WorldWideScience

Sample records for bioremediation cleanup technologies

  1. Eliciting Public Attitudes Regarding Bioremediation Cleanup Technologies: Lessons Learned from a Consensus Workshop in Idaho

    International Nuclear Information System (INIS)

    During the summer of 2002, we developed and implemented a ''consensus workshop'' with Idaho citizens to elicit their concerns and issues regarding the use of bioremediation as a cleanup technology for radioactive nuclides and heavy metals at Department of Energy (DOE) sites. The consensus workshop is a derivation of a technology assessment method designed to ensure dialogue between experts and lay people. It has its origins in the United States in the form of ''consensus development conferences'' used by the National Institutes of Health (NIH) to elicit professional knowledge and concerns about new medical treatments. Over the last 25 years, NIH has conducted over 100 consensus development conferences. (Jorgensen 1995). The consensus conference is grounded in the idea that technology assessment and policy needs to be socially negotiated among many different stakeholders and groups rather than narrowly defined by a group of experts. To successfully implement new technology, the public requires access to information that addresses a full complement of issues including understanding the organization proposing the technology. The consensus conference method creates an informed dialogue, making technology understandable to the general public and sets it within perspectives and priorities that may differ radically from those of the expert community. While specific outcomes differ depending on the overall context of a conference, one expected outcome is that citizen panel members develop greater knowledge of the technology during the conference process and, sometimes, the entire panel experiences a change in attitude toward the technology and/or the organization proposing its use (Kluver 1995). The purpose of this research project was to explore the efficacy of the consensus conference model as a way to elicit the input of the general public about bioremediation of radionuclides and heavy metals at Department of Energy sites. Objectives of the research included: (1

  2. Eliciting Public Attitudes Regarding Bioremediation Cleanup Technologies: Lessons Learned from a Consensus Workshop in Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Denise Lach, Principle Investigator; Stephanie Sanford, Co-P.I.

    2003-03-01

    During the summer of 2002, we developed and implemented a ''consensus workshop'' with Idaho citizens to elicit their concerns and issues regarding the use of bioremediation as a cleanup technology for radioactive nuclides and heavy metals at Department of Energy (DOE) sites. The consensus workshop is a derivation of a technology assessment method designed to ensure dialogue between experts and lay people. It has its origins in the United States in the form of ''consensus development conferences'' used by the National Institutes of Health (NIH) to elicit professional knowledge and concerns about new medical treatments. Over the last 25 years, NIH has conducted over 100 consensus development conferences. (Jorgensen 1995). The consensus conference is grounded in the idea that technology assessment and policy needs to be socially negotiated among many different stakeholders and groups rather than narrowly defined by a group of experts. To successfully implement new technology, the public requires access to information that addresses a full complement of issues including understanding the organization proposing the technology. The consensus conference method creates an informed dialogue, making technology understandable to the general public and sets it within perspectives and priorities that may differ radically from those of the expert community. While specific outcomes differ depending on the overall context of a conference, one expected outcome is that citizen panel members develop greater knowledge of the technology during the conference process and, sometimes, the entire panel experiences a change in attitude toward the technology and/or the organization proposing its use (Kluver 1995). The purpose of this research project was to explore the efficacy of the consensus conference model as a way to elicit the input of the general public about bioremediation of radionuclides and heavy metals at Department of Energy sites

  3. Bioremediation: environmental clean-up through pathway engineering.

    Science.gov (United States)

    Singh, Shailendra; Kang, Seung Hyun; Mulchandani, Ashok; Chen, Wilfred

    2008-10-01

    Given the immense risk posed by widespread environmental pollution by inorganic and organic chemicals, novel methods of decontamination and clean-up are required. Owing to the relatively high cost and the non-specificity of conventional techniques, bioremediation is a promising alternative technology for pollutant clean-up. Advances in bioremediation harness molecular, genetic, microbiology, and protein engineering tools and rely on identification of novel metal-sequestering peptides, rational and irrational pathway engineering, and enzyme design. Recent advances have been made for enhanced inorganic chemical remediation and organic chemical degradation using various pathway-engineering approaches and these are discussed in this review. PMID:18760355

  4. Enabling cleanup technology transfer

    International Nuclear Information System (INIS)

    Technology transfer in the environmental restoration, or cleanup, area has been challenging. While there is little doubt that innovative technologies are needed to reduce the times, risks, and costs associated with the cleanup of federal sites, particularly those of the Departments of Energy (DOE) and Defense, the use of such technologies in actual cleanups has been relatively limited. There are, of course, many reasons why technologies do not reach the implementation phase or do not get transferred from developing entities to the user community. For example, many past cleanup contracts provided few incentives for performance that would compel a contractor to seek improvement via technology applications. While performance-based contracts are becoming more common, they alone will not drive increased technology applications. This paper focuses on some applications of cleanup methodologies and technologies that have been successful and are illustrative of a more general principle. The principle is at once obvious and not widely practiced. It is that, with few exceptions, innovative cleanup technologies are rarely implemented successfully alone but rather are implemented in the context of enabling processes and methodologies. And, since cleanup is conducted in a regulatory environment, the stage is better set for technology transfer when the context includes substantive interactions with the relevant stakeholders. Examples of this principle are drawn from Argonne National Laboratory's experiences in Adaptive Sampling and Analysis Programs (ASAPs), Precise Excavation, and the DOE Technology Connection (TechCon) Program. The lessons learned may be applicable to the continuing challenges posed by the cleanup and long-term stewardship of radioactive contaminants and unexploded ordnance (UXO) at federal sites

  5. Innovative technologies for groundwater cleanup

    International Nuclear Information System (INIS)

    These notes provide a broad overview of current developments in innovative technologies for groundwater cleanup. In this context, groundwater cleanup technologies include site remediation methods that deal with contaminants in ground water or that may move from the vadose zone into ground water. This discussion attempts to emphasize approaches that may be able to achieve significant improvements in groundwater cleanup cost or effectiveness. However, since data for quantitative performance and cost comparisons of new cleanup methods are scarce, preliminary comparisons must be based on the scientific approach used by each method and on the site-specific technical challenges presented by each groundwater contamination situation. A large number of technical alternatives that are now in research, development, and testing can be categorized by the scientific phenomena that they employ and by the site contamination situations that they treat. After reviewing a representative selection of these technologies, one of the new technologies, the Microbial Filter method, is discussed in more detail to highlight a promising in situ groundwater cleanup technology that is now being readied for field testing

  6. Innovative technologies for soil cleanup

    International Nuclear Information System (INIS)

    These notes provide a broad overview of current developments in innovative technologies for soil cleanup. In this context, soil cleanup technologies include site remediation methods that deal primarily with the vadose zone and with relatively shallow, near-surface contamination of soil or rock materials. This discussion attempts to emphasize approaches that may be able to achieve significant improvements in soil cleanup cost or effectiveness. However, since data for quantitative performance and cost comparisons of new cleanup methods are scarce, preliminary comparisons must be based on the scientific approach used by each method and on the sits-specific technical challenges presented by each sold contamination situation. A large number of technical alternatives that are now in research, development, and testing can be categorized by the scientific phenomena that they employ and by the site contamination situations that they treat. After cataloging a representative selection of these technologies, one of the new technologies, Dynamic Underground Stripping, is discussed in more detail to highlight a promising soil cleanup technology that is now being field tested

  7. Pilot Application of SVE-Enhanced Bioremediation Technology for in situ Clean-up of a Light Oil-Contaminated Site

    OpenAIRE

    Yang, Yuewei; WU, GUOZHONG; Li, Xingang; Coulon, Frederic; Li, Hong; Sui, Hong

    2012-01-01

    Light oil (isooctane) removal using soil vapor extraction (SVE) enhanced bioremediation (BR) was investigated by four steps, including: (i) amendment of substrates in batches (ii) continuous induction of contaminants for 15 days (iii) in situ acclimation for 100 days (iv) biodegradation assisted with SVE venting for 120 h at 20 m³·h-1 Results showed that the total removal efficiency was up to 90% after BR-SVE treatments. BR contributed predominantly to isooctane removal during the last 36 h o...

  8. Legal and social concerns to the development of bioremediation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bilyard, G.R.; McCabe, G.H.; White, K.A.; Gajewski, S.W.; Hendrickson, P.L.; Jaksch, J.A.; Kirwan-Taylor, H.A.; McKinney, M.D.

    1996-09-01

    The social and legal framework within which bioremediation technologies must be researched, developed, and deployed in the US are discussed in this report. Discussions focus on policies, laws and regulations, intellectual property, technology transfer, and stakeholder concerns. These discussions are intended to help program managers, scientists and engineers understand the social and legal framework within which they work, and be cognizant of relevant issues that must be navigated during bioremediation technology research, development, and deployment activities. While this report focuses on the legal and social environment within which the DOE operates, the laws, regulations and social processes could apply to DoD and other sites nationwide. This report identifies specific issues related to bioremediation technologies, including those involving the use of plants; native, naturally occurring microbes; non-native, naturally occurring microbes; genetically engineered organisms; and microbial products (e.g., enzymes, surfactants, chelating compounds). It considers issues that fall within the following general categories: US biotechnology policy and the regulation of field releases of organisms; US environmental laws and waste cleanup regulations; intellectual property and patenting issues; technology transfer procedures for commercializing technology developed through government-funded research; stakeholder concerns about bioremediation proposals; and methods for assuring public involvement in technology development and deployment.

  9. Legal and social concerns to the development of bioremediation technologies

    International Nuclear Information System (INIS)

    The social and legal framework within which bioremediation technologies must be researched, developed, and deployed in the US are discussed in this report. Discussions focus on policies, laws and regulations, intellectual property, technology transfer, and stakeholder concerns. These discussions are intended to help program managers, scientists and engineers understand the social and legal framework within which they work, and be cognizant of relevant issues that must be navigated during bioremediation technology research, development, and deployment activities. While this report focuses on the legal and social environment within which the DOE operates, the laws, regulations and social processes could apply to DoD and other sites nationwide. This report identifies specific issues related to bioremediation technologies, including those involving the use of plants; native, naturally occurring microbes; non-native, naturally occurring microbes; genetically engineered organisms; and microbial products (e.g., enzymes, surfactants, chelating compounds). It considers issues that fall within the following general categories: US biotechnology policy and the regulation of field releases of organisms; US environmental laws and waste cleanup regulations; intellectual property and patenting issues; technology transfer procedures for commercializing technology developed through government-funded research; stakeholder concerns about bioremediation proposals; and methods for assuring public involvement in technology development and deployment

  10. Bioremediation: A competitive alternative for the cleanup of contaminated MGP sites

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAHs) are characteristically highly carcinogenic, microbial recalcitrant, and accumulate easily in soil and groundwater. This contributes to the increasing environmental concern of contamination from PAHs. PAH contamination occurs primarily from leaking underground storage tanks and manufactured gas plant (MGP) sites. In this work, contaminated soil was analyzed for feasibility of cleanup via bioremediation, and selection criteria for the microorganisms were developed for the specificity of a MGP sites. The bioremediation process was compared with the ex-situ processes of coal agloflotation, solvent extraction, and supercritical fluid extraction

  11. LITERATURE REVIEW ON THE USE OF COMMERCIAL BIOREMEDIATION AGENTS FOR CLEAN-UP OF OIL-CONTAMINATED ESTUARINE ENVIRONMENTS

    Science.gov (United States)

    The objective of this document is to conduct a comprehensive review of the use of commercial bioremediation products treating oil spills in all environments, Literature assessed includes peer-reviewed articles, company reports, government reports, and reports by cleanup contracto...

  12. Bioremediation case study: Fuel-contaminated soil cleanup in the Marshall Islands

    International Nuclear Information System (INIS)

    Using microbes to degrade fuels in contaminated soils is becoming increasingly more attractive as an approach to environmental restoration. Removing contamination by traditional methods is costly, does not always eliminate the problem, and often just moves it somewhere else. Biodegradation of contaminants can often be accomplished in situ, resulting in the actual destruction of the contaminants by microbial conversion to harmless by-products. Bioremediation is not applicable to all forms of environmental contamination but has been demonstrated to be particularly effective on petroleum hydrocarbon based fuels. Bioremediation can offer a cost-effective means for site cleanup, particularly where challenging logistical considerations have to be factored into cleanup projects. Logistical considerations have made bioremediation the method of choice for the decontamination of fuel-containing soils on Kwajalein Island, Republic of the Marshall Islands. Kwajalein is located more than 2,100 miles west of Hawaii in the southernmost part of the North Pacific. The site of a major missile range of the Strategic Defense Command (SDC), Kwajalein has been the center of US defense activities for almost 50 years. The island is part of a typical coral atoll and is only 2.5 miles long and 0.5 miles wide. Mission-related activities over the past 5 decades have resulted in about 10% of the island being contaminated with diesel, gasoline, and jet fuels. SDC has executed an agreement with the Department of Energy for the Hazardous Waste Remedial Actions Program (HAZWRAP), a division of Martin Marietta Energy Systems, Inc., to assist the US Army Kwajalein Atoll (USAKA) in the management of the Base restoration activities on Kwajalein Atoll. HAZWRAP initiated sampling and feasibility studies to determine whether bioremediation was a viable choice for site cleanup at USAKA

  13. Technologies for environmental cleanup: Toxic and hazardous waste management

    International Nuclear Information System (INIS)

    This is the second in a series of EUROCOURSES conducted under the title, ''Technologies for Environmental Cleanup.'' To date, the series consist of the following courses: 1992, soils and groundwater; 1993, Toxic and Hazardous Waste Management. The 1993 course focuses on recent technological developments in the United States and Europe in the areas of waste management policies and regulations, characterization and monitoring of waste, waste minimization and recycling strategies, thermal treatment technologies, photolytic degradation processes, bioremediation processes, medical waste treatment, waste stabilization processes, catalytic organic destruction technologies, risk analyses, and data bases and information networks. It is intended that this course ill serve as a resource of state-of-the-art technologies and methodologies for the environmental protection manager involved in decisions concerning the management of toxic and hazardous waste

  14. Soil and groundwater cleanup: benefits and limits of emerging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Caliman, Florentina Anca; Robu, Brindusa Mihaela; Smaranda, Camelia; Pavel, Vasile Lucian; Gavrilescu, Maria [Technical University of Iasi, Department of Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection, Iasi (Romania)

    2011-04-15

    Contaminated soil and groundwater have been the subject of study and research, so that the field of remediation has grown and evolved, continually developing and adopting new technologies in attempts to improve the decontamination. The cleanup of environmental pollution involves a variety of techniques, ranging from simple biological processes to advanced engineering technologies. Cleanup activities may also address a wide range of contaminants. This article is a short analysis of the technologies for cleaning up groundwater and soil, highlighting knowledge and information gaps. Challenges and strategies for cleaning up different types of contaminants, mainly heavy metals and persistent organic compounds are described. Included are technologies that treat ground water contaminants in place in the subsurface and soil technologies that treat the soil either in place or on site in a treatment unit. Emerging technologies such as those based on oxidation-reduction, bioremediation, and nanotechnologies are covered. It is evident that for a good efficiency of remediation, techniques or even whole new technologies may be incorporated into an existing technology as a treatment train, improving its performance or overcome limitations. Several economic and decision-making elements are developed in the final part, based on the analysis carried out throughout the article. The work highlights the fact that excellence in research and technology progress could be attained by the development of technologies to deal more effectively and economically with certain toxic contaminants such as heavy metals, volatile organic compounds, and persistent organic pollutants, associated with optimization of technologies under field remediation conditions and requirements, improving capacity and yields, and reducing costs. Moreover, increasing knowledge of the scope and problem of equipment development could improve the benefits. (orig.)

  15. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2000-07-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs.

  16. Bioremediation in Germany: Markets, technologies, and leading companies

    International Nuclear Information System (INIS)

    Bioremediation has become an internationally accepted remediation tool. Commercial bioremediation activities take place in many European countries, but Germany and the Netherlands are the clear European leaders, with both having a long history of public and private sector activity in biological technologies. The German bioremediation market has been driven by government regulation, in particular the waste laws that apply to contaminated soils. The 1994 German market for bioremediation is estimated at $70 to 100 million (US $). There are at least 150 companies active in bioremediation in Germany, most of which practice bioremediation of hydrocarbon-contaminated soils, either in situ or ex situ. Because of their predominance in the current European market, German firms are well positioned to expand into those nations in the European Union (EU) currently lacking an environmental business infrastructure

  17. Bioremediation, regulatory agencies and public acceptance of this technology

    International Nuclear Information System (INIS)

    The technology of bioremediation, i.e. the utilization of microorganisms to degrade environmental pollutants, the dangers and consequences inherent in the large-scale use of microbial organisms in such processes, and the role of regulatory agencies in the utilization and exploitation of bioremediation technologies, were discussed. Factors influencing public acceptance of bioremediation as a satisfactory tool for cleaning up the environment vis-a-vis other existing and potential rehabilitation techniques were also reviewed. The ambiguity of regulatory agencies in the matter of bioremediation was noted. For example, there are many regulatory hurdles relative to the testing, use and approval of transgenic microorganisms for use in bioremediation. On the other hand, the use and release of engineered plants is considered merely another form of hybrid and their endorsement is proceeding rapidly. With regard to public acceptance, the author considered bioremediation technology as too recent, with not enough successful applications to attract public attention. Although the evidence suggests that bioremediation is environmentally safe, the efficacy, reliability and predictability of the various technologies have yet to be demonstrated. 25 refs

  18. Bioremediation: Hope/Hype for Environmental Cleanup (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry [LBNL, Ecology Dept

    2007-07-18

    Summer Lecture Series 2007: Terry Hazen, Senior Staff Scientists and Head of the LBNL Ecology Department, discusses when it's best to resort to engineered bioremediation of contaminated sites, and when it's best to rely on natural attenuation. Recent advances have greatly broadened the potential applications for bioremediation. At the same time, scientists' knowledge of biogeochemical processes has advanced and they can better gauge how quickly and completely contaminants can be degraded without human intervention.

  19. DNAPL Bioremediation-RTDF. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    The Bioremediation Working Group of the Remediation Technologies Development Forum is a consortium including General Electric, Beak International, Ciba-Geigy, Dow, DuPont, ICI Americas, Novartis, Zeneca, DOE, the U.S. Air Force and the EPA. Each partner in the consortium brings expertise as well as resources to conduct studies on the effectiveness of bioremediation in degrading contaminants in soil. Reactive Transport in Three Dimensions (RT3D) software is based on the premise that bioremediation processes can be designed and controlled like other chemical processes and is now being using for natural attenuation evaluation at several government and industrial chlorinated ethenes contaminated sites. Users simply enter the site-specific information to simulate the contaminant plume in the ground water and can then evaluate various bioremediation options

  20. BIOREMEDIATION

    Science.gov (United States)

    Bioremediation is a method for using the activities of microorganisms and-or plants to transform organic or inorganic compounds that may be harmful to humans, animals, plants or the environment to compounds that are less harmful. In many instances the toxic compounds may be compl...

  1. BIOSTIMULATION CAN SOMETIMES ENHANCE ENVIRONMENTAL CLEANUP - An Editorial Viewpoint on Bioremediation

    Science.gov (United States)

    The Exxon Valdex oil spill, which led to the enactment of the Oil Pollution Act of 1990, gave rise to the largest bioremediation field trial ever attempted. A research sutdy was conducted by EPA in 1989 and 1990 to develop data to support the recommendation to go forward w...

  2. ENHANCING STAKEHOLDER ACCEPTANCE OF BIOREMEDIATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Focht, Will; Albright, Matt; Anex, Robert P., Jr., ed.

    2009-04-21

    This project inquired into the judgments and beliefs of people living near DOE reservations and facilities at Oak Ridge, Tennessee; Hanford, Washington; and Los Alamos, Tennessee about bioremediation of subsurface contamination. The purpose of the investigation was to identify strategies based on these judgments and beliefs for enhancing public support of bioremediation. Several methods were used to collect and analyze data including content analysis of transcripts of face-to-face personal interviews, factor analysis of subjective perspectives using Q methodology, and statistical analysis of results from a large-sample randomized telephone survey. Content analysis of interview transcripts identified themes about public perceptions and constructions of contamination risk, risk management, and risk managers. This analysis revealed that those who have no employment relationship at the sites and are not engaged in technical professions are most concerned about contamination risks. We also found that most interviewees are unfamiliar with subsurface contamination risks and how they can be reduced, believe they have little control over exposure, are frustrated with the lack of progress in remediation, are concerned about a lack of commitment of DOE to full remediation, and distrust site managers to act in the public interest. Concern is also expressed over frequent site management turnover, excessive secrecy, ineffective and biased communication, perceived attempts to talk the public into accepting risk, and apparent lack of concern about community welfare. In the telephone survey, we asked respondents who were aware of site contamination about their perceptions of risk from exposure to subsurface contamination. Response analysis revealed that most people believe that they are at significant risk from subsurface contamination but they acknowledge that more education is needed to calibrate risk perceptions against scientific risk assessments. Most rate their personal

  3. Enhancing Stakeholder Acceptance Of Bioremediation Technologies

    International Nuclear Information System (INIS)

    This project inquired into the judgments and beliefs of people living near DOE reservations and facilities at Oak Ridge, Tennessee; Hanford, Washington; and Los Alamos, Tennessee about bioremediation of subsurface contamination. The purpose of the investigation was to identify strategies based on these judgments and beliefs for enhancing public support of bioremediation. Several methods were used to collect and analyze data including content analysis of transcripts of face-to-face personal interviews, factor analysis of subjective perspectives using Q methodology, and statistical analysis of results from a large-sample randomized telephone survey. Content analysis of interview transcripts identified themes about public perceptions and constructions of contamination risk, risk management, and risk managers. This analysis revealed that those who have no employment relationship at the sites and are not engaged in technical professions are most concerned about contamination risks. We also found that most interviewees are unfamiliar with subsurface contamination risks and how they can be reduced, believe they have little control over exposure, are frustrated with the lack of progress in remediation, are concerned about a lack of commitment of DOE to full remediation, and distrust site managers to act in the public interest. Concern is also expressed over frequent site management turnover, excessive secrecy, ineffective and biased communication, perceived attempts to talk the public into accepting risk, and apparent lack of concern about community welfare. In the telephone survey, we asked respondents who were aware of site contamination about their perceptions of risk from exposure to subsurface contamination. Response analysis revealed that most people believe that they are at significant risk from subsurface contamination but they acknowledge that more education is needed to calibrate risk perceptions against scientific risk assessments. Most rate their personal

  4. ENHANCING STAKEHOLDER ACCEPTANCE OF BIOREMEDIATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Focht, Will; Albright, Matt; Anex, Robert P., Jr., ed.

    2009-04-21

    This project inquired into the judgments and beliefs of people living near DOE reservations and facilities at Oak Ridge, Tennessee; Hanford, Washington; and Los Alamos, Tennessee about bioremediation of subsurface contamination. The purpose of the investigation was to identify strategies based on these judgments and beliefs for enhancing public support of bioremediation. Several methods were used to collect and analyze data including content analysis of transcripts of face-to-face personal interviews, factor analysis of subjective perspectives using Q methodology, and statistical analysis of results from a large-sample randomized telephone survey. Content analysis of interview transcripts identified themes about public perceptions and constructions of contamination risk, risk management, and risk managers. This analysis revealed that those who have no employment relationship at the sites and are not engaged in technical professions are most concerned about contamination risks. We also found that most interviewees are unfamiliar with subsurface contamination risks and how they can be reduced, believe they have little control over exposure, are frustrated with the lack of progress in remediation, are concerned about a lack of commitment of DOE to full remediation, and distrust site managers to act in the public interest. Concern is also expressed over frequent site management turnover, excessive secrecy, ineffective and biased communication, perceived attempts to talk the public into accepting risk, and apparent lack of concern about community welfare. In the telephone survey, we asked respondents who were aware of site contamination about their perceptions of risk from exposure to subsurface contamination. Response analysis revealed that most people believe that they are at significant risk from subsurface contamination but they acknowledge that more education is needed to calibrate risk perceptions against scientific risk assessments. Most rate their personal

  5. UTILIZING THE RIGHT MIX OF ENVIRONMENTAL CLEANUP TECHNOLOGIES

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) Figure 1 is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990s), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical/pH-adjusting injection, phytoremediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baroballs, electrical resistance heating, soil vapor extraction, and microblowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works proactively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  6. UTILIZING THE RIGHT MIX OF ENVIRONMENTAL CLEANUP TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Bergren, C; Wade Whitaker, W; Mary Flora, M

    2007-05-25

    The Savannah River Site (SRS) Figure 1 is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990s), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical/pH-adjusting injection, phytoremediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baroballs, electrical resistance heating, soil vapor extraction, and microblowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works proactively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  7. Preliminary technology report for Southern Sector bioremediation

    International Nuclear Information System (INIS)

    This project was designed to demonstrate the potential of intrinsic bioremediation and phytoremediation in the Southern Sector of the A/M-Area at the Savannah River Site. A subsurface plume of trichloroethylene (TCE) and perchloroethylene (PCE) is present in the Lost Lake aquifer upgradient of the study site and is predicted to impact the area at some point in the future. The surface area along the Lost lake aquifer seep line where the plume is estimated to emerge was identified. Ten sites along the seep line were selected for biological, chemical, and contaminant treatability analyses. A survey was undertaken in this area to to quantify the microbial and plant population known to be capable of remediating TCE and PCE. The current groundwater quality upgradient and downgradient of the zone of influence was determined. No TCE or PCE was found in the soils or surface water from the area tested at this time. A TCE biodegradation treatability test was done on soil from the 10 selected locations. From an initial exposure of 25 ppm of TCE, eight of the samples biodegraded up to 99.9 percent of all the compound within 6 weeks. This biodegradation of TCE appears to be combination of aerobic and anaerobic microbial activity as intermediates that were detected in the treatability test include vinyl chloride (VC) and the dichloroethenes (DCE) 1,2-cis-dichloroethylene and 1,1-dichloroethylene. The TCE biological treatability studies were combines with microbiological and chemical analyses. The soils were found through immunological analysis with direct fluorescent antibodies (DFA) and microbiological analysis with direct fluorescent antibodies (DFA) and microbiological analysis to have a microbial population of methanotrophic bacteria that utilize the enzyme methane monooxygenase (MMO) and cometabolize TCE

  8. SITE TECHNOLOGY CAPSULE: GRACE DEARBORN INC.'S DARAMEND BIOREMEDIATION TECHNOLOGY

    Science.gov (United States)

    Grace Dearborn's DARAMEND Bioremediation Technology was developed to treat soils/sediment contaminated with organic contaminants using solid-phase organic amendments. The amendments increase the soil's ability to supply biologically available water/nutrients to microorganisms and...

  9. Public participation in the evaluation of innovative environmental cleanup technology

    International Nuclear Information System (INIS)

    Technologies for remediation of contamination are urgently needed to clean up US Department of Energy (DOE) sites across the country. DOE is managing a national program to develop, demonstrate, and deploy new technologies with promise to expedite this cleanup. The Integrated Demonstration for Cleanup of Volatile Organic Compounds at Arid Sites (VOC-Arid ID) is one such effort. Time and resources, however, are too limited to be invested in methods of remediation that will never be deployed because they have not been rigorously evaluated or because they face the withering opposition of stakeholders. Therefore the VOC-Arid ID is assessing technology both in terms of its technical effectiveness and its stakeholder acceptability. Only if a technology performs as required and is acceptable to regulators, users of technology, and the public will the VOC-Arid ID recommend its use. What distinguishes public involvement in the VOC-Arid ID is the direct influence stakeholders have on the design of technology demonstrations by working directly with technology developers. Stakeholders participated in defining the criteria with which innovative environmental cleanup technology is being evaluated. The integrated demonstration is committed to providing stakeholders with the information they've indicated they need to reach reasoned judgments about the use of specific cleanup technologies. A guiding principle of the VOC-Arid ID is that stakeholder participation improves the technologies being developed, enhances the acceptance of the technologies, and will lead to the broad and timely deployment of appropriate and effective methods of environmental remediation. The VOC-Arid ID has involved stakeholders from the host demonstration site, Hanford, Washington, and from other and sites where the ID technologies may be deployed

  10. Exploitation of bioremediation in the environment protection

    OpenAIRE

    Alena Luptáková; Mária Praščáková

    2005-01-01

    Soils and waters contaminated with toxic metals pose a major environmental problem that needs an effective and affordable technological solution. Many areas remain contaminated with no remediation in sight because it is too expensive to clean them up with available technologies. Bioremediation may provide an economically viable solution for remediation of some of these sites. The bioremediation is an application of the biological treatment to the cleanup of hazardous chemicals and is an examp...

  11. Utilizing the right mix of environmental cleanup technologies

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990's), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical / pH-adjusting injection, phyto-remediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baro-balls, electrical resistance heating, soil vapor extraction, and micro-blowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works pro-actively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  12. Combining expedited cleanup with innovative technology demonstrations

    International Nuclear Information System (INIS)

    A Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) expedited response action (ERA) has been initiated at the Hanford Site, Washington, for the removal of carbon tetrachloride from contaminated soils to mitigate further contamination of the ground water. Soil vapor extraction with aboveground collection and treatment was chosen as the preferred remedial technology for the First phase of the ERA. At the same time, innovative technology demonstrations are being conducted in coordination with the ERA to determine the viability of emerging technologies that can be used to characterize, remediate, and monitor carbon tetrachloride and co-contaminants. The overall goal is to improve the performance and decrease the costs of carbon tetrachloride remediation while maintaining a safe working environment. (author)

  13. Nuclear environment clean-up technology development

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung; Moon, Jei Kwon; Lee, Kune Woo; Won, Hui Jun; Jung, Chong Hun; Kim, Gye Nam; Seo, Bum Kyoung; Kim, Sung Kyun; Hong, Sang Bum; Choi, Wun Dong

    2012-03-15

    A laser ablation decontamination technology which is reportedly effective for a removal of fixed contaminants has been developed for three years as the first stage of the development. Lab scale experimental equipment was fabricated and the process variables have been assessed for determination of appropriate decontamination conditions at the laser wave lengths of 1,064 nm and 532 nm, respectively. The decontamination tests using radioactive specimens showed that the decontamination efficiency was about 100 which is quite a high value. An electrokinetic-flushing, an agglomeration leaching and a supercritical CO2 soil decontamination technology were development for a decontamination of radioactive soil wastes from the decommissioned sites of the TRIGA research reactor and the uranium conversion facilities. The remediation monitoring key technologies such as a representative sample taking and a measurement concept for the vertical distribution of radionuclides were developed for an assessment of the site remediation. Also an One-Dimensional Water Flow and Contaminant Transport in Unsaturated Zone (FTUNS) code was developed to interpretate the radionuclide migration in the unsaturated zone. The chemical gel decontamination process with more effective drying, rheological and decontaminating properties than the existing commercial gel decontamination technology has been developed for a decontamination of the fixed contamination of extremely high radiation facilities. Its performance were verified for the in-situ large scale application through the demonstration test using the radioactive facilities in KNFC contaminated with uranium.

  14. Nuclear environment clean-up technology development

    International Nuclear Information System (INIS)

    A laser ablation decontamination technology which is reportedly effective for a removal of fixed contaminants has been developed for three years as the first stage of the development. Lab scale experimental equipment was fabricated and the process variables have been assessed for determination of appropriate decontamination conditions at the laser wave lengths of 1,064 nm and 532 nm, respectively. The decontamination tests using radioactive specimens showed that the decontamination efficiency was about 100 which is quite a high value. An electrokinetic-flushing, an agglomeration leaching and a supercritical CO2 soil decontamination technology were development for a decontamination of radioactive soil wastes from the decommissioned sites of the TRIGA research reactor and the uranium conversion facilities. The remediation monitoring key technologies such as a representative sample taking and a measurement concept for the vertical distribution of radionuclides were developed for an assessment of the site remediation. Also an One-Dimensional Water Flow and Contaminant Transport in Unsaturated Zone (FTUNS) code was developed to interpretate the radionuclide migration in the unsaturated zone. The chemical gel decontamination process with more effective drying, rheological and decontaminating properties than the existing commercial gel decontamination technology has been developed for a decontamination of the fixed contamination of extremely high radiation facilities. Its performance were verified for the in-situ large scale application through the demonstration test using the radioactive facilities in KNFC contaminated with uranium

  15. Integrated green algal technology for bioremediation and biofuel.

    Science.gov (United States)

    Sivakumar, Ganapathy; Xu, Jianfeng; Thompson, Robert W; Yang, Ying; Randol-Smith, Paula; Weathers, Pamela J

    2012-03-01

    Sustainable non-food energy biomass and cost-effective ways to produce renewable energy technologies from this biomass are continuously emerging. Algae are capable of producing lipids and hydrocarbons quickly and their photosynthetic abilities make them a promising candidate for an alternative energy source. In addition, their favorable carbon life cycle and a renewed focus on rural economic development are attractive factors. In this review the focus is mainly on the integrated approach of algae culture for bioremediation and oil-based biofuel production with mention of possible other value-added benefits of using algae for those purposes. PMID:22230775

  16. Aerobic bioremediation of petroleum contaminated soil using controlled landfarming technology

    International Nuclear Information System (INIS)

    This paper reports that the Delaware Department of Natural Resources and Environmental Control (DNREC) has been concerned about open, uncontrolled landfarming remediation procedures producing a significant amount of atmospheric volatile petroleum discharge and increasing the probability of the remediation site's soil and groundwater becoming contaminated by rainwater. WIK Associates, Inc., therefore, has been developing full scale aerobic bioremediation technology for clients within the Delaware area in order to carry out year round, full scale, aerobic biodegradation of petroleum contaminated soils, while controlling any volatile emissions

  17. A systematic assessment of the state of hazardous waste clean-up technologies

    International Nuclear Information System (INIS)

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ''Decontamination Systems Information and Research Programs.'' Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushing (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming

  18. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999; TOPICAL

    International Nuclear Information System (INIS)

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs

  19. Arctic bioremediation

    International Nuclear Information System (INIS)

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. Enhancing the biological degradation of hydrocarbon (bioremediation) by adding nutrients to the spill area has been demonstrated to be an effective cleanup tool in more temperate locations. However, this technique has never been considered for restoration in the Arctic because the process of microbial degradation of hydrocarbon in this area is very slow. The short growing season and apparent lack of nutrients in the gravel pads were thought to be detrimental to using bioremediation to cleanup Arctic oil spills. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes

  20. Nitrate removal by electro-bioremediation technology in Korean soil

    International Nuclear Information System (INIS)

    The nitrate concentration of surface has become a serious concern in agricultural industry through out the world. In the present study, nitrate was removed in the soil by employing electro-bioremediation, a hybrid technology of bioremediation and electrokinetics. The abundance of Bacillus spp. as nitrate reducing bacteria were isolated and identified from the soil sample collected from a greenhouse at Jinju City of Gyengsangnamdo, South Korea. The nitrate reducing bacterial species were identified by 16 s RNA sequencing technique. The efficiency of bacterial isolates on nitrate removal in broth was tested. The experiment was conducted in an electrokinetic (EK) cell by applying 20 V across the electrodes. The nitrate reducing bacteria (Bacillus spp.) were inoculated in the soil for nitrate removal process by the addition of necessary nutrient. The influence of nitrate reducers on electrokinetic process was also studied. The concentration of nitrate at anodic area of soil was higher when compared to cathode in electrokinetic system, while adding bacteria in EK (EK + bio) system, the nitrate concentration was almost nil in all the area of soil. The bacteria supplies electron from organic degradation (humic substances) and enhances NO3- reduction (denitrification). Experimental results showed that the electro-bio kinetic process viz. electroosmosis and physiological activity of bacteria reduced nitrate in soil environment effectively. Involvement of Bacillus spp. on nitrification was controlled by electrokinetics at cathode area by reduction of ammonium ions to nitrogen gas. The excellence of the combined electro-bio kinetics technology on nitrate removal is discussed.

  1. Combining innovative technology demonstrations with dense nonaqueous phase liquids cleanup

    International Nuclear Information System (INIS)

    Radioactively contaminated acidic aqueous wastes and organic liquids were discharged to the soil column at three disposal sites within the 200 West Area of the Hanford Site, Washington. As a result, a portion of the underlying groundwater is contaminated with carbon tetrachloride several orders of magnitude above the maximum contaminant level accepted for a drinking water supply. Treatability testing and cleanup actions have been initiated to remove the contamination from both the unsaturated soils to minimize further groundwater contamination and the groundwater itself. To expedite cleanup, innovative technologies for (1) drilling, (2) site characterization, (3) monitoring, (4) well field development, and (5) contaminant treatment are being demonstrated and subsequently used where possible to improve the rates and cost savings associated with the removal of carbon tetrachloride from the soils and groundwater

  2. SITE TECHNOLOGY CAPSULE: J.R. SIMPLOT EX-SITU ANAEROBIC BIOREMEDIATION TECHNOLOGY: TNT

    Science.gov (United States)

    The J.R. Simplot Ex-Situ Bioremediation Technology is designed to degrade nitroaromatic compounds anaerobically, with total destruction of toxic intermediates at the completion of treatment. An evaluation of this technology was conducted under the SITE Program on TNT-contaminated...

  3. States' attitudes on the use of bioremediation

    International Nuclear Information System (INIS)

    Results from a telephone survey of state government program coordinators and representatives from companies performing full-scale bioremediation shows differences among states in the use and degree of acceptance of bioremediation for environmental cleanup. The survey also found that states vary in the potential future direction of regulatory activity concerning bioremediation. The survey focused primarily on underground storage tank (UST) cleanups. Diminishing state UST cleanup funds have provided the impetus for many states to consider alternative cost-effective measures in order to continue with cleanups. In recent years, more than 30 states have either implemented programs that consider the cost-effectiveness of various cleanup measures, or are considering adoption of programs that are founded on risk-based corrective action. Less than a dozen states were considered as having made significant strides in innovative technology utilization. Forums whereby state groups can exchange ideas and experiences associated with the practical application of bioremediation will facilitate this nationwide movement towards cost-effective cleanup

  4. A software tool for soil clean-up technology selection

    International Nuclear Information System (INIS)

    Soil remediation is a difficult, time-consuming and expensive operation. A variety of mature and emerging soil remediation technologies is available and future trends in remediation will include continued competition among environmental service companies and technology developers, which will definitely result in further increase in the clean-up options. Consequently, the demand has enhanced developing decision support tools that could help the decision makers to select the most appropriate technology for the specific contaminated site, before the costly remedial actions are taken. Therefore, a software tool for soil clean-up technology selection is currently being developed with the aim of closely working with human decision makers (site owners, local community representatives, environmentalists, regulators, etc.) to assess the available technologies and preliminarily select the preferred remedial options. The analysis for the identification of the best remedial options is based on technical, financial, environmental, and social criteria. These criteria are ranked by all involved parties to determine their relative importance for a particular project. (author)

  5. Evaluation of bio-remediation technologies for PAHs contaminated soils

    International Nuclear Information System (INIS)

    Natural attenuation is a new concept related to polluted soil remediation. Can be understood like an 'in situ' bio-remediation process with low technical intervention. This low intervention may be in order to follow the behaviour of pollutants 'monitored natural attenuation' or include an optimisation process to improve biological remediation. The use of this technology is a fact for light hydrocarbon polluted soil, but few is known about the behaviour of polycyclic aromatic hydrocarbons (PAHs) in this process. PAHs are more recalcitrant to bio-remediation due to their physic-chemical characteristics, mainly hydrophobicity and electrochemical stability. PAHs are a kind of pollutants widely distributed in the environment, not only in the proximity of the source. This linked to the characteristics of some of them related to toxicity and mutagenicity implies its inclusion as target compounds from an environmental point of view. Their low availability, solubility and the strong tendency to bind to soil particle, especially to the organic phase affect PAHs biological mineralisation. So, if the pollutant is not available to microorganisms it can not be bio-degraded. Bioavailability can be assessed form several but complementary points of view: physico-chemical and biological. First including the term availability and the second to point out the capacity of soil microorganisms to mineralize PAHs. Availability and Bio-degradability must be determined, as well as the presence and activity of specific degraders among the soil organisms, once settled these points is necessary to study the biological requirements to optimise biodegradation kinetics of these compounds. In this work we present a study carried out on a soil, contaminated by PAHs, the study includes three main topics: bioavailability assessment (both term availability and bio-degradability), bio-remediation assessment, once optimised conditions for natural attenuation and finally a simulation of the

  6. J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY FOR TREATMENT OF TNT-CONTAMINATED SOILS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report summarizes the findings of the second evaluation of the J.R. Simplot Ex-situ Bioremediation Technology also known as the Simplot Anaerobic Bioremediation (SABRE™) process. This technology was developed by the J.R. Simplot Company to biologically degrade nitroaromatic...

  7. TECHNOLOGY MATURATION OF DISPERSION TECHNOLOGY TO AUGMENT BIOREMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    J. NEELY - 54GO

    2000-07-01

    The data obtained from this preliminary short-term project demonstrated that dispersants such as 54GO are effective in accelerating the bio-remediation of soils containing contamination from waste oils, diesel, creosote and manufactured gas plant waste. This acceleration appears to be in the observation that 54GO quickly separates the hydrocarbon wastes from the soil particles, thereby allowing closer contact with the microbes. The project time limitations impacted the scope of data but was able to demonstrate a general reduction in the levels of contaminates. In this project only Total Petroleum Hydrocarbons [TPH] and 17 polycyclic aromatic hydrocarbons [PAH] were analyzed. These were chosen because they are standardized by EPA methodology. The raw data from these analytical methods indicate that there are many more intermediate metabolizes from the bio-remediation process that were not identified or measured [a limitation of the 17 analyte EPA Method 8270 protocol]. The limited data from these bio-reactors indicates that when both 54GO [dispersant] and stress selected microbes are used the reduction of contaminate metabolizes is the greatest. The use of microbes alone was also effective, but not consistent and to a lesser degree. An additional observation with 54GO, either alone or with microbes is that significant amounts of hydrocarbons were extracted or released from the test soils and became a separate phase floating on the surface of these bio-reactors. The levels of floating oil in these bio-reactors made mixing and sampling difficult tasks. This latter effect of, 54GO, indicates that this family of dispersants are excellent candidates for classic soil washing techniques and may be better served by pre-treating waste soils before mixing with microbes. It is estimated that 75% or more of the hydrocarbons were in the oil phase in these bio-reactors even in low water conditions [saturated soil].

  8. Bioremediation of industrially contaminated soil using compost and plant technology.

    Science.gov (United States)

    Taiwo, A M; Gbadebo, A M; Oyedepo, J A; Ojekunle, Z O; Alo, O M; Oyeniran, A A; Onalaja, O J; Ogunjimi, D; Taiwo, O T

    2016-03-01

    Compost technology can be utilized for bioremediation of contaminated soil using the active microorganisms present in the matrix of contaminants. This study examined bioremediation of industrially polluted soil using the compost and plant technology. Soil samples were collected at the vicinity of three industrial locations in Ogun State and a goldmine site in Iperindo, Osun State in March, 2014. The compost used was made from cow dung, water hyacinth and sawdust for a period of twelve weeks. The matured compost was mixed with contaminated soil samples in a five-ratio pot experimental design. The compost and contaminated soil samples were analyzed using the standard procedures for pH, electrical conductivity (EC), organic carbon (OC), total nitrogen (TN), phosphorus, exchangeable cations (Na, K, Ca and Mg) and heavy metals (Fe, Mn, Cu, Zn and Cr). Kenaf (Hibiscus cannabinus) seeds were also planted for co-remediation of metals. The growth parameters of Kenaf plants were observed weekly for a period of one month. Results showed that during the one-month remediation experiment, treatments with 'compost-only' removed 49 ± 8% Mn, 32 ± 7% Fe, 29 ± 11% Zn, 27 ± 6% Cu and 11 ± 5% Cr from the contaminated soil. On the other hand, treatments with 'compost+plant' remediated 71 ± 8% Mn, 63 ± 3% Fe, 59 ± 11% Zn, 40 ± 6% Cu and 5 ± 4% Cr. Enrichment factor (EF) of metals in the compost was low while that of Cu (EF=7.3) and Zn (EF=8.6) were high in the contaminated soils. Bioaccumulation factor (BF) revealed low metal uptake by Kenaf plant. The growth parameters of Kenaf plant showed steady increments from week 1 to week 4 of planting. PMID:26551220

  9. High-level waste vitrification off-gas cleanup technology

    International Nuclear Information System (INIS)

    This brief overview is intended to be a basis for discussion of needs and problems existing in the off-gas clean-up technology. A variety of types of waste form and processes are being developed in the United States and abroad. A description of many of the processes can be found in the Technical Alternative Documents (TAD). Concurrently, off-gas processing systems are being developed with most of the processes. An extensive review of methodology as well as decontamination factors can be found in the literature. Since it is generally agreed that the most advanced solidification process is vitrification, discussion here centers about the off-gas problems related to vitrification. With a number of waste soldification facilities around the world in operation, it can be shown that present technology can satisfy the present requirement for off-gas control. However, a number of areas within the technology base show potential for improvement. Fundamental as well as verification studies are needed to obtain the improvements

  10. Arctic bioremediation

    International Nuclear Information System (INIS)

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes. Discussed are the results of a laboratory bioremediation study which simulated microbial degradation of hydrocarbon under arctic conditions

  11. Bioremediation a promising technology for nuclear waste treatment

    International Nuclear Information System (INIS)

    Microbes play a primordial role in completing various elemental cycles namely carbon, nitrogen, sulfur, which are necessary for sustainability of planet Earth. This natural capability of microbes is employed to transform manmade compounds to their elemental forms. Redeployment of microbes for specific tasks needs a re-engineering of microbial metabolism to accelerate transformation. The most widely used approach is genetic modification but this approach has resulted into grievous failures due to inability of genetically modified organism to survive in natural environment. Consequently, development of new approach towards bioremediation was conceptualized, where desired metabolic capability were achieved using consortia of microorganisms having complementary metabolism. Of late, the potential of biofilm communities for bioremediation processes has been realized since it has many advantages over whole cells, used as biocatalysts. Naturally immobilized microbial biofilms exclude the necessity of cell-immobilization as biofilm cells are already embedded in self-produced exopolymers. Moreover, biofilm-mediated bioremediation offers a proficient and safer alternative to planktonic cells-mediated bioremediation because cells in a biofilm are more robust to toxic materials present in the waste as they are embedded in the matrix that provides a physical barrier. This presentation will highlight the importance of planktonic and sessile bacteria in bioremediation of a few nuclear waste compounds. (author)

  12. TECHNOLOGIES FOR BIOREMEDIATION OF SOILS CONTAMINATED WITH PETROLEUM PRODUCTS

    Directory of Open Access Journals (Sweden)

    Roxana Gabriela POPA

    2012-05-01

    Full Text Available Biological methods for remediation of soils is based on the degradation of pollutants due to activity of microorganisms (bacteria, fungi. Effectiveness of biological decontamination of soils depends on the following factors: biodegradation of pollutants, type of microorganisms used, choice of oxidant and nutrient and subject to clean up environmental characteristics. Ex situ techniques for bioremediation of soils polluted are: composting (static / mechanical agitation, land farming and biopiles. Techniques in situ bioremediation of soils polluted are: bioventingul, biospargingul and biostimulation – bioaugumentarea.

  13. Modeling bioremediation of contaminated groundwater

    OpenAIRE

    Atlas, R M; Hazen, T.; Philp, J. C.; Prommer, H.; Barry, D. A.

    2005-01-01

    Bioremediation: Applied Microbial Solutions for Real-World Environmental Cleanup is a fascinating examination of research and its real-world application. Intended for both academics and practitioners, the book presents information on the legal, scientific, and engineering principles behind bioremediation for cleaning up contaminated soil and groundwater sources. Bioremediation incorporates a variety of international perspectives in detailing for industrial engineers and rese...

  14. BIOREMEDIATION AS A TECHNOLOGY: EXPERIENCES WITH THE EXXON VALDEZ SPILL

    Science.gov (United States)

    The results from our oil spill bioremediation project have demonstrated convincingly that fertilizers can be applied to oiled beaches to overcome nutrient limitations, thereby enhancing biodegradation of the oil. n Prince William Sound, the natural biodegradation rate of oil on t...

  15. In situ bioremediation using horizontal wells. Innovative technology summary report

    International Nuclear Information System (INIS)

    In Situ Bioremediation (ISB) is the term used in this report for Gaseous Nutrient Injection for In Situ Bioremediation. This process (ISB) involves injection of air and nutrients (sparging and biostimulation) into the ground water and vacuum extraction to remove Volatile Organic Compounds (VOCs) from the vadose zone concomitant with biodegradation of the VOCs. This process is effective for remediation of soils and ground water contaminated with VOCs both above and below the water table. A full-scale demonstration of ISB was conducted as part of the Savannah River Integrated Demonstration: VOCs in Soils and Ground Water at Nonarid Sites. This demonstration was performed at the Savannah River Site from February 1992 to April 1993

  16. New technologies aid DOE in site characterization, cleanup

    International Nuclear Information System (INIS)

    The Department of Energy is using what reportedly is the world's largest remotely operated mobile-work system to excavate a landfill contaminated with radioactive materials at the Idaho National Engineering Laboratory. The 1,500-ton, self-propelled machine made by Sonsub Inc. (Houston) will span and excavate landfills up to 120 feet wide. As the unit digs, it will separate waste from the soil, package the waste for transport, then backfill the pit. DOE will use the machine to excavate Pit 9, a 400-foot-long, 120-foot-wide landfill that was used as a waste-disposal site in the 1960s. Using computer modeling applications to identify hazardous and radioactive wastes can protect workers from exposure and, in some cases, reduce remediation costs. Canberra Industries (Meridien, Conn.) in November was awarded a contract by EG and G Mound Applied Technologies to perform gamma spectroscopy radiological waste characterization on waste containers that have been stored since 1978 at the Mound site in Ohio. The 55-gallon drums and boxes at the site reportedly contain transuranic waste; however, officials say they anticipate that, once characterization is performed, about 25% of the waste will be downgraded to low-level waste (below 100nCI/gm). In another application involving landfill cleanup, Komar Industries Inc. (Groveport, Ohio) in late 1995 was contracted to design and construct a system for processing radioactive waste from an unnamed DOE landfill. The company says it will design a triauger with injector configuration to serve as a fully contained size-reduction, blending and feeding system that will allow engineers to blend a variety of wastes found at the site. Machined, O-ring, sealed surfaces will maintain a negative water column under normal operations. The system will be designed to handle pressures up to 10 bar, while the processor will have a 6-cubic-yard charge capacity and the ability to accept 15 to 20 charges per hour

  17. Microorganism as a tool of bioremediation technology for cleaning environment: A review

    Directory of Open Access Journals (Sweden)

    Ravindra Singh

    2014-03-01

    Full Text Available The term bioremediation has been introduced to describe the process of using biological agents to remove toxic waste from environment. Bioremediation is the most effective management tool to manage the polluted environment and recover contaminated soil. The hazardous wastes generated from the chemical processes/operations are being treated using physico-chemical and biological methods by the respective industries to meet the prescribed standard as per the Environmental Protection Act, 1986. The wastes treated by the respective industries are collected at Common Effluent Treatment Plant, before discharge into the environment. After the treatment of collected waste at Common Effluent Treatment Plant, the solid and treated effluents are segregated and disposed of into the soil- water environment. In spite of the present treatment technology, the organic pollutants are found persisting in the soil-water environment above their acceptable level. Hence, bioremediation is an innovative technology that has the potential to alleviate the toxic contamination.

  18. Bioremediation: A natural solution

    International Nuclear Information System (INIS)

    Bioremediation is an attractive remediation alternative because most full-scale bioremediation projects involve cost-effective contaminant treatment on-site. Recently, large scale bioremediation projects have included cleanups of ocean tanker spills, land-based chemical spills, and leaking chemical and petroleum storage tanks. Contaminated matrices have included beaches, soils, groundwater, surface waters (i.e., pits, ponds, lagoons), process waste streams and grease traps. Bioremediation is especially cost-effective when both soil and groundwater matrices are impacted because one remediation treatment system can be design to treat both media simultaneously in place. The primary advantages of in situ bioremediation include: on-site destruction of contaminants; accelerated cleanup time; minimal disruption to operations; lower remediation costs; and reduction of future liability

  19. DEMONSTRATION BULLETIN: EX-SITU ANAEROBIC BIOREMEDIATION TECHNOLOGY - TNT - J.R. SIMPLOT COMPANY

    Science.gov (United States)

    The J. R. Simplot Ex-Situ Anaerobic Bioremediation System, also known as the J.R. Simplot Anaerobic Biological Remediaton Process (the SABRE™ Process), is a technology designed to destroy nitroaromatic and energetic compounds. The process does not evolve any known toxic intermedi...

  20. Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation.

    Directory of Open Access Journals (Sweden)

    Maria eGenovese

    2014-04-01

    Full Text Available The purpose of present study was the simulation of an oil spill accompanied by burial of significant amount of petroleum hydrocarbons (PHs in coastal sediments. Approximately 1,000 kg of sediments collected in Messina harbor were spiked with Bunker C furnace fuel oil (6,500 ppm. The rapid consumption of oxygen by aerobic heterotrophs created highly reduced conditions in the sediments with subsequent recession of biodegradation rates. As follows, after three months of ageing, the anaerobic sediments did not exhibit any significant levels of biodegradation and more than 80% of added Bunker C fuel oil remained buried. Anaerobic microbial community exhibited a strong enrichment in sulfate-reducing PHs-degrading and PHs-associated Deltaproteobacteria. As an effective bioremediation strategy to clean up these contaminated sediments, we applied a Modular Slurry System (MSS allowing the containment of sediments and their physical-chemical treatment, e.g. aeration. Aeration for three months has increased the removal of main PHs contaminants up to 98%. As revealed by CARD-FISH, qPCR and 16S rRNA gene clone library analyses, addition of Bunker C fuel oil initially affected the activity of autochthonous aerobic obligate marine hydrocarbonoclastic bacteria (OMHCB, and after one month more than the third of microbial population was represented by Alcanivorax-, Cycloclasticus- and Marinobacter-related organisms. In the end of the experiment, the microbial community composition has returned to a status typically observed in pristine marine ecosystems with no detectable OMHCB present. Eco-toxicological bioassay revealed that the toxicity of sediments after treatment was substantially decreased. Thus, our studies demonstrated that petroleum-contaminated anaerobic marine sediments could efficiently be cleaned through an in situ oxygenation which stimulates their self-cleaning potential due to reawakening of allochtonous aerobic OMHCB.

  1. Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation.

    Science.gov (United States)

    Genovese, Maria; Crisafi, Francesca; Denaro, Renata; Cappello, Simone; Russo, Daniela; Calogero, Rosario; Santisi, Santina; Catalfamo, Maurizio; Modica, Alfonso; Smedile, Francesco; Genovese, Lucrezia; Golyshin, Peter N; Giuliano, Laura; Yakimov, Michail M

    2014-01-01

    The purpose of present study was the simulation of an oil spill accompanied by burial of significant amount of petroleum hydrocarbons (PHs) in coastal sediments. Approximately 1000 kg of sediments collected in Messina harbor were spiked with Bunker C furnace fuel oil (6500 ppm). The rapid consumption of oxygen by aerobic heterotrophs created highly reduced conditions in the sediments with subsequent recession of biodegradation rates. As follows, after 3 months of ageing, the anaerobic sediments did not exhibit any significant levels of biodegradation and more than 80% of added Bunker C fuel oil remained buried. Anaerobic microbial community exhibited a strong enrichment in sulfate-reducing PHs-degrading and PHs-associated Deltaproteobacteria. As an effective bioremediation strategy to clean up these contaminated sediments, we applied a Modular Slurry System (MSS) allowing the containment of sediments and their physical-chemical treatment, e.g., aeration. Aeration for 3 months has increased the removal of main PHs contaminants up to 98%. As revealed by CARD-FISH, qPCR, and 16S rRNA gene clone library analyses, addition of Bunker C fuel oil initially affected the activity of autochthonous aerobic obligate marine hydrocarbonoclastic bacteria (OMHCB), and after 1 month more than the third of microbial population was represented by Alcanivorax-, Cycloclasticus-, and Marinobacter-related organisms. In the end of the experiment, the microbial community composition has returned to a status typically observed in pristine marine ecosystems with no detectable OMHCB present. Eco-toxicological bioassay revealed that the toxicity of sediments after treatment was substantially decreased. Thus, our studies demonstrated that petroleum-contaminated anaerobic marine sediments could efficiently be cleaned through an in situ oxygenation which stimulates their self-cleaning potential due to reawakening of allochtonous aerobic OMHCB. PMID:24782850

  2. Bioremediation of polyaromatic hydrocarbons (PAHs using rhizosphere technology

    Directory of Open Access Journals (Sweden)

    Sandeep Bisht

    2015-03-01

    Full Text Available The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e.polyaromatic hydrocarbons (PAHs due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective.

  3. Bioremediation of soil polluted with crude oil and its derivatives: Microorganisms, degradation pathways, technologies

    Directory of Open Access Journals (Sweden)

    Beškoski Vladimir P.

    2012-01-01

    Full Text Available The contamination of soil and water with petroleum and its products occurs due to accidental spills during exploitation, transport, processing, storing and use. In order to control the environmental risks caused by petroleum products a variety of techniques based on physical, chemical and biological methods have been used. Biological methods are considered to have a comparative advantage as cost effective and environmentally friendly technologies. Bioremediation, defined as the use of biological systems to destroy and reduce the concentrations of hazardous waste from contaminated sites, is an evolving technology for the removal and degradation of petroleum hydrocarbons as well as industrial solvents, phenols and pesticides. Microorganisms are the main bioremediation agents due to their diverse metabolic capacities. In order to enhance the rate of pollutant degradation the technology optimizes the conditions for the growth of microorganisms present in soil by aeration, nutrient addition and, if necessary, by adding separately prepared microorganisms cultures. The other factors that influence the efficiency of process are temperature, humidity, presence of surfactants, soil pH, mineral composition, content of organic substance of soil as well as type and concentration of contaminant. This paper presents a review of our ex situ bioremediation procedures successfully implemented on the industrial level. This technology was used for treatment of soils contaminated by crude oil and its derivatives originated from refinery as well as soils polluted with oil fuel and transformer oil.

