Importance of snail shells and anthropogenic calcium sources

    NARCIS (Netherlands)

    Graveland, J.

    1996-01-01

    Most passerines depend on the intake of calcium-rich material in addition to their normal food for proper eggshell formation and skeletal growth. A large proportion of Great Tits (Pants major) in forests on nutrient-poor soils in the Netherlands produce eggs with defective shells as a result of calc

  13. Testosterone increases urinary calcium excretion and inhibits expression of renal calcium transport proteins

    DEFF Research Database (Denmark)

    Hsu, Yu-Juei; Dimke, Henrik Anthony; Schoeber, Joost P H;

    2010-01-01

    Although gender differences in the renal handling of calcium have been reported, the overall contribution of androgens to these differences remains uncertain. We determined here whether testosterone affects active renal calcium reabsorption by regulating calcium transport proteins. Male mice had....... Androgen deficiency increased the abundance of the renal mRNA and protein of both the luminal transient receptor potential vanilloid-subtype 5 (TRPV5) and intracellular calbindin-D(28K) transporters, which in turn were suppressed by testosterone treatment. There were no significant differences in serum...

  14. 聚(乳酸-乙醇酸)共聚物(75/25)缩聚反应动力学研究%Study on Polycondensation Kinetics of Poly(lactide-co-glycolide) (75/25)

    Institute of Scientific and Technical Information of China (English)

    巴晓革; 王勤; 林锦兴; 史国华; 刘阳; 李俊起

    2007-01-01

    研究了常压或减压条件下,无催化剂时端羧基聚(乳酸-乙醇酸)共聚物(75/25)的缩聚反应动力学.结果表明:(1)在155℃、无催化剂、常压条件下,反应程度在15%~80%范围内,乳酸、乙醇酸直接缩聚反应符合1.31级反应,反应活化能E=5.15kJ/mol.其动力学方程式为:-d[COOH]/dt=3.23×10-3[COOH]1.31;(2)在125℃、无催化剂、0.01MPa减压条件下,反应程度在20%~80%范围内,乳酸、乙醇酸直接缩聚反应符合0.68级反应,反应活化能E=3.21 kJ/mol.其动力学方程式为:-d[COOH]/dt=2.81×10-3[COOH]0.68.

  15. Preparo e caracterização de filmes obtidos a partir de poli(ácido lático e celulose microcristalina Preraring films from poly(Lactid Acid and microcrystalline cellulose and characterization

    Directory of Open Access Journals (Sweden)

    Fernanda A. dos Santos

    2013-01-01

    Full Text Available O objetivo deste trabalho foi investigar a produção e as propriedades de compósitos a base de poli(ácido lático (PLA e de celulose microcristalina (CMC. Os compósitos foram produzidos por vazamento de solução, gerando filmes contendo diferentes teores de celulose. Neste experimento, a CMC foi previamente intumescida em água e, em seguida, seca por liofilização. O inchamento teve a finalidade de permitir a penetração das cadeias de PLA entre as partículas da celulose. Nos filmes obtidos foram avaliados os efeitos do teor e do inchamento da celulose sobre a dispersão desta na matriz polimérica, a cristalinidade e as propriedades mecânicas sob tração. Os filmes e os materiais utilizados em sua obtenção foram caracterizados por difratometria de raios X, microscopia eletrônica de varreduta, ressônancia magnética nuclear e quanto ao desempenho mecânico sob tração. Os resultados encontrados indicam que o tratamento da CMC por inchamento/liofilização permitiu a obtenção de filmes com melhor dispersão da carga na matriz e melhor desempenho mecânico quando comparados com os filmes contendo CMC sem tratamento.The goal of this work was to investigate the production and properties of composites based on poly(lactic acid (PLA and microcrystalline cellulose (MCC. The composites were obtained by solution casting in the film form, with different amounts of cellulose. In this experiment, MCC was previously swollen in water and then dried by lyophilization. Swelling was aimed at allowing the PLA chains to penetrate between cellulose particles. The effects from the contents and swelling of cellulose were evaluated with regard to its dispersal in the matrix, crystallinity and strain mechanical properties. The materials employed and the resulting films were investigated according to their mechanical properties and by using X-ray diffractometry, scanning electron microscopy and nuclear magnetic resonance. The results indicate that the MCC treatment by swelling/lyophilization led to films with better load dispersion in the matrix and better mechanical performance compared with films obtained with non-treated MCC.

  16. 端羧基聚乳酸的扩链、改性及其性能%Chain expansion,modification and properties of the carboxyl terminated poly-lactide

    Institute of Scientific and Technical Information of China (English)

    刘钰维; 樊国栋; 管园园; 王丽娜

    2016-01-01

    以丙交酯为原料、辛酸亚锡为催化剂、丁二酸酐为改性剂,采用梯度升温法,在150℃、0.098MPa 条件下采用直接熔融缩聚法合成端羧基聚乳酸共聚物 P(LA/SA),接着用2,2-(1,3-亚苯基)-二唑啉(1,3-PBO)对其进行扩链,按n(丙交酯)/n(1,3-PBO)=1/2.4加入1,3-PBO,反应1h制得聚酰胺酯(PEA),最后将高岭土与PEA在150℃、减压条件下熔融复合改性。采用GPC、FTIR、1H NMR、DSC、SEM等手段对聚合物的结构进行表征和性能测试,结果表明,与P(LA/SA)相比,扩链产物PEA相对分子质量大幅度提高,重均相对分子质量高达24万,玻璃化转变温度Tg高于PLA和P(LA/SA),改性后复合材料的热稳定性能提高,结晶度降低。%The terminal carboxyl group of polylactic acid copolymer P (LA/SA) was synthesized with lactide as raw material,stannous caprylate as the catalyst and succinic anhydride as modifier by direct melt polycondensation,and under the condition of 150℃ and 0.098MPa (LA/SA). The polyesteramide (PEA) was synthesized using 2,2-(1,3-phenylene)-bis(2-oxazoline) (1,3-PBO) chain the terminal carboxyl group of polylactic acid copolymer with then(lactide)/n(1,3-PBO) is 1/2.4 and the reaction time of 12h. Finally,Kaolin and PEA melting compound was modified under stress conditions at 150℃. The structure were characterized by FTIR and the properties were investigated by GPC,FTIR, 1H NMR,DSC,SEM. The result showed that the relative molecular weight of the chain extender product PEA increased significantly compared with P (LA/SA),and the heavy molecular weight was up to 240000. Its glass transition temperature is also higher than that of PLA and P (LA/SA). The thermal stability of the composite material is improved and the crystallinity is reduced after being modified.

  17. Effects of Structure and Molecular Weight of Poly (lactide-co-glycolide)on in vitro Release of Naltrexone Microspheres%PLGA的结构和分子量对纳曲酮微球体外释药的影响

    Institute of Scientific and Technical Information of China (English)

    王浩; 栾瀚森; 梅蕾; 杨莉; 侯惠民

    2005-01-01

    制备了分子量、比旋度、摩尔比及分子链末端修饰不同的丙交酯-乙交酯共聚物,并测定理化参数.以其为载体制备纳曲酮微球,比较了体外释药速率.结果表明,用分子量较小、有光学活性、单体摩尔比较小、分子链末端未酯化的共聚物制备的微球体外释药速率较快.

  18. Calcium Supplements Might Raise Older Women's Dementia Risk

    Science.gov (United States)

    ... nutrient," she said. "For example, calcium, phosphorus and magnesium all are typically looked at for their effects ... which was not originally designed to assess calcium intake," MacKay noted. "Further, the new analysis included only ...

  19. Intolerance to oral and intravenous calcium supplements in atopic eczema.

    OpenAIRE

    Devlin, J; David, T J

    1990-01-01

    Children treated with dietary restriction for food intolerance may require calcium supplementation, particularly if cows' milk and milk substitutes are not tolerated. We report two children with atopic eczema who reacted adversely to a number of calcium supplement formulations.

  20. Inulin and fructooligosaccharide affect in vitro calcium uptake and absorption from calcium-enriched gluten-free bread.

    Science.gov (United States)

    Krupa-Kozak, U; Swiątecka, D; Bączek, N; Brzóska, M M

    2016-04-01

    Compromised intestinal calcium absorption affecting a deterioration of bone state is a sign of coeliac disease. Experimental calcium-fortified gluten-free bread (GFB) of improved calcium bioavailability could increase calcium content in the diets of coeliac disease patients, allowing them to obtain the amount of calcium they need for therapeutic use. Prebiotics, including inulin-type fructans (IFs) have a beneficial effect on calcium bioavailability. In the present study, the in vitro model composed of the intestinal-like Caco-2 cells and the human intestinal bacteria (Lactobacillus, Enterococcus and Enterobacteriaceae) were used to analyse the effect of inulin and fructooligosaccharide (FOS) of different chain lengths, on calcium uptake and absorption from experimental GFB. Analysed IFs, especially short-chain FOS, significantly (p < 0.05) increased cellular calcium uptake from GFB digest and stimulated the intestinal bacteria applied in the cultures to the intensive synthesis of organic acids. In particular, the concentration of butyric, valeric and lactic acids increased significantly. Similarly, in the calcium absorption experiment, IFs increased the cellular calcium retention but concomitantly reduced its content in basolateral filtrates. The results obtained suggest that the applied IFs affected differentially calcium uptake and absorption from the experimental calcium-enriched GFB, therefore a further study is needed to assess whether these observations made in vitro contribute to IF effects on calcium absorption from experimental GFB in vivo.

  1. Inulin and fructooligosaccharide affect in vitro calcium uptake and absorption from calcium-enriched gluten-free bread.

    Science.gov (United States)

    Krupa-Kozak, U; Swiątecka, D; Bączek, N; Brzóska, M M

    2016-04-20

    Compromised intestinal calcium absorption affecting a deterioration of bone state is a sign of coeliac disease. Experimental calcium-fortified gluten-free bread (GFB) of improved calcium bioavailability could increase calcium content in the diets of coeliac disease patients, allowing them to obtain the amount of calcium they need for therapeutic use. Prebiotics, including inulin-type fructans (IFs) have a beneficial effect on calcium bioavailability. In the present study, the in vitro model composed of the intestinal-like Caco-2 cells and the human intestinal bacteria (Lactobacillus, Enterococcus and Enterobacteriaceae) were used to analyse the effect of inulin and fructooligosaccharide (FOS) of different chain lengths, on calcium uptake and absorption from experimental GFB. Analysed IFs, especially short-chain FOS, significantly (p < 0.05) increased cellular calcium uptake from GFB digest and stimulated the intestinal bacteria applied in the cultures to the intensive synthesis of organic acids. In particular, the concentration of butyric, valeric and lactic acids increased significantly. Similarly, in the calcium absorption experiment, IFs increased the cellular calcium retention but concomitantly reduced its content in basolateral filtrates. The results obtained suggest that the applied IFs affected differentially calcium uptake and absorption from the experimental calcium-enriched GFB, therefore a further study is needed to assess whether these observations made in vitro contribute to IF effects on calcium absorption from experimental GFB in vivo. PMID:26965706

  2. Calcium Intake in Elderly Australian Women Is Inadequate

    Directory of Open Access Journals (Sweden)

    Colin W. Binns

    2010-09-01

    Full Text Available The role of calcium in the prevention of bone loss in later life has been well established but little data exist on the adequacy of calcium intakes in elderly Australian women. The aim of this study was to compare the dietary intake including calcium of elderly Australian women with the Australian dietary recommendation, and to investigate the prevalence of calcium supplement use in this population. Community-dwelling women aged 70–80 years were randomly recruited using the Electoral Roll for a 2-year protein intervention study in Western Australia. Dietary intake was assessed at baseline by a 3-day weighed food record and analysed for energy, calcium and other nutrients. A total of 218 women were included in the analysis. Mean energy intake was 7,140 ± 1,518 kJ/day and protein provided 19 ± 4% of energy. Mean dietary calcium intake was 852 ± 298 mg/day, which is below Australian recommendations. Less than one quarter of women reported taking calcium supplements and only 3% reported taking vitamin D supplements. Calcium supplements by average provided calcium 122 ± 427 mg/day and when this was taken into account, total calcium intake increased to 955 ± 504 mg/day, which remained 13% lower than the Estimated Average Requirement (EAR, 1,100 mg/day for women of this age group. The women taking calcium supplements had a higher calcium intake (1501 ± 573 mg compared with the women on diet alone (813 ± 347 mg. The results of this study indicate that the majority of elderly women were not meeting their calcium requirements from diet alone. In order to achieve the recommended dietary calcium intake, better strategies for promoting increased calcium, from both diet and calcium supplements appears to be needed.

  3. Calcium phosphate mineralization is widely applied in crustacean mandibles

    OpenAIRE

    Shmuel Bentov; Aflalo, Eliahu D.; Jenny Tynyakov; Lilah Glazer; Amir Sagi

    2016-01-01

    Crustaceans, like most mineralized invertebrates, adopted calcium carbonate mineralization for bulk skeleton reinforcement. Here, we show that a major part of the crustacean class Malacostraca (which includes lobsters, crayfishes, prawns and shrimps) shifted toward the formation of calcium phosphate as the main mineral at specified locations of the mandibular teeth. In these structures, calcium phosphate is not merely co-precipitated with the bulk calcium carbonate but rather creates speciali...

