WorldWideScience

Sample records for bioremediation cleanup technologies

  1. Eliciting Public Attitudes Regarding Bioremediation Cleanup Technologies: Lessons Learned from a Consensus Workshop in Idaho

    International Nuclear Information System (INIS)

    During the summer of 2002, we developed and implemented a ''consensus workshop'' with Idaho citizens to elicit their concerns and issues regarding the use of bioremediation as a cleanup technology for radioactive nuclides and heavy metals at Department of Energy (DOE) sites. The consensus workshop is a derivation of a technology assessment method designed to ensure dialogue between experts and lay people. It has its origins in the United States in the form of ''consensus development conferences'' used by the National Institutes of Health (NIH) to elicit professional knowledge and concerns about new medical treatments. Over the last 25 years, NIH has conducted over 100 consensus development conferences. (Jorgensen 1995). The consensus conference is grounded in the idea that technology assessment and policy needs to be socially negotiated among many different stakeholders and groups rather than narrowly defined by a group of experts. To successfully implement new technology, the public requires access to information that addresses a full complement of issues including understanding the organization proposing the technology. The consensus conference method creates an informed dialogue, making technology understandable to the general public and sets it within perspectives and priorities that may differ radically from those of the expert community. While specific outcomes differ depending on the overall context of a conference, one expected outcome is that citizen panel members develop greater knowledge of the technology during the conference process and, sometimes, the entire panel experiences a change in attitude toward the technology and/or the organization proposing its use (Kluver 1995). The purpose of this research project was to explore the efficacy of the consensus conference model as a way to elicit the input of the general public about bioremediation of radionuclides and heavy metals at Department of Energy sites. Objectives of the research included: (1

  2. Eliciting Public Attitudes Regarding Bioremediation Cleanup Technologies: Lessons Learned from a Consensus Workshop in Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Denise Lach, Principle Investigator; Stephanie Sanford, Co-P.I.

    2003-03-01

    During the summer of 2002, we developed and implemented a ''consensus workshop'' with Idaho citizens to elicit their concerns and issues regarding the use of bioremediation as a cleanup technology for radioactive nuclides and heavy metals at Department of Energy (DOE) sites. The consensus workshop is a derivation of a technology assessment method designed to ensure dialogue between experts and lay people. It has its origins in the United States in the form of ''consensus development conferences'' used by the National Institutes of Health (NIH) to elicit professional knowledge and concerns about new medical treatments. Over the last 25 years, NIH has conducted over 100 consensus development conferences. (Jorgensen 1995). The consensus conference is grounded in the idea that technology assessment and policy needs to be socially negotiated among many different stakeholders and groups rather than narrowly defined by a group of experts. To successfully implement new technology, the public requires access to information that addresses a full complement of issues including understanding the organization proposing the technology. The consensus conference method creates an informed dialogue, making technology understandable to the general public and sets it within perspectives and priorities that may differ radically from those of the expert community. While specific outcomes differ depending on the overall context of a conference, one expected outcome is that citizen panel members develop greater knowledge of the technology during the conference process and, sometimes, the entire panel experiences a change in attitude toward the technology and/or the organization proposing its use (Kluver 1995). The purpose of this research project was to explore the efficacy of the consensus conference model as a way to elicit the input of the general public about bioremediation of radionuclides and heavy metals at Department of Energy sites

  3. Enabling cleanup technology transfer

    International Nuclear Information System (INIS)

    Technology transfer in the environmental restoration, or cleanup, area has been challenging. While there is little doubt that innovative technologies are needed to reduce the times, risks, and costs associated with the cleanup of federal sites, particularly those of the Departments of Energy (DOE) and Defense, the use of such technologies in actual cleanups has been relatively limited. There are, of course, many reasons why technologies do not reach the implementation phase or do not get transferred from developing entities to the user community. For example, many past cleanup contracts provided few incentives for performance that would compel a contractor to seek improvement via technology applications. While performance-based contracts are becoming more common, they alone will not drive increased technology applications. This paper focuses on some applications of cleanup methodologies and technologies that have been successful and are illustrative of a more general principle. The principle is at once obvious and not widely practiced. It is that, with few exceptions, innovative cleanup technologies are rarely implemented successfully alone but rather are implemented in the context of enabling processes and methodologies. And, since cleanup is conducted in a regulatory environment, the stage is better set for technology transfer when the context includes substantive interactions with the relevant stakeholders. Examples of this principle are drawn from Argonne National Laboratory's experiences in Adaptive Sampling and Analysis Programs (ASAPs), Precise Excavation, and the DOE Technology Connection (TechCon) Program. The lessons learned may be applicable to the continuing challenges posed by the cleanup and long-term stewardship of radioactive contaminants and unexploded ordnance (UXO) at federal sites

  4. GRACE BIOREMEDIATION TECHNOLOGIES - DARAMEND™ BIOREMEDIATION TECHNOLOGY. INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    Grace Dearborn's DARAMEND™ Bioremediation Technology was developed to treat soils/sediment contaminated with organic contaminants using solid-phase organic amendments. The amendments increase the soil’s ability to supply biologically available water/nutrients to micro...

  5. Innovative technologies for groundwater cleanup

    International Nuclear Information System (INIS)

    These notes provide a broad overview of current developments in innovative technologies for groundwater cleanup. In this context, groundwater cleanup technologies include site remediation methods that deal with contaminants in ground water or that may move from the vadose zone into ground water. This discussion attempts to emphasize approaches that may be able to achieve significant improvements in groundwater cleanup cost or effectiveness. However, since data for quantitative performance and cost comparisons of new cleanup methods are scarce, preliminary comparisons must be based on the scientific approach used by each method and on the site-specific technical challenges presented by each groundwater contamination situation. A large number of technical alternatives that are now in research, development, and testing can be categorized by the scientific phenomena that they employ and by the site contamination situations that they treat. After reviewing a representative selection of these technologies, one of the new technologies, the Microbial Filter method, is discussed in more detail to highlight a promising in situ groundwater cleanup technology that is now being readied for field testing

  6. Pilot Application of SVE-Enhanced Bioremediation Technology for in situ Clean-up of a Light Oil-Contaminated Site

    OpenAIRE

    Yang, Yuewei; Wu, Guozhong; LI, Xingang; Coulon, Frederic; Li, Hong; Sui, Hong

    2012-01-01

    Light oil (isooctane) removal using soil vapor extraction (SVE) enhanced bioremediation (BR) was investigated by four steps, including: (i) amendment of substrates in batches (ii) continuous induction of contaminants for 15 days (iii) in situ acclimation for 100 days (iv) biodegradation assisted with SVE venting for 120 h at 20 m³·h-1 Results showed that the total removal efficiency was up to 90% after BR-SVE treatments. BR contributed predominantly to isooctane removal during the last 36 h o...

  7. Legal and social concerns to the development of bioremediation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bilyard, G.R.; McCabe, G.H.; White, K.A.; Gajewski, S.W.; Hendrickson, P.L.; Jaksch, J.A.; Kirwan-Taylor, H.A.; McKinney, M.D.

    1996-09-01

    The social and legal framework within which bioremediation technologies must be researched, developed, and deployed in the US are discussed in this report. Discussions focus on policies, laws and regulations, intellectual property, technology transfer, and stakeholder concerns. These discussions are intended to help program managers, scientists and engineers understand the social and legal framework within which they work, and be cognizant of relevant issues that must be navigated during bioremediation technology research, development, and deployment activities. While this report focuses on the legal and social environment within which the DOE operates, the laws, regulations and social processes could apply to DoD and other sites nationwide. This report identifies specific issues related to bioremediation technologies, including those involving the use of plants; native, naturally occurring microbes; non-native, naturally occurring microbes; genetically engineered organisms; and microbial products (e.g., enzymes, surfactants, chelating compounds). It considers issues that fall within the following general categories: US biotechnology policy and the regulation of field releases of organisms; US environmental laws and waste cleanup regulations; intellectual property and patenting issues; technology transfer procedures for commercializing technology developed through government-funded research; stakeholder concerns about bioremediation proposals; and methods for assuring public involvement in technology development and deployment.

  8. Legal and social concerns to the development of bioremediation technologies

    International Nuclear Information System (INIS)

    The social and legal framework within which bioremediation technologies must be researched, developed, and deployed in the US are discussed in this report. Discussions focus on policies, laws and regulations, intellectual property, technology transfer, and stakeholder concerns. These discussions are intended to help program managers, scientists and engineers understand the social and legal framework within which they work, and be cognizant of relevant issues that must be navigated during bioremediation technology research, development, and deployment activities. While this report focuses on the legal and social environment within which the DOE operates, the laws, regulations and social processes could apply to DoD and other sites nationwide. This report identifies specific issues related to bioremediation technologies, including those involving the use of plants; native, naturally occurring microbes; non-native, naturally occurring microbes; genetically engineered organisms; and microbial products (e.g., enzymes, surfactants, chelating compounds). It considers issues that fall within the following general categories: US biotechnology policy and the regulation of field releases of organisms; US environmental laws and waste cleanup regulations; intellectual property and patenting issues; technology transfer procedures for commercializing technology developed through government-funded research; stakeholder concerns about bioremediation proposals; and methods for assuring public involvement in technology development and deployment

  9. LITERATURE REVIEW ON THE USE OF COMMERCIAL BIOREMEDIATION AGENTS FOR CLEAN-UP OF OIL-CONTAMINATED ESTUARINE ENVIRONMENTS

    Science.gov (United States)

    The objective of this document is to conduct a comprehensive review of the use of commercial bioremediation products treating oil spills in all environments, Literature assessed includes peer-reviewed articles, company reports, government reports, and reports by cleanup contracto...

  10. Technologies for environmental cleanup: Toxic and hazardous waste management

    International Nuclear Information System (INIS)

    This is the second in a series of EUROCOURSES conducted under the title, ''Technologies for Environmental Cleanup.'' To date, the series consist of the following courses: 1992, soils and groundwater; 1993, Toxic and Hazardous Waste Management. The 1993 course focuses on recent technological developments in the United States and Europe in the areas of waste management policies and regulations, characterization and monitoring of waste, waste minimization and recycling strategies, thermal treatment technologies, photolytic degradation processes, bioremediation processes, medical waste treatment, waste stabilization processes, catalytic organic destruction technologies, risk analyses, and data bases and information networks. It is intended that this course ill serve as a resource of state-of-the-art technologies and methodologies for the environmental protection manager involved in decisions concerning the management of toxic and hazardous waste

  11. Soil and groundwater cleanup: benefits and limits of emerging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Caliman, Florentina Anca; Robu, Brindusa Mihaela; Smaranda, Camelia; Pavel, Vasile Lucian; Gavrilescu, Maria [Technical University of Iasi, Department of Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection, Iasi (Romania)

    2011-04-15

    Contaminated soil and groundwater have been the subject of study and research, so that the field of remediation has grown and evolved, continually developing and adopting new technologies in attempts to improve the decontamination. The cleanup of environmental pollution involves a variety of techniques, ranging from simple biological processes to advanced engineering technologies. Cleanup activities may also address a wide range of contaminants. This article is a short analysis of the technologies for cleaning up groundwater and soil, highlighting knowledge and information gaps. Challenges and strategies for cleaning up different types of contaminants, mainly heavy metals and persistent organic compounds are described. Included are technologies that treat ground water contaminants in place in the subsurface and soil technologies that treat the soil either in place or on site in a treatment unit. Emerging technologies such as those based on oxidation-reduction, bioremediation, and nanotechnologies are covered. It is evident that for a good efficiency of remediation, techniques or even whole new technologies may be incorporated into an existing technology as a treatment train, improving its performance or overcome limitations. Several economic and decision-making elements are developed in the final part, based on the analysis carried out throughout the article. The work highlights the fact that excellence in research and technology progress could be attained by the development of technologies to deal more effectively and economically with certain toxic contaminants such as heavy metals, volatile organic compounds, and persistent organic pollutants, associated with optimization of technologies under field remediation conditions and requirements, improving capacity and yields, and reducing costs. Moreover, increasing knowledge of the scope and problem of equipment development could improve the benefits. (orig.)

  12. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2000-07-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs.

  13. Bioremediation in Germany: Markets, technologies, and leading companies

    International Nuclear Information System (INIS)

    Bioremediation has become an internationally accepted remediation tool. Commercial bioremediation activities take place in many European countries, but Germany and the Netherlands are the clear European leaders, with both having a long history of public and private sector activity in biological technologies. The German bioremediation market has been driven by government regulation, in particular the waste laws that apply to contaminated soils. The 1994 German market for bioremediation is estimated at $70 to 100 million (US $). There are at least 150 companies active in bioremediation in Germany, most of which practice bioremediation of hydrocarbon-contaminated soils, either in situ or ex situ. Because of their predominance in the current European market, German firms are well positioned to expand into those nations in the European Union (EU) currently lacking an environmental business infrastructure

  14. DEMONSTRATION BULLETIN: GRACE DEARBORN INC. DARAMEND™ BIOREMEDIATION TECHNOLOGY

    Science.gov (United States)

    The DARAMEND™ Bioremediation Technology may be applied to the remediation of soils and sediments contaminated by a wide variety of organic contaminants including chlorinated phenols, polynuclear aromatic hydrocarbons (PAHs), and petroleum hydrocarbons. The technology may be ap...

  15. Bioremediation: Hope/Hype for Environmental Cleanup (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry [LBNL, Ecology Dept

    2007-07-18

    Summer Lecture Series 2007: Terry Hazen, Senior Staff Scientists and Head of the LBNL Ecology Department, discusses when it's best to resort to engineered bioremediation of contaminated sites, and when it's best to rely on natural attenuation. Recent advances have greatly broadened the potential applications for bioremediation. At the same time, scientists' knowledge of biogeochemical processes has advanced and they can better gauge how quickly and completely contaminants can be degraded without human intervention.

  16. BIOSTIMULATION CAN SOMETIMES ENHANCE ENVIRONMENTAL CLEANUP - An Editorial Viewpoint on Bioremediation

    Science.gov (United States)

    The Exxon Valdex oil spill, which led to the enactment of the Oil Pollution Act of 1990, gave rise to the largest bioremediation field trial ever attempted. A research sutdy was conducted by EPA in 1989 and 1990 to develop data to support the recommendation to go forward w...

  17. UTILIZING THE RIGHT MIX OF ENVIRONMENTAL CLEANUP TECHNOLOGIES

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) Figure 1 is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990s), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical/pH-adjusting injection, phytoremediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baroballs, electrical resistance heating, soil vapor extraction, and microblowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works proactively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  18. BIOREMEDIATION OF PETROLEUM HYDROCARBONS: A FLEXIBLE VARIABLE SPEED TECHNOLOGY

    Science.gov (United States)

    The bioremediation of petroleum hydrocarbons has evolved into a number of different processes. These processes include in-situ aquifer bioremediation, bioventing, biosparging, passive bioremediation with oxygen release compounds, and intrinsic bioremediation. Although often viewe...