  4. OIL SPILL BIOREMEDIATION: EXPERIENCES, LESSONS AND RESULTS FROM THE EXXON VALDEZ OIL SPILL IN ALASKA

    Science.gov (United States)

    The use of bioremediation as a supplemental cleanup technology in the Exxon Valdez oil spill, in Prince William Sound, Alaska, has proven to be a good example of the problems and successes associated with the practical application of this technology. ield studies conducted by sci...

  5. Bioremediation of soil polluted with crude oil and its derivatives: Microorganisms, degradation pathways, technologies

    OpenAIRE

    Beškoski Vladimir P.; Gojgić-Cvijović Gordana Đ.; Milić Jelena S.; Ilić Mila V.; Miletić Srđan B.; Jovančićević Branimir S.; Vrvić-Miroslav M.

    2012-01-01

    The contamination of soil and water with petroleum and its products occurs due to accidental spills during exploitation, transport, processing, storing and use. In order to control the environmental risks caused by petroleum products a variety of techniques based on physical, chemical and biological methods have been used. Biological methods are considered to have a comparative advantage as cost effective and environmentally friendly technologies. Bioremediation, defined as the use of b...

  6. In situ bioremediation: Cost effectiveness of a remediation technology field tested at the Savannah River

    International Nuclear Information System (INIS)

    In Situ Bioremediation (ISBR) is an innovative new remediation technology for the removal of chlorinated solvents from contaminated soils and groundwater. The principal contaminant at the SRID is the volatile organic compound (VOC), tricloroetylene(TCE). A 384 day test run at Savannah River, sponsored by the US Department of Energy, Office of Technology Development (EM-50), furnished information about the performance and applications of ISBR. In Situ Bioremediation, as tested, is based on two distinct processes occurring simultaneously; the physical process of in situ air stripping and the biolgoical process of bioremediation. Both processes have the potential to remediate some amount of contamination. A quantity of VOCs, directly measured from the extracted air stream, was removed from the test area by the physical process of air stripping. The biological process is difficult to examine. However, the results of several tests performed at the SRID and independent numerical modeling determined that the biological process remediated an additional 40% above the physical process. Given this data, the cost effectiveness of this new technology can be evaluated

  7. UTILIZING INNOVATIVE TECHNOLOGIES FOR ENVIRONMENTAL CLEAN-UP AT SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units and facilities that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990s), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical/pH-adjusting injection, phytoremediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baroballs, electrical resistance heating, soil vapor extraction, and microblowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works proactively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  8. UTILIZING INNOVATIVE TECHNOLOGIES FOR ENVIRONMENTAL CLEAN-UP, SAVAHHAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Bergren, C

    2009-01-07

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units and facilities that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990s), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical/pH-adjusting injection, phytoremediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baroballs, electrical resistance heating, soil vapor extraction, and microblowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works proactively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various

  9. Walking softly : using bioremediation to reclaim sites leaves a smaller footprint than traditional dig-and-dump technologies

    Energy Technology Data Exchange (ETDEWEB)

    Collison, M.

    2006-10-15

    Recent developments in the bioremediation industry in Alberta were outlined. The market for bioremediation services in the United States alone is estimated to hit $1 billion by 2010 and has become a staple of the U.S. Environmental Protection Agency's emergency management practices in the event of an oil spill. Alberta Environment has recently updated its policies and guidance documents on contaminated sites management, and is planning a manual that will include best bioremediation practices. Advances in the science and technology of bioremediation and a rise in environmental awareness have contributed to the sector's growth in recent years. In the past, oil companies in Alberta typically reclaimed sites by digging up contaminated soil and trucking it to landfills. Recent techniques developed by industry and bioremediation experts now mean that soil profiles can remain undisturbed, and biological treatment amendments are often introduced into the fractures to destroy contaminants where they lie. The National Research Council's Biotechnology Research Institute (NRC-BRI) is now conducting research to identify and profile unknown micro-organisms to improve conditions for the breakdown of toxins. Bioremediation techniques are also being used in urban redevelopment. It was concluded that while the environmental industry is regulatory-driven, many oil and mining companies are deciding to invest in remediation instead of waiting until a later date. A list of new bioremediation partnerships with industry, government and municipalities was also provided. 2 figs.

  10. Walking softly : using bioremediation to reclaim sites leaves a smaller footprint than traditional dig-and-dump technologies

    International Nuclear Information System (INIS)

    Recent developments in the bioremediation industry in Alberta were outlined. The market for bioremediation services in the United States alone is estimated to hit $1 billion by 2010 and has become a staple of the U.S. Environmental Protection Agency's emergency management practices in the event of an oil spill. Alberta Environment has recently updated its policies and guidance documents on contaminated sites management, and is planning a manual that will include best bioremediation practices. Advances in the science and technology of bioremediation and a rise in environmental awareness have contributed to the sector's growth in recent years. In the past, oil companies in Alberta typically reclaimed sites by digging up contaminated soil and trucking it to landfills. Recent techniques developed by industry and bioremediation experts now mean that soil profiles can remain undisturbed, and biological treatment amendments are often introduced into the fractures to destroy contaminants where they lie. The National Research Council's Biotechnology Research Institute (NRC-BRI) is now conducting research to identify and profile unknown micro-organisms to improve conditions for the breakdown of toxins. Bioremediation techniques are also being used in urban redevelopment. It was concluded that while the environmental industry is regulatory-driven, many oil and mining companies are deciding to invest in remediation instead of waiting until a later date. A list of new bioremediation partnerships with industry, government and municipalities was also provided. 2 figs

  11. Oil and hydrocarbon spill bioremediation product and application technologies

    OpenAIRE

    Deibert, Mark Richard

    1993-01-01

    This thesis document was issued under the authority of another institution, not NPS. At the time it was written, a copy was added to the NPS Library collection for reasons not now known. It has been included in the digital archive for its historical value to NPS. Not believed to be a CIVINS (Civilian Institutions) title. This manuscript was prepared for use by U.S. Navy personnel to increase the awareness of the use of microbes and related technology associated in the remediation of ...

  12. A systematic assessment of the state of hazardous waste clean-up technologies. Quarterly technical progress report, April 1--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M.T.; Reed, B.E.; Gabr, M.

    1993-07-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushing (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming.

  13. EFFECTIVENESS AND REGULATORY ISSUES IN OIL SPILL BIOREMEDIATION: EXPERIENCES WITH THE EXXON VALDEZ OIL SPILL IN ALASKA

    Science.gov (United States)

    The use of bioremediation as a supplemental cleanup technology in the Exxon Valdez oil spill, in Prince William Sound, Alaska, has proven to be a good example of the problems and successes associated with the practical application of this technology. ield studies conducted by sci...

  14. Hanford Site Cleanup Challenges and Opportunities for Science and Technology--A Strategic Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas W.; Johnson, Wayne L.; Kreid, Dennis K.; Walton, Terry L.

    2001-02-01

    The sheer expanse of the Hanford Site, the inherent hazards associated with the significant inventory of nuclear materials and wastes, the large number of aging contaminated facilities, the diverse nature and extent of environmental contamination, and the proximity to the Columbia River make Hanford perhaps the world's largest and most complex environmental cleanup project. It is not possible to address the more complex elements of this enormous challenge in a cost-effective manner without strategic investments in science and technology. Success requires vigorous and sustained efforts to enhance the science and technology basis, develop and deploy innovative solutions, and provide firm scientific bases to support site cleanup and closure decisions at Hanford.

  15. Evaluation of bio-remediation technologies for PAH{sub s} contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Frutos, F.J.; Diaz, J.; Rodriguez, V.; Escolano, O.; Garcia, S.; Perez, R. [CIEMAT, Dept. of Environment, Madrid (Spain); Martinez, R.; Oromendia, R. [Dept. Ingenieria y Morfologia del Terreno. ETS Ingenieros Caminos, Canales y Puertos (UPM), Madrid (Spain)

    2005-07-01

    Natural attenuation is a new concept related to polluted soil remediation. Can be understood like an 'in situ' bio-remediation process with low technical intervention. This low intervention may be in order to follow the behaviour of pollutants 'monitored natural attenuation' or include an optimisation process to improve biological remediation. The use of this technology is a fact for light hydrocarbon polluted soil, but few is known about the behaviour of polycyclic aromatic hydrocarbons (PAHs) in this process. PAHs are more recalcitrant to bio-remediation due to their physic-chemical characteristics, mainly hydrophobicity and electrochemical stability. PAHs are a kind of pollutants widely distributed in the environment, not only in the proximity of the source. This linked to the characteristics of some of them related to toxicity and mutagenicity implies its inclusion as target compounds from an environmental point of view. Their low availability, solubility and the strong tendency to bind to soil particle, especially to the organic phase affect PAHs biological mineralisation. So, if the pollutant is not available to microorganisms it can not be bio-degraded. Bioavailability can be assessed form several but complementary points of view: physico-chemical and biological. First including the term availability and the second to point out the capacity of soil microorganisms to mineralize PAHs. Availability and Bio-degradability must be determined, as well as the presence and activity of specific degraders among the soil organisms, once settled these points is necessary to study the biological requirements to optimise biodegradation kinetics of these compounds. In this work we present a study carried out on a soil, contaminated by PAHs, the study includes three main topics: bioavailability assessment (both term availability and bio-degradability), bio-remediation assessment, once optimised conditions for natural attenuation and finally a simulation

  16. U.S. bioremediation market: Yesterday, today, and tomorrow

    International Nuclear Information System (INIS)

    The use of bioremediation for full-scale cleanup has increased dramatically throughout the past 10 years. This growth in activity is expected to continue through the year 2000. It is estimated that fewer than 10 companies offered field-level bioremedial services prior to 1985. Although the market today still is dominated by a small number of companies, the total number of firms claiming to offer services and/or products for bioremediation purposes has grown to over 1,000. It is estimated that aggregate bioremediation revenues for 1994 through 2000 will equal $2 to $3 billion (1994 dollars). This revenue will be generated in the initial part of this 7-year period primarily from underground storage cleanup, with revenues from hazardous waste sites becoming an increasingly important factor by accounting for the majority of revenues in the latter years. Market opportunities exist in technology development and implementation including biosparging, centralized treatment facilities for petroleum-contaminated soils, biofilters, and improvements in the cost-effectiveness of the technology

  17. Soil bioremediation at CFB Trenton: evaluation of bioremediation processes

    International Nuclear Information System (INIS)

    Bioremediation processes and their application in the cleanup of contaminated soil, were discussed. The petroleum contaminated soil at CFB Trenton, was evaluated to determine which bioremediation process or combination of processes would be most effective. The following processes were considered: (1) white hot fungus, (2) Daramend proprietary process, (3) composting, (4) bioquest proprietary bioremediation processes, (5) Hobbs and Millar proprietary bioremediation process, and (6) farming. A brief summary of each of these options was included. The project was also used as an opportunity to train Latvian and Ukrainian specialists in Canadian field techniques and laboratory analyses. Preliminary data indicated that bioremediation is a viable method for treatment of contaminated soil. 18 refs., 3 figs

  18. Using a Consensus Conference to Characterize Regulatory Concerns Regarding Bioremediation of Radionuclides and Heavy Metals in Mixed Waste at DOE Sites

    International Nuclear Information System (INIS)

    A consensus workshop was developed and convened with ten state regulators to characterize concerns regarding emerging bioremediation technology to be used to clean-up radionuclides and heavy metals in mixed wastes at US DOE sites. Two questions were explored: integrated questions: (1) What impact does participation in a consensus workshop have on the knowledge, attitudes, and practices of state regulators regarding bioremediation technology? (2) How effective is a consensus workshop as a strategy for eliciting and articulating regulators concerns regarding the use of bioremediation to clean up radionuclides and heavy metals in mixed wastes at U.S. Department of Energy Sites around the county? State regulators met together for five days over two months to learn about bioremediation technology and develop a consensus report of their recommendations regarding state regulatory concerns. In summary we found that panel members: quickly grasped the science related to bioremediation and were able to effectively interact with scientists working on complicated issues related to the development and implementation of the technology; are generally accepting of in situ bioremediation, but concerned about costs, implementation (e.g., institutional controls), and long-term effectiveness of the technology; are concerned equally about technological and implementation issues; and believed that the consensus workshop approach to learning about bioremediation was appropriate and useful. Finally, regulators wanted decision makers at US DOE to know they are willing to work with DOE regarding innovative approaches to clean-up at their sites, and consider a strong relationship between states and the DOE as critical to any effective clean-up. They do not want perceive themselves to be and do not want others to perceive them as barriers to successful clean-up at their sites

  19. Postremediation bioremediation

    International Nuclear Information System (INIS)

    In applying remediation technology, an important question is when to stop operations. Conventional wisdom states that each site has a limit of treatability. Beyond a point, the site conditions limit access to residual contaminants and, therefore, treatment effectiveness. In the treatment of petroleum hydrocarbons, the issue in ceasing remedial operations is not what is the limit of treatment, but what should be the limit of effort. Because hydrocarbons are inherently biodegradable, there is a point in remediation where natural or intrinsic bioremediation is adequate to complete the remedial process. This point is reached when the rate of residual carbon release is the limiting factor, not the rate of oxygen or nutrient supply. At such a point, the rate and degree of remediation is the same whether an active system is being applied or whether nothing is being actively done. This paper presents data from several bioremediation projects where active remediation was terminated above the desired closure levels. These site data illustrate that intrinsic bioremediation is as effective in site closure as continued active remediation

  20. Bioremediation at a petroleum refinery

    International Nuclear Information System (INIS)

    This paper presents a summary of three projects at the Mobil Refinery in Torrance, California where bioremediation technologies were successfully employed for the remediation of hydrocarbon contaminated soil. The three projects represent variations of implementation of bioremediation, both in-situ and ex-situ. Soil from all of the projects was considered non-hazardous designated waste under the California Code of Regulations, Title 23, section 2522. The projects were permitted and cleanup requirements were defined with the Los Angeles Regional Water Quality Control Board. In all of the projects, different methods were used for supplying water, oxygen, and nutrients to the hydrocarbon degrading bacteria to stimulate growth. The Stormwater Retention Basin Project utilized in-situ mechanical mixing of soils to supply solid nutrients and oxygen, and a self-propelled irrigation system to supply water. The Tank Farm Lake project used an in-situ active bioventing technology to introduce oxygen, moisture, and vapor phase nutrients. The Tank 1340X247 project was an ex-situ bioventing remediation project using a drip irrigation system to supply water and dissolved nutrients, and a vapor extraction system to provide oxygen

  1. Environmental Cleanup of the East Tennessee Technology Park Year One - Execution with Certainty SM - 13120

    International Nuclear Information System (INIS)

    On August 1, 2011, URS - CH2M Oak Ridge LLC (UCOR) began its five-year, $1.4 billion cleanup of the East Tennessee Technology Park (ETTP), located on the U.S. Department of Energy's (DOE) Oak Ridge Reservation in Tennessee. UCOR will close out cleanup operations that began in 1998 under a previous contract. When the Contract Base scope of work [1] is completed in 2016, the K-25 gaseous diffusion building will have been demolished and all waste dispositioned, demolition will have started on the K-27 gaseous diffusion building, all contact-handled and remote-handled transuranic waste in inventory (approximately 500 cubic meters) will have been transferred to the Transuranic Waste Processing Center, previously designated 'No-Path-To-Disposition Waste' will have been dispositioned to the extent possible, and UCOR will have managed DOE Office of Environmental Management (EM)- owned facilities at ETTP, Oak Ridge National Laboratory (ORNL), and the Y-12 National Security Complex in a safe and cost-effective manner. Since assuming its responsibilities as the ETTP cleanup contractor, UCOR has completed its life-cycle Performance Measurement Baseline; received its Earned Value Management System (EVMS) certification; advanced the deactivation and demolition (D and D) of the K-25 gaseous diffusion building; recovered and completed the Tank W-1A and K-1070-B Burial Ground remediation projects; characterized, packaged, and shipped contact-handled transuranic waste to the Transuranic Waste Processing Center; disposed of more than 90,000 cubic yards of cleanup waste while managing the Environmental Management Waste Management Facility (EMWMF); and provided operations, surveillance, and maintenance activities at DOE EM facilities at ETTP, ORNL, and the Y-12 National Security Complex. Project performance as of December 31, 2012 has been excellent: - Cost Performance Index - 1.06; - Schedule Performance Index - 1.02. At the same time, since safety is the foundation of all cleanup

  2. An overview of the bioremediation of inorganic contaminants

    International Nuclear Information System (INIS)

    Bioremediation, or the biological treatment of wastes, usually is associated with the remediation of organic contaminants. Similarly, there is an increasing body of literature and expertise in applying biological systems to assist in the bioremediation of soils, sediments, and water contaminated with inorganic compounds including metals, radionuclides, nitrates, and cyanides. Inorganic compounds can be toxic both to humans and to organisms used to remediate these contaminants. However, in contrast to organic contaminants, most inorganic contaminants cannot be degraded, but must be remediated by altering their transport properties. Immobilization, mobilization, or transformation of inorganic contaminants via bioaccumulation, biosorption, oxidation, reduction, methylation, demethylation, metal-organic complexation, ligand degradation, and phytoremediation are the various processes applied in the bioremediation of inorganic compounds. This paper briefly describes these processes, referring to other contributors in this book as examples when possible, and summarize the factors that must be considered when choosing bioremediation as a cleanup technology for inorganics. Understanding the current state of knowledge as well as the limitations for bioremediation of inorganic compounds will assist in identifying and implementing successful remediation strategies at sites containing inorganic contaminants. 79 refs

  3. In Situ Sediment Treatment Using Activated Carbon: A Demonstrated Sediment Cleanup Technology

    Science.gov (United States)

    Patmont, Clayton R; Ghosh, Upal; LaRosa, Paul; Menzie, Charles A; Luthy, Richard G; Greenberg, Marc S; Cornelissen, Gerard; Eek, Espen; Collins, John; Hull, John; Hjartland, Tore; Glaza, Edward; Bleiler, John; Quadrini, James

    2015-01-01

    This paper reviews general approaches for applying activated carbon (AC) amendments as an in situ sediment treatment remedy. In situ sediment treatment involves targeted placement of amendments using installation options that fall into two general approaches: 1) directly applying a thin layer of amendments (which potentially incorporates weighting or binding materials) to surface sediment, with or without initial mixing; and 2) incorporating amendments into a premixed, blended cover material of clean sand or sediment, which is also applied to the sediment surface. Over the past decade, pilot- or full-scale field sediment treatment projects using AC—globally recognized as one of the most effective sorbents for organic contaminants—were completed or were underway at more than 25 field sites in the United States, Norway, and the Netherlands. Collectively, these field projects (along with numerous laboratory experiments) have demonstrated the efficacy of AC for in situ treatment in a range of contaminated sediment conditions. Results from experimental studies and field applications indicate that in situ sequestration and immobilization treatment of hydrophobic organic compounds using either installation approach can reduce porewater concentrations and biouptake significantly, often becoming more effective over time due to progressive mass transfer. Certain conditions, such as use in unstable sediment environments, should be taken into account to maximize AC effectiveness over long time periods. In situ treatment is generally less disruptive and less expensive than traditional sediment cleanup technologies such as dredging or isolation capping. Proper site-specific balancing of the potential benefits, risks, ecological effects, and costs of in situ treatment technologies (in this case, AC) relative to other sediment cleanup technologies is important to successful full-scale field application. Extensive experimental studies and field trials have shown that when

  4. Using Advanced Mixed Waste Treatment Technology To Meet Accelerated Cleanup Program Milestones

    International Nuclear Information System (INIS)

    Some DOE Complex facilities are entering the late stages of facility closure. As waste management operations are completed at these sites, remaining inventories of legacy mixed wastes must be finally disposed. These wastes have unique physical, chemical and radiological properties that have made their management troublesome, and hence why they have remained on site until this late stage of closure. Some of these wastes have had no approved or practical treatment alternative until just recently. Results are provided from using advanced mixed waste treatment technology to perform two treatment campaigns on these legacy wastes. Combinations of macro-encapsulation, vacuum thermal desorption (VTD), and chemical stabilization, with off-site incineration of the organic condensate, provided a complete solution to the problem wastes. One program included approximately 1,900 drums of material from the Fernald Environmental Management Project. Another included approximately 1,200 drums of material from the Accelerated Cleanup Program at the Oak Ridge Reservation. Both of these campaigns were conducted under tight time schedules and demanding specifications, and were performed in a matter of only a few months each. Coordinated rapid waste shipment, flexible permitting and waste acceptance criteria, adequate waste receiving and storage capacity, versatile feed preparation and sorting capability, robust treatment technology with a broad feed specification, and highly reliable operations were all valuable components to successful accomplishment of the project requirements. Descriptions of the waste are provided; material that was difficult or impossible to treat in earlier phases of site closure. These problem wastes included: 1) the combination of special nuclear materials mixed with high organic chemical content and/or mercury, 2) high toxic metal content mixed with high organic chemical content, and 3) very high organic chemical content mixed with debris, solids and sludge

  5. Phenotypic and molecular characterization of bacterial populations isolated from diesel-contaminated soil and treated by two bioremediation technologies

    International Nuclear Information System (INIS)

    In this study bioremediation is presented as an alternative for the recovery of contaminated ecosystems. In this work an experimental diesel spill on pasture land was remediated using two bioremediation technologies: natural attenuation, which is the natural capability of indigenous microorganisms to degrade a xenobiotic component in a determined time, and biostimulation, which consist in the acceleration of the degradation process through the stimulation of the metabolism of indigenous microorganisms by the addition of nutrients (P and N) to the media. Results of respirometry assays indicated that both treatments produced significant levels of hydrocarbon removal but the biostimulation treatment stranded out with 98.17% degradation. Seven bacterial isolates were obtained from these treatments which according to their molecular characterization and phylogenetic analysis belong to the genus: Enterobacter, Bacillus, Arthrobacter, Sanguibacter, Staphylococcus and Flavobacterium. All isolates were able to metabolize diesel as a carbon and energy source; for this reason and taking into account that for some of these microorganisms their role in bioremediation have not been extensively studied, it is recommended to continue with their evaluation to know their real potential for the solution of environmental problems.

  6. Development of a new chemical technology for cleanup of VVER steam generators

    International Nuclear Information System (INIS)

    As shows the maintenance experience of SG's, the long-time maintenance them without chemical cleanup on secondary-side results in accumulation of considerable amounts of depositions of oxides of iron with a high content of copper on outside of tubes. The deposit accumulation creates conditions for concentrating of salts which promote corrosion and, then, the loosing of inter-contour tightness. Therefore the experts do not have any doubts in necessity of chemical cleanups and the chemical cleanups were carried out at some NPP's with VVER during last years. However it is possible to say, that these cleanups were carried out not by the best mode - the same main reagents had been used in order to dissolve the copper and iron oxides. For example, all cleanups at Balakovo NPP in 1996-1997 years had the common deficiency - even during 5. final stage of process the copper prolongs to be washed. By our opinion, the reasons of it are the poor scientific and technical justification of this process. Therefore at various NPP's with VVER cleanups realize by various techniques. The process of chemical cleanup, close to offered in the present work, was repeated many times utilized at BN-600 Belojarsk NPP and at BN-350 Shevtchenko NPP. The purposes of the present work are: 1. Research the behaviours of physicochemical processes during dissolution of components of depositions and their mixtures with use of the various formulas; 2. Analysis of the carried out chemical cleanups of PGV-1000M at an example of Balakovo NPP; 3. Development of a new process of SG's cleanup on the base of experimental researches and analysis; 4. Check of this process on the samples of full-scale depositions from SG Balakovo NPP. (authors)

  7. Development of a new chemical technology for cleanup of VVER steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Smykov, V.B.; Yermolaev, N.P. [IPPE, Obninsk (Russian Federation); Ivanov, V.N. [Balakovo NPP (Russian Federation)

    2002-07-01

    As shows the maintenance experience of SG's, the long-time maintenance them without chemical cleanup on secondary-side results in accumulation of considerable amounts of depositions of oxides of iron with a high content of copper on outside of tubes. The deposit accumulation creates conditions for concentrating of salts which promote corrosion and, then, the loosing of inter-contour tightness. Therefore the experts do not have any doubts in necessity of chemical cleanups and the chemical cleanups were carried out at some NPP's with VVER during last years. However it is possible to say, that these cleanups were carried out not by the best mode - the same main reagents had been used in order to dissolve the copper and iron oxides. For example, all cleanups at Balakovo NPP in 1996-1997 years had the common deficiency - even during 5. final stage of process the copper prolongs to be washed. By our opinion, the reasons of it are the poor scientific and technical justification of this process. Therefore at various NPP's with VVER cleanups realize by various techniques. The process of chemical cleanup, close to offered in the present work, was repeated many times utilized at BN-600 Belojarsk NPP and at BN-350 Shevtchenko NPP. The purposes of the present work are: 1. Research the behaviours of physicochemical processes during dissolution of components of depositions and their mixtures with use of the various formulas; 2. Analysis of the carried out chemical cleanups of PGV-1000M at an example of Balakovo NPP; 3. Development of a new process of SG's cleanup on the base of experimental researches and analysis; 4. Check of this process on the samples of full-scale depositions from SG Balakovo NPP. (authors)

  8. Bioremediation of petroleum contaminated soil using vegetation--A technology transfer project

    International Nuclear Information System (INIS)

    A common environmental problem associated with the pumping and refining of crude oil is the disposal of petroleum sludge. Unfortunately, the biodegradation fate of more recalcitrant and potentially toxic contaminants, such as the polynuclear aromatic hydrocarbons (PNAs), is rapid at first but declines quickly. Biodegradation of these compounds is limited by their strong adsorption potential and low solubility. Recent research has suggested that vegetation may play an important role in the biodegradation of toxic organic chemicals, such as PNAs, in soil. The establishment of vegetation on hazardous waste sites may be an economic, effective, low maintenance approach to waste remediation and stabilization. Completed greenhouse studies have indicated that vegetative remediation is a feasible method for clean-up of surface soil contaminated with petroleum products. However, a field demonstration is needed to exhibit this new technology to the industrial community. In this project, several petroleum contaminated field sites will be chosen in collaboration with three industrial partners. These sites will be thoroughly characterized for chemical properties, physical properties, and initial PNA concentrations. A variety of plant species will be established on the sites, including warm and cool season grasses and alfalfa. Soil analyses for the target compounds over time will allow them to assess the efficiency and applicability of this remediation method

  9. Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes

    Energy Technology Data Exchange (ETDEWEB)

    Reaven, S.J. [State Univ. of New York, Stony Brook, NY (United States)

    1994-12-01

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

  10. Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes

    International Nuclear Information System (INIS)

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region's existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs

  11. Ex-situ bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    The use of stress acclimated bacteria and nutrient supplements to enhance the biodegradation of petroleum contaminated soil can be a cost effective and reliable treatment technology to reduce organic contaminant levels to below established by local, state, and federal regulatory clean-up criteria. This paper will summarize the results of a field study in which 12,000 yds3 of petroleum contaminated soil was successfully treated via ex-situ bioremediation and through management of macro and micronutrient concentrations, as well as, other site specific environmental factors that are essential for optimizing microbial growth

  12. Bioremediation of oil spills in the United States

    International Nuclear Information System (INIS)

    The involvement of EPA in the cleanup of oil-contaminated beaches in Prince William Sound, Alaska, following the Exxon Valdez oil spill, has generated a significant research effort in oil spill cleanup technology within EPA's Office of Research and Development. Because of the successful use of bioremediation in the Alaskan spill, a considerable portion of the research has been directed toward its further development, particularly as it might apply to other types of beaches and open water. In hindsight the problems faced in the application of bioremediation on the beaches of Prince William Sound appear relatively straightforward. First, the major obstacle of logistics on remote beaches was effectively overcome by using the operational capabilities created by the massive physical washing operation conducted from barges. Second, oil-degrading microbial communities were rapidly enriched in the oil-contaminated beach material, including subsurface, thereby precluding the need for any inoculation procedures. This situation, however, created a significant increased demand for nitrogen and phosphorus nutrients that was met through the application of commercially available fertilizers. Natural biodegradation of the oil was enhanced by the addition of fertilizer, substantially aiding in the overall cleanup operation. Third, the extremely high porosity of the cobblestone and mixed sand and gravel beach material allowed oil to be spread over a large surface area, thereby improving availability to the oil-degrading microbial communities and allowing, through tidal and wave action, the constant replenishment of oxygen. In addition, it created a high dilution capability that effectively prevented the accumulation of ammonia

  13. In-situ bioremediation at the French Limited Site

    International Nuclear Information System (INIS)

    In situ biodegradation of petrochemical wastes at the French Limited Superfund Site was stimulated by providing the appropriate pH, essential nutrients, oxygen, and substrate availability. Fourteen wastewater treatment parameters, plus toxicity, were monitored to document the program of bioremediation. Periodic, organic priority pollutant analysis of mixed liquor, settled sludges and subsoils provided data for kinetics interpretation and half life calculation. The half lives of thirteen PAH compounds ranged from 27 to 46 days, in contrast to the degradation rate, in months, reported for these compounds in LTUs. An ambitious air monitoring program measured fugitive emissions at lagoon side, fenceline, and from the lagoon surface by floating flux chamber. The amount of volatiles lost never exceeded 1/2 of the OSHA 8 hr TLV and it could be readily managed by adjusting the intensity and frequency of mixing and aeration. The demonstration confirmed the feasibility of in situ bioremediation and led to one of the first US EPA Record of Decisions to use bioremediation for cleanup of a large Superfund site. A consent Decree outlining the site remedial action program was signed by the PRP task group and published in the Federal Register. This represents a landmark project for in situ bioremediation and has established precedence for use of this technology at CERCLA and RCRA sites nationwide

  14. Bioremediation of Contaminated Soil Containing Crude Oil

    OpenAIRE

    Casimiro, Rodolfo

    2015-01-01

    Bioremediation of contaminated soil containing crude oil is a technique process whereby biological systems are harnessed to affect the clean-up of environmental pollutants. Microbial systems are most widely employed in bioremediation programs, generally in the treatment of soil and water contaminants with organic pollutants. This thesis reports the experiment of treating the soil without use of any chemicals. Four treatments were used for this experiment. All of the treatments were containing...

  15. Oil spills and their cleanup

    International Nuclear Information System (INIS)

    Oil spills are an unfortunately common occurrence in the world's seas and can have extensive damaging environmental consequences. This article examines various methods of cleaning up oil spills, evaluates their effectiveness in various situations, and identifies areas where, current methods being inadequate, further research is needed. Containment, mechanical removal, shoreline cleanup, chemical treating agents, in situ burning, natural recovery and enhanced bioremediation are all assessed. The cleanup method must be selected to match environmental conditions. Results are good in quiet, sheltered waters, but need extensive development in open waters and high seas. (UK)

  16. Endophytic microorganisms—promising applications in bioremediation of greenhouse gases

    OpenAIRE

    Z. Stępniewska; Kuźniar, A.

    2013-01-01

    Bioremediation is a technique that uses microbial metabolism to remove pollutants. Various techniques and strategies of bioremediation (e.g., phytoremediation enhanced by endophytic microorganisms, rhizoremediation) can mainly be used to remove hazardous waste from the biosphere. During the last decade, this specific technique has emerged as a potential cleanup tool only for metal pollutants. This situation has changed recently as a possibility has appeared for bioremediation of other polluta...

  17. Bioremediation of oil spills

    International Nuclear Information System (INIS)

    The conversion of oil to environmentally benign chemicals such as water and carbon dioxide by 'hydrocarbon-eating' bacteria is described. The emphasis is on a new process to selectively increase the population of 'oil eating' bacteria, a development that became the foundation for the second-generation bioremediation accelerator, Inipol EAP-22. Second-generation bioremediation products focus on providing nitrogen and phosphorus, chemicals that are not present in crude oil in readily available form, but are essential for the synthesis of proteins, nucleic acids, phospholipids and the energy metabolism of the bacteria. Providing these chemicals in the proper amounts encourages the preferential growth of oil-degrading microbes already present in the local biomass, thus overcoming the major limiting factor for biodegradation. These second-generation bioremediation products also have strong oleophilic properties engineered into them, to assure that the nutrients essential for the bacteria are in contact with the oil. The first major test for second-generation bioremediation accelerators came with the clean-up of the oil spill from the Exxon Valdez, a disaster that contaminated more than 120 kilometres of Alaskan beaches along the shores of Prince William Sound. The Inipol EAP-22 successfully held the nutrients in contact with the oil for the duration of the treatment period, despite constant exposure to the washing action of the surf and occasional heavy rainstorms. Today, the accelerator is routinely used in cleaning up all types of ordinary spills including diesel fuel spills along railway right-of-ways, truck yards and refinery sludge. Conditions under which the application of the accelerator is likely to be most successful are described

  18. In situ bioremediation for the Hanford carbon tetrachloride plume. Innovative technology summary report

    International Nuclear Information System (INIS)

    The 200 Area at Hanford (also called the Central Plateau) contains approximately 817 waste sites, 44 facilities to be demolished, and billions of gallons of contaminated groundwater resulting from chemical processing plants and associated waste facilities (e.g., waste tanks). From 1955 to 1973, carbon tetrachloride, nitrate, and other materials were discharged to subsurface liquid waste disposal facilities in the 200 Area. As much as 600,000 kilograms of carbon tetrachloride may have entered the soil column and a portion of this has contaminated the underlying aquifer. In Situ Bioremediation for the Hanford Carbon Tetrachloride Plume (ISB), which is the term used in this report for an in situ treatment process using indigenous micro-organisms with a computer based Accelerated Bioremediation Design Tool (ABDT), remediates groundwater contaminated with volatile organic compounds (VOCs) and nitrates under anaerobic conditions. ISB involves the injection of nutrients into the groundwater and subsequent extraction and re-injection of the groundwater to provide nutrient distribution in the aquifer

  19. Bioremediation of fossil fuel contaminated soils

    International Nuclear Information System (INIS)

    Bioremediation involves the use of microorganisms and their biodegradative capacity to remove pollutants. The byproducts of effective bioremediation, such as water and carbon dioxide, are nontoxic and can be accommodated without harm to the environment and living organisms. This paper reports that using bioremediation to remove pollutants has many advantages. This method is cheap, whereas physical methods for decontaminating the environment are extraordinarily expensive. Neither government nor private industry can afford the cost to clean up physically the nation's known toxic waste sites. Therefore, a renewed interest in bioremediation has developed. Whereas current technologies call for moving large quantities of toxic waste and its associated contaminated soil to incinerators, bioremediation can be done on site and requires simple equipment that is readily available. Bioremediation, though, is not the solution for all environmental pollution problems. Like other technologies, bioremediation has limitations

  20. Bioremediation of marine oil pollution

    International Nuclear Information System (INIS)

    An assessment is presented of the scientific and technological developments in the area of bioremediation and biodegradation of marine oil pollution. A number of allied technologies are also considered. The basic technology in bioremediation involves adding fertilizers to an oil spill to enhance the natural process of oil biodegradation. Bioremediation can be applied to open systems such as beach or land spills, or in closed and controlled environments such as storage containers, specially constructed or modified bioreactors, and cargo tanks. The major advantage of using closed environments is the opportunity to control the physical and nutritional parameters to optimize the rate of biodegradation. An evaluation of the state of the art of bioremediation in Canada is also included. Recommendations are made to involve the Canadian Transportation Development Centre in short-term research projects on bioremediation. These projects would include the use of a barge as a mobile bioreactor for the treatment of off-loaded oily waste products, the use of in-situ bioremediation to carry out extensive cleaning, degassing, and sludge remediation on board an oil tanker, and the use of a barge as a mobile bioreactor and facility for the bioremediation of bilges. 51 refs., 4 figs., 14 tabs

  1. Cometabolic bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-15

    Cometabolic bioremediation is probably the most under appreciated bioremediation strategy currently available. Cometabolism strategies stimulate only indigenous microbes with the ability to degrade the contaminant and cosubstrate e.g. methane, propane, toluene and others. This highly targeted stimulation insures that only those microbes that can degrade the contaminant are targeted, thus reducing amendment costs, well and formation plugging, etc. Cometabolic bioremediation has been used on some of the most recalcitrant contaminants, e.g. PCE, TCE, MTBE, TNT, dioxane, atrazine, etc. Methanotrophs have been demonstrated to produce methane monooxygense, an oxidase that can degrade over 300 compounds. Cometabolic bioremediation also has the advantage of being able to degrade contaminants to trace concentrations, since the biodegrader is not dependent on the contaminant for carbon or energy. Increasingly we are finding that in order to protect human health and the environment that we must remediate to lower and lower concentrations, especially for compounds like endocrine disrupters, thus cometabolism may be the best and maybe the only possibility that we have to bioremediate some contaminants.

  2. FRAC RITE's clean-up concept: Applies oil patch technology to save contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.

    2003-04-01

    The suitability of oil field technology for cleaning up contaminated sites is examined. According to Frac Rite Environmental Ltd. the answer is 'yes' as demonstrated by the proprietary tools, technology and programs that the company developed to remediate and clean up problem sites. The rationale for using oilfield technology is that getting contaminants to move up from where they are lodged in silt or clay soils involves the same principles as fracture stimulation to induce crude oil to the surface. The procedure to clean the site involves a series of processes that parallel standard fracture stimulation, namely drilling into the soil, fracturing, installing recovery wells and extracting contaminants from groundwater and bio-remediation. Frac Rite's clientele is split roughly 60 per cent downstream and 40 per cent upstream. The downstream end includes retail gas stations, fuel bulk plants, industrial solvent manufacturing locations, and storage facilities. Upstream sites remediated by Frac Rite include former gas processing plants, flare pits, battery sites, well sites and refineries. The biggest market for Frac Rite's technology and services is in the United States, where the Environmental Protection Agency, the Department of Energy and the U.S. military have huge hazardous material-contaminated sites within their jurisdictions. In contrast, in Canada most soil and water contamination is limited to one major source, hydrocarbons.

  3. Environmental Assessment For Cleanup and Closure of the Energy Technology Engineering Center. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-03-01

    DOE analyzed two cleanup and closure alternatives and the No Action Alternative, in accordance with the Council on Environmental Quality regulations implementing NEPA (40 CFR Parts 1500-1508) and DOE's NEPA implementing regulations (10 CFR Part 1021). Under Alternative 1, DOE is proposing to clean up the remaining ETEC facilities using the existing site specific cleanup standard of 15 mrem/yr. (plus DOE's As Low As Reasonably Achievable--ALARA-principle) for decontamination of radiological facilities and surrounding soils (Alternative 1). An annual 15-millirem additional radiation dose to the maximally exposed individual (assumed to be an individual living in a residential setting on Area IV) from all exposure pathways (air, soil, groundwater) equates to an additional theoretical lifetime cancer risk of no more than 3 x 10-4 (3 in 10,000). For perspective, it is estimated that the average individual in the United States receives a dose of about 300 millirem each year from natural sources of radiation. However, actual exposures generally will be much lower as a result of the application of the ''as low as reasonably achievable'' (ALARA) principle. Based on post-remediation verification sampling previous cleanups have generally resulted in a 2 x 10-6 level of residual risk. DOE would decontaminate, decommission, and demolish the remaining radiological facilities. DOE would also decommission and demolish the one remaining sodium facility and all of the remaining uncontaminated support buildings for which it is responsible. The ongoing RCRA corrective action program, including groundwater treatment (interim measures), would continue. Other environmental impacts would include 2.5 x 10-3 fatalities as a result of LLW shipments and 6.0 x 10-3 fatalities as a result of emission exhaust from all shipments. DOE would also decommission and demolish the remaining sodium facility and decommission and

  4. Cleanup of contaminated areas

    International Nuclear Information System (INIS)

    The paper deals with the problem of contaminated areas cleanup, in order to eliminate every possible damage for man safety and environment and to site recovery for some utilization, The first step of cleanup operation is site characterization, that is followed by a pianificazion activity for a better definition of staff qualification, technology to be used, protection and prevention instruments for the risks due to contaminants handling. The second section describes the different remedial technologies for contaminated sites. Remedial technologies may be divided into on-site/off-site and in-situ treatments, according to whether materials (waste, soil, water) are moved to another location or not, respectively. Finally, it is outlined that contaminated areas cleanup is a typical multidisciplinary activity because very different competences are required. (author)

  5. Building upon Historical Competencies: Next-generation Clean-up Technologies for World-Wide Application - 13368

    Energy Technology Data Exchange (ETDEWEB)

    Guevara, K.C. [DOE Savannah River Operations Office, Aiken, South Carolina 29808 (United States); Fellinger, A.P.; Aylward, R.S.; Griffin, J.C.; Hyatt, J.E.; Bush, S.R. [Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)

    2013-07-01

    The Department of Energy's Savannah River Site has a 60-year history of successfully operating nuclear facilities and cleaning up the nuclear legacy of the Cold War era through the processing of radioactive and otherwise hazardous wastes, remediation of contaminated soil and groundwater, management of nuclear materials, and deactivation and decommissioning of excess facilities. SRS recently unveiled its Enterprise.SRS (E.SRS) strategic vision to identify and facilitate application of the historical competencies of the site to current and future national and global challenges. E.SRS initiatives such as the initiative to Develop and Demonstrate Next generation Clean-up Technologies seek timely and mutually beneficial engagements with entities around the country and the world. One such ongoing engagement is with government and industry in Japan in the recovery from the devastation of the Fukushima Daiichi Nuclear Power Station. (authors)

  6. Building upon Historical Competencies: Next-generation Clean-up Technologies for World-Wide Application - 13368

    International Nuclear Information System (INIS)

    The Department of Energy's Savannah River Site has a 60-year history of successfully operating nuclear facilities and cleaning up the nuclear legacy of the Cold War era through the processing of radioactive and otherwise hazardous wastes, remediation of contaminated soil and groundwater, management of nuclear materials, and deactivation and decommissioning of excess facilities. SRS recently unveiled its Enterprise.SRS (E.SRS) strategic vision to identify and facilitate application of the historical competencies of the site to current and future national and global challenges. E.SRS initiatives such as the initiative to Develop and Demonstrate Next generation Clean-up Technologies seek timely and mutually beneficial engagements with entities around the country and the world. One such ongoing engagement is with government and industry in Japan in the recovery from the devastation of the Fukushima Daiichi Nuclear Power Station. (authors)

  7. Implications of nitrogen fertilization for in-situ bioremediation of petroleum-contaminated soils

    International Nuclear Information System (INIS)

    In situ bioremediation is a promising and rapidly evolving technology for the cleanup of contaminated soils. Although the principles of biodegradation are not new, they are being applied to field remediations in novel ways. Likewise, the metabolic requirements for nitrogen and phosphorus during biodegradation are well-established. However, their effect on the quality of biodegradation still needs delineation. In addition to the physiological effects of mineral nutrients, their mobility and bioavailability in soil becomes critical during an in-situ bioremediation. Studies in the authors laboratory have investigated the effect of different types of fertilizers on hydrocarbon biodegradation in a variety of contaminated soils. Results indicate that the amount and/or species of fertilizer may affect not only the rate of biodegradation, but also the quality of biodegradation, i.e. mineralization of CO2

  8. Ten-year cleanup of U.S. Department of Energy weapon sites: The changing roles for technology development in an era of privatization

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.H. [Dept. of Energy, Washington, DC (United States)

    1996-12-31

    In its beginning, the U.S. Department of Energy (DOE) Office of Environmental Management (EM) viewed private industry as lacking adequate technology know-how to meet demands of hazardous and radioactive waste problems at the DOE`s laboratories and nuclear weapons production facilities. In November 1989, EM`s Office of Technology Development (recently renamed the Office of Science and Technology) embarked on a bold program of developing and demonstrating {open_quotes}innovative{close_quotes} waste cleanup technologies that would be safer, faster, more effective, and less expensive than the {open_quotes}baseline{close_quotes} commercial methods. This program has engaged DOE sites, national laboratories, and universities to produce preferred solutions to the problems of handling and treating DOE wastes. More recently, much of this work has shifted to joint efforts with private industry partners to accelerate the use of newly developed technologies and to enhance existing commercial methods. To date, the total funding allocation to the Office of Science and Technology program has been about $2.8 billion. If the technology applications` projects of the EM Offices of Environmental Restoration and Waste Management are included, the total funding is closer to $4 billion. Yet, the environmental industry generally has not been very receptive to EM`s innovative technology offerings. And, essentially the same can be said for DOE sites. According to the U.S. General Accounting Office in an August 1994 report, {open_quotes}Although DOE has spent a substantial amount to develop waste cleanup technologies, little new technology finds its way into the agency`s cleanup actions{close_quotes}. The DOE Baseline Environmental Management Report estimated cleanups of DOE`s Cold War legacy of wastes to require the considerable cost of $226 billion over a period of 75 years. 1 tab.

  9. Development of combinatorial bacteria for metal and radionuclide bioremediation

    International Nuclear Information System (INIS)

    The grant concerned chromate [Cr(VI)] bioremediation and it was our aim from the outset to construct individual bacterial strains capable of improved bioremediation of multiple pollutants and to identify the enzymes suited to this end. Bacteria with superior capacity to remediate multiple pollutants can be an asset for the cleanup of DOE sites as they contain mixed waste. I describe below the progress made during the period of the current grant, providing appropriate context

  10. Development of combinatorial bacteria for metal and radionuclide bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    A. C. Matin, Ph. D.

    2006-06-15

    The grant concerned chromate [Cr(VI)] bioremediation and it was our aim from the outset to construct individual bacterial strains capable of improved bioremediation of multiple pollutants and to identify the enzymes suited to this end. Bacteria with superior capacity to remediate multiple pollutants can be an asset for the cleanup of DOE sites as they contain mixed waste. I describe below the progress made during the period of the current grant, providing appropriate context.

  11. Bioremediation of crude oil spills in marine and terrestrial environments

    International Nuclear Information System (INIS)

    Bioremediation can be a safe and effective tool for dealing with crude oil spills, as demonstrated during the cleanup following the Exxon Valdez spill in Alaska. Crude oil has also been spilled on land, and bioremediation is a promising option for land spills too. Nevertheless, there are still areas where understanding of the phenomenon is rather incomplete. Research groups around the world are addressing these problems, and this symposium provides an excellent overview of some of this work

  12. Technology for the oil spills clean-up which provides preliminary accumulation of sorbents into the area of emergence and localization oil spills

    Directory of Open Access Journals (Sweden)

    M.L.Soroka

    2012-12-01

    Full Text Available Introduction: The implementation of measures for the prevention and spill of dangerous goods is an important aspect of sustainable development of railway transport. oil spills accident are the most dangerous. They are accompanied by significant pollution of all environmental objects. Studying and development of oil localization and clean-up technologies of such accidents is an important problem of environmental protection to modern conditions of railway transport development. The purpose: to improve the effectiveness of traditional methods of oil spill elimination and the development of new clean-up technologies adapted to the real conditions of the railway transport of Ukraine. Methods: To achieve the research purposes was used analysis of material flows, typical for places emergence and localization of the oil spill on the railways. Results: Analysis of standard technological scheme for the oil spills eliminations has shown that the most difficult task of effective clean-up surfaces is the timely delivery of oil sorbents and special equipment to the area spill containment. The general effectiveness of the elimination activities specifies the time from the beginning contact of dangerous goods with environmental objects to the absorption it into the structure of sorbent . Us was developed the technological scheme of oil spill elimination. This scheme provide a permanent and fast access to the sorbents into the oil spill localization area. It was proposed to device that allows you to transport the sorbent into sorption booms directly on the tank for transportation of petroleum products. Conclusions: Preventative accumulation of sorbents to the oil spill elimination into the localization area provides the organizational and operational simplicity of all stages of clean-up technology. Technical and economic assessment shows that the proposed technology is effective, technologically feasible and economically competitive.

  13. Bioremediation of oil spills

    International Nuclear Information System (INIS)

    For some years now UK and European oil spill response agencies, together with oil companies having an exploration or production interest in the European area, have been developing interest in the possible use of bioremediation techniques in combatting oil spills. The interest has accelerated in the aftermath of Exxon Valdez but there is significant scepticism over the actual value of the technique. The promise of increased rates of oil degradation, using bacteria or nutrients, does not yet appear to have been properly validated and there is concern over possible knock-on environmental effects. In consequence the response agencies are reluctant to bring the technique into their current combat armory. Some of the questions raised are: What efficacious techniques are available and how were they proven? On what type of oils can they be used? What is the scope for their use (at sea, type of coastline, temperature limitations, etc.)? What are the short and long term effects? Does bioremediation really work and offer a potential tool for oil spill clean-up? How do cleaning rates compare with natural recovery? There are many others. The view of the European Commission is that there should be a coordinated effort to answer these questions, but that effort should be properly targeted. I concur strongly with this view. The tasks are too large and varied for piecemeal attention. The European Commission wishes to initiate appropriate coordinated work, directed at the needs of European nations but which will subsequently inform the international response community through the International Maritime Organization and its Oil Pollution Preparedness and Response Cooperation initiative

  14. Bioremediation of Bunker C

    International Nuclear Information System (INIS)

    In the states of Washington and Oregon, the highest priority for waste management is now given to recycling, reuse and permanent solutions as opposed to landfill disposal. Bioremediation is recognized as a treatment of choice over other technologies that do not provide permanent solutions. From a business point of view, it is usually the most cost-effective. Bioremediation works extremely well for most common hydrocarbons including aviation fuel, heating oil and diesel oil. Bunker C, a high boiling point distillate, is the most recalcitrant hydrocarbon for treatment and is the topic of this paper. Bunker C lives up to its reputation of being a very recalcitrant hydrocarbon to biodegrade. The authors have demonstrated, however, that the soil matrix standards at industrial sites in Washington and Oregon can be achieved using new bioremediation techniques. These techniques are necessary over those typically used to biodegrade jet fuel, heating oil and diesel oil. These extra steps have been developed for our own use in our treatability laboratory

  15. Bioremediation of Hanford groundwater

    International Nuclear Information System (INIS)

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40 years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate (NO3-), carbon tetrachloride (CCl4), and several radionuclides, have been detected in the Hanford groundwater. A research and development program is presently underway to develop bioremediation technologies for treating contaminated Hanford groundwaters. The program includes development of both ex situ and in situ treatment methods, with primary emphasis on developing an in situ treatment process. The goal of the in situ process is to stimulate the native microorganisms and accelerate the natural degradation of NO3- and CCl4. A demonstration site at Hanford for in situ biological treatment was selected in 1990, and extensive hydrological, chemical, and biological characterization of the site is underway. Current research and development activities are focusing on developing methods for supplying nutrients to the subsurface, evaluating the effect of in situ bioremediation on the long-term mobility of metal and radionuclide co-contaminants, and modeling the bioremediation process using three-dimensional visualization tools to help design the field-scale demonstration site and predict performance

  16. Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas

    Energy Technology Data Exchange (ETDEWEB)

    Turk, Brian; Gupta, Raghubir; Sharma, Pradeepkumar; Albritton, Johnny; Jamal, Aqil

    2010-09-30

    One of the key obstacles for the introduction of commercial gasification technology for the production of power with Integrated Gasification Combined Cycle (IGCC) plants or the production of value added chemicals, transportation fuels, and hydrogen has been the cost of these systems. This situation is particularly challenging because the United States has ample coal resources available as raw materials and effective use of these raw materials could help us meet our energy and transportation fuel needs while significantly reducing our need to import oil. One component of the cost of these systems that faces strong challenges for continuous improvement is removing the undesirable components present in the syngas. The need to limit the increase in cost of electricity to < 35% for new coal-based power plants which include CO{sub 2} capture and sequestration addresses both the growing social concern for global climate change resulting from the emission of greenhouse gas and in particular CO{sub 2} and the need to control cost increases to power production necessary to meet this social objective. Similar improvements to technologies for trace contaminants are getting similar pressure to reduce environmental emissions and reduce production costs for the syngas to enable production of chemicals from coal that is cost competitive with oil and natural gas. RTI, with DOE/NETL support, has been developing sorbent technologies that enable capture of trace contaminants and CO{sub 2} at temperatures above 400 °F that achieve better capture performance, lower costs and higher thermal efficiency. This report describes the specific work of sorbent development for mercury (Hg), arsenic (As), selenium (Se), cadmium (Cd), and phosphorous (P) and CO{sub 2} removal. Because the typical concentrations of Hg, As, Se, Cd, and P are less than 10 ppmv, the focus has been on single-use sorbents with sufficient capacity to ensure replacement costs are cost effective. The research in this

  17. Advanced separation technology for flue gas cleanup. Final report, February 1998

    Energy Technology Data Exchange (ETDEWEB)

    Bhown, A.S.; Alvarado, D.; Pakala, N.; Tagg, T.; Riggs, T.; Ventura, S.; Sirkar, K.K.; Majumdar, S.; Bhaumick, D.

    1998-06-01

    The objective of this work by SRI International was to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (1) a novel method for regenerating spent SO{sub 2} scrubbing liquor and (2) novel chemistry for reversible absorption of NO{sub x}. High efficiency, hollow fiber contactors (HFCs) were proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system would be designed to remove more than 95% of the SO{sub 2} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction of NO{sub x}. In addition, the process would generate only marketable by-products, if any (no waste streams are anticipated). The major cost item in existing technology is capital investment. Therefore, the approach was to reduce the capital cost by using high-efficiency, hollow fiber devices for absorbing and desorbing the SO{sub 2} and NO{sub x}. The authors also introduced new process chemistry to minimize traditionally well-known problems with SO{sub 2} and NO{sub x} absorption and desorption. The process and progress in its development are described.

  18. 'Mini'-Roadmapping - Ensuring Timely Sites' Cleanup/Closure by Resolving Science and Technology Issues

    International Nuclear Information System (INIS)

    Roadmapping is a powerful tool to manage technical risks and opportunities associated with complex problems. Roadmapping identifies technical capabilities required for both project- and program-level efforts and provides the basis for plans that ensure the necessary enabling activities will be done when needed. Roadmapping reveals where to focus further development of the path forward by evaluating uncertainties for levels of complexity, impacts, and/or the potential for large payback. Roadmaps can be customized to the application, a ''graded approach'' if you will. Some roadmaps are less detailed. We have called these less detailed, top-level roadmaps ''mini-roadmaps''. These mini roadmaps are created to tie the needed enablers (e.g., technologies, decisions, etc.) to the functions. If it is found during the mini-roadmapping that areas of significant risk exist, then those can be roadmapped further to a lower level of detail. Otherwise, the mini-roadmap may be sufficient to manage the project/program risk. Applying a graded approach to the roadmapping can help keep the costs down. Experience has indicated that it is best to do mini-roadmapping first and then evaluate the risky areas to determine whether to further evaluate those areas. Roadmapping can be especially useful for programs/projects that have participants from multiple sites, programs, or other entities which are involved. Increased synergy, better communications, and increased cooperation are the results from roadmapping a program/project with these conditions

  19. Sequential Application of Soil Vapor Extraction and Bioremediation Processes for the Remediation of Ethylbenzene-Contaminated Soils

    DEFF Research Database (Denmark)

    Soares, António Carlos Alves; Pinho, Maria Teresa; Albergaria, José Tomás; Domingues, Valentina; Alvim-Ferraz, Maria da Conceição M; Marco, Paolo De; Delerue-Matos, Cristina

    2012-01-01

    Soil vapor extraction (SVE) is an efficient, well-known and widely applied soil remediation technology. However, under certain conditions it cannot achieve the defined cleanup goals, requiring further treatment, for example, through bioremediation (BR). The sequential application of these...... technologies is presented as a valid option but is not yet entirely studied. This work presents the study of the remediation of ethylbenzene (EB)-contaminated soils, with different soil water and natural organic matter (NOMC) contents, using sequential SVE and BR. The obtained results allow the conclusion that......: (1) SVE was sufficient to reach the cleanup goals in 63% of the experiments (all the soils with NOMC below 4%), (2) higher NOMCs led to longer SVE remediation times, (3) BR showed to be a possible and cost-effective option when EB concentrations were lower than 335 mg kgsoil −1, and (4...