  4. The stability mechanisms of an injectable calcium phosphate ceramic suspension.

    OpenAIRE

    Fatimi, Ahmed; Tassin, Jean-François; Axelos, Monique,; Weiss, Pierre

    2010-01-01

    International audience Calcium phosphate ceramics are widely used as bone substitutes in dentistry and orthopedic applications. For minimally invasive surgery an injectable calcium phosphate ceramic suspension (ICPCS) was developed. It consists in a biopolymer (hydroxypropylmethylcellulose: HPMC) as matrix and bioactive calcium phosphate ceramics (biphasic calcium phosphate: BCP) as fillers. The stability of the suspension is essential to this generation of "ready to use" injectable biomat...

  5. Coupling Effect of Ion Channel Clusters on Calcium Signalling

    International Nuclear Information System (INIS)

    Based on a modified intracellular Ca2+ model involving diffusive coupling of two calcium ion channel clusters, the effects of coupling on calcium signalling are numerically investigated. The simulation results indicate that the diffusive coupling of clusters together with internal noise determine the calcium dynamics of single cluster, and for either homogeneous or heterogeneous coupled clusters, the synchronization of clusters, which is important to calcium signalling, is enhanced by the coupling effect

  6. Calcium Intake in Elderly Australian Women Is Inadequate

    OpenAIRE

    Colin W. Binns; Xingqiong Meng; Kerr, Deborah A; Kun Zhu; Amanda Devine; Vicky Solah; Richard L. Prince

    2010-01-01

    The role of calcium in the prevention of bone loss in later life has been well established but little data exist on the adequacy of calcium intakes in elderly Australian women. The aim of this study was to compare the dietary intake including calcium of elderly Australian women with the Australian dietary recommendation, and to investigate the prevalence of calcium supplement use in this population. Community-dwelling women aged 70–80 years were randomly recruited using the Electoral Roll for...

  7. Beyond-root calcium fertilization of apple trees

    Directory of Open Access Journals (Sweden)

    Kazimierz Słowik

    2013-12-01

    Full Text Available Investigations were performed in the period 1977-1979 on the apple tree cultivar 'Fantazja', on rootstock A 2, M 7 and MM 106 on the effect of spraying with solution containing calcium on the incidence of bitter pit, breakdown, calcium content in the fruit flesh and other features of the fruits. Threefold spraying with calcium nitrate, calcium chloride or Anti-Stipp significantly limited the appearance of bitter pit and breakdown.

  8. Coupling Effect of Ion Channel Clusters on Calcium Signalling

    Institute of Scientific and Technical Information of China (English)

    TANG Jun; JIA Ya; YI Ming; MA Jun; YU Guang

    2008-01-01

    @@ Based on a modified intracellular Ca2+ model involving diffusive coupling of two calcium ion channel clusters,the effects of coupling on calcium signalling are numerically investigated.The simulation results indicate that the diffusive coupling of clusters together with internal noise determine the calcium dynamics of single cluster,and for either homogeneous or heterogeneous coupled clusters,the synchronization of clusters,which is important to calcium signalling,is enhanced by the coupling effect.

  9. Stability of calcium silicate in basic solution

    Institute of Scientific and Technical Information of China (English)

    刘桂华; 李小斌; 彭志宏; 周秋生

    2003-01-01

    Mixture of CaO and SiO2 was sintered at 1 200 or 1 400 ℃ according to the mole ratio of CaO/SiO2 of 1 or 2, and then calcium silicate was leached in pure caustic or soda solution. The results indicated that calcium silicate exists much more stably in caustic solution than that in soda solution, and CaO*SiO2 is more stable than β-2CaO*SiO2 whether in caustic solution or in soda solution. The increase of sintering temperature favored the stability of calcium silicate in the leaching process. When β-2CaO*SiO2 was leached in soda solution, the increase of leaching temperature and time resulted in decomposing of more calcium silicate. And when β-2CaO*SiO2 was leached in caustic solution at high temperature, much 2CaO*SiO2*H2O but little CaO*SiO2*H2O appeared in slag.

  10. Presynaptic calcium signalling in cerebellar mossy fibres

    DEFF Research Database (Denmark)

    Thomsen, Louiza Bohn; Jörntell, Henrik; Midtgaard, Jens

    2010-01-01

    )-sensitive fast Na(+) spike faithfully followed repetitive depolarizing pulses with little change in spike duration or amplitude, while a strong outward rectification dominated responses to long-lasting depolarizations. High-threshold calcium spikes were uncovered following addition of potassium channel blockers...

  11. 21 CFR 184.1205 - Calcium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium hydroxide. 184.1205 Section 184.1205 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  12. Three-dimensionally Perforated Calcium Phosphate Ceramics

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Porous calcium phosphate ceramics were produced by compression molding using a special mold followed by sintering. The porous calcium phosphate ceramics have three-dimensional and penetrated open pores380-400μm in diameter spaced at intervals of 200μm. The layers of the linear penetration pores alternately lay perpendicular to pore direction. The porosity was 59%-65% . The Ca/P molar ratios of the porous calcium phosphate ceramics range from 1.5 to 1.85. A binder containing methyl cellulose was most effective for preparing the powder compact among vinyl acetate, polyvinyl alcohol, starch, stearic acid, methyl cellulose and their mixtures. Stainless steel, polystyrene, nylon and bamboo were used as the long columnar male dies for the penetrated open pores. When polystyrene, nylon and bamboo were used as the long columnar male dies, the dies were burned out during the sintering process. Using stainless steel as the male dies with the removal of the dies before heat treatment resulted in a higher level of densification of the calcium phosphate ceramic.

  13. The rate of calcium turnover in bone

    International Nuclear Information System (INIS)

    This paper reports an analysis of the clearance of calcium-47 tracer from the plasma of human patients. Nine subjects have so far been analysed, and the results all deviate somewhat from those predicted from the conventional simple kinetic scheme. 3 figs

  14. Calcium flux assay in Xenopus oocytes.

    Science.gov (United States)

    Murphy, P M

    2001-05-01

    Many G protein-coupled receptors of interest to neuroscientists induce transient increases in [Ca(2+)](i), which can be used as a convenient measure of receptor activation in a variety of applications. This unit describes a simple calcium flux assay applied to Xenopus oocytes. PMID:18428482

  15. The Thermal Decomposition of Calcium Carbonate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The thermogravimetry(TG) and derivative thermogravimetry(DTG) curves of the thermal decomposition reaction of calcium carbonate have been measured at five different heating rates. The kinetic parameters and the reaction mechanism of the reaction were evaluated from analysis of the TG and DTG curves by using the Ozawa method, the combined integral and differential methods and the reduced equations derived by us.

  16. 21 CFR 172.410 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Anticaking... agent in food in an amount not in excess of that reasonably required to produce its intended effect. (b... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food...

  17. 21 CFR 582.3189 - Calcium ascorbate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives §...

  18. 21 CFR 182.3189 - Calcium ascorbate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium ascorbate. 182.3189 Section 182.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives §...

  19. 21 CFR 582.3225 - Calcium sorbate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium sorbate. 582.3225 Section 582.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives §...

  20. 21 CFR 182.3225 - Calcium sorbate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium sorbate. 182.3225 Section 182.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3225...

  1. 21 CFR 582.3221 - Calcium propionate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium propionate. 582.3221 Section 582.3221 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives §...

  2. 21 CFR 201.70 - Calcium labeling.

    Science.gov (United States)

    2010-04-01

    ... diet”. The warnings in §§ 201.64(c), 201.70(c), 201.71(c), and 201.72(c) may be combined, if applicable, provided the ingredients are listed in alphabetical order, e.g., a calcium or sodium restricted diet. 1...

  3. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Science.gov (United States)

    2010-04-01

    ... FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate... (racemic) form. (b) To assure safe use of the additive, the label and labeling of the food...

  4. Free-calcium distribution and calcium pulses in rat peripheral macrophages

    Science.gov (United States)

    Yu, Yanhua; Xing, Da; Tang, Yonghong; Jin, Ying

    2000-10-01

    With Laser Confocal Scanning Microscope (LCSM) system, three aspects of characteristics of free cytoplasmic calcium in rat peripheral macrophages are studied. One is the Ca2+ concentration in different area in the same cell. Second is the Ca2+ concentration in the same area in different dividing stage. Third is the feature of calcium pulses evoked by Kcl or pH changing. The results show that even in one cell, the evolution of the Ca2+ concentration is not the same in a different area. In the same area, the nucleolus Ca2+ concentration in division breaking stage is much higher than that in division stage. From the experiment phenomena, we conclude that Kcl itself can not evoke calcium pulses in the unexcitable macrophage, but the change of pH can trig calcium pulses in the same cells.

  5. Photodissociation studies of calcium-coronene and calcium-pyrene cation clusters

    Science.gov (United States)

    Scott, A. C.; Buchanan, J. W.; Flynn, N. D.; Duncan, M. A.

    2008-01-01

    Gas-phase cluster cations combining calcium atoms and the polycyclic aromatic hydrocarbons (PAHs) coronene (C24H12) and pyrene (C16H10) are produced in a molecular beam using laser vaporization in a pulsed nozzle cluster source. Time-of-flight mass spectrometry reveals the formation of clusters of the form Cax(coronene)y+ for up to x = 4 and y = 3 and Cax(pyrene)y+ for up to x = 2 and y = 3. Mass-selected photodissociation studies show that the calcium cation is the most prominent fragment for each system. Photoinduced calcium carbide formation is prominent when two or more calcium atoms are present. Additionally, there is evidence that these clusters can form sandwich structures.

  6. Mortar and concrete based on calcium sulphate binders

    NARCIS (Netherlands)

    Bakker, J.J.F.; Brouwers, H.J.H.

    2006-01-01

    In this study both hemi-hydrate and anhydrite are tested as calcium sulphate binders for structural mortar and concrete. The advantage of using calcium sulphates instead of cement as a binder is the fact that the production of calcium sulphate is more environmental friendly than that of cement. For

  7. 21 CFR 182.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  8. 21 CFR 582.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  9. Transfected parvalbumin alters calcium homeostasis in teratocarcinoma PCC7 cells

    DEFF Research Database (Denmark)

    Müller, B K; Kabos, P; Belhage, B;

    1996-01-01

    Indirect evidence supports a protective role of some EF-hand calcium-binding proteins against calcium-induced neurotoxicity. Little is known about how these proteins influence cytosolic calcium levels. After cloning the parvalbumin cDNA into an expression vector, teratocarcinoma cells (PCC7) were...

  10. Transfected parvalbumin alters calcium homeostasis in teratocarcinoma PCC7 cells

    DEFF Research Database (Denmark)

    Müller, B K; Kabos, P; Belhage, B;

    1996-01-01

    transfected. Parvalbumin-transfected and mock-transfected cells were loaded with the calcium indicator fura-2 and were exposed, in the same dish, to different concentrations of the calcium ionophore A23187 or to KCI. The results show that parvalbumin-transfected PCC7 cells had much better calcium buffering...

  11. 21 CFR 182.6215 - Monobasic calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Monobasic calcium phosphate. 182.6215 Section 182.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use....

  12. 21 CFR 582.6215 - Monobasic calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Monobasic calcium phosphate. 582.6215 Section 582.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use....

  13. Influence of the calcium sulfate source on the rheological behaviour of calcium sulfoaluminate cement pastes

    OpenAIRE

    Santacruz, Isabel; García-Maté, Marta; G. Aranda, Miguel Ángel; De la Torre, Ángeles G.

    2013-01-01

    Calcium sulfoaluminate (CSA) cements are receiving increasing attention since their manufacture produces much less CO2 than ordinary Portland cement (OPC) [1]. In addition, they show interesting properties such as high early-age strengths, short setting times and impermeability. The main uses of these CSA cements are for quick repairs and pre-cast products or floor concrete applications. They are prepared by mixing the clinker with different amounts of a calcium sulfate set regulator such as ...

  14. Hardening of calcium hydroxide and calcium silicate binders due to carbonation and hydration

    OpenAIRE

    Cizer, Özlem; Campforts, J; Balen, Koenraad Van; Elsen, Jan; Gemert, Dionys van

    2006-01-01

    Hardening of calcium hydroxide and calcium silicate binders composed of cement, rice husk ash (RHA) and lime in different compositions were studied with mechanical strength, mercury intrusion porosimetry, thermal analysis and SEM. When cement is partially replaced with RHA and lime, hardening occurs as a result of combined hydration, pozzolanic reaction and carbonation reaction. While hydration of cement contributes to the early strength development of the mortars, carbonation is much more pr...

  15. A comparative study of calcium absorption following a single serving administration of calcium carbonate powder versus calcium citrate tablets in healthy premenopausal women

    Directory of Open Access Journals (Sweden)

    Haiyuan Wang

    2014-04-01

    Full Text Available Background: Calcium is an essential mineral often taken as a daily, long-term nutritional supplement. Data suggests that once-daily dosing is important with regard to long-term compliance of both drugs and nutritional supplements. Objective: This study was undertaken to compare the bioavailability of a single serving of two calcium supplements in healthy, premenopausal women. Design: A two-period, crossover bioavailability study of a single serving of calcium citrate tablets (two tablets=500 mg calcium versus a single serving of calcium carbonate powder (one packet of powder=1,000 mg calcium was performed in healthy women aged between 25 and 45. All subjects were on a calcium-restricted diet 7 days prior to testing and fasted for 12 h before being evaluated at 0, 1, 2, and 4 h after oral administration of the test agents. Blood measurements for total and ionized calcium and parathyroid hormone were performed and adverse events were monitored. Results: Twenty-three women were evaluable with a mean age of 33.2±8.71. Results showed that administration of a single serving of a calcium carbonate powder resulted in greater absorption in total and ionized calcium versus a single serving of calcium citrate tablets at 4 h (4.25±0.21 vs. 4.16±0.16, p=0.001. There were minimal side effects and no reported serious adverse events. Conclusions: This study shows that a single serving of a calcium carbonate powder is more bioavailable than a single serving of calcium citrate tablets. This may be beneficial for long-term compliance.