  19. SITE TECHNOLOGY CAPSULE: J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY: DINOSEB

    Science.gov (United States)

    The J.R. Simplot Ex-Situ Bioremediation Technology is designed to anaerobically degrade nitroaromatic and energetic compounds in soils and liquids without forming identifiable toxic intermediate compounds produced by other biotreatment methods. This technology was evaluated un...

  20. ENHANCING STAKEHOLDER ACCEPTANCE OF BIOREMEDIATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Focht, Will; Albright, Matt; Anex, Robert P., Jr., ed.

    2009-04-21

    This project inquired into the judgments and beliefs of people living near DOE reservations and facilities at Oak Ridge, Tennessee; Hanford, Washington; and Los Alamos, Tennessee about bioremediation of subsurface contamination. The purpose of the investigation was to identify strategies based on these judgments and beliefs for enhancing public support of bioremediation. Several methods were used to collect and analyze data including content analysis of transcripts of face-to-face personal interviews, factor analysis of subjective perspectives using Q methodology, and statistical analysis of results from a large-sample randomized telephone survey. Content analysis of interview transcripts identified themes about public perceptions and constructions of contamination risk, risk management, and risk managers. This analysis revealed that those who have no employment relationship at the sites and are not engaged in technical professions are most concerned about contamination risks. We also found that most interviewees are unfamiliar with subsurface contamination risks and how they can be reduced, believe they have little control over exposure, are frustrated with the lack of progress in remediation, are concerned about a lack of commitment of DOE to full remediation, and distrust site managers to act in the public interest. Concern is also expressed over frequent site management turnover, excessive secrecy, ineffective and biased communication, perceived attempts to talk the public into accepting risk, and apparent lack of concern about community welfare. In the telephone survey, we asked respondents who were aware of site contamination about their perceptions of risk from exposure to subsurface contamination. Response analysis revealed that most people believe that they are at significant risk from subsurface contamination but they acknowledge that more education is needed to calibrate risk perceptions against scientific risk assessments. Most rate their personal

  1. Enhancing Stakeholder Acceptance Of Bioremediation Technologies

    International Nuclear Information System (INIS)

    This project inquired into the judgments and beliefs of people living near DOE reservations and facilities at Oak Ridge, Tennessee; Hanford, Washington; and Los Alamos, Tennessee about bioremediation of subsurface contamination. The purpose of the investigation was to identify strategies based on these judgments and beliefs for enhancing public support of bioremediation. Several methods were used to collect and analyze data including content analysis of transcripts of face-to-face personal interviews, factor analysis of subjective perspectives using Q methodology, and statistical analysis of results from a large-sample randomized telephone survey. Content analysis of interview transcripts identified themes about public perceptions and constructions of contamination risk, risk management, and risk managers. This analysis revealed that those who have no employment relationship at the sites and are not engaged in technical professions are most concerned about contamination risks. We also found that most interviewees are unfamiliar with subsurface contamination risks and how they can be reduced, believe they have little control over exposure, are frustrated with the lack of progress in remediation, are concerned about a lack of commitment of DOE to full remediation, and distrust site managers to act in the public interest. Concern is also expressed over frequent site management turnover, excessive secrecy, ineffective and biased communication, perceived attempts to talk the public into accepting risk, and apparent lack of concern about community welfare. In the telephone survey, we asked respondents who were aware of site contamination about their perceptions of risk from exposure to subsurface contamination. Response analysis revealed that most people believe that they are at significant risk from subsurface contamination but they acknowledge that more education is needed to calibrate risk perceptions against scientific risk assessments. Most rate their personal

  2. ENHANCING STAKEHOLDER ACCEPTANCE OF BIOREMEDIATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Focht, Will; Albright, Matt; Anex, Robert P., Jr., ed.

    2009-04-21

    This project inquired into the judgments and beliefs of people living near DOE reservations and facilities at Oak Ridge, Tennessee; Hanford, Washington; and Los Alamos, Tennessee about bioremediation of subsurface contamination. The purpose of the investigation was to identify strategies based on these judgments and beliefs for enhancing public support of bioremediation. Several methods were used to collect and analyze data including content analysis of transcripts of face-to-face personal interviews, factor analysis of subjective perspectives using Q methodology, and statistical analysis of results from a large-sample randomized telephone survey. Content analysis of interview transcripts identified themes about public perceptions and constructions of contamination risk, risk management, and risk managers. This analysis revealed that those who have no employment relationship at the sites and are not engaged in technical professions are most concerned about contamination risks. We also found that most interviewees are unfamiliar with subsurface contamination risks and how they can be reduced, believe they have little control over exposure, are frustrated with the lack of progress in remediation, are concerned about a lack of commitment of DOE to full remediation, and distrust site managers to act in the public interest. Concern is also expressed over frequent site management turnover, excessive secrecy, ineffective and biased communication, perceived attempts to talk the public into accepting risk, and apparent lack of concern about community welfare. In the telephone survey, we asked respondents who were aware of site contamination about their perceptions of risk from exposure to subsurface contamination. Response analysis revealed that most people believe that they are at significant risk from subsurface contamination but they acknowledge that more education is needed to calibrate risk perceptions against scientific risk assessments. Most rate their personal

  3. Utilizing the right mix of environmental cleanup technologies

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990's), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical / pH-adjusting injection, phyto-remediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baro-balls, electrical resistance heating, soil vapor extraction, and micro-blowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works pro-actively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  4. Combining expedited cleanup with innovative technology demonstrations

    International Nuclear Information System (INIS)

    A Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) expedited response action (ERA) has been initiated at the Hanford Site, Washington, for the removal of carbon tetrachloride from contaminated soils to mitigate further contamination of the ground water. Soil vapor extraction with aboveground collection and treatment was chosen as the preferred remedial technology for the First phase of the ERA. At the same time, innovative technology demonstrations are being conducted in coordination with the ERA to determine the viability of emerging technologies that can be used to characterize, remediate, and monitor carbon tetrachloride and co-contaminants. The overall goal is to improve the performance and decrease the costs of carbon tetrachloride remediation while maintaining a safe working environment. (author)

  5. Nuclear environment clean-up technology development

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung; Moon, Jei Kwon; Lee, Kune Woo; Won, Hui Jun; Jung, Chong Hun; Kim, Gye Nam; Seo, Bum Kyoung; Kim, Sung Kyun; Hong, Sang Bum; Choi, Wun Dong

    2012-03-15

    A laser ablation decontamination technology which is reportedly effective for a removal of fixed contaminants has been developed for three years as the first stage of the development. Lab scale experimental equipment was fabricated and the process variables have been assessed for determination of appropriate decontamination conditions at the laser wave lengths of 1,064 nm and 532 nm, respectively. The decontamination tests using radioactive specimens showed that the decontamination efficiency was about 100 which is quite a high value. An electrokinetic-flushing, an agglomeration leaching and a supercritical CO2 soil decontamination technology were development for a decontamination of radioactive soil wastes from the decommissioned sites of the TRIGA research reactor and the uranium conversion facilities. The remediation monitoring key technologies such as a representative sample taking and a measurement concept for the vertical distribution of radionuclides were developed for an assessment of the site remediation. Also an One-Dimensional Water Flow and Contaminant Transport in Unsaturated Zone (FTUNS) code was developed to interpretate the radionuclide migration in the unsaturated zone. The chemical gel decontamination process with more effective drying, rheological and decontaminating properties than the existing commercial gel decontamination technology has been developed for a decontamination of the fixed contamination of extremely high radiation facilities. Its performance were verified for the in-situ large scale application through the demonstration test using the radioactive facilities in KNFC contaminated with uranium.

  6. Preliminary technology report for Southern Sector bioremediation

    International Nuclear Information System (INIS)

    This project was designed to demonstrate the potential of intrinsic bioremediation and phytoremediation in the Southern Sector of the A/M-Area at the Savannah River Site. A subsurface plume of trichloroethylene (TCE) and perchloroethylene (PCE) is present in the Lost Lake aquifer upgradient of the study site and is predicted to impact the area at some point in the future. The surface area along the Lost lake aquifer seep line where the plume is estimated to emerge was identified. Ten sites along the seep line were selected for biological, chemical, and contaminant treatability analyses. A survey was undertaken in this area to to quantify the microbial and plant population known to be capable of remediating TCE and PCE. The current groundwater quality upgradient and downgradient of the zone of influence was determined. No TCE or PCE was found in the soils or surface water from the area tested at this time. A TCE biodegradation treatability test was done on soil from the 10 selected locations. From an initial exposure of 25 ppm of TCE, eight of the samples biodegraded up to 99.9 percent of all the compound within 6 weeks. This biodegradation of TCE appears to be combination of aerobic and anaerobic microbial activity as intermediates that were detected in the treatability test include vinyl chloride (VC) and the dichloroethenes (DCE) 1,2-cis-dichloroethylene and 1,1-dichloroethylene. The TCE biological treatability studies were combines with microbiological and chemical analyses. The soils were found through immunological analysis with direct fluorescent antibodies (DFA) and microbiological analysis with direct fluorescent antibodies (DFA) and microbiological analysis to have a microbial population of methanotrophic bacteria that utilize the enzyme methane monooxygenase (MMO) and cometabolize TCE

  7. SITE TECHNOLOGY CAPSULE: GRACE DEARBORN INC.'S DARAMEND BIOREMEDIATION TECHNOLOGY

    Science.gov (United States)

    Grace Dearborn's DARAMEND Bioremediation Technology was developed to treat soils/sediment contaminated with organic contaminants using solid-phase organic amendments. The amendments increase the soil's ability to supply biologically available water/nutrients to microorganisms and...

  8. A systematic assessment of the state of hazardous waste clean-up technologies

    International Nuclear Information System (INIS)

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ''Decontamination Systems Information and Research Programs.'' Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushing (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming

  9. A software tool for soil clean-up technology selection

    International Nuclear Information System (INIS)

    Soil remediation is a difficult, time-consuming and expensive operation. A variety of mature and emerging soil remediation technologies is available and future trends in remediation will include continued competition among environmental service companies and technology developers, which will definitely result in further increase in the clean-up options. Consequently, the demand has enhanced developing decision support tools that could help the decision makers to select the most appropriate technology for the specific contaminated site, before the costly remedial actions are taken. Therefore, a software tool for soil clean-up technology selection is currently being developed with the aim of closely working with human decision makers (site owners, local community representatives, environmentalists, regulators, etc.) to assess the available technologies and preliminarily select the preferred remedial options. The analysis for the identification of the best remedial options is based on technical, financial, environmental, and social criteria. These criteria are ranked by all involved parties to determine their relative importance for a particular project. (author)

  10. Integrated green algal technology for bioremediation and biofuel.

    Science.gov (United States)

    Sivakumar, Ganapathy; Xu, Jianfeng; Thompson, Robert W; Yang, Ying; Randol-Smith, Paula; Weathers, Pamela J

    2012-03-01

    Sustainable non-food energy biomass and cost-effective ways to produce renewable energy technologies from this biomass are continuously emerging. Algae are capable of producing lipids and hydrocarbons quickly and their photosynthetic abilities make them a promising candidate for an alternative energy source. In addition, their favorable carbon life cycle and a renewed focus on rural economic development are attractive factors. In this review the focus is mainly on the integrated approach of algae culture for bioremediation and oil-based biofuel production with mention of possible other value-added benefits of using algae for those purposes. PMID:22230775

  11. Aerobic bioremediation of petroleum contaminated soil using controlled landfarming technology

    International Nuclear Information System (INIS)

    This paper reports that the Delaware Department of Natural Resources and Environmental Control (DNREC) has been concerned about open, uncontrolled landfarming remediation procedures producing a significant amount of atmospheric volatile petroleum discharge and increasing the probability of the remediation site's soil and groundwater becoming contaminated by rainwater. WIK Associates, Inc., therefore, has been developing full scale aerobic bioremediation technology for clients within the Delaware area in order to carry out year round, full scale, aerobic biodegradation of petroleum contaminated soils, while controlling any volatile emissions

  12. Arctic bioremediation

    International Nuclear Information System (INIS)

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. Enhancing the biological degradation of hydrocarbon (bioremediation) by adding nutrients to the spill area has been demonstrated to be an effective cleanup tool in more temperate locations. However, this technique has never been considered for restoration in the Arctic because the process of microbial degradation of hydrocarbon in this area is very slow. The short growing season and apparent lack of nutrients in the gravel pads were thought to be detrimental to using bioremediation to cleanup Arctic oil spills. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes

  13. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999; TOPICAL

    International Nuclear Information System (INIS)

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs

  14. SITE TECHNOLOGY CAPSULE: J.R. SIMPLOT EX-SITU ANAEROBIC BIOREMEDIATION TECHNOLOGY: TNT

    Science.gov (United States)

    The J.R. Simplot Ex-Situ Bioremediation Technology is designed to degrade nitroaromatic compounds anaerobically, with total destruction of toxic intermediates at the completion of treatment. An evaluation of this technology was conducted under the SITE Program on TNT-contaminated...

  15. Evaluation of bio-remediation technologies for PAHs contaminated soils

    International Nuclear Information System (INIS)

    Natural attenuation is a new concept related to polluted soil remediation. Can be understood like an 'in situ' bio-remediation process with low technical intervention. This low intervention may be in order to follow the behaviour of pollutants 'monitored natural attenuation' or include an optimisation process to improve biological remediation. The use of this technology is a fact for light hydrocarbon polluted soil, but few is known about the behaviour of polycyclic aromatic hydrocarbons (PAHs) in this process. PAHs are more recalcitrant to bio-remediation due to their physic-chemical characteristics, mainly hydrophobicity and electrochemical stability. PAHs are a kind of pollutants widely distributed in the environment, not only in the proximity of the source. This linked to the characteristics of some of them related to toxicity and mutagenicity implies its inclusion as target compounds from an environmental point of view. Their low availability, solubility and the strong tendency to bind to soil particle, especially to the organic phase affect PAHs biological mineralisation. So, if the pollutant is not available to microorganisms it can not be bio-degraded. Bioavailability can be assessed form several but complementary points of view: physico-chemical and biological. First including the term availability and the second to point out the capacity of soil microorganisms to mineralize PAHs. Availability and Bio-degradability must be determined, as well as the presence and activity of specific degraders among the soil organisms, once settled these points is necessary to study the biological requirements to optimise biodegradation kinetics of these compounds. In this work we present a study carried out on a soil, contaminated by PAHs, the study includes three main topics: bioavailability assessment (both term availability and bio-degradability), bio-remediation assessment, once optimised conditions for natural attenuation and finally a simulation of the

  16. J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY FOR TREATMENT OF TNT-CONTAMINATED SOILS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report summarizes the findings of the second evaluation of the J.R. Simplot Ex-situ Bioremediation Technology also known as the Simplot Anaerobic Bioremediation (SABRE™) process. This technology was developed by the J.R. Simplot Company to biologically degrade nitroaromatic...