  20. Bioremediation potential of crude oil spilled on soil

    International Nuclear Information System (INIS)

    Spills sometimes occur during routine operations associated with exploration and production (E and P) of crude oil. These spills at E and P sites typically are small, less than 1 acre (0.4 ha), and the spill may be in remote locations. As a result, bioremediation often represents a cost-effective alternative to other cleanup technologies. The goal of this study was to determine the potential for biodegrading a range of crude oil types and determining the effect of process variables such as soil texture and soil salinity. Crude oils evaluated ranged in American Petroleum institute (API) gravity from 14 degree to 45 degree. The extent of biodegradation was calculated from oxygen uptake data and the total extractable material (TEM) concentration. Based on the data collected, a simple model was developed for predicting the bioremediation potential of a range of crude oil types. Biodegradation rates were significantly lower in sandy soils. Soil salinities greater than approximately 40 mmhos/cm adversely impacted soil microbial activity and biodegradation rate

  1. 'Mini'-Roadmapping - Ensuring Timely Sites' Cleanup/Closure by Resolving Science and Technology Issues

    International Nuclear Information System (INIS)

    Roadmapping is a powerful tool to manage technical risks and opportunities associated with complex problems. Roadmapping identifies technical capabilities required for both project- and program-level efforts and provides the basis for plans that ensure the necessary enabling activities will be done when needed. Roadmapping reveals where to focus further development of the path forward by evaluating uncertainties for levels of complexity, impacts, and/or the potential for large payback. Roadmaps can be customized to the application, a ''graded approach'' if you will. Some roadmaps are less detailed. We have called these less detailed, top-level roadmaps ''mini-roadmaps''. These miniroadmaps are created to tie the needed enablers (e.g., technologies, decisions, etc.) to the functions. If it is found during the mini-roadmapping that areas of significant risk exist, then those can be road mapped further to a lower level of detail. Otherwise, the mini-roadmap may be sufficient to manage the project/program risk. Applying a graded approach to the roadmapping can help keep the costs down. Experience has indicated that it is best to do mini-roadmapping first and then evaluate the risky areas to determine whether to further evaluate those areas. Roadmapping can be especially useful for programs/projects that have participants from multiple sites, programs, or other entities which are involved. Increased synergy, better communications, and increased cooperation are the results from roadmapping a program/project with these conditions. And, as with any trip, the earlier you use a roadmap, the more confidence you will have that you will arrive at your destination with few, if any, problems. The longer the trip or complicated the route, the sooner the map is needed. This analogy holds true for using roadmapping for laying out program/project baselines and any alternative (contingency) plans. The mini-roadmapping process has been applied to past projects like the hydrogen gas

  2. THE ROLE OF LIQUID WASTE PRETREATMENT TECHNOLOGIES IN SOLVING THE DOE CLEAN-UP MISSION

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, B; Sheryl Bush, S

    2008-10-31

    The objective of this report is to describe the pretreatment solutions that allow treatment to be tailored to specific wastes, processing ahead of the completion schedules for the main treatment facilities, and reduction of technical risks associated with future processing schedules. Wastes stored at Hanford and Savannah River offer challenging scientific and engineering tasks. At both sites, space limitations confound the ability to effectively retrieve and treat the wastes. Additionally, the radiation dose to the worker operating and maintaining the radiochemical plants has a large role in establishing the desired radioactivity removal. However, the regulatory requirements to treat supernatant and saltcake tank wastes differ at the two sites. Hanford must treat and remove radioactivity from the tanks based on the TriParty Agreement and Waste Incidental to Reprocessing (WIR) documentation. These authorizing documents do not specify treatment technologies; rather, they specify endstate conditions. Dissimilarly, Waste Determinations prepared at SRS in accordance with Section 3116 of the 2005 National Defense Authorization Act along with state operating permits establish the methodology and amounts of radioactivity that must be removed and may be disposed of in South Carolina. After removal of entrained solids and site-specific radionuclides, supernatant and saltcake wastes are considered to be low activity waste (LAW) and are immobilized in glass and disposed of at the Hanford Site Integrated Disposal Facility (IDF) or formulated into a grout for disposal at the Savannah River Site Saltstone Disposal Facility. Wastes stored at the Hanford Site or SRS comprise saltcake, supernate, and sludges. The supernatant and saltcake waste fractions contain primarily sodium salts, metals (e.g., Al, Cr), cesium-137 (Cs-137), technetium-99 (Tc-99) and entrained solids containing radionuclides such as strontium-90 (Sr-90) and transuranic elements. The sludges contain many of the

  3. Zooremediation, a new biotechnology solution for shoreline protection and cleanup

    International Nuclear Information System (INIS)

    This paper presented the results of a field study in which a zooremediation method was used to clean up an oil spill in the shoreline of Kola Bay in the Barents Sea. The objective was to confirm that the next generation of environmental remediation tools will include remediation and restoration technology based on phytoremediation, bioremediation and zooremediation for the in situ treatment of polluted sites. These techniques are promising, offering effective and ecologically sound cleanup of spill affected sites. The direct effect of zooremediation is uptake, accumulation, and transformation. The main indirect effect of zooremediation is stimulation on microbial population due to the release of nutrients, enzymes and some bio-active metabolites. In this study, oil degradation in the intertidal zone was accelerated 10 to 20 times using zooremediation in which littoral bivalves M. edulis and M. balthica were used. Survival of the bivalves in this area was much higher than in the control area. It was concluded that the bivalves can take up hydrocarbons from oil contaminated sites and treat them in a manner which makes the petroleum hydrocarbons more biologically available for biodegradation. It was concluded that the presence of bivalves in the shoreline can increase oil bioremediation capacity of natural ecosystems. 21 refs., 3 tabs., 4 figs

  4. The objective of this program is to develop innovative DNA detection technologies to achieve fast microbial community assessment. The specific approaches are (1) to develop inexpensive and reliable sequence-proof hybridization DNA detection technology (2) to develop quantitative DNA hybridization technology for microbial community assessment and (3) to study the microbes which have demonstrated the potential to have nuclear waste bioremediation

    International Nuclear Information System (INIS)

    The objective of this program is to develop innovative DNA detection technologies to achieve fast microbial community assessment. The specific approaches are (1) to develop inexpensive and reliable sequence-proof hybridization DNA detection technology (2) to develop quantitative DNA hybridization technology for microbial community assessment and (3) to study the microbes which have demonstrated the potential to have nuclear waste bioremediation

  5. Technology summary of the in situ bioremediation demonstration (methane biostimulation) via horizontal wells at the Savannah River Site Integrated Demonstration Project

    International Nuclear Information System (INIS)

    The US Department of Energy, Office of Technology Development, has been sponsoring full-scale environmental restoration technology demonstrations for the past 4 years. The Savannah River Site Integrated Demonstration focuses on ''Clean-up of Soils ad Groundwater Contaminated with Chlorinated VOCs.'' Several laboratories including our own had demonstrated the ability of methanotrophic bacteria to completely degrade or mineralize chlorinated solvents, and these bacteria were naturally found in soil and aquifer material. Thus the test consisted of injection of methane mixed with air into the contaminated aquifer via a horizontal well and extraction from the vadose zone via a parallel horizontal well

  6. A Review on Bioremediation Technologies of Organic Pollutants Contaminated Soils%土壤有机污染物生物修复技术研究进展

    Institute of Scientific and Technical Information of China (English)

    周际海; 袁颖红; 朱志保; 姚春阳; 张谷雨; 高琪

    2015-01-01

    biphenyls (PCBs) and Antibiotics (ATBs), worsen soil organic matter pollution, thus making remediation of organic pollutants contaminated soils a pressing issue. The remediation of contaminated soils is a qualitative process in which pollutant concentration is reduced to an acceptable level, or poisonous and harmful pollutants transformed into innoxious substances through absorption, degradation, transfer and transformation in soils using physical, chemical or biological methods. It includes physical remediation technology, chemical remediation technology and bioremediation technology. Among all kinds of soil remediation techniques, bioremediation is receiving more and more attention because of its safety and low cost. Besides, it won’t cause secondary pollution. The bioremediation of organic pollutants contaminated soils consists of phytoremediation technologies, soil fauna remediation technologies and microbial remediation technologies. The microbial bioremediation as an important component of the bioremediation of contaminated soils, boasts the most value in development and application in biological environmental protection. This paper systematically introduces the bioremediation technologies of organic pollutants contaminated soils at home and abroad in terms of their principles, the research progresses, the advantages and limitations. In the meantime, we cast a brief look into the prospects of the research of soil fauna remediation in future. Hopefully, it will provide references for research on bioremediation of organic pollutants contaminated soils.

  7. Biosurfactant-enhanced soil bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Kosaric, N.; Lu, G.; Velikonja, J. [Univ. of Western Ontario, London, Ontario (Canada)

    1995-12-01

    Bioremediation of soil contaminated with organic chemicals is a viable alternative method for clean-up and remedy of hazardous waste sites. The final objective in this approach is to convert the parent toxicant into a readily biodegradable product which is harmless to human health and/or the environment. Biodegradation of hydrocarbons in soil can also efficiently be enhanced by addition or in-situ production of biosufactants. It was generally observed that the degradation time was shortened and particularly the adaptation time for the microbes. More data from our laboratories showed that chlorinated aromatic compounds, such as 2,4-dichlorophenol, a herbicide Metolachlor, as well as naphthalene are degraded faster and more completely when selected biosurfactants are added to the soil. More recent data demonstrated an enhanced biodegradation of heavy hydrocarbons in petrochemical sludges, and in contaminated oil when biosurfactants were present or were added prior to the biodegradation process.

  8. Bioremediation of oil-contaminated soils: A recipe for success

    Energy Technology Data Exchange (ETDEWEB)

    Wittenbach, S.A.

    1995-12-31

    Bioremediation of land crude oil and lube oil spills is an effective and economical option. Other options include road spreading (where permitted), thermal desorption, and off-site disposal. The challenge for environment and operations managers is to select the best approach for each remediation site. Costs and liability for off-site disposal are ever increasing. Kerr-McGee`s extensive field research in eastern and western Texas provides the data to support bioremediation as a legitimate and valid option. Both practical and economical bioremediation as a legitimate and valid option. Both practical and economical, bioremediation also offers a lower risk of, for example, Superfund clean-up exposure than off-site disposal.

  9. Treatment of a mud pit by bioremediation.

    Science.gov (United States)

    Avdalović, Jelena; Đurić, Aleksandra; Miletić, Srdjan; Ilić, Mila; Milić, Jelena; Vrvić, Miroslav M

    2016-08-01

    The mud generated from oil and natural gas drilling, presents a considerable ecological problem. There are still insufficient remedies for the removal and minimization of these very stable emulsions. Existing technologies that are in use, more or less successfully, treat about 20% of generated waste drilling mud, while the rest is temporarily deposited in so-called mud pits. This study investigated in situ bioremediation of a mud pit. The bioremediation technology used in this case was based on the use of naturally occurring microorganisms, isolated from the contaminated site, which were capable of using the contaminating substances as nutrients. The bioremediation was stimulated through repeated inoculation with a zymogenous microbial consortium, along with mixing, watering and biostimulation. Application of these bioremediation techniques reduced the concentration of total petroleum hydrocarbons from 32.2 to 1.5 g kg(-1) (95% degradation) during six months of treatment. PMID:27354013

  10. Principles of Bioremediation Assessment

    Science.gov (United States)

    Madsen, E. L.

    2001-12-01

    Although microorganisms have successfully and spontaneously maintained the biosphere since its inception, industrialized societies now produce undesirable chemical compounds at rates that outpace naturally occurring microbial detoxification processes. This presentation provides an overview of both the complexities of contaminated sites and methodological limitations in environmental microbiology that impede the documentation of biodegradation processes in the field. An essential step toward attaining reliable bioremediation technologies is the development of criteria which prove that microorganisms in contaminated field sites are truly active in metabolizing contaminants of interest. These criteria, which rely upon genetic, biochemical, physiological, and ecological principles and apply to both in situ and ex situ bioremediation strategies include: (i) internal conservative tracers; (ii) added conservative tracers; (iii) added radioactive tracers; (iv) added isotopic tracers; (v) stable isotopic fractionation patterns; (vi) detection of intermediary metabolites; (vii) replicated field plots; (viii) microbial metabolic adaptation; (ix) molecular biological indicators; (x) gradients of coreactants and/or products; (xi) in situ rates of respiration; (xii) mass balances of contaminants, coreactants, and products; and (xiii) computer modeling that incorporates transport and reactive stoichiometries of electron donors and acceptors. The ideal goal is achieving a quantitative understanding of the geochemistry, hydrogeology, and physiology of complex real-world systems.

  11. Monitoring and interpreting bioremediation effectiveness

    International Nuclear Information System (INIS)

    Following the Exxon Valdez oil spill in 1989, extensive research was conducted by the US Environments Protection Agency and Exxon to develop and implement bioremediation techniques for oil spill cleanup. A key challenge of this program was to develop effective methods for monitoring and interpreting bioremediation effectiveness on extremely heterogenous intertidal shorelines. Fertilizers were applied to shorelines at concentrations known to be safe, and effectiveness achieved in acceleration biodegradation of oil residues was measure using several techniques. This paper describes the most definitive method identified, which monitors biodegradation loss by measuring changes in ratios of hydrocarbons to hopane, a cycloalkane present in the oil that showed no measurable degradation. Rates of loss measured by the hopane ratio method have high levels of statistical confidence, and show that the fertilizer addition stimulated biodegradation rates as much a fivefold. Multiple regression analyses of data show that fertilizer addition of nitrogen in interstitial pore water per unit of oil load was the most important parameter affecting biodegradation rate, and results suggest that monitoring nitrogen concentrations in the subsurface pore water is preferred technique for determining fertilizer dosage and reapplication frequency

  12. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  13. Bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    This paper reports on bioremediation, which offers a cost-competitive, effective remediation alternative for soil contaminated with petroleum products. These technologies involve using microorganisms to biologically degrade organic constituents in contaminated soil. All bioremediation applications must mitigate various environmental rate limiting factors so that the biodegradation rates for petroleum hydrocarbons are optimized in field-relevant situations. Traditional bioremediation applications include landfarming, bioreactors, and composting. A more recent bioremediation application that has proven successful involves excavation of contaminated soil. The process involves the placement of the soils into a powerscreen, where it is screened to remove rocks and larger debris. The screened soil is then conveyed to a ribbon blender, where it is mixed in batch with nutrient solution containing nitrogen, phosphorus, water, and surfactants. Each mixed soil batch is then placed in a curing pile, where it remains undisturbed for the remainder of the treatment process, during which time biodegradation by naturally occurring microorganisms, utilizing biochemical pathways mediated by enzymes, will occur

  14. Novel fracture technology proves marginal Viking prospect economic, part II: Well clean-up, flowback and testing

    Energy Technology Data Exchange (ETDEWEB)

    Haidar, S.; Rylance, M.; Tybero, G. [and others

    1996-12-31

    Having completed both fracture treatments as discussed in a companion paper, this paper continues on to describe the post fracture shut-in, clean-up and well testing operations that took place on the Viking Wx exploration well 49/17-12. These operations involved the removal of Resin Coated Proppant (RCP) from the wellbore, via Coiled Tubing (CT), through the use of a specially designed jetting nozzle. The RCP pack stability at a concentration of 3.0 lb/ft{sup 2} (as per planned design) had already been tested in a flowback cell. The use of a Surface Read-Out (SRO) gauge, combined with gas, water and proppant flow rates as well as the viscosity of fracturing fluids returns, enabled real time calculation of the drag forces, on the proppant pack, during clean-up. The flow rate, in the field, was controlled such that the calculated drag forces remained below those observed in the laboratory. Following the clean-up a flow and build-up test was conducted, to evaluate the fracture half length and fracture conductivity, from which a Pseudo-radial skin was calculated. The Non-Darcy effects in the fracture were also evaluated, and finally the short term and long term well deliverabilities were assessed.

  15. Biosol Project: development of a new technology for the treatment of soils contaminated with hydrocarbons. bio-remediation by means of the addition of a biomass material (part one)

    International Nuclear Information System (INIS)

    The general mission of the project is to contribute to the development of new technologies based on the bio-remediation of soils contaminated with hydrocarbons. It is pretended to develop a bio-remediation technology based on the use 'on site' of a biomass material with absorbent properties that allows to reduce time and costs of treatment of contaminated soils by hydrocarbons in comparison with other current technologies. The biomass must be biodegradable and to act as a bio-stimulator of the endogenous microbial population, which is the responsible of the degradation of the pollutants contained in the soil. Another objective to achieve is that the new technology has to be able to decontaminate soils over the maximum thresholds of concentration reached by similar technologies of bio-remediation (50.000 ppm), in order to obtain that the technique could be competitive in comparison with other techniques more conventional based on chemical or physical treatments, and more aggressive from an ecological point of view (for example: chemical oxidation, thermal desorption). The amount and quality of published scientific works also demonstrate that still there are many points to investigate until understanding perfectly how the microorganisms interact with the different phases and compounds that conforms the porous matrix of the soil. In this sense IAP emphasizes the necessity to have a previous study of characterization for any contaminated soil that it wants to be treated by means of technologies based on the bio-remediation. In a similar line, it emphasizes the studies about bio-remediation presented in the 8. Consoil (May of 2003). The works presented in this forum put in evidence the necessity of arrange pilot experiences of application that allow to advance in the development of new technologies applicable to similar scales to the real ones. Also the bio-remediation based on the bio-stimulation of the endogenous microbial populations by means of the addition of

  16. Biosol Project: development of a new technology for the treatment of soils contaminated with hydrocarbons. bio-remediation by means of the addition of a biomass material (part one)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The general mission of the project is to contribute to the development of new technologies based on the bio-remediation of soils contaminated with hydrocarbons. It is pretended to develop a bio-remediation technology based on the use 'on site' of a biomass material with absorbent properties that allows to reduce time and costs of treatment of contaminated soils by hydrocarbons in comparison with other current technologies. The biomass must be biodegradable and to act as a bio-stimulator of the endogenous microbial population, which is the responsible of the degradation of the pollutants contained in the soil. Another objective to achieve is that the new technology has to be able to decontaminate soils over the maximum thresholds of concentration reached by similar technologies of bio-remediation (50.000 ppm), in order to obtain that the technique could be competitive in comparison with other techniques more conventional based on chemical or physical treatments, and more aggressive from an ecological point of view (for example: chemical oxidation, thermal desorption). The amount and quality of published scientific works also demonstrate that still there are many points to investigate until understanding perfectly how the microorganisms interact with the different phases and compounds that conforms the porous matrix of the soil. In this sense IAP emphasizes the necessity to have a previous study of characterization for any contaminated soil that it wants to be treated by means of technologies based on the bio-remediation. In a similar line, it emphasizes the studies about bio-remediation presented in the 8. Consoil (May of 2003). The works presented in this forum put in evidence the necessity of arrange pilot experiences of application that allow to advance in the development of new technologies applicable to similar scales to the real ones. Also the bio-remediation based on the bio-stimulation of the endogenous microbial populations by means of the

  17. Hydrodynamics of foam flows for in situ bioremediation of DNAPL-contaminated subsurface

    International Nuclear Information System (INIS)

    In situ remediation technologies such as (1) pump-and-treat, (2) soil vacuum extraction, (3) soil flushing/washing, and (4) bioremediation are being promoted for cleanup of contaminated sites. However, these technologies are limited by flow channeling of chemical treatment agents. Argonne National Laboratory (ANL), the Gas Research Institute, and the Institute of Gas Technology are collaboratively investigating a new bioremediation technology using foams. The ability of a foam to block pores and limit flow bypassing makes it ideal for DNAPL remediation. The hydrodynamics of gas/liquid foam flows differ significantly from the hydrodynamics of single and multiphase nonfoaming flows. This is illustrated using a multiphase flow hydrodynamic computer model and a two-dimensional flow visualization cell. A state-of-the-art, nonintrusive, three-dimensional magnetic resonance imaging technique was developed to visualize DNAPL mobilization in three dimensions. Mechanisms to be investigated are in situ DNAPL interactions with the foam, DNAPL emulsification, DNAPL scouring by the foam, and subsequent DNAPL mobilization/redeposition in the porous media

  18. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  19. Test plan, the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon. Revision 1

    International Nuclear Information System (INIS)

    The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organic sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH's, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass

  20. Test plan, the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Altman, D.J.; Hazen, T.C.; Tien, A.J. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Worsztynowicz, A.; Ulfig, K. [Inst. for Ecology of Industrial Areas, Katowice (Poland)

    1997-05-10

    The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organic sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH`s, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass.

  1. Environmental Assessment for Selection and Operation of the Proposed Field Research Centers for the Natural and Accelerated Bioremediation Research (NABIR) Program

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-04-18

    biodegrade or biotransform hazardous organic contaminants to environmentally safe levels in soils, subsurface materials, water, sludges, and residues.. While bioremediation technology is promising, DOE managers and non-DOE scientists have recognized that the fundamental scientific information needed to develop effective bioremediation technologies for cleanup of the legacy waste sites is lacking in many cases. DOE believes that field-based research is needed to realize the full potential of bioremediation. The Department of Energy faces a unique set of challenges associated with cleaning up waste at its former weapons production and research sites. These sites contain complex mixtures of contaminants in the subsurface, including radioactive compounds. In many cases, the fundamental field-based scientific information needed to develop safe and effective remediation and cleanup technologies is lacking. DOE needs fundamental research on the use of microorganisms and their products to assist DOE in the decontamination and cleanup of its legacy waste sites. The existing NABIR program to-date has focused on fundamental scientific research in the laboratory. Because subsurface hydrologic and geologic conditions at contaminated DOE sites cannot easily be duplicated in a laboratory, however, the DOE needs a field component to permit existing and future laboratory research results to be field-tested on a small scale in a controlled outdoor setting. Such field-testing needs to be conducted under actual legacy waste field conditions representative of those that DOE is most in need of remediating. Ideally, these field conditions should be as representative as practicable of the types of subsurface contamination conditions that resulted from legacy wastes from the nuclear weapons program activities. They should also be representative of the types of hydrologic and geologic conditions that exist across the DOE complex.

  2. Metagenomic Analysis of the Bioremediation of Diesel-Contaminated Canadian High Arctic Soils

    OpenAIRE

    Yergeau, Etienne; Sanschagrin, Sylvie; Beaumier, Danielle; Greer, Charles W.

    2012-01-01

    As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorga...

  3. BIOREMEDIATION OF PETROLEUM HYDROCARBON CONTAMINANTS IN MARINE HABITATS

    Science.gov (United States)

    Bioremediation is being increasingly seen as an effective environmentally benign treatment for shorelines contaminated as a result of marine oil spills. Despite a relatively long history of research on oil-spill bioremediation, it remains an essentially empirical technology and m...

  4. OIL SPILL CLEANUP

    Science.gov (United States)

    Due to the consideration of bioremediation for oil spills, it is important to understand the ecological and human health implications of bioremediation efforts. uring biodegradation, the toxicity of the polluting material may actually increase upon the conversion of non-toxic con...

  5. Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils

    International Nuclear Information System (INIS)

    The environmental contamination by organic pollutants is a widespread problem in all climates. The most widely distributed pollution can be attributed to oil contamination. Bioremediation methods can provide efficient, inexpensive and environmentally safe cleanup tools. The role of cold-adapted microorganisms for the bioremediation of experimentally and chronically oil-contaminated Alpine soils was evaluated in the studies described. The results demonstrated that there is a considerable potential for oil bioremediation in Alpine soils. Oil biodegradation can be significantly enhanced by biostimulation (inorganic nutrient supply), but a complete oil elimination is not possible by employing biological decontamination alone. (Author)

  6. Efficacy monitoring of in situ fuel bioremediation

    International Nuclear Information System (INIS)

    The wide-scale, multiple-purpose use of fossil fuels throughout the industrialized world has resulted in the inadvertent contamination of myriad environments. Given the scope and magnitude of these environmental contamination problems, bioremediation often represents the only practical and economically feasible solution. This is especially true when depth of contamination, magnitude of the problem, and nature of contaminated material preclude other remedial actions, short of the no-response alternative. From the perspective, the effective, safe and scientifically valid use of in situ bioremediation technologies requires cost-efficient and effective implementation strategies in combination with unequivocal approaches for monitoring efficacy of performance. Accordingly, with support from the SERDP program, the authors are field-testing advanced in situ bioremediation strategies and new approaches in efficacy monitoring that employ techniques instable carbon and nitrogen isotope biogeochemistry. One field demonstration has been initiated at the NEX site in Port Hueneme, CA (US Navy's National Test Site). The objectives are: (1) to use stable isotopes as a biogeochemical monitoring tool for in situ bioremediation of refined petroleum (i.e., BTEX), and (2) to use vertical groundwater circulation technology to effect in situ chemical containment and enhanced in situ bioremediation

  7. Bioremediation of oil spills: A review of challenges for research advancement

    OpenAIRE

    Macaulay, Babajide Milton; Rees, Deborah

    2014-01-01

    As the demand for liquid petroleum increases, the need for reliable and efficient oil spill clean-up techniques is inevitable. Bioremediation is considered one of the most sustainable clean-up techniques but the potential has not been fully exploited in the field because it is too slow to meet the immediate demands of the environment. This study reviews the challenges to managing oil spills in terrestrial and marine environments to identify areas that require further research. Current challen...

  8. Lessons learned at Savannah River: Phased-in approach lets new groundwater cleanup methods complement traditional ones

    International Nuclear Information System (INIS)

    The Savannah River Site, near Aiken, SC, in 1983 began one of the largest and most successful cleanup programs for soil and groundwater contaminated with industrial solvents. Coordinated, phased implementation of groundwater pump-and-treat, soil-vapor extraction and other technologies at the site's Administration and Materials Manufacturing areas has resulted in rapid cleanup progress. To date: more than 2.25 billion gallons of contaminated groundwater have been treated by two air strippers removing over 334,000 pounds of solvents; soil-vapor extraction units have removed more than 39,000 pounds of solvent from the vadose zone since they were installed last year; several innovative technology demonstrations performed at the site since 1988--including horizontal wells, air sparging, co-metabolic in-situ bioremediation, radiofrequency and joule heating, solvent collection and recycling--have removed or destroyed more than 20,000 pounds of solvent. Cleanup activities have removed about 11% of the original 3.5 million pounds of industrial solvents generated from process-waste disposal operations conducted at the site from the 1950s through 1979

  9. Laboratory modeling, field study, and numerical simulation of bioremediation of petroleum contaminants

    International Nuclear Information System (INIS)

    Historical methods of cleaning up petroleum hydrocarbons from the vadose zone, the capillary zone, and the aquifers are not technically true cleanup technologies but rather transfer techniques. In addition, environmental engineers are realizing that the standard remediation techniques are not entirely effective in removing the hazardous material in a reasonable time frame. Long-chain hydrocarbons such as kerosene, diesel, and waste oil are particularly difficult to remediate using conventional techniques. The use of bioremediation as an alternative remediation technology is fast becoming the technique of choice among many environmental professionals. This method offers substantial benefits not found in other remediation processes. Bioremediation is very cost effective, nondestructive, relatively uncomplicated in implementing, requires non specialized equipment, and can be extremely effective in removing recalcitrant petroleum hydrocarbons. This study researched the availability of viable microbial populations in the arid climate in South Dakota. Exponential growth of the bacteria and the ability of bacteria to degrade long-chain hydrocarbons indicated that healthy populations do exist and could be used to mineralize organic hydrocarbons. Experimental results indicated that bioremediation can be effectively enhanced in landfills as well as in the subsurface using a supply of harmless nutrients. The biodegradation rate can be further enhanced with the use of edible surfactant that helped disperse the petroleum products. Also, the use of hydrogen peroxide enhanced the oxygen availability and increased the degradation rate. Interestingly, the bacterial growth rate is found to be high in difficult-to-biodegrade contaminants, such as waste oil. A numerical simulation program was also developed that describes the bacterial growth in the subsurface along with the reduction in substrate (contamination). Results from this program were found to be consistent with laboratory

  10. Bioremediation of oil spills

    International Nuclear Information System (INIS)

    In-situ bioremediation of crude oil spills relies on either the indigenous microbes at the polluted site, whose degradative abilities are accelerated by adding such agents as fertilizers or dispersants, or on introducing pollutant-degrading microbes into the site (possibly accompanied by stimulatory chemicals). The bioremediation method to be used at a specific site must be selected to be suitable for that site and its environmental conditions. The basic components of bioremediation are outlined and the background information needed to understand the chemical and biological limitations of the technique are presented. Specifically, the microbial community, the crude oil substrate composition, and biological limiting factors are discussed. Generalized examples of bioremediation applications are illustrated. 10 refs

  11. AN APPROACH TO BIOREMEDIATION

    OpenAIRE

    ELENA-ROXANA ARDELEANU

    2011-01-01

    This paper provides some mathematical models associated with bioremediation processes. Bioremediation is a process in which contaminants in polluted soils are eliminated by bacteria. The initial model is the one given by Keller and Segel. The Keller- Segel model takes into account the movement of bacteria by diffusion and chemotaxis. Starting from this generalized model, we present different forms of diffusion and chemotactic coefficients. All particular cases presented were confirmed experim...

  12. Performance parameters for ex situ bioremediation systems

    International Nuclear Information System (INIS)

    The potential of biotechnology to reduce the concentration of undesirable hydrocarbons, i.e. gasoline and diesel fuel pollution, is very attractive due to its apparent benign nature and potentially low cost. When good industrial practices are used in the design, construction, and administration of the bioremediation system, the performance of the technology can be predicted and monitored. Some of the principles behind the design, construction, and operation of ex situ bioremediation systems and facilities are described. Biological considerations include creation of a favorable environment for hydrocarbon degrading bacteria in the soils, selection of bacteria, and bacterial byproducts. Chemical considerations include nutrient augmentation, oxygen availability, and the use of surfactants and dispersants. Physical considerations include soil textures and structures, soil temperatures, moisture content, and the use of bulking agents. Experience has shown that indigenous microbes will usually be sufficient to implement bioremediation of petroleum hydrocarbons if encouraged through the application of fertilizers. The introduction of additional carbon sources may be considered if rapid bioremediation rates are desired or if soil conditions are poor. Adjustments to a bioremediation system may be made to enhance the performance of the bacterial community by introducing bulking agents and external temperature sources. Surfactants may be helpful in promoting bacteria-hydrocarbon contact and may be particularly useful for mobilization of free-phase hydrocarbons. 7 refs

  13. Bioremediation of oil-contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Balba, T. [Conestoga-Rovers and Associates, Calgary, AB (Canada)

    2003-07-01

    One of the most prevalent contaminants in subsurface soil and groundwater are petroleum hydrocarbons. This paper presented bioremediation of petroleum hydrocarbons as one of the most promising treatment technologies. Petroleum hydrocarbons are categorized into four simple fractions: saturates, aromatics, resins, and asphaltenes. Bioremediation refers to the treatment process whereby contaminants are metabolized into less toxic or nontoxic compounds by naturally occurring organisms. The various strategies include: use of constitutive enzymes, enzyme induction, co-metabolism, transfer of plasmids coding for certain metabolic pathways, and production of biosurfactants to enhance bioavailability of hydrophobic compounds. Three case studies were presented: (1) bioremediation of heavy oils in soil at a locomotive maintenance yard in California, involving a multi-step laboratory treatability study followed by a field demonstration achieving up to 94 per cent removal of TPH in less than 16 weeks, (2) bioremediation of light oils in soil at an oil refinery in Germany where a dual process was applied (excavation and in-situ treatment), achieving an 84 per cent reduction within 24 weeks, and (3) bioremediation of oil-contaminated desert soil in Kuwait which involved landfarming, composting piles, and bioventing soil piles, achieving an 80 per cent reduction within 12 months. 7 refs., 1 tab., 3 figs.

  14. Accelerated in situ bioremediation of groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Truex, M.J.; Hooker, B.S.; Anderson, D.B.

    1996-07-01

    In situ bioremediation, as applied in this project, is based on the principal of biostimulation: supplying nutrients to indigenous microbes to stimulate their metabolic activity and subsequent degradation of contaminants. Typically, a network of injection and extraction wells are used to recirculate groundwater into which amendments are added and distributed within the aquifer. The objective of the in situ process is to create in the aquifer a microbially active zone that maximizes contaminant destruction while controlling the distribution of microbial growth. It is important to control microbial growth to avoid plugging the aquifer near the injection well and to establish and sustain maximum treatment zones for each injection well. Figure I illustrates this concept for in situ bioremediation. The technology described herein is innovative in its use of the computer-based Accelerated Bioremediation Design Tool (ABDT) to aid in selecting appropriate system designs and to determine optimal operating strategies. In addition, numerical simulations within the design tool proved to be valuable during remediation operations to determine appropriate changes in the` operating strategy as the bioremediation process progressed. This is particularly important because in situ bioremediation is not a steady- state process, and corrective actions to operating parameters are typically needed to maintain both rapid destruction rates and hydraulic containment.

  15. Low-cost bioremediation of heavy metals and radionuclides of contaminated soils

    International Nuclear Information System (INIS)

    The environmental pollution by toxic metals, especially lead (Pb), mercury (Hg), cadmium (Cd), nickel (Ni), copper (Cu), selenium (Se), chromium (Cr) and radionuclides (137Cs, 90Sr, 238Pu, 226Ra) is a potential hazard to health and welfare of mankind. Rapid industrial revolution has left an international legacy of soil and water contaminated with a combination of toxic and potentially carcinogenic compounds and heavy metals. Many of the contaminated sites were abandoned due to high cost of traditional clean-up approaches. Various approaches are being practiced to decontaminate heavy metals and radionuclides from polluted-soil. Remediation of heavy metal and radionuclides contaminated soils poses a significant expense to many industries and government organizations. Remediation cost in the United States and European Union alone is expected to exceed US$20 billion annually. Bioremediation strategy depends on the limitations of technology, cost and nature of the contaminant in the soil. Certain higher plants are capable of accumulation of heavy metals (2-5 %) in roots and shoots to the level far exceeding those present in the soils, these are called hyper-accumulators. Using heavy metal hyper-accumulating higher plants for environmental clean-up of contaminated soil is a recently emerged technology known as 'phytoremediation'. Genetically engineered (Transgenic) plants have a remarkable potential to absorb heavy metals and show a new avenue for biotechnology technique in Phytoremediation. The cost-effective approach of using heavy metal and radionuclide hyper-accumulators in phytoremediation is discussed. (author)

  16. The application of mature dry storage technology and remote handling robotics to nuclear plant extension, clean-up and decommissioning

    International Nuclear Information System (INIS)

    This paper reviews a mature dry storage technology developed by GEC ALSTHOM Engineering Systems Limited (GAES) which offers a passive, economical and licensable method of providing irradiated fuel storage capacity at operational nuclear power stations. The evolution of the modular vault dry store (MVDS) technology has taken place over 25 years of operational experience, culminating in a product which meets all of the concerns of licensing authorities regarding safety and fuel integrity. The application of remote handling robotics to nuclear fuel and active component handling as a routine process rather than as an intervention technique is also reviewed. The growth of the application of this technology is governed by several factors which include: statutory requirements, safety assurance, risk reduction and economic pressures. The availability of a mature MVDS technology with an evolving process-capable robotics technology opens up opportunities for exploring proven UK products. (Author)

  17. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    The Iron Park Superfund site, North Billerica, Massachusetts, is located within a 553 acre operating industrial complex and railyard located approximately 20 miles northwest of Boston. Fifteen acres of this site are designated as the Wastewater Lagoon Area containing lagoons and materials previously dredged from those lagoons. The U.S. Environmental Protection Agency (EPA) placed the Iron Horse Park facility on its National Priorities List in 1984, and a Remedial Investigation (RI) for the site as a whole began n 1985. In September 1988, responding to the presence of these site contaminants, the EPA issued the first Superfund Record of Decision (ROD) in EPA Region I that specified bioremediation as the remedial technology. Specifically, the EPA stipulated biological land treatment cell with an impervious lower liner. In this form of biotreatment, sludges and contaminated soil are placed in the cell in lifts (i.e. layers approximately one foot thick) and the lifts are frequently aerated by tilling while nutrients are applied at optimal levels to stimulate the degradation of organic contaminants by indigenous microorganisms. In its Administrative Order (September 1989), the EPA stipulated cleanup goals to be achieved, and required that a Predesign Evaluation be initiated to ascertain which soil/sludge piles would require treatment. The design and execution of this remediation-focused site evaluation by ENSR forms the subject of this paper

  18. In situ recycling of contaminated soil uses bioremediation

    International Nuclear Information System (INIS)

    OxyChem Pipeline Operations, primarily an ethylene and propylene products mover, has determined that substantial savings can be realized by adopting a bioremediation maintenance and recycling approach to hydrocarbon-contaminated soil. By this method, the soil can be recycled in situ, or in containers. To implement the soil-recycling program, OxyChem elected to use a soil remediator and natural absorbent product, Oil Snapper. This field maintenance material, based on an Enhanced Urea Technology, provides a diet to stimulate the growth of hydrocarbon-eating microbes. It works well either with indigenous soil microbes or with commercial microbes. The product is carried in field vehicles, which makes it immediately available when leaks or spills are discovered. Procedure for clean-up is to apply product and mix it into affected soil. Thus the contaminant is contained, preventing further migration; the contaminant is dispersed throughout the product, making it more accessible to the microbes; nutrients are immediately available to the microbes; and the material contributes aeration and moisture-retention properties

  19. Solid-phase bioremediation of diesel fuel-contaminated soil utilizing indigenous microorganisms

    International Nuclear Information System (INIS)

    In the spring of 1993, R.E. Wright Environmental, Inc. (REWEI) was retained by BP Oil Company (BP) to evaluate the use of bioremediation technology to remediate approximately 3,000 cubic yards (yd3) of soil impacted with diesel fuel. The impacted soil resulted from the release of several hundred gallons of diesel fuel from a ruptured valve on an aboveground pipeline within a terminal. The overland flow of the diesel fuel resulted in a significant area of soil being impacted by the fuel. Immediate response activities limited vertical migration of the fuel through the excavation and stockpiling of the surface-impacted soil. The nature of the contaminant -- an unweathered, refined petroleum product comprised primarily of alkanes of a medium chain length -- and the biodegradable nature of the diesel fuel made bioremediation a cost-effective and technically feasible remedial option. The objective of the project was to reduce the concentrations of the petroleum hydrocarbons to below the Pennsylvania Department of Environmental Protection (DEP) soil cleanup levels in order to reuse the soil on-site as fill. Basic agronomic principles were applied throughout all phases of the project in order to successfully biodegrade the hydrocarbon

  20. Bioremediation and detoxification of hydrocarbon pollutants in soil

    International Nuclear Information System (INIS)

    As a cleanup alterative, the bioremediation potential of soil, contaminated by spills of three medium petroleum distillates, jet fuel heating oil (No. 2 fuel oil) and diesel fuel was evaluated in controlled-temperature laboratory soil columns and in outdoor lysimeters. Solvent extraction followed by gas chromatography (GC) was used routinely for analysis of fuel residues. Occasionally, class separation and GC-mass spectrometry (GC-MS) were also used in residue characterization. The decrease in toxic residues was evaluated by Microtox and Ames tests. Seed germination and plant growth bioassays were also performed. Persistence and toxicity of the fuels increased in the order of jet fuel < heating oil < diesel fuel. Bioremediation consisting of liming, fertilization and tilling decreased the half-lives of the pollutants in soil by a factor of 2-3. Biodegradation was faster at 27C than at 17 or 37C, but hydrocarbon concentration and soil quality had only modest influence on biodegradation rates and did not preclude successful bioremediation of these contaminated soils within one growing season. Microbial activity measurements by the fluorescein diacetate hydrolysis assay confirmed that microbial activity was the principal force in hydrocarbon elimination. Bioremediation was highly effective in eliminating also the polycyclic aromatic components of diesel fuel. The bioremediation and detoxification of fuel-contaminated soil was corroborated by Microtox, Ames and plant growth bioassays

  1. ROLE OF MICROORGANISMS IN THE BIOREMEDIATION OF THE OIL SPILL INPRINCE WILLIAM SOUND, ALASKA

    Science.gov (United States)

    The U.S. Environmental Protection Agency's Alaskan BioremediationProject was initiated in the aftermath of the March 24, 1989, EXXONVALDEZ oil Spill. he objective of the project was to demonstratean alternative cleanup method for oil-contaminated shorelines basedon enhancing natu...

  2. In-situ bioremediation via horizontal wells

    International Nuclear Information System (INIS)

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade TCE, PCE and their daughter products in situ by addition of nutrients to the contaminated zone. In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work (Radian 1989). Subsurface soils and water adjacent to an abandoned process sewer line at the SRS have been found to have elevated levels of TCE (Marine and Bledsoe 1984). This area of subsurface and groundwater contamination is the focus of a current integrated demonstration of new remediation technologies utilizing horizontal wells. Bioremediation has the potential to enhance the performance of in situ air stripping as well as offering stand-alone remediation of this and other contaminated sites (Looney et al. 1991). Horizontal wells could also be used to enhance the recovery of groundwater contaminants for bioreactor conversions from deep or inaccessible areas (e.g., under buildings) and to enhance the distribution of nutrient or microbe additions in an in situ bioremediation

  3. Contaminants at DOE sites and their susceptibility to bioremediation

    International Nuclear Information System (INIS)

    Contaminants at DOE sites encompass a range of common industrial pollutants. However, the prevalence of contaminant mixtures including organics, metals, and radionuclides is relatively unique to DOE's facilities. Bioremediation has been shown to be effective for destruction of many of the organic pollutants. The technology also has promise for application to many of the metals and radionuclides; however, field demonstrations for these applications have not yet been attempted. Because of the complexity of biodegradation of even a single-compound class, little has been done to develop or demonstrate in situ bioremediation technologies for multicompound combinations. The current bioremediation demonstration on CCl4 and nitrates within the VOC-Arid Integrated Demonstration is one the first efforts to address inorganic and organic co-contaminants simultaneously. Additional research, technology development, and field demonstrations are needed to evaluate the applicability of in situ bioremediation to DOE's most common contaminant mixtures

  4. Bioremediation of contaminated sites

    International Nuclear Information System (INIS)

    By volatilizing aromatic compounds through aeration, landfarming is a recognized approach to the bioremediation of hydrocarbon contaminated soil. With this method, the soil is cultivated and aided with fertilizer amendment to provide a nutrient source for the microbial population involved in the degradation of hydrocarbons. The effectiveness of bioremediation will depend on several factors, including topographic features, soil properties, and biochemistry. Since bioremediation is inhibited by anaerobic conditions, sites that are sloped or have trenches to collect runoff water are preferable. As for soil properties, the percentage of sand should not be too high, but aeration is essential to avoid anaerobic conditions. Addition of straw is generally beneficial, and fertilizers with nitrogen, phosphorous and potassium will help degrading hydrocarbons. Temperature, pH, and salt content are also important factors since they facilitate microbial activity. 3 refs

  5. 2003 U.S. Department of Energy Strategic Plan: Protecting National, Energy, and Economic Security with Advanced Science and Technology and Ensuring Environmental Cleanup

    Energy Technology Data Exchange (ETDEWEB)

    None,

    2003-09-30

    The Department of Energy contributes to the future of the Nation by ensuring energy security, maintaining the safety, security and reliability of the nuclear weapons stockpile, cleaning up the environment from the legacy of the Cold War, and developing innovations in science and technology. After 25 years in existence, the Department now operates 24 preeminent research laboratories and facilities and four power marketing administrations, and manages the environmental cleanup from 50 years of nuclear defense activities that impacted two million acres in communities across the country. The Department has an annual budget of about $23 billion and employs about 14,500 Federal and 100,000 contractor employees. The Department of Energy is principally a national security agency and all of its missions flow from this core mission to support national security. That is true not just today, but throughout the history of the agency. The origins of the Department can be traced to the Manhattan Project and the race to develop the atomic bomb during World War II. Following the war, Congress engaged in a vigorous and contentious debate over civilian versus military control of the atom. The Atomic Energy Act of 1946 settled the debate by creating the Atomic Energy Commission, which took over the Manhattan Project’s sprawling scientific and industrial complex.

  6. Effect of alternating bioremediation and electrokinetics on the remediation of n-hexadecane-contaminated soil

    OpenAIRE

    Sa Wang; Shuhai Guo; Fengmei Li; Xuelian Yang; Fei Teng; Jianing Wang

    2016-01-01

    This study demonstrated the highly efficient degradation of n-hexadecane in soil, realized by alternating bioremediation and electrokinetic technologies. Using an alternating technology instead of simultaneous application prevented competition between the processes that would lower their efficiency. For the consumption of the soil dissolved organic matter (DOM) necessary for bioremediation by electrokinetics, bioremediation was performed first. Because of the utilization and loss of the DOM a...

  7. Bioremediation: A countermeasure for marine oil spills

    International Nuclear Information System (INIS)

    Three main types of bioremediation techniques are currently being developed or used for treatment of oil spills: adding nutrients to oiled shorelines; adding microbes to oiled shorelines; and addition of nutrients and/or microbes to open water oil slicks. Since all these technologies attempt to accelerate biodegradation, the processes of biodegradation of oil are summarized. Some of the potential uses of this technology are discussed, including specific instances where bioremediation has been applied at oil spills. Guidelines for evaluating and monitoring bioremediation applications are presented. Of the three types of bioremediation discussed, nutrient addition seems to hold the most immediate promise, especially for use in areas that would be adversely affected by physical or other removal methods. Environments where nutrient addition may play an important role in shoreline treatment include sheltered shorelines that are heavily oiled, shorelines with subsurface oil, and sensitive environments, especially wetlands. Nutrient additions are less likely to be effective in environments that are already nutrient-rich and for short-term, immediate response actions. 41 refs., 1 tab

  8. A summary of the report on prospects for pyrolysis technologies in managing municipal, industrial, and Department of Energy cleanup wastes

    Energy Technology Data Exchange (ETDEWEB)

    Reaven, S.J.

    1994-08-01

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes and special wastes such as tires, medical wastes and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. In the past twenty years, advances in the engineering of pyrolysis systems and in sorting and feeding technologies for solid waste industries have ensured consistent feedstocks and system performance. Some vendors now offer complete pyrolysis systems with performance warranties. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates the four most promising pyrolytic systems for their readiness, applicability to regional waste management needs and conformity with DOE environmental restoration and waste management requirements. This summary characterizes the engineering performance, environmental effects, costs, product applications and markets for these pyrolysis systems.

  9. Bioremediation of nanomaterials

    Science.gov (United States)

    Chen, Frank Fanqing; Keasling, Jay D; Tang, Yinjie J

    2013-05-14

    The present invention provides a method comprising the use of microorganisms for nanotoxicity study and bioremediation. In some embodiment, the microorganisms are bacterial organisms such as Gram negative bacteria, which are used as model organisms to study the nanotoxicity of the fullerene compounds: E. coli W3110, a human related enterobacterium and Shewanella oneidensis MR-1, an environmentally important bacterium with versatile metabolism.

  10. CONOCO DOLOMITE HOT GAS CLEANUP SYSTEM

    Science.gov (United States)

    This report analyzes a proposal that EPA sponsor a large-scale pilot plant to develop the Conoco (formerly Consol) Dolomite Hot Gas Clean-up system. The report includes a history of the prior development program, the technology involved comparisons with competitive technologies i...

  11. Cleanup of a jet fuel spill

    Science.gov (United States)

    Fesko, Steve

    1996-11-01

    Eaton operates a corporate aircraft hanger facility in Battle Creek, Michigan. Tests showed that two underground storage tanks leaked. Investigation confirmed this release discharged several hundred gallons of Jet A kerosene into the soil and groundwater. The oil moved downward approximately 30 feet and spread laterally onto the water table. Test results showed kerosene in the adsorbed, free and dissolved states. Eaton researched and investigated three clean-up options. They included pump and treat, dig and haul and bioremediation. Jet fuel is composed of readily biodegradable hydrocarbon chains. This fact coupled with the depth to groundwater and geologic setting made bioremediation the low cost and most effective alternative. A recovery well was installed at the leading edge of the dissolved contamination. A pump moved water from this well into a nutrient addition system. Nutrients added included nitrogen, phosphorous and potassium. Additionally, air was sparged into the water. The water was discharged into an infiltration gallery installed when the underground storage tanks were removed. Water circulated between the pump and the infiltration basin in a closed loop fashion. This oxygenated, nutrient rich water actively and aggressively treated the soils between the bottom of the gallery and the top of the groundwater and the groundwater. The system began operating in August of 1993 and reduced jet fuel to below detection levels. In August of 1995 The State of Michigan issued a clean closure declaration to the site.

  12. HARVESTING EMSP RESEARCH RESULTS FOR WASTE CLEANUP

    International Nuclear Information System (INIS)

    The extent of environmental contamination created by the nuclear weapons legacy combined with expensive, ineffective waste cleanup strategies at many U.S. Department of Energy (DOE) sites prompted Congress to pass the FY96 Energy and Water Development Appropriations Act, which directed the DOE to: ''provide sufficient attention and resources to longer-term basic science research, which needs to be done to ultimately reduce cleanup costs'', ''develop a program that takes advantage of laboratory and university expertise, and'' ''seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective.'' In response, the DOE initiated the Environmental Management Science Program (EMSP)-a targeted, long-term research program intended to produce solutions to DOE's most pressing environmental problems. EMSP funds basic research to lower cleanup cost and reduce risk to workers, the public, and the environment; direct the nation's scientific infrastructure towards cleanup of contaminated waste sites; and bridge the gap between fundamental research and technology development activities. EMSP research projects are competitively awarded based on the project's scientific, merit coupled with relevance to addressing DOE site needs. This paper describes selected EMSP research projects with long, mid, and short-term deployment potential and discusses the impacts, focus, and results of the research. Results of EMSP research are intended to accelerate cleanup schedules, reduce cost or risk for current baselines, provide alternatives for contingency planning, or provide solutions to problems where no solutions exist

  13. World Record Earned Value Management System Certification for Cleanup of the East Tennessee Technology Park, Oak Ridge, Tennessee, USA - 13181

    International Nuclear Information System (INIS)

    On projects that require Earned Value Management (EVMS) Certification, it is critical to quickly prepare for and then successfully obtain certification. This is especially true for government contracts. Projects that do poorly during the review are subject to financial penalties to their company and they lose creditability with their customer creating problems with the project at the outset. At East Tennessee Technology Park (ETTP), we began preparing for Department of Energy (DOE) certification early during proposal development. Once the contract was awarded, while still in transition phase from the previous contractor to our new company, we immediately began reviewing the project controls systems that were in place on the project and determined if any replacements needed to be made immediately. The ETTP contract required the scheduling software to be upgraded to Primavera P6 and we determined that no other software changes would be done prior to certification. Next, preparation of the Project Controls System Description (PCSD) and associated procedures began using corporate standards as related to the project controls systems. During the transition phase, development was started on the Performance Measurement Baseline which is the resource loaded schedule used to measure our performance on the project and which is critical to good Earned Value Management of the project. Early on, and throughout the baseline review, there was positive feedback from the Department of Energy that the quality of the new baseline was good. Having this superior baseline also contributed to our success in EVMS certification. The combined companies of URS and CH2M Hill had recent experience with certifications at other Department of Energy sites and we were able to capitalize on that knowledge and experience. Generic PCSD and procedures consistent with our co-operations approach to Earned Value Management were available to us and were easily tailorable to the specifics of our contract

  14. Molten metal, Martin Marietta target DOE, DOD cleanup markets

    International Nuclear Information System (INIS)

    This article describes a joint venture between Martin Marietta Corp. and Molten Metal Technology, Inc. to sell MMT innovative waste processing technology to the Energy and Defense departments, environmental cleanup programs

  15. DEMONSTRATION BULLETIN: NEW YORK STATE MULTI-VENDOR BIOREMEDIATION - R.E. WRIGHT ENVIRONMENTAL, INC.'S IN-SITU BIOREMEDIATION TREATMENT SYSTEM

    Science.gov (United States)

    The R.E. Wright Environmental, Inc.‘s (REWEI) In-situ Bioremediation Treatment System is an in-situ bioremediation technology for the treatment of soils contaminated with organic compounds. According to the Developer, contaminated soils are remediated in-situ by stimulating the a...

  16. Applied bioremediation of hazardous, petroleum, and industrial wastes

    International Nuclear Information System (INIS)

    Blasland and Bouck Engineers, P.C. (Blasland and Bouck) conducted a large-scale soil bioremediation pilot study at an inactive hazardous waste site in Upstate New York. Remediation of soils at the site is regulated in accordance with a Consent Order entered into with the New York State Department of Environmental Conservation. The chemicals of concern in soils at the site consist of a wide range of volatile and semi-volatile organic compounds including: trichloroethylene, methylene chloride, methanol, aniline, and N,N-dimethylaniline. The large-scale soil Bioremediation Pilot Study consisted of evaluating the effectiveness of two bioremediation techniques: ex-situ solid phase treatment of excavation soils; and in-situ solid phase treatment with soil mixing. The feasibility of bioremediation for soils at this site was evaluated in the field at pilot scale due to the generally high sensitivity of the technology's effectiveness and feasibility from site to site

  17. Bioremediation of Creosote - contaminated Soil

    OpenAIRE

    BYSS, Marius

    2008-01-01

    Bioremediation of creosote-contaminated soil was studied employing the methods of soil microbial biology and using new gas chromatography-mass spectrometry-mass spectrometry analytical approach. The changes of the soil microbial community under the polycyclic aromatic hydrocarbons (PAH) pollution impact were analyzed and described, as well as the changes during the bioremediation experiments. Laboratory-scale bioremediation experiments using the soil microbial community (consisted of bacteria...

  18. Bioremediation of wastewater using microalgae

    Science.gov (United States)

    Chalivendra, Saikumar

    Population expansion and industrial development has deteriorated the quality of freshwater reservoirs around the world and has caused freshwater shortages in certain areas. Discharge of industrial effluents containing toxic heavy metals such as Cd and Cr into the environment have serious impact on human, animal and aquatic life. In order to solve these problems, the present study was focused on evaluating and demonstrating potential of microalgae for bioremediation of wastewater laden with nitrogen (N) in the form of nitrates, phosphorous (P) in the form of phosphates, chromium (Cr (VI)) and cadmium (Cd (II)). After screening several microalgae, Chlorella vulgaris and algae taken from Pleasant Hill Lake were chosen as candidate species for this study. The viability of the process was demonstrated in laboratory bioreactors and various experimental parameters such as contact time, initial metal concentration, algae concentration, pH and temperature that would affect remediation rates were studied. Based on the experimental results, correlations were developed to enable customizing and designing a commercial Algae based Wastewater Treatment System (AWTS). A commercial AWTS system that can be easily customized and is suitable for integration into existing wastewater treatment facilities was developed, and capital cost estimates for system including installation and annual operating costs were determined. The work concludes that algal bioremediation is a viable alternate technology for treating wastewater in an economical and sustainable way when compared to conventional treatment processes. The annual wastewater treatment cost to remove N,P is ~26x lower and to remove Cr, Cd is 7x lower than conventional treatment processes. The cost benefit analysis performed shows that if this technology is implemented at industrial complexes, Air Force freight and other Department of Defense installations with wastewater treatment plants, it could lead to millions of dollars in

  19. Effects of bioremediation agents on oil degradation in mineral and sandy salt marsh sediments

    International Nuclear Information System (INIS)

    Although bioremediation for oil spill cleanup has received considerable attention in recent years, its satisfactory use in the cleanup of oil spills in the wetland environment is still generally untested. A study of the often most used bioremediation agents, fertiliser, microbial product and soil oxidation, as a means of enhancing oil biodegradation in coastal mineral and sandy marsh substrates was conducted in controlled greenhouse conditions. Artificially weathered south Louisiana crude oil was applied to sods of marsh (soil and intact vegetation) at the rate of 2 l m-2. Fertiliser application enhanced marsh plant growth, soil microbial populations, and oil biodegradation rate. The live aboveground biomass of Spartina alterniflora with fertiliser application was higher than that without fertiliser. The application of fertiliser significantly increased soil microbial respiration rates, indicating the potential for enhancing oil biodegradation. Bioremediation with fertiliser application significantly reduced the total targeted normal hydrocarbons (TTNH) and total targeted aromatic hydrocarbons (TTAH) remaining in the soil, by 81% and 17%, respectively, compared to those of the oil controls. TTNH/hopane and TTAAH/hopane ratios showed a more consistent reduction, further suggesting an enhancement of oil biodegradation by fertilisation. Furthermore, soil type affected oil bioremediation; the extent of fertiliser-enhanced oil biodegradation was greater for sandy (13% TTNH remaining in the treatments with fertiliser compared to the control) than for mineral soils (26% of the control), suggesting that fertiliser application was more effective in enhancing TTNH degradation in the former. Application of microbial product and soil oxidant had no positive effects on the variables mentioned above under the present experimental conditions, suggesting that microbial degraders are not limiting biodegradation in this soil. Thus, the high cost of microbial amendments during

  20. Bioremediation of bunker C

    International Nuclear Information System (INIS)

    Bioremediation works extremely well for most common hydrocarbons including aviation fuel, heating oil and diesel oil. Bunker C, a high boiling point distillate, is the most recalcitrant hydrocarbon for treatment and is the topic of this paper. Bioremediation, Inc. has had an opportunity to perform two projects involving soil contaminated with bunker C. One was at a bulk terminal site which involved predominantly diesel, but also had bunker C contamination; the other was a paper-mill site which had exclusively bunker C contamination. This paper will address the authors' experiences at the paper-mill site. Bunker C lives up to its reputation of being a very recalcitrant hydrocarbon to biodegrade. They have demonstrated, however, that the soil matrix standards at industrial sites in Washington and Oregon can be achieved using new bioremediation techniques. These techniques are necessary over those typically used to biodegrade jet fuel, heating oil and diesel oil. These extra steps, as discussed later, have been developed for their own use in their treatability laboratory

  1. Use of molecular techniques in bioremediation.

    Science.gov (United States)

    Płaza, G; Ulfig, K; Hazen, T C; Brigmon, R L

    2001-01-01

    In a practical sense, biotechnology is concerned with the production of commercial products generated by biological processes. More formally, biotechnology may be defined as "the application of scientific and engineering principles to the processing of material by biological agents to provide goods and services" (Cantor, 2000). From a historical perspective, biotechnology dates back to the time when yeast was first used for beer or wine fermentation, and bacteria were used to make yogurt. In 1972, the birth of recombinant DNA technology moved biotechnology to new heights and led to the establishment of a new industry. Progress in biotechnology has been truly remarkable. Within four years of the discovery of recombinant DNA technology, genetically modified organisms (GMOs) were making human insulin, interferon, and human growth hormone. Now, recombinant DNA technology and its products--GMOs are widely used in environmental biotechnology (Glick and Pasternak, 1988; Cowan, 2000). Bioremediation is one of the most rapidly growing areas of environmental biotechnology. Use of bioremediation for environmental clean up is popular due to low costs and its public acceptability. Indeed, bioremediation stands to benefit greatly and advance even more rapidly with the adoption of molecular techniques developed originally for other areas of biotechnology. The 1990s was the decade of molecular microbial ecology (time of using molecular techniques in environmental biotechnology). Adoption of these molecular techniques made scientists realize that microbial populations in the natural environments are much more diverse than previously thought using traditional culture methods. Using molecular ecological methods, such as direct DNA isolation from environmental samples, denaturing gradient gel electrophoresis (DGGE), PCR methods, nucleic acid hybridization etc., we can now study microbial consortia relevant to pollutant degradation in the environment. These techniques promise to

  2. Soils bio-remediation; Bioremediation des sols

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, T.M. [Universite Claude Bernard, 69 - Lyon-1 (France)

    2001-06-01

    The biological treatment of soils (in-situ or excavated) consists in the use of micro-organisms for the transformation of noxious compounds into non-noxious ones. Bacteria are the main micro-organisms used but fungi can play a role in some ex-situ processes. The bio-remediation of the soil and aquifer requires the use of various processes like diffusion and advection, sorption and desorption, and biodegradation. The degradation of the pollutants is efficient only if a sufficient amount of micro-organisms is in close-contact with the pollutants. The efficiency, fastness and cost are important factors to take into consideration in such remedial actions. Thus, a good mastery of soils sciences and processes engineering is needed. This article presents the concepts and processes used in biological remediation of soils: 1 - concept of processes engineering (heterogenous environments, processes characteristics, in-situ or on-site reactors); 2 - concept of biological treatments (micro-organisms, biodegradation, microbial ecology, bio-stimulation, bio-augmentation); 3 - biological treatment process (bio-venting, bio-spargeing, bio-slurping, in-situ aerobic bio-process, bio-hillock, phyto-remediation, metals extraction). (J.S.)