  16. Preparation and Characterization of Calcium Carbonate Nanoparticles

    Science.gov (United States)

    Hassim, Aqilah; Rachmawati, Heni

    2010-10-01

    Taking calcium supplements can reduce the risk of developing osteoporosis, but they are not readily absorbed in the gastrointestinal tract. Nanotechnology is expected to resolve this problem. In this study, we prepared and characterized calcium carbonate nanoparticle to improve the solubility by using bottom-up method. The experiment was done by titrating calcium chloride with sodium carbonate with the addition of polyvinylpyrrolidone (PVP) as stabilizer, using ultra-turrax. Various concentrations of calcium chloride and sodium carbonate as well as various speed of stirring were used to prepare the calcium carbonate nanoparticles. Evaluations studied were including particle size, polydispersity index (PI) and zeta potential with particle analyzer, surface morphology with scanning electron microscope, and saturated solubility. In addition, to test the ability of PVP to prevent particles growth, short stability study was performed by storing nano CaCO3 suspension at room temperature for 2 weeks. Results show that using 8000 rpm speed of stirring, the particle size tends to be bigger with the range of 500-600 nm (PI between 0.2-0.4) whereas with stirring speed of 4000 rpm, the particle size tends to be smaller with 300-400 nm (PI between 0.2-0.4). Stirring speed of 6000 rpm produced particle size within the range of 400-500 nm (PI between 0.2-0.4). SEM photograph shows that particles are monodisperse confirming that particles were physically stable without any agglomeration within 2 weeks storage. Taken together, nano CaCO3 is successfully prepared by bottom-up method and PVP is a good stabilizer to prevent the particle growth.

  17. Optogenetic measurement of presynaptic calcium transients using conditional genetically encoded calcium indicator expression in dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Carmelo Sgobio

    Full Text Available Calcium triggers dopamine release from presynaptic terminals of midbrain dopaminergic (mDA neurons in the striatum. However, calcium transients within mDA axons and axon terminals are difficult to study and little is known about how they are regulated. Here we use a newly-developed method to measure presynaptic calcium transients (PreCaTs in axons and terminals of mDA neurons with a genetically encoded calcium indicator (GECI GCaMP3 expressed in transgenic mice. Using a photomultiplier tube-based system, we measured electrical stimulation-induced PreCaTs of mDA neurons in dorsolateral striatum slices from these mice. Single-pulse stimulation produced a transient increase in fluorescence that was completely blocked by a combination of N- and P/Q-type calcium channel blockers. DA and cholinergic, but not serotoninergic, signaling pathways modulated the PreCaTs in mDA fibers. These findings reveal heretofore unexplored dynamic modulation of presynaptic calcium in nigrostriatal terminals.

  18. Calcium signaling and T-type calcium channels in cancer cell cycling

    Institute of Scientific and Technical Information of China (English)

    James T Taylor; Xiang-Bin Zeng; Jonathan E Pottle; Kevin Lee; Alun R Wang; Stephenie G Yi; Jennifer A S Scruggs; Suresh S Sikka; Ming Li

    2008-01-01

    Regulation of intracellular calcium is an important signaling mechanism for cell proliferation in both normal and cancerous cells. In normal epithelial cells,free calcium concentration is essential for cells to enter and accomplish the S phase and the M phase of the cell cycle. In contrast, cancerous cells can pass these phases of the cell cycle with much lower cytoplasmic free calcium concentrations, indicating an alternative mechanism has developed for fulfilling the intracellular calcium requirement for an increased rate of DNA synthesis and mitosis of fast replicating cancerous cells. The detailed mechanism underlying the altered calcium loading pathway remains unclear;however, there is a growing body of evidence that suggests the T-type Ca2+ channel is abnormally expressed in cancerous cells and that blockade of these channels may reduce cell proliferation in addition to inducing apoptosis. Recent studies also show that the expression of T-type Ca2+ channels in breast cancer cells is proliferation state dependent, i.e. the channels are expressed at higher levels during the fast-replication period, and once the cells are in a non-proliferation state, expression of this channel isminimal. Therefore, selectively blocking calcium entry into cancerous cells may be a valuable approach for preventing tumor growth. Since T-type Ca2+ channels are not expressed in epithelial cells, selective T-type Ca2+ channel blockers may be useful in the treatment of certain types of cancers.

  19. In vivo calcium imaging of evoked calcium waves in the embryonic cortex

    Directory of Open Access Journals (Sweden)

    Mikhail eYuryev

    2016-01-01

    Full Text Available The dynamics of intracellular calcium fluxes are instrumental in the proliferation, differentiation and migration of neuronal cells. Knowledge thus far of the relationship between these calcium changes and physiological processes in the developing brain has derived principally from ex vivo and in vitro experiments. Here, we present a new method to image intracellular calcium flux in the cerebral cortex of live rodent embryos, whilst attached to the dam through the umbilical cord. Using this approach we demonstrate induction of calcium waves by laser stimulation. These waves are sensitive to ATP-receptor blockade and are significantly increased by pharmacological facilitation of intracellular-calcium release. This approach is the closest to physiological conditions yet achieved for imaging of calcium in the embryonic brain and as such opens new avenues for the study of prenatal brain development. Furthermore, the developed method could open the possibilities of preclinical translational studies in embryos particularly important for developmentally related diseases such as schizophrenia and autism.

  20. Effect of three different calcium hydroxide mixtures (calcium hydroxide with glycerine, normal saline and distilled water) on root dentin microhardness

    OpenAIRE

    Hasheminia SM; Norouzynasab S

    2007-01-01

    Background and Aim: During root canal therapy, it is necessary to remove as many bacteria as possible from the root canal. The use of medicaments is recommended to reduce the microbial population prior to root filling. Calcium hydroxide pastes have been used because of their antibacterial effects and the ability of tissue dissolving. The aim of this study was to evaluate the effect of calcium hydroxide/glycerine mixture, calcium hydroxide/normal saline mixture and calcium hydroxide/distilled ...

  1. Calcium homeostasis in low and high calcium water acclimatized Oreochromis mossambicus exposed to ambient and dietary cadmium

    NARCIS (Netherlands)

    Pratap, H.B.; Wendelaar Bonga, S.E.

    2007-01-01

    The effects of cadmium administered via ambient water (10 mg/l) or food (10 mgCd/fish/day) on plasma calcium, corpuscles of Stannius and bony tissues of Oreochromis mossambicus acclimated to low calcium (0.2 mM) and high calcium (0.8 mM) water were studied for 2, 4, 14 and 35 days. In low calcium wa

  2. Effects of modulation of calcium levels and calcium fluxes on ABA- induced gene expression in barley aleurone

    NARCIS (Netherlands)

    Meulen, R.M. van der; Visser, K.; Wang, M.

    1996-01-01

    We present data to elucidate the involvement of calcium ions in abscisic acid (ABA)-induced gene expression. Modulation of external calcium concentrations was able to affect ABA-induced specific RAB gene expression. At a constant ABA level with increasing extracellular calcium level, an increasing R

  3. Continuous Modeling of Calcium Transport Through Biological Membranes

    Science.gov (United States)

    Jasielec, J. J.; Filipek, R.; Szyszkiewicz, K.; Sokalski, T.; Lewenstam, A.

    2016-08-01

    In this work an approach to the modeling of the biological membranes where a membrane is treated as a continuous medium is presented. The Nernst-Planck-Poisson model including Poisson equation for electric potential is used to describe transport of ions in the mitochondrial membrane—the interface which joins mitochondrial matrix with cellular cytosis. The transport of calcium ions is considered. Concentration of calcium inside the mitochondrion is not known accurately because different analytical methods give dramatically different results. We explain mathematically these differences assuming the complexing reaction inside mitochondrion and the existence of the calcium set-point (concentration of calcium in cytosis below which calcium stops entering the mitochondrion).

  4. Calcium-Mediated Abiotic Stress Signaling in Roots.

    Science.gov (United States)

    Wilkins, Katie A; Matthus, Elsa; Swarbreck, Stéphanie M; Davies, Julia M

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium's other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response. PMID:27621742

  5. Consumption of calcium-fortified cereal bars to improve dietary calcium intake of healthy women: randomized controlled feasibility study.

    Directory of Open Access Journals (Sweden)

    Jennifer T Lee

    Full Text Available Calcium is an important structural component of the skeletal system. Although an adequate intake of calcium helps to maintain bone health and reduce the risk of osteoporosis, many women do not meet recommended daily intakes of calcium. Previous interventions studies designed to increase dietary intake of women have utilized primarily dairy sources of calcium or supplements. However, lactose intolerance, milk protein allergies, or food preferences may lead many women to exclude important dairy sources of dietary calcium. Therefore, we undertook a 9 week randomized crossover design trial to examine the potential benefit of including a non-dairy source of calcium in the diet of women. Following a 3 week run-in baseline period, 35 healthy women > 18 years were randomized by crossover design into either Group I or Group II. Group I added 2 calcium-fortified cereal bars daily (total of 400 mg calcium/day (intervention to their usual diet and Group II continued their usual diet (control. At the end of 3 weeks, diets were switched for another 3 weeks. Intakes of calcium and energy were estimated from 3-day diet and supplemental diaries. Wilcoxon signed-rank tests were used for within group comparisons and Mann Whitney U tests were used for between group comparisons of calcium and energy intake. Dietary calcium was significantly higher during intervention (1071 mg/d when participants consumed 2 calcium-fortified cereal bars daily than during the baseline (720 mg/d, P <0.0001 or control diets (775 mg/d, P = 0.0001 periods. Furthermore, the addition of 2 calcium-fortified cereal bars daily for the 3 week intervention did not significantly increase total energy intake or result in weight gain. In conclusion, consumption of calcium-fortified cereal bars significantly increased calcium intake of women. Further research examining the potential ability of fortified cereal bars to help maintain and improve bone health of women is warranted.ClinicalTrials.gov NCT

  6. Immobilization of calcium sulfate contained in demolition waste

    International Nuclear Information System (INIS)

    This paper presents the results of a laboratory study undertaken to examine the treatment of demolition waste containing calcium sulfate by means of calcium sulfoaluminate clinker (CSA). The quantity of CSA necessary to entirely consume calcium sulfate was determined. Using infrared spectrometry analysis and X-ray diffraction, it was shown that calcium sulfate was entirely consumed when the ratio between CSA and calcium sulfate was 4. Standard sand was polluted by 4% calcium sulfate. Two solutions were investigated: ·either global treatment of sand by CSA, ·or immobilization of calcium sulfate by CSA, followed by the introduction of this milled mixture in standard sand. Regardless of the type of treatment, swelling was almost stabilized after 28 days of immersion in water

  7. Calcium-dependent and calcium-sensitizing pathways in the mature and immature ductus arteriosus.

    Science.gov (United States)

    Clyman, Ronald I; Waleh, Nahid; Kajino, Hiroki; Roman, Christine; Mauray, Francoise

    2007-10-01

    Studies performed in sheep and baboons have shown that after birth, the normoxic muscle media of ductus arteriosus (DA) becomes profoundly hypoxic as it constricts and undergoes anatomic remodeling. We used isolated fetal lamb DA (pretreated with inhibitors of prostaglandin and nitric oxide production) to determine why the immature DA fails to remain tightly constricted during the hypoxic phase of remodeling. Under normoxic conditions, mature DA constricts to 70% of its maximal active tension (MAT). Half of its normoxic tension is due to Ca(2+) entry through calcium L-channels and store-operated calcium (SOC) channels. The other half is independent of extracellular Ca(2+) and is unaffected by inhibitors of sarcoplasmic reticulum (SR) Ca(2+) release (ryanodine) or reuptake [cyclopiazonic acid (CPA)]. The mature DA relaxes slightly during hypoxia (to 60% MAT) due to decreases in calcium L-channel-mediated Ca(2+) entry. Inhibitors of Rho kinase and tyrosine kinase inhibit both Ca(2+)-dependent and Ca(2+)-independent DA tension. Although Rho kinase activity may increase during gestation, immature DA develop lower tensions than mature DA, primarily because of differences in the way they process Ca(2+). Calcium L-channel expression increases with advancing gestation. Under normoxic conditions, differences in calcium L-channel-mediated Ca(2+) entry account for differences in tension between immature (60% MAT) and mature (70% MAT) DA. Under hypoxic conditions, differences in both calcium L-channel-dependent and calcium L-channel-independent Ca(2+) entry, account for differences in tension between immature (33% MAT) and mature (60% MAT) DA. Stimulation of Ca(2+) entry through reverse-mode Na(+)/Ca(2+) exchange or CPA-induced SOC channel activity constrict the DA and eliminate differences between immature and mature DA during both hypoxia and normoxia.