  17. Bioremediation of industrially contaminated soil using compost and plant technology.

    Science.gov (United States)

    Taiwo, A M; Gbadebo, A M; Oyedepo, J A; Ojekunle, Z O; Alo, O M; Oyeniran, A A; Onalaja, O J; Ogunjimi, D; Taiwo, O T

    2016-03-01

    Compost technology can be utilized for bioremediation of contaminated soil using the active microorganisms present in the matrix of contaminants. This study examined bioremediation of industrially polluted soil using the compost and plant technology. Soil samples were collected at the vicinity of three industrial locations in Ogun State and a goldmine site in Iperindo, Osun State in March, 2014. The compost used was made from cow dung, water hyacinth and sawdust for a period of twelve weeks. The matured compost was mixed with contaminated soil samples in a five-ratio pot experimental design. The compost and contaminated soil samples were analyzed using the standard procedures for pH, electrical conductivity (EC), organic carbon (OC), total nitrogen (TN), phosphorus, exchangeable cations (Na, K, Ca and Mg) and heavy metals (Fe, Mn, Cu, Zn and Cr). Kenaf (Hibiscus cannabinus) seeds were also planted for co-remediation of metals. The growth parameters of Kenaf plants were observed weekly for a period of one month. Results showed that during the one-month remediation experiment, treatments with 'compost-only' removed 49 ± 8% Mn, 32 ± 7% Fe, 29 ± 11% Zn, 27 ± 6% Cu and 11 ± 5% Cr from the contaminated soil. On the other hand, treatments with 'compost+plant' remediated 71 ± 8% Mn, 63 ± 3% Fe, 59 ± 11% Zn, 40 ± 6% Cu and 5 ± 4% Cr. Enrichment factor (EF) of metals in the compost was low while that of Cu (EF=7.3) and Zn (EF=8.6) were high in the contaminated soils. Bioaccumulation factor (BF) revealed low metal uptake by Kenaf plant. The growth parameters of Kenaf plant showed steady increments from week 1 to week 4 of planting.

  18. High-level waste vitrification off-gas cleanup technology

    International Nuclear Information System (INIS)

    This brief overview is intended to be a basis for discussion of needs and problems existing in the off-gas clean-up technology. A variety of types of waste form and processes are being developed in the United States and abroad. A description of many of the processes can be found in the Technical Alternative Documents (TAD). Concurrently, off-gas processing systems are being developed with most of the processes. An extensive review of methodology as well as decontamination factors can be found in the literature. Since it is generally agreed that the most advanced solidification process is vitrification, discussion here centers about the off-gas problems related to vitrification. With a number of waste soldification facilities around the world in operation, it can be shown that present technology can satisfy the present requirement for off-gas control. However, a number of areas within the technology base show potential for improvement. Fundamental as well as verification studies are needed to obtain the improvements

  19. Arctic bioremediation

    International Nuclear Information System (INIS)

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes. Discussed are the results of a laboratory bioremediation study which simulated microbial degradation of hydrocarbon under arctic conditions

  20. New technologies aid DOE in site characterization, cleanup

    International Nuclear Information System (INIS)

    The Department of Energy is using what reportedly is the world's largest remotely operated mobile-work system to excavate a landfill contaminated with radioactive materials at the Idaho National Engineering Laboratory. The 1,500-ton, self-propelled machine made by Sonsub Inc. (Houston) will span and excavate landfills up to 120 feet wide. As the unit digs, it will separate waste from the soil, package the waste for transport, then backfill the pit. DOE will use the machine to excavate Pit 9, a 400-foot-long, 120-foot-wide landfill that was used as a waste-disposal site in the 1960s. Using computer modeling applications to identify hazardous and radioactive wastes can protect workers from exposure and, in some cases, reduce remediation costs. Canberra Industries (Meridien, Conn.) in November was awarded a contract by EG and G Mound Applied Technologies to perform gamma spectroscopy radiological waste characterization on waste containers that have been stored since 1978 at the Mound site in Ohio. The 55-gallon drums and boxes at the site reportedly contain transuranic waste; however, officials say they anticipate that, once characterization is performed, about 25% of the waste will be downgraded to low-level waste (below 100nCI/gm). In another application involving landfill cleanup, Komar Industries Inc. (Groveport, Ohio) in late 1995 was contracted to design and construct a system for processing radioactive waste from an unnamed DOE landfill. The company says it will design a triauger with injector configuration to serve as a fully contained size-reduction, blending and feeding system that will allow engineers to blend a variety of wastes found at the site. Machined, O-ring, sealed surfaces will maintain a negative water column under normal operations. The system will be designed to handle pressures up to 10 bar, while the processor will have a 6-cubic-yard charge capacity and the ability to accept 15 to 20 charges per hour

  1. Bioremediation a promising technology for nuclear waste treatment

    International Nuclear Information System (INIS)

    Microbes play a primordial role in completing various elemental cycles namely carbon, nitrogen, sulfur, which are necessary for sustainability of planet Earth. This natural capability of microbes is employed to transform manmade compounds to their elemental forms. Redeployment of microbes for specific tasks needs a re-engineering of microbial metabolism to accelerate transformation. The most widely used approach is genetic modification but this approach has resulted into grievous failures due to inability of genetically modified organism to survive in natural environment. Consequently, development of new approach towards bioremediation was conceptualized, where desired metabolic capability were achieved using consortia of microorganisms having complementary metabolism. Of late, the potential of biofilm communities for bioremediation processes has been realized since it has many advantages over whole cells, used as biocatalysts. Naturally immobilized microbial biofilms exclude the necessity of cell-immobilization as biofilm cells are already embedded in self-produced exopolymers. Moreover, biofilm-mediated bioremediation offers a proficient and safer alternative to planktonic cells-mediated bioremediation because cells in a biofilm are more robust to toxic materials present in the waste as they are embedded in the matrix that provides a physical barrier. This presentation will highlight the importance of planktonic and sessile bacteria in bioremediation of a few nuclear waste compounds. (author)

  2. BIOREMEDIATION TRAINING

    Science.gov (United States)

    Bioremediation encompasses a collection of technologies which use microbes to degrade or transform contaminants. Three technologies have an established track record of acceptable performance: aerobic bioventing for fuels; enhanced reductive dechlorination for chlorinated solvent...

  3. TECHNOLOGIES FOR BIOREMEDIATION OF SOILS CONTAMINATED WITH PETROLEUM PRODUCTS

    Directory of Open Access Journals (Sweden)

    Roxana Gabriela POPA

    2012-05-01

    Full Text Available Biological methods for remediation of soils is based on the degradation of pollutants due to activity of microorganisms (bacteria, fungi. Effectiveness of biological decontamination of soils depends on the following factors: biodegradation of pollutants, type of microorganisms used, choice of oxidant and nutrient and subject to clean up environmental characteristics. Ex situ techniques for bioremediation of soils polluted are: composting (static / mechanical agitation, land farming and biopiles. Techniques in situ bioremediation of soils polluted are: bioventingul, biospargingul and biostimulation – bioaugumentarea.

  4. BIOREMEDIATION AS A TECHNOLOGY: EXPERIENCES WITH THE EXXON VALDEZ SPILL

    Science.gov (United States)

    The results from our oil spill bioremediation project have demonstrated convincingly that fertilizers can be applied to oiled beaches to overcome nutrient limitations, thereby enhancing biodegradation of the oil. n Prince William Sound, the natural biodegradation rate of oil on t...

  5. Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation.

    Directory of Open Access Journals (Sweden)

    Maria eGenovese

    2014-04-01

    Full Text Available The purpose of present study was the simulation of an oil spill accompanied by burial of significant amount of petroleum hydrocarbons (PHs in coastal sediments. Approximately 1,000 kg of sediments collected in Messina harbor were spiked with Bunker C furnace fuel oil (6,500 ppm. The rapid consumption of oxygen by aerobic heterotrophs created highly reduced conditions in the sediments with subsequent recession of biodegradation rates. As follows, after three months of ageing, the anaerobic sediments did not exhibit any significant levels of biodegradation and more than 80% of added Bunker C fuel oil remained buried. Anaerobic microbial community exhibited a strong enrichment in sulfate-reducing PHs-degrading and PHs-associated Deltaproteobacteria. As an effective bioremediation strategy to clean up these contaminated sediments, we applied a Modular Slurry System (MSS allowing the containment of sediments and their physical-chemical treatment, e.g. aeration. Aeration for three months has increased the removal of main PHs contaminants up to 98%. As revealed by CARD-FISH, qPCR and 16S rRNA gene clone library analyses, addition of Bunker C fuel oil initially affected the activity of autochthonous aerobic obligate marine hydrocarbonoclastic bacteria (OMHCB, and after one month more than the third of microbial population was represented by Alcanivorax-, Cycloclasticus- and Marinobacter-related organisms. In the end of the experiment, the microbial community composition has returned to a status typically observed in pristine marine ecosystems with no detectable OMHCB present. Eco-toxicological bioassay revealed that the toxicity of sediments after treatment was substantially decreased. Thus, our studies demonstrated that petroleum-contaminated anaerobic marine sediments could efficiently be cleaned through an in situ oxygenation which stimulates their self-cleaning potential due to reawakening of allochtonous aerobic OMHCB.

  6. Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation.

    Science.gov (United States)

    Genovese, Maria; Crisafi, Francesca; Denaro, Renata; Cappello, Simone; Russo, Daniela; Calogero, Rosario; Santisi, Santina; Catalfamo, Maurizio; Modica, Alfonso; Smedile, Francesco; Genovese, Lucrezia; Golyshin, Peter N; Giuliano, Laura; Yakimov, Michail M

    2014-01-01

    The purpose of present study was the simulation of an oil spill accompanied by burial of significant amount of petroleum hydrocarbons (PHs) in coastal sediments. Approximately 1000 kg of sediments collected in Messina harbor were spiked with Bunker C furnace fuel oil (6500 ppm). The rapid consumption of oxygen by aerobic heterotrophs created highly reduced conditions in the sediments with subsequent recession of biodegradation rates. As follows, after 3 months of ageing, the anaerobic sediments did not exhibit any significant levels of biodegradation and more than 80% of added Bunker C fuel oil remained buried. Anaerobic microbial community exhibited a strong enrichment in sulfate-reducing PHs-degrading and PHs-associated Deltaproteobacteria. As an effective bioremediation strategy to clean up these contaminated sediments, we applied a Modular Slurry System (MSS) allowing the containment of sediments and their physical-chemical treatment, e.g., aeration. Aeration for 3 months has increased the removal of main PHs contaminants up to 98%. As revealed by CARD-FISH, qPCR, and 16S rRNA gene clone library analyses, addition of Bunker C fuel oil initially affected the activity of autochthonous aerobic obligate marine hydrocarbonoclastic bacteria (OMHCB), and after 1 month more than the third of microbial population was represented by Alcanivorax-, Cycloclasticus-, and Marinobacter-related organisms. In the end of the experiment, the microbial community composition has returned to a status typically observed in pristine marine ecosystems with no detectable OMHCB present. Eco-toxicological bioassay revealed that the toxicity of sediments after treatment was substantially decreased. Thus, our studies demonstrated that petroleum-contaminated anaerobic marine sediments could efficiently be cleaned through an in situ oxygenation which stimulates their self-cleaning potential due to reawakening of allochtonous aerobic OMHCB. PMID:24782850

  7. In situ bioremediation using horizontal wells. Innovative technology summary report

    International Nuclear Information System (INIS)

    In Situ Bioremediation (ISB) is the term used in this report for Gaseous Nutrient Injection for In Situ Bioremediation. This process (ISB) involves injection of air and nutrients (sparging and biostimulation) into the ground water and vacuum extraction to remove Volatile Organic Compounds (VOCs) from the vadose zone concomitant with biodegradation of the VOCs. This process is effective for remediation of soils and ground water contaminated with VOCs both above and below the water table. A full-scale demonstration of ISB was conducted as part of the Savannah River Integrated Demonstration: VOCs in Soils and Ground Water at Nonarid Sites. This demonstration was performed at the Savannah River Site from February 1992 to April 1993

  8. Microorganism as a tool of bioremediation technology for cleaning environment: A review

    Directory of Open Access Journals (Sweden)

    Ravindra Singh

    2014-03-01

    Full Text Available The term bioremediation has been introduced to describe the process of using biological agents to remove toxic waste from environment. Bioremediation is the most effective management tool to manage the polluted environment and recover contaminated soil. The hazardous wastes generated from the chemical processes/operations are being treated using physico-chemical and biological methods by the respective industries to meet the prescribed standard as per the Environmental Protection Act, 1986. The wastes treated by the respective industries are collected at Common Effluent Treatment Plant, before discharge into the environment. After the treatment of collected waste at Common Effluent Treatment Plant, the solid and treated effluents are segregated and disposed of into the soil- water environment. In spite of the present treatment technology, the organic pollutants are found persisting in the soil-water environment above their acceptable level. Hence, bioremediation is an innovative technology that has the potential to alleviate the toxic contamination.

  9. DEMONSTRATION BULLETIN: EX-SITU ANAEROBIC BIOREMEDIATION TECHNOLOGY - TNT - J.R. SIMPLOT COMPANY

    Science.gov (United States)

    The J. R. Simplot Ex-Situ Anaerobic Bioremediation System, also known as the J.R. Simplot Anaerobic Biological Remediaton Process (the SABRE™ Process), is a technology designed to destroy nitroaromatic and energetic compounds. The process does not evolve any known toxic intermedi...

  10. J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY FOR TREATMENT OF DINOSEB-CONTAMINATED SOILS - INNOVATIVE TECHNOLOGY REPORT

    Science.gov (United States)

    This report summarizes the findings of an evaluation of the J.R. Simplot Ex-Situ Bioremediation Technology on the degradation of dinoseb (2-set-butyl-4,6-dinitrophenol) an agricultural herbicide. This technology was developed by the J.R. Simplot Company (Simplot) to biologically ...