  3. Practical Solutions for the Design of Accelerated In Situ Bioremediation

    Science.gov (United States)

    Zhang, M.; Yoshikawa, M.; Takeuchi, M.; Komai, T.

    2010-12-01

    Bioremediation is potentially a cost-effective and environmentally friendly approach for clean-up of hazardous chemicals from polluted geoenvironments, especially toxic organic compounds, like perchloroethene (PCE) and trichloroethene (TCE) from low-permeability strata at depths. The use of Hydrogen Release Compound (HRC) or Oxygen Release Compound (ORC) is a common practice to accelerate anaerobic bioremediation or aerobic bioremediation, depending on the chemical forms of pollutants to be treated. An effective remediation, however, needs effective mixing of, and interaction between the bacteria, target compound(s), injected HRC or ORC as well as other substances if necessary. An understanding of migration behavior of dissolved hydrogen and dissolved oxygen in geological formations is, therefore, an important research subject for predicting potential areas of remediation during acceptable time periods. In this study, 3 practical solutions to the plane source, point source and line source diffusions which correspond to the semi-infinite, spherical and cylindrical models were derived and used to discuss the diffusive transport through low permeability geological media. A series of parameter studies using feasible values for the diffusion coefficient obtained from both literature survey and independent laboratory experiments were performed. Expected areas of hydrogen or oxygen migration were assumed to be from several tens of centimeters to a few meters with consideration of practical pollution problems, and acceptable remediation time periods were considered to be from several months to the maximum of 10-15 years. The results obtained from this study illustrated that transport of chemical substances, like dissolved hydrogen or oxygen used for accelerated bioremediation, due to diffusion is very sensitive to the magnitude of diffusion coefficient. The area of migration due to natural diffusion could be very limited. To effectively design and perform an accelerated

  4. Bioremediation--Why doesn't it work sometimes?

    International Nuclear Information System (INIS)

    Biological treatment has rapidly become the technology of choice for remediation of soils contaminated by petroleum constituents. Since the mid-1980s, bioremediation has been used at more than 100 locations to cost-effectively remediate hundreds of thousands of cubic yards of contaminated soil. However, despite the excellent track record of bioremediation, during the past few years bioremediation was not successful at several sites. The same type of contaminated soils has been treated successfully at numerous other sites. The treatment process was the same, but bioremediation was not effective. Testing identified other sites where bioremediation was unsuccessful for remediating petroleum constituents, and the factors that contributed to the failures were explored in greater depth. This article outlines a quick and inexpensive screening technique that allows one to determine whether bioremediation is practical and also provides an assessment of the time and cost factors. It involves four steps: (1) Site study; (2) Regulatory analysis; (3) Biological screening; (4) Treatability testing. The methodology can be reduced to a set of decision trees to simplify the screening process

  5. Environmental compliance and cleanup

    International Nuclear Information System (INIS)

    This section of the 1994 Hanford Site Environmental Report summarizes the roles of the principal agencies, organizations, and public in environmental compliance and cleanup of the Hanford Site. Regulatory oversight, the Federal Facility Agreement and Consent Order, the role of Indian tribes, public participation, and CERCLA Natural Resource Damage Assessment Trustee Activities are all discussed

  6. Environmental compliance and cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the roles of the principal agencies, organizations, and public in environmental compliance and cleanup of the Hanford Site. Regulatory oversight, the Federal Facility Agreement and Consent Order, the role of Indian tribes, public participation, and CERCLA Natural Resource Damage Assessment Trustee Activities are all discussed.

  7. Preliminary evaluation of the utilization of biopiles technology to the bioremediation of the soil of Guamare/RN (Brazil); Avaliacao preliminar da aplicacao da tecnologia de biopilhas para a biorremediacao do solo de Guamare/RN (Brasil)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edmilson P.; Macedo, Gorete R.; Duarte, Marcia M.L. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica; Costa, Alex S.S. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2004-07-01

    The aim of this work was to evaluate the use of biopiles to the bioremediation of the soil of Stabilization Station of Guamare-RN-Brazil. The evaluation was performed by the characterization of the soil, tests of biodegradation in laboratory scale and by the use of a complete 2{sup 3} factorial design with triplicate at the central point. The input variables were: Nitrogen concentration; diesel-oil concentration; and inoculum concentration. The response variable was the percentage gravimetric loss of organic matter. Statistical analyses of the main factors and their interactions on the response variable were performed using contour curves and Pareto obtained from the software STATISTICA for Windows, Release 5.5. The results showed that biopiles technology can be used to remediate eventual contaminated areas in that region. (author)

  8. The development and application of engineered proteins for bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J. [ed.

    1995-09-26

    Clean up of the toxic legacy of the Cold War is projected to be the most expensive domestic project the nation has yet undertaken. Remediation of the Department of Energy and Department of Defense toxic waste sites alone are projected to cost {approximately}$1 trillion over a 20-30 year period. New, cost effective technologies are needed to attack this enormous problem. Los Alamos has put together a cross-divisional team of scientist to develop science based bioremediation technology to work toward this goal. In the team we have expertise in: (1) molecular, ecosystem and transport modeling; (2) genetic and protein engineering; (3) microbiology and microbial ecology; (4) structural biology; and (5) bioinorganic chemistry. This document summarizes talks at a workshop of different aspects of bioremediation technology including the following: Introducing novel function into a Heme enzyme: engineering by excavation; cytochrome P-450: ideal systems for bioremediation?; selection and development of bacterial strains for in situ remediation of cholorinated solvents; genetic analysis and preparation of toluene ortho-monooxygenase for field application in remediation of trichloroethylene; microbial ecology and diversity important to bioremediation; engineering haloalkane dehalogenase for bioremediation; enzymes for oxidative biodegradation; indigenous bacteria as hosts for engineered proteins; performance of indigenous bacterial, hosting engineered proteins in microbial communities.

  9. In-situ bioremediation of soil polluted by fuel oil, Strasbourg, France

    International Nuclear Information System (INIS)

    In 1987, a 17,000 gallon fuel oil spill occurred on an industrial site in Strasbourg, France. The Bureau de Recherche Geologique et Miniere (French equivalent to the US Bureau of Mines and the US Geological Survey), and ESYS, a subsidiary of ELF AQUITAINE, a French based oil, chemical, and pharmaceutical corporation, jointly developed a strategy to remediate this site. In-situ bioremediation with addition of exogenous bacteria, as well as hydrogen peroxide and a surfactant, was the process selected for the clean-up. This paper describes the clean-up operation and the results obtained

  10. Bioremediation of oil contaminated soils

    International Nuclear Information System (INIS)

    The Baldwin Waste Oil Site was an abandoned waste oil recycling facility located in Robstown, Nueces County, Texas. As part of their site assessment activities, the US Environmental Protection Agency (EPA) requested that the Ecology and Environment, Inc., Technical Assistance Team (TAT) investigate the feasibility of using in-situ bioremediation to remediate soils contaminated with oil and grease components, petroleum hydrocarbons, and volatile organic compounds. Bioremediation based on the land treatment concept was tested. The land treatment concept uses techniques to optimize indigenous microbial populations and bring them in contact with the contaminants. The study was designed to collect data upon which to base conclusions on the effectiveness of bioremediation, to demonstrate the effectiveness of bioremediation under field conditions, and to identify potential problems in implementing a full-scale project. Bioremediation effectiveness was monitored through total petroleum hydrocarbons (TPH) and Oil and Grease (O and G) analyses. Site specific treatment goals for the pilot project were concentrations of less than 1% for O and G and less than 10,000 mg/kg for TPH. Based on the reduction of TPH and O and G concentrations and the cost effectiveness of bioremediation based on the land treatment concept, full-scale in-situ bioremediation was initiated by the EPA at the Baldwin Waste Oil Site in February of 1993

  11. Georgia-Pacific successfully completes one of the first large-scale hazardous waste bioremediation projects in the southeastern United States

    International Nuclear Information System (INIS)

    The bioremediation of two inactive contaminated impoundments (North/South Organic Ponds) located within the former Georgia-Pacific Plant near Plaquemine, Louisiana, is the first successfully completed closure of its type in the Southeastern United States. The impoundments were remediated to agreed upon cleanup levels and closed to the satisfaction of the regulatory agencies in October 1989. This project demonstrated that effective use of on-site bioremediation for large quantities of sludge and soil contaminated with listed toxic substances, namely phenol and cumene, is not only feasible, but also cost-effective. The project has moved the technology from the laboratory and demonstrated its effectiveness in large field operations at lower cost than other current remediation technology. A number of precedents were set including: (1) remediation of contaminated groundwater in the same operation, (2) development of a open-quotes closed loop/no environmental impactclose quotes design and (3) remediation on-site, but remote of the source in a specially constructed biotreatment unit

  12. US nuclear cleanup shows signs of progress

    International Nuclear Information System (INIS)

    The U.S. Department of Energy's program for dealing with the radioactive and hazardous wastes at its former nuclear weapons production sites and at the national laboratories has been criticized for its expense and slow pace of cleanup. The largest environmental restoration and waste management program in the world faces formidable technical and scientific problems and these, according to numerous investigative committees and commissions, have been compounded by poor management, misuse of technology, and failure to appreciate the need for new basic scientific knowledge to solve many of the cleanup problems. In the past three years, DOE's Office of Environmental Management (EM), often spurred by congressional action, has begun to trim costs and accomplish more. New measures have been introduced to improve contract efficiency, better utilize existing remediation technologies, renegotiate compliance agreements, and begin basic research. Environmental Management Assistant Undersecretary Alvin Alm, appointed in May 1996, is seeking to solidify these changes into an ambitious plan to clean up most of DOE's 130 sites by 2006. But there are widespread doubts that EM has the money, skill, and will to turn itself around. There are also concerns that, in the name of efficiency and economy, EM may be negotiating lower cleanup standards and postponing some difficult cleanup tasks. This article discusses these issues. 7 refs

  13. Experience in mining plutonium for soil cleanup

    International Nuclear Information System (INIS)

    Plutonium contamination from nuclear tests in 1962 is present at Johnston Atoll in soil throughout a 10-ha site. Since the middle 1980s, the Defense Nuclear Agency has been developing a mining operation to cleanup the contaminated soil. A plant now routinely mines plutonium from soil to make most of the soil clean and suitable for beneficial use. Before this initiative, the mining paradigm was to concentrate a valuable substance and leave waste tailings. Mining for cleanup represents a paradigm shift as it concentrates the radioactive substance for waste disposal and leaves the valuable substance, clean soil. The cleanup plant combines conventional mining and milling technology, radiation detection equipment, and microprocessor computer controls. A variety of technologies have been evaluated since the plant was first started in 1990. Success has come from soil sorters and classifiers. To May 1993, there were 37 weeks with some soil cleanup. The plant processed 17,000 tons of soil and made 98% clean. Production at 1,000 tons/week is routine. The plant concentrate will be further processed to reduce waste below 2%

  14. HARVESTING EMSP RESEARCH RESULTS FOR WASTE CLEANUP

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna Post; Nielson, R. Bruce; Phillips, Ann Marie; Lebow, Scott

    2003-02-27

    The extent of environmental contamination created by the nuclear weapons legacy combined with expensive, ineffective waste cleanup strategies at many U.S. Department of Energy (DOE) sites prompted Congress to pass the FY96 Energy and Water Development Appropriations Act, which directed the DOE to: ''provide sufficient attention and resources to longer-term basic science research, which needs to be done to ultimately reduce cleanup costs'', ''develop a program that takes advantage of laboratory and university expertise, and'' ''seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective.'' In response, the DOE initiated the Environmental Management Science Program (EMSP)-a targeted, long-term research program intended to produce solutions to DOE's most pressing environmental problems. EMSP funds basic research to lower cleanup cost and reduce risk to workers, the public, and the environment; direct the nation's scientific infrastructure towards cleanup of contaminated waste sites; and bridge the gap between fundamental research and technology development activities. EMSP research projects are competitively awarded based on the project's scientific, merit coupled with relevance to addressing DOE site needs. This paper describes selected EMSP research projects with long, mid, and short-term deployment potential and discusses the impacts, focus, and results of the research. Results of EMSP research are intended to accelerate cleanup schedules, reduce cost or risk for current baselines, provide alternatives for contingency planning, or provide solutions to problems where no solutions exist.

  15. Application of radioisotope induced EDXRF in bioremediation studies

    International Nuclear Information System (INIS)

    Bioremediation is an emerging technology that employs the use of certain microbes for the clean up of heavy metals/radionuclides contaminated environments. Progress in this field is however handicapped by limited knowledge of the biological processes involved in microbial metal uptake, translocation, tolerance and microbe-metal interactions. Therefore a better understanding of the basic biological processes involved in cell/soil/contaminant interactions would allow further optimization of bioremediation technologies. Advanced analytical techniques have proven to be instrumental in understanding the metal microbe interactions. It is important that in bioremediation studies, the analytical procedures used for elemental determination in cells should be fast, cheap, non-destructive, with easy, sample preparation, good sensitivity and accuracy. The present paper demonstrates the utility of Energy Dispersive X-ray Fluorescence Spectroscopy in detection of uranium and tellurium associated with the microbial cells. This technique was found to be convenient and suitable for such metal microbial interactive studies

  16. Bioremediation of contaminated soil: Strategy and case histories

    International Nuclear Information System (INIS)

    Microorganisms are capable of degrading many kinds of xenobiotic compounds and toxic chemicals. These microorganisms are ubiquitous in nature and there are numerous cases in which long-term contamination of soil and groundwater has been observed. The persistence of the contamination is usually caused by the inability of micro-organisms to metabolize these compounds under the prevailing environmental conditions. Two general reasons account for the failure of microbes to degrade pollutants in any environment: (1) inherent molecular recalcitrance of the contaminants and (2) environmental factors. The inherent molecular recalcitrance is usually associated with xenobiotic compounds where the chemical structure of the molecule is such that microbes and enzymes required for its catabolism have not evolved yet in nature. The environmental factors include a range of physicochemical conditions which influence microbial growth and activity. Biological remediation of contaminated sites can be accomplished using naturally-occurring microorganisms to treat the contaminants. Only particular groups of microorganisms are capable of decomposing specific compounds. The development of a bioremediation program for a specific contaminated soil system usually includes: thorough site/soil/waste characterization; treatability studies; and design and implementation of the bioremediation plan. The results of in situ and ex situ treatment programs involving the cleanup of petroleum hydrocarbon-contaminated soil will be discussed in detail. The paper will address key issues affecting the success of the bioremediation process such as nutrient transport, metal precipitation and potential soil clogging, microbial inoculation, etc

  17. Microbial inoculants and fertilization for bioremediation of oil in wetlands

    International Nuclear Information System (INIS)

    Bioremediation is an attractive alternative to physical methods of oil spill cleanup in wetlands where the ecosystem can be easily damaged. Because populations of oil-degrading microorganisms are usually low in wetlands, there is potential for increasing bioremediation through bioaugmentation in conjunction with N and P supplementation. Eight microbial inoculant products were added to microcosms containing soil from a salt marsh. Four of these products were also used in mesocosms containing Spartina alterniflora grown in a glasshouse. In unfertilized microcosms, the extent of oil degraded as measured by carbon dioxide evolution during 90 days, was 30% higher in the product with the highest activity than was recorded in the control with oil by 36%. None of the products when added to the fertilized soil increased activity above that of the fertilized control with oil. Addition of oil to microcosms increased populations of hydrocarbon-degrading microorganisms, but bioaugmentation products did not increase populations. Neither addition of products nor fertilization enhanced the disappearance of oil in mesocosms in the glasshouse. Approximately 50% of the weathered oil disappeared in 41 d for all treatments. Because bioaugmentation did not enhance oil degradation, it seems that natural populations of hydrocarbon-degrading microorganisms were adequate in the salt marsh soil for bioremediation

  18. Bioremediation of soils and sediments containing PAHs and PCP using Daramend trademark

    International Nuclear Information System (INIS)

    A full-scale demonstration of Grace Dearborn's Daramend trademark for bioremediation of soil containing chlorinated phenols, PAHs and petroleum hydrocarbons is being conducted at an industrial wood treatment site in Ontario. A pilot-scale demonstration of Daramend for the clean-up of sediments contaminated with PAHs was also conducted. The full-scale demonstration, which includes bioremediation of approximately 4,500 m3 of soil, was initiated at a wood preserving facility in Ontario, in the summer of 1993. The soil contains chlorinated phenols, PAHs and total petroleum hydrocarbons at concentrations of up to 700, 1,400 and 6,300 mg/kg respectively. Full-scale bioremediation at this site employs the same Daramend protocols and organic amendment treatments that were used at the pilot-scale phase where the PAH, total petroleum hydrocarbon, and pentachlorophenol concentrations were reduced to below the Canadian clean-up guidelines for industrial soils. In addition, the toxicity of the soil to earthworms was eliminated while the rate of seed germination was increased to that of an agricultural soil during the pilot scale demonstration phase. The ex-situ portion of the full-scale demonstration is currently being audited by the EPA under the SITE program. This paper will focus on the ex-situ work. The pilot-scale demonstration of sediment remediation consisted of ex-situ bioremediation of approximately 90 tonnes of PAH-contaminated sediment in a confined treatment area

  19. Overview of established and emerging treatment technologies for polycyclic aromatic hydrocarbons at wood preserving facilities

    International Nuclear Information System (INIS)

    The contamination of soil and groundwater by polycyclic aromatic hydrocarbons (PAHs) is common to wood preserving facilities and manufactured gas plants. Since the inception of RCRA and CERCLA, much attention has been focused upon the remediation of both active and defunct wood preserving facilities. The experiences gleaned from the use of proven technologies, and more importantly, the lessons being learned in the trials of emerging technologies on creosote-derived PAH clean-ups at wood preserving sites, should have direct bearing on the clean-up of similar contaminants at MGP sites. In this paper, a review of several remedial actions using waste removal/disposal, on-site incineration, and bioremediation will be presented. Additionally, emerging technologies for the treatment of PAH-contaminated soil and water will be reviewed. Lastly, recent information on risk assessment results for creosote sites and treated PAH waste will be discussed

  20. ORD RESEARCH PRIORITIES IN BIOREMEDIATION

    Science.gov (United States)

    ORD is conducting research on bioremediation impacting Superfund sites, RCRA facilities, underground storage tanks and oil spills. Work supporting Superfund is focused on understanding monitored natural recovery in sediments for contaminants including PCBs and PAHs. Under RCRA,...

  1. 压裂助排工艺优化设计研究%Optimization of Liquid Nitrogen and Carbon Dioxide Cleanup Technology

    Institute of Scientific and Technical Information of China (English)

    张波; 温庆志; 罗明良; 翟恒立; 于姣姣; 刘广忠

    2012-01-01

    如何提高返排率、减少压裂液对地层的伤害,实现人工裂缝高导流能力,已经成为油气藏增产改造技术面临的重要课题。通过分析氮气、CO2的物理化学特性,研究了液氮、CO2的助排机理,建立气体伴注排液模型,编制了气体伴注设计软件,对影响压裂井气体伴注效果的因素进行了研究,并对助排工艺参数进行了优化设计。结果表明,随着井深增加和压力梯度的降低,液氮伴注比和氮气伴注排量略有增大;井深每增加100m,液氮伴注比增加约0.3%;压力梯度每增加O.01MPa/m,液氮伴注比降低约0.6%。随着泵注排量的增加,液氮伴注比增大。井底压力的变化幅度与井口注入压力的变化幅度基本相同;井口注入压力每增加5MPa,井底压力也增加约5MPa。随注入流量的增加,井筒压力逐渐减小;注入流量每增加0.5m3/min,井底压力降低约1.75MPa。对胜利油田某井进行液氮助排参数优化设计,压裂液返排率达到90%,压裂井产量增加了2.7倍,表明所建立的数学模型准确可靠,可以用于指导油田现场施工。图7表3参9%The task of how to improve flow back ratio, decrease the formation damage caused by fracturing liquid, and achieve high flow conductivity of artificial fracture had already Become a vital question for the reservoir stimulation technology. Through the physical and chemical behavior analysis of nitrogen and carbon dioxide, their cleanup mechanism was researched, the flowing-hack model of accompanying gas was built, and the design software of accompanying gas was drawn up. Associating with oilfidd examples, the affecting elements of accompanying gas were researched, meanwhile the parameters of flowing back technology were optimized. The results showed that when the well depth and pump injection increased or start-up pressure gradient decreased, the companion ratio and the companion

  2. Department of Energy - Oak Ridge Operations and URS - CH2M Oak Ridge LLC. Partnering Framework for the Cleanup of the East Tennessee Technology Park, Oak Ridge, Tennessee, USA - 12348

    International Nuclear Information System (INIS)

    The cleanup and re-industrialization of the East Tennessee Technology Park (ETTP) hinges on a collaborative working relationship between the cleanup contractor and the U.S. Department of Energy's (DOE)-Oak Ridge Office (ORO). A Partnering Framework document was signed on June 30, 2011, with an ultimate goal of completing the contract scope of work ahead of schedule and under budget. This partnering process was the first time that DOE and its contractor, jointly developed and signed such an agreement before the contractor assumed management responsibilities of the Site. A strong desire of both parties to utilize a partnering approach in the performance of their respective responsibilities is evident. The Partnering Framework was modeled after a partnering process employed by the California Department of Transportation, Division of Construction. This partnering process has been used successfully by the California Department of Transportation and its major contractors for many years with great success. The partnering process used at ETTP was a phased approach. First, a Partnering Framework document was developed and signed June 30, 2011, by the Partnering Sponsors, the two leaders of the ETTP cleanup and re-industrialization project, the DOE-ORO Assistant Manager for Environmental Management and the contractor's President and Program Manager. In this way the partnering process could begin when the contactor assumed ETTP Site management responsibilities on August 1, 2011. The Partnering Framework then set the stage for the second phase of the partnering process which would be development of the Partnering Agreement and the kick-off of the first of a number of facilitated Partnering Workshops. Key elements of the Partnering Framework document include: (1) a statement of commitment which affirms the desire of both parties to work collaboratively toward the cleanup and re-industrialization of the ETTP Site; (2) a vision which describes both parties ultimate goal of safe

  3. Cleanup contract protest upheld

    International Nuclear Information System (INIS)

    Cleanup of the huge Hanford nuclear weapon site in Washington state, long mired in disputes over contract awards, faces another potential delay. On October 12 the US General Accounting Office upheld a protest to the award of the site's $800-million Environmental Restoration Management Contract (ERMC). GAO has ordered the US DOE to review the contract award to a team led by Bechtel Group Inc., a process observers say could be quick or a quagmire. GAO sustained part of a protest filed in early 1993 by Parsons Environmental Services Inc., Pasadena, California, which led an unsuccessful team bid for the ERMC

  4. Bioremediation of nitroaromatic and haloaromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Alleman, B.C.; Leeson, A. [eds.

    1999-10-01

    Sites contaminated with explosive compounds, pesticides, herbicides, PCBs, and other aromatic compounds present formidable technical, regulatory, and financial challenges. The application of bioremediation technologies at such sites offers the promise of cost-effective site remediation that can serve as a key component of a well-formulated strategy for achieving site closure. This volume presents the results of bench-, pilot-, and field-scale projects focused on the use of biological approaches to remediate problem compounds, such as RDX, HMX, TNT, DDT, 2,4-D, nitro- and chlorobenzenes, nitroaniline, chloroaniline, hexachlorobenzene, PCPs, PCBs, and dichlorophenol in soils and groundwater.

  5. Bioremediation of diesel fuel contaminated soils

    International Nuclear Information System (INIS)

    Bioremediation techniques were successfully employed in the cost-effective cleanup of approximately 8400 gallons of diesel fuel which had been accidentally discharged at a warehouse in New Jersey. Surrounding soils were contaminated with the diesel fuel at concentrations exceeding 1,470 mg/kg total petroleum hydrocarbons as measured by infrared spectroscopy (TPH-IR, EPA method 418.1, modified for soils). This paper reports on treatment of the contaminated soils through enhanced biological land treatment which was chosen for the soil remediation pursuant to a New Jersey Pollutant Discharge Elimination System - Discharge to Ground Water (NJPDES-DGW) permit. Biological land treatment of diesel fuel focuses on the breakdown of the hydrocarbon fractions by indigenous aerobic microorganisms in the layers of soil where oxygen is made available. Metabolism by these microorganisms can ultimately reduce the hydrocarbons to innocuous end products. The purpose of biological land treatment was to reduce the concentration of the petroleum hydrocarbon constituents of the diesel fuel in the soil to 100 ppm total petroleum hydrocarbons (TPH)

  6. Bioremediation of Petroleum Hydrocarbon-Contaminated Soils, Comprehensive Report

    Energy Technology Data Exchange (ETDEWEB)

    Altman, D.J.

    2001-01-12

    The US Department of Energy and the Institute for Ecology of Industrial Areas, Katowice, Poland have been cooperating in the development and implementation of innovative environmental remediation technologies since 1995. U.S. experts worked in tandem with counterparts from the IETU and CZOR throughout this project to characterize, assess and subsequently, design, implement and monitor a bioremediation system.

  7. Optimal nutrient application strategy for bioremediation of oil-polluted beaches. Volume 1

    International Nuclear Information System (INIS)

    Offshore oil spills in coastal areas generally occur in the intertidal zone of beaches and affect the top 25 cm of soil, known as the bioremediation zone. Biostimulation by nutrient application such as nitrogen and phosphorus is a viable technology for restoring oil-contaminated beaches. The key for achieving a rapid cost-effective cleanup is to ensure maximum nutrient residence time. This study proposed a strategy that consisted of injecting nutrients through a perforated pipe at the high tide line. Beach hydraulics were numerically simulated to estimate the optimal injection flow rate of nutrient solution. It was shown that the optimal application should begin following high tide just as it drops and should last for half a tidal cycle. The flow rate ensures that the saturated wet-front of the nutrient solution on the beach surface moves seaward with the same speed of the falling tide keeping a constant distance with the tide line. The numerical results were generalized to a broad range of hydraulic and tidal properties of beaches using an innovative dimensionless formulation for water flow and solute transport in porous media. Nomographs were presented to provide the flow rate based on 4 parameters, notably the beach slope, permeability, tidal amplitude and tidal period. 29 refs., 1 tab., 5 figs

  8. Reactor coolant cleanup facility

    International Nuclear Information System (INIS)

    A depressurization device is disposed in pipelines upstream of recycling pumps of a reactor coolant cleanup facility to reduce a pressure between the pressurization device and the recycling pump at the downstream, thereby enabling high pressure coolant injection from other systems by way of the recycling pumps. Upon emergency, the recycling pumps of the coolant cleanup facility can be used in common to an emergency reactor core cooling facility and a reactor shutdown facility. Since existent pumps of the emergency reactor core cooling facility and the reactor shutdown facility which are usually in a stand-by state can be removed, operation confirmation test and maintenance for equipments in both of facilities can be saved, so that maintenance and reliability of the plant are improved and burdens on operators can also be mitigated. Moreover, low pressure design can be adopted for a non-regenerative heat exchanger and recycling coolant pumps, which enables to improve the reliability and economical property due to reduction of possibility of leakage. (N.H.)

  9. Coupling risk-based remediation with innovative technology

    International Nuclear Information System (INIS)

    Tiered risk-based cleanup approaches have been effectively used at petroleum sites, pesticide sites and other commercial/industrial facilities. For example, the Illinois Environmental Protection Agency (IEPA) has promulgated guidance for a Tiered Approach to Corrective action Objectives (TACO) to establish site-specific remediation goals for contaminated soil and groundwater. As in the case of many other state programs, TACO is designed to provide for adequate protection of human health and the environment based on potential risks posed by site conditions. It also incorporates site-related information that may allow more cost-effective remediation. IEPA developed TACO to provide flexibility to site owners/operators when formulating site-specific remediation activities, as well as to hasten property redevelopment to return sites to more productive use. Where appropriate, risk-based cleanup objectives as set by TACO-type programs may be coupled with innovative remediation technologies such as air sparging, bioremediation and soil washing

  10. 典型POPs的生物降解修复技术研究与发展%Research and development of bioremediation technology for persistent organic pollutants degradation

    Institute of Scientific and Technical Information of China (English)

    吴海珍; 韦朝海; 周盛

    2012-01-01

    engineered bacteria composed of multi-plasmids that are capable of degrading different pollutants due to the change of metabolic pathway; (iii) the technique of enzyme immobilization using carriers for improving enzyme stability, recycling and reuse; and (iv) the construction of biodegradation enzymes by subunit molecular replacement, enzyme-directed mutagenesis, and in vitro evolution of enzymes. In addition, the principles for improving POPs bioremediation by molecular biology are analyzed. The obstacles for the practical application of the genetically engineered microorganisms and immobilized enzymes are presented. Based on the analysis of polybrominated diphenyl ethers (PBDEs) degradation as a typical case of bioremediation of POPs, it is stressed that it is necessary to establish multi-scale functions for the strengthen of biodegradation process. The fundamental scientific issues to resolve POPs pollution problems by the combination of molecular biology and genetic engineering are also proposed. This means that the typical POPs bioremediation techniques emphasize the need to build a synergic degradation theory for degradation of both POPs and macro-pollutants, and the pursuit of more functions with respect to the gene level, molecular level, reactor level and project level.

  11. Alternatives for Ground Water Cleanup

    Science.gov (United States)

    Hudak, P. F.

    Aquifer remediation is one of our most difficult environmental challenges; technological limitations and problems arising from the physical and chemical complexities of contaminated subsurface environments thwart our best efforts. A 19-member committee of leaders in environmental engineering, hydrogeology, epidemiology, environmental economics, and environmental policy has written an ambitious book that broadly addresses the groundwater remediation problem. Topics include site characterization, capabilities and limitations of pump-and-treat and alternative technologies, alternative goals for ground water cleanup, and policy implications.One of the book's strengths is its information base, which includes various public and private groups, data from 80 pump-and-treat sites, and an extensive literature review. The text is clearly written and well organized. Specific conclusions are stated at the end of each major chapter, and sound policy recommendations are offered at the end of the final chapter. An appendix summarizes pump-andtreat systems reviewed during the study. Several case studies, diagrams, and photographs effectively illustrate concepts and ideas conveyed in the text.

  12. Bioremediation of metals and radionuclides: What it is and How itWorks

    Energy Technology Data Exchange (ETDEWEB)

    McCullough, J.; Hazen, Terry; Benson, Sally

    1999-01-01

    This primer is intended for people interested in DOE environmental problems and in their potential solutions. It will specifically look at some of the more hazardous metal and radionuclide contaminants found on DOE lands and at the possibilities for using bioremediation technology to clean up these contaminants. Bioremediation is a technology that can be used to reduce, eliminate, or contain hazardous waste. Over the past two decades, it has become widely accepted that microorganisms, and to a lesser extent plants, can transform and degrade many types of contaminants. These transformation and degradation processes vary, depending on physical environment, microbial communities, and nature of contaminant. This technology includes intrinsic bioremediation, which relies on naturally occurring processes, and accelerated bioremediation, which enhances microbial degradation or transformation through inoculation with microorganisms (bioaugmentation) or the addition of nutrients (biostimulation).

  13. Stakeholder acceptance analysis: In-well vapor stripping, in-situ bioremediation, gas membrane separation system (membrane separation)

    International Nuclear Information System (INIS)

    This document provides stakeholder evaluations on innovative technologies to be used in the remediation of volatile organic compounds from soils and ground water. The technologies evaluated are; in-well vapor stripping, in-situ bioremediation, and gas membrane separation

  14. SITE DEMONSTRATION OF ENHANCED IN SITU BIOREMEDIATION OF CHLORINATED AND NON-CHLORINATED ORGANIC COMPOUNDS IN FRACTURED BEDROCK

    Science.gov (United States)

    A field demonstration of an enhanced in situ bioremediation technology was conducted between March 1998 and August 1999 at the ITT Industries Nithg Vision (ITTNV) Division plant in Roanoke, Virginia. The bioremediation process was evaluated for its effectiveness in treating both ...

  15. Demonstrating practical application of soil and groundwater clean-up and recovery technologies at natural gas processing facilities: Bioventing, air sparging and wetlands remediation

    International Nuclear Information System (INIS)

    This issue of the project newsletter described the nature of bioventing, air sparging and wetland remediation. It reviewed their effectiveness in remediating hydrocarbon contaminated soil above the groundwater surface. Bioventing was described as an effective, low cost treatment in which air is pumped below ground to stimulate indigenous bacteria. The bacteria then use the oxygen to consume the hydrocarbons, converting them to CO2 and water. Air sparging involves the injection of air below the groundwater surface. As the air rises, hydrocarbons are stripped from the contaminated soil and water. The advantage of air sparging is that it cleans contaminated soil and water from below the groundwater surface. Hydrocarbon contamination of wetlands was described as fairly common. Conventional remediation methods of excavation, trenching, and bellholes to remove contamination often cause extreme harm to the ecosystem. Recent experimental evidence suggests that wetlands may be capable of attenuating contaminated water through natural processes. Four hydrocarbon contaminated wetlands in Alberta are currently under study. Results to date show that peat's high organic content promotes sorption and biodegradation and that some crude oil spills can been resolved by natural processes. It was suggested that assuming peat is present, a good clean-up approach may be to contain the contaminant source, monitor the lateral and vertical extent of contamination, and wait for natural processes to resolve the problem. 3 figs

  16. Systems biology approach to bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.

    2012-06-01

    Bioremediation has historically been approached as a ‘black box’ in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Finally, understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potential for making bioremediation breakthroughs and illuminating the ‘black box’.

  17. Genetic engineering microbes for bioremediation/ biorecovery of uranium

    International Nuclear Information System (INIS)

    Bioremediation (both bioremoval and biorecovery) of metals is considered a feasible, economic and eco-friendly alternative to chemical methods of metal extraction, particularly when the metal concentration is very low. Scanty distribution along with poor ore quality makes biomining of uranium an attractive preposition. Biosorption, bioprecipitation or bioaccumulation of uranium, aided by recombinant DNA technology, offer a promising technology for recovery of uranium from acidic or alkaline nuclear waste, tailings or from sea-water. Genetic engineering of bacteria, with a gene encoding an acid phosphatase, has yielded strains that can bioprecipitate uranium from very low concentrations at acidic-neutral pH, in a relatively short time. Organisms overproducing alkaline phosphatase have been selected for uranium precipitation from alkaline waste. Such abilities have now been transferred to the radioresistant microbe Deinococcus radiodurans to facilitate in situ bioremediation of nuclear waste, with some success. Sulfate-reducing bacteria are being characterized for bioremediation of uranium in tailings with the dual objective of uranium precipitation and reduction of sulfate to sulphide. Certain marine cyanobacteria have shown promise for uranium biosorption to extracellular polysaccharides, and intracellular accumulation involving metal sequestering metallothionin proteins. Future work is aimed at understanding the genetic basis of these abilities and to engineer them into suitable organisms subsequently. As photosynthetic, nitrogen-fixing microbes, which are considerably resistant to ionizing radiations, cyanobacteria hold considerable potential for bioremediation of nuclear waste. (author)

  18. San Jacinto River oil spill: wetland bioremediation project

    International Nuclear Information System (INIS)

    Gasoline, diesel and unrefined Arabian light crude oil were accidentally released into the San Jacinto River after a series of pipelines ruptured. Natural removal processes (volatilization, dissolution, weathering), fire, and the spill clean-up effort, removed approximately 95% of the petroleum. The area where residual oil was found was an estuarine wetland on the lower San Jacinto River. Samples were collected from 21 study areas and an evaluation of the varying levels of bioremediation was conducted. Phase one has been completed and involved the evaluation of the natural recovery of oil from the spill. Phase two was still in progress and involved the addition of inorganic nutrients and the alternate electron acceptor to enhance the biodegradation of the petroleum. Results showed that biodegradation was responsible for much of the reduction of certain components in petroleum within the first 150 days. 12 refs., 8 figs

  19. Bioventing reduces soil cleanup costs

    International Nuclear Information System (INIS)

    An offshoot technology from soil venting, bioventing offers a win-win solution for soils contaminated with volatile organic compounds (VOCs) and nonvolatile contaminants such as diesel and fuel oil. Using low air flowrates through permeable soils, bioventing injects sufficient oxygen to support naturally-occurring bacteria, which biodegraded the VOCs and other contaminants into benign byproducts. Waste gas can be directly discharged to atmosphere without further treatment. This results in no offgas treatment required. Bioventing is a cost-effective alternative to traditional soil-venting techniques. Soil venting uses air to volatilize organic-compound contamination from the vadose zone, the unsaturated soil layer above groundwater. Unfortunately, this simple-and-fast approach creates a waste offgas that requires further treatment before discharge, thus adding significantly to overall project costs. In contrast, bioventing uses low air flowrates, which require lower capital and operating costs. No offgas treatment further reduces equipment and operating costs and often eliminates air permitting. As in all treatment strategies, the process must meet the cleanup objectives. Bioventing is an alternative technique making inroads into refining and petrochemical soil-remediation applications

  20. In situ bioremediation of Hanford groundwater

    International Nuclear Information System (INIS)

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl4), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and remediation of existing contaminated groundwaters may be required. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl4, nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on going effort to develop effective in situ remediation strategies through the use of predictive simulations

  1. Cleanup of demineralizer resins

    International Nuclear Information System (INIS)

    Radiocesium is being removed from demineralizers A and B (DA and DB) by a process that was developed from laboratory tests on small samples of resin from the demineralizers. The process was designed to elute the radiocesium from the demineralizer resins and then to resorb it onto the zeolite ion exchangers contained in the Submerged Demineralizer System (SDS). It was also required to limit the maximum cesium activities in the resin eluates (SDSD feeds) so that the radiation field surrounding the pipelines would not be excessive. The process consisted of 17 stages of batch elution. In the initial stage, the resin was contacted with 0.18 M boric acid. Subsequent stages subjected the resin to increasing concentrations of sodium in NaH2BO3-H3BO3 solution (total boron= 0.35 M) and then 1 M sodium hydroxide in the final stages. Results on the performance of the process in the cleanup of the demineralizers at TMI-2 are compared with those obtained from laboratory tests with small samples of the DA and DB resins. To date, 15 stages of batch elution have been completed on the demineralizers at TMI-2, which resulted in the removal of about 750 Ci of radiocesium from DA and about 3300 Ci from DB

  2. Graphite waste pit cleanup

    International Nuclear Information System (INIS)

    The UP1 plant in Marcoule reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. During more than 40 years, the decladding operations produced thousands of tons of processed waste, mainly magnesium and graphite fragments. In the absence of a French repository for the graphite waste, the graphite sludge content of the storage pit had to be retrieved and transferred into a newer and safer pit. So, this project consists in the full retrieval and transfer of 15 m3 of water mixed with graphite dust located in the decladding facility, as well as the complete cleanup and decontamination of the pit. The equipment and process necessary for retrieval operations were designed, built and tested. The process is mainly based on the use of two pumps (one to capture and the other one to transfer the sludge) working one after the other and a robotic arm mounted on a telescopic mast. A dedicated process was also set up for the removal of the biggest fragments. In the pit, the sludge retrieval and transfer operations have been almost completed. Most of the non-pumpable graphite fragments has been removed and transferred to a new storage pit. As irradiant fragments have been discovered in the pit, specific studies are in progress in order to remove them to the laboratory for dissolution. This work is expected to 2014. (authors)

  3. Bioremediation of Metals and Radionuclides: What It Is and How It Works (2nd Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Palmisano, Anna; Hazen, Terry

    2003-09-30

    This primer is intended for people interested in environmental problems of the U.S. Department of Energy (DOE) and in their potential solutions. It will specifically look at some of the more hazardous metal and radionuclide contaminants found on DOE lands and at the possibilities for using bioremediation technology to clean up these contaminants. The second edition of the primer incorporates recent findings by researchers in DOE's Natural and Accelerated Bioremediation Research (NABIR) Program. Bioremediation is a technology that can be used to reduce, eliminate, or contain hazardous waste. Over the past two decades, it has become widely accepted that microorganisms, and to a lesser extent plants, can transform and degrade many types of contaminants. These transformation and degradation processes vary, depending on the physical-chemical environment, microbial communities, and nature of the contaminant. This technology includes intrinsic bioremediation, which relies on naturally occurring processes, and accelerated bioremediation, which enhances microbial degradation or transformation through the addition of nutrients (biostimulation) or inoculation with microorganisms (bioaugmentation). Over the past few years, interest in bioremediation has increased. It has become clear that many organic contaminants such as hydrocarbon fuels can be degraded to relatively harmless products such as CO{sub 2} (the end result of the degradation process). Waste water managers and scientists have also found that microorganisms can interact with metals and convert them from one chemical form to another. Laboratory tests and ex situ bioremediation applications have shown that microorganisms can change the valence, or oxidation state, of some heavy metals (e.g., chromium and mercury) and radionuclides (e.g., uranium) by using them as electron acceptors. In some cases, the solubility of the altered species decreases and the contaminant is immobilized in situ, i.e., precipitated into

  4. Effectiveness and regulatory issues in oil spill bioremediation: Experiences with the Exxon Valdez oil spill in Alaska

    International Nuclear Information System (INIS)

    The use of bioremediation as a supplemental cleanup technology in the Exxon Valdez oil spill, in Prince William Sound, Alaska, has proven to be a good example of the problems and successes associated with the practical application of this technology. Field studies conducted by scientists from the US Environmental Protection Agency have demonstrated that oil degradation by indigenous microflora on the beaches of Prince William Sound could be significantly accelerated by adding fertilizer directly to the surfaces of oil-contaminated beaches. The author's results from the application of an oleophilic fertilizer are presented as exemplary field and laboratory information. The fertilizer enhanced biodegradation of the oil, as measured by changes in oil composition and bulk oil weight per unit of beach material, by approximately twofold relative to untreated controls. The emphasis of this chapter will be on some of the difficulties and problems associated with the fertilizer application and its effect on oil degradation. The author will concentrate primarily on the separate application of an oleophilic fertilizer which occurred at a site called Snug Harbor on Knight Island in Prince William Sound, and on the application of slow-release fertilizer granules which occurred on Disk Island in Prince William Sound

  5. Cleanups in my Community Widget

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Cleanups in my Community widget returns facilities within the area of interest that are in the process of being cleaned up, or have been cleaned up, by programs...

  6. Bioremediation of petroleum hydrocarbo-contaminated soils, comprehensive report, December 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry

    2000-04-01

    The US Department of Energy and the Institute for Ecology of Industrial Areas (IETU), Katowice, Poland have been cooperating in the development and implementation of innovative environmental remediation technologies since 1995. A major focus of this program has been the demonstration of bioremediation techniques to cleanup the soil and sediment associated with a waste lagoon at the Czechowice Oil Refinery (CZOR) in southern Poland. After an expedited site characterization (ESC), treatability study, and risk assessment study, a remediation system was designed that took advantage of local materials to minimize cost and maximize treatment efficiency. U.S. experts worked in tandem with counterparts from the IETU and CZOR throughout this project to characterize, assess and subsequently, design, implement and monitor a bioremediation system. The CZOR, our industrial partner for this project, was chosen because of their foresight and commitment to the use of new approaches for environmental restoration. This program sets a precedent for Poland in which a portion of the funds necessary to complete the project were provided by the company responsible for the problem. The CZOR was named by PIOS (State Environmental Protection Inspectorate of Poland) as one of the top 80 biggest polluters in Poland. The history of the CZOR dates back more than 100 years to its establishment by the Vacuum Oil Company (a U.S. company and forerunner of Standard Oil). More than a century of continuous use of a sulfuric acid-based oil refining method by the CZOR has produced an estimated 120,000 tons of acidic, highly weathered, petroleum sludge. This waste has been deposited into three open, unlined process waste lagoons, 3 meters deep, now covering 3.8 hectares. Initial analysis indicated that the sludge was composed mainly of high molecular weight paraffinic and polynuclear aromatic hydrocarbons (PAHs). The overall objective of this full-scale demonstration project was to characterize, assess

  7. Role of Microbial Enzymes in the Bioremediation of Pollutants: A Review

    OpenAIRE

    Karigar, Chandrakant S.; Rao, Shwetha S.

    2011-01-01

    A large number of enzymes from bacteria, fungi, and plants have been reported to be involved in the biodegradation of toxic organic pollutants. Bioremediation is a cost effective and nature friendly biotechnology that is powered by microbial enzymes. The research activity in this area would contribute towards developing advanced bioprocess technology to reduce the toxicity of the pollutants and also to obtain novel useful substances. The information on the mechanisms of bioremediation-related...

  8. Overview of a large-scale bioremediation soil treatment project

    International Nuclear Information System (INIS)

    How long does it take to remediate 290,000 yd3 of impacted soil containing an average total petroleum hydrocarbon concentration of 3,000 ppm? Approximately 15 months from start to end of treatment using bioremediation. Mittelhauser was retained by the seller of the property (a major oil company) as technical manager to supervise remediation of a 45-ac parcel in the Los Angeles basin. Mittelhauser completed site characterization, negotiated clean-up levels with the regulatory agencies, and prepared the remedial action plan (RAP) with which the treatment approach was approved and permitted. The RAP outlined the excavation, treatment, and recompaction procedures for the impacted soil resulting from leakage of bunker fuel oil from a large surface impoundment. The impacted soil was treated on site in unline Land Treatment Units (LTUs) in 18-in.-thick lifts. Due to space restraints, multiple lifts site. The native microbial population was cultivated using soil stabilization mixing equipment with the application of water and agricultural grade fertilizers. Costs on this multimillion dollar project are broken down as follows: general contractor cost (47%), bioremediation subcontractor cost (35%), site characterization (10%), technical management (7%), analytical services (3%), RAP preparation and permitting (1%), and civil engineering subcontractor cost (1%). Start-up of field work could have been severely impacted by the existence of Red Fox habitation. The foxes were successfully relocated prior to start of field work

  9. Electromigration of Contaminated Soil by Electro-Bioremediation Technique

    Science.gov (United States)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Shaylinda, M. Z. N.; Azim, M. A. M.

    2016-07-01

    Soil contamination with heavy metals poses major environmental and human health problems. This problem needs an efficient method and affordable technological solution such as electro-bioremediation technique. The electro-bioremediation technique used in this study is the combination of bacteria and electrokinetic process. The aim of this study is to investigate the effectiveness of Pseudomonas putida bacteria as a biodegradation agent to remediate contaminated soil. 5 kg of kaolin soil was spiked with 5 g of zinc oxide. During this process, the anode reservoir was filled with Pseudomonas putida while the cathode was filled with distilled water for 5 days at 50 V of electrical gradient. The X-Ray Fluorescent (XRF) test indicated that there was a significant reduction of zinc concentration for the soil near the anode with 89% percentage removal. The bacteria count is high near the anode which is 1.3x107 cfu/gww whereas the bacteria count at the middle and near the cathode was 5.0x106 cfu/gww and 8.0x106 cfu/gww respectively. The migration of ions to the opposite charge of electrodes during the electrokinetic process resulted from the reduction of zinc. The results obtained proved that the electro-bioremediation reduced the level of contaminants in the soil sample. Thus, the electro-bioremediation technique has the potential to be used in the treatment of contaminated soil.

  10. Ecogenomics of microbial communities in bioremediation of chlorinated contaminated sites

    Directory of Open Access Journals (Sweden)

    Farai Maphosa

    2012-10-01

    Full Text Available Organohalide compounds such as chloroethenes, chloroethanes and polychlorinated benzenes are among the most significant pollutants in the world. These compounds are often found in contamination plumes with other pollutants such as solvents, pesticides and petroleum derivatives. Microbial bioremediation of contaminated sites, has become commonplace whereby key processes involved in bioremediation include anaerobic degradation and transformation of these organohalides by organohalide respiring bacteria and also via hydrolytic, oxygenic and reductive mechanisms by aerobic bacteria. Microbial ecogenomics has enabled us to not only study the microbiology involved in these complex processes but also develop tools to better monitor and assess these sites during bioremediation. Microbial ecogenomics have capitalized on recent advances in high-throughput and -output genomics technologies in combination with microbial physiology studies to address these complex bioremediation problems at a system level. Advances in environmental metagenomics, transcriptomics and proteomics have provided insights into key genes and their regulation in the environment. They have also given us clues into microbial community structures, dynamics and functions at contaminated sites. These techniques have not only aided us in understanding the lifestyles of common organohalide respirers, for example Dehalococcoides, Dehalobacter and Desulfitobacterium, but also provided insights into novel and yet uncultured microorganisms found in organohalide respiring consortia. In this paper we look at how ecogenomic studies have aided us to understand the microbial structures and functions in response to environmental stimuli such as the presence of chlorinated pollutants.

  11. Clean-up of a jet fuel spill

    International Nuclear Information System (INIS)

    Eaton operates a corporate aircraft hangar facility in Battle Creek, Michigan. Tests showed that two underground storage tanks leaked. Investigation confirmed this release discharged several hundred gallons of Jet A kerosene into the soil and groundwater. The oil moved downward approximately 30 feet and spread laterally onto the water table. Test results showed kerosene in the adsorbed, free and dissolved states. Eaton researched and investigated three clean-up options. They included pump and treat, dig and haul and bioremediation. Jet fuel is composed of readily biodegradable hydrocarbon chains. This fact coupled with the depth to groundwater and geologic setting made bioremediation the low cost and most effective alternative. A recovery well was installed at the leading edge of the dissolved contamination. A pump moved water from this well into a nutrient addition system. Nutrients added included nitrogen, phosphorus and potassium. Additionally, air was sparged into the water. The water was discharged into an infiltration gallery installed when the underground storage tanks were removed. Water circulated between the pump and the infiltration basin in a closed loop fashion. This oxygenated, nutrient rich water actively and aggressively treated the soils between the bottom of the gallery and the top of the groundwater and the groundwater. The system began operating in August of 19923 and reduced jet fuel to below detection levels. In August of 1995 The State of Michigan issued a clean closure declaration to the site

  12. Monitoring Genetic and Metabolic Potential for In-Site Bioremediation: Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, M.V.

    2000-07-20

    A number of DOE sites are contaminated with mixtures of dense non-aqueous phase liquids (DNAPLs) such as carbon tetrachloride, chloroform, perchloroethylene, and trichloroethylene. At many of these sites, in situ microbial bioremediation is an attractive strategy for cleanup, since it has the potential to degrade DNAPLs in situ without the need for pump-and-treat or soil removal procedures, and without producing toxic byproducts. A rapid screening method to determine broad range metabolic and genetic potential for contaminant degradation would greatly reduce the cost and time involved in assessment for in situ bioremediation, as well as for monitoring ongoing bioremediation treatment. The objective of this project was the development of mass-spectrometry-based methods to screen for genetic potential for both assessment and monitoring of in situ bioremediation of DNAPLs. These methods were designed to provide more robust and routine methods for DNA-based characterization of the genetic potential of subsurface microbes for degrading pollutants. Specifically, we sought to (1) Develop gene probes that yield information equivalent to conventional probes, but in a smaller size that is more amenable to mass spectrometric detection, (2) Pursue improvements to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) methodology in order to allow its more general application to gene probe detection, and (3) Increase the throughput of microbial characterization by integrating gene probe preparation, purification, and MALDI-MS analysis.

  13. Accelerating cleanup: Paths to closure

    International Nuclear Information System (INIS)

    This report describes the status of Environmental Management's (EM's) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE's 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM's accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document

  14. Accelerating cleanup: Paths to closure

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This report describes the status of Environmental Management`s (EM`s) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE`s 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM`s accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document.

  15. In situ closed-loop bioremediation: Rapid closure in a northern climate

    International Nuclear Information System (INIS)

    In situ closed-loop bioremediation was employed to achieve site closure at a former railyard in Minneapolis, Minnesota. Soil and groundwater were contaminated with gasoline. The closed-loop remediation system design incorporated three downgradient groundwater recovery wells and a low-pressure pipe infiltration gallery. Aboveground treatment of recovered groundwater was provided by a fixed-film bioreactor. The total reported benzene, toluene, ethylbenzene, and xylenes (BTEX)-removal efficiency of the bioreactor ranged from 98.8% to 100%. Concentrations of BTEX components in groundwater wells were reduced by 45% to 98%. The cleanup goals set by the Minnesota Pollution Control Agency were met within the first 6 months of treatment, and the remediation system was shut down after 20 months of operation. This project further demonstrates the effectiveness of reactor-based, closed-loop in situ bioremediation at sites with favorable conditions

  16. Kinetics of in situ bioremediation of Hanford groundwater

    International Nuclear Information System (INIS)

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl4), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and may require the remediation of existing contaminated groundwaters. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl4, nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on-going effort to quantify the biological and chemical reactions that would occur during in situ bioremediation

  17. Numerical simulations in support of the in situ bioremediation demonstration at Savannah River

    International Nuclear Information System (INIS)

    This report assesses the performance of the in situ bioremediation technology demonstrated at the Savannah River Integrated Demonstration (SRID) site in 1992--1993. The goal of the technology demonstration was to stimulate naturally occurring methanotrophic bacteria at the SRID site with injection of methane, air and air-phase nutrients (nitrogen and phosphate) such that significant amounts of the chlorinated solvent present in the subsurface would be degraded. Our approach is based on site-specific numerical simulations using the TRAMP computer code. In this report, we discuss the interactions among the physical and biochemical processes involved in in situ bioremediation. We also investigate improvements to technology performance, make predictions regarding the performance of this technology over long periods of time and at different sites, and compare in situ bioremediation with other remediation technologies

  18. Bioremediation of PCBs. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, K.T. [Oak Ridge National Lab., TN (United States). Chemical Technology Div., TN (United States); Abramowicz, D.A. [General Electric Co. Corporate Research and Development, Niskayuna, NY (United States)

    1996-06-01

    The Cooperative Research and Development Agreement was signed between Oak Ridge National Laboratory (ORNL) and General Electric Company (GE) on August 12, 1991. The objective was a collaborative venture between researchers at GE and ORNL to develop bioremediation of polychlorinated biphenyls (PCBs). The work was conducted over three years, and this report summarizes ORNL`s effort. It was found that the total concentration of PCBs decreased by 70% for sequential anaerobic-aerobic treatment compared with a 67% decrease for aerobic treatment alone. The sequential treatment resulted in PCB products with fewer chlorines and shorter halflives in humans compared with either anaerobic or aerobic treatment alone. The study was expected to lead to a technology applicable to a field experiment that would be performed on a DOE contaminated site.

  19. Bioremediation of PCBs. CRADA final report

    International Nuclear Information System (INIS)

    The Cooperative Research and Development Agreement was signed between Oak Ridge National Laboratory (ORNL) and General Electric Company (GE) on August 12, 1991. The objective was a collaborative venture between researchers at GE and ORNL to develop bioremediation of polychlorinated biphenyls (PCBs). The work was conducted over three years, and this report summarizes ORNL's effort. It was found that the total concentration of PCBs decreased by 70% for sequential anaerobic-aerobic treatment compared with a 67% decrease for aerobic treatment alone. The sequential treatment resulted in PCB products with fewer chlorines and shorter halflives in humans compared with either anaerobic or aerobic treatment alone. The study was expected to lead to a technology applicable to a field experiment that would be performed on a DOE contaminated site

  20. Document image cleanup and binarization

    Science.gov (United States)

    Wu, Victor; Manmatha, Raghaven

    1998-04-01

    Image binarization is a difficult task for documents with text over textured or shaded backgrounds, poor contrast, and/or considerable noise. Current optical character recognition (OCR) and document analysis technology do not handle such documents well. We have developed a simple yet effective algorithm for document image clean-up and binarization. The algorithm consists of two basic steps. In the first step, the input image is smoothed using a low-pass filter. The smoothing operation enhances the text relative to any background texture. This is because background texture normally has higher frequency than text does. The smoothing operation also removes speckle noise. In the second step, the intensity histogram of the smoothed image is computed and a threshold automatically selected as follows. For black text, the first peak of the histogram corresponds to text. Thresholding the image at the value of the valley between the first and second peaks of the histogram binarizes the image well. In order to reliably identify the valley, the histogram is smoothed by a low-pass filter before the threshold is computed. The algorithm has been applied to some 50 images from a wide variety of source: digitized video frames, photos, newspapers, advertisements in magazines or sales flyers, personal checks, etc. There are 21820 characters and 4406 words in these images. 91 percent of the characters and 86 percent of the words are successfully cleaned up and binarized. A commercial OCR was applied to the binarized text when it consisted of fonts which were OCR recognizable. The recognition rate was 84 percent for the characters and 77 percent for the words.