  8. Aggregation of Calcium Silicate Hydrate Nanoplatelets.

    Science.gov (United States)

    Delhorme, Maxime; Labbez, Christophe; Turesson, Martin; Lesniewska, Eric; Woodward, Cliff E; Jönsson, Bo

    2016-03-01

    We study the aggregation of calcium silicate hydrate nanoplatelets on a surface by means of Monte Carlo and molecular dynamics simulations at thermodynamic equilibrium. Calcium silicate hydrate (C-S-H) is the main component formed in cement and is responsible for the strength of the material. The hydrate is formed in early cement paste and grows to form platelets on the nanoscale, which aggregate either on dissolving cement particles or on auxiliary particles. The general result is that the experimentally observed variations in these dynamic processes generically called growth can be rationalized from interaction free energies, that is, from pure thermodynamic arguments. We further show that the surface charge density of the particles determines the aggregate structures formed by C-S-H and thus their growth modes. PMID:26859614

  9. Sensory analysis of calcium-biofortified lettuce.

    Science.gov (United States)

    Park, Sunghun; Elless, Mark P; Park, Jungeun; Jenkins, Alicia; Lim, Wansang; Chambers, Edgar; Hirschi, Kendal D

    2009-01-01

    Vegetables represent an attractive means of providing increased calcium nutrition to the public. In this study, it was demonstrated that lettuce expressing the deregulated Arabidopsis H(+)/Ca(2+) transporter sCAX1 (cation exchanger 1) contained 25%-32% more calcium than controls. These biofortified lettuce lines were fertile and demonstrated robust growth in glasshouse growth conditions. Using a panel of highly trained descriptive panellists, biofortified lettuce plants were evaluated and no significant differences were detected in flavour, bitterness or crispness when compared with controls. Sensory analysis studies are critical if claims are to be made regarding the efficacy of biofortified foods, and may be an important component in the public acceptance of genetically modified foods. PMID:19021875

  10. Electronic Structure of Gadolinium Calcium Oxoborate

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A; Adams, J; Schaffers, K

    2004-07-01

    Gadolinium calcium oxoborate (GdCOB) is a nonlinear optical material that belongs to the calcium--rare-earth (R) oxoborate family, with general composition Ca{sub 4}RO(BO{sub 3}){sub 3} (R{sup 3+} = La, Sm, Gd, Lu, Y). X-ray photoemission was applied to study the valence band electronic structure and surface chemistry of this material. High resolution photoemission measurements on the valence band electronic structure and Gd 3d and 4d, Ca 2p, B 1s and O 1s core lines were used to evaluate the surface and near surface chemistry. These results provide measurements of the valence band electronic structure and surface chemistry of this rare-earth oxoborate.

  11. Ceramics based on calcium pyrophosphate nanopowders

    Directory of Open Access Journals (Sweden)

    Tatiana V. Safronova

    2013-03-01

    Full Text Available Present work is aimed at the fabrication of resorbable bioceramics based on calcium pyrophosphate (CPP from the synthesized powders of amorphous hydrated calcium pyrophosphate (AHCPP. Amorphous hydratedcalcium pyrophosphate in the form of nanopowders was precipitated from Ca(NO3 2 and (NH4 4P2O7 solutions at room temperature in the presence of PO3– ions. Crystalline CPP powder was fabricated from AHCPP by its thermal decomposition at 600 °C and consisted of β- and α- phase. Small particles, with the size less than 200 nm, were formed promoting sintering of the ceramic material. The final sample, sintered at 900 °C, exhibits microstructure with submicron grains, apparent density of 87% of theoretical density (TD and demonstrates tensile strength of 70 MPa.

  12. Kinetics of Leaching Calcium from Dolomite

    Directory of Open Access Journals (Sweden)

    Azizi, A.

    2011-06-01

    Full Text Available Magnesia is obtained from magnesite ore and the production process applied should remove accompanying minerals that reduce its refractoriness. Given that magnesite reservoirs are more exploited and largely exhausted, there is a growing need for production of magnesia on the basis of other magnesium minerals. Dolomite is a promising source of magnesia because it forms large deposits, is easy to exploit, and generally contains a small quantity of impurities.The kinetics of calcium leaching from dolomite by magnesium-nitrate solution has been studied. The research program included the influence of temperature, mass fraction of magnesium nitrate in solution, dolomite particle size and leaching time. Time dependence of calcium leaching is described by relevant kinetic equations. Rate coefficients, their temperature dependence and Arrhenius activation energy have been determined.

  13. Characterization of ionomycin as a calcium ionophore.

    Science.gov (United States)

    Liu, C; Hermann, T E

    1978-09-10

    The ionophorous properties of a new antibiotic, ionomycin, have been studied. It was found that the antibiotic is capable of extracting calcium ion from the bulk of an aqueous phase into an organic phase. The antibiotic also acts as a mobile ion carrier to transport the cation across a solvent barrier. The divalent cation selectivity order for ionomycin as determined by ion competition experiments was found to be: Ca greater than Mg greater than Sr = Ba, where the binding of strontium and barium by the antibiotic is insignificant. The antibiotic also binds La3+ to some extent, but its complexation with monovalent alkali metal ions is negligible. Measurement of the binding of ionomycin with Ca2+ indicates that ionomycin complexes and transports calcium ion in a one to one stoichiometry. PMID:28319

  14. Effects of Exterior Abscisic Acid on Calcium Distribution of Mesophyll Cells and Calcium Concentration of Guard Cells in Maize Seedlings

    Institute of Scientific and Technical Information of China (English)

    GUO Xiu-lin; MA Yuan-yuan; LIU Zi-hui; LIU Bin-hui

    2008-01-01

    In this study, the direct effects of exterior abscisic acid (ABA) on both calcium distribution of mesophyll cells and cytosolic calcium concentration of guard cells were examined. The distribution of Ca2+ localization were observed with calcium antimonate precipitate-electromicroscopic-cyto-chemical methods after treated with ABA and pretreated with ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), verapamil (Vp), and trifluoperazine (TFP). The laser scanning confocal microscopy was used to measure the cytosolic calcium concentrations of guard cells under different treatments. The results showed that the cytosolic Ca2+ concentration of mesophyll cells was induced to increase by ABA, but to decrease in both outside cell and the vacuoles within 10 min after treatments. The cytosolic calcium concentration of guard cells was increased gradually with the lag in treatment time. However, both EGTA and TFP could inverse those effects, indicating that the increase of cytosolic calcium induced by exterior ABA was mainly caused by calcium influx. The results also showed that calmodulin could influence both the calcium distribution of mesophyll cells and calcium concentration of guard cells. It shows that calmodulin participates in the process of ABA signal transduction, but the mechanism is not known as yet. The changes both calcium distribution of mesophyll cells and calcium concentration of guard cells further proved that the variations of cytosolic Ca2+ concentration induced by ABA were involved in the stomatal movements of maize seedlings.

  15. Viscosity estimation for slags containing calcium fluoride

    Institute of Scientific and Technical Information of China (English)

    Qifeng Shu; Jiayun Zhang

    2005-01-01

    Based on recently published experimental data, the Riboud model was modified for viscosity estimation of the slags containing calcium fluoride. The estimated values were in good agreement with measured data. Reasonable estimation can be achieved using the modified Riboud model for mould fluxes and ESR (eletro slag remelting) slags. Especially for ESR slags, the modified Riboud model can provide much more precise values than the original Riboud model.

  16. Premixed calcium silicate cement for endodontic applications

    OpenAIRE

    Persson, Cecilia; Engqvist, Håkan

    2011-01-01

    Calcium silicate-based materials (also called MTA) are increasingly being used in endodontic applications. However, the handling properties of MTA are not optimal when it comes to injectability and cohesion. Premixing the cements using glycerol avoids these issues. However, there is a lack of data on the effect of common cement variables on important properties of premixed cements for endodontic applications. In this study, the effects of liquid-to-powder ratio, amount of radiopacifier and am...

  17. Coronary artery calcium scoring in myocardial infarction

    International Nuclear Information System (INIS)

    Background. The aim of this study was to evaluate coronary artery calcium scoring and the assessment of the risk factors in patients with myocardial infarction (MI). Methods. During the period of three years, 27 patients with MI were analyzed. The average age of patients was 66.1 years (46 to 81). Coronary arteries calcium was evaluated by multi row detector computed tomography (MTDC) Somatom Volume Zoom Siemens, and, retrospectively by ECG gating data acquisition. Semi automated calcium quantification to calculate Agatston calcium score (CS) was performed with 4 x 2.5 mm collimation, using 130 ml of contrast medium, injected with an automatic injector, with the flow rate of 4 ml/sec. The delay time was determined empirically. At the same time several risk factors were evaluated. Results. Out of 27 patients with MI, 3 (11.1%) patients had low CS (10- 100), 5 (18.5%) moderate CS (101- 499), and 19 (70.4%) patients high CS (>500). Of risk factors, smoking was confirmed in 17 (63.0%), high blood pressure (HTA) in 10 (57.0%), diabetes mellitus in 7 (25.9%), positive family history in 5 (18.5%), pathological lipids in 5 (18.5%), alcohol abuse in 4 (1.8%) patients. Six (22.2%) patients had symptoms of angina pectoris. Conclusions. The research showed high correlation of MI and high CS (>500). Smoking, HTA, diabetes mellitus, positive family history and hypercholesterolemia are significant risk factors. Symptoms are relatively poor in large number of patients. (author)

  18. Calcium metabolism in lithium-treated patients

    International Nuclear Information System (INIS)

    The bone mineral content (BMC) together with biochemical indices of calcium metabolism were measured in 83 manic-depressive patients on long-term lithium therapy. The patients were diagnosed and divided into a unipolar and a bipolar group according to strict symptomatic course criteria. The patients with bipolar course had a significantly decreased BMC (88% of normal, P < 0.001), while the unipolar patients had normal BMC. Both groups had biochemical changes consistent with primary hyperparathyroidism. (author)

  19. Bone disease in calcium stone forming patients.

    Science.gov (United States)

    Heilberg, I P; Martini, L A; Szejnfeld, V L; Carvalho, A B; Draibe, S A; Ajzen, H; Ramos, O L; Schor, N

    1994-09-01

    The association between idiopathic hypercalciuria and osteopenia (OP) has been recently recognized. It is not established whether or not calcium intake plays a critical role in the loss of bone mass. Fifty-five calcium stone forming patients with either absorptive hypercalciuria (AH) or fasting hypercalciuria (FH), 29 males and 26 premenopausal females, were submitted to dual photon absorptiometry at lumbar spine. Calcium intake was assessed by a 72 hr dietary record. OP was detected in 20% (11/55) of patients, being more common among men, 9/26 (35%) than in women, 2/29 (7%), p < 0.05. Male FH patients presented lower mean bone mineral density (BMD) than sex, weight and age-matched control (1.058 +/- 0.18 vs 1.209 +/- 0.13 g/cm2, X +/- SD, p < 0.05). OP was more frequent in FH patients, 7/20 (35%) than in AH patients 4/35 (11%), albeit the difference was not statistically significant. There was no correlation between calcium intake and BMD measurement. Six osteopenic male FH patients were further submitted to histomorphometric evaluation with tetracycline double labeling. Bone volume was lower than the controls (13.2 +/- 3.0 vs 27.2 +/- 3.7%, p < 0.05). Osteoid surfaces were reduced, although not significantly (10.1 +/- 8.2% vs 15.9 +/- 6.7%). Eroded surfaces were markedly increased (23.9 +/- 13.4 vs 4.2 +/- 1.4%, p < 0.05). The bone formation rate was very low with a complete lack of tetracycline double labeling in 4 patients. These data suggest low bone volume, tendency to low bone formation, increased bone resorption and a severe mineralization defect, consistent with normal or low bone turnover osteoporosis. PMID:7994936

  20. Gel time of calcium acrylate grouting material

    Institute of Scientific and Technical Information of China (English)

    韩同春

    2004-01-01

    Calcium acrylate is a polymerized grout, and can polymerize in an aqueous solution. The polymerizationreaction utilizes ammonium persulfate as a catalyst and sodium thiosulfate as the activator. Based on the theory of reactionkinetics, this study on the relation between gel time and concentration of activator and catalyst showed that gel time ofcalcium acrylate is inversely proportional to activator and catalyst concentration. A formula of gel time is proposed, and anexample is provided to verify the proposed formula.

  1. Biomimetic mineralization: encapsulation in calcium carbonate shells

    OpenAIRE

    Oliveira, Susana Costa de

    2015-01-01

    Calcium carbonate biomineralization is a self-assembly process that has been studied to be applied in the biomedical field to encapsulate biomolecules. Advantages of engineering mineral capsules include improved drug loading efficiencies and protection against external environment. However, common production methods result in heterogeneous capsules and subject biomolecules to heat and vibration which cause irreversible damage. To overcome these issues, a microfluidic device was designed, m...

  2. Recording of calcium transient and analysis of calcium removal mechanisms in cardiac myocytes from rats and ground squirrels

    Institute of Scientific and Technical Information of China (English)

    王世强; 周曾铨; 钱洪

    2000-01-01

    With confocal microscopy, we recorded calcium transients and analyzed calcium removal rate at different temperatures in cardiac myocytes from the rat, a non-hibernator, and the ground squirrel, a hibernator. The results showed a remarkable increase of the diastolic level of calcium transients in the rat but no detectable change in the ground squirrel. Calcium transient of the ground squirrel, compared with that of the rat at the same temperature, had a shorter duration and showed a faster calcium removal. As indicated by the pharmacological effect of cyclopiazonic acid, calcium uptake by sarcoplasmic reticulum (SR) was the major mechanism of calcium removal, and was faster in the ground squirrel than in the rat. Our results confirmed the essential role of SR in hypothermia-tolerant adaptation, and negated the importance of Na-Ca exchange. We postulated the possibility to improve hypothermia-tolerance of the cardiac tissue of non-hibernating mammals.