  11. UTILIZING INNOVATIVE TECHNOLOGIES FOR ENVIRONMENTAL CLEAN-UP AT SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units and facilities that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990s), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical/pH-adjusting injection, phytoremediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baroballs, electrical resistance heating, soil vapor extraction, and microblowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works proactively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  12. OIL SPILL BIOREMEDIATION: EXPERIENCES, LESSONS AND RESULTS FROM THE EXXON VALDEZ OIL SPILL IN ALASKA

    Science.gov (United States)

    The use of bioremediation as a supplemental cleanup technology in the Exxon Valdez oil spill, in Prince William Sound, Alaska, has proven to be a good example of the problems and successes associated with the practical application of this technology. ield studies conducted by sci...

  13. Bioremediation of polyaromatic hydrocarbons (PAHs using rhizosphere technology

    Directory of Open Access Journals (Sweden)

    Sandeep Bisht

    2015-03-01

    Full Text Available The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e.polyaromatic hydrocarbons (PAHs due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective.

  14. Bioremediation of soil polluted with crude oil and its derivatives: Microorganisms, degradation pathways, technologies

    Directory of Open Access Journals (Sweden)

    Beškoski Vladimir P.

    2012-01-01

    Full Text Available The contamination of soil and water with petroleum and its products occurs due to accidental spills during exploitation, transport, processing, storing and use. In order to control the environmental risks caused by petroleum products a variety of techniques based on physical, chemical and biological methods have been used. Biological methods are considered to have a comparative advantage as cost effective and environmentally friendly technologies. Bioremediation, defined as the use of biological systems to destroy and reduce the concentrations of hazardous waste from contaminated sites, is an evolving technology for the removal and degradation of petroleum hydrocarbons as well as industrial solvents, phenols and pesticides. Microorganisms are the main bioremediation agents due to their diverse metabolic capacities. In order to enhance the rate of pollutant degradation the technology optimizes the conditions for the growth of microorganisms present in soil by aeration, nutrient addition and, if necessary, by adding separately prepared microorganisms cultures. The other factors that influence the efficiency of process are temperature, humidity, presence of surfactants, soil pH, mineral composition, content of organic substance of soil as well as type and concentration of contaminant. This paper presents a review of our ex situ bioremediation procedures successfully implemented on the industrial level. This technology was used for treatment of soils contaminated by crude oil and its derivatives originated from refinery as well as soils polluted with oil fuel and transformer oil.

  15. Bioremediation of soil polluted with crude oil and its derivatives: Microorganisms, degradation pathways, technologies

    OpenAIRE

    Beškoski Vladimir P.; Gojgić-Cvijović Gordana Đ.; Milić Jelena S.; Ilić Mila V.; Miletić Srđan B.; Jovančićević Branimir S.; Vrvić-Miroslav M.

    2012-01-01

    The contamination of soil and water with petroleum and its products occurs due to accidental spills during exploitation, transport, processing, storing and use. In order to control the environmental risks caused by petroleum products a variety of techniques based on physical, chemical and biological methods have been used. Biological methods are considered to have a comparative advantage as cost effective and environmentally friendly technologies. Bioremediation, defined as the use of b...

  16. In situ bioremediation: Cost effectiveness of a remediation technology field tested at the Savannah River

    International Nuclear Information System (INIS)

    In Situ Bioremediation (ISBR) is an innovative new remediation technology for the removal of chlorinated solvents from contaminated soils and groundwater. The principal contaminant at the SRID is the volatile organic compound (VOC), tricloroetylene(TCE). A 384 day test run at Savannah River, sponsored by the US Department of Energy, Office of Technology Development (EM-50), furnished information about the performance and applications of ISBR. In Situ Bioremediation, as tested, is based on two distinct processes occurring simultaneously; the physical process of in situ air stripping and the biolgoical process of bioremediation. Both processes have the potential to remediate some amount of contamination. A quantity of VOCs, directly measured from the extracted air stream, was removed from the test area by the physical process of air stripping. The biological process is difficult to examine. However, the results of several tests performed at the SRID and independent numerical modeling determined that the biological process remediated an additional 40% above the physical process. Given this data, the cost effectiveness of this new technology can be evaluated

  17. Hanford Site Cleanup Challenges and Opportunities for Science and Technology--A Strategic Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas W.; Johnson, Wayne L.; Kreid, Dennis K.; Walton, Terry L.

    2001-02-01

    The sheer expanse of the Hanford Site, the inherent hazards associated with the significant inventory of nuclear materials and wastes, the large number of aging contaminated facilities, the diverse nature and extent of environmental contamination, and the proximity to the Columbia River make Hanford perhaps the world's largest and most complex environmental cleanup project. It is not possible to address the more complex elements of this enormous challenge in a cost-effective manner without strategic investments in science and technology. Success requires vigorous and sustained efforts to enhance the science and technology basis, develop and deploy innovative solutions, and provide firm scientific bases to support site cleanup and closure decisions at Hanford.

  18. A systematic assessment of the state of hazardous waste clean-up technologies. Quarterly technical progress report, April 1--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M.T.; Reed, B.E.; Gabr, M.

    1993-07-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushing (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming.

  19. Walking softly : using bioremediation to reclaim sites leaves a smaller footprint than traditional dig-and-dump technologies

    International Nuclear Information System (INIS)

    Recent developments in the bioremediation industry in Alberta were outlined. The market for bioremediation services in the United States alone is estimated to hit $1 billion by 2010 and has become a staple of the U.S. Environmental Protection Agency's emergency management practices in the event of an oil spill. Alberta Environment has recently updated its policies and guidance documents on contaminated sites management, and is planning a manual that will include best bioremediation practices. Advances in the science and technology of bioremediation and a rise in environmental awareness have contributed to the sector's growth in recent years. In the past, oil companies in Alberta typically reclaimed sites by digging up contaminated soil and trucking it to landfills. Recent techniques developed by industry and bioremediation experts now mean that soil profiles can remain undisturbed, and biological treatment amendments are often introduced into the fractures to destroy contaminants where they lie. The National Research Council's Biotechnology Research Institute (NRC-BRI) is now conducting research to identify and profile unknown micro-organisms to improve conditions for the breakdown of toxins. Bioremediation techniques are also being used in urban redevelopment. It was concluded that while the environmental industry is regulatory-driven, many oil and mining companies are deciding to invest in remediation instead of waiting until a later date. A list of new bioremediation partnerships with industry, government and municipalities was also provided. 2 figs

  20. EFFECTIVENESS AND REGULATORY ISSUES IN OIL SPILL BIOREMEDIATION: EXPERIENCES WITH THE EXXON VALDEZ OIL SPILL IN ALASKA

    Science.gov (United States)

    The use of bioremediation as a supplemental cleanup technology in the Exxon Valdez oil spill, in Prince William Sound, Alaska, has proven to be a good example of the problems and successes associated with the practical application of this technology. ield studies conducted by sci...

  1. Oil and hydrocarbon spill bioremediation product and application technologies

    OpenAIRE

    Deibert, Mark Richard

    1993-01-01

    This thesis document was issued under the authority of another institution, not NPS. At the time it was written, a copy was added to the NPS Library collection for reasons not now known. It has been included in the digital archive for its historical value to NPS. Not believed to be a CIVINS (Civilian Institutions) title. This manuscript was prepared for use by U.S. Navy personnel to increase the awareness of the use of microbes and related technology associated in the remediation of ...

  2. U.S. bioremediation market: Yesterday, today, and tomorrow

    International Nuclear Information System (INIS)

    The use of bioremediation for full-scale cleanup has increased dramatically throughout the past 10 years. This growth in activity is expected to continue through the year 2000. It is estimated that fewer than 10 companies offered field-level bioremedial services prior to 1985. Although the market today still is dominated by a small number of companies, the total number of firms claiming to offer services and/or products for bioremediation purposes has grown to over 1,000. It is estimated that aggregate bioremediation revenues for 1994 through 2000 will equal $2 to $3 billion (1994 dollars). This revenue will be generated in the initial part of this 7-year period primarily from underground storage cleanup, with revenues from hazardous waste sites becoming an increasingly important factor by accounting for the majority of revenues in the latter years. Market opportunities exist in technology development and implementation including biosparging, centralized treatment facilities for petroleum-contaminated soils, biofilters, and improvements in the cost-effectiveness of the technology

  3. Environmental Cleanup of the East Tennessee Technology Park Year One - Execution with Certainty SM - 13120

    International Nuclear Information System (INIS)

    On August 1, 2011, URS - CH2M Oak Ridge LLC (UCOR) began its five-year, $1.4 billion cleanup of the East Tennessee Technology Park (ETTP), located on the U.S. Department of Energy's (DOE) Oak Ridge Reservation in Tennessee. UCOR will close out cleanup operations that began in 1998 under a previous contract. When the Contract Base scope of work [1] is completed in 2016, the K-25 gaseous diffusion building will have been demolished and all waste dispositioned, demolition will have started on the K-27 gaseous diffusion building, all contact-handled and remote-handled transuranic waste in inventory (approximately 500 cubic meters) will have been transferred to the Transuranic Waste Processing Center, previously designated 'No-Path-To-Disposition Waste' will have been dispositioned to the extent possible, and UCOR will have managed DOE Office of Environmental Management (EM)- owned facilities at ETTP, Oak Ridge National Laboratory (ORNL), and the Y-12 National Security Complex in a safe and cost-effective manner. Since assuming its responsibilities as the ETTP cleanup contractor, UCOR has completed its life-cycle Performance Measurement Baseline; received its Earned Value Management System (EVMS) certification; advanced the deactivation and demolition (D and D) of the K-25 gaseous diffusion building; recovered and completed the Tank W-1A and K-1070-B Burial Ground remediation projects; characterized, packaged, and shipped contact-handled transuranic waste to the Transuranic Waste Processing Center; disposed of more than 90,000 cubic yards of cleanup waste while managing the Environmental Management Waste Management Facility (EMWMF); and provided operations, surveillance, and maintenance activities at DOE EM facilities at ETTP, ORNL, and the Y-12 National Security Complex. Project performance as of December 31, 2012 has been excellent: - Cost Performance Index - 1.06; - Schedule Performance Index - 1.02. At the same time, since safety is the foundation of all cleanup

  4. Bioremediation treatment of hydrocarbon-contaminated Arctic soils: influencing parameters.

    Science.gov (United States)

    Naseri, Masoud; Barabadi, Abbas; Barabady, Javad

    2014-10-01

    The Arctic environment is very vulnerable and sensitive to hydrocarbon pollutants. Soil bioremediation is attracting interest as a promising and cost-effective clean-up and soil decontamination technology in the Arctic regions. However, remoteness, lack of appropriate infrastructure, the harsh climatic conditions in the Arctic and some physical and chemical properties of Arctic soils may reduce the performance and limit the application of this technology. Therefore, understanding the weaknesses and bottlenecks in the treatment plans, identifying their associated hazards, and providing precautionary measures are essential to improve the overall efficiency and performance of a bioremediation strategy. The aim of this paper is to review the bioremediation techniques and strategies using microorganisms for treatment of hydrocarbon-contaminated Arctic soils. It takes account of Arctic operational conditions and discusses the factors influencing the performance of a bioremediation treatment plan. Preliminary hazard analysis is used as a technique to identify and assess the hazards that threaten the reliability and maintainability of a bioremediation treatment technology. Some key parameters with regard to the feasibility of the suggested preventive/corrective measures are described as well.

  5. Using a Consensus Conference to Characterize Regulatory Concerns Regarding Bioremediation of Radionuclides and Heavy Metals in Mixed Waste at DOE Sites

    International Nuclear Information System (INIS)

    A consensus workshop was developed and convened with ten state regulators to characterize concerns regarding emerging bioremediation technology to be used to clean-up radionuclides and heavy metals in mixed wastes at US DOE sites. Two questions were explored: integrated questions: (1) What impact does participation in a consensus workshop have on the knowledge, attitudes, and practices of state regulators regarding bioremediation technology? (2) How effective is a consensus workshop as a strategy for eliciting and articulating regulators concerns regarding the use of bioremediation to clean up radionuclides and heavy metals in mixed wastes at U.S. Department of Energy Sites around the county? State regulators met together for five days over two months to learn about bioremediation technology and develop a consensus report of their recommendations regarding state regulatory concerns. In summary we found that panel members: quickly grasped the science related to bioremediation and were able to effectively interact with scientists working on complicated issues related to the development and implementation of the technology; are generally accepting of in situ bioremediation, but concerned about costs, implementation (e.g., institutional controls), and long-term effectiveness of the technology; are concerned equally about technological and implementation issues; and believed that the consensus workshop approach to learning about bioremediation was appropriate and useful. Finally, regulators wanted decision makers at US DOE to know they are willing to work with DOE regarding innovative approaches to clean-up at their sites, and consider a strong relationship between states and the DOE as critical to any effective clean-up. They do not want perceive themselves to be and do not want others to perceive them as barriers to successful clean-up at their sites

  6. Bioremediation at a petroleum refinery

    International Nuclear Information System (INIS)

    This paper presents a summary of three projects at the Mobil Refinery in Torrance, California where bioremediation technologies were successfully employed for the remediation of hydrocarbon contaminated soil. The three projects represent variations of implementation of bioremediation, both in-situ and ex-situ. Soil from all of the projects was considered non-hazardous designated waste under the California Code of Regulations, Title 23, section 2522. The projects were permitted and cleanup requirements were defined with the Los Angeles Regional Water Quality Control Board. In all of the projects, different methods were used for supplying water, oxygen, and nutrients to the hydrocarbon degrading bacteria to stimulate growth. The Stormwater Retention Basin Project utilized in-situ mechanical mixing of soils to supply solid nutrients and oxygen, and a self-propelled irrigation system to supply water. The Tank Farm Lake project used an in-situ active bioventing technology to introduce oxygen, moisture, and vapor phase nutrients. The Tank 1340X247 project was an ex-situ bioventing remediation project using a drip irrigation system to supply water and dissolved nutrients, and a vapor extraction system to provide oxygen

  7. Sequential Application of Soil Vapor Extraction and Bioremediation Processes for the Remediation of Ethylbenzene-Contaminated Soils

    DEFF Research Database (Denmark)

    Soares, António Carlos Alves; Pinho, Maria Teresa; Albergaria, José Tomás;

    2012-01-01

    Soil vapor extraction (SVE) is an efficient, well-known and widely applied soil remediation technology. However, under certain conditions it cannot achieve the defined cleanup goals, requiring further treatment, for example, through bioremediation (BR). The sequential application of these technol......Soil vapor extraction (SVE) is an efficient, well-known and widely applied soil remediation technology. However, under certain conditions it cannot achieve the defined cleanup goals, requiring further treatment, for example, through bioremediation (BR). The sequential application......: (1) SVE was sufficient to reach the cleanup goals in 63% of the experiments (all the soils with NOMC below 4%), (2) higher NOMCs led to longer SVE remediation times, (3) BR showed to be a possible and cost-effective option when EB concentrations were lower than 335 mg kgsoil −1, and (4...