  1. Bioremediation of toxic and hazardous wastes by denitrifying bacteria

    International Nuclear Information System (INIS)

    This papers discusses the wastes coming rom domestic, industrial and agricultural sources are polluting the forests, rivers lakes, groundwater, and air and there are some measures like the physicochemical and biological measures are being utilized to remedy the destruction of resources; and of the measures, bioremediation offers great potential in cleaning up the environment of pollutants which is a cost-effective and environment-friendly technology that uses microorganisms to degrade hazardous substances into less toxic

  2. Isolation and use of indigenous bacteria for bioremediation of soil from a former wood treatment site in southwestern Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Guinn, D.A.; Tumeo, M.A.; Braddock, J.F. [Univ. of Alaska, Fairbanks, AK (United States)

    1996-11-01

    A temporary wood treatment site located at the University of Alaska Fairbanks (UAF) Palmer Research Farm, Point MacKenzie Agricultural Project was operated during the summer months of 1988--1989. An undefined mixture of diesel fuel, creosote, and pentachlorophenol (PCP) was used in the process. Approximately 75 m{sup 3} (98 yd{sup 3}) of soil were contaminated with up to 13.5 ppm PCP, creosote, and 13,000 ppm diesel range hydrocarbons. The Alaska Department of Environmental Conservation (ADEC) established clean-up levels of 0.5 ppm for PCP, and 1,000 ppm for diesel range hydrocarbons. The contaminated soil was excavated and stored on site in lined cells pending selection and implementation of a remediation method. Physical and chemical treatment options for soil contaminated with xenobiotic compounds in the Lower 48 United States are often not available or economical in Alaska. The expense of shipping contaminated soil outside the state for treatment, difficulties in supporting complex remediation technologies in remote locations, and concerns over long-term liability associated with landfilling make biological treatment, when feasible, a compelling option in Alaska. Therefore, it was determined that studies should be conducted to address the feasibility of bioremediating the Pt. MacKenzie soil.

  3. Bioremediation of Metals and Radionuclides: What It Is and How It Works (2nd Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Palmisano, Anna; Hazen, Terry

    2003-09-30

    This primer is intended for people interested in environmental problems of the U.S. Department of Energy (DOE) and in their potential solutions. It will specifically look at some of the more hazardous metal and radionuclide contaminants found on DOE lands and at the possibilities for using bioremediation technology to clean up these contaminants. The second edition of the primer incorporates recent findings by researchers in DOE's Natural and Accelerated Bioremediation Research (NABIR) Program. Bioremediation is a technology that can be used to reduce, eliminate, or contain hazardous waste. Over the past two decades, it has become widely accepted that microorganisms, and to a lesser extent plants, can transform and degrade many types of contaminants. These transformation and degradation processes vary, depending on the physical-chemical environment, microbial communities, and nature of the contaminant. This technology includes intrinsic bioremediation, which relies on naturally occurring processes, and accelerated bioremediation, which enhances microbial degradation or transformation through the addition of nutrients (biostimulation) or inoculation with microorganisms (bioaugmentation). Over the past few years, interest in bioremediation has increased. It has become clear that many organic contaminants such as hydrocarbon fuels can be degraded to relatively harmless products such as CO{sub 2} (the end result of the degradation process). Waste water managers and scientists have also found that microorganisms can interact with metals and convert them from one chemical form to another. Laboratory tests and ex situ bioremediation applications have shown that microorganisms can change the valence, or oxidation state, of some heavy metals (e.g., chromium and mercury) and radionuclides (e.g., uranium) by using them as electron acceptors. In some cases, the solubility of the altered species decreases and the contaminant is immobilized in situ, i.e., precipitated into

  4. Hot/warm clean-up technology of gaseous pollutants%气体污染物之中高温净化技术

    Institute of Scientific and Technical Information of China (English)

    邱耀平; 陈一顺; 黄亮维

    2012-01-01

    核能研究所从2005年起,开始执行净碳技术领域研究,而气体污染物之中高温净化技术为其中的重点之一.中高温净化程序系将典型低温气体处理程序由室温提升至中高温层级,藉由气体处理温度的增高,可降低因温度变化所导致的可用能量减损,进而提升系统整体效能.主要涵盖两大领域技术,首先为流动式颗粒床过滤器气体净化技术,其原生技术为一可应用于中高温的粉尘过滤装置,本研究将其延伸发展为一种复合型过滤系统.其次,中高温脱硫为具有前瞻性的气体减排技术之一,本研究以含浸法制备脱硫剂,并于固定床反应器中进行化性测试;目前得到的最佳吸附容量为7.4g-S/100g sorbent.藉由上述技术之发展,希望提供温室气体排放减量的可行技术.%To comply with the domestic technology RD strategy,a feasibility study project on sustainable clean coal technologies has been undertaken at the Institute of Nuclear Energy Research(INER) since 2005.This work represents the follow-up efforts for mitigating greenhouse gas emissions from sustainable development viewpoints.It is expected that this strategic planning will establish the essential foundation for technologies needed to fulfill the policy of energy saving and carbon abatement.This work focuses on the strategic planning of clean carbon-based energy technologies,from the viewpoints of both practical development and advanced research.The exhibited technology consists of two categories.The first one is advanced gas filtration technology in moving granular bed filter,which is associated with the development of multistage granular moving bed apparatus.Using filter granules under different kinds or particle sizes,higher filtration efficiency collected in the dirty gas conditions could be achieved.The other technology is the so-called hot/warm gas desulfurization,which displays potential to control sulfide emission.In the present study

  5. Literature review and assessment of various approaches to bioremediation of oil and associated hydrocarbons in soil and groundwater

    International Nuclear Information System (INIS)

    A study was conducted of available techniques for the biological treatment of oil and associated hydrocarbon contamination in soil and groundwater. The study involved a detailed literature search and review, as well as discussions with the users and developers of a number of the bioremediation techniques assessed. The result is a compendium of selected state-of-the-art bioremediation technologies which can serve to guide the selection process for treatment technology for a particular site subject to remediation. Background is provided on the various classes of sites on which petroleum-related contamination could occur, and the nature of contaminants typical of such sites. The mechanisms of hydrocarbon biodegradation are outlined along with various approaches to bioremediation such as in-situ, on-site, bioreactors, landfarming, composting, and physical/chemical treatments. Field trials required to characterize the site and provide an indication of the suitability of bioremediation and the most appropriate bioremediation approach are described. Commercially available bioremediation technologies are briefly discussed. A number of the bioremedial techniques reviewed are compared to more conventional treatment processes in terms of such criteria as operating cost, effectiveness, advantages, risks, applicability, equipment and manpower requirements, and considerations regarding usage in Canadian conditions. 15 figs., 17 tabs

  6. GUIDELINES FOR THE BIOREMEDIATION OF OIL-CONTAMINATED SALT MARSHES

    Science.gov (United States)

    The objective of this document is to present a detailed technical guideline for use by spill responders for the cleanup of coastal wetlands contaminated with oil and oil products by using one of the least intrusive approachesbioremediation technology. This manual is a supplem...

  7. Accelerated cleanup Initiatives Putting the Acceleration Plans into Action

    International Nuclear Information System (INIS)

    This paper describes project successes during the last year and presents strategies for accomplishing work required to accelerate waste retrieval, treatment and closure of 177 large underground waste tanks at the Hanford Site. The tanks contain approximately 53 million gallons of liquid, sludge, and solid waste resulting from decades of national defense production. The Hanford Site is a 560 square-mile area in southeastern Washington State. One of the nation's largest rivers, the Columbia River, flows through the site and within seven miles of the waste tanks. The US. Department of Energy (DOE) Office of River Protection and CH2M HILL Hanford Group, Inc. (CH2M HILL) drew upon the recommendations in the DOE's Top-To-Bottom Review and the ideas that emerged from the Cleanup Challenges and Constraints Team (C3T) when creating new initiatives last fall in accelerated tank cleanup. The initiatives reflect discussions and planning during the last year by the DOE, regulatory,agencies, Hanford stakeholders, and CH2M HILL on how to accelerate tank cleanup and closure. The initiatives focus on near-term risk reduction, deployment of proven cleanup technologies, and completing the feed delivery and waste storage systems needed to support Hanford's Waste Treatment Plant. Working with the Office of River Protection, CH2M HILL is changing the way it does business to align with the new focus on accelerated tank cleanup initiatives. A key concept of this new approach is to deploy simple, proven technologies whenever possible to accomplish program goals. Finding existing technologies and evaluating whether they can be applied to or adapted to Hanford tank cleanup provide the best chance for success in achieving treatment of all of Hanford's tank waste by 2028

  8. Recycling Facilities - Land Recycling Cleanup Locations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Land Recycling Cleanup Location Land Recycling Cleanup Locations (LRCL) are divided into one or more sub-facilities categorized as media: Air, Contained Release or...

  9. Methodology for setting cleanup criteria

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) has developed guidance for establishing cleanup criteria or authorized limits for sites containing residual radioactive material. The DOE requires that the as-low-as-reasonably-achievable (ALARA) process be applied. This process results in the development of cleanup levels that are as low as practicable giving due consideration to health, environment, economics, cultural, and natural resources and other factors. The process employs a cost-benefit optimization analysis and, where appropriate and feasible, considers multiple attributes. Frequently, some important factors or attributes do not lend themselves to quantification in a cost-benefit study and therefore must be considered qualitatively in the process. While the cost-benefit analysis is not the only consideration, it is an important clement in the establishment of cleanup criteria and selection of remedial alternatives. Key to the cost-benefit process is the relation between cleanup level and dose. This is determined through pathway analysis methodology. This paper discusses the pathway analysis process and will cover radiologically and nonradiologically contaminated sites and building contamination

  10. Challenging Oil Bioremediation at Deep-Sea Hydrostatic Pressure

    Science.gov (United States)

    Scoma, Alberto; Yakimov, Michail M.; Boon, Nico

    2016-01-01

    The Deepwater Horizon accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (bio)technology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons within deep-sea environments remain unanswered, as well as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil bioassimilation are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled oil. The fate of solid alkanes (tar), hydrocarbon degradation rates and the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea despite being present at hydrocarbon seeps at the Gulf of Mexico have been largely overlooked. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation. PMID:27536290

  11. Subtask 1.16-Slow-Release Bioremediation Accelerators

    International Nuclear Information System (INIS)

    Low-cost methods are needed to enhance various bioremediation technologies, from natural attenuation to heavily engineered remediation of subsurface hydrocarbon contamination. Many subsurface sites have insufficient quantities of nitrogen and phosphorus, resulting in poor bioactivity and increased remediation time and costs. The addition of conventional fertilizers can improve bioactivity, but often the nutrients dissolve quickly and migrate away from the contaminant zone before being utilized by the microbes. Through this project, conducted by the Energy and Environmental Research Center, polymers were developed that slowly release nitrogen and phosphorus into the subsurface. Conceptually, these polymers are designed to adhere to soil particles in the subsurface contamination zone where they slowly degrade and release nutrients over longer periods of time compared to conventional fertilizer applications. Tests conducted during this study indicate that some of the developed polymers have excellent potential to satisfy the microbial requirements for enhanced bioremediation

  12. Intrinsic bioremediation of landfills interim report

    International Nuclear Information System (INIS)

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP)

  13. Intrinsic bioremediation of landfills interim report

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L. [Westinghouse Savannah River Company, Aiken, SC (United States); Fliermans, C.B.

    1997-07-14

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP).

  14. Consolidating federal facility cleanup: Some pros and cons

    International Nuclear Information System (INIS)

    It has been suggested that Congress establish a permanent, full-time, independent national commission for radioactive waste management activities at DOE's Nuclear Weapons Complex. DOE regulates certain aspects of its treatment, storage, and disposal of radioactive waste by orders that are not promulgated by ''notice and comment'' or other procedures in the Administration Procedures Act. Because many agencies are not legally and technologically structured to handle their own cleanup problems, these activities might be conducted by one entity that can share information and staff among these agencies. There are rational arguments for both sides of this issue. Some of the advantages of such an organization include: focusing Congress's attention on an integrated federal facility cleanup instead of a fragmented, agency by agency approach, and an ability to prioritize cleanup decisions among agencies. Some significant obstacles include: reluctance by Congress and the executive branch to create any new bureaucracy at a time of budget deficits, and a loss of momentum from the progress already being made by the agencies. Given that more than $9 billion was proposed for FY 93 alone for federal facilities' cleanup programs and that decades will pass before all problems are addressed, it is appropriate to consider new approaches to environmental cleanup. This paper begins the dialogue about new ways to improve decision-making and government spending

  15. United States Policies for Cleanup at Radioactively Contaminated Sites

    International Nuclear Information System (INIS)

    The United States Environmental Protection Agency (EPA) Office of Superfund Remediation and Technology Innovation is responsible for implementing the long term (non-emergency) portion of a key law regulating cleanup: the Comprehensive Environmental Response, Compensation and Liability Act, CERCLA, nicknamed ‘Superfund.’ This paper provides a brief overview of the approach used by EPA to conduct Superfund cleanups at contaminated sites, including those that are contaminated with radionuclides, and to ensure protection of human health and the environment. The theme emphasized throughout the paper is that within the Superfund remediation framework, radioactive contamination is dealt with in a manner consistent with chemical contamination, except to account for the technical differences between radionuclides and chemicals. This consistency is important since at every radioactively contaminated site being addressed under Superfund’s primary programme for long term cleanup (the National Priorities List), chemical contamination is also present. (author)

  16. Accelerated cleanup risk reduction

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, R.B.; Aines, R.M.; Blake, R.G.; Copeland, A.B.; Newmark, R.L.; Tompson, A.F.B.

    1998-02-01

    There is no proven technology for remediating contaminant plume source regions in a heterogeneous subsurface. This project is an interdisciplinary effort to develop the requisite new technologies so that will be rapidly accepted by the remediation community. Our technology focus is hydrous pyrolysis/oxidation (HPO) which is a novel in situ thermal technique. We have expanded this core technology to leverage the action of steam injection and place an in situ microbial filter downstream to intercept and destroy the accelerated movement of contaminated groundwater. Most contaminant plume source regions, including the chlorinated solvent plume at LLNL, are in subsurface media characterized by a wide range in hydraulic conductivity. At LLNL, the main conduits for contaminant transport are buried stream channels composed of gravels and sands; these have a hydraulic conductivity in the range of 10{sup -1} to 10{sup -2} cm/s. Clay and silt units with a hydraulic conductivity of 10{sup -1} to 10{sup -6} cm/s bound these buried channels; these are barriers to groundwater movement and contain the highest contaminant concentrations in the source region. New remediation technologies are required because the current ones preferentially access the high conductivity units. HPO is an innovative process for the in situ destruction of contaminants in the entire subsurface. It operates by the injection of steam. We have demonstrated in laboratory experiments that many contaminants rapidly oxidize to harmless compounds at temperatures easily achieved by injecting steam, provided sufficient dissolved oxygen is present. One important challenge in a heterogeneous source region is getting heat, contaminants, and an oxidizing agent in the same place at the same time. We have used the NUFT computer program to simulate the cyclic injection of steam into a contaminated aquifer for design of a field demonstration. We used an 8 hour, steam/oxygen injection cycle followed by a 56 hour relaxation

  17. Oil Spill Cleanup

    Science.gov (United States)

    1994-01-01

    Petroleum Remediation Product (PRP) is a new way of cleaning up oil spills. It consists of thousands of microcapsules, tiny balls of beeswax with hollow centers, containing live microorganisms and nutrients to sustain them. As oil flows through the microcapsule's shell, it is consumed and digested by the microorganisms. Pressure buildup causes the PRP to explode and the enzymes, carbon dioxide and water are released into the BioBoom used in conjunction with PRP, preventing contaminated water from spreading. The system incorporates technology originally developed at the Jet Propulsion Laboratory and Marshall Space Flight Center.

  18. Accelerated cleanup risk reduction

    International Nuclear Information System (INIS)

    There is no proven technology for remediating contaminant plume source regions in a heterogeneous subsurface. This project is an interdisciplinary effort to develop the requisite new technologies so that will be rapidly accepted by the remediation community. Our technology focus is hydrous pyrolysis/oxidation (HPO) which is a novel in situ thermal technique. We have expanded this core technology to leverage the action of steam injection and place an in situ microbial filter downstream to intercept and destroy the accelerated movement of contaminated groundwater. Most contaminant plume source regions, including the chlorinated solvent plume at LLNL, are in subsurface media characterized by a wide range in hydraulic conductivity. At LLNL, the main conduits for contaminant transport are buried stream channels composed of gravels and sands; these have a hydraulic conductivity in the range of 10-1 to 10-2 cm/s. Clay and silt units with a hydraulic conductivity of 10-1 to 10-6 cm/s bound these buried channels; these are barriers to groundwater movement and contain the highest contaminant concentrations in the source region. New remediation technologies are required because the current ones preferentially access the high conductivity units. HPO is an innovative process for the in situ destruction of contaminants in the entire subsurface. It operates by the injection of steam. We have demonstrated in laboratory experiments that many contaminants rapidly oxidize to harmless compounds at temperatures easily achieved by injecting steam, provided sufficient dissolved oxygen is present. One important challenge in a heterogeneous source region is getting heat, contaminants, and an oxidizing agent in the same place at the same time. We have used the NUFT computer program to simulate the cyclic injection of steam into a contaminated aquifer for design of a field demonstration. We used an 8 hour, steam/oxygen injection cycle followed by a 56 hour relaxation period in which the well

  19. BIOREMEDIATION OF LOW GRADE ORES

    OpenAIRE

    Rashmi Mishra*

    2016-01-01

    The research work presented in this paper is on a Bioremediation for the recovery of zinc from mining waste i.e. Low grade ore of Hindustan Zinc Limited. They are waste product for the mines, as the recovery process is expensive compared to the recovery product moreover it causes lots of pollution   Bioleaching Studies were carried out at different pH using mixed culture grown from mine water. Recovery of zinc in control set (without culture) was 8% in 37 days and at the same pH ...

  20. In-situ bioremediation drilling and characterization work plan

    International Nuclear Information System (INIS)

    This work plan describes the design and construction of proposed wells and outlines the characterization activities to be performed in support of the In Situ Bioremediation Task for FY 1994. The purpose of the well-design is to facilitate implementation and monitoring of in situ biodegradation of CCl4 in ground water. However, the wells will also be used to characterize the geology, hydrology, microbiology, and contaminant distribution, which will all feed into the design of the technology. Implementation and design of this remediation demonstration technology will be described separately in an integrated test plan

  1. Bioremediation for coal-fired power stations using macroalgae.

    Science.gov (United States)

    Roberts, David A; Paul, Nicholas A; Bird, Michael I; de Nys, Rocky

    2015-04-15

    Macroalgae are a productive resource that can be cultured in metal-contaminated waste water for bioremediation but there have been no demonstrations of this biotechnology integrated with industry. Coal-fired power production is a water-limited industry that requires novel approaches to waste water treatment and recycling. In this study, a freshwater macroalga (genus Oedogonium) was cultivated in contaminated ash water amended with flue gas (containing 20% CO₂) at an Australian coal-fired power station. The continuous process of macroalgal growth and intracellular metal sequestration reduced the concentrations of all metals in the treated ash water. Predictive modelling shows that the power station could feasibly achieve zero discharge of most regulated metals (Al, As, Cd, Cr, Cu, Ni, and Zn) in waste water by using the ash water dam for bioremediation with algal cultivation ponds rather than storage of ash water. Slow pyrolysis of the cultivated algae immobilised the accumulated metals in a recalcitrant C-rich biochar. While the algal biochar had higher total metal concentrations than the algae feedstock, the biochar had very low concentrations of leachable metals and therefore has potential for use as an ameliorant for low-fertility soils. This study demonstrates a bioremediation technology at a large scale for a water-limited industry that could be implemented at new or existing power stations, or during the decommissioning of older power stations. PMID:25646673

  2. Fast-track aquifer characterization and bioremediation of groundwater

    International Nuclear Information System (INIS)

    A short duration step-drawdown pumping test has been used to characterize a highly permeable aquifer contaminated with petroleum hydrocarbons in support of an in situ, closed loop extraction and reinjection bioremediation system for groundwater. The short-term pumping test produces a manageable quantity of contaminated groundwater while yielding a range of values for transmissivity and specific yield parameters. This range of aquifer coefficients is used in an analytical model to estimate a range of groundwater extraction rates that provide a suitable radius of influence for the extraction and reinjection system. A multi-enzyme complex catalyzed bioremediation process has been used to aerobically degrade petroleum hydrocarbons. Enzymes, amino acids, and biosurfactants are supplied to the extracted groundwater to significantly speed up the degradation by naturally occurring bacteria. During the process, amino acids promote the rapid growth of the microbial population while enzymes and bacteria attach to hydrocarbons forming a transformation state complex that degrades to fatty acids, carbon dioxide, and water. This paper presents a case study of a fast-track bioremediation using pumping test data, analytical modeling, and an enzyme technology

  3. Intrinsic bioremediation of BTEX in a cold temperature environment

    International Nuclear Information System (INIS)

    Investigation of Intrinsic bioremediation technology at cold temperature sites contaminated with BTEX (benzene, toluene, ethyl benzene, xylene) is discussed. Site investigation at each of the sites was carried out to delineate stratigraphy, hydrogeology, microbiological setting, level of contamination and geochemical conditions. Preferred conditions for viable sites were found to include minimal risk of contaminants coming into contact with receptors, low hydraulic gradient, and the presence of adequate nutrients and terminal electron acceptors (TEAs). Enumeration of contaminant degrading microorganisms was completed through the Most Probable Number (MPN) technique indicating viable populations of aerobic petroleum degrading, nitrogen reducing and iron reducing bacteria. The effects of cold temperatures on the rate and extent of substrate utilization was studied in the laboratory, Results to date indicate that the sites under consideration are suitable candidates for intrinsic bioremediation and that significant rates of biodegradation are possible at low temperatures. If risk analysis proves to be favorable, the intrinsic bioremediation methodology is likely to provide an effective and affordable solution. 16 refs., 3 tabs., 3 figs

  4. Accelerating cleanup: Paths to closure

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, C.

    1998-06-30

    This document was previously referred to as the Draft 2006 Plan. As part of the DOE`s national strategy, the Richland Operations Office`s Paths to Closure summarizes an integrated path forward for environmental cleanup at the Hanford Site. The Hanford Site underwent a concerted effort between 1994 and 1996 to accelerate the cleanup of the Site. These efforts are reflected in the current Site Baseline. This document describes the current Site Baseline and suggests strategies for further improvements in scope, schedule and cost. The Environmental Management program decided to change the name of the draft strategy and the document describing it in response to a series of stakeholder concerns, including the practicality of achieving widespread cleanup by 2006. Also, EM was concerned that calling the document a plan could be misconstrued to be a proposal by DOE or a decision-making document. The change in name, however, does not diminish the 2006 vision. To that end, Paths to Closure retains a focus on 2006, which serves as a point in time around which objectives and goals are established.

  5. Spreading, retention and clean-up of oil spills. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Jr, M P

    1976-05-01

    This study reviews and assesses the technology of oil spill spreading, retention and cleanup and proposes research needs in these areas. Sources of oil spills are analyzed and the difficulty of gathering meaningful statistics is discussed. Barrier technology is reviewed and problem areas analyzed. Natural and forced biodegradation and natural and chemical dispersion of oil spills are considered. Research recommendations are categorized under the following two headings (1) Preventive techniques and (2) Containment, Cleanup and Dispersion.

  6. Historical research in the Hanford site waste cleanup

    International Nuclear Information System (INIS)

    This paper will acquaint the audience with role of historical research in the Hanford Site waste cleanup - the largest waste cleanup endeavor ever undertaken in human history. There were no comparable predecessors to this massive waste remediation effort, but the Hanford historical record can provide a partial road map and guide. It can be, and is, a useful tool in meeting the goal of a successful, cost-effective, safe and technologically exemplary waste cleanup. The Hanford historical record is rich and complex. Yet, it poses difficult challenges, in that no central and complete repository or data base exists, records contain obscure code words and code numbers, and the measurement systems and terminology used in the records change many times over the years. Still, these records are useful to the current waste cleanup in technical ways, and in ways that extend beyond a strictly scientific aspect. Study and presentations of Hanford Site history contribute to the huge educational and outreach tasks of helping the Site's work force deal with 'culture change' and become motivated for the cleanup work that is ahead, and of helping the public and the regulators to place the events at Hanford in the context of WWII and the Cold War. This paper traces historical waste practices and policies as they changed over the years at the Hanford Site, and acquaints the audience with the generation of the major waste streams of concern in Hanford Site cleanup today. It presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Examples of the strengths and limitations of the

  7. Applicability and Limits of Bioremediation of Contaminated Groundwater by Organic Compounds

    Institute of Scientific and Technical Information of China (English)

    Taboure Aboubacar; Lin Xueyu

    2001-01-01

    This paper gives in some ways a broad look at the Bioremediation Technology in the treatment of polluted groundwater. Environmentalists and Hydrologeologists around the world, especially in the developed countries welcomed this revolutionizing technique at a moment when other methods were becoming rather expensive and sources of secondary and more challenging pollution problems across sole fresh groundwater. Bioremediation of contaminated groundwater is based on the use of bacteria which breakdown organic matters to more stable forms, which will not create nuisance or give off foul odors. The Applicability of this technology at a specific site lies in the understanding of the site's hydrogeologic, physiochemical backgrounds and the knowledge of the properties of the designated bacteria colonies, which would likely stabilize the contaminants. These are key points, which determine the success of the all process. Only, by complying with all those measures, Bioremediation can meet all the expectations.

  8. Overview of on-farm bioremediation systems to reduce the occurrence of point source contamination.

    Science.gov (United States)

    De Wilde, Tineke; Spanoghe, Pieter; Debaer, Christof; Ryckeboer, Jaak; Springael, Dirk; Jaeken, Peter

    2007-02-01

    Contamination of ground and surface water puts pressure on the use of pesticides. Pesticide contamination of water can often be linked to point sources rather than to diffuse sources. Examples of such point sources are areas on farms where pesticides are handled and filled into sprayers, and where sprayers are cleaned. To reduce contamination from these point sources, different kinds of bioremediation system are being researched in various member states of the EU. Bioremediation is the use of living organisms, primarily microorganisms, to degrade the environmental contaminants into less toxic forms. The systems available for biocleaning of pesticides vary according to their shape and design. Up till now, three systems have been extensively described and reported: the biobed, the Phytobac and the biofilter. Most of these constructions are excavations or different sizes of container filled with biological material. Typical overall clean-up efficiency exceeds 95%, realising even more than 99% in many cases. This paper provides an overview of the state of the art of these bioremediation systems and discusses their construction, efficiency and drawbacks. PMID:17199234

  9. Case study: Bioremediation in the Aleutian Islands

    International Nuclear Information System (INIS)

    This case study describes the design, construction, and operation of a bioremediation pile on Adak Island, which is located in the Aleutian Island chain. Approximately 1,900 m3 of petroleum-contaminated soil were placed in the bioremediation pile. The natural bioremediation process was enhanced by an oxygen and nutrient addition system to stimulate microbial activity. Despite the harsh weather on the island, after the first 6 months of operation, laboratory analyses of soil samples indicated a significant (80%) reduction in diesel concentrations

  10. Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama Region (Chile)

    International Nuclear Information System (INIS)

    Since early 1900s, with the beginning of mining operations and especially in the last decade, small, although repetitive spills of fuel oil had occurred frequently in the Chilean mining desert industry during reparation and maintenance of machinery, as well as casual accidents. Normally, soils and sawdust had been used as cheap readily available sorbent materials of spills of fuel oil, consisting of complex mixtures of aliphatic and aromatic hydrocarbons. Chilean legislation considers these fuel oil contaminated mixtures of soil and sawdust as hazardous wastes, and thus they must be contained. It remains unknown whether it would be feasible to clean-up Chilean desert soils with high salinity and metal content, historically polluted with different commercial fuel oil, and contained during years. Thus, this study evaluated the feasibility of aerated in-vessel composting at a laboratory scale as a bioremediation technology to clean-up contaminated desert mining soils (fuel concentration > 50,000 mg kg-1) and sawdust (fuel concentration > 225,000 mg kg-1) in the Atacama Region. The composting reactors were operated using five soil to sawdust ratios (S:SD, 1:0, 3:1, 1:1, 1:3, 0:1, on a dry weight basis) under mesophilic temperatures (30-40 deg. C), constant moisture content (MC, 50%) and continuous aeration (16 l min-1) during 56 days. Fuel oil concentration and physico-chemical changes in the composting reactors were monitored following standard procedures. The highest (59%) and the lowest (35%) contaminant removals were observed in the contaminated sawdust and contaminated soil reactors after 56 days of treatment, respectively. The S:SD ratio, time of treatment and interaction between both factors had a significant effect (p < 0.050) on the contaminant removal. The results of this research indicate that bioremediation of an aged contaminated mixture of desert mining soil and sawdust with fuel oil is feasible. This study recommends a S:SD ratio 1:3 and a correct

  11. Microbial bioremediation of Uranium: an overview

    International Nuclear Information System (INIS)

    Uranium contamination is a worldwide problem. Preventing uranium contamination in the environment is quite challenging and requires a thorough understanding of the microbiological, ecological and biogeochemical features of the contaminated sites. Bioremediation of uranium is largely dependent on reducing its bioavailability in the environment. In situ bioremediation of uranium by microbial processes has been shown to be effective for immobilizing uranium in contaminated sites. Such microbial processes are important components of biogeochemical cycles and regulate the mobility and fate of uranium in the environment. It is therefore vital to advance our understanding of the uranium-microbe interactions to develop suitable bioremediation strategies for uranium contaminated sites. This article focuses on the fundamental mechanisms adopted by various microbes to mitigate uranium toxicity which could be utilized for developing various approaches for uranium bioremediation. (author)

  12. Petroleum biodegradation and oil spill bioremediation

    International Nuclear Information System (INIS)

    Hydrocarbon-utilizing microorganisms are ubiquitously distributed in the marine environment following oil spills. These microorganisms naturally biodegrade numerous contaminating petroleum hydrocarbons, thereby cleansing the oceans of oil pullutants. Bioremediation, which is accomplished by adding exogenous microbial populations or stimulating indigenous ones, attempts to raise the rates of degradation found naturally to significantly higher rates. Seeding with oil degraders has not been demonstrated to be effective, but addition of nitrogenous fertilizers has been shown to increase rates of petroleum biodegradation. In the case of the Exxon Valdez spill, the largest and most thoroughly studied application of bioremediation, the application of fertilizer (slow release or oleophilic) increased rates of biodegradation 3-5 times. Because of the patchiness of oil, an internally conserved compound, hopane, was critical for demonstrating the efficacy of bioremediation. Multiple regression models showed that the effectiveness of bioremediation depended upon the amount of nitrogen delivered, the concentration of oil, and time. (author)

  13. An evaluation of in-situ bioremediation processes

    International Nuclear Information System (INIS)

    Remediation of petroleum hydrocarbons in groundwater was the primary focus in the initial application of in-situ bioremediation which, from its development in the 1970s, has grown to become one of the most promising technologies for the degradation of a wide variety of organic contaminants. The degradation of contaminants in subsurface soils is the current new focus of the technology. While the need for improvements in the technology does exist, the indisputable fact remains that this technology is by far the least expensive and that it has the capability to provide long term reduced levels of contaminants or long term complete remediation of contaminated sites. The aim of this paper is to disclose pertinent information related to current conditions and current feelings in the area of new research, novel applications, new government regulations, and an overview of new topics on the horizon that relate to the overall technology

  14. An evaluation of in-situ bioremediation processes

    Energy Technology Data Exchange (ETDEWEB)

    Cole, L.L. [Prairie View A and M Univ., TX (United States); Rashidi, M. [Lawrence Livermore National Lab., CA (United States). Environmental Programs Directorate

    1996-08-01

    Remediation of petroleum hydrocarbons in groundwater was the primary focus in the initial application of in-situ bioremediation which, from its development in the 1970s, has grown to become one of the most promising technologies for the degradation of a wide variety of organic contaminants. The degradation of contaminants in subsurface soils is the current new focus of the technology. While the need for improvements in the technology does exist, the indisputable fact remains that this technology is by far the least expensive and that it has the capability to provide long term reduced levels of contaminants or long term complete remediation of contaminated sites. The aim of this paper is to disclose pertinent information related to current conditions and current feelings in the area of new research, novel applications, new government regulations, and an overview of new topics on the horizon that relate to the overall technology.

  15. BIOREMEDIATION TREATABILITY TRIALS USING NUTRIENT APPLICATION TO ENHANCE CLEANUP OF OIL-CONTAMINATED SHORELINE

    Science.gov (United States)

    On March 24, 1989, the supertanker Exxon Valdez went aground in Prince William Sound, Alaska, releasing approximately 11 million gallons of Prudhoe Bay crude oil. he spilled oil spread over, an estimated 350 miles of shoreline. he oil settled into the beach gravel and on rock sur...

  16. Solvent enhanced bioremediation of weathered oil contamination

    International Nuclear Information System (INIS)

    This paper describes a novel bioremediation process for the treatment of oil spills on land. The method was developed specifically to deal with long term oil contamination where the volatile fractions have evaporated leaving the more recalcitrant fractions. A model system of sand and Kuwaiti crude oil was used to test the system. A combined treatment which introduced an additional solvent component was found to enhance mobility and availability of oil, enhancing bioremediation. (author)

  17. A novel bioremediation strategy for petroleum hydrocarbon pollutants using salt tolerant Corynebacterium variabile HRJ4 and biochar.

    Science.gov (United States)

    Zhang, Hairong; Tang, Jingchun; Wang, Lin; Liu, Juncheng; Gurav, Ranjit Gajanan; Sun, Kejing

    2016-09-01

    The present work aimed to develop a novel strategy to bioremediate the petroleum hydrocarbon contaminants in the environment. Salt tolerant bacterium was isolated from Dagang oilfield, China and identified as Corynebacterium variabile HRJ4 based on 16S rRNA gene sequence analysis. The bacterium had a high salt tolerant capability and biochar was developed as carrier for the bacterium. The bacteria with biochar were most effective in degradation of n-alkanes (C16, C18, C19, C26, C28) and polycyclic aromatic hydrocarbons (NAP, PYR) mixture. The result demonstrated that immobilization of C. variabile HRJ4 with biochar showed higher degradation of total petroleum hydrocarbons (THPs) up to 78.9% after 7-day of incubation as compared to the free leaving bacteria. The approach of this study will be helpful in clean-up of petroleum-contamination in the environments through bioremediation process using eco-friendly and cost effective materials like biochar. PMID:27593267

  18. Enhancing in situ bioremediation with pneumatic fracturing

    International Nuclear Information System (INIS)

    A major technical obstacle affecting the application of in situ bioremediation is the effective distribution of nutrients to the subsurface media. Pneumatic fracturing can increase the permeability of subsurface formations through the injection of high pressure air to create horizontal fracture planes, thus enhancing macro-scale mass-transfer processes. Pneumatic fracturing technology was demonstrated at two field sites at Tinker Air Force Base, Oklahoma City, Oklahoma. Tests were performed to increase the permeability for more effective bioventing, and evaluated the potential to increase permeability and recovery of free product in low permeability soils consisting of fine grain silts, clays, and sedimentary rock. Pneumatic fracturing significantly improved formation permeability by enhancing secondary permeability and by promoting removal of excess soil moisture from the unsaturated zone. Postfracture airflows were 500% to 1,700% higher than prefracture airflows for specific fractured intervals in the formation. This corresponds to an average prefracturing permeability of 0.017 Darcy, increasing to an average of 0.32 Darcy after fracturing. Pneumatic fracturing also increased free-product recovery rates of number 2 fuel from an average of 587 L (155 gal) per month before fracturing to 1,647 L (435 gal) per month after fracturing

  19. Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils.

    Directory of Open Access Journals (Sweden)

    Etienne Yergeau

    Full Text Available As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorganisms and functional genes are abundant and active during hydrocarbon degradation at cold temperature? To answer this question, we sequenced the soil metagenome of an ongoing bioremediation project in Alert, Canada through a time course. We also used reverse-transcriptase real-time PCR (RT-qPCR to quantify the expression of several hydrocarbon-degrading genes. Pseudomonas species appeared as the most abundant organisms in Alert soils right after contamination with diesel and excavation (t = 0 and one month after the start of the bioremediation treatment (t = 1m, when degradation rates were at their highest, but decreased after one year (t = 1y, when residual soil hydrocarbons were almost depleted. This trend was also reflected in hydrocarbon degrading genes, which were mainly affiliated with Gammaproteobacteria at t = 0 and t = 1m and with Alphaproteobacteria and Actinobacteria at t = 1y. RT-qPCR assays confirmed that Pseudomonas and Rhodococcus species actively expressed hydrocarbon degradation genes in Arctic biopile soils. Taken together, these results indicated that biopile treatment leads to major shifts in soil microbial communities, favoring aerobic bacteria that can degrade hydrocarbons.

  20. Advanced Remediation Technologies

    International Nuclear Information System (INIS)

    The United States Department of Energy (DOE), Office of Environmental Management (EM) is responsible for the cleanup of nation's nuclear weapons program legacy wastes, along with waste associated with nuclear energy programs and research. The EM cleanup efforts continue to progress, however the cleanup continues to be technologically complex, heavily regulated, long-term; and the effort also has a high life cycle cost estimate (LCCE) effort. Over the past few years, the EM program has undergone several changes to accelerate its cleanup efforts with varying degrees of success. This article will provide some insight into the Advanced Remediation Technologies (ART) projects that may enhance cleanup efforts and reduce life cycle costs. (authors)

  1. Radioactive Waste and Clean-up: Introduction

    International Nuclear Information System (INIS)

    The primary mission of the Radioactive Waste and Clean-up division is to propose, to develop and to evaluate solutions for a safe, acceptable and sustainable management of radioactive waste. The Radioactive Waste and Clean-up division programme consists in research, studies, development and demonstration aiming to realise the objective of Agenda 21 on sustainable development in the field of radioactive waste and rehabilitation on radioactively contaminated sites. Indeed, it participates in the realisation of an objective which is to ensure that radioactive wastes are safely managed, transported, stored and disposed of, with a view to protecting human health and the environment, within a wider framework of an interactive and integrated approach to radioactive waste management and safety. We believe that nuclear energy will be necessary for the sustainable development of mankind in the 21st century, but we well understand that it would not be maintained if it is not proven that within benefits of nuclear energy a better protection of the environment is included. Although the current waste management practices are both technically and from the environmental point of view adequate, efforts in relation of future power production and waste management technologies should be put on waste minimisation. Therefore, the new and innovative reactors, fuel cycle and waste management processes and installations should be designed so that the waste generation can be kept in minimum. In addition to the design, the installations should be operated so as to create less waste; consideration should be given e.g. to keeping water chemistry clean and other quality factors. SCK-CEN in general and the Radioactive Waste and Clean-up division in particular are present in international groups preparing the development of innovative nuclear reactors, as Generation 4 and INPRO. Because performance assessments are often black boxes for the public, demonstration is needed for the acceptation of

  2. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications.

    Science.gov (United States)

    Gill, R T; Harbottle, M J; Smith, J W N; Thornton, S F

    2014-07-01

    There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios. PMID:24875868

  3. Deploying in situ bioremediation at the Hanford Site

    International Nuclear Information System (INIS)

    An innovative in-situ bioremediation technology was developed by Pacific Northwest Laboratory (PNL) to destroy nitrate and carbon tetrachloride (CC14) in the Hanford ground water. The goal of this in-situ treatment process is to stimulate native microorganisms to degrade nitrate and CCl4. Nutrient solutions are distributed in the contaminated aquifer to create a biological treatment zone. This technology is being demonstrated at the US Department of Energy's Hanford Site to provide the design, operating, and cost information needed to assess its effectiveness in contaminated ground water. The process design and field operations for demonstration of this technology are influenced by the physical, chemical, and microbiological properties observed at the site. A description of the technology is presented including the well network design, nutrient injection equipment, and means for controlling the hydraulics and microbial reactions of the treatment process

  4. Effect of alternating bioremediation and electrokinetics on the remediation of n-hexadecane-contaminated soil

    Science.gov (United States)

    Wang, Sa; Guo, Shuhai; Li, Fengmei; Yang, Xuelian; Teng, Fei; Wang, Jianing

    2016-04-01

    This study demonstrated the highly efficient degradation of n-hexadecane in soil, realized by alternating bioremediation and electrokinetic technologies. Using an alternating technology instead of simultaneous application prevented competition between the processes that would lower their efficiency. For the consumption of the soil dissolved organic matter (DOM) necessary for bioremediation by electrokinetics, bioremediation was performed first. Because of the utilization and loss of the DOM and water-soluble ions by the microbial and electrokinetic processes, respectively, both of them were supplemented to provide a basic carbon resource, maintain a high electrical conductivity and produce a uniform distribution of ions. The moisture and bacteria were also supplemented. The optimal DOM supplement (20.5 mg·kg‑1 glucose; 80–90% of the total natural DOM content in the soil) was calculated to avoid competitive effects (between the DOM and n-hexadecane) and to prevent nutritional deficiency. The replenishment of the water-soluble ions maintained their content equal to their initial concentrations. The degradation rate of n-hexadecane was only 167.0 mg·kg‑1·d‑1 (1.9%, w/w) for the first 9 days in the treatments with bioremediation or electrokinetics alone, but this rate was realized throughout the whole process when the two technologies were alternated, with a degradation of 78.5% ± 2.0% for the n-hexadecane after 45 days of treatment.

  5. Efficacy of monitoring in situ bioremediation of fossil fuel using the Mesocosm system

    International Nuclear Information System (INIS)

    With in situ bioremediation applications being recommended frequently out of practical and economic necessity, cost-efficient and effective implementation strategies need to be developed and/or refined. At the same time, unequivocal approaches for demonstrating in situ bioremediation of target contaminants need to be established. Toward this end, the authors have developed and refined innovative in situ soil and groundwater bioremediation strategies on a pilot and full-scale, including monitoring approaches using stable carbon isotope biogeochemistry to assess progress during in situ bioremediation of fossil fuels (more specifically PAHs and BTEX). To evaluate rigorously and assess these technologies, the authors have initiated mesocosm studies. The Mesocosm system is installed at the Process Engineering Facility, US Army Aberdeen Proving Ground, Maryland. This system integrates two technologies: a modification of the proven UVB technology, which creates a vertical groundwater circulation, and an in situ bioreactor. Incorporated into this system are four soil columns of approximately two meter height with a diameter of 60 cm, allowing them to model and test the efficacy of monitoring and biodegradation in a controlled environment. Parallel field studies currently at two sites will comparatively define the fate and effect of parent compounds and biotransformation products for mass balances (by monitoring natural abundance stable carbon isotope ratios 13C/12C using a GC/IRMS, the fate of organic compounds can be measured)

  6. Microorganisms in heavy metal bioremediation: strategies for applying microbial-community engineering to remediate soils

    Directory of Open Access Journals (Sweden)

    Jennifer L. Wood

    2016-06-01

    Full Text Available The remediation of heavy-metal-contaminated soils is essential as heavy metals persist and do not degrade in the environment. Remediating heavy-metal-contaminated soils requires metals to be mobilized for extraction whilst, at the same time, employing strategies to avoid mobilized metals leaching into ground-water or aquatic systems. Phytoextraction is a bioremediation strategy that extracts heavy metals from soils by sequestration in plant tissues and is currently the predominant bioremediation strategy investigated for remediating heavy-metal-contaminated soils. Although the efficiency of phytoextraction remains a limiting feature of the technology, there are numerous reports that soil microorganisms can improve rates of heavy metal extraction.This review highlights the unique challenges faced when remediating heavy-metal-contaminated soils as compared to static aquatic systems and suggests new strategies for using microorganisms to improve phytoextraction. We compare how microorganisms are used in soil bioremediation (i.e. phytoextraction and water bioremediation processes, discussing how the engineering of microbial communities, used in water remediation, could be applied to phytoextraction. We briefly outline possible approaches for the engineering of soil communities to improve phytoextraction either by mobilizing metals in the rhizosphere of the plant or by promoting plant growth to increase the root-surface area available for uptake of heavy metals. We highlight the technological advances that make this research direction possible and how these technologies could be employed in future research.

  7. Enhancing aquifer cleanup with reinjection

    International Nuclear Information System (INIS)

    Injection of water or steam, with or without chemical surfactants, is a common petroleum industry technique to enhance product recovery. In the geothermal industry, reinjection (reinjection is used to mean the injection of ground water that was previously injected) of heat- depleted subsurface fluids is commonly used to maintain reservoir pressure, thus prolonging field productivity. The use reinjection in ground-water remediation projects allows for the application of both traditional production field management and a variety of additional enhancements to the cleanup process. Development of the ideas in this paper was stimulated by an initial suggestion by Dr. Jacob Bear (personal discussions, 1990--1991) that reinjected water might be heated to aid the desorption process

  8. HANFORD SITE RIVER CORRIDOR CLEANUP

    International Nuclear Information System (INIS)

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km2 Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal

  9. Bioremediation technologies for polluted seawater sampled after an oil-spill in Taranto Gulf (Italy): A comparison of biostimulation, bioaugmentation and use of a washing agent in microcosm studies.

    Science.gov (United States)

    Crisafi, F; Genovese, M; Smedile, F; Russo, D; Catalfamo, M; Yakimov, M; Giuliano, L; Denaro, R

    2016-05-15

    One of the main challenges of bioremediation is to define efficient protocols having a low environmental impact. We have investigated the effect of three treatments in oily-seawater after a real oil-spill occurred in the Gulf of Taranto (Italy). Biostimulation with inorganic nutrients allowed the biodegradation of the 73±2.4% of hydrocarbons, bioaugmentation with a selected hydrocarbonoclastic consortium consisting of Alcanivorax borkumensis, Alcanivorax dieselolei, Marinobacter hydrocarbonoclasticus, Cycloclasticus sp. 78-ME and Thalassolituus oleivorans degraded 79±3.2%, while the addition of nutrients and a washing agent has allowed the degradation of the 69±2.6%. On the other hand, microbial community was severely affected by the addition of the washing agent and the same product seemed to inhibit the growth of the majority of strains composing the selected consortium at the tested concentration. The use of dispersant should be accurately evaluated also considering its effect on the principal actors of biodegradation. PMID:26992747

  10. Bio-remediation of marine oil spills; Bioremediation des pollutions maritimes petrolieres

    Energy Technology Data Exchange (ETDEWEB)

    Prince, R.C. [ExxonMobil Research and Engineering Co., Annandale, NJ (United States); Lessard, R.R.; Clark, J.R. [ExxonMobil Research and Engineering Co., Fairfax, VA (United States)

    2003-08-01

    In the long run, biodegradation is the eventual fate of oil spilled at sea that cannot be collected or burnt. Stimulating this biodegradation is thus an important option for maximizing the removal of oil from the environment, and minimizing the environmental impact of a spill. For handling oil while it is still floating on the sea surface, dispersants are advantageous because they maximize the surface area available for microbial attack, and stimulate biodegradation. If oil beaches on a shoreline, it is likely that biodegradation is limited by nutrients such as nitrogen and phosphorus, and the careful application of fertilizers stimulates the biodegradation of residual beached oil. These approaches epitomize modern environmental technologies; working with natural phenomena to achieve a more rapid clean-up while minimizing undesirable environmental impacts. (authors)

  11. Large Scale Bioremediation of Petroleum Hydrocarbon Contaminated Waste at Various Installations of ONGC. India: Case Studies

    Directory of Open Access Journals (Sweden)

    Ajoy Kumar Mandal

    2014-07-01

    Full Text Available In situ and ex situ bioremediation of oil contaminated effluent pits, sludge pits, oil spilled land and tank bottom, and effluent treatment plant (ETP oily sludge was carried out at Ankleshwar, Mehsana, Assam and Cauvery Asset of Oil and Natural Gas Corporation Limited (ONGC, India. The types of contaminant were heavy paraffinic, asphaltic and light crude oil and emulsified oily sludge /contaminated soil. An indigenous microbial consortium was developed by assembling four species of bacteria, isolated from various oil contaminated sites of India, which could biodegrade different fractions of total petroleum hydrocarbon (TPH of the oily waste to environment friendly end products. The said consortium was on a large scale field applied to the above oil installations and it successfully bioremediated 30,706 tonnes of different types of oily waste. In 65 case studies of different batch size of in situ and ex situ bioremediation processes, the initial TPH content varying from 69.20 to 662.70 g/kg of oily waste has been biodegraded to 5.30 – 16.90 g/kg of oily waste in a range of 2 to 33 months. Biodegradation rate varied in the range of 0.22 – 1.10 Kg TPH /day/m2 area due to the climatic condition of the treatment zone and the type of waste treated. The bioremediated soil was non-toxic and natural vegetation was found to be grown on the same ground. Successful eco-restoration of one large effluent pit of 26,000 m2 area was carried out by cultivation of local fish species after completion of bioremediation. Bioremediation technology has helped ONGC with the management of their hazardous oily wastes in an environment friendly manner. DOI: http://dx.doi.org/10.5755/j01.erem.68.2.5632

  12. In situ bioremediation strategies for oiled shoreline environments

    International Nuclear Information System (INIS)

    Despite advances in preventative measures, recent events have demonstrated that accidental oil spills at sea will still occur. While physical (e.g. booms and skimmers) and chemical (e.g. chemical dispersants) methods have been developed to recover and/or disperse oil spilled at sea, they are not 100% effective and are frequently limited by operational constraints attributed to sea state and/or nature of the contamination. As a result, oil spills frequently impact shoreline environments. In situ bioremediation, the addition of substances or modification of habitat at contaminated sites to accelerate natural biodegradation processes, is now recognised as an alternative spill response technology of the remediation of these sites. Recommended for use following the physical removal of bulk oil, this treatment strategy has an operational advantage in that it breaks down and/or removes the residual contamination in place. Laboratory experiments and field trials have demonstrated the feasibility and success of bioremediation strategies such as nutrient enrichment to enhance bacterial degradation of oil on cobble, sand beach and salt marsh environments. With improved knowledge of the factors that limit natural oil degradation rates, the feasibility of other strategies such as phytoremediation, enhanced oil-mineral fines interaction and the addition of oxygen or alternative electron acceptors are now being evaluated. Laboratory and field test protocols are being refined for the selection of effective bioremediation agents and methods of application. It is recommended that future operational guidelines include real time product efficacy test and environmental effects monitoring programs. Termination of treatment should be implemented when: 1) it is no longer effective; 2) the oil has degraded to acceptable biologically benign concentrations; or 3) toxicity due to the treatment is increasing. (Author)

  13. Technical Basis for Assessing Uranium Bioremediation Performance

    Energy Technology Data Exchange (ETDEWEB)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N’Guessan

    2008-04-01

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.

  14. Bioremediation of Petroleum Hydrocarbon Contaminated Sites

    Energy Technology Data Exchange (ETDEWEB)

    Fallgren, Paul

    2009-03-30

    Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop a biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of

  15. Technical Basis for Assessing Uranium Bioremediation Performance

    International Nuclear Information System (INIS)

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation

  16. Natural and accelerated bioremediation research program plan

    International Nuclear Information System (INIS)

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE's Office of Environmental Management (EM). The program builds on OHER's tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER's and Office of Energy Research's (OER's) commitment to supporting DOE's environmental management mission and the belief that bioremediation is an important part of the solution to DOE's environmental problems

  17. Strategies for chromium bioremediation of tannery effluent.

    Science.gov (United States)

    Garg, Satyendra Kumar; Tripathi, Manikant; Srinath, Thiruneelakantan

    2012-01-01

    Bioremediation offers the possibility of using living organisms (bacteria, fungi, algae,or plants), but primarily microorganisms, to degrade or remove environmental contaminants, and transform them into nontoxic or less-toxic forms. The major advantages of bioremediation over conventional physicochemical and biological treatment methods include low cost, good efficiency, minimization of chemicals, reduced quantity of secondary sludge, regeneration of cell biomass, and the possibility of recover-ing pollutant metals. Leather industries, which extensively employ chromium compounds in the tanning process, discharge spent-chromium-laden effluent into nearby water bodies. Worldwide, chromium is known to be one of the most common inorganic contaminants of groundwater at pollutant hazardous sites. Hexavalent chromium poses a health risk to all forms of life. Bioremediation of chromium extant in tannery waste involves different strategies that include biosorption, bioaccumulation,bioreduction, and immobilization of biomaterial(s). Biosorption is a nondirected physiochemical interaction that occurs between metal species and the cellular components of biological species. It is metabolism-dependent when living biomass is employed, and metabolism-independent in dead cell biomass. Dead cell biomass is much more effective than living cell biomass at biosorping heavy metals, including chromium. Bioaccumulation is a metabolically active process in living organisms that works through adsorption, intracellular accumulation, and bioprecipitation mechanisms. In bioreduction processes, microorganisms alter the oxidation/reduction state of toxic metals through direct or indirect biological and chemical process(es).Bioreduction of Cr6+ to Cr3+ not only decreases the chromium toxicity to living organisms, but also helps precipitate chromium at a neutral pH for further physical removal,thus offering promise as a bioremediation strategy. However, biosorption, bioaccumulation, and

  18. Options for improving hazardous waste cleanups using risk-based criteria

    International Nuclear Information System (INIS)

    This paper explores how risk- and technology-based criteria are currently used in the RCRA and CERCLA cleanup programs. It identifies ways in which risk could be further incorporated into RCRA and CERCLA cleanup requirements and the implications of risk-based approaches. The more universal use of risk assessment as embodied in the risk communication and risk improvement bills before Congress is not addressed. Incorporating risk into the laws and regulations governing hazardous waste cleanup, will allow the use of the best scientific information available to further the goal of environmental protection in the United States while containing costs. and may help set an example for other countries that may be developing cleanup programs, thereby contributing to enhanced global environmental management

  19. NHC's contribution to cleanup of the Hanford Site

    International Nuclear Information System (INIS)

    The one billion dollars per year Project Hanford Management Contract (PHMC), managed by Fluor Daniel Hanford, calls for cleanup of the Hanford Site for the Department of Energy. Project Hanford comprises four major subprojects, each managed by a different major contractor. Numatec Hanford Corporation (NHC) is a fifth major subcontractor which provides energy and technology to each of the Hanford projects. NHC draws on the experience and capabilities of its parent companies, COGEMA and SGN, and relies on local support from its sister Company in Richland, COGEMA Engineering Corporation, to bring the best commercial practices and new technology to the Project

  20. HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY

    Energy Technology Data Exchange (ETDEWEB)

    BERGMAN TB

    2011-01-14

    Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the {approx}200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of the River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were

  1. Use of membrane bioreactors for the bioremediation of groundwater polluted by chlorinated compounds

    OpenAIRE

    Manigas, Luisa

    2008-01-01

    The aim of this experimental work has been the application of a new polluted waters treatment technology for the selection of a bacterial population capable of bioremediating a synthetic groundwater polluted by four different chlorinated compounds. The innovative technology applied in this study was the biological treatment system known as MSBR (Membrane Sequencing Bioreactor), which consists of a Sequencing Batch Reactor (SBR) coupled to a membrane module for the filtration of the biological...

  2. Enhance soil bioremediation with electric fields

    International Nuclear Information System (INIS)

    Electrokinetic remediation is an in situ remediation technique that uses low-level direct-current electric potential differences (on the order of volts per centimeter) or an electric current (on the order of milliamps per square centimeter of cross-sectional area between electrodes) applied across a soil mass by electrodes placed in an open- or closed-flow arrangement. In electrokinetic methods, the groundwater in the boreholes or an externally supplied fluid (processing fluid) is used as the conductive medium. Electrokinetic remediation technology for metal extraction is expected to decrease the cost of remediating contaminated soils to the lower end of the $100--$1,000/m3 range. This would be a significant savings in the $350 billion hazardous waste site cleanup and remediation market. The environmental restoration cost for the mixed (radioactive)-waste market is separately estimated to be $65 billion. The potential of the electrokinetic remediation technique in remediating soils contaminated with radioactive mixed waste using depolarization agents and complexing agents is noteworthy. The authors have removed uranyl ions from spiked kaolinite using the technique

  3. Characterization, monitoring, and sensor technology catalogue

    International Nuclear Information System (INIS)

    This document represents a summary of 58 technologies that are being developed by the Department of Energy's (DOE's) Office of Science and Technology (OST) to provide site, waste, and process characterization and monitoring solutions to the DOE weapons complex. The information was compiled to provide performance data on OST-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and preparing plans and compliance documents for DOE cleanup and waste management programs. The information may also be used to identify opportunities for partnering and commercialization with industry, DOE laboratories, other federal and state agencies, and the academic community. Each technology is featured in a format that provides: (1) a description, (2) technical performance data, (3) applicability, (4) development status, (5) regulatory considerations, (6) potential commercial applications, (7) intellectual property, and (8) points-of-contact. Technologies are categorized into the following areas: (1) Bioremediation Monitoring, (2) Decontamination and Decommissioning, (3) Field Analytical Laboratories, (4) Geophysical and Hydrologic Characterization, (5) Hazardous Inorganic Contaminant Analysis, (6) Hazardous Organic Contaminant Analysis, (7) Mixed Waste, (8) Radioactive Contaminant Analysis, (9) Remote Sensing,(10)Sampling and Drilling, (11) Statistically Guided Sampling, and (12) Tank Waste

  4. Characterization, monitoring, and sensor technology catalogue

    Energy Technology Data Exchange (ETDEWEB)

    Matalucci, R.V. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Esparza-Baca, C.; Jimenez, R.D. [Applied Sciences Laboratory, Inc., Albuquerque, NM (United States)

    1995-12-01

    This document represents a summary of 58 technologies that are being developed by the Department of Energy`s (DOE`s) Office of Science and Technology (OST) to provide site, waste, and process characterization and monitoring solutions to the DOE weapons complex. The information was compiled to provide performance data on OST-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and preparing plans and compliance documents for DOE cleanup and waste management programs. The information may also be used to identify opportunities for partnering and commercialization with industry, DOE laboratories, other federal and state agencies, and the academic community. Each technology is featured in a format that provides: (1) a description, (2) technical performance data, (3) applicability, (4) development status, (5) regulatory considerations, (6) potential commercial applications, (7) intellectual property, and (8) points-of-contact. Technologies are categorized into the following areas: (1) Bioremediation Monitoring, (2) Decontamination and Decommissioning, (3) Field Analytical Laboratories, (4) Geophysical and Hydrologic Characterization, (5) Hazardous Inorganic Contaminant Analysis, (6) Hazardous Organic Contaminant Analysis, (7) Mixed Waste, (8) Radioactive Contaminant Analysis, (9) Remote Sensing,(10)Sampling and Drilling, (11) Statistically Guided Sampling, and (12) Tank Waste.