  3. T-Type Calcium Channel: A Privileged Gate for Calcium Entry and Control of Adrenal Steroidogenesis.

    Science.gov (United States)

    Rossier, Michel F

    2016-01-01

    Intracellular calcium plays a crucial role in modulating a variety of functions such as muscle contraction, hormone secretion, gene expression, or cell growth. Calcium signaling has been however shown to be more complex than initially thought. Indeed, it is confined within cell microdomains, and different calcium channels are associated with different functions, as shown by various channelopathies. Sporadic mutations on voltage-operated L-type calcium channels in adrenal glomerulosa cells have been shown recently to be the second most prevalent genetic abnormalities present in human aldosterone-producing adenoma. The observed modification of the threshold of activation of the mutated channels not only provides an explanation for this gain of function but also reminds us on the importance of maintaining adequate electrophysiological characteristics to make channels able to exert specific cellular functions. Indeed, the contribution to steroid production of the various calcium channels expressed in adrenocortical cells is not equal, and the reason has been investigated for a long time. Given the very negative resting potential of these cells, and the small membrane depolarization induced by their physiological agonists, low threshold T-type calcium channels are particularly well suited for responding under these conditions and conveying calcium into the cell, at the right place for controlling steroidogenesis. In contrast, high threshold L-type channels are normally activated by much stronger cell depolarizations. The fact that dihydropyridine calcium antagonists, specific for L-type channels, are poorly efficient for reducing aldosterone secretion either in vivo or in vitro, strongly supports the view that these two types of channels differently affect steroid biosynthesis. Whether a similar analysis is transposable to fasciculata cells and cortisol secretion is one of the questions addressed in the present review. No similar mutations on L-type or T-type channels

  4. T-type calcium channel: a privileged gate for calcium entry and control of adrenal steroidogenesis

    Directory of Open Access Journals (Sweden)

    Michel Florian Rossier

    2016-05-01

    Full Text Available Intracellular calcium plays a crucial role in modulating a variety of functions such as muscle contraction, hormone secretion, gene expression or cell growth. Calcium signaling has been however shown to be more complex than initially thought. Indeed, it is confined within cell microdomains and different calcium channels are associated with different functions, as shown by various channelopathies.Sporadic mutations on voltage-operated L-type calcium channels in adrenal glomerulosa cells have been shown recently to be the second most prevalent genetic abnormalities present in human aldosterone-producing adenoma. The observed modification of the threshold of activation of the mutated channels not only provides an explanation for this gain of function but reminds us on the importance of maintaining adequate electrophysiological characteristics to make channels able to exert specific cellular functions. Indeed, the contribution to steroid production of the various calcium channels expressed in adrenocortical cells is not equal and the reason has been investigated for a long time. Given the very negative resting potential of these cells, and the small membrane depolarization induced by their physiological agonists, low threshold T-type calcium channels are particularly well suited for responding under these conditions and conveying calcium into the cell, at the right place for controlling steroidogenesis. In contrast, high threshold L-type channels are normally activated by much stronger cell depolarizations. The fact that dihydropyridine calcium antagonists, specific for L-type channels, are poorly efficient for reducing aldosterone secretion either in vivo or in vitro, strongly supports the view that these two types of channels differently affect steroid biosynthesis.Whether a similar analysis is transposable to fasciculata cells and cortisol secretion is one of the questions addressed in the present review. No similar mutations on L-type or T

  5. Calcium and ROS: A mutual interplay.

    Science.gov (United States)

    Görlach, Agnes; Bertram, Katharina; Hudecova, Sona; Krizanova, Olga

    2015-12-01

    Calcium is an important second messenger involved in intra- and extracellular signaling cascades and plays an essential role in cell life and death decisions. The Ca(2+) signaling network works in many different ways to regulate cellular processes that function over a wide dynamic range due to the action of buffers, pumps and exchangers on the plasma membrane as well as in internal stores. Calcium signaling pathways interact with other cellular signaling systems such as reactive oxygen species (ROS). Although initially considered to be potentially detrimental byproducts of aerobic metabolism, it is now clear that ROS generated in sub-toxic levels by different intracellular systems act as signaling molecules involved in various cellular processes including growth and cell death. Increasing evidence suggests a mutual interplay between calcium and ROS signaling systems which seems to have important implications for fine tuning cellular signaling networks. However, dysfunction in either of the systems might affect the other system thus potentiating harmful effects which might contribute to the pathogenesis of various disorders. PMID:26296072

  6. Collective Calcium Signaling of Defective Multicellular Networks

    Science.gov (United States)

    Potter, Garrett; Sun, Bo

    2015-03-01

    A communicating multicellular network processes environmental cues into collective cellular dynamics. We have previously demonstrated that, when excited by extracellular ATP, fibroblast monolayers generate correlated calcium dynamics modulated by both the stimuli and gap junction communication between the cells. However, just as a well-connected neural network may be compromised by abnormal neurons, a tissue monolayer can also be defective with cancer cells, which typically have down regulated gap junctions. To understand the collective cellular dynamics in a defective multicellular network we have studied the calcium signaling of co-cultured breast cancer cells and fibroblast cells in various concentrations of ATP delivered through microfluidic devices. Our results demonstrate that cancer cells respond faster, generate singular spikes, and are more synchronous across all stimuli concentrations. Additionally, fibroblast cells exhibit persistent calcium oscillations that increase in regularity with greater stimuli. To interpret these results we quantitatively analyzed the immunostaining of purigenic receptors and gap junction channels. The results confirm our hypothesis that collective dynamics are mainly determined by the availability of gap junction communications.

  7. Fractional Dynamics in Calcium Oscillation Model

    Directory of Open Access Journals (Sweden)

    Yoothana Suansook

    2015-01-01

    Full Text Available The calcium oscillations have many important roles to perform many specific functions ranging from fertilization to cell death. The oscillation mechanisms have been observed in many cell types including cardiac cells, oocytes, and hepatocytes. There are many mathematical models proposed to describe the oscillatory changes of cytosolic calcium concentration in cytosol. Many experiments were observed in various kinds of living cells. Most of the experimental data show simple periodic oscillations. In certain type of cell, there exists the complex periodic bursting behavior. In this paper, we have studied further the fractional chaotic behavior in calcium oscillations model based on experimental study of hepatocytes proposed by Kummer et al. Our aim is to explore fractional-order chaotic pattern in this oscillation model. Numerical calculation of bifurcation parameters is carried out using modified trapezoidal rule for fractional integral. Fractional-order phase space and time series at fractional order are present. Numerical results are characterizing the dynamical behavior at different fractional order. Chaotic behavior of the model can be analyzed from the bifurcation pattern.

  8. Mitochondrial calcium uptake capacity modulates neocortical excitability.

    Science.gov (United States)

    Sanganahalli, Basavaraju G; Herman, Peter; Hyder, Fahmeed; Kannurpatti, Sridhar S

    2013-07-01

    Local calcium (Ca(2+)) changes regulate central nervous system metabolism and communication integrated by subcellular processes including mitochondrial Ca(2+) uptake. Mitochondria take up Ca(2+) through the calcium uniporter (mCU) aided by cytoplasmic microdomains of high Ca(2+). Known only in vitro, the in vivo impact of mCU activity may reveal Ca(2+)-mediated roles of mitochondria in brain signaling and metabolism. From in vitro studies of mitochondrial Ca(2+) sequestration and cycling in various cell types of the central nervous system, we evaluated ranges of spontaneous and activity-induced Ca(2+) distributions in multiple subcellular compartments in vivo. We hypothesized that inhibiting (or enhancing) mCU activity would attenuate (or augment) cortical neuronal activity as well as activity-induced hemodynamic responses in an overall cytoplasmic and mitochondrial Ca(2+)-dependent manner. Spontaneous and sensory-evoked cortical activities were measured by extracellular electrophysiology complemented with dynamic mapping of blood oxygen level dependence and cerebral blood flow. Calcium uniporter activity was inhibited and enhanced pharmacologically, and its impact on the multimodal measures were analyzed in an integrated manner. Ru360, an mCU inhibitor, reduced all stimulus-evoked responses, whereas Kaempferol, an mCU enhancer, augmented all evoked responses. Collectively, the results confirm aforementioned hypotheses and support the Ca(2+) uptake-mediated integrative role of in vivo mitochondria on neocortical activity.

  9. Arterial Stiffness and Dialysis Calcium Concentration

    Directory of Open Access Journals (Sweden)

    Fabrice Mac-Way

    2011-01-01

    Full Text Available Arterial stiffness is the major determinant of isolated systolic hypertension and increased pulse pressure. Aortic stiffness is also associated with increased cardiovascular morbidity and mortality in patients with chronic kidney disease, hypertension, and general population. Hemodynamically, arterial stiffness results in earlier aortic pulse wave reflection leading to increased cardiac workload and decreased myocardial perfusion. Although the clinical consequence of aortic stiffness has been clearly established, its pathophysiology in various clinical conditions still remains poorly understood. The aim of the present paper is to review the studies that have looked at the impact of dialysis calcium concentration on arterial stiffness. Overall, the results of small short-term studies suggest that higher dialysis calcium is associated with a transient but significant increase in arterial stiffness. This calcium dependant increase in arterial stiffness is potentially explained by increased vascular smooth muscle tone of the conduit arteries and is not solely explained by changes in mean blood pressure. However, the optimal DCa remains to be determined, and long term studies are required to evaluate its impact on the progression of arterial stiffness.

  10. Modeling Calcium Wave Based on Anomalous Subdiffusion of Calcium Sparks in Cardiac Myocytes

    Science.gov (United States)

    Chen, Xi; Kang, Jianhong; Fu, Ceji; Tan, Wenchang

    2013-01-01

    sparks and waves play important roles in calcium release and calcium propagation during the excitation-contraction (EC) coupling process in cardiac myocytes. Although the classical Fick’s law is widely used to model sparks and waves in cardiac myocytes, it fails to reasonably explain the full-width at half maximum(FWHM) paradox. However, the anomalous subdiffusion model successfully reproduces sparks of experimental results. In this paper, in the light of anomalous subdiffusion of sparks, we develop a mathematical model of calcium wave in cardiac myocytes by using stochastic release of release units (CRUs). Our model successfully reproduces calcium waves with physiological parameters. The results reveal how concentration waves propagate from an initial firing of one CRU at a corner or in the middle of considered region, answer how large in magnitude of an anomalous spark can induce a wave. With physiological currents (2pA) through CRUs, it is shown that an initial firing of four adjacent CRUs can form a wave. Furthermore, the phenomenon of calcium waves collision is also investigated. PMID:23483894

  11. Simulation of calcium oxalate stone in vitro

    Institute of Scientific and Technical Information of China (English)

    欧阳健明; 姚秀琼; 苏泽轩; 崔福斋

    2003-01-01

    Crystallization of calcium oxalate is studied mainly in the diluted healthy urine using scanning electron microscopy (SEM), and is compared with the crystallization in the diluted pathological urine. It suggests that the average sizes of calcium oxalate crystals are not in direct proportion to the concentrations of Ca2+ and Ox2- ions. Only in the concentration range of 0.60-0.90 mmol/L can larger size of CaOx crystals appear. When the concentrations of Ca2+ and Ox2- ions are 1.20, 0.80, 0.60, 0.30 and 0.15 mmol/L in the healthy urine, the average sizes of calcium oxalate crystallites are 9.5 × 6.5, 20.0 × 13.5 and 15.0 μm × 10.0 μm, respectively, for the former three samples after 6 d crystallization. No crystal appears even after 30 d crystallization for the samples of concentrations of 0.30 and 0.15 mmol/L due to their low supersaturations. The results theoretically explain why the probability of stone forming is clinically not in direct proportion to the concentrations of Ca 2+ and Ox2- ions. Laser scattering technology also confirms this point. The reason why healthy human has no risk of urinary stone but stone-formers have is that there are more urinary macromolecules in healthy human urines than that in stone-forming urines. These macromolecules may control the transformation in CaOx crystal structure from monohydrate calcium oxalate (COM) to dihydrate calcium oxalate (COD). COD has a weaker affinity for renal tubule cell membranes than COM. No remarkable effect of the crystallization time is observed on the crystal morphology of CaOx. All the crystals are obtuse hexagon. However, the sizes and the number of CaOx crystals can be affected by the crystallization time. In the early stage of crystallization (1-6 d), the sizes of CaOx crystals increase and the number of crystal particles changes little as increasing the crystallization time due to growth control. In the middle and late stages (6-30 d), the number of crystals increases markedly while the

  12. Hybrid calcium phosphate coatings for implants

    Science.gov (United States)

    Malchikhina, Alena I.; Shesterikov, Evgeny V.; Bolbasov, Evgeny N.; Ignatov, Viktor P.; Tverdokhlebov, Sergei I.

    2016-08-01

    Monophasic biomaterials cannot provide all the necessary functions of bones or other calcined tissues. It is necessary to create for cancer patients the multiphase materials with the structure and composition simulating the natural bone. Such materials are classified as hybrid, obtained by a combination of chemically different components. The paper presents the physical, chemical and biological studies of coatings produced by hybrid technologies (HT), which combine primer layer and calcium phosphate (CaP) coating. The first HT type combines the method of vacuum arc titanium primer layer deposition on a stainless steel substrate with the following micro-arc oxidation (MAO) in phosphoric acid solution with addition of calcium compounds to achieve high supersaturated state. MAO CaP coatings feature high porosity (2-8%, pore size 5-7 µm) and surface morphology with the thickness greater than 5 µm. The thickness of Ti primer layer is 5-40 µm. Amorphous MAO CaP coating micro-hardness was measured at maximum normal load Fmax = 300 mN. It was 3.1 ± 0.8 GPa, surface layer elasticity modulus E = 110 ± 20 GPa, roughness Ra = 0.9 ± 0.1 µm, Rz = 7.5 ± 0.2 µm, which is less than the titanium primer layer roughness. Hybrid MAO CaP coating is biocompatible, able to form calcium phosphates from supersaturated body fluid (SBF) solution and also stimulates osteoinduction processes. The second HT type includes the oxide layer formation by thermal oxidation and then CaP target radio frequency magnetron sputtering (RFMS). Oxide-RFMS CaP coating is a thin dense coating with good adhesion to the substrate material, which can be used for metal implants. The RFMS CaP coating has thickness 1.6 ± 0.1 µm and consists of main target elements calcium and phosphorus and Ca/P ratio 2.4. The second HT type can form calcium phosphates from SBF solution. In vivo study shows that hybrid RFMS CaP coating is biocompatible and produces fibrointegration processes.