  8. Using Advanced Mixed Waste Treatment Technology To Meet Accelerated Cleanup Program Milestones

    International Nuclear Information System (INIS)

    Some DOE Complex facilities are entering the late stages of facility closure. As waste management operations are completed at these sites, remaining inventories of legacy mixed wastes must be finally disposed. These wastes have unique physical, chemical and radiological properties that have made their management troublesome, and hence why they have remained on site until this late stage of closure. Some of these wastes have had no approved or practical treatment alternative until just recently. Results are provided from using advanced mixed waste treatment technology to perform two treatment campaigns on these legacy wastes. Combinations of macro-encapsulation, vacuum thermal desorption (VTD), and chemical stabilization, with off-site incineration of the organic condensate, provided a complete solution to the problem wastes. One program included approximately 1,900 drums of material from the Fernald Environmental Management Project. Another included approximately 1,200 drums of material from the Accelerated Cleanup Program at the Oak Ridge Reservation. Both of these campaigns were conducted under tight time schedules and demanding specifications, and were performed in a matter of only a few months each. Coordinated rapid waste shipment, flexible permitting and waste acceptance criteria, adequate waste receiving and storage capacity, versatile feed preparation and sorting capability, robust treatment technology with a broad feed specification, and highly reliable operations were all valuable components to successful accomplishment of the project requirements. Descriptions of the waste are provided; material that was difficult or impossible to treat in earlier phases of site closure. These problem wastes included: 1) the combination of special nuclear materials mixed with high organic chemical content and/or mercury, 2) high toxic metal content mixed with high organic chemical content, and 3) very high organic chemical content mixed with debris, solids and sludge

  9. PROTOCOL FOR DETERMINING BIOAVAILABILITY AND BIOKINETICS OF ORGANIC POLLUTANTS IN DISPERSED, COMPACTED AND INTACT SOIL SYSTEMS TO ENHANCE IN SITU BIOREMEDIATION

    Science.gov (United States)

    The development of effective in situ and on-site bioremediation technologies can facilitate the cleanup of chemically-contaminated soil sites. Knowledge of biodegradation kinetics and bioavailability of organic pollutants can facilitate decisions on the efficacy of in situ and o...

  10. Development of a new chemical technology for cleanup of VVER steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Smykov, V.B.; Yermolaev, N.P. [IPPE, Obninsk (Russian Federation); Ivanov, V.N. [Balakovo NPP (Russian Federation)

    2002-07-01

    As shows the maintenance experience of SG's, the long-time maintenance them without chemical cleanup on secondary-side results in accumulation of considerable amounts of depositions of oxides of iron with a high content of copper on outside of tubes. The deposit accumulation creates conditions for concentrating of salts which promote corrosion and, then, the loosing of inter-contour tightness. Therefore the experts do not have any doubts in necessity of chemical cleanups and the chemical cleanups were carried out at some NPP's with VVER during last years. However it is possible to say, that these cleanups were carried out not by the best mode - the same main reagents had been used in order to dissolve the copper and iron oxides. For example, all cleanups at Balakovo NPP in 1996-1997 years had the common deficiency - even during 5. final stage of process the copper prolongs to be washed. By our opinion, the reasons of it are the poor scientific and technical justification of this process. Therefore at various NPP's with VVER cleanups realize by various techniques. The process of chemical cleanup, close to offered in the present work, was repeated many times utilized at BN-600 Belojarsk NPP and at BN-350 Shevtchenko NPP. The purposes of the present work are: 1. Research the behaviours of physicochemical processes during dissolution of components of depositions and their mixtures with use of the various formulas; 2. Analysis of the carried out chemical cleanups of PGV-1000M at an example of Balakovo NPP; 3. Development of a new process of SG's cleanup on the base of experimental researches and analysis; 4. Check of this process on the samples of full-scale depositions from SG Balakovo NPP. (authors)

  11. Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes

    International Nuclear Information System (INIS)

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region's existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs

  12. Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes

    Energy Technology Data Exchange (ETDEWEB)

    Reaven, S.J. [State Univ. of New York, Stony Brook, NY (United States)

    1994-12-01

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

  13. Oil spills and their cleanup

    International Nuclear Information System (INIS)

    Oil spills are an unfortunately common occurrence in the world's seas and can have extensive damaging environmental consequences. This article examines various methods of cleaning up oil spills, evaluates their effectiveness in various situations, and identifies areas where, current methods being inadequate, further research is needed. Containment, mechanical removal, shoreline cleanup, chemical treating agents, in situ burning, natural recovery and enhanced bioremediation are all assessed. The cleanup method must be selected to match environmental conditions. Results are good in quiet, sheltered waters, but need extensive development in open waters and high seas. (UK)

  14. Ex-situ bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    The use of stress acclimated bacteria and nutrient supplements to enhance the biodegradation of petroleum contaminated soil can be a cost effective and reliable treatment technology to reduce organic contaminant levels to below established by local, state, and federal regulatory clean-up criteria. This paper will summarize the results of a field study in which 12,000 yds3 of petroleum contaminated soil was successfully treated via ex-situ bioremediation and through management of macro and micronutrient concentrations, as well as, other site specific environmental factors that are essential for optimizing microbial growth

  15. Bioremediation of oil spills in the United States

    International Nuclear Information System (INIS)

    The involvement of EPA in the cleanup of oil-contaminated beaches in Prince William Sound, Alaska, following the Exxon Valdez oil spill, has generated a significant research effort in oil spill cleanup technology within EPA's Office of Research and Development. Because of the successful use of bioremediation in the Alaskan spill, a considerable portion of the research has been directed toward its further development, particularly as it might apply to other types of beaches and open water. In hindsight the problems faced in the application of bioremediation on the beaches of Prince William Sound appear relatively straightforward. First, the major obstacle of logistics on remote beaches was effectively overcome by using the operational capabilities created by the massive physical washing operation conducted from barges. Second, oil-degrading microbial communities were rapidly enriched in the oil-contaminated beach material, including subsurface, thereby precluding the need for any inoculation procedures. This situation, however, created a significant increased demand for nitrogen and phosphorus nutrients that was met through the application of commercially available fertilizers. Natural biodegradation of the oil was enhanced by the addition of fertilizer, substantially aiding in the overall cleanup operation. Third, the extremely high porosity of the cobblestone and mixed sand and gravel beach material allowed oil to be spread over a large surface area, thereby improving availability to the oil-degrading microbial communities and allowing, through tidal and wave action, the constant replenishment of oxygen. In addition, it created a high dilution capability that effectively prevented the accumulation of ammonia

  16. Diverse Metabolic Capacities of Fungi for Bioremediation.

    Science.gov (United States)

    Deshmukh, Radhika; Khardenavis, Anshuman A; Purohit, Hemant J

    2016-09-01

    Bioremediation refers to cost-effective and environment-friendly method for converting the toxic, recalcitrant pollutants into environmentally benign products through the action of various biological treatments. Fungi play a major role in bioremediation owing to their robust morphology and diverse metabolic capacity. The review focuses on different fungal groups from a variety of habitats with their role in bioremediation of different toxic and recalcitrant compounds; persistent organic pollutants, textile dyes, effluents from textile, bleached kraft pulp, leather tanning industries, petroleum, polyaromatic hydrocarbons, pharmaceuticals and personal care products, and pesticides. Bioremediation of toxic organics by fungi is the most sustainable and green route for cleanup of contaminated sites and we discuss the multiple modes employed by fungi for detoxification of different toxic and recalcitrant compounds including prominent fungal enzymes viz., catalases, laccases, peroxidases and cyrochrome P450 monooxygeneses. We have also discussed the recent advances in enzyme engineering and genomics and research being carried out to trace the less understood bioremediation pathways.

  17. Environmental Assessment For Cleanup and Closure of the Energy Technology Engineering Center. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-03-01

    DOE analyzed two cleanup and closure alternatives and the No Action Alternative, in accordance with the Council on Environmental Quality regulations implementing NEPA (40 CFR Parts 1500-1508) and DOE's NEPA implementing regulations (10 CFR Part 1021). Under Alternative 1, DOE is proposing to clean up the remaining ETEC facilities using the existing site specific cleanup standard of 15 mrem/yr. (plus DOE's As Low As Reasonably Achievable--ALARA-principle) for decontamination of radiological facilities and surrounding soils (Alternative 1). An annual 15-millirem additional radiation dose to the maximally exposed individual (assumed to be an individual living in a residential setting on Area IV) from all exposure pathways (air, soil, groundwater) equates to an additional theoretical lifetime cancer risk of no more than 3 x 10-4 (3 in 10,000). For perspective, it is estimated that the average individual in the United States receives a dose of about 300 millirem each year from natural sources of radiation. However, actual exposures generally will be much lower as a result of the application of the ''as low as reasonably achievable'' (ALARA) principle. Based on post-remediation verification sampling previous cleanups have generally resulted in a 2 x 10-6 level of residual risk. DOE would decontaminate, decommission, and demolish the remaining radiological facilities. DOE would also decommission and demolish the one remaining sodium facility and all of the remaining uncontaminated support buildings for which it is responsible. The ongoing RCRA corrective action program, including groundwater treatment (interim measures), would continue. Other environmental impacts would include 2.5 x 10-3 fatalities as a result of LLW shipments and 6.0 x 10-3 fatalities as a result of emission exhaust from all shipments. DOE would also decommission and demolish the remaining sodium facility and decommission and

  18. Environmental Assessment For Cleanup and Closure of the Energy Technology Engineering Center. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-03-01

    DOE analyzed two cleanup and closure alternatives and the No Action Alternative, in accordance with the Council on Environmental Quality regulations implementing NEPA (40 CFR Parts 1500-1508) and DOE's NEPA implementing regulations (10 CFR Part 1021). Under Alternative 1, DOE is proposing to clean up the remaining ETEC facilities using the existing site specific cleanup standard of 15 mrem/yr. (plus DOE's As Low As Reasonably Achievable--ALARA-principle) for decontamination of radiological facilities and surrounding soils (Alternative 1). An annual 15-millirem additional radiation dose to the maximally exposed individual (assumed to be an individual living in a residential setting on Area IV) from all exposure pathways (air, soil, groundwater) equates to an additional theoretical lifetime cancer risk of no more than 3 x 10-4 (3 in 10,000). For perspective, it is estimated that the average individual in the United States receives a dose of about 300 millirem each year from natural sources of radiation. However, actual exposures generally will be much lower as a result of the application of the ''as low as reasonably achievable'' (ALARA) principle. Based on post-remediation verification sampling previous cleanups have generally resulted in a 2 x 10-6 level of residual risk. DOE would decontaminate, decommission, and demolish the remaining radiological facilities. DOE would also decommission and demolish the one remaining sodium facility and all of the remaining uncontaminated support buildings for which it is responsible. The ongoing RCRA corrective action program, including groundwater treatment (interim measures), would continue. Other environmental impacts would include 2.5 x 10-3 fatalities as a result of LLW shipments and 6.0 x 10-3 fatalities as a result of emission exhaust from all shipments. DOE would also decommission and demolish the remaining sodium facility and decommission and

  19. In Situ Bioremediation of Chlorinated Ethenes in Hydraulically-Tight Sediments: Challenges and Limitations

    Science.gov (United States)

    Zhang, M.; Yoshikawa, M.; Takeuchi, M.; Komai, T.

    2011-12-01

    Chlorinated ethenes, like perchloroethene (PCE) and trichloroethene (TCE), have been widely used by many industries, especially in developed countries like Japan. Because of their wide applications, lack of proper regulation, poor handing, storage and disposal practices in the past, chlorinated ethenes have become a type of the most prevalent contaminants for soils and groundwater pollution. For the sake of their degradability, bioremediation has been considered as a potentially cost-effective and environmentally friendly approach for cleanup of chlorinated ethenes in situ. In this presentation, we briefly overview the status of soil and groundwater pollution, the recent amendment of the Soil Contamination Countermeasures Act in Japan, comparison between the bioremediation and other techniques like pump and treat, and the mechanisms of reductive dechlorination, direct oxidation and co-metabolism of chlorinated ethenes. We then introduce and discuss some recent challenges and advancements in in-situ bioremediation including technologies for accelerating bio-degradation of chlorinated ethenes, technologies for assessing diffusive properties of dissolved hydrogen in hydraulically-tight soil samples, and combination of bioremediation with other techniques like electro-kinetic approach. Limiting factors that may cause incomplete remediation and/or ineffectiveness of bioremediation are examined from biochemical, geochemical and hydro-geological aspects. This study reconfirmed and illustrated that: 1) The key factor for an effective bioremediation is how to disperse a proper accelerating agent throughout the polluted strata, 2) The effective diffusion coefficient of dissolved hydrogen in geologic media is relatively big and is almost independent on their permeability, and 3) To effectively design and perform an accelerated bioremediation, a combination of natural migration with pressurized injection and/or other approaches, like electro-migration, for stimulating mass

  20. Bioremediation of oil spills

    International Nuclear Information System (INIS)

    The conversion of oil to environmentally benign chemicals such as water and carbon dioxide by 'hydrocarbon-eating' bacteria is described. The emphasis is on a new process to selectively increase the population of 'oil eating' bacteria, a development that became the foundation for the second-generation bioremediation accelerator, Inipol EAP-22. Second-generation bioremediation products focus on providing nitrogen and phosphorus, chemicals that are not present in crude oil in readily available form, but are essential for the synthesis of proteins, nucleic acids, phospholipids and the energy metabolism of the bacteria. Providing these chemicals in the proper amounts encourages the preferential growth of oil-degrading microbes already present in the local biomass, thus overcoming the major limiting factor for biodegradation. These second-generation bioremediation products also have strong oleophilic properties engineered into them, to assure that the nutrients essential for the bacteria are in contact with the oil. The first major test for second-generation bioremediation accelerators came with the clean-up of the oil spill from the Exxon Valdez, a disaster that contaminated more than 120 kilometres of Alaskan beaches along the shores of Prince William Sound. The Inipol EAP-22 successfully held the nutrients in contact with the oil for the duration of the treatment period, despite constant exposure to the washing action of the surf and occasional heavy rainstorms. Today, the accelerator is routinely used in cleaning up all types of ordinary spills including diesel fuel spills along railway right-of-ways, truck yards and refinery sludge. Conditions under which the application of the accelerator is likely to be most successful are described

  1. Bioremediation potential of diesel-contaminated Libyan soil.

    Science.gov (United States)

    Koshlaf, Eman; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Taha, Mohamed; Haleyur, Nagalakshmi; Makadia, Tanvi H; Morrison, Paul D; Ball, Andrew S

    2016-11-01

    Bioremediation is a broadly applied environmentally friendly and economical treatment for the clean-up of sites contaminated by petroleum hydrocarbons. However, the application of this technology to contaminated soil in Libya has not been fully exploited. In this study, the efficacy of different bioremediation processes (necrophytoremediation using pea straw, bioaugmentation and a combination of both treatments) together with natural attenuation were assessed in diesel contaminated Libyan soils. The addition of pea straw was found to be the best bioremediation treatment for cleaning up diesel contaminated Libyan soil after 12 weeks. The greatest TPH degradation, 96.1% (18,239.6mgkg(-1)) and 95% (17,991.14mgkg(-1)) were obtained when the soil was amended with pea straw alone and in combination with a hydrocarbonoclastic consortium respectively. In contrast, natural attenuation resulted in a significantly lower TPH reduction of 76% (14,444.5mgkg(-1)). The presence of pea straw also led to a significant increased recovery of hydrocarbon degraders; 5.7log CFU g(-1) dry soil, compared to 4.4log CFUg(-1) dry soil for the untreated (natural attenuation) soil. DGGE and Illumina 16S metagenomic analyses confirm shifts in bacterial communities compared with original soil after 12 weeks incubation. In addition, metagenomic analysis showed that original soil contained hydrocarbon degraders (e.g. Pseudoxanthomonas spp. and Alcanivorax spp.). However, they require a biostimulant (in this case pea straw) to become active. This study is the first to report successful oil bioremediation with pea straw in Libya. It demonstrates the effectiveness of pea straw in enhancing bioremediation of the diesel-contaminated Libyan soil.