  5. Particulate hot gas stream cleanup technical issues

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This is the tenth in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic bed filter elements. Task I is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task I during the past quarter, analyses were performed on a particulate sample from the Transport Reactor Demonstration Unit (TRDU) located at the University of North Dakota Energy and Environmental Research Center. Analyses are in progress on ash samples from the Advanced Particulate Filter (APF) at the Pressurized Fluidized-Bed Combustor (PFBC) that was in operation at Tidd and ash samples from the Pressurized Circulating Fluid Bed (PCFB) system located at Karhula, Finland. A site visit was made to the Power Systems Development Facility (PSDF) to collect ash samples from the filter vessel and to document the condition of the filter vessel with still photographs and videotape. Particulate samples obtained during this visit are currently being analyzed for entry into the Hot Gas Cleanup (HGCU) data base. Preparations are being made for a review meeting on ash bridging to be held at Department of Energy Federal Energy Technology Center - Morgantown (DOE/FETC-MGN) in the near future. Most work on Task 2 was on hold pending receipt of additional funds; however, creep testing of Schumacher FT20 continued. The creep tests on Schumacher FT20 specimens just recently ended and data analysis and comparisons to other data are ongoing. A summary and analysis of these creep results will be sent out shortly. Creep

  6. In situ bioremediation: Confined aquifer contaminated with MGP wastes

    International Nuclear Information System (INIS)

    A field-scale pilot study was conducted at a former manufactured gas plant (MGP) site to evaluate the feasibility of using in situ bioremediation to reduce the concentrations of organic contaminants in the groundwater. The field-scale in situ bioremediation pilot study is being conducted at the Peoples Natural Gas site in Dubuque, Iowa. The study area was a 3- to 4-m-thick confined silty sand aquifer. The study began with injection of a bromide tracer slug, followed by continuous injection of oxygenated tap water. The injected water was oxygenated using gas-transfer technology for air removal/oxygen dissolution. Long-term trends in groundwater quality have been monitored in downgradient wells to evaluate changes resulting from biological activity. Preinjection measurements of the hydraulic conductivity of the aquifer near the injection well were conducted for comparison with future post-injection testing to quantify potential irreversible fouling of the aquifer by inorganic precipitates of biological fouling. The injection of the oxygenated water began June 7, 1994, and is expected to continue for at least 1 year. Preliminary results indicate that the injected oxygen has been consumed in situ

  7. Increased leukemia risk in Chernobyl cleanup workers

    Science.gov (United States)

    A new study found a significantly elevated risk for chronic lymphocytic leukemia among workers who were engaged in recovery and clean-up activities following the Chernobyl power plant accident in 1986.

  8. Nuclear radiation cleanup and uranium prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Mariella, Jr., Raymond P.; Dardenne, Yves M.

    2016-02-02

    Apparatus, systems, and methods for nuclear radiation cleanup and uranium prospecting include the steps of identifying an area; collecting samples; sample preparation; identification, assay, and analysis; and relating the samples to the area.

  9. Assessment, Cleanup and Redevelopment Exchange System (ACRES)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Assessment, Cleanup and Redevelopment Exchange System (ACRES) is an online database for Brownfields Grantees to electronically submit data directly to EPA.

  10. BIOREMEDIATION AT WOOD-PRESERVING SITES

    Science.gov (United States)

    The removal of organic compounds from ground water during bioremediation at wood-preserving sites is a function of the stoichiometric demand for electron acceptors (oxygen, nitrate, and sulfate) to metabolize the organic contaminants and the supply of the electron acceptors in th...

  11. Bioremediation effectiveness following the Exxon Valdez spill

    International Nuclear Information System (INIS)

    Statistical analyses of changes in the composition of oil residues remaining on beaches following the Exxon Valdez oil spill in Prince William Sound have demonstrated that bioremediation was effective in accelerating oil removal. Extensive data were obtained in a joint bioremediation monitoring program conducted during the summer of 1990 by the US Environmental Protection Agency (EPA), the State of Alaska, and Exxon. Composition changes in the oil relative to hopane, a trace oil component very resistant to biodegradation, provided the basis for accurately determining rates and extent of biodegradation. Results show that on fertilized beaches the rate of oil biodegradation was from three to more than five times faster than on adjacent, unfertilized control beaches. Further, most hydrocarbon components of the oil were biodegraded simultaneously, although at different rates. On one beach studied, about 60 percent of the total hydrocarbons detectable by gas chromatograph and 45 percent of the total PAH were biodegraded in three months. Bioremediation effectiveness was determined to depend primarily on the amount of nitrogen fertilizer delivered to the sediment per unit of oil present, time, and the extent of oil degradation prior to fertilizer application. The results suggest ways to improve future bioremediation application strategies and monitoring

  12. Bioremediation: Effectiveness in reducing the ecological impact

    International Nuclear Information System (INIS)

    Bioremediation becomes an important technique in oil spill combat programmes. The purpose is to shorten the exposure time of biota to oil compounds, in order to reduce long term environmental effects. Although bioremediation products have the advantage of stimulating the natural capacity to degrade oil, there are some limitations to be considered. Application as a technique for first emergency actions following an oil spill is not effective, and can therefore be no alternative for dispersion or mechanical removal of floating or freshly stranded oil slicks. Acute toxic effects are related to the short term exposure to unweathered oils. An immediate removal of oil is necessary to reduce the extent of the environmental impact of an oil spill. Physical processes (transport, dilution and evaporation) are determining the initial fate of environmentally released oil. Biodegradation only becomes important as a process of removing oil in the next phase. It is the only effective way to further reduce the concentration of oil that is left in (intertidal) coastal areas. Bioremediation thus reduces the duration of the environmental impact of an oil spill. This is especially important in ecosystems with a low recovery potential (e.g., salt marshes, rocky shores). The experimental evaluation of bioremediation products is mainly based on the capacity to reduce fresh oil and the acute toxicity of the product itself, rather than on the capacity to enhance the further reduction of weathered oil and the toxicological consequences of higher release rates of intermediate metabolites produced during the biotransformation processes

  13. Rocky Flats Cleanup Agreement implementation successes and challenges

    International Nuclear Information System (INIS)

    On July 19, 1996 the US Department of Energy (DOE), State of Colorado (CDPHE), and US Environmental Protection Agency (EPA) entered into an agreement called the Rocky Flats Cleanup Agreement (RFCA) for the cleanup and closure of the Rocky Flats Environmental Technology Site (RFETS or Rocky Flats). Major elements of the agreement include: an Integrated Site-Wide Baseline; up to twelve significant enforceable milestones per year; agreed upon soil and water action levels and standards for cleanup; open space as the likely foreseeable land use; the plutonium and TRU waste removed by 2015; streamlined regulatory process; agreement with the Defense Nuclear Facilities Safety Board (DNFSB) to coordinate activities; and a risk reduction focus. Successful implementation of RFCA requires a substantial effort by the parties to change their way of thinking about RFETS and meet the deliverables and commitments. Substantial progress toward Site closure through the implementation of RFCA has been accomplished in the short time since the signing, yet much remains to be done. Much can be learned from the Rocky Flats experience by other facilities in similar situations

  14. Bioavailability: implications for science/cleanup policy

    Energy Technology Data Exchange (ETDEWEB)

    Denit, Jeffery; Planicka, J. Gregory

    1998-12-01

    This paper examines the role of bioavailability in risk assessment and cleanup decisions. Bioavailability refers to how chemicals ''behave'' and their ''availability'' to interact with living organisms. Bioavailability has significant implications for exposure risks, cleanup goals, and site costs. Risk to human health and the environment is directly tied to the bioavailability of the chemicals of concern.

  15. The use of remote temperature measurement for a bio-remediation pilot project in Cambridge Bay, Nunavut

    Energy Technology Data Exchange (ETDEWEB)

    McCullogh, R.W. [Jacques Whitford Environment Ltd., Dartmouth, NS (Canada); Burkill, R. [Transport Canada, Ottawa, ON (Canada)

    2001-07-01

    Several remote sites in Arctic Canada are contaminated with diesel fuel from leaky storage tanks. Soil remediation in these permafrost areas is expensive and time consuming. A study was conducted at the Cambridge Bay Transmitter site to develop a soil treatment method that can be used to clean-up small volumes of contaminated soils at sites across the Arctic with similar climates and geology. Bioremediation is generally an effective way to treat contaminated soils, but ambient temperature is the main limiting factor associated with bioremediation of hydrocarbon impacted soil in Arctic environments. As temperatures approach 5 degrees C, the rates of microbial activity are very much reduced. This study examined the temperature of the soil to determine the performance of bioremediation processes and to optimize heat preservation. A series of thermocouples were installed to monitor soil and ambient temperatures. The statistical data showing the temperature conditions at the site can be applied to other contaminated sites. This paper described the data logger installation, the available data and how it can be used to design and monitor remediation projects in the Arctic. 5 refs., 9 figs.

  16. Bioremediation of soils containing petroleum hydrocarbons, chlorinated phenols, and polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Bench-scale treatability investigations, pilot-scale and full-scale bioremediation projects were conducted to evaluate Daramend trademark bioremediation of soils containing petroleum hydrocarbons, heavy oils, paraffins, chlorinated phenols and polycyclic aromatic hydrocarbons (PAHs). Bench-scale investigations were conducted using glass microcosms. Pilot-scale and full-scale demonstrations were conducted at industrial sites and included treatment of excavated soils and sediments in on-site cells constructed using synthetic liners and covered by steel/polyethylene structures as well as in-situ treatment. A total of approximately 5,000 tons of soil was treated. The soil treatment included organic soil amendments, specialized tillage/aeration apparatus, and strict control of soil moisture. The amendments are composed of naturally-occurring organic materials prepared to soil-specific particle size distributions, nutrient profiles, and nutrient-release kinetics. Bench-scale work indicated that in refinery soil containing high concentrations of heavy oils, extractable hydrocarbon concentrations could be rapidly reduced to industrial clean-up criteria, and that the hydrocarbons were fully mineralized with release of CO2

  17. A dual phased approach for bioremediation of petroleum contaminated soil and ground water

    International Nuclear Information System (INIS)

    A case study will be presented to demonstrate an effective and timely method of site remediation which yields complete contaminant destruction rather than the contaminant transfer that traditional ground water extraction and treatment techniques result in. By utilizing bioremediation at this site, the client was able to completely degrade the contamination beneath the property, and in the process avoid future liability from transfer of the contamination to another party (i.e. landfill) or phase (i.e. liquid to vapor through air stripping). The provisions of a real estate transaction involving a former service station site in Central Iowa stipulated that the site be remediated prior to title transfer. Previous Environmental Investigative activities revealed significant soil and ground water contamination resulting from over 50 years of diesel and gasoline fuel storage and dispensing operations at the site. Microbial Environmental Services, Inc. (MES) utilized a dual phased bioremediation approach to meet regulatory clean-up guidelines in order for a timely property transfer to occur. To facilitate and expedite ground water remediation, contaminated soil was excavated and remediated via Advanced Biological Surface Treatment (ABST) techniques. ABST techniques are utilized by MES to treat excavated soil in closed cell to control emissions and treatment conditions. Following contaminant source removal, ground water was extracted and treated in a submerged, fixed film, flow through 1,000 gallon fixed film bioreactor at a rate of 2.5 gallons per minute

  18. The effect of bioremediation on the microbial populations of oiled beaches in Prince William Sound, Alaska

    International Nuclear Information System (INIS)

    Bioremediation, the stimulation of the natural process of biodegradation, played an important role in the cleanup of the oil spill from the Exxon Valdez in Prince William Sound, Alaska. Since there were already substantial indigenous populations of oil-degrading microbes in the area, it was apparent that degradation was likely to be nutrient - not microbial - limited. Bioremediation therefore involved the application of carefully selected fertilizers to provide assimilable nitrogen and phosphorus to the indigenous organisms, with the intent to stimulate their activity and enhance their numbers. The authors show here that the indigenous microbial populations were indeed substantially increased, throughout the sound, approximately one month after wide-spread fertilizer applications in both 1989 and 1990. Furthermore, while oil-degrading bacteria made up a significant fraction of the microbial populations on contaminated beaches in September and October 1989, they had declined to less than 1 percent by the summer of 1990, suggesting that the microbial populations on the shorelines were returning to their prespill conditions

  19. Field evaluations of marine oil spill bioremediation.

    Science.gov (United States)

    Swannell, R P; Lee, K; McDonagh, M

    1996-06-01

    Bioremediation is defined as the act of adding or improving the availability of materials (e.g., nutrients, microorganisms, or oxygen) to contaminated environments to cause an acceleration of natural biodegradative processes. The results of field experiments and trials following actual spill incidents have been reviewed to evaluate the feasibility of this approach as a treatment for oil contamination in the marine environment. The ubiquity of oil-degrading microorganisms in the marine environment is well established, and research has demonstrated the capability of the indigenous microflora to degrade many components of petroleum shortly after exposure. Studies have identified numerous factors which affect the natural biodegradation rates of oil, such as the origin and concentration of oil, the availability of oil-degrading microorganisms, nutrient concentrations, oxygen levels, climatic conditions, and sediment characteristics. Bioremediation strategies based on the application of fertilizers have been shown to stimulate the biodegradation rates of oil in aerobic intertidal sediments such as sand and cobble. The ratio of oil loading to nitrogen concentration within the interstitial water has been identified to be the principal controlling factor influencing the success of this bioremediation strategy. However, the need for the seeding of natural environments with hydrocarbon-degrading bacteria has not been clearly demonstrated under natural environmental conditions. It is suggested that bioremediation should now take its place among the many techniques available for the treatment of oil spills, although there is still a clear need to set operational limits for its use. On the basis of the available evidence, we have proposed preliminary operational guidelines for bioremediation on shoreline environments. PMID:8801437

  20. Proceedings of Japan-Germany Workshop of Bioremediation; Nichidoku bio remediation workshop hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-04

    This is a proceedings of Japan-Germany Workshop on Bioremediation held on December 4 and 5, 1995. The keynote lectures include `Environmental preservation using biotechnology` by Prof. Karube of University of Tokyo, and `Environmental technology in Germany: status, achievements, and problems` by Prof. R.D.Schmid of University of Stuttgart. In the oral session, 7 papers are presented in the microbiological aspects of bioremediation, 10 papers in the environmental monitoring, and 6 papers in the engineering aspects of bioremediation. This workshop was sponsored by the German Federal Ministry for Education, Science and Technology, New Energy and Industrial Technology Development Organization, and Research Institute of Innovative Technology for the Earth. According to the lecture by Prof. Karube, key technologies for the environmental preservation include biotechnologies, such as the culture of fine algae with high CO2 concentration resistant properties using a solar light condenser, production of effective substances from CO2, and production of organic fertilizer from the sediments of lakes and sea. 19 refs., 12 figs., 3 tabs.

  1. Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids.

    Science.gov (United States)

    Mosa, Kareem A; Saadoun, Ismail; Kumar, Kundan; Helmy, Mohamed; Dhankher, Om Parkash

    2016-01-01

    Global mechanization, urbanization, and various natural processes have led to the increased release of toxic compounds into the biosphere. These hazardous toxic pollutants include a variety of organic and inorganic compounds, which pose a serious threat to the ecosystem. The contamination of soil and water are the major environmental concerns in the present scenario. This leads to a greater need for remediation of contaminated soils and water with suitable approaches and mechanisms. The conventional remediation of contaminated sites commonly involves the physical removal of contaminants, and their disposition. Physical remediation strategies are expensive, non-specific and often make the soil unsuitable for agriculture and other uses by disturbing the microenvironment. Owing to these concerns, there has been increased interest in eco-friendly and sustainable approaches such as bioremediation, phytoremediation and rhizoremediation for the cleanup of contaminated sites. This review lays particular emphasis on biotechnological approaches and strategies for heavy metal and metalloid containment removal from the environment, highlighting the advances and implications of bioremediation and phytoremediation as well as their utilization in cleaning-up toxic pollutants from contaminated environments. PMID:27014323

  2. Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids

    Directory of Open Access Journals (Sweden)

    Kareem A. Mosa

    2016-03-01

    Full Text Available Global mechanization, urbanization and various natural processes have led to the increased release of toxic compounds into the biosphere. These hazardous toxic pollutants include a variety of organic and inorganic compounds, which pose a serious threat to the ecosystem. The contamination of soil and water are the major environmental concerns in the present scenario. This leads to a greater need for remediation of contaminated soils and water with suitable approaches and mechanisms. The conventional remediation of contaminated sites commonly involves the physical removal of contaminants, and their disposition. Physical remediation strategies are expensive, non-specific and often make the soil unsuitable for agriculture and other uses by disturbing the microenvironment. Owing to these concerns, there has been increased interest in eco-friendly and sustainable approaches such as bioremediation, phytoremediation and rhizomediation for the cleanup of contaminated sites. This review lays particular emphasis on biotechnological approaches and strategies for heavy metal and metalloid containment removal from the environment, highlighting the advances and implications of bioremediation and phytoremediation as well as their utilization in cleaning-up toxic pollutants from contaminated environments.

  3. Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids

    Science.gov (United States)

    Mosa, Kareem A.; Saadoun, Ismail; Kumar, Kundan; Helmy, Mohamed; Dhankher, Om Parkash

    2016-01-01

    Global mechanization, urbanization, and various natural processes have led to the increased release of toxic compounds into the biosphere. These hazardous toxic pollutants include a variety of organic and inorganic compounds, which pose a serious threat to the ecosystem. The contamination of soil and water are the major environmental concerns in the present scenario. This leads to a greater need for remediation of contaminated soils and water with suitable approaches and mechanisms. The conventional remediation of contaminated sites commonly involves the physical removal of contaminants, and their disposition. Physical remediation strategies are expensive, non-specific and often make the soil unsuitable for agriculture and other uses by disturbing the microenvironment. Owing to these concerns, there has been increased interest in eco-friendly and sustainable approaches such as bioremediation, phytoremediation and rhizoremediation for the cleanup of contaminated sites. This review lays particular emphasis on biotechnological approaches and strategies for heavy metal and metalloid containment removal from the environment, highlighting the advances and implications of bioremediation and phytoremediation as well as their utilization in cleaning-up toxic pollutants from contaminated environments. PMID:27014323

  4. A review on slurry bioreactors for bioremediation of soils and sediments

    Directory of Open Access Journals (Sweden)

    Poggi-Varaldo Héctor M

    2008-02-01

    Full Text Available Abstract The aim of this work is to present a critical review on slurry bioreactors (SB and their application to bioremediation of soils and sediments polluted with recalcitrant and toxic compounds. The scope of the review encompasses the following subjects: (i process fundamentals of SB and analysis of advantages and disadvantages; (ii the most recent applications of SB to laboratory scale and commercial scale soil bioremediation, with a focus on pesticides, explosives, polynuclear aromatic hydrocarbons, and chlorinated organic pollutants; (iii trends on the use of surfactants to improve availability of contaminants and supplementation with degradable carbon sources to enhance cometabolism of pollutants; (iv recent findings on the utilization of electron acceptors other than oxygen; (v bioaugmentation and advances made on characterization of microbial communities of SB; (vi developments on ecotoxicity assays aimed at evaluating bioremediation efficiency of the process. From this review it can be concluded that SB is an effective ad situ and ex situ technology that can be used for bioremediation of problematic sites, such as those characterized by soils with high contents of clay and organic matter, by pollutants that are recalcitrant, toxic, and display hysteretic behavior, or when bioremediation should be accomplished in short times under the pressure and monitoring of environmental agencies and regulators. SB technology allows for the convenient manipulation and control of several environmental parameters that could lead to enhanced and faster treatment of polluted soils: nutrient N, P and organic carbon source (biostimulation, inocula (bioaugmentation, increased availability of pollutants by use of surfactants or inducing biosurfactant production inside the SB, etc. An interesting emerging area is the use of SB with simultaneous electron acceptors, which has demonstrated its usefulness for the bioremediation of soils polluted with

  5. Review of arctic Norwegian bioremediation research

    International Nuclear Information System (INIS)

    Traditional oil spill onshore clean up in arctic and sub-arctic parts of Norway involves methods that are both time-consuming, and labor intensive. The applicability of the methods depends both on the environmental constraints of the area, and the availability of man-power. If oil exploration is successful this will mean that the exploitation of oil moves north into the arctic regions of Norway. This area is remote, both in terms of accessability and lack of inhabitants. The threat to natural resources that always accompanies oil activities, will move into areas that are considered vulnerable, and which are also highly valued in terms of natural resources. Contingency measures must be adapted both to be feasible and to meet the framework in which they must operate. This situation has increased the focus on alternative methods for oil spill clean-ups, especially on shorelines. SINTEF (The Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology) Applied Chemistry has evaluated the application of fertilizers as a practical measure in oil spill treatment for years. Several fertilizers have been assessed, in different environments. The effect of these products is difficult to establish categorically since their efficiency seems to be greatly dependent on the environment in which the test is conducted, as well as the design of the test. The aim of this paper is to summarize and evaluate a series of tests conducted with INIPOL EAP22, an oil soluble fertilizer developed by Elf Aquitaine, and water soluble fertilizers. The paper will emphasize treatment failure and success, and point out some necessary prerequisites that must be met for fertilizers to work. 14 refs., 3 figs

  6. Economical and environmental valorization of compost: possible utilization for contaminated soil bioremediation

    International Nuclear Information System (INIS)

    The Bo.S.Co project (Bioremediation of contaminated soils by compost) aims at creating an innovative bioremediation technology ready-to-use and competitive in price. This technology use a particular kind of certified compost that optimizes cleaning processes. Compost, in fact, is a very rich matrix that can supply nutrients, used by the autochthonous microflora. In the present study compost was used to enhance diesel oil and PAHs degradation in two heavily contaminated soils; laboratory scale experiments were performed by preparing four soil-bio piles, under laboratory conditions chemical, microbiological and eco toxic parameters were analyzed at different times. Compost addition was effective in enhancing biodegradation of diesel oil compounds and simultaneous reduction of genotoxicity with respect to the control.

  7. Marine Oil Pollution Biodegradation Process and Bioremediation Technology Prospects%海洋石油污染的微生物降解过程及生态修复技术展望

    Institute of Scientific and Technical Information of China (English)

    张信芳

    2012-01-01

    海洋石油污染物的微生物降解是一个复杂的过程。受石油组分与物理化学性质、环境条件以及微生物群落组成等多方面因素的影响,氮和磷营养的缺乏是海洋石油污染物生物降解的主要限制因子。文章阐述了石油烃类的微生物代谢途径、影响因素、常规的生物修复技术以及两种海洋专性解烃菌降解石油的协同效应和极地海洋石油污染的生物降解过程和方式,对未来海洋石油污染控制进行了展望。%Microbial degradation of marine oil pollution is a complex process,which is affected by oil component,physical and chemical properties,environmental conditions,microbial community composition and many other factors.The lack of nitrogen and phosphorus nutrition in marine oil pollution is a major limit for biodegradation.This essay describes the microbial metabolic pathway of petroleum hydrocarbons,influencing factors,conventional bioremediation techniques and two marine bacteria specifically degradation of petroleum hydrocarbon solution of the synergy and polar marine biodegradation of oil pollution.

  8. Bio-leaching and bio-remediation; Biolixiviation et bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Morin, D. [BRGM, 75 - Paris (France)

    2003-09-01

    There are only a few bio-technological applications in ore beneficiation, but many in the environmental domain. Economical, technical and technological factors as well as respective contexts in project development explain this difference. In both cases however, the problem is to utilize processes coming from the observation of natural phenomena and to stimulate a beneficial biological activity in a mineral context; it results similar applications with similar limitations. In this paper, the characteristics of both domains are outlined, on the basis of present practices in extractive metallurgy and degradation of organic pollutants respectively, pointing out their similarities and their differences. (author)

  9. Bioremediation of organic pollutants in a radioactive wastewater

    International Nuclear Information System (INIS)

    Bioremediation holds the promise as a cost effective treatment technology for a wide variety of hazardous pollutants. In this study, the biodegradation of organic compounds discharged together with radioactive wastes is investigated. Nuclear process wastewater was simulated by a mixture of phenol and strontium, which is a major radionuclide found in radioactive wastewater. Phenol was used in the study as a model compound due to its simplicity of molecular structure. Moreover, the biodegradation pathway of phenol is well known. Biodegradation studies were conducted using pure cultures of Pseudomonas aeruginosa and Pseudomonas putida. The rate of phenol degradation by both species was found to be higher in the test without strontium. This suggests some degree of inhibition in the degradation of phenol by strontium. There was no phenol degradation in the sterile controls. The results indicate the feasibility of the biodegradation of organic pollutants discharged in radioactive effluents by specialised microbial cultures. (authors)

  10. Improving Bioremediation of PAH Contaminated Soils by Thermal Pretreatment

    OpenAIRE

    Bonten, L.T.C.

    2001-01-01

    Numerous sites and large volumes of sediments in the Netherlands are contaminated with polycyclic aromatic hydrocarbons (PAH), which are of great concern because of their toxic and carcinogenic effects. Since PAH tend to sorb very strongly to the soil matrix, bioremediation is a slow process with often high residual concentrations after remediation. In this study it was tried to develop methods to improve bioremediation, this means to decrease residual concentrations after bioremediation. In ...

  11. Bioremediation of Crude Oil Using Bacterium from the Coastal Sediments of Kish Island, Iran

    OpenAIRE

    SADEGHI HADDAD ZAVAREH, Maryam; Ebrahimipour, Gholamhossein; SHAHRIARI MOGHADAM, Mohsen; Fakhari, Javad; ABDOLI, Tahereh

    2016-01-01

    Background: Much of the environment is affected by petroleum contamination. It imposes serious health problems for humans as well as serious environmental impact. Bioremediation is an important consideration for removing environmental pollutants because, compared with other technologies, it incurrs lower costs and is environmentally compatible. Methods: Crude oil degrading bacteria were isolated using serial dilutions of a bacterial consortium. The Taguchi experimental design L16 (45) was use...

  12. Molecular Tools for Monitoring and Validating Bioremediation

    Science.gov (United States)

    Stenuit, Ben; Eyers, Laurent; Schuler, Luc; George, Isabelle; Agathos, Spiros N.

    Bioremediation is now in a position to take advantage of genomic-driven strategies to analyze, monitor and assess its course by considering multiple micro-organisms with various genomes, expressed transcripts and proteins. High-throughput methodologies, including microarrays, fingerprinting, real-time PCR, metagenomics and metaproteomics, show great promise in our environmental interventions against recalcitrant contaminants such as 2,4,6-trinitrotoluene (TNT) that we have been studying for many years. The emerging genomic and metagenomic methodologies will allow us to promote or restore environmental health in impacted sites, monitor remediation activities, identify key microbial players and processes, and finally compile an intelligent database of genes for targeted use in bioremediation.

  13. Natural and accelerated bioremediation research program plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE`s Office of Environmental Management (EM). The program builds on OHER`s tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER`s and Office of Energy Research`s (OER`s) commitment to supporting DOE`s environmental management mission and the belief that bioremediation is an important part of the solution to DOE`s environmental problems.

  14. Biosurfactant-enhanced bioremediation of hydrophobic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Makkar, R.S. [Inst. of Microbial Technology, Chandigarh (India)

    2010-01-15

    Biosurfactants are surface-active compounds synthesized by a wide variety of microorganisms. They are molecules that have both hydrophobic and - philic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures-lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs), crude on sludge, and pesticides call be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released into the environment as a result of oil spillage and by-products of coal treatment processes. The low water solubility of these compounds limits their availability to microorganisms, which is a potential problem for bioremediation of contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of pollutants has potential hioremediation applications.

  15. Bioremediation Kinetics of Pharmaceutical Industrial Effluent

    OpenAIRE

    Šabić, M.; Vuković Domanovac, M.; Findrik Blažević, Z.; Meštrović, E.

    2015-01-01

    In recent years, concerns about the occurrence and fate of pharmaceuticals that could be present in water and wastewater has gained increasing attention. With the public’s enhanced awareness of eco-safety, environmentally benign methods based on microorganisms have become more accepted methods of removing pollutants from aquatic systems. This study investigates bioremediation of pharmaceutical wastewater from pharmaceutical company Pliva Hrvatska d.o.o., using activated sludge and bioaugmente...

  16. Biomarkers of marine pollution and bioremediation

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    pollution and bioremediation Anupam Sarkar Accepted: 1 February 2006 / Published online: 4 May 2006 C211 Springer Science+Business Media, LLC 2006 This special issue of Ecotoxicology is dealt with selected papers presented at the ‘International Workshop... species of marine organisms and their bio-magnification across the food chain leading to serious threat to human health. In recent years, levels of contaminants in the marine environment have increased to a large extent as a consequence of vari- ous...

  17. The enzymatic basis for pesticide bioremediation

    OpenAIRE

    Scott, Colin; Pandey, Gunjan; Hartley, Carol J.; Jackson, Colin J.; Cheesman, Matthew J.; Taylor, Matthew C.; Pandey, Rinku; Khurana, Jeevan L.; Teese, Mark; Coppin, Chris W; Weir, Kahli M.; Jain, Rakesh K.; Lal, Rup; Russell, Robyn J.; Oakeshott, John G.

    2008-01-01

    Enzymes are central to the biology of many pesticides, influencing their modes of action, environmental fates and mechanisms of target species resistance. Since the introduction of synthetic xenobiotic pesticides, enzymes responsible for pesticide turnover have evolved rapidly, in both the target organisms and incidentally exposed biota. Such enzymes are a source of significant biotechnological potential and form the basis of several bioremediation strategies intended to reduce the environmen...

  18. Bioremediation: Copper Nanoparticles from Electronic-waste

    OpenAIRE

    D. R. MAJUMDER

    2012-01-01

    A single-step eco-friendly approach has been employed to synthesize copper nanoparticles. The superfast advancement in the field of electronics has given rise to a new type of waste called electronic waste. Since the physical and chemical recycling procedures have proved to be hazardous, the present work aims at the bioremediation of e-waste in order to recycle valuable metals. Microorganisms such as Fusarium oxysporum and Pseudomonas sp. were able to leach copper (84-130 nm) from integrated ...

  19. Pilot bioremediation of petroleum-contaminated soil

    International Nuclear Information System (INIS)

    This paper discusses bioremediation of various petroleum hydrocarbons accomplished during a 4-month period at the Carlow Road, Port Stanley site. Intensive biological and physical operations results in a decrease of all contaminants which were monitored including BTEX compounds, oil and grease, and polycyclic aromatic hydrocarbon compounds. Percentage reduction of 2- and 3-ring, and 4- and 5-ring PAHs decreased as molecular weight increased

  20. Field evaluations of marine oil spill bioremediation.

    OpenAIRE

    Swannell, R P; Lee, K; McDonagh, M

    1996-01-01

    Bioremediation is defined as the act of adding or improving the availability of materials (e.g., nutrients, microorganisms, or oxygen) to contaminated environments to cause an acceleration of natural biodegradative processes. The results of field experiments and trials following actual spill incidents have been reviewed to evaluate the feasibility of this approach as a treatment for oil contamination in the marine environment. The ubiquity of oil-degrading microorganisms in the marine environ...

  1. EBR-II cover-gas cleanup system upgrade

    International Nuclear Information System (INIS)

    Technology advances in the past few years have prompted an effort at Argonne National Laboratory to replace existing equipment with high-performance digital computers and color-graphic displays. Improved operation of process systems can be achieved by utilizing state-of-the-art computer technology in the areas of process control and process monitoring. The cover-gas cleanup system (CGCS) at the Experimental Breeder Reactor II (EBR-II) is the first system to be upgraded with high-performance digital equipment. The upgrade consisted of a main control computer, a distributed control computer, a front-end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper describes the main control computer and the operator interface control software. Argonne National Laboratory's EBR-II is a pool-type nuclear reactor demonstration facility that uses liquid sodium as the primary system and secondary system coolant. The primary system tank contains ∼330000 ell of liquid sodium blanketed with an argon cover gas. Despite this inert atmosphere, the primary system requires a cover-gas monitoring and cleanup system, the CGCS. The CGCS maintains low levels of impurities in the cover gas so that even small levels of impurities can be detected to flag a failed fuel element and to support mass spectrometer analysis to identify a failed fuel element. Impurities can be introduced to the argon cover gas by the failure of fuel element cladding and the subsequent release of gaseous fission products or xenon open-quotes tag gasclose quotes placed in the fuel elements for the purpose of signaling a fuel element breach. The CGCS consists of a main cleanup loop and a gas analysis system

  2. Retroactive insurance may fund TMI-2 cleanup

    International Nuclear Information System (INIS)

    A Pennsylvania task force recommended that nuclear utilities insure their plants with a mandatory national property insurance program. The proposed Nuclear Powerplant Property Damage Insurance Act of 1981 will cover the cleanup costs of onsite damage in excess of $350 million for a single accident ($50 million when private insurance is added on) and a ceiling of two billion dollars. Participation in the insurance pool would be in conjunction with licensing and would permit no grandfathering. Total payout for Three Mile Island-2 would cover 75% of the cleanup costs, the remainder to be apportioned among other parties. The insurance pool will have a $750 million goal supported by utility premiums

  3. Oil combatting in a cold environment using bioremediation techniques

    International Nuclear Information System (INIS)

    The clean-up of oil spills in the Arctic environment is often limited by severe and cold environmental conditions. Mechanical methods are usually considered to be most favorable for oil spill combatting. However, remote spill sites, long distances, severe environmental conditions and sensitive ecosystems mean that more advanced combatting techniques are also needed to back up conventional recovery and clean-up measures. This paper describes the results of macro-scale tests conducted by VTT Manufacturing Technology to study the effectiveness of biosorbent technology against marine oil spills. The use of biosorbents was studied as a joint research project involving VTT (Finland) and the Murmansk Marine Biological Institute (Russia). Selected biosorbent products of Marine Systems, U.S.A., and the Bios Group, Russia, were used in macro-scale tests conducted in a basin measuring 15.0 x 3.0 m in length and width, respectively. This paper outlines the macro-scale test project, including microbiological and chemical studies, supported by toxicity tests and various analyses to understand better the fate of oil, especially the degree of biodegradation during the test

  4. Use of decision analysis techniques to determine Hanford cleanup priorities

    International Nuclear Information System (INIS)

    In January 1991, the U.S. Department of Energy (DOE) Richland Field Office, Westinghouse Hanford Company, and the Pacific Northwest Laboratory initiated the Hanford Integrated Planning Process (HIPP) to ensure that technically sound and publicly acceptable decisions are made that support the environmental cleanup mission at Hanford. One of the HIPP's key roles is to develop an understanding of the science and technology (S and T) requirements to support the cleanup mission. This includes conducting an annual systematic assessment of the S and T needs at Hanford to support a comprehensive technology development program and a complementary scientific research program. Basic to success is a planning and assessment methodology that is defensible from a technical perspective and acceptable to the various Hanford stakeholders. Decision analysis techniques were used to help identify and prioritize problems and S and T needs at Hanford. The approach used structured elicitations to bring many Hanford stakeholders into the process. Decision analysis, which is based on the axioms and methods of utility and probability theory, is especially useful in problems characterized by uncertainties and multiple objectives. Decision analysis addresses uncertainties by laying out a logical sequence of decisions, events, and consequences and by quantifying event and consequence probabilities on the basis of expert judgments

  5. Firms vie to offer DOE a prize-winning recipe for cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Powers, M.B.

    1994-04-25

    Eager to get the most bang for its waste cleanup bucks, the US Department of Energy is conducting its own version of the Pillsbury bake-off. DOE is pitting two environmental contractors, Rust International Corp. and Lockheed Environmental Systems and Technologies Co., against each other to come up with the prize-winning recipe for cleaning up some nasty waste problems.

  6. Firms vie to offer DOE a prize-winning recipe for cleanup

    International Nuclear Information System (INIS)

    Eager to get the most bang for its waste cleanup bucks, the US Department of Energy is conducting its own version of the Pillsbury bake-off. DOE is pitting two environmental contractors, Rust International Corp. and Lockheed Environmental Systems and Technologies Co., against each other to come up with the prize-winning recipe for cleaning up some nasty waste problems

  7. Final report: Fuel spill cleanup at the Del Air Unit

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the cleanup of a fuel spill on the Delair Unit of Great River NWR in 1994. Soil test results are provided, the cleanup process is summarized,...

  8. Fuel cleanup system for the tritium systems test assembly: design and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, E.C.; Bartlit, J.R.; Sherman, R.H.

    1980-01-01

    A major subsystem of the Tritium Systems Test Assembly is the Fuel Cleanup System (FCU) whose functons are to: (1) remove impurities in the form of argon and tritiated methane, water, and ammonia from the reactor exhaust stream and (2) recover tritium for reuse from the tritiated impurities. To do this, a hybrid cleanup system has been designed which utilizes and will test concurrently two differing technologies - one based on disposable, hot metal (U and Ti) getter beds and a second based on regenerable cryogenic asdorption beds followed by catalytic oxidation of impurities to DTO and stackable gases and freezout of the resultant DTO to recover essentially all tritium for reuse.

  9. Evaluation of contaminated groundwater cleanup objectives

    International Nuclear Information System (INIS)

    The US Department of Energy's (DOE's) Environmental Restoration Program will be responsible for remediating the approximately 230 contaminated groundwater sites across the DOE Complex. A major concern for remediation is choosing the appropriate cleanup objective. The cleanup objective chosen will influence the risk to the nearby public during and after remediation; risk to remedial and non-involved workers during remediation; and the cost of remediation. This paper discusses the trends shown in analyses currently being performed at Oak Ridge National Laboratories' (ORNL's) Center for Risk Management (CRM). To evaluate these trends, CRM is developing a database of contaminated sites. This paper examines several contaminated groundwater sites selected for assessment from CRM's data base. The sites in this sample represent potential types of contaminated groundwater sites commonly found at an installation within DOE. The baseline risk from these sites to various receptors is presented. Residual risk and risk during remediation is reported for different cleanup objectives. The cost associated with remediating to each of these objectives is also estimated for each of the representative sites. Finally, the general trends of impacts as a function of cleanup objective will be summarized. The sites examined include the Savannah River site, where there was substantial ground pollution from radionuclides, oil, coal stockpiles, and other forms of groundwater contamination. The effects of various types of groundwater contamination on various types of future user is described. 4 refs., 3 figs., 2 tabs

  10. Radioactive Waste and Clean-up Division

    International Nuclear Information System (INIS)

    The main objectives of the Radioactive Waste and Clean-up division of SCK-CEN are outlined. The division's programme consists of research, development and demonstration projects and aims to contribute to the objectives of Agenda 21 on sustainable development in the field of radioactive waste and rehabilitation of radioactively contaminated sites

  11. Cleanups In My Community (CIMC) - Recovery Act Funded Cleanups, National Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer provides access to Recovery Act Funded Cleanup sites as part of the CIMC web service. The American Recovery and Reinvestment Act was signed into law...

  12. Ecogenomics of microbial communities in bioremediation of chlorinated contaminated sites

    OpenAIRE

    Maphosa, Farai; Lieten, Shakti H.; Dinkla, Inez; Stams, Alfons J.; Smidt, Hauke; Fennell, Donna E.

    2012-01-01

    Organohalide compounds such as chloroethenes, chloroethanes, and polychlorinated benzenes are among the most significant pollutants in the world. These compounds are often found in contamination plumes with other pollutants such as solvents, pesticides, and petroleum derivatives. Microbial bioremediation of contaminated sites, has become commonplace whereby key processes involved in bioremediation include anaerobic degradation and transformation of these organohalides by organohalide respirin...

  13. Ecogenomics of microbial communities in bioremediation of chlorinated contaminated sites

    OpenAIRE

    FaraiMaphosa; ShaktiHLieten; DonnaE.Fennell

    2012-01-01

    Organohalide compounds such as chloroethenes, chloroethanes and polychlorinated benzenes are among the most significant pollutants in the world. These compounds are often found in contamination plumes with other pollutants such as solvents, pesticides and petroleum derivatives. Microbial bioremediation of contaminated sites, has become commonplace whereby key processes involved in bioremediation include anaerobic degradation and transformation of these organohalides by organohalide respiring ...

  14. Bioremediation of hydrocarbon contaminated surface water, groundwater, and soils

    International Nuclear Information System (INIS)

    Bioremediation is currently receiving considerable attention as a remediation option for sites contaminated with hazardous organic compounds. There is an enormous amount of interest in bioremediation, and numerous journals now publish research articles concerning some aspect of the remediation approach. A review of the literature indicates that two basic forms of bioremediation are currently being practiced: the microbiological approach and the microbial ecology approach. Each form has its advocates and detractors, and the microbiological approach is generally advocated by most of the firms that practice bioremediation. In this paper, the merits and disadvantages of these forms are reviewed and a conceptual approach is presented for assessing which form may be most useful for a particular contaminant situation. I conclude that the microbial ecology form of bioremediation may be the most useful for the majority of contaminant situations, and I will present two case histories in support of this hypothesis

  15. Bioremediation of uranium contaminated Fernald soils

    International Nuclear Information System (INIS)

    This study investigated the use of microbial bioleaching for removal of uranium from contaminated soils. The ability of bacteria to assist in oxidation and solubilization of uranium was compared to the ability of fungi to produce complexing compounds which have the same effect. Biosorption of uranium by fungi was also measured. Soil samples were examined for changes in mineralogical properties due to these processes. On the basis of these laboratory scale studies a generalized flow sheet is proposed for bioremediation of contaminated Fernald soils

  16. Computer simulation of contaminated soil bioremediation

    International Nuclear Information System (INIS)

    A mathematical model has been developed and simulated to describe contaminated soil bioremediation. The model equations consist of a system of three nonlinear partial differential equations. Dimensional analysis of the model equations has been performed, and solution of these equations has been conducted by an implicit finite difference method. A computer program is ru ned for solving the model equations and by using this program, the influence of the principal parameters (porosity, soil aggregate radius, and partition coefficient of the substrate) on the fate of chemicals has been studied. The rates of substrate, Oxygen diffusion and biodegradation rate have been found to be the controlling mechanisms for remediation in the aggregates

  17. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes

    Directory of Open Access Journals (Sweden)

    Ruchita Dixit

    2015-02-01

    Full Text Available Heavy metals are natural constituents of the environment, but indiscriminate use for human purposes has altered their geochemical cycles and biochemical balance. This results in excess release of heavy metals such as cadmium, copper, lead, nickel, zinc etc. into natural resources like the soil and aquatic environments. Prolonged exposure and higher accumulation of such heavy metals can have deleterious health effects on human life and aquatic biota. The role of microorganisms and plants in biotransformation of heavy metals into nontoxic forms is well-documented, and understanding the molecular mechanism of metal accumulation has numerous biotechnological implications for bioremediation of metal-contaminated sites. In view of this, the present review investigates the abilities of microorganisms and plants in terms of tolerance and degradation of heavy metals. Also, advances in bioremediation technologies and strategies to explore these immense and valuable biological resources for bioremediation are discussed. An assessment of the current status of technology deployment and suggestions for future bioremediation research has also been included. Finally, there is a discussion of the genetic and molecular basis of metal tolerance in microbes, with special reference to the genomics of heavy metal accumulator plants and the identification of functional genes involved in tolerance and detoxification.

  18. The Kwajalein bioremediation demonstration: Final technical report

    International Nuclear Information System (INIS)

    The US Army Kwajalein Atoll (USAKA) Base, located in the Republic of the Marshall Islands (RMI) in the east-central Pacific Ocean, has significant petroleum hydrocarbon contamination resulting from years of military activities. Because of its remoteness, the lack of on-site sophisticated remediation or waste disposal facilities, the amenability of petroleum hydrocarbons to biodegradation, and the year-round temperature favorable for microbial activity, USAKA requested, through the Hazardous Waste Remedial Actions Program (HAZWRAP), that a project be conducted to evaluate the feasibility of using bioremediation for environmental restoration of contaminated sites within the atoll. The project was conducted in four distinct phases: (1) initial site characterization and on-site biotreatability studies, (2) selection of the demonstration area and collection of soil columns, (3) laboratory column biotreatability studies, and (4) an on-site bioremediation demonstration. The results of phases (1) and (3) have been detailed in previous reports. This report summarizes the results of phases (1) and (3) and presents phases (2) and (4) in detail

  19. The Kwajalein bioremediation demonstration: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.R. Jr.; Walker, A.B.

    1994-12-01

    The US Army Kwajalein Atoll (USAKA) Base, located in the Republic of the Marshall Islands (RMI) in the east-central Pacific Ocean, has significant petroleum hydrocarbon contamination resulting from years of military activities. Because of its remoteness, the lack of on-site sophisticated remediation or waste disposal facilities, the amenability of petroleum hydrocarbons to biodegradation, and the year-round temperature favorable for microbial activity, USAKA requested, through the Hazardous Waste Remedial Actions Program (HAZWRAP), that a project be conducted to evaluate the feasibility of using bioremediation for environmental restoration of contaminated sites within the atoll. The project was conducted in four distinct phases: (1) initial site characterization and on-site biotreatability studies, (2) selection of the demonstration area and collection of soil columns, (3) laboratory column biotreatability studies, and (4) an on-site bioremediation demonstration. The results of phases (1) and (3) have been detailed in previous reports. This report summarizes the results of phases (1) and (3) and presents phases (2) and (4) in detail.

  20. Bioremediation of petroleum hydrocarbons in soil environments

    International Nuclear Information System (INIS)

    The bioremediation of petroleum hydrocarbons in soil environments was reviewed via a literature survey and discussions with workers in relevant disciplines. The impacts of hydrocarbons on soil are discussed along with a range of methods available to assist in their decomposition by soil microorganisms. The range of petroleum-based materials considered includes conventional and synthetic crude oils, refined oils, sludges, asphalts and bitumens, drilling mud residues, creosote tars, and some pesticides. The degradability of hydrocarbons largely depends upon their aqueous solubility and their adsorption on soil surfaces and, therefore, is related to their molecular structures. The ease of decomposition decreases with increasing complexity of structure, in the order aliphatics > aromatics > heterocyclics and asphaltenes (most recalcitrant). Most soils contain an adequate population of microorganisms and hence bioaugmentation may only be needed in special circumstances. Decomposition is fastest in soils where the hydrocarbon loading rate, aeration, nutrition, moisture, and pH are all optimized. At spill sites there is little control over the application rate, although containment measures can assist in either limiting contamination or distributing it more evenly. The enhancement of bioremediation is discussed in light of all these factors. Other techniques such as enhanced aeration, hydrocarbon decomposition by anaerobic processes, surfactants, and burning are also discussed. 211 refs., 11 figs., 10 tabs

  1. Bioremediation of Carbendazim by Streptomyces albogriseolus

    Directory of Open Access Journals (Sweden)

    Ridhima Arya

    2014-08-01

    Full Text Available Carbendazim (methyl-1H-benzimidazol-2-ylcarbamate, or MBC is a benzimidazole fungicide which is used to protect crops against the attack of fungi. MBC has a half-life of about 3-12 months and remain persistent in the environment which may lead to many harmful consequences. Besides chemical and photo-catalytic degradation of pesticides, microbial degradation has now been evolved as a much effective and safer way to eliminate these harmful compounds from the environment. However, in the literature very few reports are available where microbial community is involved in degrading MBC. Hence, the present study was planned to investigate the role of microbes isolated from the field soils for the bioremediation of MBC. Soil samples were collected from wheat fields of northern regions of India. Enrichment culture technique was employed to isolate the bacterium which was found to be growing at higher concentrations of MBC up to 500µg/ml. After biochemical and morphological analysis, the bacterium was identified as Streptomyces albogriseolus. Streptomyces albogriseolus was found to degrade MBC in a time-dependent manner from the initial concentration of 29 ppm to 285.67ppb and 62.73ppb in 24hrs and 48hrs respectively. LCMS-MS analysis was carried out to detect 2-aminobenzimidazole, a metabolite formed after degradation in 10 hrs of growth which eventually disappeared after 24hrs of growth. The strain Streptomyces albogriseolus holds a promising potential to be an efficient MBC bioremediation agent.

  2. Influence of a precepitator on bioremedial processes

    Directory of Open Access Journals (Sweden)

    Nježić Zvonko B.

    2010-01-01

    Full Text Available Natural environment represents a dynamic bioreactor with numerous chemical, biochemical and microbiological processes through which harmful materials are destroyed, so that living organisms and human beings are not endanger. Controlled anthropogenic actions can assist the natural ecosystem to become an efficient bioremedial unit and to reduce the level of effluents produced in the biotechnological transformations during massive food production. In this study, a monitoring system for the chemical oxygen demand (COD and the heavy metal levels in water was established, followed by construction and building of a precipitator in order to prevent discharging of sludge. The results contribute to the hypothesis of existence of in situ bioremedial processes in the observed ecosystem. The significant influence of the precipitator on the decrease of pollution was demonstrated: a decrease of both the COD value and the heavy metal levels downstream from the precipitator for about 15%. Therefore it can be concluded that the precipitator significantly contributes to the ecosystem by the reduction of pollutant level.

  3. Bioremediation:A review of applications and problems to be resolved

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qixing; HUA Tao

    2004-01-01

    This review article describes the factors affecting bioremediation processes including: goals of bioremediation and the optimal ecological conditions required; inoculation of microorganisms; cometabolism; bioavailability and its improvement; biological evolution and its utilization;monitoring and control of bioremediation processes; identification of bioremediation effectiveness and ecological remediation and its key elements. The current progress in bioremediation techniques is summarized. The direction of future development, research and applications is also examined.

  4. GPU seeks new funding for TMI cleanup

    International Nuclear Information System (INIS)

    General Public Utilities (GPU) wants approval for annual transfer of money from base rate increases in other accounts to pay for the cleanup at Three Mile Island (TMI) until TMI-1 returns to service or the public utility commission takes further action. This proposal confirms fears of a delay in TMI-1 startup and demonstrates that the January negotiated settlement will produce little funding for TMI-2 cleanup. A review of the settlement terms outlines the three-step process for base rate increases and revenue adjustments after the startup of TMI-1, and points out where controversy and delays due to psychological stress make a new source of money essential. GPU thinks customer funding will motivate other parties to a broad-based cost-sharing agreement

  5. Cleanup around an old waste site

    International Nuclear Information System (INIS)

    42,500 m3 of contaminated soil were removed from off-site areas around an old, low-level radioactive waste site near Port Hope, Ontario. The cleanup was done by means of conventional excavation equipment to criteria developed by Eldorado specific to the land use around the company's waste management facility. These cleanup criteria were based on exposure analyses carried out for critical receptors in two different scenarios. The excavated soils, involving eight different landowners, were placed on the original burial area of the waste management facility. Measures were also undertaken to stabilize the soils brought on-site and to ensure that there would be no subsequent recontamination of the off-site areas

  6. Laboratory modeling, field study, and numerical simulation of bioremediation of petroleum contaminants

    International Nuclear Information System (INIS)

    The use of bioremediation as an alternative remediation technology is fast becoming the technique of choice among many environmental professionals. This method offers substantial benefits not found in other remediation processes. Bioremediation is very cost effective, nondestructive, relatively uncomplicated in implementing, requires nonspecialized equipment, and can be extremely effective in removing recalcitrant petroleum hydrocarbons. This study researched the availability of viable microbial populations in the arid climate in South Dakota. Exponential growth of the bacteria and the ability of bacteria to degrade long-chain hydrocarbons indicated that healthy populations do exist and could be used to mineralize organic hydrocarbons. Experimental results indicated that bioremediation can be effectively enhanced in landfills as well as in the subsurface using a supply of harmless nutrients. The biodegradation rate can be further enhanced with the use of edible surfactant that helped disperse the petroleum products. Also, the use of hydrogen peroxide enhanced the oxygen availability and increased the degradation rate. Interestingly, the bacterial growth rate was found to be high in difficult-to-biodegrade contaminants, such as waste oil. A numerical simulation program was also developed that describes the bacterial growth in the subsurface along with the reduction in substrate (contamination). Results from this program were found to be consistent with laboratory results

  7. In situ bioremediation of petroleum in tight soils using hydraulic fracturing

    International Nuclear Information System (INIS)

    This case study evaluated the effectiveness of in situ bioremediation of petroleum hydrocarbons in tight soils. The study area was contaminated with cutting oil from historic releases from underground piping, probably dating back to the 1940's. Previous site assessment work indicated that the only chemicals of concern were total petroleum hydrocarbons (TPH). Two fracture sets (stacks) were installed at different locations to evaluate this in situ bioremediation technique under passive and active conditions. Several injection wells were drilled at both locations to provide entry for hydraulic fracturing equipment. A series of circular, horizontal fractures 40 to 50 feet in diameter were created at different depths, based on the vertical extent of contamination at the site. The injection wells were screened across the contaminated interval which effectively created underground bioreactors. Soils were sampled and analyzed for total petroleum hydrocarbons on five separate occasions over the nine-month study. Initial average soil concentrations of total petroleum hydrocarbons of 5,700 mg/kg were reduced to 475 mg/kg within nine months of hydraulic fracturing. The analytical results indicate an average reduction in TPH at the sample locations of 92 percent over the nine-month study period. This project demonstrates that in situ bioremediation using hydraulic fracturing has significant potential as a treatment technology for petroleum contaminated soils

  8. Role of Penicillium chrysogenum XJ-1 in the Detoxification and Bioremediation of Cadmium

    Science.gov (United States)

    Xu, Xingjian; Xia, Lu; Zhu, Wei; Zhang, Zheyi; Huang, Qiaoyun; Chen, Wenli

    2015-01-01

    Microbial bioremediation is a promising technology to treat heavy metal-contaminated soils. However, the efficiency of filamentous fungi as bioremediation agents remains unknown, and the detoxification mechanism of heavy metals by filamentous fungi remains unclear. Therefore, in this study, we investigated the cell morphology and antioxidant systems of Penicillium chrysogenum XJ-1 in response to different cadmium (Cd) concentrations (0–10 mM) by using physico-chemical and biochemical methods. Cd in XJ-1 was mainly bound to the cell wall. The malondialdehyde level in XJ-1 cells was increased by 14.82–94.67 times with the increase in Cd concentration. The activities of superoxide dismutase, glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PDH) peaked at 1 mM Cd, whereas that of catalase peaked at 5 mM Cd. Cd exposure increased the glutathione/oxidized glutathione ratio and the activities of GR and G6PDH in XJ-1. These results suggested that the Cd detoxification mechanism of XJ-1 included biosorption, cellular sequestration, and antioxidant defense. The application of XJ-1 in Cd-polluted soils (5–50 mg kg-1) successfully reduced bioavailable Cd and increased the plant yield, indicating that this fungus was a promising candidate for in situ bioremediation of Cd-polluted soil. PMID:26733967

  9. Auto- and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals.

    Science.gov (United States)

    Beolchini, Francesca; Dell'Anno, Antonio; De Propris, Luciano; Ubaldini, Stefano; Cerrone, Federico; Danovaro, Roberto

    2009-03-01

    This study deals with bioremediation treatments of dredged sediments contaminated by heavy metals based on the bioaugmentation of different bacterial strains. The efficiency of the following bacterial consortia was compared: (i) acidophilic chemoautotrophic, Fe/S-oxidising bacteria, (ii) acidophilic heterotrophic bacteria able to reduce Fe/Mn fraction, co-respiring oxygen and ferric iron and (iii) the chemoautotrophic and heterotrophic bacteria reported above, pooled together, as it was hypothesised that the two strains could cooperate through a mutual substrate supply. The effect of the bioremediation treatment based on the bioaugmentation of Fe/S-oxidising strains alone was similar to the one based only on Fe-reducing bacteria, and resulted in heavy-metal extraction yields typically ranging from 40% to 50%. The efficiency of the process based only upon autotrophic bacteria was limited by sulphur availability. However, when the treatment was based on the addition of Fe-reducing bacteria and the Fe/S oxidizing bacteria together, their growth rates and efficiency in mobilising heavy metals increased significantly, reaching extraction yields >90% for Cu, Cd, Hg and Zn. The additional advantage of the new bioaugmentation approach proposed here is that it is independent from the availability of sulphur. These results open new perspectives for the bioremediation technology for the removal of heavy metals from highly contaminated sediments. PMID:19118863

  10. Bioremediation Kinetics of Pharmaceutical Industrial Effluent

    Directory of Open Access Journals (Sweden)

    M. Šabić

    2015-05-01

    Full Text Available In recent years, concerns about the occurrence and fate of pharmaceuticals that could be present in water and wastewater has gained increasing attention. With the public’s enhanced awareness of eco-safety, environmentally benign methods based on microorganisms have become more accepted methods of removing pollutants from aquatic systems. This study investigates bioremediation of pharmaceutical wastewater from pharmaceutical company Pliva Hrvatska d.o.o., using activated sludge and bioaugmented activated sludge with isolated mixed bacterial culture. The experiments were conducted in a batch reactor in submerged conditions, at initial concentration of organic matter in pharmaceutical wastewater, expressed as COD, 5.01 g dm–3 and different initial concentrations of activated sludge, which ranged from 1.16 to 3.54 g dm–3. During the experiments, the COD, pH, concentrations of dissolved oxygen and biomass were monitored. Microscopic analyses were performed to monitor the quality of activated sludge. Before starting with the bioremediation in the batch reactor, toxicity of the pharmaceutical wastewater was determined by toxicity test using bacteria Vibrio fischeri. The obtained results showed that the effective concentration of the pharmaceutical wastewater was EC50 = 17 % and toxicity impact index was TII50 = 5.9, meaning that the untreated pharmaceutical industrial effluent must not be discharged into the environment before treatment. The results of the pharmaceutical wastewater bioremediation process in the batch reactor are presented in Table 1. The ratio γXv ⁄ γX maintained high values throughout all experiments and ranged from 0.90 and 0.95, suggesting that the concentrations of biomass remained unchanged during the experiments. The important kinetic parameters required for performance of the biological removal process, namely μmax, Ks, Ki, Y and kd were calculated from batch experiments (Table 2. Figs. 1 and 2 show the experimental

  11. Methodologies for estimating shoreline cleanup costs

    Energy Technology Data Exchange (ETDEWEB)

    Etkin, D.S. [Environmental Research Consulting, Winchester, MA (United States)

    2001-07-01

    Once oil from an offshore oil spill hits a shoreline, cleanup operations become more complicated, expensive and time consuming because shoreline and intertidal ecosystems are complex and susceptible to serious impacts both from oiling and response functions. This paper described and compared methodologies for estimating shoreline cleanup costs for hypothetical spill scenarios based on projected shoreline oiling from oil spill trajectory modelling and on the factors that influence cost. It is important to estimate cleanup costs in order to optimize the allocation of resources for shoreline response and restoration. The factors that influence the amount of work needed and resulting cost are the characteristics of the impacted shoreline, the type of oil that has been spilled, and the standards to which cleanup is conducted. The cost estimation methods described in this paper were based on algorithms derived from statistical analyses of historical oil spill cost data in the Environmental Research Consulting database. This included modelling of labour requirements for different types of shorelines and types of oils, as well as other research studies. It was noted that there are serious limitations to these cost estimation methods. These include the fact that vessel and facility response plans are required to address worst case scenarios which have never actually occurred in the US or anywhere else in the world. Some strategies were recommended for improving the modelling of shoreline response costs. It was suggested that the predicted costs should be adjusted to take into account variations in spill situations. Also, contingency plans stress the importance of keeping the oil off the shoreline with booms, skimmers and dispersants. 31 refs., 22 figs.