  13. Effect of calcium on moving-bed biofilm reactor biofilms.

    Science.gov (United States)

    Goode, C; Allen, D G

    2011-03-01

    The effect of calcium concentration on the biofilm structure, microbiology, and treatment performance was evaluated in a moving-bed biofilm reactor. Three experiments were conducted in replicate laboratory-scale reactors to determine if wastewater calcium is an important variable for the design and optimization of these reactors. Biofilm structural properties, such as thickness, oxygen microprofiles, and the composition of extracellular polymeric substances (EPS) were affected by increasing calcium concentrations. Above a threshold concentration of calcium between 1 and 50 mg/L, biofilms became thicker and denser, with a shift toward increasingly proteinaceous EPS at higher calcium concentrations up to 200 mgCa2+/L. At 300 mgCa2+/L, biofilms were found to become primarily composed of inorganic calcium precipitates. Microbiology was assessed through microscopy, denaturing grade gel electrophoresis, and enumeration of higher organisms. Higher calcium concentrations were found to change the bacterial community and promote the abundant growth of filamentous organisms and various protazoa and metazoan populations. The chemical oxygen demand removal efficiency was improved for reactors at calcium concentrations of 50 mg/L and above. Reactor effluents for the lowest calcium concentration (1 mgCa2+/L) were found to be turbid (>50 NTU), as a result of the detachment of small and poorly settling planktonic biomass, whereas higher concentrations promoted settling of the suspended phase. In general, calcium was found to be an important variable causing significant changes in biofilm structure and reactor function.

  14. Calcium and iron absorption: mechanism of action and nutritional importance.

    Science.gov (United States)

    Hallberg, L; Rossander-Hultén, L; Brune, M; Gleerup, A

    1992-05-01

    We investigated the inhibitory effect of calcium on iron absorption in 57 human subjects. Three studies suggested that the effect is not located in the gastrointestinal tract. The presence of phytate in a meal and formation of calcium-iron-phytate complexes is not a prerequisite for the inhibition. The relative increase in iron absorption by ascorbic acid was the same in meals with and without calcium, suggesting that calcium did not influence the balance between enhancing and inhibiting ligands in the gastrointestinal lumen. No inhibiting effect on iron absorption was seen when adding 3 mg calcium to 0.01 mg iron (molar ratio Ca/Fe = 420). Previous studies showing a marked inhibition by calcium had a lower molar ratio, but greater amounts of calcium were given. This suggests that a minimal concentration of calcium is needed to achieve an effect. The present results indirectly support our original hypothesis that the inhibitory effect of calcium on iron absorption is situated within the intestinal mucosal cells. The practical nutritional implications of the inhibitory effect of calcium are considerable since addition of milk, milkshake or cheese to common meals such as pizza or hamburger meals reduced iron absorption by 50-60%. It is recommended to reduce the intake of dairy products with the main meals providing most of the dietary iron, especially for those having the highest iron requirements i.e. children, teenagers and women at childbearing age. PMID:1600930

  15. Evaluation of calcium ion, hydroxyl ion release and pH levels in various calcium hydroxide based intracanal medicaments: An in vitro study

    OpenAIRE

    Punit Fulzele; Sudhindra Baliga; Nilima Thosar; Debaprya Pradhan

    2011-01-01

    Aims: Evaluation of calcium ion and hydroxyl ion release and pH levels in various calcium hydroxide based intracanal medicaments. Objective: The purpose of this study was to evaluate calcium and hydroxyl ion release and pH levels of calcium hydroxide based products, namely, RC Cal, Metapex, calcium hydroxide with distilled water, along with the new gutta-percha points with calcium hydroxide. Materials and Methods: The materials were inserted in polyethylene tubes and immersed in deionized wat...

  16. Homer regulates calcium signalling in growth cone turning

    Directory of Open Access Journals (Sweden)

    Thompson Michael JW

    2009-08-01

    Full Text Available Abstract Background Homer proteins are post-synaptic density proteins with known functions in receptor trafficking and calcium homeostasis. While they are key mediators of synaptic plasticity, they are also known to function in axon guidance, albeit by mechanisms that are yet to be elucidated. Homer proteins couple extracellular receptors – such as metabotropic glutamate receptors and the transient receptor potential canonical family of cation channels – to intracellular receptors such as inositol triphosphate and ryanodine receptors on intracellular calcium stores and, therefore, are well placed to regulate calcium dynamics within the neural growth cone. Here we used growth cones from dorsal root ganglia, a well established model in the field of axon guidance, and a growth cone turning assay to examine Homer1 function in axon guidance. Results Homer1 knockdown reversed growth cone turning from attraction to repulsion in response to the calcium-dependent guidance cues brain derived neurotrophic factor and netrin-1. Conversely, Homer1 knockdown had no effect on repulsion to the calcium-independent guidance cue Semaphorin-3A. This reversal of attractive turning suggested a requirement for Homer1 in a molecular switch. Pharmacological experiments confirmed that the operational state of a calcium-calmodulin dependent protein kinase II/calcineurin phosphatase molecular switch was dependent on Homer1 expression. Calcium imaging of motile growth cones revealed that Homer1 is required for guidance-cue-induced rise of cytosolic calcium and the attenuation of spontaneous cytosolic calcium transients. Homer1 knockdown-induced calcium transients and turning were inhibited by antagonists of store-operated channels. In addition, immunocytochemistry revealed the close association of Homer1 with the store-operated proteins TRPC1 and STIM1 within dorsal root ganglia growth cones. Conclusion These experiments provide evidence that Homer1 is an essential

  17. Synthesis of Calcium Silicate (Casio3 Using Calcium Fluoride, Quartz and Microbes

    Directory of Open Access Journals (Sweden)

    B. Gopal Krishna

    2015-09-01

    Full Text Available Microbes like bacteria, algae, fungi and virus play an important role to catalyst chemical reactions. In Nature, ores or minerals of different compounds are formed due to microbial environment and other factors like weathering. Microbial environment is also instrumental in forming calcium containing silicate minerals. Chemical reactions occur under microbial environment because microbes have the ability to control or modify different factors like pH, chemical potential and temperature during reactions. In this paper, synthesis of calcium silicate (CaSiO3 using calcium fluoride (CaF2 and quartz (SiO2 under microbial environment in a laboratory is being adopted to produce the required material. XRD technique is used to confirm the formation of CaSiO3.

  18. Assembly and Calcium Binding Properties of Quantum Dot-Calmodulin Calcium Sensor.

    Science.gov (United States)

    Eun, Su-yong; Nguyen-ta, Kim; Yoo, Hoon; Silva, Gabriel A; Kim, Soon-jong

    2016-02-01

    We have developed the first nanoengineered quantum dot molecular complex designed to measure changes of calcium ion (Ca2+) concentration at high spatial and temporal resolutions in real time. The sensor is ratiometric and composed of three components: a quantum dot (QD) emitting at 620 nm as a fluorescence donor, an organic dye (Alexa Fluor 647) as a fluorescence acceptor, and a calmodulin-M13 (CaM-M13) protein part as a calcium sensing component. In this work, we have determined the maximal number of CaM-M13 required for saturating a single QD particle to be approximately 16. The dissociation constant, Kd of the QD-based calcium ion sensor was also estimated to be around 30 microM. PMID:27433729

  19. Nuclear symmetry energy in calcium-calcium collisions (INDRA-VAMOS

    Directory of Open Access Journals (Sweden)

    Chartier M.

    2012-07-01

    Full Text Available The density dependence of the symmetry energy is of great interest to many fields of nuclear physics and nuclear astro-physics. The E503 INDRA-VAMOS experiment performed at GANIL in 2007 is intended to provide further sub-saturation constraints using calcium-calcium collisions around the Fermi energy (35AMeV. In these proceedings this experiment will be discussed in the context of the physics it is aiming to study and will give a brief summary of the current progress of the data analysis.

  20. Precipitation of calcium carbonate from a calcium acetate and ammonium carbamate batch system

    Science.gov (United States)

    Prah, J.; Maček, J.; Dražič, G.

    2011-06-01

    In this paper, we report a novel approach for preparing precipitated calcium carbonate using solutions of ammonium carbamate and calcium acetate as the sources of calcium and carbon dioxide, respectively. Two different concentrations of the starting solutions at three different temperatures (15, 25 and 50 °C) were used for the reaction. The influence of temperature and concentration on the polymorphism and the resulting morphology of calcium carbonate are discussed. The most important parameter for controlling a particular crystal structure and precipitate morphology were the concentrations of the initial solutions. When initial solutions with lower concentrations were used, the crystal form of the precipitate changed with time. Regardless the different polymorphism at different temperatures, after one day only the calcite form was detected in all samples, regardless of at which temperature the samples were prepared. At higher concentrations, pure vaterite or a mixture of vaterite and calcite were present at the beginning of the experiment. After one day, pure vaterite was found in the samples that were prepared at 15 and 25 °C. If calcium carbonate precipitated at 50 °C, the XRD results showed a mixture of calcite and vaterite regardless of the time at which the sample was taken. The morphology of calcium carbonate particles prepared at various conditions changed from calcite cubes to spherical particles of vaterite and aragonite needles. When a low starting concentration was used, the morphology at the initial stage was strongly affected by the temperature at which the experiments were conducted. However, after one day only, cubes were present in all cases at low initial concentrations. In contrast, at high concentrations spherical particles precipitated at all three temperatures at the beginning of the reaction. Spherical particles were made up from smaller particles. Over time, the size of the particles was diminishing due to their disintegration into

  1. Construction of calcium release sites in cardiac myocytes

    Directory of Open Access Journals (Sweden)

    Alexandra eZahradnikova

    2012-08-01

    Full Text Available Local character of calcium release in cardiac myocytes, as defined by confocal recordings of calcium sparks, implies independent activation of individual calcium release sites based on ryanodine receptor (RyR channel recruitment. We constructed virtual calcium release sites (vCRSs composed of a variable number of RyR channels distributed in clusters in accordance with the experimentally observed cluster size distribution. The vCRSs consisted either of a single virtual calcium release unit, in which all clusters shared a common dyadic space, or of multiple virtual calcium release units containing one cluster each and having separate dyadic spaces. We explored the stochastic behavior of vCRSs to understand the activation and recruitment of RyRs during calcium sparks. RyRs were represented by the published allosteric gating model that included regulation by cytosolic Ca2+ and Mg2+. The interaction of Mg2+ with the RyR Ca2+-binding sites and the refractory period of vCRSs were optimized to accord with the experimentally observed calcium dependence of calcium spark frequency. The Mg2+-binding parameters of RyRs that provided the best description of spark frequency depended on the number of RyRs assembled in the virtual calcium release sites. Adequate inhibitory effect of Mg2+ on the calcium dependence of RyR open probability was achieved if the virtual calcium release sites contained at least three clusters. For the distribution of the number of open RyRs in evoked calcium sparks to correspond to the experimentally observed distribution of spark calcium release fluxes, at least 3 clusters had to share a common virtual calcium release unit, in which ~ 3 RyRs open to form an average spark. These results reconcile the small cluster size and stochastic placement of RyRs in the release sites with the estimates of the amount of RyR protein, volume density of calcium release sites, and the size of calcium release sites in rat cardiac myocytes.

  2. Yeast respond to hypotonic shock with a calcium pulse

    Science.gov (United States)

    Batiza, A. F.; Schulz, T.; Masson, P. H.

    1996-01-01

    We have used the transgenic AEQUORIN calcium reporter system to monitor the cytosolic calcium ([Ca2+]cyt) response of Saccharomyces cerevisiae to hypotonic shock. Such a shock generates an almost immediate and transient rise in [Ca2+]cyt which is eliminated by gadolinium, a blocker of stretch-activated channels. In addition, this transient rise in [Ca2+]cyt is initially insensitive to 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), an extracellular calcium chelator. However, BAPTA abruptly attenuates the maintenance of that transient rise. These data show that hypotonic shock generates a stretch-activated channel-dependent calcium pulse in yeast. They also suggest that the immediate calcium influx is primarily generated from intracellular stores, and that a sustained increase in [Ca2+]cyt depends upon extracellular calcium.

  3. Adaptative diversity of calcium metabolism in gammarus fossarum populations

    Energy Technology Data Exchange (ETDEWEB)

    Meyran, J.C. [Grenoble-1 Univ., 38 (France)

    1994-11-01

    Analysis of Gammarus fossarum populations from mountain torrents in the Grenoble region reveals some morphological and eco physiological diversity which appears to be related to the calcium concentration of the water after both field and laboratory experimentation. Animals from waters with a high calcium concentration (located in Chartreuse and Vercors) show larger size and a longer molt cycle than those from low calcium concentrated waters (located in Belledonne); their calcium balance during the molt cycle is different. Translocation experiments confirm these differences: a significant increase of the duration of the molt cycle is observed in animals translocated to lower calcium concentrated waters and vice-versa whereas no significant difference is observed between controls and animals translocated within comparably calcium concentrated waters. The causes of such an adaptative diversity between Gammarus fossarum populations will be researched at the genetic level, namely through mitochondrial DNA investigations. (author). 25 refs., 2 tabs., 2 figs.