  2. In situ bioremediation for the Hanford carbon tetrachloride plume. Innovative technology summary report

    International Nuclear Information System (INIS)

    The 200 Area at Hanford (also called the Central Plateau) contains approximately 817 waste sites, 44 facilities to be demolished, and billions of gallons of contaminated groundwater resulting from chemical processing plants and associated waste facilities (e.g., waste tanks). From 1955 to 1973, carbon tetrachloride, nitrate, and other materials were discharged to subsurface liquid waste disposal facilities in the 200 Area. As much as 600,000 kilograms of carbon tetrachloride may have entered the soil column and a portion of this has contaminated the underlying aquifer. In Situ Bioremediation for the Hanford Carbon Tetrachloride Plume (ISB), which is the term used in this report for an in situ treatment process using indigenous micro-organisms with a computer based Accelerated Bioremediation Design Tool (ABDT), remediates groundwater contaminated with volatile organic compounds (VOCs) and nitrates under anaerobic conditions. ISB involves the injection of nutrients into the groundwater and subsequent extraction and re-injection of the groundwater to provide nutrient distribution in the aquifer

  3. Application of biological marker technology to bioremediation of refinery by-products

    Energy Technology Data Exchange (ETDEWEB)

    Moldowan, J.M.; Dahl, J.; McCaffrey, M.A.; Smith, W.J.; Fetzer, J.C. [Chevron Petroleum Technology Co., Richmond, CA (United States)

    1995-01-01

    The progress of bioremediation of waste petroleum sludge at Chevron`s Perth Amboy, New Jersey, refinery landfarm was evaluated using a ranking scale based on refractory biological marker hydrocarbons that are indigenous to, and ubiquitous in, crude oils. Of the four samples analyzed from different locations in the landfarm, two were virtually identical and showed an absence of the n-alkanes expected to be found in the sludge (light biodegradation ranking). Another showed additional partial degradation of acyclic isoprenoids, e.g., pristane and phytane (moderate ranking). The fourth sample showed complete n-paraffin and isoprenoid loss, partial alteration of hopanes, and losses of C{sub 27} steranes, C{sub 27} diasteranes, C{sub 27} monoaromatic steroids, and C{sub 26} triaromatic steroids relative to the higher steroid homologs in each of these series (heavy ranking). These results suggest a concomitant preferential loss of steroid hydrocarbons that have the cholestane side chain and a possible new steroid biodegradation mechanism that is essentially blind to the structure of the steroid nucleus. The latter sample also showed levels of most polynuclear aromatic hydrocarbons (PAH), suggesting a building up of these compounds as others were removed. However, some of the smaller PAH (acenaphylene, fluorene, fluoranthene) appear to have decreased. These results suggest that a protocol based on such a biodegradation ranking scale could be used to monitor the progress of bioremediation of oil based refinery wastes. 35 refs., 7 figs., 1 tab.

  4. Building upon Historical Competencies: Next-generation Clean-up Technologies for World-Wide Application - 13368

    Energy Technology Data Exchange (ETDEWEB)

    Guevara, K.C. [DOE Savannah River Operations Office, Aiken, South Carolina 29808 (United States); Fellinger, A.P.; Aylward, R.S.; Griffin, J.C.; Hyatt, J.E.; Bush, S.R. [Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)

    2013-07-01

    The Department of Energy's Savannah River Site has a 60-year history of successfully operating nuclear facilities and cleaning up the nuclear legacy of the Cold War era through the processing of radioactive and otherwise hazardous wastes, remediation of contaminated soil and groundwater, management of nuclear materials, and deactivation and decommissioning of excess facilities. SRS recently unveiled its Enterprise.SRS (E.SRS) strategic vision to identify and facilitate application of the historical competencies of the site to current and future national and global challenges. E.SRS initiatives such as the initiative to Develop and Demonstrate Next generation Clean-up Technologies seek timely and mutually beneficial engagements with entities around the country and the world. One such ongoing engagement is with government and industry in Japan in the recovery from the devastation of the Fukushima Daiichi Nuclear Power Station. (authors)

  5. Bioremediation of marine oil pollution

    International Nuclear Information System (INIS)

    An assessment is presented of the scientific and technological developments in the area of bioremediation and biodegradation of marine oil pollution. A number of allied technologies are also considered. The basic technology in bioremediation involves adding fertilizers to an oil spill to enhance the natural process of oil biodegradation. Bioremediation can be applied to open systems such as beach or land spills, or in closed and controlled environments such as storage containers, specially constructed or modified bioreactors, and cargo tanks. The major advantage of using closed environments is the opportunity to control the physical and nutritional parameters to optimize the rate of biodegradation. An evaluation of the state of the art of bioremediation in Canada is also included. Recommendations are made to involve the Canadian Transportation Development Centre in short-term research projects on bioremediation. These projects would include the use of a barge as a mobile bioreactor for the treatment of off-loaded oily waste products, the use of in-situ bioremediation to carry out extensive cleaning, degassing, and sludge remediation on board an oil tanker, and the use of a barge as a mobile bioreactor and facility for the bioremediation of bilges. 51 refs., 4 figs., 14 tabs

  6. Cometabolic bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-15

    Cometabolic bioremediation is probably the most under appreciated bioremediation strategy currently available. Cometabolism strategies stimulate only indigenous microbes with the ability to degrade the contaminant and cosubstrate e.g. methane, propane, toluene and others. This highly targeted stimulation insures that only those microbes that can degrade the contaminant are targeted, thus reducing amendment costs, well and formation plugging, etc. Cometabolic bioremediation has been used on some of the most recalcitrant contaminants, e.g. PCE, TCE, MTBE, TNT, dioxane, atrazine, etc. Methanotrophs have been demonstrated to produce methane monooxygense, an oxidase that can degrade over 300 compounds. Cometabolic bioremediation also has the advantage of being able to degrade contaminants to trace concentrations, since the biodegrader is not dependent on the contaminant for carbon or energy. Increasingly we are finding that in order to protect human health and the environment that we must remediate to lower and lower concentrations, especially for compounds like endocrine disrupters, thus cometabolism may be the best and maybe the only possibility that we have to bioremediate some contaminants.

  7. Ten-year cleanup of U.S. Department of Energy weapon sites: The changing roles for technology development in an era of privatization

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.H. [Dept. of Energy, Washington, DC (United States)

    1996-12-31

    In its beginning, the U.S. Department of Energy (DOE) Office of Environmental Management (EM) viewed private industry as lacking adequate technology know-how to meet demands of hazardous and radioactive waste problems at the DOE`s laboratories and nuclear weapons production facilities. In November 1989, EM`s Office of Technology Development (recently renamed the Office of Science and Technology) embarked on a bold program of developing and demonstrating {open_quotes}innovative{close_quotes} waste cleanup technologies that would be safer, faster, more effective, and less expensive than the {open_quotes}baseline{close_quotes} commercial methods. This program has engaged DOE sites, national laboratories, and universities to produce preferred solutions to the problems of handling and treating DOE wastes. More recently, much of this work has shifted to joint efforts with private industry partners to accelerate the use of newly developed technologies and to enhance existing commercial methods. To date, the total funding allocation to the Office of Science and Technology program has been about $2.8 billion. If the technology applications` projects of the EM Offices of Environmental Restoration and Waste Management are included, the total funding is closer to $4 billion. Yet, the environmental industry generally has not been very receptive to EM`s innovative technology offerings. And, essentially the same can be said for DOE sites. According to the U.S. General Accounting Office in an August 1994 report, {open_quotes}Although DOE has spent a substantial amount to develop waste cleanup technologies, little new technology finds its way into the agency`s cleanup actions{close_quotes}. The DOE Baseline Environmental Management Report estimated cleanups of DOE`s Cold War legacy of wastes to require the considerable cost of $226 billion over a period of 75 years. 1 tab.

  8. Technology for the oil spills clean-up which provides preliminary accumulation of sorbents into the area of emergence and localization oil spills

    Directory of Open Access Journals (Sweden)

    M.L.Soroka

    2012-12-01

    Full Text Available Introduction: The implementation of measures for the prevention and spill of dangerous goods is an important aspect of sustainable development of railway transport. oil spills accident are the most dangerous. They are accompanied by significant pollution of all environmental objects. Studying and development of oil localization and clean-up technologies of such accidents is an important problem of environmental protection to modern conditions of railway transport development. The purpose: to improve the effectiveness of traditional methods of oil spill elimination and the development of new clean-up technologies adapted to the real conditions of the railway transport of Ukraine. Methods: To achieve the research purposes was used analysis of material flows, typical for places emergence and localization of the oil spill on the railways. Results: Analysis of standard technological scheme for the oil spills eliminations has shown that the most difficult task of effective clean-up surfaces is the timely delivery of oil sorbents and special equipment to the area spill containment. The general effectiveness of the elimination activities specifies the time from the beginning contact of dangerous goods with environmental objects to the absorption it into the structure of sorbent . Us was developed the technological scheme of oil spill elimination. This scheme provide a permanent and fast access to the sorbents into the oil spill localization area. It was proposed to device that allows you to transport the sorbent into sorption booms directly on the tank for transportation of petroleum products. Conclusions: Preventative accumulation of sorbents to the oil spill elimination into the localization area provides the organizational and operational simplicity of all stages of clean-up technology. Technical and economic assessment shows that the proposed technology is effective, technologically feasible and economically competitive.

  9. Implications of nitrogen fertilization for in-situ bioremediation of petroleum-contaminated soils

    International Nuclear Information System (INIS)

    In situ bioremediation is a promising and rapidly evolving technology for the cleanup of contaminated soils. Although the principles of biodegradation are not new, they are being applied to field remediations in novel ways. Likewise, the metabolic requirements for nitrogen and phosphorus during biodegradation are well-established. However, their effect on the quality of biodegradation still needs delineation. In addition to the physiological effects of mineral nutrients, their mobility and bioavailability in soil becomes critical during an in-situ bioremediation. Studies in the authors laboratory have investigated the effect of different types of fertilizers on hydrocarbon biodegradation in a variety of contaminated soils. Results indicate that the amount and/or species of fertilizer may affect not only the rate of biodegradation, but also the quality of biodegradation, i.e. mineralization of CO2

  10. 生物修复高氯酸盐污染的研究进展%Research advance in bioremediation technology of perchlorate contamination

    Institute of Scientific and Technical Information of China (English)

    高海硕; 陈桂葵; 黎华寿

    2012-01-01

    生物修复技术是目前高氯酸盐污染环境整治的最具潜力的修复技术之一,具有成本低、无二次污染的特点,是国内外一个新的研究热点,亦是仅见的污染控制及修复的环境友好技术.介绍了环境中高氯酸盐污染的来源与分布,阐述了生物修复(主要包括植物修复和微生物修复)的特点及作用机制,认识到2种类型修复技术各有其优劣势;重点综述了生物修复高氯酸盐污染的国内外研究现状,得出植物根际降解对植物修复高氯酸盐起着十分重要作用,而微生物修复是目前最有希望获得大规模应用的高氯酸盐污染修复技术;最后提出了植物微生物联合强化修复高氯酸盐污染的技术将更具应用前景.%Bioremediation is the most potential technologies in perchlorate contamination remediation. As the only environmentally friendly remediation technologies so far, bioremediation technology had the advantage of low cost and no secondary pollution,it become a new research hotspot at home and abroad. This paper introduced the source and distribution of perchlorate contamination,described the characteristics and mechanism of bioremediation technology (mainly included phytoremediation and microbial remediation) in perchlorate contamination remediation; the advantages and disadvantages of these two bioremediation techniques was summarized and compared. The research status of perchlorate contamination bioremediation was reviewed. It was found that plant rhizosphere degradation played an important role in phytoremediation;microbial remediation was the most hopeful technology for large-scale application in perchlorate pollution remediation. The phyto-microbial strengthen remediation technology was put forward; it would had more application prospects in perchlorate contamination remeditation.

  11. Present Situation and Prospect of Bioremediation Technology for Soil Pollution%土壤污染的生物修复技术及其研究进展

    Institute of Scientific and Technical Information of China (English)

    杨秋红; 吕航; 宋倩; 但德忠

    2009-01-01

    近年来土壤污染呈现加重的趋势,有关污染土壤的修复研究正日益受到重视.生物修复技术是一项用于污染土壤治理的新技术.介绍了污染土壤生物修复技术,综述了近年来国内外土壤生物修复技术的研究和应用现状,并评述了土壤生物修复技术存在的问题以及污染土壤生物修复的发展方向.%In recent years,soil pollution was increasingly becoming an important environmental problem.Bioremediation technology was rapidly developing for treating soil pollution.And it was considered of the most promising technology.This paper briefly introduced the concept of bioremediation and the methods,and focused on the application of bioremediation of organic and heavy metals contamination,as well as reviewed the present problems of bioremediafion and its prospect.

  12. Biodegradation and bioremediation

    DEFF Research Database (Denmark)

    Albrechtsen, H.-J.

    1996-01-01

    Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994......Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994...

  13. Development of combinatorial bacteria for metal and radionuclide bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    A. C. Matin, Ph. D.