  12. Accelerating cleanup. Paths to closure Hanford Site

    International Nuclear Information System (INIS)

    This document was previously referred to as the Draft 2006 Plan. As part of the DOE's national strategy, the Richland Operations Office's Paths to Closure summarizes an integrated path forward for environmental cleanup at the Hanford Site. The Hanford Site underwent a concerted effort between 1994 and 1996 to accelerate the cleanup of the Site. These efforts are reflected in the current Site Baseline. This document describes the current Site Baseline and suggests strategies for further improvements in scope, schedule and cost. The Environmental Management program decided to change the name of the draft strategy and the document describing it in response to a series of stakeholder concerns, including the practicality of achieving widespread cleanup by 2006. Also, EM was concerned that calling the document a plan could be misconstrued to be a proposal by DOE or a decision-making document. The change in name, however, does not diminish the 2006 vision. To that end, Paths to Closure retains a focus on 2006, which serves as a point in time around which objectives and goals are established

  13. Lipids and Molecular Tools as Biomarkers in Monitoring Air Sparging Bioremediation Processes

    Science.gov (United States)

    Heipieper, Hermann J.; Fischer, Janett

    2010-05-01

    The fluctuation of membrane lipids offers a promising tool as biomarkers for the analysis of microbial population changes as well as for the physiological status of micro-organisms. The investigation of changes in lipid composition is of common use for the assessment of physiological conditions in pure cultures. However, as lipid composition does not show drastic diversity among living organisms the use of lipids as biomarkers in mixed cultures and environmental samples has certain limitations. Therefore, special marker phospholipid fatty acids as well as modern statistical analysis of the results are necessary to receive certain information about the qualitative and quantitative changes of e.g. a soil microflora due to a contamination with organic compounds and its bioremediation. The use of lipids as biomarker in monitoring bioremediation are shown at the Hradčany site, a former Russian air force base in the Czech Republic that operated until 1990. In this time in an area of 32 ha soil and groundwater were contaminated with kerosene and BTEX compounds in an amount of 7,150 tons. This highly contaminated site is treated with the so-called air sparging method to clean-up the contamination by aerobic biodegradation. The results of PLFA analysis demonstrated a community shift to a gram-negative bacterial biomass with time. The results, including a principal component analysis (PCA) of the obtained fatty acid profiles, showed that the air sparging leads to substantial differences in microbial communities depending on the contamination levels and length of treatment, respectively. Obviously, the length of air sparging treatment controlling the BTEX concentration in soils causes temporal changes of bacterial community and adaptations of its respective members. This work was supported by the project BIOTOOL (Contract No. 003998) of the European Commission within its Sixth Framework Programme. Kabelitz N., Machackova J., Imfeld G., Brennerova M., Pieper D.H., Heipieper H

  14. Raw Materials Synthesis from Heavy Metal Industry Effluents with Bioremediation and Phytomining: A Biomimetic Resource Management Approach

    Directory of Open Access Journals (Sweden)

    Salmah B. Karman

    2015-01-01

    Full Text Available Heavy metal wastewater poses a threat to human life and causes significant environmental problems. Bioremediation provides a sustainable waste management technique that uses organisms to remove heavy metals from contaminated water through a variety of different processes. Biosorption involves the use of biomass, such as plant extracts and microorganisms (bacteria, fungi, algae, yeast, and represents a low-cost and environmentally friendly method of bioremediation and resource management. Biosorption-based biosynthesis is proposed as a means of removing heavy metals from wastewaters and soils as it aids the development of heavy metal nanoparticles that may have an application within the technology industry. Phytomining provides a further green method of managing the metal content of wastewater. These approaches represent a viable means of removing toxic chemicals from the effluent produced during the process of manufacturing, and the bioremediation process, furthermore, has the potential to save metal resources from depletion. Biomimetic resource management comprises bioremediation, biosorption, biosynthesis, phytomining, and further methods that provide innovative ways of interpreting waste and pollutants as raw materials for research and industry, inspired by materials, structures, and processes in living nature.

  15. Medical bioremediation of age-related diseases

    Directory of Open Access Journals (Sweden)

    Rittmann Bruce E

    2009-04-01

    Full Text Available Abstract Catabolic insufficiency in humans leads to the gradual accumulation of a number of pathogenic compounds associated with age-related diseases, including atherosclerosis, Alzheimer's disease, and macular degeneration. Removal of these compounds is a widely researched therapeutic option, but the use of antibodies and endogenous human enzymes has failed to produce effective treatments, and may pose risks to cellular homeostasis. Another alternative is "medical bioremediation," the use of microbial enzymes to augment missing catabolic functions. The microbial genetic diversity in most natural environments provides a resource that can be mined for enzymes capable of degrading just about any energy-rich organic compound. This review discusses targets for biodegradation, the identification of candidate microbial enzymes, and enzyme-delivery methods.

  16. Letter report: Ari Patrinos -- Subsurface bioremediation

    International Nuclear Information System (INIS)

    During the past summer, the authors had the opportunity to examine aspects of the remediation program of the Department of Energy (DOE). The most important conclusion that they have come to is that there is an urgent need to mount a comprehensive research program in remediation. It is also clear to them that DOE does not have the funding to carry out a program on the scale that is required. On the other hand, Environmental Management could very well fund such activities. They would hope that in the future there would be close collaboration between Environmental Management and Energy Research in putting together a comprehensive and well thought-out research program. Here, the authors comment on one aspect of remediation: subsurface bioremediation

  17. Bioremediation: Copper Nanoparticles from Electronic-waste

    Directory of Open Access Journals (Sweden)

    D. R. MAJUMDER

    2012-10-01

    Full Text Available A single-step eco-friendly approach has been employed to synthesize copper nanoparticles. The superfast advancement in the field of electronics has given rise to a new type of waste called electronic waste. Since the physical and chemical recycling procedures have proved to be hazardous, the present work aims at the bioremediation of e-waste in order to recycle valuable metals. Microorganisms such as Fusarium oxysporum and Pseudomonas sp. were able to leach copper (84-130 nm from integrated circuits present on electronic boards under ambient conditions. Lantana camara, a weed commonly found in Maharashtra was also screened for leaching copper. The characteristics of the copper nanoparticles obtained were studied using X-ray diffraction analysis, energy-dispersive spectroscopy, scanning electron microscopy, Fourier Tranform Infrared analysis, Transmission electron microscopy, Thermogravimetric analysis and Cyclic Voltammetry. Copper nanoparticles were found to be effective against hospital strain Escherichia coli 2065.

  18. Bacteria and bioremediation of marine oil spills

    International Nuclear Information System (INIS)

    Virtually all marine ecosystems harbor indigenous hydrocarbon-degrading bacteria. These hydrocarbon degraders comprise less than one percent of the bacterial community in unpolluted environments, but generally increase to one to ten percent following petroleum contamination. Various hydrocarbons are degraded by these microorganisms at different rates, so there is an evolution in the residual hydrocarbon mixture, and some hydrocarbons and asphaltic petroleum hydrocarbons remain undegraded. Fortunately, these persistent petroleum pollutants are, for the most part, insoluble or are bound to solids; hence they are not biologically available and therefore not toxic to marine organisms. Carbon dioxide, water, and cellular biomass produced by the microorganisms from the degradable hydrocarbons may be consumed by detrital feeders and comprise the end products of the natural biological degradation process. Bioremediation attempts to accelerate the natural hydrocarbon degradation rates by overcoming factors that limit bacterial hydrocarbon degrading activities

  19. In situ bioremediation of chlorinated solvent with natural gas

    International Nuclear Information System (INIS)

    A bioremediation system for the removal of chlorinated solvents from ground water and sediments is described. The system involves the the in-situ injection of natural gas (as a microbial nutrient) through an innovative configuration of horizontal wells

  20. Bioremediation of chlorinated ethenes in aquifer thermal energy storage

    NARCIS (Netherlands)

    Ni, Z.

    2015-01-01

      Subjects: bioremediation; biodegradation; environmental biotechnology, subsurface and groundwater contamination; biological processes; geochemistry; microbiology The combination of enhanced natural attenuation (ENA) of chlorinated volatile organic compounds (CVOCs) and aquife

  1. Chemometric assessment of enhanced bioremediation of oil contaminated soils

    DEFF Research Database (Denmark)

    Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H.

    2013-01-01

    Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting, and addi......Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting...... steranes were used for determining the level and type of hydrocarbon contamination. The same methods were used to study oil weathering of 2 to 6 ring polycyclic aromatic compounds (PACs). Results demonstrated that bacterial enrichment and addition of nutrients were most efficient with 50% to 62% removal...

  2. Bioremediation of toxic substances by mercury resistant marine bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    De, J.; Sarkar, A.; Ramaiah, N.

    Bioremediation of toxic substances includes microbe-mediated enzymatic transformation of toxicants to non-toxic, often assimilable, forms. Mercury-resistant marine bacteria are found to be very promising in dealing with mercury, and a host of other...

  3. A field experimentation on bioremediation: Bioren

    International Nuclear Information System (INIS)

    Most shoreline bioremediation strategies are based on the addition of limiting nutrients to contaminated environments to cause an acceleration of the natural biodegradation process. Before approval for operational use, these products designed to be used in the environment, should be validated in field trials to assure their efficiency in reducing residual contaminant concentrations and toxicity. This paper describes the design, implementation and preliminary results of an experimental field study to evaluate the effectiveness of the bioremediation agents BIOREN 1 and BIOREN 2 of interest to the EUREKA BIOREN program. The agents BIOREN 1 and 2 are proprietary formulations of nutrients synthesised from fish meal and they were proven effective in laboratory studies of the two granular nutrient formulations. BIOREN 1 is unique in that it is augmented with a biosurfactant. To provide equivalent nitrogen concentrations the quantities of BIOREN 1 and 2 added were respectively 10 and 14.4% of the oil quantity. The results showed a 'starter effect' for the formulation BIOREN 1: biodegradation was significantly enhance during the first five weeks of the experiment; after that the enhancement was weaker and significant differences were not observed between treatments. These results may be attributed to the fact that significant nutrient depletion may not occur in small scale controlled spill experiments. In addition, it has been proven that oxygen availability limited biodegradation. There is a need to develop aeration techniques, such as raking, that aerate the sediment without further burying the pollutant. Final oil balance assessment proved to be very instructive as it is the main practical factor taken into consideration by the operational team: the aim of the shoreline cleaning operation remains to reduce oil sediment content. (Author)

  4. Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation

    OpenAIRE

    MariaGenovese; DanielaRusso; AlfonsoModica; LauraGiuliano; PeterN.Golyshin

    2014-01-01

    The purpose of present study was the simulation of an oil spill accompanied by burial of significant amount of petroleum hydrocarbons (PHs) in coastal sediments. Approximately 1,000 kg of sediments collected in Messina harbor were spiked with Bunker C furnace fuel oil (6,500 ppm). The rapid consumption of oxygen by aerobic heterotrophs created highly reduced conditions in the sediments with subsequent recession of biodegradation rates. As follows, after three months of ageing, the anaerobic s...

  5. The ecological impact of land restoration and cleanup. Technical report

    International Nuclear Information System (INIS)

    The report is concerned with the ecological impacts of specific cleanup treatment on the land where they were carried out. The cleanup procedures given apply equally to chemical or radioactive materials. Guidance is provided for cleanup procedures likely to be suggested by government, industry, or environmental groups. The basic types of cleanup procedures for removing or deactiving spilled contamination involve moving people and animals from the affected area, scraping and grading the contaminated soil into windrows, plowing the contamination under, or digging up the contamination and hauling it away. The report describes and evaluates the various land-type cleanup effects in terms of impact of the techniques on the environment. Part I defines several natural ecosystems and some of their natural derivations. Part II presents managed ecosystems which are imposed on natural ecosystems and are no longer bound by the initial native ecosystem balances. Part III deals with avion and mammilian wild life displaced by cleanup

  6. Healthy environments for healthy people: bioremediation today and tomorrow.

    OpenAIRE

    Bonaventura, C; Johnson, F. M.

    1997-01-01

    Increases in environmental contamination lead to a progressive deterioration of environmental quality. This condition challenges our global society to find effective measures of remediation to reverse the negative conditions that severely threaten human and environmental health. We discuss the progress being made toward this goal through application of bioremediation techniques. Bioremediation generally utilizes microbes (bacteria, fungi, yeast, and algae), although higher plants are used in ...

  7. Field Implementation of Bioremediation at INDOT Facilities-Phase I

    OpenAIRE

    Nies, Loring F.; Baldwin, Brett Robert; Mesarch, Matthew B.

    2000-01-01

    Bioremediation is often the most cost-effective and successful technique available for the remediation of soils and groundwater contaminated with organic pollutants (e.g. petroleum). The goal of bioremediation is to stimulate naturally occurring microorganisms to biodegrade the contaminants to harmless products. To be in compliance with EPA regulations all underground fuel storage tanks must have spill, leak and corrosion protection. Many older obsolete tanks had deteriorated to the extent th...

  8. Microbial interactions with uranium: implications for uranium bioremediation

    International Nuclear Information System (INIS)

    Accidental release of uranium into the environment has the potential of inducing chemical and radiological toxicity. In situ bioremediation of uranium by microbial processes has been shown to be effective for immobilizing uranium in contaminated sites. Such microbial processes are important components of biogeochemical cycles and regulate the mobility and fate of uranium in the environment. This talk focuses on the spectrum of mechanisms displayed by various microorganisms in order to alleviate uranium toxicity which forms the basis of uranium bioremediation. (author)

  9. Bioremediation of diesel oil contaminated soil and water

    OpenAIRE

    Kauppi, Sari

    2011-01-01

    Diesel spills contaminate aquatic and terrestrial environments. To prevent the environmental and health risks, the remediation needs to be advanced. Bioremediation, i.e., degradation by microbes, is one of the suitable methods for cleaning diesel contamination. In monitored natural attenuation technique are natural processes in situ combined, including bioremediation, volatilization, sorption, dilution and dispersion. Soil bacteria are capable of adapting to degrade environmental pollutants, ...

  10. Effectiveness of bioremediation for the Exxon Valdez oil spill

    Science.gov (United States)

    Bragg, James R.; Prince, Roger C.; Harner, E. James; Atlas, Ronald M.

    1994-03-01

    The effectiveness of bioremediation for oil spills has been difficult to establish on dynamic, heterogeneous marine shorelines. A new interpretative technique used following the 1989 Exxon Valdez spill in Alaska shows that fertilizer applications significantly increased rates of oil biodegradation. Biodegradation rates depended mainly on the concentration of nitrogen within the shoreline, the oil loading, and the extent to which natural biodegradation had already taken place. The results suggest ways to improve the effectiveness of bioremediation measures in the future.

  11. Effectiveness of bioremediation for the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    The effectiveness of bioremediation for oil spills has been difficult to establish on dynamic, heterogeneous marine shorelines. A new interpretative technique used following the 1989 Exxon Valdez spill in Alaska shows that fertilizer applications significantly increased rates of oil biodegradation. Biodegradation rates depended mainly on the concentration of nitrogen within the shoreline, the oil loading, and the extent to which natural biodegradation had already taken place. The results suggest ways to improve the effectiveness of bioremediation measures in the future. (Author)

  12. 土壤重金属镉污染的生物修复技术研究进展%Research Progress of Bioremediation Technology of Cadmium Polluted Soil

    Institute of Scientific and Technical Information of China (English)

    徐良将; 张明礼; 杨浩

    2011-01-01

    With the development of agriculture and industry, the heavy metal-cadmium pollution is becoming increasingly severe. In order to alleviate the effect of cadmium pollution, many researchers have engaged in phytoremediation research of soil polluted by cadmium and have proposed restoration measures, chemical treatment measures, agro-ecology restoration measures and phytoremediation technology etc. In this paper, comparing the merit and demerit of various ways of restoration, it is found that the phytoremediation technology is more preferred for it is more environment-friendly and economical. This paper focuses on the concept, types and research status of phytoremediation of cadmium polluted soil and the perspectives of phytoremediation of cadmium polluted soil is also discussed.%随着工农业的发展,重金属Cd污染也日益严重,为了减轻Cd污染带来的危害,众多研究人员进行了镉污染土壤的植物修复研究,并提出工程修复措施、化学治理措施、农业生态修复措施和生物修复措施等技术,本文比较了各种修复方法的优势和局限,发现生物修复中的植物修复技术因其环保、经济等特点备受推崇.并重点阐述了Cd污染土壤植物修复的概念、类型和研究现状,进而对Cd污染土壤的植物修复技术进行了展望.

  13. Global modeling of Hanford tank waste pretreatment alternatives within a total cleanup system using ASPEN PLUS trademark

    International Nuclear Information System (INIS)

    The purpose of this work is to evaluate and compare radionuclide separations/processing technologies being developed or considered as Hanford tank waste pretreatment alternatives. These technologies are integrated into a total cleanup system that includes tank waste retrieval, treatment, and disposal. Current Hanford flowsheets typically include only mature, developed technologies, not new technologies. Thus, this work examines the impact/benefits of inserting new technologies into Hanford flowsheets. Waste treatment must produce disposal fractions which are less troublesome than the original material. Researchers seeking effective treatment methods may lack the tools or expertise to fully understand the implications of their approach in terms of secondary and tertiary waste streams or the extent to which a unique new process will affect upstream or downstream processes. This work has developed and demonstrated mass balance methods that clarify the effect of including individual processes in an integrated waste treatment system, such as the Hanford cleanup system. The methods provide a measure of treatment effectiveness and a format for the researcher to understand waste stream interrelationships and determine how a particular treatment technology can best be used in a cleanup system. A description of the Hanford tank waste cleanup model developed using the ASPEN PLUS flowsheet simulation tool is given. Important aspects of the modeling approach are discussed along with a description of how performance measures were developed and integrated within the simulation to evaluate and compare various Hanford tank waste pretreatment alternatives

  14. Preplanning of early cleanup. Annual report 1996

    International Nuclear Information System (INIS)

    A pre-study 'Pre-planning of early cleanup after fallout of radioactive material' made by Studvik EcoSafe has pointed out the need and request for pre-planning of actions. Based on the pre-study this project was started with the goal to work out guidelines and checklists. Because of the common interest between the Nordic countries NKS is the organization responsible for the project. The results of the project will be a document pointing out what can be planned in advance, including guidelines and checklists, regarding early cleanup actions after a nuclear plant accident in or in the vicinity of the Nordic countries. In this work 'early' means the three first weeks after an accident. The project only deals with questions concerning external radiation. The document shall be usable by persons in charge of planning or decision makers on the appropriate level of organization for each country. The document shall principally be aimed towards persons without professional competence in the field of radiology. The result will be presented for a limited number of generalized environments and fallout situations: urban/suburban/rural (concentrating on urban/suburban); regional differences (in for example house types and constructing material); dry or wet deposition. Five housing environments, ten cleanup actions and wet or dry deposition are treated. For 66 combinations calculations are made and the results are documented as data sheets, each describing the beneficial effects, costs and disadvantages of application of a feasible method for cleaning in the early phase of a specific type of surface in one of five different urban or suburban environments. This data forms the foundation for the recommendations on guidelines, which are the ultimate goal of the EKO-5 project. (EG)

  15. Shoreline clean-up methods : biological treatments

    Energy Technology Data Exchange (ETDEWEB)

    Massoura, S.T. [Oil Spill Response Limited, Southampton (United Kingdom)

    2009-07-01

    The cleanup of oil spills in shoreline environments is a challenging issue worldwide. Oil spills receive public and media attention, particularly in the event of a coastal impact. It is important to evaluate the efficiency and effectiveness of cleanup methods when defining the level of effort and consequences that are appropriate to remove or treat different types of oil on different shoreline substrates. Of the many studies that have compared different mechanical, chemical and biological treatments for their effectiveness on various types of oil, biological techniques have received the most attention. For that reason, this paper evaluated the effectiveness and effects of shoreline cleanup methods using biological techniques. It summarized data from field experiments and oil spill incidents, including the Exxon Valdez, Sea Empress, Prestige, Grand Eagle, Nakhodka, Guanabara Bay and various Gulf war oil spills. Five major shoreline types were examined, notably rocky intertidal, cobble/pebble/gravel, sand/mud, saltmarsh, and mangrove/sea-grass. The biological techniques that were addressed were nutrient enrichment, hydrocarbon-utilizing bacteria, vegetable oil biosolvents, plants, surf washing, oil-particle interactions and natural attenuation. The study considered the oil type, volume and fate of stranded oil, location of coastal materials, extent of pollution and the impact of biological techniques. The main factors that affect biodegradation of hydrocarbons are the volume, chemical composition and weathering state of the petroleum product as well as the temperature, oxygen availability of nutrients, water salinity, pH level, water content, and microorganisms in the shoreline environment. The interaction of these factors also affect the biodegradation of oil. It was concluded that understanding the fate of stranded oil can help in the development of techniques that improve the weathering and degradation of oil on complex shoreline substrates. 39 refs.

  16. CRADA opportunities with METC`s gasification and hot gas cleanup facility

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, E.N.; Rockey, J.M.; Tucker, M.S.

    1995-06-01

    Opportunities exist for Cooperative Research and Development Agreements (CRADA) at the Morgantown Energy Technology Center (METC) to support commercialization of IGCC power systems. METC operates an integrated gasifier and hot gas cleanup facility for the development of gasification and hot gas cleanup technologies. The objective of our program is to gather performance data on gasifier operation, particulate removal, desulfurization and regeneration technologies. Additionally, slip streams are provided for developing various technologies such as; alkali monitoring, particulate measuring, chloride removal, and contaminate recovery processes. METC`s 10-inch diameter air blown Fluid Bed Gasifier (FBG) provides 300 lb/hr of coal gas at 1100{degrees}F and 425 psig. The particulate laden gas is transported to METC`s Modular Gas Cleanup Rig (MGCR). The gas pressure is reduced to 285 psig before being fed into a candle filter vessel. The candle filter vessel houses four candle filters and multiple test coupons. The particulate free gas is then desulfurized in a sorbent reactor. Starting in 1996 the MGCR system will be able to regenerate the sorbent in the same vessel.

  17. Restoration principles and criteria: superfund program policy for cleanup at radiation contaminated sites

    International Nuclear Information System (INIS)

    The Environmental Protection Agency (EPA) Office of Superfund Remediation and Technology Innovation (OSRTI) is responsible for implementing the long-term (non-emergency) portion of a key U.S. law regulating cleanup: the Comprehensive Environmental Response, Compensation and Liability Act, CERCLA, nicknamed 'Superfund'. The purpose of the Superfund program is to protect human health and the environment over the long term from releases or potential releases of hazardous substances from abandoned or uncontrolled hazardous waste sites. The focus of this paper is on Superfund, including how radiation is addressed by the Superfund program. This paper provides a brief overview of the approach used by EPA to conduct Superfund cleanups at contaminated sites, including those that are contaminated with radionuclides, to ensure protection of human health and the environment. The paper addresses how EPA Superfund determines if a site poses a risk to human health and the framework used to determine cleanup levels. The theme emphasized throughout the paper is that within the Superfund remediation framework, radioactive contamination is dealt with in a consistent manner as with chemical contamination, except to account for the technical differences between radionuclides and chemicals. This consistency is important since at every radioactively contaminated site being addressed under Superfund's primary program for long-term cleanup, the National Priorities List (NPL), chemical contamination is also present. (author)

  18. Potential of Penicillium Species in the Bioremediation Field

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Leitão

    2009-04-01

    Full Text Available The effects on the environment of pollution, particularly that caused by various industrial activities, have been responsible for the accelerated fluxes of organic and inorganic matter in the ecosphere. Xenobiotics such as phenol, phenolic compounds, polycyclic aromatic hydrocarbons (PAHs, and heavy metals, even at low concentrations, can be toxic to humans and other forms of life. Many of the remediation technologies currently being used for contaminated soil and water involve not only physical and chemical treatment, but also biological processes, where microbial activity is the responsible for pollutant removal and/or recovery. Fungi are present in aquatic sediments, terrestrial habitats and water surfaces and play a significant part in natural remediation of metal and aromatic compounds. Fungi also have advantages over bacteria since fungal hyphae can penetrate contaminated soil, reaching not only heavy metals but also xenobiotic compounds. Despite of the abundance of such fungi in wastes, penicillia in particular have received little attention in bioremediation and biodegradation studies. Additionally, several studies conducted with different strains of imperfecti fungi, Penicillium spp. have demonstrated their ability to degrade different xenobiotic compounds with low co-substrate requirements, and could be potentially interesting for the development of economically feasible processes for pollutant transformation.

  19. Biomining active cellulases from a mining bioremediation system.

    Science.gov (United States)

    Mewis, Keith; Armstrong, Zachary; Song, Young C; Baldwin, Susan A; Withers, Stephen G; Hallam, Steven J

    2013-09-20

    Functional metagenomics has emerged as a powerful method for gene model validation and enzyme discovery from natural and human engineered ecosystems. Here we report development of a high-throughput functional metagenomic screen incorporating bioinformatic and biochemical analyses features. A fosmid library containing 6144 clones sourced from a mining bioremediation system was screened for cellulase activity using 2,4-dinitrophenyl β-cellobioside, a previously proven cellulose model substrate. Fifteen active clones were recovered and fully sequenced revealing 9 unique clones with the ability to hydrolyse 1,4-β-D-glucosidic linkages. Transposon mutagenesis identified genes belonging to glycoside hydrolase (GH) 1, 3, or 5 as necessary for mediating this activity. Reference trees for GH 1, 3, and 5 families were generated from sequences in the CAZy database for automated phylogenetic analysis of fosmid end and active clone sequences revealing known and novel cellulase encoding genes. Active cellulase genes recovered in functional screens were subcloned into inducible high copy plasmids, expressed and purified to determine enzymatic properties including thermostability, pH optima, and substrate specificity. The workflow described here provides a general paradigm for recovery and characterization of microbially derived genes and gene products based on genetic logic and contemporary screening technologies developed for model organismal systems. PMID:23906845

  20. Slurry reactor bioremediation of soil-bound polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    ECOVA Corporation conducted pilot-scale process development studies in 1991 using a slurry-phase biotreatment design to evaluate bioremediation of polycyclic aromatic hydrocarbons (PAHs) in creosote-contaminated soil collected from a superfund site. Bench-scale studies were performed as an antecedent to pilot-scale evaluations in order to collect data which would be used to determine the optimal treatment protocols. This study was performed for the US EPA to supply information as part of the database on Best Demonstrated Available Technology (BDAT) for soil remediation. The database will be used to develop soil standards for land disposal restriction. This paper is a summary of the complete on-site engineering (OER) report is available from the US EPA. The site is a former railroad tie-treating facility. Two surface impoundments were used for the disposal of wastewater generated from wood-treating processes (Resource Conservation and Recovery Act waste code K001). Although all wastewater and liquid creosote have been removed from the impoundments, there is an estimated 12,500 cubic yards of soil and sludge remaining that is contaminated with 2-, 3-, and 4+-ring PAHs. There is also some groundwater contamination restricted to a relatively small area downgradient from the site

  1. Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up

    International Nuclear Information System (INIS)

    Air-blown IGCC systems with hot fuel gas clean-up are investigated. In detail, the gas clean-up station consists of two reactors: in the first, the raw syngas exiting the gasifier and passed through high-temperature syngas coolers is desulfurized by means of a zinc oxide-based sorbent, whereas in the second the sulfided sorbent is duly regenerated. The hot fuel gas clean-up station releases H2S-free syngas, which is ready to fuel the combustion turbine after hot gas filtration, and a SO2-laden stream, which is successively treated in a wet scrubber. A thermodynamic analysis of two air-blown IGCC systems, the first with cold fuel gas clean-up and the second with hot fuel gas clean-up, both with a state-of-the-art combustion turbine as topping cycle, shows that it is possible to obtain a really attractive net efficiency (more than 51%) for the second system, with significant improvements in comparison with the first system. Nevertheless, higher efficiency is accomplished with a small reduction in the power output and no sensible efficiency improvements seem to be appreciated when the desulfurization temperature increases. Other IGCC systems, with an advanced 1500 °C-class combustion turbine as the result of technology improvements, are investigated as well, with efficiency as high as 53%. - Highlights: ► Hot fuel gas clean-up is a highly favorable technology for IGCC concepts. ► Significant IGCC efficiency improvements are possible with hot fuel gas clean-up. ► Size reductions of several IGCC components are possible. ► Higher desulfurization temperatures do not sensibly affect IGCC efficiency. ► IGCC efficiency as high as 53% is possible with a 1500°C-class combustion turbine

  2. Oil spill cleanup method and apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Mayes, F.M.

    1980-06-24

    A method for removing oil from the surface of water where an oil spill has occurred, particularly in obstructed or shallow areas, which comprises partially surrounding a hovercraft with a floating oil-collecting barrier, there being no barrier at the front of the hovercraft, moving the oil-barrier-surrounded-hovercraft into oil contaminated water, and collecting oil gathered within the barrier behind the hovercraft through a suction line which carries the oil to a storage tank aboard the hovercraft. The invention also embodies the hovercraft adapted to effect an oil spill cleanup.

  3. Landfill gas cleanup for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    EPRI is to test the feasibility of using a carbonate fuel cell to generate electricity from landfill gas. Landfills produce a substantial quantity of methane gas, a natural by-product of decaying organic wastes. Landfill gas, however, contains sulfur and halogen compounds, which are known contaminants to fuel cells and their fuel processing equipment. The objective of this project is to clean the landfill gas well enough to be used by the fuel cell without making the process prohibitively expensive. The cleanup system tested in this effort could also be adapted for use with other fuel cells (e.g., solid oxide, phosphoric acid) running on landfill gas.

  4. Particulate hot gas stream cleanup technical issues

    Energy Technology Data Exchange (ETDEWEB)

    Pontius, D.H.; Snyder, T.R.

    1999-09-30

    The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

  5. Bioremediation Well Borehole Soil Sampling and Data Analysis Summary Report for the 100-N Area Bioremediation Project

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Gamon

    2009-09-28

    The purpose of this report is to present data and findings acquired during the drilling and construction of seven bioremediation wells in the 100-N Area in conjunction with remediation of the UPR-100-N-17 petroleum waste site.

  6. Bioremediation of soil with diesel Through the use of autochthonous microorganisms

    International Nuclear Information System (INIS)

    In this study was isolated and characterized biochemical and molecular a bacterial consortium able to degrade hydrocarbons several, comprised of the following genres: Enterobacter sp, Bacillus sp, Staphylococcus aureus, Sanguibacter soli, Arthrobacter spy Flavobacterium sp, from soil contaminated with diesel fuel in a laboratory scale, and treated with two technologies for bioremediation: natural attenuation and biostimulation. We obtained a reduction in the concentration of Total Petroleum Hydrocarbons (TPH) in a period of 4 months was 36,86% for natural attenuation and 50,99% for biostimulation.

  7. Hot particulate removal and desulfurization results from the METC integrated gasification and hot gas cleanup facility

    Energy Technology Data Exchange (ETDEWEB)

    Rockey, J.M.

    1995-06-01

    The Morgantown Energy Technology Center (METC) is conducting experimental testing using a 10-inch diameter fluid-bed gasifier (FBG) and modular hot gas cleanup rig (MGCR) to develop advanced methods for removing contaminants in hot coal gasifier gas streams for commercial development of integrated gasification combined-cycle (IGCC) power systems. The program focus is on hot gas particulate removal and desulfurization technologies that match the temperatures and pressures of the gasifier, cleanup system, and power generator. The purpose of this poster is to present the program objectives and results of the work conducted in cooperation with industrial users and vendors to meet the vision for IGCC of reducing the capital cost per kilowatt to $1050 and increasing the plant efficiency to 52% by the year 2010.

  8. Cleanup of the Millstone 2 spent fuel pool

    International Nuclear Information System (INIS)

    In 1987, Millstone Nuclear Power Station developed a need for cleanup of their Unit 2 spent fuel pool (SFP). This pool had lost normal water chemistry due to high concentrations of TOC and had lost clarity and viewing capabilities required for fuel handling. After reviewing the various technologies that could be utilized to remove these contaminants, Millstone personnel determined that the reverse osmosis (RO) technology was the most reliable, cost effective, and efficient method for resolving their spent fuel pool clarity problems. The complete water restoration program was accomplished in less than 40 days including mobilization, setup, operation, maintenance, and teardown time. Over 1.38 million gallons of water were processed in 24 days of processing. The program resulted in the successful restoration of water clarity and reduction of the contaminants while maintaining a large percentage of the boron in the water. USE achieved TOC rejection rates of up to 99 percent during the program. The results of the program verify that RO technology is a viable alternative for carrying out water restoration programs in the nuclear industry

  9. Rehabilitation of oil polluted soils by bioremediation

    Science.gov (United States)

    Dumitru, Mihail; Parvan, Lavinia; Cioroianu, Mihai; Carmen, Sirbu; Constantin, Carolina

    2015-04-01

    In Romania about 50,000 ha are polluted with oil and/or brine. The main sources of pollution are the different activities using petroleum products: extraction, transport, treatment, refining and distribution. Taking into acoount the large areas and the cost per unit area, bioremediation was tested as a method of rehabilitation. To stimulate the performance of the bioremediation process for a polluted soil (luvisol) by 3% oil, different methods were tested: -application of a bacterial inoculum consisting of species of the Pseudomonas and Arthrobacter genera;- application of two types of absorbent materials, 16 t/ha peat and 16, respectively, 32 kg/ha Zeba (starch-based polymer, superabsorbent); -mineral fertilization with N200P200K200 and 5 different liquid fertilizer based on potassium humates extracted from lignite in a NPK matrix with micronutrients and added monosaccharides (4 and 8%). After 45 days from the treatment (60 days from pollution) the following observations have been noticed: • the application of only bacterial inoculum had no significant effect on the degradation of petroleum hydrocarbons; • the use of 650 l/ha AH-SH fertilizer (potassium humate in a NPK matrix) led to a 47% decrease of TPH (total petroleum hydrocarbons); • the application of 16 t/ha peat, together with the bacterial inoculum and the AH-SG2 liquid fertilizer (containing humates of potassium in a NPK matrix with microelements and 8% monosaccharides, in which the nitrogen is amide form) led to a 50% decrease of the TPH content; • the application of 16 kg/ha Zeba absorbent together with bacterial inoculum and 650 l/ha AH-SG1 liquid fertilizer (containing humates of potassium in a NPK matrix with microelements and 4% monosaccharide in which the nitrogen is in amide form) led to a 57% decrease of the TPH content; • the application of 32 kg/ha Zeba absorbent, together with the AH-SG2 fertilizer, led to a 58% decrease of the TPH content.

  10. Bioavailability: implications for science/cleanup policy; FINAL

    International Nuclear Information System (INIS)

    This paper examines the role of bioavailability in risk assessment and cleanup decisions. Bioavailability refers to how chemicals ''behave'' and their ''availability'' to interact with living organisms. Bioavailability has significant implications for exposure risks, cleanup goals, and site costs. Risk to human health and the environment is directly tied to the bioavailability of the chemicals of concern

  11. Architecture synthesis basis for the Hanford Cleanup system: First issue

    International Nuclear Information System (INIS)

    This document describes a set of candidate alternatives proposed to accomplish the Hanford Cleanup system functions defined in a previous work. Development of alternatives is part of a sequence of system engineering activities which lead to definition of all the products which, when completed, accomplish the cleanup mission. The alternative set is developed to functional level four or higher depending on need

  12. Fungal Laccases and Their Applications in Bioremediation

    Directory of Open Access Journals (Sweden)

    Buddolla Viswanath

    2014-01-01

    Full Text Available Laccases are blue multicopper oxidases, which catalyze the monoelectronic oxidation of a broad spectrum of substrates, for example, ortho- and para-diphenols, polyphenols, aminophenols, and aromatic or aliphatic amines, coupled with a full, four-electron reduction of O2 to H2O. Hence, they are capable of degrading lignin and are present abundantly in many white-rot fungi. Laccases decolorize and detoxify the industrial effluents and help in wastewater treatment. They act on both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants, and they can be effectively used in paper and pulp industries, textile industries, xenobiotic degradation, and bioremediation and act as biosensors. Recently, laccase has been applied to nanobiotechnology, which is an increasing research field, and catalyzes electron transfer reactions without additional cofactors. Several techniques have been developed for the immobilization of biomolecule such as micropatterning, self-assembled monolayer, and layer-by-layer techniques, which immobilize laccase and preserve their enzymatic activity. In this review, we describe the fungal source of laccases and their application in environment protection.

  13. Response of Archaeal Communities in Beach Sediments to Spilled Oil and Bioremediation

    OpenAIRE

    Röling, Wilfred F. M.; Couto de Brito, Ivana R.; Swannell, Richard P. J.; Head, Ian M.

    2004-01-01

    While the contribution of Bacteria to bioremediation of oil-contaminated shorelines is well established, the response of Archaea to spilled oil and bioremediation treatments is unknown. The relationship between archaeal community structure and oil spill bioremediation was examined in laboratory microcosms and in a bioremediation field trial. 16S rRNA gene-based PCR and denaturing gradient gel analysis revealed that the archaeal community in oil-free laboratory microcosms was stable for 26 day...

  14. Superfund at work: Hazardous waste cleanup efforts nationwide, fall 1992. (Wide Beach section of Brant, New York)

    International Nuclear Information System (INIS)

    Wide-spread contamination of polychlorinated biphenyls (PCBs) threatened the Wide Beach section of Brant, New York, a popular vacation resort. EPA's Superfund program effectively completed a permanent cleanup of Wide Beach in the span of one year. Other highlights included: a new and innovative technology to remove PCB contamination; reduction of PCBs to one-fifth of acceptable levels; temporary relocation of residents who were concerned for their health while cleanup activities took place; newly paved roads and driveways, re-landscaped yards, and a new storm sewer system; and restoration of ecologically sensitive wetlands. EPA's achievements significantly reduced PCB risks at Wide Beach, and left a satisfied community in Brant

  15. Bioremediation evaluation of surface soils contaminated with organic compounds

    International Nuclear Information System (INIS)

    This paper presents background information on bioremediation; information on biotechnologies that have been proven in other industries and that may be applicable to the natural gas industry; a protocol for assessing the feasibility of bioremediation; and, some preliminary results on some soils that were evaluated using the protocol. Background information related to natural gas production and processing sites and chemicals that are typically used are presented because both are important preliminary feasibility screening criteria. Applications of bioremediation to sites with similar chemicals such as refineries, wood treating plants, and former manufactured gas plants (MGP's) have been used for approximately 30 years, however bioremediation is not widely used to treat wellhead sites or natural gas production and processing sites. Examples of applications of bioremediation to non-natural gas industry sites are presented and the similarities, primarily chemical, are presented. The GRI developed an Accelerated Biotreatability Protocol for former MGP sites and it is currently being modified for application to the Exploration and Production (E and P) industry. The Accelerated Treatability Protocol is a decision-making framework to evaluate the potential full-scale biological treatment options. Preliminary results from some soils collected and evaluated using the protocol are presented

  16. Oil bioremediation processes in Brazilian marine environments : laboratory simulations

    International Nuclear Information System (INIS)

    Bioremediation methods have been used in Brazil to remediate contaminated soils from refinery residues. In particular, bioremediation is a process that can reduce the amount of oil that reaches shorelines, by enhancing natural biodegradation. This presentation presents the results of a laboratory study in which seawater contaminated with light crude oil was bioremediated in a period of 28 days using NPK fertilizer. Whole oil gas chromatography and gas chromatography-mass spectrometry analyses of the hydrocarbon fractions were used to determine the extent of oil biodegradation. It was determined that natural degradation occurred in the first 4 days, and mostly through the evaporation of light end n-alkanes. Biodegradation of n-alkanes was found to be most effective after 7 days, and no changes were observed in the relative abundance of steranes and triterpanes. It appears that the addition of NPK nutrient reduces the biodegradation potential of polyaromatic compounds. Seawater samples were also measured to determine the efficiency of bioremediation. The use of NPK fertilizer resulted in higher toxicity after 14 days probably due to the creation of metabolites as polyaromatic compounds biodegrade. Non toxic levels were found to be reestablished after 28 days of bioremediation. 16 refs., 4 tabs., 6 figs

  17. Saudis map $450 million gulf spill cleanup

    International Nuclear Information System (INIS)

    This paper reports on Saudi Arabia which has earmarked about $450 million to clean up Persian Gulf beaches polluted by history's worst oil spills, created during the Persian Gulf crisis. Details of the proposed cleanup measures were outlined by Saudi environmental officials at a seminar on the environment in Dubai, OPEC News Agency reported. The seminar was sponsored by the Gulf Area Oil Companies Mutual Aid Organization, an environmental cooperative agency set up by Persian Gulf governments. Meantime, a Saudi government report has outlined early efforts designed to contain the massive oil spills that hit the Saudi coast before oil could contaminate water intakes at the huge desalination plants serving Riyadh and cooling water facilities at Al Jubail

  18. Improving oiled shoreline cleanup with COREXIT 9580

    Energy Technology Data Exchange (ETDEWEB)

    Fiocco, R.J.; Lessard, R.R. [Exxon Research and Engineering Co., Florham Park, NJ (United States); Canevari, G.P. [G.P. Canevari Associates, Cranford, NJ (United States)

    1996-08-01

    The cleanup of oiled shorelines has generally been by mechanical, labor-intensive means. The use of a chemical shoreline cleaner to assist in water-flushing oil from the surfaces can result in more complete and more rapid cleaning. Not only is the cleaning process more efficient, but it can also be less environmentally damaging since there is potentially much less human intrusion and stress on the biological community. This paper describes research and applications of COREXIT 9580 shoreline cleaner for treatment of oiled shorelines, including four recent applications in Puerto Rico, Bermuda, Texas and Nova Scotia. Research work on shoreline vegetation, such as mangroves, has also demonstrated the potential use of this product to save and restore oiled vegetation.

  19. Helping with the clean-up

    International Nuclear Information System (INIS)

    Successes in public involvement efforts for nuclear waste management are so few that they deserve careful documentation and analysis. This paper chronicles the goals, process, problems and outcomes of one such success, the Northwest Defense Waste Citizens Forum (CF), created by the DOE-Richland manager in 1986 to advise DOE on its plans for nuclear waste disposal and cleanup of the Hanford site n eastern Washington state. In the evolving, often-controversial, highly-visible area of agency-public interactions, citizen task forces (TFs) have been shown to be useful in developing public policy at the local level. Making them work at the state level is more problematic. This case shows that a diverse, two-state citizen group can make significant contributions to complex EIS evaluations with heavy technical components. The CFs principal contribution to public policy was communication of its findings to business and professional groups, to area political representatives and state agencies, thereby laying the ground work for refocusing the Northwest upon the need for action on DW cleanup at Hanford. In going well beyond NEPA requirements for public involvement in agency decision making, DOE-Richland demonstrated innovative ways of dealing with the difficult issues of public confidence and public trust by means of agency openness, responsiveness to citizen needs for information, and good faith two-way communication. The success of this pro-active DOE initiative was due to many factors including selecting the right issue (existing wastes), structuring the CF at a broad, regional level, and intensive implementation of trust-building strategies

  20. PROSPECTIVE IN-SILCO APPROACH IN BIOREMEDIATION OF PETROLEUM HYDROCARBON: SUCCESS SO FAR

    OpenAIRE

    Mohammad Nadeem Khan; Ragini Gothawal; Rituja Saxena

    2013-01-01

    Bioremediation has the potential to reduce contaminated environment inexpensively yet effectively. But, the lack of information about the factors controlling the growth and metabolism in microorganisms in polluted environment often limits its implementation. However rapid advances in the understanding of bioremediation are on the horizon. With advances in biotechnology, bioremediation has become one of the most rapidly developing fields of environmental restoration, utilizing microorganisms ...

  1. A laboratory feasibility study on a new electrokinetic nutrient injection pattern and bioremediation of phenanthrene in a clayey soil

    International Nuclear Information System (INIS)

    Electrokinetic (EK) injection has recently been proposed to supply nutrients and electron acceptors in bioremediation of low permeable soils. However, effective pH control and uniform injection of inorganic ions have yet to be developed. The present study investigated a new EK injection pattern, which combined electrolyte circulation and electrode polarity reversal on a clayey soil. Soil pH could be controlled ranging from 7.0 to 7.6 by circulating the mixed electrolyte at a suitable rate (800 mL/h in this study) without any buffer. Ammonium and nitrate ions were distributed more uniformly in soil by electrode polarity reversal. The developed electrokinetic injection technology was applied primarily in bioremediation of phenanthrene contaminated soil. Over 80% of the initial 200 mg/kg phenanthrene in soil could be removed in 20 d, and greater phenanthrene removal was achieved using electrode polarity reversal. Hence, the present study provides a promising electrokinetic injection technology for bioremediation of contaminated soils.

  2. Bioremediation of soil heavily contaminated with crude oil and its products: composition of the microbial consortium

    Directory of Open Access Journals (Sweden)

    JELENA S. MILIĆ

    2009-04-01

    Full Text Available Bioremediation, a process that utilizes the capability of microorganism to degrade toxic waste, is emerging as a promising technology for the treatment of soil and groundwater contamination. The technology is very effective in dealing with petroleum hydrocarbon contamination. The aim of this study was to examine the composition of the microbial consortium during the ex situ experiment of bioremediation of soil heavily contaminated with crude oil and its products from the Oil Refinery Pančevo, Serbia. After a 5.5-month experiment with biostimulation and bioventilation, the concentration of the total petroleum hydrocarbons (TPH had been reduced from 29.80 to 3.29 g/kg (89 %. In soil, the dominant microorganism population comprised Gram-positive bacteria from actinomycete-Nocardia group. The microorganisms which decompose hydrocarbons were the dominant microbial population at the end of the process, with a share of more than 80 % (range 107 CFU/g. On the basis of the results, it was concluded that a stable microbial community had been formed after initial fluctuations.

  3. A demonstration of in situ bioremediation of CCL4 at the Hanford Site

    International Nuclear Information System (INIS)

    The United States Department of Energy's VOC-Arid Integrated Demonstration Program (VOC/Arid-ID) is developing an in situ bioremediation technology to meet the need for a cost-effective method to clean ground water contaminated with chlorinated solvents, nitrates, or other organic and inorganic contaminants. Currently, a field demonstration of the technology is being conducted at the Hanford site in southeastern Washington state. The goal of this demonstration is to stimulate native denitrifying microorganisms to destroy carbon tetrachloride and nitrate. Contaminants are destroyed by mixing an electron donor (acetate) and an electron acceptor (nitrate) into the aquifer, using a matrix of recirculation wells. This work also evaluates the effectiveness.of applying scale-up techniques developed in the petrochemical industry to bioremediation. The scale-up process is based on combining fluid mixing and transport predictions with numerical descriptions for biological transport and reaction kinetics. This paper focuses on the necessity of this design approach to select nutrient feeding strategies that limit biofouling while actively destroying contaminants

  4. BIOREMEDIATION - TECHNOLOGY FOR DECONTAMINATION OF SOILS POLLUTED WITH PETROLEUM HYDROCARBONS

    Directory of Open Access Journals (Sweden)

    Irina-Ramona PECINGINĂ

    2013-05-01

    Full Text Available The pollution of soil with petroleum hydrocarbons prevents unfolding processes ofwater infiltration in soil, its circulation and the exchanges of the gaseous substances with theatmosphere. The biodegradation speed of the pollutants by the microorganisms is influenced ofsome factors: nutrients, soil type, humidity, temperature, pH, the type and the metabolism of themicroorganisms. The spill of the crude oil in the soil results in numerical growth of bacteriapopulations, with a concomitant reduction in their diversity, respectively with the predominantspecies that degrade hydrocarbons to simpler compounds, determining their gradualdisappearance.

  5. Bioremediation: Technology for treating hydrocarbon-contaminated wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Towprayoon, S.; Kuntrangwattana, S. [King Mongkut`s Institute of Technology, Bangkok (Thailand)

    1996-12-31

    Cutting oil wastewater from an iron and steel factory was applied to the soil windrow. Self-remediation was then compared with remediation with acclimatized indigenous microbes. The incremental reduction rate of the microorganisms and hydrocarbon-degradable microbes was slower in self-remediation than in the latter treatment. Within 30 days, when the acclimatized indigenous microbes were used, there was a significant reduction of the contaminated hydrocarbons, while self-remediation took longer to reduce to the same concentration. Various nitrogen sources were applied to the soil pile, namely, organic compost, chemical fertilizer, ammonium sulfate, and urea. The organic compost induced a high yield of hydrocarbon-degradable microorganisms, but the rate at which the cutting oil in the soil decreased was slower than when other nitrogen sources were used. The results of cutting oil degradation studied by gas chromatography showed the absence of some important hydrocarbons. The increment of the hydrocarbon-degradable microbes in the land treatment ecosystem does not necessarily correspond to the hydrocarbon reduction efficiency. 3 refs., 3 figs.

  6. BIOREMEDIATION - TECHNOLOGY FOR DECONTAMINATION OF SOILS POLLUTED WITH PETROLEUM HYDROCARBONS

    OpenAIRE

    Irina-Ramona PECINGINĂ; Daniela CÎRŢÎNĂ

    2013-01-01

    The pollution of soil with petroleum hydrocarbons prevents unfolding processes ofwater infiltration in soil, its circulation and the exchanges of the gaseous substances with theatmosphere. The biodegradation speed of the pollutants by the microorganisms is influenced ofsome factors: nutrients, soil type, humidity, temperature, pH, the type and the metabolism of themicroorganisms. The spill of the crude oil in the soil results in numerical growth of bacteriapopulations, with a concomitant redu...

  7. Risk assessment applications for determining cleanup limits for uranium in treated and untreated soils

    International Nuclear Information System (INIS)

    Uranium-contaminated soils are present at various locations across the US where uranium was processed for nuclear fuels or atomic weapons. Important issues relative to such contamination include the assessment of potential health risks associated with human exposures to the residual uranium and the determination of safe levels of uranium in soils that have been treated by a given technology. This paper discusses various risk assessment considerations that must be dealt with when developing cleanup limits for uranium in treated and untreated soils. Key issues addressed include alternative land use scenarios, potential exposure pathways, characterization of the bioavailability of uranium compounds in food and water, a brief overview of health risks associated with uranium and its daughter products as well as a summary of considerations for development of risk-based cleanup limits for uranium in soils

  8. Radiological assessment in case of an incident at the hot cells clean-up

    Directory of Open Access Journals (Sweden)

    Dragolici Cristian A.

    2014-01-01

    Full Text Available The clean-up and decontamination of the hot cells will be performed in the second phase of the WWR-S research reactor decommissioning. Identification of possible incidents or accidents is the key element in radiological assessment and prevention. As major incident it was considered a fire burst that occurred during the progress of the clean-up operations. The postulated incident has, as a consequence, thick smoke generation from the burned radioactive material and the dispersion of this material in the environment through the technological ventilation system and the evacuation chimney. From the performed analysis it can be seen that in the case of an incident to the reactor hot cells, an operator engaged in intervention operations could take an effective dose of 5.29 Sv per event, coming from both external and internal exposure. Such an incident, if it happens, would be classified of level 3 on the INES scale.

  9. Risk assessment applications for determining cleanup limits for uranium in treated and untreated soils

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, A.Q. [Oak Ridge National Lab., TN (United States); Layton, D.W. [Lawrence Livermore National Lab., CA (United States); Rutz, E.E. [Univ. of Cincinnati, OH (United States)

    1994-06-01

    Uranium-contaminated soils are present at various locations across the US where uranium was processed for nuclear fuels or atomic weapons. Important issues relative to such contamination include the assessment of potential health risks associated with human exposures to the residual uranium and the determination of safe levels of uranium in soils that have been treated by a given technology. This paper discusses various risk assessment considerations that must be dealt with when developing cleanup limits for uranium in treated and untreated soils. Key issues addressed include alternative land use scenarios, potential exposure pathways, characterization of the bioavailability of uranium compounds in food and water, a brief overview of health risks associated with uranium and its daughter products as well as a summary of considerations for development of risk-based cleanup limits for uranium in soils.

  10. Use of bioremediation to resolve a petroleum hydrocarbon contamination lawsuit

    International Nuclear Information System (INIS)

    Bioremediation was selected to remediate a public works site in the South Bay of San Diego County, California. The soil and groundwater at this site was contaminated with petroleum hydrocarbons and was the subject of extensive litigation. The parties agreed to resolve the dispute by using a combination of bioremediation and excavation/disposal. This paper includes an overview of the legal and technical issues involved in addressing the problems that were encountered and how those problems were solved. A model is presented for economically resolving environmental disputes in which the parties jointly agree to remediation of a site using bioremediation or similar techniques. This case study addresses the problems encountered because of the differing needs and goals of the legal and scientific communities. Notwithstanding the conflicts, it is demonstrated that the parties can, in most cases, work together toward remediation and resolution

  11. Physical modeling of shoreline bioremediation: Continuous flow mesoscale basins

    International Nuclear Information System (INIS)

    This paper describes the design and use of continuous flow basin beach models in the study of bioremediation processes, and gives some results from an experiment designed to study the effects of different strategies for adding fertilizers. The continuous flow experimental basin system simulates an open system with natural tidal variation, wave action, and continuous supply and exchange of seawater. Biodegradation and bioremediation processes can thus be tested close to natural conditions. Results obtained using the models show a significant enhancement of biodegradation of oil in a sediment treated with an organic nutrient source, increased nutrient level in the interstitial water, and sediment microbial activity. These physical models gives biologically significant results, and can be used to simulate biodegradation and bioremediation in natural systems

  12. Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Bollag, J.M. [Penn State University, University Park, PA (USA). Soil Biochemical Lab.

    2003-07-01

    Biosurfactants are surface-active compounds synthesized by it wide variety of micro-organisms. They are molecules that have both hydrophobic and hydrophilic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures - lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs) can be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released to the environment its a result of spillage of oil and byproducts of coal treatment processes. The low water solubility of PAHs limits their availability to microorganisms, which is a potential problem for bioremediation of PAH-contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of PAHs has potential applications in bioremediation.