  4. Adaptative diversity of calcium metabolism in gammarus fossarum populations

    International Nuclear Information System (INIS)

    Analysis of Gammarus fossarum populations from mountain torrents in the Grenoble region reveals some morphological and eco physiological diversity which appears to be related to the calcium concentration of the water after both field and laboratory experimentation. Animals from waters with a high calcium concentration (located in Chartreuse and Vercors) show larger size and a longer molt cycle than those from low calcium concentrated waters (located in Belledonne); their calcium balance during the molt cycle is different. Translocation experiments confirm these differences: a significant increase of the duration of the molt cycle is observed in animals translocated to lower calcium concentrated waters and vice-versa whereas no significant difference is observed between controls and animals translocated within comparably calcium concentrated waters. The causes of such an adaptative diversity between Gammarus fossarum populations will be researched at the genetic level, namely through mitochondrial DNA investigations. (author). 25 refs., 2 tabs., 2 figs

  5. Intracellular calcium ions as regulators of renal tubular sodium transport.

    Science.gov (United States)

    Windhager, E; Frindt, G; Yang, J M; Lee, C O

    1986-09-15

    This review addresses the putative role of intracellular calcium ions in the regulation of sodium transport by renal tubules. Cytoplasmic calcium-ion activities in proximal tubules of Necturus are less than 10(-7) M and can be increased by lowering the electrochemical potential gradient for sodium ions across the peritubular cell membrane, or by addition of quinidine or ionomycin to peritubular fluid. Whereas lowering of the peritubular Na concentration increases cytosolic [Ca++] and [H+], ionomycin, a calcium ionophore, raises intracellular [Ca++] without decreasing pHi. The intracellular calcium-ion level is maintained by transport processes in the plasma membrane and membranes of intracellular organelles, as well as by calcium-binding proteins. Calcium ions inhibit net transport of sodium by reducing the rate of sodium entry across the luminal cell membrane. In the collecting tubule this inhibition is caused, at least in part, by an indirect reduction in the activity of the amiloride-sensitive sodium channel. PMID:2430134

  6. Mortar and concrete based on calcium sulphate binders

    OpenAIRE

    Bakker, J.J.F.; Brouwers, H. J. H.

    2006-01-01

    In this study both hemi-hydrate and anhydrite are tested as calcium sulphate binders for structural mortar and concrete. The advantage of using calcium sulphates instead of cement as a binder is the fact that the production of calcium sulphate is more environmental friendly than that of cement. For the calcinations of Portland cement, temperatures up to 1480 oC are needed, while the calcination of for instance hemihydrate requires a temperature of 170 oC

  7. Exocrine pancreatic enzyme and calcium secretion in health and pancreatitis.

    OpenAIRE

    Clain, J E; Barbezat, G O; Marks, I N

    1981-01-01

    Calcium, enzyme, and total protein secretion were measured in secretin stimulated pancreatic juice in health, "early" chronic pancreatitis, and in chronic calcific pancreatitis. Increased concentrations of trypsin, total protein, and calcium, and increased outputs of calcium and protein were shown to be present in the "early" stages of the disease, indicating that an environment conducive to the formation of protein plugs and possibly later calcification already exists.

  8. Concurrent Imaging of Synaptic Vesicle Recycling and Calcium Dynamics

    OpenAIRE

    Li, Haiyan; Foss, Sarah M.; Dobryy, Yuriy L.; Park, C. Kevin; Hires, Samuel Andrew; Shaner, Nathan C.; Tsien, Roger Y.; Osborne, Leslie C.; Voglmaier, Susan M.

    2011-01-01

    Synaptic transmission involves the calcium dependent release of neurotransmitter from synaptic vesicles. Genetically encoded optical probes emitting different wavelengths of fluorescent light in response to neuronal activity offer a powerful approach to understand the spatial and temporal relationship of calcium dynamics to the release of neurotransmitter in defined neuronal populations. To simultaneously image synaptic vesicle recycling and changes in cytosolic calcium, we developed a red-sh...

  9. Concurrent imaging of synaptic vesicle recycling and calcium dynamics.

    OpenAIRE

    Haiyan eLi; Foss, Sarah M.; Yuriy eDobryy; C. Kevin ePark; Samuel Andrew Hires; Shaner, Nathan C.; Tsien, Roger Y.; Osborne, Leslie C.; Voglmaier, Susan M.

    2011-01-01

    Synaptic transmission involves the calcium-dependent release of neurotransmitter from synaptic vesicles. Genetically encoded optical probes emitting different wavelengths of fluorescent light in response to neuronal activity offer a powerful approach to understand the spatial and temporal relationship of calcium dynamics to the release of neurotransmitter in defined neuronal populations. To simultaneously image synaptic vesicle recycling and changes in cytosolic calcium, we developed a red-...

  10. Control of calcium carbonate precipitation in anaerobic reactors.

    OpenAIRE

    Langerak, van, B.

    1998-01-01

    Anaerobic treatment of waste waters with a high calcium content may lead to excessive precipitation of calcium carbonate. So far, no proper methods were available to predict or reduce the extent of precipitation in an anaerobic treatment system. Moreover, it also was not clear to what extent precipitation in an anaerobic reactor can be tolerated because adequate knowledge on the structure and quality of methanogenic sludges with high calcium carbonate content was lacking. In this thesis, the ...

  11. Validation of two food frequency questionnaires for dietary calcium assessment

    OpenAIRE

    Andrea, Hacker-Thompson; Robertson, Trina P.; Sellmeyer, Deborah E.

    2009-01-01

    Easily utilized questionnaires estimating dietary calcium intake would be a valuable asset to promoting skeletal health and a helpful research tool. Two calcium questionnaires, one online and one printed, were each compared to dietary calcium intake measured by a three-day diet record. Women completed the questionnaires in a randomized order and kept a 3-day food record at home, returning it by mail. The ethnicity of the 140 study participants was 102 Caucasian, 12 African American, 16 Asian,...

  12. Radially expanding transglial calcium waves in the intact cerebellum

    OpenAIRE

    Hoogland, Tycho M; Kuhn, Bernd; Göbel, Werner; Huang, Wenying; Nakai, Junichi; HELMCHEN, Fritjof; Flint, Jane; Wang, Samuel S.-H.

    2009-01-01

    Multicellular glial calcium waves may locally regulate neural activity or brain energetics. Here, we report a diffusion-driven astrocytic signal in the normal, intact brain that spans many astrocytic processes in a confined volume without fully encompassing any one cell. By using 2-photon microscopy in rodent cerebellar cortex labeled with fluorescent indicator dyes or the calcium-sensor protein G-CaMP2, we discovered spontaneous calcium waves that filled approximately ellipsoidal domains of ...

  13. Preparation and biological efficacy of haddock bone calcium tablets

    Institute of Scientific and Technical Information of China (English)

    霍健聪; 邓尚贵; 谢超; 童国忠

    2010-01-01

    To investigate the possible use of waste products obtained after processing haddock, the present study prepared haddock bone calcium powder by NaOH and ethanol soaking (alkalinealcohol method) and prepared haddock bone calcium tablets using the powder in combination with appropriate excipients. The biological efficacy of the haddock bone calcium tablets was investigated using Wistar rats as an experiment model. Results show that the optimal parameters for the alkalinealcohol method are: NaOH concentration 1...

  14. Should We Prescribe Calcium Supplements For Osteoporosis Prevention?

    OpenAIRE

    Reid, Ian R

    2014-01-01

    Advocacy for the use of calcium supplements arose at a time when there were no other effective interventions for the prevention of osteoporosis. Their promotion was based on the belief that increasing calcium intake would increase bone formation. Our current understandings of the biology of bone suggest that this does not occur, though calcium does act as a weak antiresorptive. Thus, it slows postmenopausal bone loss but, despite this, recent meta-analyses suggest no significant prevention of...

  15. Antimicrobial Activity of Calcium Hydroxide in Endodontics: A Review

    OpenAIRE

    Mohammadi, Z; Shalavi, S.; Yazdizadeh, M

    2012-01-01

    The purpose of endodontic therapy is to preserve the patient's natural teeth without compromising the patient's local or systemic health. Calcium hydroxide has been included in several materials and antimicrobial formulations that are used in several treatment modalities in endodontics, such as inter-appointment intracanal medicaments. The purpose of this article was to review the antimicrobial properties of calcium hydroxide in endodontics. Calcium hydroxide has a high pH (approximately 12.5...

  16. Treatment for calcium channel blocker poisoning: A systematic review

    OpenAIRE

    St-Onge, M.; Dubé, P.-A.; Gosselin, S.; Guimont, C; Godwin, J; Archambault, P. M.; Chauny, J.-M.; Frenette, A. J.; Darveau, M.; Le sage, N.; Poitras, J.; Provencher, J.; Juurlink, D. N.; Blais, R

    2014-01-01

    Context Calcium channel blocker poisoning is a common and sometimes life-threatening ingestion. Objective To evaluate the reported effects of treatments for calcium channel blocker poisoning. The primary outcomes of interest were mortality and hemodynamic parameters. The secondary outcomes included length of stay in hospital, length of stay in intensive care unit, duration of vasopressor use, functional outcomes, and serum calcium channel blocker concentrations. Methods Medline/Ovid, PubMed, ...

  17. Calcium isotope analysis by mass spectrometry.

    Science.gov (United States)

    Boulyga, Sergei F

    2010-01-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use

  18. Calcium regulates caveolin-1 expression at the transcriptional level

    International Nuclear Information System (INIS)

    Highlights: ► Caveolin-1 expression is regulated by calcium signaling at the transcriptional level. ► An inhibitor of or siRNA to L-type calcium channel suppressed caveolin-1 expression. ► Cyclosporine A or an NFAT inhibitor markedly reduced caveolin-1 expression. ► Caveolin-1 regulation by calcium signaling is observed in several mouse cell lines. -- Abstract: Caveolin-1, an indispensable component of caveolae serving as a transformation suppressor protein, is highly expressed in poorly metastatic mouse osteosarcoma FBJ-S1 cells while highly metastatic FBJ-LL cells express low levels of caveolin-1. Calcium concentration is higher in FBJ-S1 cells than in FBJ-LL cells; therefore, we investigated the possibility that calcium signaling positively regulates caveolin-1 in mouse FBJ-S1 cells. When cells were treated with the calcium channel blocker nifedipine, cyclosporin A (a calcineurin inhibitor), or INCA-6 (a nuclear factor of activated T-cells [NFAT] inhibitor), caveolin-1 expression at the mRNA and protein levels decreased. RNA silencing of voltage-dependent L-type calcium channel subunit alpha-1C resulted in suppression of caveolin-1 expression. This novel caveolin-1 regulation pathway was also identified in mouse NIH 3T3 cells and Lewis lung carcinoma cells. These results indicate that caveolin-1 is positively regulated at the transcriptional level through a novel calcium signaling pathway mediated by L-type calcium channel/Ca2+/calcineurin/NFAT.

  19. Effect of galactooligosaccharides on calcium absorption in rats.

    Science.gov (United States)

    Chonan, O; Watanuki, M

    1995-02-01

    The effect of transgalactosylated oligosaccharides (TOS), which are oligosaccharides that are unhydrolyzed in the small intestine and are fermented by the intestinal bacteria, on calcium absorption was examined in male Wistar rats for 10 days. The apparent calcium absorption ratios and the apparent retention ratios were significantly higher in the rats fed TOS-containing diets (5 or 10 g/100 g of diet). In the second experiment, the cecum was ligated in situ and calcium absorption from the cecum was observed after injecting TOS into the cecal lumen. Four hours after the injection, the calcium concentration in the cecal vein of the rats given TOS was significantly higher than that of the control. The calcium content in the liquid phase of the cecal lumen and the liquid phase weight were also increased by the injection of TOS into the cecum. Although the extent of calcium absorption from the cecum of rats fed TOS is due to overall calcium absorption is not known, under the experimental conditions used in the present study the stimulatory effect of TOS on calcium absorption may be partly associated with increased solubility of calcium and the fluid content in the intestinal lumen.

  20. On the growth of calcium tartrate tetrahydrate single crystals

    Indian Academy of Sciences (India)

    X Sahaya Shajan; C Mahadevan

    2004-08-01

    Calcium tartrate single crystals were grown using silica gel as the growth medium. Calcium formate mixed with formic acid was taken as the supernatant solution. It was observed that the nucleation density was reduced and the size of the crystals was improved to a large extent compared to the conventional way of growing calcium tartrate crystals with calcium chloride. The role played by formate–formic acid on the growth of crystals is discussed. The grown crystals were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction analysis (XRD), microhardness measurement, Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG) and differential thermal analysis (DTA). The results obtained are compared with the previous work.

  1. Should we prescribe calcium supplements for osteoporosis prevention?

    Science.gov (United States)

    Reid, Ian R

    2014-02-01

    Advocacy for the use of calcium supplements arose at a time when there were no other effective interventions for the prevention of osteoporosis. Their promotion was based on the belief that increasing calcium intake would increase bone formation. Our current understandings of the biology of bone suggest that this does not occur, though calcium does act as a weak antiresorptive. Thus, it slows postmenopausal bone loss but, despite this, recent meta-analyses suggest no significant prevention of fractures. In sum, there is little substantive evidence of benefit to bone health from the use of calcium supplements. Against this needs to be balanced the likelihood that calcium supplement use increases cardiovascular events, kidney stones, gastrointestinal symptoms, and admissions to hospital with acute gastrointestinal problems. Thus, the balance of risk and benefit seems to be consistently negative. As a result, current recommendations are to obtain calcium from the diet in preference to supplements. Dietary calcium intake has not been associated with the adverse effects associated with supplements, probably because calcium is provided in smaller boluses, which are absorbed more slowly since they come together with quantities of protein and fat, resulting in a slower gastric transit time. These findings suggest that calcium supplements have little role to play in the modern therapeutics of osteoporosis, which is based around the targeting of safe and effective anti-resorptive drugs to individuals demonstrated to be at increased risk of future fractures. PMID:24707464

  2. FLIPR assays of intracellular calcium in GPCR drug discovery

    DEFF Research Database (Denmark)

    Hansen, Kasper Bø; Bräuner-Osborne, Hans

    2009-01-01

    Fluorescent dyes sensitive to changes in intracellular calcium have become increasingly popular in G protein-coupled receptor (GPCR) drug discovery for several reasons. First of all, the assays using the dyes are easy to perform and are of low cost compared to other assays. Second, most non......-Galpha(q)-coupled GPCRs can be tweaked to modulate intracellular calcium by co-transfection with promiscuous or chimeric/mutated G proteins making the calcium assays broadly applicable in GPCR research. Third, the price of instruments capable of measuring fluorescent-based calcium indicators has become significantly less...