    2006-06-15

    The grant concerned chromate [Cr(VI)] bioremediation and it was our aim from the outset to construct individual bacterial strains capable of improved bioremediation of multiple pollutants and to identify the enzymes suited to this end. Bacteria with superior capacity to remediate multiple pollutants can be an asset for the cleanup of DOE sites as they contain mixed waste. I describe below the progress made during the period of the current grant, providing appropriate context.

  14. Development of combinatorial bacteria for metal and radionuclide bioremediation

    International Nuclear Information System (INIS)

    The grant concerned chromate [Cr(VI)] bioremediation and it was our aim from the outset to construct individual bacterial strains capable of improved bioremediation of multiple pollutants and to identify the enzymes suited to this end. Bacteria with superior capacity to remediate multiple pollutants can be an asset for the cleanup of DOE sites as they contain mixed waste. I describe below the progress made during the period of the current grant, providing appropriate context

  15. Bioremediation of crude oil spills in marine and terrestrial environments

    International Nuclear Information System (INIS)

    Bioremediation can be a safe and effective tool for dealing with crude oil spills, as demonstrated during the cleanup following the Exxon Valdez spill in Alaska. Crude oil has also been spilled on land, and bioremediation is a promising option for land spills too. Nevertheless, there are still areas where understanding of the phenomenon is rather incomplete. Research groups around the world are addressing these problems, and this symposium provides an excellent overview of some of this work

  16. Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas

    Energy Technology Data Exchange (ETDEWEB)

    Turk, Brian; Gupta, Raghubir; Sharma, Pradeepkumar; Albritton, Johnny; Jamal, Aqil

    2010-09-30

    One of the key obstacles for the introduction of commercial gasification technology for the production of power with Integrated Gasification Combined Cycle (IGCC) plants or the production of value added chemicals, transportation fuels, and hydrogen has been the cost of these systems. This situation is particularly challenging because the United States has ample coal resources available as raw materials and effective use of these raw materials could help us meet our energy and transportation fuel needs while significantly reducing our need to import oil. One component of the cost of these systems that faces strong challenges for continuous improvement is removing the undesirable components present in the syngas. The need to limit the increase in cost of electricity to < 35% for new coal-based power plants which include CO{sub 2} capture and sequestration addresses both the growing social concern for global climate change resulting from the emission of greenhouse gas and in particular CO{sub 2} and the need to control cost increases to power production necessary to meet this social objective. Similar improvements to technologies for trace contaminants are getting similar pressure to reduce environmental emissions and reduce production costs for the syngas to enable production of chemicals from coal that is cost competitive with oil and natural gas. RTI, with DOE/NETL support, has been developing sorbent technologies that enable capture of trace contaminants and CO{sub 2} at temperatures above 400 °F that achieve better capture performance, lower costs and higher thermal efficiency. This report describes the specific work of sorbent development for mercury (Hg), arsenic (As), selenium (Se), cadmium (Cd), and phosphorous (P) and CO{sub 2} removal. Because the typical concentrations of Hg, As, Se, Cd, and P are less than 10 ppmv, the focus has been on single-use sorbents with sufficient capacity to ensure replacement costs are cost effective. The research in this

  17. Advanced separation technology for flue gas cleanup. Final report, February 1998

    Energy Technology Data Exchange (ETDEWEB)

    Bhown, A.S.; Alvarado, D.; Pakala, N.; Tagg, T.; Riggs, T.; Ventura, S.; Sirkar, K.K.; Majumdar, S.; Bhaumick, D.

    1998-06-01

    The objective of this work by SRI International was to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (1) a novel method for regenerating spent SO{sub 2} scrubbing liquor and (2) novel chemistry for reversible absorption of NO{sub x}. High efficiency, hollow fiber contactors (HFCs) were proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system would be designed to remove more than 95% of the SO{sub 2} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction of NO{sub x}. In addition, the process would generate only marketable by-products, if any (no waste streams are anticipated). The major cost item in existing technology is capital investment. Therefore, the approach was to reduce the capital cost by using high-efficiency, hollow fiber devices for absorbing and desorbing the SO{sub 2} and NO{sub x}. The authors also introduced new process chemistry to minimize traditionally well-known problems with SO{sub 2} and NO{sub x} absorption and desorption. The process and progress in its development are described.

  18. THE ROLE OF LIQUID WASTE PRETREATMENT TECHNOLOGIES IN SOLVING THE DOE CLEAN-UP MISSION

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, B; Sheryl Bush, S

    2008-10-31

    The objective of this report is to describe the pretreatment solutions that allow treatment to be tailored to specific wastes, processing ahead of the completion schedules for the main treatment facilities, and reduction of technical risks associated with future processing schedules. Wastes stored at Hanford and Savannah River offer challenging scientific and engineering tasks. At both sites, space limitations confound the ability to effectively retrieve and treat the wastes. Additionally, the radiation dose to the worker operating and maintaining the radiochemical plants has a large role in establishing the desired radioactivity removal. However, the regulatory requirements to treat supernatant and saltcake tank wastes differ at the two sites. Hanford must treat and remove radioactivity from the tanks based on the TriParty Agreement and Waste Incidental to Reprocessing (WIR) documentation. These authorizing documents do not specify treatment technologies; rather, they specify endstate conditions. Dissimilarly, Waste Determinations prepared at SRS in accordance with Section 3116 of the 2005 National Defense Authorization Act along with state operating permits establish the methodology and amounts of radioactivity that must be removed and may be disposed of in South Carolina. After removal of entrained solids and site-specific radionuclides, supernatant and saltcake wastes are considered to be low activity waste (LAW) and are immobilized in glass and disposed of at the Hanford Site Integrated Disposal Facility (IDF) or formulated into a grout for disposal at the Savannah River Site Saltstone Disposal Facility. Wastes stored at the Hanford Site or SRS comprise saltcake, supernate, and sludges. The supernatant and saltcake waste fractions contain primarily sodium salts, metals (e.g., Al, Cr), cesium-137 (Cs-137), technetium-99 (Tc-99) and entrained solids containing radionuclides such as strontium-90 (Sr-90) and transuranic elements. The sludges contain many of the

  19. Bioremediation of oil spills

    International Nuclear Information System (INIS)

    For some years now UK and European oil spill response agencies, together with oil companies having an exploration or production interest in the European area, have been developing interest in the possible use of bioremediation techniques in combatting oil spills. The interest has accelerated in the aftermath of Exxon Valdez but there is significant scepticism over the actual value of the technique. The promise of increased rates of oil degradation, using bacteria or nutrients, does not yet appear to have been properly validated and there is concern over possible knock-on environmental effects. In consequence the response agencies are reluctant to bring the technique into their current combat armory. Some of the questions raised are: What efficacious techniques are available and how were they proven? On what type of oils can they be used? What is the scope for their use (at sea, type of coastline, temperature limitations, etc.)? What are the short and long term effects? Does bioremediation really work and offer a potential tool for oil spill clean-up? How do cleaning rates compare with natural recovery? There are many others. The view of the European Commission is that there should be a coordinated effort to answer these questions, but that effort should be properly targeted. I concur strongly with this view. The tasks are too large and varied for piecemeal attention. The European Commission wishes to initiate appropriate coordinated work, directed at the needs of European nations but which will subsequently inform the international response community through the International Maritime Organization and its Oil Pollution Preparedness and Response Cooperation initiative

  20. Bioremediation potential of crude oil spilled on soil

    International Nuclear Information System (INIS)

    Spills sometimes occur during routine operations associated with exploration and production (E and P) of crude oil. These spills at E and P sites typically are small, less than 1 acre (0.4 ha), and the spill may be in remote locations. As a result, bioremediation often represents a cost-effective alternative to other cleanup technologies. The goal of this study was to determine the potential for biodegrading a range of crude oil types and determining the effect of process variables such as soil texture and soil salinity. Crude oils evaluated ranged in American Petroleum institute (API) gravity from 14 degree to 45 degree. The extent of biodegradation was calculated from oxygen uptake data and the total extractable material (TEM) concentration. Based on the data collected, a simple model was developed for predicting the bioremediation potential of a range of crude oil types. Biodegradation rates were significantly lower in sandy soils. Soil salinities greater than approximately 40 mmhos/cm adversely impacted soil microbial activity and biodegradation rate

  1. Diverse Metabolic Capacities of Fungi for Bioremediation.

    Science.gov (United States)

    Deshmukh, Radhika; Khardenavis, Anshuman A; Purohit, Hemant J

    2016-09-01

    Bioremediation refers to cost-effective and environment-friendly method for converting the toxic, recalcitrant pollutants into environmentally benign products through the action of various biological treatments. Fungi play a major role in bioremediation owing to their robust morphology and diverse metabolic capacity. The review focuses on different fungal groups from a variety of habitats with their role in bioremediation of different toxic and recalcitrant compounds; persistent organic pollutants, textile dyes, effluents from textile, bleached kraft pulp, leather tanning industries, petroleum, polyaromatic hydrocarbons, pharmaceuticals and personal care products, and pesticides. Bioremediation of toxic organics by fungi is the most sustainable and green route for cleanup of contaminated sites and we discuss the multiple modes employed by fungi for detoxification of different toxic and recalcitrant compounds including prominent fungal enzymes viz., catalases, laccases, peroxidases and cyrochrome P450 monooxygeneses. We have also discussed the recent advances in enzyme engineering and genomics and research being carried out to trace the less understood bioremediation pathways. PMID:27407289

  2. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  3. Technology summary of the in situ bioremediation demonstration (methane biostimulation) via horizontal wells at the Savannah River Site Integrated Demonstration Project

    International Nuclear Information System (INIS)

    The US Department of Energy, Office of Technology Development, has been sponsoring full-scale environmental restoration technology demonstrations for the past 4 years. The Savannah River Site Integrated Demonstration focuses on ''Clean-up of Soils ad Groundwater Contaminated with Chlorinated VOCs.'' Several laboratories including our own had demonstrated the ability of methanotrophic bacteria to completely degrade or mineralize chlorinated solvents, and these bacteria were naturally found in soil and aquifer material. Thus the test consisted of injection of methane mixed with air into the contaminated aquifer via a horizontal well and extraction from the vadose zone via a parallel horizontal well

  4. Novel fracture technology proves marginal Viking prospect economic, part II: Well clean-up, flowback and testing

    Energy Technology Data Exchange (ETDEWEB)

    Haidar, S.; Rylance, M.; Tybero, G. [and others

    1996-12-31

    Having completed both fracture treatments as discussed in a companion paper, this paper continues on to describe the post fracture shut-in, clean-up and well testing operations that took place on the Viking Wx exploration well 49/17-12. These operations involved the removal of Resin Coated Proppant (RCP) from the wellbore, via Coiled Tubing (CT), through the use of a specially designed jetting nozzle. The RCP pack stability at a concentration of 3.0 lb/ft{sup 2} (as per planned design) had already been tested in a flowback cell. The use of a Surface Read-Out (SRO) gauge, combined with gas, water and proppant flow rates as well as the viscosity of fracturing fluids returns, enabled real time calculation of the drag forces, on the proppant pack, during clean-up. The flow rate, in the field, was controlled such that the calculated drag forces remained below those observed in the laboratory. Following the clean-up a flow and build-up test was conducted, to evaluate the fracture half length and fracture conductivity, from which a Pseudo-radial skin was calculated. The Non-Darcy effects in the fracture were also evaluated, and finally the short term and long term well deliverabilities were assessed.

  5. A Review on Bioremediation Technologies of Organic Pollutants Contaminated Soils%土壤有机污染物生物修复技术研究进展

    Institute of Scientific and Technical Information of China (English)

    周际海; 袁颖红; 朱志保; 姚春阳; 张谷雨; 高琪

    2015-01-01

    biphenyls (PCBs) and Antibiotics (ATBs), worsen soil organic matter pollution, thus making remediation of organic pollutants contaminated soils a pressing issue. The remediation of contaminated soils is a qualitative process in which pollutant concentration is reduced to an acceptable level, or poisonous and harmful pollutants transformed into innoxious substances through absorption, degradation, transfer and transformation in soils using physical, chemical or biological methods. It includes physical remediation technology, chemical remediation technology and bioremediation technology. Among all kinds of soil remediation techniques, bioremediation is receiving more and more attention because of its safety and low cost. Besides, it won’t cause secondary pollution. The bioremediation of organic pollutants contaminated soils consists of phytoremediation technologies, soil fauna remediation technologies and microbial remediation technologies. The microbial bioremediation as an important component of the bioremediation of contaminated soils, boasts the most value in development and application in biological environmental protection. This paper systematically introduces the bioremediation technologies of organic pollutants contaminated soils at home and abroad in terms of their principles, the research progresses, the advantages and limitations. In the meantime, we cast a brief look into the prospects of the research of soil fauna remediation in future. Hopefully, it will provide references for research on bioremediation of organic pollutants contaminated soils.

  6. Bioremediation of oil-contaminated soils: A recipe for success

    Energy Technology Data Exchange (ETDEWEB)

    Wittenbach, S.A.

    1995-12-31

    Bioremediation of land crude oil and lube oil spills is an effective and economical option. Other options include road spreading (where permitted), thermal desorption, and off-site disposal. The challenge for environment and operations managers is to select the best approach for each remediation site. Costs and liability for off-site disposal are ever increasing. Kerr-McGee`s extensive field research in eastern and western Texas provides the data to support bioremediation as a legitimate and valid option. Both practical and economical bioremediation as a legitimate and valid option. Both practical and economical, bioremediation also offers a lower risk of, for example, Superfund clean-up exposure than off-site disposal.

  7. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    Directory of Open Access Journals (Sweden)

    G. U. Chibuike

    2014-01-01

    Full Text Available Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for the bioremediation of polluted soils. Using plants for the treatment of polluted soils is a more common approach in the bioremediation of heavy metal polluted soils. Combining both microorganisms and plants is an approach to bioremediation that ensures a more efficient clean-up of heavy metal polluted soils. However, success of this approach largely depends on the species of organisms involved in the process.

  8. Biosurfactant-enhanced soil bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Kosaric, N.; Lu, G.; Velikonja, J. [Univ. of Western Ontario, London, Ontario (Canada)

    1995-12-01

    Bioremediation of soil contaminated with organic chemicals is a viable alternative method for clean-up and remedy of hazardous waste sites. The final objective in this approach is to convert the parent toxicant into a readily biodegradable product which is harmless to human health and/or the environment. Biodegradation of hydrocarbons in soil can also efficiently be enhanced by addition or in-situ production of biosufactants. It was generally observed that the degradation time was shortened and particularly the adaptation time for the microbes. More data from our laboratories showed that chlorinated aromatic compounds, such as 2,4-dichlorophenol, a herbicide Metolachlor, as well as naphthalene are degraded faster and more completely when selected biosurfactants are added to the soil. More recent data demonstrated an enhanced biodegradation of heavy hydrocarbons in petrochemical sludges, and in contaminated oil when biosurfactants were present or were added prior to the biodegradation process.