  13. Technology cottons on to oil spill clean-ups

    International Nuclear Information System (INIS)

    Characteristics of Oil Gator(TM) a plant fibre absorbent, chemically modified to encourage biodegradation of hydrocarbons by indigenous bacteria are discussed. The petrophyllic bacteria are safe to humans and animals and are environmentally benign. They utilize hydrocarbons as a food source when activated by air or moisture. Oil Gator(TM) works by encapsulating the oil; ammonium sulphate, an effective delayed-reaction nitrogen source, renders the absorbed oil less flammable. The cotton-based raw material is readily available, which is another advantage over peat or clay which require mining and stripping. Oil Gator(TM) can also be incinerated, and is designed to allow safe handing and begin neutralization of most acid spills quickly and efficiently. Disposal of the saturated Acid Gator has to be carried out in compliance with the appropriate government regulations for the particular acids absorbed

  14. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Wood Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for treatment of wood-derived syngas for use in the synthesis of liquid fuels. Two different 2,000 metric tonne per day gasification schemes, a low-pressure, indirect system using the gasifier, and a high-pressure, direct system using gasification technology were evaluated. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  15. Tephra fall clean-up in urban environments

    Science.gov (United States)

    Hayes, Josh L.; Wilson, Thomas M.; Magill, Christina

    2015-10-01

    Tephra falls impact urban communities by disrupting transport systems, contaminating and damaging buildings and infrastructures, and are potentially hazardous to human health. Therefore, prompt and effective tephra clean-up measures are an essential component of an urban community's response to tephra fall. This paper reviews case studies of tephra clean-up operations in urban environments around the world, spanning 50 years. It identifies methods used in tephra clean-up and assesses a range of empirical relationships between level of tephra accumulation and clean-up metrics such as collected tephra volume, costs, and duration of operations. Results indicate the volume of tephra collected from urban areas is proportional to tephra accumulation. Urban areas with small tephra accumulations (1,000 m3/km2 or an average of 1 mm thickness) may collect 50,000 m3/km2 or an average of 50 mm thickness) remove up to 80%. This relationship can inform impact and risk assessments by providing an estimate of the likely response required for a given tephra fall. No strong relationship was found between tephra fall accumulation and clean-up cost or duration for urban environments which received one-off tephra falls, suggesting that these aspects of tephra fall clean-up operations are context specific. Importantly, this study highlights the advantage of effective planning for tephra clean-up and disposal in potentially exposed areas.

  16. Rapid bioremediation processes: Theory and application

    International Nuclear Information System (INIS)

    Bioremediation generally involves stimulating microorganisms (bacteria and fungi) to grow and in the process of growth, degrade hazardous waste. A variety of contaminant compounds can be readily biodegraded by both pure cultures of bacteria and by bacteria under field conditions. These compounds include petroleum and its distillates (gasoline, diesel fuel, etc.), aromatic hydrocarbons (BTEX and PAHS), PCBs (most congeners), chlorinated aeromatics (TCE and dichloroethane) and chlorinated aromatics (polychlorophenols and chlorobenzene). While the metabolic pathways for biodegradation are fairly distinct for each class of contaminants, the pathways generally converge on a central metabolite, acetyl-CoA, which can then be directly converted to CO2 or microbial biomass. Organic compounds are most rapidly degraded aerobically. SafeSoil is a proprietary additive and biotreatment process. The additive contains inorganic nutrients (primarily N and P) and organic nutrients (simple sugars, protein and more complex cometabolites) which, upon addition to soil, stimulate natural microbial (primarily bacterial) populations to grow and degrade the contaminants of interest. Field applications of SafeSoil at Channel Gateway Development Project in Marina del Rey, California, validated that the SafeSoil treatment process effectively reduced TPH and BTEX concentrations for petroleum-contaminated soils to below action levels in as few as 4 days; the median curing time was 14 days. Longer chain hydrocarbons required more time, up to 36 days for TPH. Aerobic soil bacterial populations increased up to five-fold in response to treatment and returned to near pretreatment levels soon after the contaminant level was depleted. Volatilization of organics was measured and was found to be insignificant when compared to the total contaminant load indicating that the majority of the hydrocarbon contaminants were removed by biological means

  17. Bioremediation of Copper Contaminated Soil Using Bacteria

    Directory of Open Access Journals (Sweden)

    Parul Bhatt Kotiyal

    2013-04-01

    Full Text Available Bioremediation is the use of living organisms (primarily microorganisms for removal of a pollutant from the biosphere. It relies on biological processes to minimize an unwanted environment impact of the pollutants. The microorganisms in particular have the abilities to degrade, detoxify and even accumulate the harmful organic as well as inorganic compounds. Five soil samples were collected from Selaqui industrial area, from different places at a depth of 0-15 cm. These soil samples were subjected to dilution (1:10, then from these dilution 4 and 5 were used for inoculation. Nutrient agar plates were prepared to be used as media. Replica of each dilution was prepared. After 24 hours of incubation at 28 degree centigrade bacterial colonies were observed on the plates. These cultures were purified to get 10 bacterial cultures. Further these cultures were inoculated in 10ml of nutrient broths each and after dense growth were inoculated in 10gm of soil samples in petriplates and were incubated for four days and then copper was estimated by Atomic Absorption Spectrometry technique and compared with the levels of copper obtained that were not inoculated with bacterial strains. The soil samples collected are all alkaline in nature; all the 10 isolated bacteria are gram negative and are chained cocci in structure. Sample 1 and 2, both dilutions have shown reduction in the amount of copper as compared to original soil samples without bacterial inoculation. According to this research sample 1 and sample 2 have shown reduction in the copper levels as compared to the raw soil samples that is without bacterial inoculation in them.

  18. A breakthrough in flue gas cleanup, CO2 mitigation and H2S removal

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Wolf; Wasas, James; Stenger, Raymond; Howell, Evan

    2010-09-15

    SWAPSOL Corp. is developing commercial processes around a newly discovered reaction that reduces H2S below detectable levels while reacting with CO2 to form water, sulfur and carsuls, a carbon-sulfur polymer. The Stenger-Wasas Process (SWAP) stands to simplify sulfur removal technology as it consumes CO2 in an exothermic reaction. The SWAP has applications in landfill, sour, flue and Claus tail gas cleanup and may replace Claus technology. Destruction of waste hydrocarbons provides a source of H2S. The primary reactions and variants have been independently verified and the chemical kinetics determined by a third party laboratory.

  19. Eye pathologies of Chernobyl clean-up workers

    International Nuclear Information System (INIS)

    Diseases of the nervous system and sense organs have become the most significant pathologies of Chernobyl clean-up workers during the last four years. The aim of this work was to evaluate the incidence of eye disorders among Chernobyl clean-up workers to provide more information for health specialists. During the last 10 years, the most common eye pathology has been angiopathia retinae, followed by myopia and cataracta. Statistical analyses showed that the clean-up workers have higher risk to develop angiopathia retinae than the control group. (author)

  20. Tritium research laboratory cleanup and transition project final report

    International Nuclear Information System (INIS)

    This Tritium Research Laboratory Cleanup and Transition Project Final Report provides a high-level summary of this project's multidimensional accomplishments. Throughout this report references are provided for in-depth information concerning the various topical areas. Project related records also offer solutions to many of the technical and or administrative challenges that such a cleanup effort requires. These documents and the experience obtained during this effort are valuable resources to the DOE, which has more than 1200 other process contaminated facilities awaiting cleanup and reapplication or demolition

  1. Tritium research laboratory cleanup and transition project final report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.J.

    1997-02-01

    This Tritium Research Laboratory Cleanup and Transition Project Final Report provides a high-level summary of this project`s multidimensional accomplishments. Throughout this report references are provided for in-depth information concerning the various topical areas. Project related records also offer solutions to many of the technical and or administrative challenges that such a cleanup effort requires. These documents and the experience obtained during this effort are valuable resources to the DOE, which has more than 1200 other process contaminated facilities awaiting cleanup and reapplication or demolition.

  2. Assessing mixtures risks for cleanup and stewardship

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) is responsible for addressing contamination from past research, production, and disposal activities at over 100 sites and facilities across the country. Use of emerging science to assess risks for these facilities is the key to defining appropriate solutions. Safely managing contamination is a priority to protect workers in the near term, and sustained protection is a priority for local communities over the long term. The Department conducts its environmental management program with input from a number of groups who have expressed concern about the safety of DOE sites over time and the possible conversion of some lands to other uses. In general, past facility activities and disposal operations have contaminated about 10% of the total collective area of DOE sites while surrounding lands have served as buffer zones. Portions of several sites have been released for other uses, such as wildlife preserves. Soil, surface water, and groundwater have been contaminated in most instances, and on-site waste disposal is targeted for many sites. Wastes and contamination that will remain in the environment are at the heart of ongoing future use and long-term management deliberations. For this reason, oversight groups and local citizens are scrutinizing the risk assessments being conducted to support decisions on final cleanup and long-term stewardship. Contaminants exist throughout the world not as individual chemicals but as combinations. The standard risk assessment process broadly applied to support cleanup decisions for contaminated sites is based on single-chemical analyses that do not consider joint toxicity. That is, possible nonadditive effects (commonly termed synergistic or antagonistic) of multiple exposures to multiple chemicals are not generally addressed. The U.S. Environmental Protection Agency (EPA) has been developing a process to assess risks of multiple chemicals (EPA 1990, 2000), but it is not yet being applied to address

  3. Central Plateau Cleanup at DOE's Hanford Site - 12504

    International Nuclear Information System (INIS)

    The discussion of Hanford's Central Plateau includes significant work in and around the center of the Hanford Site - located about 7 miles from the Columbia River. The Central Plateau is the area to which operations will be shrunk in 2015 when River Corridor cleanup is complete. This work includes retrieval and disposal of buried waste from miles of trenches; the cleanup and closure of massive processing canyons; the clean-out and demolition to 'slab on grade' of the high-hazard Plutonium Finishing Plant; installation of key groundwater treatment facilities to contain and shrink plumes of contaminated groundwater; demolition of all other unneeded facilities; and the completion of decisions about remaining Central Plateau waste sites. A stated goal of EM has been to shrink the footprint of active cleanup to less than 10 square miles by 2020. By the end of FY2011, Hanford will have reduced the active footprint of cleanup by 64 percent exceeding the goal of 49 percent. By 2015, Hanford will reduce the active footprint of cleanup by more than 90 percent. The remaining footprint reduction will occur between 2015 and 2020. The Central Plateau is a 75-square-mile region near the center of the Hanford Site including the area designated in the Hanford Comprehensive Land Use Plan Environmental Impact Statement (DOE 1999) and Record of Decision (64 FR 61615) as the Industrial-Exclusive Area, a rectangular area of about 20 square miles in the center of the Central Plateau. The Industrial-Exclusive Area contains the 200 East and 200 West Areas that have been used primarily for Hanford's nuclear fuel processing and waste management and disposal activities. The Central Plateau also encompasses the 200 Area CERCLA National Priorities List site. The Central Plateau has a large physical inventory of chemical processing and support facilities, tank systems, liquid and solid waste disposal and storage facilities, utility systems, administrative facilities, and groundwater monitoring

  4. Bioremediation of uranium contaminated soils and wastes

    International Nuclear Information System (INIS)

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs

  5. Investigation of post hydraulic fracturing well cleanup physics in the Cana Woodford Shale

    Science.gov (United States)

    Lu, Rong

    Hydraulic fracturing was first carried out in the 1940s and has gained popularity in current development of unconventional resources. Flowing back the fracturing fluids is critical to a frac job, and determining well cleanup characteristics using the flowback data can help improve frac design. It has become increasingly important as a result of the unique flowback profiles observed in some shale gas plays due to the unconventional formation characteristics. Computer simulation is an efficient and effective way to tackle the problem. History matching can help reveal some mechanisms existent in the cleanup process. The Fracturing, Acidizing, Stimulation Technology (FAST) Consortium at Colorado School of Mines previously developed a numerical model for investigating the hydraulic fracturing process, cleanup, and relevant physics. It is a three-dimensional, gas-water, coupled fracture propagation-fluid flow simulator, which has the capability to handle commonly present damage mechanisms. The overall goal of this research effort is to validate the model on real data and to investigate the dominant physics in well cleanup for the Cana Field, which produces from the Woodford Shale in Oklahoma. To achieve this goal, first the early time delayed gas production was explained and modeled, and a simulation framework was established that included all three relevant damage mechanisms for a slickwater fractured well. Next, a series of sensitivity analysis of well cleanup to major reservoir, fracture, and operational variables was conducted; five of the Cana wells' initial flowback data were history matched, specifically the first thirty days' gas and water producing rates. Reservoir matrix permeability, net pressure, Young's modulus, and formation pressure gradient were found to have an impact on the gas producing curve's shape, in different ways. Some moderately good matches were achieved, with the outcome of some unknown reservoir information being proposed using the

  6. Developments in Bioremediation of Soils and Sediments Pollutedwith Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.; Tabak, Henry H.

    2007-03-15

    Bioremediation of metals and radionuclides has had manyfield tests, demonstrations, and full-scale implementations in recentyears. Field research in this area has occurred for many different metalsand radionuclides using a wide array of strategies. These strategies canbe generally characterized in six major categories: biotransformation,bioaccumulation/bisorption, biodegradation of chelators, volatilization,treatment trains, and natural attenuation. For all field applicationsthere are a number of critical biogeochemical issues that most beaddressed for the successful field application. Monitoring andcharacterization parameters that are enabling to bioremediation of metalsand radionuclides are presented here. For each of the strategies a casestudy is presented to demonstrate a field application that uses thisstrategy.

  7. Thermal cleanups using dynamic underground stripping and hydrous pyrolysis oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Aines, R D; Knauss, K; Leif, R; Newmark, R L

    1999-05-01

    In the early 1990s, in collaboration with the School of Engineering at the University of California, Berkeley, Lawrence Livermore National Laboratory developed dynamic underground stripping (DUS), a method for treating subsurface contaminants with heat that is much faster and more effective than traditional treatment methods. more recently, Livermore scientists developed hydrous pyrolysis/oxidation (HPO), which introduces both heat and oxygen to the subsurface to convert contaminants in the ground to such benign products as carbon dioxide, chloride ion, and water. This process has effectively destroyed all contaminants it encountered in laboratory tests. With dynamic underground stripping, the contaminants are vaporized and vacuumed out of the ground, leaving them still to be destroyed elsewhere. Hydrous pyrolysis/oxidation technology takes the cleanup process one step further by eliminating the treatment, handling, and disposal requirements and destroying the contamination in the ground. When used in combination, HPO is especially useful in the final polishing of a site containing significant free-product contaminant, once the majority of the contaminant has been removed.

  8. NASA Remediation Technology Collaboration Development Task, Overview and Project Summaries

    Science.gov (United States)

    Romeo, James G.

    2014-01-01

    An overview presentation of NASA's Remediation Technology Collaboration Development Task including the following project summaries: in situ groundwater monitor, in situ chemical oxidation, in situ bioremediation, horizontal multi-port well, and high resolution site characterization.

  9. Reactor cavity cleanup system shielded filter installation

    International Nuclear Information System (INIS)

    The Seabrook Station reactor cavity cleanup system provides a flow path for refueling pool purification and drain down during plant refueling evolutions. The original system design included refueling pool surface skimmers and drains, a skimmer pump, an unshielded duplex basket type pump suction strainer and interconnecting stainless steel piping. The piping design utilized socket welded joints in small bore pipe with diaphragm values installed in the horizontal pipe runs downstream of the skimmer pump. The previously installed unshielded strainer in addition to the skimmer pump downstream piping components were determined to be inconsistent with Seabrook's proactive approach to dose reduction. To be consistent with ALARA (As Low As Reasonably Achievable) policy, a plant design change was authorized to install a lead shielded filter unit as a replacement for the existing duplex strainer. This filter unit, which utilizes multiple micron rating disposable basket type cartridges, has a threefold function of protecting the skimmer pump from large solids, providing bulk filtration of activated corrosion products from the refueling water in order to minimize CRUD buildup in downstream components, and enabling retrieval of foreign material drawn into the refueling pool drains

  10. Oil spill cleanup for soft sediments

    International Nuclear Information System (INIS)

    A series of experimental trials are in progress to investigate the effectiveness and consequences of oil spill cleanup methods for areas of mud flats and salt marsh. Trials have shown that wheeled and tracked vehicles have limited utility. Field measurements of the load bearing capacity of the mud can show where such vehicles may be used. Lightweight hover craft provide a useful means of transport. Shallow-draft boats can have a useful transport role: whether such craft can be used depends on the local topography and tidal regime. The trials showed that practical problems associated with implementing low-pressure flushing operations (lack of water for flushing, recovery of the flushed oil) can be overcome - although the environmental effects have yet to be assessed. The use of straw matting as a sorbent material was also demonstrated. The objective of the first two phases of the project, reported here, was to select workable methods with a view to subsequently employing them in larger-scale trials. The environmental consequences of using the selected methods will be examined in the later trials

  11. Dillingham plan attacks oil spill cleanup problem

    Energy Technology Data Exchange (ETDEWEB)

    1970-07-27

    A detailed scheme has been proposed for combating oil spills in U.S. offshore waters, hopefully moving oil spill control out of its infancy and at least into the toddler stage. In a comprehensive one-year systems study for the American Petroleum Institute (API), the results of which were released this week, Dillingham Environmental Co., studied major past oil spills and analyzed equipment and control techniques currently available to deal with them. The project director and his 5-man group recommend a multicomponent scheme including booms, absorbents, sinking agents, and chemical dispersants for oil containment and cleanup. The first phase, definition of the nature and scope of the problem, includes analysis of past oil spills to determine the basic characteristics of major oil spills; delineation of geographic regions where oil spills are likely to occur; and analysis of how oil spills affect, and are affected by the environment. The Dillingham report examines the effect of past oil spills on the environment. It concludes that isolated oil spills do not appear to present a major environmental threat resulting in lasting damage.

  12. The application of immunoassay testing to monitoring of bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    Ex-situ bioremediation continues to be a cost-effective remediation technology for petroleum contaminated soil. Its wide regulatory acceptance and proven technique has caused many clients to ask for a lump sum cost proposal for employing the technology. This in turn has raised the need to closely monitoring the progress of the degradation process to keep operating costs as low as possible. Traditional laboratory costs for analysis of soils with hydrocarbons has become less expensive, but for 24 turnaround of results, costs are still subject to 100% mark-ups. Yet the ability to obtain the analysis rapidly can assist the environmental professional in modifying oxygen, nutrients and other components that are essential in the degradation process, therefore, minimizing the time required to accomplish the remediation project. This is why the use of immunochemistry-based field methods, which are rapid and cost-effective, are being employed by environmental professionals

  13. SEMINAR PROCEEDINGS: RCRA CORRECTIVE ACTION STABILIZATION TECHNOLOGIES

    Science.gov (United States)

    The seminar publication provides an overview of many technologies that can be used in applying the stabilization concept to RCRA cleanup activities. Technologies discussed include covers, grouting, slurry walls, hydrofracture, horizontal well drilling, a vacuum extraction, and b...

  14. A comparison of bioaugmentation and intrinsic in situ bioremediation of a PAH contaminated site

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAHs) are one of the most common environmental hazards, naturally occurring in petroleum and its by-products. They are encountered at nearly all UST sites, and present an impediment to the use of cost effective intrinsic in situ bioremediation due to their recalcitrant nature. Even bacteria isolated specifically for their ability to degrade PAHs in the laboratory have shown no significant degradative capabilities in the field. This is due to the unique balance that exists at every contaminated site between the microbial ecology, chemical, physical, and environmental factors. Therefore, bacteria indigenous to the site and acclimated to these environmental parameters should be well suited for use in bioaugmentation. Based on this assumption, a new and innovative approach to bioaugmentation has been developed which consists of a series of scientifically-sound, rational steps in the use of this technology. Initially, careful chemical and biological analyses of site samples are conducted using conventional analytical instrumentation and state-of-the-art microbiological, biochemical, and molecular biological techniques. Bacteria from site samples that demonstrate potential PAH degradative capability are isolated. The bacteria are then enriched in culture and re-introduced to the site with appropriate nutrients. Further, this approach encompasses the proposed guidelines for proving the efficacy of in situ bioremediation as set forth by the National Science Foundation. To demonstrate the effectiveness of this approach, data are presented here of a laboratory-scale trial of a PAH contaminated site

  15. Combining Solvent Extraction and Bioremediation for Removing Weathered Petroleum from Contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    WU Guo-Zhong; F.COULON; YANG Yue-Wei; LI Hong; SUI Hong

    2013-01-01

    This study aimed to evaluate the efficacy,practicality and sustainability of a combined approach based on solvent extraction and biodegradation to remediate the soils contaminated with high levels of weathered petroleum hydrocarbons.The soils used in this study were obtained from the Shengli Oilfield in China,which had a long history of contamination with high concentrations of petroleum hydrocarbons.The contaminated soils were washed using a composite organic solvent consisting of hexane and pentane (4:1,v/v) and then bioremediated in microcosms which were bioaugmentated with Bacillus subtilis FQ06 strains and/or rhamnolipid.The optimal solvent extraction conditions were determined as extraction for 20 min at 25 ℃ with solvent-soil ratio of 6:1 (v/w).On this basis,total petroleum hydrocarbon was decreased from 140000 to 14000 mg kg-1,which was further reduced to < 4000 mg kg-1 by subsequent bioremediation for 132 d.Sustainability assessment of this integrated technology showed its good performance for both short-and long-term effectiveness.Overall the results encouraged its application for remediating contaminated sites especially with high concentration weathered hydrocarbons.

  16. Bioremediation of selected contaminants in aquatic environments of the Mississippi River Basin

    International Nuclear Information System (INIS)

    Bioremediation is generally accepted as a long-term and economic treatment option. However, quantitative information on bioremediation and biosorption is required before this option can be adopted successfully. The primary goal of this on-going project is to determine the extent of natural biodegradation of hazardous organics and biosorption of hazardous organics and heavy metals by the consortia of bacteria, fungi, and plants. Methods to enhance the biodegradation process will be studied during the second and third years of this 3-year proposed project. The Devil's Swamp area near Baton Rouge and Bayou St. John in New Orleans have been selected as the first set of test sites. Some samples from Lake Pontchartrain, bordering New Orleans on the north, have also been analyzed. It is expected that many of the contaminants found at the test site(s) are present at other sites of DOE's interest. Further, technology resulting from the proposed research involving enhanced natural biodegradation processes should be transferable to other DOE sites

  17. Remediation of phthalates in river sediment by integrated enhanced bioremediation and electrokinetic process.

    Science.gov (United States)

    Yang, Gordon C C; Huang, Sheng-Chih; Jen, Yu-Sheng; Tsai, Pei-Shin

    2016-05-01

    The objective of this study was to evaluate the feasibility of enhanced bioremediation coupling with electrokinetic process for promoting the growth of intrinsic microorganisms and removing phthalate esters (PAEs) from river sediment by adding an oxygen releasing compound (ORC). Test results are given as follows: Enhanced removal of PAEs was obtained by electrokinetics, through which the electroosmotic flow would render desorption of organic pollutants from sediment particles yielding an increased bioavailability. It was also found that the ORC injected into the sediment compartment not only would alleviate the pH value variation due to acid front and base front, but would be directly utilized as the carbon source and oxygen source for microbial growth resulting in an enhanced degradation of organic pollutants. However, injection of the ORC into the anode compartment could yield a lower degree of microbial growth due to the loss of ORC during the transport by EK. Through the analysis of molecular biotechnology it was found that both addition of an ORC and application of an external electric field can be beneficial to the growth of intrinsic microbial and abundance of microflora. In addition, the sequencing result showed that PAEs could be degraded by the following four strains: Flavobacterium sp., Bacillus sp., Pseudomonas sp., and Rhodococcus sp. The above findings confirm that coupling of enhanced bioremediation and electrokinetic process could be a viable remediation technology to treat PAEs-contaminated river sediment. PMID:26733014

  18. Bioremediation of oil polluted marine sediments: A bio-engineering treatment.

    Science.gov (United States)

    Cappello, Simone; Calogero, Rosario; Santisi, Santina; Genovese, Maria; Denaro, Renata; Genovese, Lucrezia; Giuliano, Laura; Mancini, Giuseppe; Yakimov, Michail M

    2015-06-01

    The fate of hydrocarbon pollutants and the development of oil-degrading indigenous marine bacteria in contaminated sediments are strongly influenced by abiotic factors such as temperature, low oxygen levels, and nutrient availability. In this work, the effects of different biodegradation processes (bioremediation) on oil-polluted anoxic sediments were analyzed. In particular, as a potential bioremediation strategy for polluted sediments, we applied a prototype of the "Modular Slurry System" (MSS), allowing containment of the sediments and their physical-chemical treatment (by air insufflations, temperature regulation, and the use of a slow-release fertilizer). Untreated polluted sediments served as the blank in a non-controlled experiment. During the experimental period (30 days), bacterial density and biochemical oxygen demand were measured and functional genes were identified by screening. Quantitative measurements of pollutants and an eco-toxicological analysis (mortality of Corophium orientale) were carried out at the beginning and end of the experiments. The results demonstrated the high biodegradative capability achieved with the proposed technology and its strong reduction of pollutant concentrations and thus toxicity. PMID:26496620

  19. The concomitant use of indigenous soil bacteria and fungi to enhance the bioremediation of refinery waste

    Energy Technology Data Exchange (ETDEWEB)

    Campos Carvalho, F.J.P. de [Universidade Federal do Parana, Curitiba (Brazil)

    2001-07-01

    Usually, the use of indigenous soil bacteria for the remediation of petroleum-contaminated soils was restricted to the biodegradation of low-molecular weight petroleum hydrocarbons such as gasoline, diesel, fuel oil and jet fuel. The advantage of using indigenous microorganisms is the minimization of the impact of the treatment on the microbial diversity. As a rule,these techniques are also well accepted by the public. Other studies have shown that fungi is successful for the bioremediation of heavier-weight contaminants. The concomitant transformation of low-molecular weight and heavier recalcitrant oil fractions to inorganic and humic form can be accomplished with the concomitant action of bacteria and fungi. The development of a soil biotreatment program using this concomitant technique was performed by PETROBRAS Petroleo Brasileiro S.A. - Refinaria Presidente Getulio Vargas in conjunction with the Universidade Federal do Parana. It resulted in a full-scale technology that allows the degradation of oil waste. Approximately two years of treatment are required to achieve the desired results. The use of standard analytical methods and bioindicators used on the treated soil indicated that the treated soil met the standards for agricultural soil quality. A recent oil spill occurred in Araucaria, Brazil and a bioremediation area was inoculated, and to date the results prove the beneficial effects to be derived from the use of inoculation. Some results were presented in table format. 3 tabs.

  20. Risk-based approach for bioremediation of fuel hydrocarbons at a major airport

    International Nuclear Information System (INIS)

    This paper describes a risk-based approach for bioremediation of fuel-hydrocarbon-contaminated soil and ground water at a major airport in Colorado. In situ bioremediation pilot testing, natural attenuation modeling, and full-scale remedial action planning and implementation for soil and ground water contamination has conducted at four airport fuel farms. The sources of fuel contamination were leaking underground storage tanks (USTs) or pipelines transporting Jet A fuel and aviation gasoline. Continuing sources of contamination were present in several small cells of free-phase product and in fuel residuals trapped within the capillary fringe at depths 15 to 20 feet below ground surface. Bioventing pilot tests were conducted to assess the feasibility of using this technology to remediate contaminated soils. The pilot tests included measurement of initial soil gas chemistry at the site, determination of subsurface permeability, and in situ respiration tests to determine fuel biodegradation rates. A product recovery test was also conducted. ES designed and installed four full-scale bioventing systems to remediate the long-term sources of continuing fuel contamination. Benzene, toluene, ethylbenzene, and xylenes (BTEX) and total petroleum hydrocarbons (TPH) were detected in ground water at concentrations slightly above regulatory guidelines

  1. Fiber optic affinity ligand sensor for quantification of petroleum and bioremediation

    Science.gov (United States)

    Wavering, Thomas A.; Elster, Jennifer L.; Luo, Shufang; Evans, Mishell K.; Pennington, Charles; Van Tassell, Roger; Jones, Mark E.

    2001-02-01

    A novel system incorporating optical fiber long-period grating (LPG)-based sensors for rapid detection of biological targets is presented to address the current need for highly responsive, inexpensive, instrumentation for in-situ subsurface bioremediation technologies. With the appropriate configuration, the LPG sensor is able to measure key environmental parameters. The sensor allows for highly sensitive, real-time, refractive index measurements and by applying affinity coatings to the fiber surface, specific binding of molecules can be accomplished using swellable polymers or ligand-based affinity coatings. Advantages of the sensors have are that they are highly responsive, low profile, and can be serially multiplexed within a single-ended probe-like arrangement. This arrangement can be utilized either locally for site characterization or as a distributed sensor to map contaminant levels at multiple depths over a large area. The performance advantages make optical fiber sensors ideal for detection of environmental targets in drinking water, groundwater, soil, and other complex samples. This paper presents recent long-period grating-based sensor results that demonstrate the potential for bioremediation as well as a variety of other chemical and biological sensing applications.

  2. The Secretary's Vision of the Cleanup Program

    Energy Technology Data Exchange (ETDEWEB)

    Golan, Paul

    2003-02-24

    This paper discusses the Secretary of Energy's vision of the cleanup program. Topics include development a new plan to swiftly clean up serious problems at sites and reduce the risks to human health, safety and the environment.

  3. Cleanup Verification Package for the 300-18 Waste Site

    International Nuclear Information System (INIS)

    This cleanup verification package documents completion of remedial action for the 300-18 waste site. This site was identified as containing radiologically contaminated soil, metal shavings, nuts, bolts, and concrete

  4. IMPROVED SILICA GEL CLEANUP METHOD FOR ORGANOPHOSPHORUS PESTICIDES

    Science.gov (United States)

    Quantitative recovery of some organophosphorus pesticide residues has not been possible with existing silica gel-cleanup procedures. The authors have developed a modification that permits quantitative recovery of all organophosphorus pesticides tested, except those with a carbama...

  5. Geographical information system (GIS) support for shoreline cleanup operations

    International Nuclear Information System (INIS)

    A GIS-based system was introduced which was capable of simplifying map production. The importance of an accurate map in shoreline cleanup operations was emphasized. Maps are used to analyze data and are also an effective communication tool, simplifying work coordination between teams. A GIS-based system allows spatial representations to be used much more extensively in integrating information. Two software products, SHORECLEAN and MAPINFO, were used to create a set of maps to be evaluated. The four main categories of tasks involved in shoreline operations were: (1) to collect data on the state of oiling, (2) to plan cleanup operations, (3) to keep track of cleanup operations, and (4) to monitor long-term changes in the state of the shoreline. It was suggested that electronic data captured directly with the portable computer on site on an oiled shoreline, helps accelerate the cleanup decision making process. 14 refs., 2 tabs., 8 figs

  6. Cleanup of large areas contaminated as a result of a nuclear accident

    International Nuclear Information System (INIS)

    The purposes of the report are to provide an overview of the methodology and technology available to clean up contaminated areas and to give preliminary guidance on matters related to the planning, implementation and management of such cleanups. This report provides an integrated overview of important aspects related to the cleanup of very large areas contaminated as a result of a serious nuclear accident, including information on methods and equipment available to: characterize the affected area and the radioactive fallout; stabilize or isolate the contamination; and clean up contaminated urban, rural and forested areas. The report also includes brief sections on planning and management considerations and the transport and disposal of the large volumes of wastes arising from such cleanups. For the purposes of this report, nuclear accidents which could result in the deposition of decontamination over large areas if the outer containment fails badly include: 1) An accident with a nuclear weapon involving detonation of the chemical high explosive but little, if any, nuclear fission. 2) A major loss of medium/high level liquid waste (HLLW) due to an explosion/fire at a storage site for such waste. 3) An accident at a nuclear power plant (NPP), for example a loss of coolant accident, which results in some core disruption and fuel melting. 4) An accident at an NPP involving an uncontrolled reactivity excursion resulting in the violent ejection of a reactor core material and rupture of the containment building. 117 refs, 32 figs, 12 tabs

  7. Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

    1987-08-01

    On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster dsplays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume II covers papers presented at sessions 5 and 6 on system for the production of synthesis gas, and on system for the production of power. All papers have been processed for inclusion in the Energy Data Base.

  8. Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

    1987-08-01

    On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster displays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume I covers information presented at sessions 1 through 4 on systems for the production of Co-products and industrial fuel gas, environmental projects, and components and materials. Individual papers have been processed for the Energy Data Base.

  9. Use of Additives in Bioremediation of Contaminated Groundwater and Soil

    Science.gov (United States)

    This chapter reviews application of additives used in bioremediation of chlorinated solvents and fuels for groundwater and soil remediation. Soluble carbon substrates are applicable to most site conditions except aquifers with very high or very low groundwater flow. Slow-release ...

  10. Microbial bioremediation of a uranium(VI) contaminated aquifer

    Czech Academy of Sciences Publication Activity Database

    Leigh, M. B.; Cardenas, E.; Wu, W. M.; Uhlík, Ondřej; Carley, J.; Carroll, S.; Gentry, T.; Marsh, T. L.; Zhou, J.; Jardine, P.; Criddle, C. S.; Tiedje, J. M.

    Praha: VŠCHT Praha, 2007 - (Macková, M.; Macek, T.; Demnerová, K.; Pazlar, V.). s. 16 ISBN 978-80-7080-025-6. [Symposium on Biosorption and Bioremediation /4./. 26.08.2007-30.08.2007, Praha] Institutional research plan: CEZ:AV0Z40550506 Keywords : stable isotope probing * uranium * biostimulation Subject RIV: EI - Biotechnology ; Bionics

  11. Assessing bioremediation of crude oil in soils and sludges

    International Nuclear Information System (INIS)

    Standard bulk property analytical methods currently being employed to evaluate crude oil bioremediation efficacy in soils provide no information concerning the mechanisms by which hydrocarbon losses are occurring (e.g., biodegradation versus leaching). Site/sample heterogeneity in field bioremediation projects may make it difficult to accurately quantify hydrocarbon losses due to biodegradation. To better understand the mechanisms by which losses are occurring and to accurately evaluate biodegradation rates, the hydrocarbon analytical methods must provide both quantitative and compositional information. In this study laboratory bioremediation experiments were used to compare the results of bulk property analytical methods with those methods used by petroleum geochemists that provide both quantitative and compositional data. A tecator extraction was used to isolate the total extractable matter (TEM) from the samples. Compositional changes were monitored by (1) column chromatography to determine class distributions, (2) high resolution gas chromatography with a flame-ionization detector (GC/FID) and (3) gas chromatography/mass spectrometry (GC/MS). Illustrations of the compositional changes detected by each method and their application to validating bioremediation are provided

  12. Genomic and physiological perspectives on bioremediation processes at the FRC

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Erick; Leigh, Mary Beth; Hemme, Christopher; Gentry, Terry; Harzman, Christina; Wu, Weimin; Criddle, Craig S.; Zhou, Jizhong; Marsh, Terence; Tiedje, James M.

    2006-04-05

    A suite of molecular and physiological studies, including metal reduction assays, metagenomics, functional gene microarrays and community sequence analyses were applied to investigate organisms involved in bioremediation processes at the ERSP Field Research Center and to understand the effects of stress on the makeup and evolution of microbial communities to inform effective remediation strategies.

  13. Bioremediation of chlorinated ethenes in aquifer thermal energy storage

    OpenAIRE

    Ni, Z

    2015-01-01

      Subjects: bioremediation; biodegradation; environmental biotechnology, subsurface and groundwater contamination; biological processes; geochemistry; microbiology The combination of enhanced natural attenuation (ENA) of chlorinated volatile organic compounds (CVOCs) and aquifer thermal energy storage (ATES) appears attractive because such integration provides a promising solution for redevelopment of urban areas in terms of improving the local environmental quality as well as achieving ...

  14. Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate

    Czech Academy of Sciences Publication Activity Database

    Novotný, Čeněk; Svobodová, Kateřina; Erbanová, Pavla; Cajthaml, Tomáš; Kasinath, Aparna; Lang, E.; Šašek, Václav

    2004-01-01

    Roč. 36, - (2004), s. 1545-1551. ISSN 0038-0717 R&D Projects: GA ČR GA526/00/1303; GA MŠk 1P05ME828 Institutional research plan: CEZ:AV0Z5020903 Keywords : ligninolytic fungi * bioremediation * organopollutants Subject RIV: EE - Microbiology, Virology Impact factor: 2.234, year: 2004

  15. INTRINSIC BIOREMEDIATION OF A PETROLEUM-IMPACTED WETLAND

    Science.gov (United States)

    Following the 1994 San Jacinto River flood and oil spill in southeast Texas, a petroleum-contaminated wetland was reserved for a long-term research program to evaluate bioremediation as a viable spill response tool. The first phase of this program, presented in this paper, evalua...

  16. MICROBIAL POPULATION CHANGES DURING BIOREMEDIATION OF AN EXPERIMENTAL OIL SPILL

    Science.gov (United States)

    Three crude oil bioremediation techniques were applied in a randomized block field experiment simulating a coastal oil-spill. Four treatments (no oil control, oil alone, oil + nutrients, and oil + nutrients + an indigenous inoculum) were applied. In-situ microbial community str...

  17. Monitoring for bioremediation efficacy: The marrow marsh experience

    International Nuclear Information System (INIS)

    The US Environmental Protection Agency's Environmental Response Team analyzed samples taken from Marrow Marsh, Galveston Bay, Texas, to assess the efficacy of a bioremediation effort in the marsh following the Apex barges spill on July 28, 1990. Samples from the marsh had been collected over a 96-hour period following the first application of the bioremediation agent and then 25 days after the second application, which occurred 8 days after the first. Results of sample analyses to evaluate changes in the chemical characteristics of spilled oil failed to show evidence of oil degradation during the 96 hours after the initial treatment, but did show evidence of degradation 25 days after the second treatment-although differences between samples from treated and untreated sites were not evident. Because control areas had not been maintained after the second application, contamination by the bioremediation agent of previously untreated (control) areas may have occurred, perhaps negating the possibility of detecting differences between treated and control areas. Better preparedness to implement bioremediation and conduct monitoring might have increased the effectiveness of the monitoring effort

  18. OIL SPILL BIOREMEDIATION ON COASTAL SHORELINES: A CRITIQUE

    Science.gov (United States)

    The purpose of this chapter is not to provide an extensive review of the literature on oil spill bioremediation. For that, the reader is referred to Swannell et al. (1996), who have conducted the most exhaustive review I have yet to come across. Other reviews are also av...

  19. Bioremediation of a pesticide polluted soil: Case DDT

    International Nuclear Information System (INIS)

    1,1,1-trichloro-2,2 bis (p-chlorophenyl) ethane (DDT) has been used since the Second World War to control insect-borne diseases in humans and domestic animals. The use of these organochlorine insecticides has been banned in most countries because of its persistence in the environment, biomagnification and potential susceptibility to toxicity to higher animals. Bioremediation involves the use of microorganisms to degrade organic contaminants in the environment, transforming them into simpler and less dangerous, even harmless compounds. This decontamination strategy has low costs, and wide public acceptance, also it can take place on the site. Compared to other methods, bioremediation is a more promising and less expensive to eliminate contaminants in soil and water. In soil, compounds such as DDT, chlorinated biphenyls can be partially biodegraded by a group of aerobic bacteria that cometabolize the contaminant. The bioavailability of pollutants may be enhanced by treating the soil in the presence of contaminant mobilizing agents such as surfactants. In this review we discuss the different strategies for bioremediation of soil contaminated with DDT, including mechanisms and degradation pathways. The application of these techniques in contaminated soil is also described. This review also discusses which is the best strategy for bioremediation of DDT.

  20. Budgeting for environmental clean-up of Army bases

    OpenAIRE

    Goette, Herbert

    1996-01-01

    Approved for public release; distribution is unlimited The United States Army obtained congressional approval in 1995 to close or realign 40 installations. These actions create a unique opportunity for the civilian communities surrounding the installations to reuse them to satisfy commercial or community needs. However, future reuse can be impeded by the need for environmental clean-up, which is an expensive business. The current clean-up cost estimate for 32 of the 40 installations is $1 ...

  1. Optimal Discounting of Benefits From Cleanup at Waste Sites

    OpenAIRE

    Lyon, Kenneth S.; Caliendo, Frank

    2005-01-01

    This paper uses a general equilibrium optimal growth model to discuss the role of optimal discounting of future benefits from cleanup at high level toxic waste sites. Cleanup simultaneously generates two streams of benefits. One of these is directly from utility and the other is indirectly from the added productivity of workers. We note that the optimal discount rate is different for these two types of benefits. Along the optimal path, the former are discounted at the rate of time preference ...

  2. An investigation into improving non-NPS cleanup process.

    OpenAIRE

    Whitson, Mark E.

    1992-01-01

    Approved for public release; distribution is unlimited This research investigates the process required to remediate (cleanup) non-National Priorities List (non-NPL) hazardous waste sites. The research addresses the many laws and regulations on hazardous waste cleanup specific to Department of Defence and Navy processes to correct and remediate existing sites. The thesis gathered data through survey of the seven Engineering Field Divisions within the Naval Facilities Command organi...

  3. Cleanup Verification Package for the 118-F-2 Burial Ground

    International Nuclear Information System (INIS)

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance with cleanup criteria for the 118-F-2 Burial Ground. This burial ground, formerly called Solid Waste Burial Ground No. 1, was the original solid waste disposal site for the 100-F Area. Eight trenches contained miscellaneous solid waste from the 105-F Reactor and one trench contained solid waste from the biology facilities

  4. Solvent degradation and cleanup: a survey and recent ORNL studies

    International Nuclear Information System (INIS)

    This paper surveys the mechanisms for degradation of the tributyl phosphate and diluent components of Purex solvent by acid and radiation, reviews the problems encountered in plant operations resulting from the presence of these degradation products, and discusses methods for minimizing the formation of degradation products and accomplishing their removal. Scrubbing solutions containing sodium carbonate or hydroxylamine salts and secondary cleanup of solvents using solid sorbents are evaluated. Finally, recommendations for improved solvent cleanup are presented. 50 references, 4 figures, 3 tables

  5. BIOREMEDIATION TECHNIQUES ON CRUDE OIL CONTAMINATED SOILS IN OHIO. Final report includes the quarterly report that ended 12/31/1996

    Energy Technology Data Exchange (ETDEWEB)

    David A. Hodges; Richard J. Simmers

    1997-05-30

    The purpose of this study is to define the optimum limits of chemical and physical conditions that reduce soil salinity and maximize indigenous aerobic microbiological populations in the bioremediation of oil field waste solids. Specifically, the study centers around treatment of surface contained oily waste having low density and limited solubility in water. Successful remediation is defined by total petroleum hydrocarbon (TPH) reduction to 1% and no hydrocarbon or salinity impact on ground water resources. The Department of Energy, the US Environmental Protection Agency and the Interstate Oil and Gas Compact Commission have encouraged oil and gas producing states to identify and develop improved methods such as this to reduce, recycle or treat solid waste generated with the exploration and development of domestic petroleum resources (IOGCC, 1995). With encouragement and funding assistance through the Department of Energy, Ohio is developing these bioremediation practices to protect soil and water resources. Ohio produced 8,300,000 barrels of crude oil in 1996 from wells operated by 4310 registered owners (ODNR, 1996). Good well site housekeeping can minimize spills, however accidental spills inevitably occur with oil production of this magnitude. Development of sound environmental and economical clean-up procedures is essential.

  6. Monitoring bioremediation of atrazine in soil microcosms using molecular tools

    International Nuclear Information System (INIS)

    Molecular tools in microbial community analysis give access to information on catabolic potential and diversity of microbes. Applied in bioremediation, they could provide a new dimension to improve pollution control. This concept has been demonstrated in the study using atrazine as model pollutant. Bioremediation of the herbicide, atrazine, was analyzed in microcosm studies by bioaugmentation, biostimulation and natural attenuation. Genes from the atrazine degrading pathway atzA/B/C/D/E/F, trzN, and trzD were monitored during the course of treatment and results demonstrated variation in atzC, trzD and trzN genes with time. Change in copy number of trzN gene under different treatment processes was demonstrated by real-time PCR. The amplified trzN gene was cloned and sequence data showed homology to genes reported in Arthrobacter and Nocardioides. Results demonstrate that specific target genes can be monitored, quantified and correlated to degradation analysis which would help in predicting the outcome of any bioremediation strategy. - Highlights: ► Degradation of herbicide, atrazine. ► Comparison of bioremediation via bioaugmentation, biostimulation and natural attenuation. ► Gene profile analysis in all treatments. ► Variation in trzN gene numbers correlated to degradation efficiency. ► Cloning and sequence analysis of trzN gene demonstrates very high homology to reported gene. - This study demonstrates the use of molecular tools in bioremediation to monitor and track target genes; correlates the results with degradation and thereby predicts the efficiency of treatment.

  7. Superfund at work: Hazardous waste cleanup efforts nationwide, fall 1992. (American Thermostat Corporation, New York)

    International Nuclear Information System (INIS)

    EPA's Superfund program decisively mitigated dangerously high levels of toxic chemicals at New York's American Thermostat Corporation (ATC) hazardous waste site. Superfund staff: quickly sampled area drinking wells and treated over 10 million gallons of contaminated ground water; used innovative technologies to reduce on-site soil and ground water contamination; secured a permanent alternate water supply for affected residents; and initiated a public outreach effort which gained support for cleanup activities. The American Thermostat site is a prime example of EPA's commitment to preserve the health and welfare of citizens and the environment

  8. Design of the JAERI Fuel Cleanup System for the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    TSTA is operated under the US-Japan collaboration program for the study of fusion fuel cycle technology. A plasma exhaust processing subsystem, JAERI Fuel Cleanup (JFCU) was fabricated in Japan, and installed at the TSTA as a major subsystem of the TSTA loop under the agreement. This process is based on some Japanese developed components, and designed to meet TSTA requirements by both parties. This document describes all the technical and safety features in accordance with the LANL QA format. The process has a capability to process simulated plasma exhaust at the flow rate of 15 mol/h, that is 1/5 for ITER. (author)

  9. Particulate hot gas stream cleanup technical issues

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This is the eleventh in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic bed filter elements. Task 1 is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task 1 during the past quarter, analyses were completed on samples obtained during a site visit to the Power Systems Development Facility (PSDF). Analyses are in progress on ash samples from the Advanced Particulate Filter (APF) at the Pressurized Fluidized-Bed Combustor (PFBC) that was in operation at Tidd and ash samples from the Pressurized Circulating Fluid Bed (PCFB) system located at Karhula, Finland. An additional analysis was performed on a particulate sample from the Transport Reactor Demonstration Unit (TRDU) located at the University of North Dakota Energy and Environmental Research Center. A manuscript and poster were prepared for presentation at the Advanced Coal-Based Power and Environmental Systems `97 Conference scheduled for July 22 - 24, 1997. A summary of recent project work covering the mechanisms responsible for ash deposit consolidation and ash bridging in APF`s collecting PFB ash was prepared and presented at FETC-MGN in early July. The material presented at that meeting is included in the manuscript prepared for the Contractor`s Conference and also in this report. Task 2 work during the past quarter included mechanical testing and microstructural examination of Schumacher FT20 and Pall 326 as- manufactured, after 540 hr in service at Karhula, and after 1166 hr in service at

  10. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs.

    Science.gov (United States)

    Chen, Ming; Xu, Piao; Zeng, Guangming; Yang, Chunping; Huang, Danlian; Zhang, Jiachao

    2015-11-01

    Increasing soil pollution problems have caused world-wide concerns. Large numbers of contaminants such as polycyclic aromatic hydrocarbons (PAHs), petroleum and related products, pesticides, chlorophenols and heavy metals enter the soil, posing a huge threat to human health and natural ecosystem. Chemical and physical technologies for soil remediation are either incompetent or too costly. Composting or compost addition can simultaneously increase soil organic matter content and soil fertility besides bioremediation, and thus is believed to be one of the most cost-effective methods for soil remediation. This paper reviews the application of composting/compost for soil bioremediation, and further provides a critical view on the effects of this technology on microbial aspects in contaminated soils. This review also discusses the future research needs for contaminated soils. PMID:26008965

  11. PROGRESS and CHALLENGES IN CLEANUP OF HANFORDS TANK WASTES

    International Nuclear Information System (INIS)

    The River Protection Project (RPP), which is managed by the Department of Energy (DOE) Office of River Protection (ORP), is highly complex from technical, regulatory, legal, political, and logistical perspectives and is the largest ongoing environmental cleanup project in the world. Over the past three years, ORP has made significant advances in its planning and execution of the cleanup of the Hartford tank wastes. The 149 single-shell tanks (SSTs), 28 double-shell tanks (DSTs), and 60 miscellaneous underground storage tanks (MUSTs) at Hanford contain approximately 200,000 m3 (53 million gallons) of mixed radioactive wastes, some of which dates back to the first days of the Manhattan Project. The plan for treating and disposing of the waste stored in large underground tanks is to: (1) retrieve the waste, (2) treat the waste to separate it into high-level (sludge) and low-activity (supernatant) fractions, (3) remove key radionuclides (e.g., Cs-137, Sr-90, actinides) from the low-activity fraction to the maximum extent technically and economically practical, (4) immobilize both the high-level and low-activity waste fractions by vitrification, (5) interim store the high-level waste fraction for ultimate disposal off-site at the federal HLW repository, (6) dispose the low-activity fraction on-site in the Integrated Disposal Facility (IDF), and (7) close the waste management areas consisting of tanks, ancillary equipment, soils, and facilities. Design and construction of the Waste Treatment and Immobilization Plant (WTP), the cornerstone of the RPP, has progressed substantially despite challenges arising from new seismic information for the WTP site. We have looked closely at the waste and aligned our treatment and disposal approaches with the waste characteristics. For example, approximately 11,000 m3 (2-3 million gallons) of metal sludges in twenty tanks were not created during spent nuclear fuel reprocessing and have low fission product concentrations. We plan to

  12. Bioremediation of petroleum-contaminated soil on Kwajalein Island: Microbiological characterization and biotreatability studies

    Energy Technology Data Exchange (ETDEWEB)

    Adler, H.I. [Oak Ridge Associated Universities, Inc., TN (United States); Jolley, R.L.; Donaldson, T.L. [Oak Ridge National Lab., TN (United States)] [comps.

    1992-05-01

    Bioremediation technology is being evaluated for use on the Kwajalein Atoll, which is located in the Republic of the Marshall Islands. The study was undertaken by the Oak Ridge National Laboratory (ORNL) on behalf of the US Army Kwajalein Atoll (USAKA). During February of 1991, a team from ORNL and The University of Tennessee (UT) visited the USAKA. In addition to making on-site observations regarding microbial abundance and distribution of petroleum contaminants, they brought back to Oak Ridge various soil and water samples for detailed analyses. This report documents the biological studies of these samples and presents observations made during the period from February to April of 1991 by investigators at ORNL, UT, and the Oak Ridge Associated Universities.

  13. Worldwide analysis of marine oil spill cleanup cost factors

    International Nuclear Information System (INIS)

    The many factors that influence oil spill response costs were discussed with particular emphasis on how spill responses differ around the world because of differing cultural values, socio-economic factors and labor costs. This paper presented an analysis of marine oil spill cleanup costs based on the country, proximity to shoreline, spill size, oil type, degree of shoreline oiling and cleanup methodology. The objective was to determine how each factor impacts per-unit cleanup costs. Near-shore spills and in-port spills were found to be 4-5 times more expensive to clean than offshore spills. Responses to spills of heavy fuels also cost 10 times more than for lighter crudes and diesel. Spill responses for spills under 30 tonnes are 10 times more costly than on a per-unit basis, for spills of 300 tonnes. A newly developed modelling technique that can be used on different types of marine spills was described. It is based on updated cost data acquired from case studies of more than 300 spills in 40 countries. The model determines a per-unit cleanup cost estimation by taking into consideration oil type, location, spill size, cleanup methodology, and shoreline oiling. It was concluded that the actual spill costs are totally dependent on the actual circumstances of the spill. 13 refs., 10 tabs., 3 figs

  14. ECONOMIC EFFICIENT PRODUCTION OF BIOMASS ADAPTED TO THE SUBSTRATE OF OIL OXIDIZING ACTINOBACILLOSIS USED IN BIOREMEDIATION PROCESSES

    Directory of Open Access Journals (Sweden)

    Khudokormov A. A.

    2013-10-01

    Full Text Available In the article we have studied the technology of obtaining a biomass of oil oxidizing microorganisms in a nutrient medium containing vegetable oil as the sole source of carbon and energy. In vitro and in soil experiment we have confirmed the effectiveness of the resulting biomass at work on bioremediation of oil contaminated sites. It is shown that the use of vegetable oil during culturing allows obtaining the same amount of biomass and carbohydrate raw materials, but the efficiency of its use is 20% higher, in average

  15. Bioremediation capacity, nutritional value and biorefining of macroalga Saccharina latissima

    DEFF Research Database (Denmark)

    Silva Marinho, Goncalo

    Macroalgae have the ability to assimilate and convert waste nutrients (N and P) into valuable biomass. In this context, they have been extensively studied for their bioremediation potential for integrated multi-trophic aquaculture (IMTA). With a global aquaculture production of 23.8 million tonnes...... increasing attention as sustainable feedstock for biorefinery. Nevertheless, macroalgae resources are still very little explored in western countries. The aim of this study was fulfilled by the investigation of the bioremediation potential of the macroalga Saccharina latissima cultivated at a reference site...... in 2012, macroalgae are a valuable source of vitamins, minerals, lipids, protein, and dietary fibres. Macroalgae have been used as food since ancient times in Asian countries, while in Europe they have lately been introduced as healthy food. Moreover, recently macroalgae have been receiving...

  16. Contributions of biosurfactants to natural or induced bioremediation.

    Science.gov (United States)

    Lawniczak, Lukasz; Marecik, Roman; Chrzanowski, Lukasz

    2013-03-01

    The number of studies dedicated to evaluating the influence of biosurfactants on bioremediation efficiency is constantly growing. Although significant progress regarding the explanation of mechanisms behind biosurfactant-induced effects could be observed, there are still many factors which are not sufficiently elucidated. This corresponds to the fact that although positive influence of biosurfactants is often reported, there are also numerous cases where no or negative effect was observed. This review summarizes the recent finding in the field of biosurfactant-amended bioremediation, focusing mainly on a critical approach towards potential limitations and causes of failure while investigating the effects of biosurfactants on the efficiency of biodegradation and phytoextraction processes. It also provides a summary of successive steps, which should be taken into consideration when designing biosurfactant-related treatment processes. PMID:23400445

  17. Monitoring bioremediation of weathered diesel NAPL using oxygen depletion profiles

    International Nuclear Information System (INIS)

    Semicontinuous logging of oxygen concentrations at multiple depths has been used to evaluate the progress of an in situ bioremediation trial at a site contaminated by weathered diesel nonaqueous-phase liquid (NAPL). The evaluation trial consisted of periodic addition of nutrients and aeration of a 100-m2 trial plot. During the bioremediation trial, aeration was stopped periodically, and decreases in dissolved and gaseous oxygen concentrations were monitored using data loggers attached to in situ oxygen sensors placed at multiple depths above and within a thin NAPL-contaminated zone. Oxygen usage rate coefficients were determined by fitting zero- and first-order rate equations to the oxygen depletion curves. For nutrient-amended sites within the trial plot, estimates of oxygen usage rate coefficients were significantly higher than estimates from unamended sites. These rates also converted to NPL degradation rates, comparable to those achieved in previous studies, despite the high concentrations and weathered state of the NAPL at this test site

  18. Intrinsic bioremediation of chlorinated hydrocarbons at cold temperatures

    International Nuclear Information System (INIS)

    The feasibility of intrinsic bioremediation in cold climates was evaluated based on studies on a former landfill site at Canadian Forces Base Cold Lake. This site has been used in the past as a disposal site for various hydrocarbon products, including benzene, toluene, ethylbenzene and xylenes (BTEX), dichloroethanes, and dichlorobenzenes. Computer models based on the results of the investigation suggest that reductive dechlorination and BTEX mineralization has occurred and is occurring at this site despite the colder in-situ temperatures. Further studies of the complex redox environment required to facilitate reductive dechlorination is recommended before intrinsic bioremediation can be considered with certainty as a viable remedial option in cold temperature environments. 17 refs., 7 figs

  19. Intrinsic bioremediation of chlorinated hydrocarbons at cold temperatures

    International Nuclear Information System (INIS)

    This paper describes a study of the viability of intrinsic bioremediation of chlorinated aromatic hydrocarbons at cold temperatures, at a former landfill site, some 300 km northeast of Edmonton. The landfill was also used for disposing of various hydrocarbon-based products of environmental concern.The project was conducted in four phases, i. e. site investigation, analysis of contaminant concentration, microbial study in the laboratory, and computer fate and transport modeling, with the primary focus being on the effect of cold temperatures on the rate of reductive dechlorination. Preliminary analysis of the results shows considerable evidence for the biodegradation of chlorinated hydrocarbons and confirms intrinsic bioremediation as a viable option for cold temperature sites. 20 refs., 7 figs

  20. Mathematical Modelling of Bacterial Populations in Bio-remediation Processes

    Science.gov (United States)

    Vasiliadou, Ioanna A.; Vayenas, Dimitris V.; Chrysikopoulos, Constantinos V.

    2011-09-01

    An understanding of bacterial behaviour concerns many field applications, such as the enhancement of water, wastewater and subsurface bio-remediation, the prevention of environmental pollution and the protection of human health. Numerous microorganisms have been identified to be able to degrade chemical pollutants, thus, a variety of bacteria are known that can be used in bio-remediation processes. In this study the development of mathematical models capable of describing bacterial behaviour considered in bio-augmentation plans, such as bacterial growth, consumption of nutrients, removal of pollutants, bacterial transport and attachment in porous media, is presented. The mathematical models may be used as a guide in designing and assessing the conditions under which areas contaminated with pollutants can be better remediated.