  3. THERMAL DEGRADATION AND FLAME RETARDANCY OF CALCIUM ALGINATE FIBERS

    Institute of Scientific and Technical Information of China (English)

    于建; 夏延致

    2009-01-01

    Calcium alginate fibers were prepared by wet spinning of sodium alginate into a coagulating bath containing calcium chloride.The thermal degradation and flame retardancy of calcium alginate fibers were investigated with thermal gravimetry(TG),X-ray diffraction(XRD),limiting oxygen index(LOI) and cone calorimeter(CONE).The results show that calcium alginate fibers are inherently flame retardant with a LOI value of 34,and the heat release rate(HRR),total heat release(THR),CO and CO_2 concentrations during ...

  4. Serum calcium levels are not associated with coronary heart disease

    Directory of Open Access Journals (Sweden)

    Jin Y

    2013-09-01

    Full Text Available Yuelong Jin,* Lianping He,* Quanhai Wang, Yan Chen, Xiaohua Ren, Hui Tang, Xiuli Song, Lingling Ding, Qin Qi, Zhiwei Huang, Jiegen Yu, Yingshui Yao Department of Preventive Medicine, Wannan Medical College, Wuhu, People's Republic of China *These authors contributed equally to this work Background: Numerous studies have reported that low calcium intake is related to a higher prevalence of cardiovascular disease. However, the relationship between serum calcium and coronary heart disease is unclear. The purpose of this study was to compare serum calcium levels in patients with coronary heart disease and those in healthy individuals. Methods: This retrospective, case-control study conducted in the People's Republic of China comprised 380 cases and 379 controls. Serum calcium levels, blood lipids, and anthropometric measurements were measured in both groups. The Student's unpaired t-test or Chi-square test was used to compare differences between cases and controls. Pearson's partial correlation coefficient was used to determine the association between serum calcium, blood lipids, and blood pressure in both groups. Results: Our results indicate that the average level of serum calcium in cases was higher than in controls. Serum calcium levels showed no correlation with any parameter except for triglycerides in either group. Conclusion: Overall, these data suggest that serum calcium has no influence on coronary heart disease or triglyceride levels in the general population. Keywords: serum calcium, hypertension, blood lipids

  5. Calcium spray dryer waste management: Design guidelines: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    Calcium spray drying is a commercially available and applied technology used to control SO/sub 2/ emissions. This process is rapidly gaining utility acceptance. Because physical and chemical properties of wastes generated by calcium spray drying differ from those of conventional coal combustion by-products (fly ash and scrubber sludge) typical waste management practices may need to be altered. This report presents technical guidelines for designing and operating a calcium spray drying waste management system. Waste transfer, storage, pretreatment/conditioning, transport and disposal are addressed. The report briefly describes eighteen existing or planned calcium spray drying waste management systems. Results of waste property tests conducted as part of this study, and test data from other studies are reported and compared. Conceptual designs of both new and retrofit calcium spray drying waste management systems also are presented to demonstrate the economic impact of spray drying on waste management. Parametric cost sensitivity analyses illustrate the impact of significant design parameters on waste management costs. Existing calcium spray drying waste management experiences, as well as spray drying waste property data provided the basis for guideline development. Because existing calcium spray drying facilities burn low sulfur coal, this report is considered applicable only to calcium spray drying wastes produced from low sulfur coal. At this time, calcium spray drying is not expected to be feasible for high sulfur coal applications.

  6. Diagram of Calcium Movement in the Human Body

    Science.gov (United States)

    2002-01-01

    This diagram shows the normal pathways of calcium movement in the body and indicates changes (green arrows) seen during preliminary space flight experiments. Calcium plays a central role because 1) it gives strength and structure to bone and 2) all types of cells require it to function normally. To better understand how and why weightlessness induces bone loss, astronauts have participated in a study of calcium kinetics -- that is, the movement of calcium through the body, including absorption from food, and its role in the formation and breakdown of bone.

  7. Vitamin D and Calcium Supplementation to Prevent Fractures

    Science.gov (United States)

    Understanding Task Force Recommendations Vitamin D and Calcium Supplementation to Prevent Fractures The U.S. Preventive Services Task Force (Task Force) has issued final recommendations on Vitamin ...

  8. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  9. Distal Renal Tubular Acidosis and Calcium Nephrolithiasis

    Science.gov (United States)

    Moe, Orson W.; Fuster, Daniel G.; Xie, Xiao-Song

    2008-09-01

    Calcium stones are commonly encountered in patients with congenital distal renal tubular acidosis, a disease of renal acidification caused by mutations in either the vacuolar H+-ATPase (B1 or a4 subunit), anion exchanger-1, or carbonic anhydrase II. Based on the existing database, we present two hypotheses. First, heterozygotes with mutations in B1 subunit of H+-ATPase are not normal but may harbor biochemical abnormalities such as renal acidification defects, hypercalciuria, and hypocitraturia which can predispose them to kidney stone formation. Second, we propose at least two mechanisms by which mutant B1 subunit can impair H+-ATPase: defective pump assembly and defective pump activity.

  10. Calcium phosphate ceramics in drug delivery

    Science.gov (United States)

    Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit

    2011-04-01

    Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.

  11. High Performance Calcium Titanate Nanoparticle ER Fluids

    Science.gov (United States)

    Wang, Xuezhao; Shen, Rong; Wen, Weijia; Lu, Kunquan

    A type of calcium titanate (CTO) nanoparticles was synthesized by means of wet chemical method [1] without coating on the particles. The CTO/silicone oil ER fluid exhibits excellent electrorheological properties: high shear stress (~50-100 kPa) under dc electric field, a low current density (less than 2μA/cm2 at 5kV/mm), and long term stability against sedimentation. Although there are not special additives in the ER fluids, it is found from the chemical analysis that a trace of alkyl group, hydroxyl group, carbonyl group and some ions is remained in the particles which may dominate the ER response.

  12. Scattering lengths of calcium and barium isotopes

    OpenAIRE

    Dammalapati, U.; Willmann, L.; Knoop, S.

    2011-01-01

    We have calculated the s-wave scattering length of all the even isotopes of calcium (Ca) and barium (Ba), in order to investigate the prospect of Bose-Einstein condensation (BEC). For Ca we have used an accurate molecular potential based on detailed spectroscopic data. Our calculations show that Ca does not provide other isotopes alternative to the recently Bose condensed 40Ca that suffers strong losses because of a very large scattering length. For Ba we show by using a model potential that ...

  13. Effect of dairy calcium or supplementary calcium intake on postprandial fat metabolism, appetite, and subsequent energy intake

    DEFF Research Database (Denmark)

    Lorenzen, J.K.; Nielsen, S.; Holst, J.J.;

    2007-01-01

    Background: High calcium intake has been shown to increase fecal fat excretion. Objective: Our aim was to examine whether a high calcium intake from dairy products or from supplements affects postprandial fat metabolism and appetite through fat malabsorption. Design: Four different isocaloric meals...... were tested in 18 subjects according to a randomized crossover design. The test meals contained high (HC meal: 172 mg/MJ), medium (MC meal: 84 mg/MJ), or low (LC meal: 15 mg/MJ) amounts of calcium from dairy products or a high amount of calcium given as a calcium carbonate supplement (Suppl meal: 183...... and approximate to 15% lower after the MC meal (P = 0.0495) and approximate to 17% lower after the HC meal (P = 0.02) than after the Suppl meal. No consistent effects of calcium on appetite sensation, or on energy intake at the subsequent meal, or on the postprandial responses of cholecystokinin, glucagon...

  14. Randomized crossover study comparing the phosphate-binding efficacy of calcium ketoglutarate versus calcium carbonate in patients on chronic hemodialysis

    DEFF Research Database (Denmark)

    Bro, S; Rasmussen, R A; Handberg, J;

    1998-01-01

    into the study. Calculations based on median doses after 12 weeks showed that the cost of the therapy in Denmark was 10 times higher for calcium ketoglutarate compared with calcium carbonate (US$6.00/d v US$0.65/d). Calcium ketoglutarate may be an effective and safe alternative to treatment with aluminum......The objective of the study was to evaluate the phosphate-binding efficacy, side effects, and cost of therapy of calcium ketoglutarate granulate as compared with calcium carbonate tablets in patients on chronic hemodialysis. The study design used was a randomized, crossover open trial, and the main...... outcome measurements were plasma ionized calcium levels, plasma phosphate levels, plasma intact parathyroid hormone (PTH) levels, requirements for supplemental aluminum-aminoacetate therapy, patient tolerance, and cost of therapy. Nineteen patients on chronic hemodialysis were treated with a dialysate...

  15. 21 CFR 101.72 - Health claims: calcium, vitamin D, and osteoporosis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Health claims: calcium, vitamin D, and....72 Health claims: calcium, vitamin D, and osteoporosis. (a) Relationship between calcium, vitamin D, and osteoporosis. An inadequate intake of calcium or calcium and vitamin D contributes to low...

  16. Effect of resorbable calcium aluminate ceramics on regulation of calcium and phosphorus in rats.

    Science.gov (United States)

    Carvalho, B A; Bajpai, P K; Graves, G A

    1976-06-01

    Ions released from resorbable ceramics could be toxic to the animal. Experiments were designed to study the effect of implanting three different weights of porous resorbable calcium aluminate ceramics (0.172, 0.332, and 0.504 g) in rats for a total duration of 300 days. Gross and microscopic examination of heart, liver, kidneys, trachea with thyroid, and muscle adjacent to the implant did not show any pathological changes. Calcium and inorganic phosphate content of bone, serum and urine were not affected by the implants. Urine hydroxyproline excretion did not change in the animals implanted with ceramics. Animals implanted with 0.332 g of ceramics had a significantly higher serum alkaline phosphatase activity than the control animals. Resorption of calcium and depositon of inorganic phosphates in the implanted ceramics suggested that ions were being exchanged with the body fluids. Implantation of 0.172 to 0.332 g porous resorbable calcium aluminate ceramic was not toxic to the animal.

  17. Tree species effects on calcium cycling: The role of calcium uptake in deep soils

    NARCIS (Netherlands)

    Dijkstra, F.A.; Smits, M.M.

    2002-01-01

    Soil acidity and calcium (Ca) availability in the surface soil differ substantially beneath sugar maple (Acer saccharum) and eastern hemlock (Tsuga canadensis) trees in a mixed forest in northwestern Connecticut. We determined the effect of pumping of Ca from deep soil (rooting zone below 20-cm mine

  18. Effect of nano-calcium-enriched milk on calcium metabolism in ovariectomized rats.

    Science.gov (United States)

    Park, Heung-Sik; Ahn, Joungjwa; Kwak, Hae-Soo

    2008-09-01

    This study was designed to examine the effect of different kinds of calcium enrichment on serum and urine indices of mineral status in ovariectomized rats. Twenty-four 7-week-old Sprague-Dawley female rats were divided into four groups, ovariectomized, and fed diets containing the following: (1) Control, non-Ca-enriched milk; (2) OVX1, calcium carbonate-enriched milk; (3) OVX2, ionized Ca-enriched milk; and (4) OVX3, nano-Ca-enriched milk. After 18 weeks of feeding, the food efficiency ratio in the nano-Ca-fed group was significantly lower compared with those in the Control and OVX2 groups. There was no difference in serum and fecal Ca among the groups. The bone/total alkaline phosphatase ratio was significantly higher in rats fed milk enriched with nano-Ca (59%) and calcium carbonate (62%) than in control (44%) animals. Urinary Ca was the highest in the nano-Ca-enriched group; however, urinary excretions of deoxypyridinoline and hydroxyproline were significantly decreased in the nano-Ca-enriched group. The present results indicate that consumption of nano-Ca-enriched milk resulted in an increase of urinary excretion of calcium and a decrease in deoxypyridinoline and hydroxyproline in ovariectomized rats.

  19. The Effect of Calcium on the Binding of Calmodulin to Calcium/Calmodulin Protein Kinase II.

    Science.gov (United States)

    Porta, Angela R.

    2000-01-01

    Introduces a follow-up laboratory experiment demonstrating the formation change when calcium binds to calmodulin. This conformation change allows this complex to bind to a target protein. Presents the necessary information to conduct the experiment and discusses the results. (YDS)

  20. Ionized calcium measurements are influenced by albumin - should ionized calcium be corrected?

    DEFF Research Database (Denmark)

    Larsen, Trine R; Galthen-Sørensen, Mathias; Antonsen, Steen

    2014-01-01

    Abstract Measurement of ionized calcium (CaI) has been reported to be dependent on albumin concentration. We examined the correlation between albumin and CaI measured on different ion selective electrode analyzers and in different groups of patients in a large dataset, extracted from the laboratory...