  9. Treatment of a mud pit by bioremediation.

    Science.gov (United States)

    Avdalović, Jelena; Đurić, Aleksandra; Miletić, Srdjan; Ilić, Mila; Milić, Jelena; Vrvić, Miroslav M

    2016-08-01

    The mud generated from oil and natural gas drilling, presents a considerable ecological problem. There are still insufficient remedies for the removal and minimization of these very stable emulsions. Existing technologies that are in use, more or less successfully, treat about 20% of generated waste drilling mud, while the rest is temporarily deposited in so-called mud pits. This study investigated in situ bioremediation of a mud pit. The bioremediation technology used in this case was based on the use of naturally occurring microorganisms, isolated from the contaminated site, which were capable of using the contaminating substances as nutrients. The bioremediation was stimulated through repeated inoculation with a zymogenous microbial consortium, along with mixing, watering and biostimulation. Application of these bioremediation techniques reduced the concentration of total petroleum hydrocarbons from 32.2 to 1.5 g kg(-1) (95% degradation) during six months of treatment. PMID:27354013

  10. Monitoring and interpreting bioremediation effectiveness

    International Nuclear Information System (INIS)

    Following the Exxon Valdez oil spill in 1989, extensive research was conducted by the US Environments Protection Agency and Exxon to develop and implement bioremediation techniques for oil spill cleanup. A key challenge of this program was to develop effective methods for monitoring and interpreting bioremediation effectiveness on extremely heterogenous intertidal shorelines. Fertilizers were applied to shorelines at concentrations known to be safe, and effectiveness achieved in acceleration biodegradation of oil residues was measure using several techniques. This paper describes the most definitive method identified, which monitors biodegradation loss by measuring changes in ratios of hydrocarbons to hopane, a cycloalkane present in the oil that showed no measurable degradation. Rates of loss measured by the hopane ratio method have high levels of statistical confidence, and show that the fertilizer addition stimulated biodegradation rates as much a fivefold. Multiple regression analyses of data show that fertilizer addition of nitrogen in interstitial pore water per unit of oil load was the most important parameter affecting biodegradation rate, and results suggest that monitoring nitrogen concentrations in the subsurface pore water is preferred technique for determining fertilizer dosage and reapplication frequency

  11. Gas stream cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, S.J.; Cicero, D.C.; Zeh, C.M.; Bedick, R.C.

    1990-08-01

    This report describes the current status and recent accomplishments of gas stream cleanup (GSCU) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Gas Stream Cleanup Program is to develop contaminant control strategies that meet environmental regulations and protect equipment in advanced coal conversion systems. Contaminant control systems are being developed for integration into seven advanced coal conversion processes: Pressurized fludized-bed combustion (PFBC), Direct coal-fueled turbine (DCFT), Intergrated gasification combined-cycle (IGCC), Gasification/molten carbonate fuel cell (MCFC), Gasification/solid oxide fuel cell (SOFC), Coal-fueled diesel (CFD), and Mild gasification (MG). These advanced coal conversion systems present a significant challenge for development of contaminant control systems because they generate multi-contaminant gas streams at high-pressures and high temperatures. Each of the seven advanced coal conversion systems incorporates distinct contaminant control strategies because each has different contaminant tolerance limits and operating conditions. 59 refs., 17 figs., 5 tabs.

  12. OIL SPILL CLEANUP

    Science.gov (United States)

    Due to the consideration of bioremediation for oil spills, it is important to understand the ecological and human health implications of bioremediation efforts. uring biodegradation, the toxicity of the polluting material may actually increase upon the conversion of non-toxic con...

  13. Environmental Assessment for Selection and Operation of the Proposed Field Research Centers for the Natural and Accelerated Bioremediation Research (NABIR) Program

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-04-18

    biodegrade or biotransform hazardous organic contaminants to environmentally safe levels in soils, subsurface materials, water, sludges, and residues.. While bioremediation technology is promising, DOE managers and non-DOE scientists have recognized that the fundamental scientific information needed to develop effective bioremediation technologies for cleanup of the legacy waste sites is lacking in many cases. DOE believes that field-based research is needed to realize the full potential of bioremediation. The Department of Energy faces a unique set of challenges associated with cleaning up waste at its former weapons production and research sites. These sites contain complex mixtures of contaminants in the subsurface, including radioactive compounds. In many cases, the fundamental field-based scientific information needed to develop safe and effective remediation and cleanup technologies is lacking. DOE needs fundamental research on the use of microorganisms and their products to assist DOE in the decontamination and cleanup of its legacy waste sites. The existing NABIR program to-date has focused on fundamental scientific research in the laboratory. Because subsurface hydrologic and geologic conditions at contaminated DOE sites cannot easily be duplicated in a laboratory, however, the DOE needs a field component to permit existing and future laboratory research results to be field-tested on a small scale in a controlled outdoor setting. Such field-testing needs to be conducted under actual legacy waste field conditions representative of those that DOE is most in need of remediating. Ideally, these field conditions should be as representative as practicable of the types of subsurface contamination conditions that resulted from legacy wastes from the nuclear weapons program activities. They should also be representative of the types of hydrologic and geologic conditions that exist across the DOE complex.

  14. Test plan, the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon. Revision 1

    International Nuclear Information System (INIS)

    The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organic sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH's, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass

  15. Test plan, the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Altman, D.J.; Hazen, T.C.; Tien, A.J. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Worsztynowicz, A.; Ulfig, K. [Inst. for Ecology of Industrial Areas, Katowice (Poland)

    1997-05-10

    The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organic sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH`s, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass.

  16. BIOREMEDIATION OF CONTAMINATED SURFACE SOILS

    Science.gov (United States)

    Biological remediation of soils contaminated with organic chemicals is an alternative treatment technology that can often meet the goal of achieving a permanent clean-up remedy at hazardous waste sites, as encouraged by the U.S. Environmental Protection Agency (U.S. EPA) for impl...

  17. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  18. Metals, minerals and microbes: geomicrobiology and bioremediation.

    Science.gov (United States)

    Gadd, Geoffrey Michael

    2010-03-01

    Microbes play key geoactive roles in the biosphere, particularly in the areas of element biotransformations and biogeochemical cycling, metal and mineral transformations, decomposition, bioweathering, and soil and sediment formation. All kinds of microbes, including prokaryotes and eukaryotes and their symbiotic associations with each other and 'higher organisms', can contribute actively to geological phenomena, and central to many such geomicrobial processes are transformations of metals and minerals. Microbes have a variety of properties that can effect changes in metal speciation, toxicity and mobility, as well as mineral formation or mineral dissolution or deterioration. Such mechanisms are important components of natural biogeochemical cycles for metals as well as associated elements in biomass, soil, rocks and minerals, e.g. sulfur and phosphorus, and metalloids, actinides and metal radionuclides. Apart from being important in natural biosphere processes, metal and mineral transformations can have beneficial or detrimental consequences in a human context. Bioremediation is the application of biological systems to the clean-up of organic and inorganic pollution, with bacteria and fungi being the most important organisms for reclamation, immobilization or detoxification of metallic and radionuclide pollutants. Some biominerals or metallic elements deposited by microbes have catalytic and other properties in nanoparticle, crystalline or colloidal forms, and these are relevant to the development of novel biomaterials for technological and antimicrobial purposes. On the negative side, metal and mineral transformations by microbes may result in spoilage and destruction of natural and synthetic materials, rock and mineral-based building materials (e.g. concrete), acid mine drainage and associated metal pollution, biocorrosion of metals, alloys and related substances, and adverse effects on radionuclide speciation, mobility and containment, all with immense social

  19. Metagenomic Analysis of the Bioremediation of Diesel-Contaminated Canadian High Arctic Soils

    OpenAIRE

    Yergeau, Etienne; Sanschagrin, Sylvie; Beaumier, Danielle; Greer, Charles W.

    2012-01-01

    As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorga...

  20. Endophytic microorganisms--promising applications in bioremediation of greenhouse gases.

    Science.gov (United States)

    Stępniewska, Z; Kuźniar, A

    2013-11-01

    Bioremediation is a technique that uses microbial metabolism to remove pollutants. Various techniques and strategies of bioremediation (e.g., phytoremediation enhanced by endophytic microorganisms, rhizoremediation) can mainly be used to remove hazardous waste from the biosphere. During the last decade, this specific technique has emerged as a potential cleanup tool only for metal pollutants. This situation has changed recently as a possibility has appeared for bioremediation of other pollutants, for instance, volatile organic compounds, crude oils, and radionuclides. The mechanisms of bioremediation depend on the mobility, solubility, degradability, and bioavailability of contaminants. Biodegradation of pollutions is associated with microbial growth and metabolism, i.e., factors that have an impact on the process. Moreover, these factors have a great influence on degradation. As a result, recognition of natural microbial processes is indispensable for understanding the mechanisms of effective bioremediation. In this review, we have emphasized the occurrence of endophytic microorganisms and colonization of plants by endophytes. In addition, the role of enhanced bioremediation by endophytic bacteria and especially of phytoremediation is presented.

  1. In situ vadose zone bioremediation.

    Science.gov (United States)

    Höhener, Patrick; Ponsin, Violaine

    2014-06-01

    Contamination of the vadose zone with various pollutants is a world-wide problem, and often technical or economic constraints impose remediation without excavation. In situ bioremediation in the vadose zone by bioventing has become a standard remediation technology for light spilled petroleum products. In this review, focus is given on new in situ bioremediation strategies in the vadose zone targeting a variety of other pollutants such as perchlorate, nitrate, uranium, chromium, halogenated solvents, explosives and pesticides. The techniques for biostimulation of either oxidative or reductive degradation pathways are presented, and biotransformations to immobile pollutants are discussed in cases of non-degradable pollutants. Furthermore, research on natural attenuation in the vadose zone is presented.

  2. BIOREMEDIATION OF PETROLEUM HYDROCARBON CONTAMINANTS IN MARINE HABITATS

    Science.gov (United States)

    Bioremediation is being increasingly seen as an effective environmentally benign treatment for shorelines contaminated as a result of marine oil spills. Despite a relatively long history of research on oil-spill bioremediation, it remains an essentially empirical technology and m...

  3. The application of mature dry storage technology and remote handling robotics to nuclear plant extension, clean-up and decommissioning

    International Nuclear Information System (INIS)

    This paper reviews a mature dry storage technology developed by GEC ALSTHOM Engineering Systems Limited (GAES) which offers a passive, economical and licensable method of providing irradiated fuel storage capacity at operational nuclear power stations. The evolution of the modular vault dry store (MVDS) technology has taken place over 25 years of operational experience, culminating in a product which meets all of the concerns of licensing authorities regarding safety and fuel integrity. The application of remote handling robotics to nuclear fuel and active component handling as a routine process rather than as an intervention technique is also reviewed. The growth of the application of this technology is governed by several factors which include: statutory requirements, safety assurance, risk reduction and economic pressures. The availability of a mature MVDS technology with an evolving process-capable robotics technology opens up opportunities for exploring proven UK products. (Author)

  4. Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils

    International Nuclear Information System (INIS)

    The environmental contamination by organic pollutants is a widespread problem in all climates. The most widely distributed pollution can be attributed to oil contamination. Bioremediation methods can provide efficient, inexpensive and environmentally safe cleanup tools. The role of cold-adapted microorganisms for the bioremediation of experimentally and chronically oil-contaminated Alpine soils was evaluated in the studies described. The results demonstrated that there is a considerable potential for oil bioremediation in Alpine soils. Oil biodegradation can be significantly enhanced by biostimulation (inorganic nutrient supply), but a complete oil elimination is not possible by employing biological decontamination alone. (Author)

  5. Bioremediation of oil spills: A review of challenges for research advancement

    OpenAIRE

    Macaulay, Babajide Milton; Rees, Deborah

    2014-01-01

    As the demand for liquid petroleum increases, the need for reliable and efficient oil spill clean-up techniques is inevitable. Bioremediation is considered one of the most sustainable clean-up techniques but the potential has not been fully exploited in the field because it is too slow to meet the immediate demands of the environment. This study reviews the challenges to managing oil spills in terrestrial and marine environments to identify areas that require further research. Current challen...

  6. Fungi in Bioremediation

    Science.gov (United States)

    Gadd, G. M.

    2001-12-01

    Bioremediation research has concentrated on organic pollutants, although the range of substances that can be transformed or detoxified by microorganisms includes both natural and synthetic organic materials and inorganic pollutants. The majority of applications developed to date involve bacteria, with a distinct lack of appreciation of the potential roles and involvement of fungi in bioremediation, despite clear evidence of their metabolic and morphological versatility. This book highlights the potential of filamentous fungi, including mycorrhizas, in bioremediation and discusses the physiology and chemistry of pollutant transformations.

  7. 2003 U.S. Department of Energy Strategic Plan: Protecting National, Energy, and Economic Security with Advanced Science and Technology and Ensuring Environmental Cleanup

    Energy Technology Data Exchange (ETDEWEB)

    None,

    2003-09-30

    The Department of Energy contributes to the future of the Nation by ensuring energy security, maintaining the safety, security and reliability of the nuclear weapons stockpile, cleaning up the environment from the legacy of the Cold War, and developing innovations in science and technology. After 25 years in existence, the Department now operates 24 preeminent research laboratories and facilities and four power marketing administrations, and manages the environmental cleanup from 50 years of nuclear defense activities that impacted two million acres in communities across the country. The Department has an annual budget of about $23 billion and employs about 14,500 Federal and 100,000 contractor employees. The Department of Energy is principally a national security agency and all of its missions flow from this core mission to support national security. That is true not just today, but throughout the history of the agency. The origins of the Department can be traced to the Manhattan Project and the race to develop the atomic bomb during World War II. Following the war, Congress engaged in a vigorous and contentious debate over civilian versus military control of the atom. The Atomic Energy Act of 1946 settled the debate by creating the Atomic Energy Commission, which took over the Manhattan Project’s sprawling scientific and industrial complex.

  8. Cleanups in My Community

    Data.gov (United States)

    U.S. Environmental Protection Agency — Cleanups in My Community (CIMC) is a public web application that enables integrated access through maps, lists and search filtering to site-specific information EPA...

  9. Bioremediation of oil spills

    International Nuclear Information System (INIS)

    In-situ bioremediation of crude oil spills relies on either the indigenous microbes at the polluted site, whose degradative abilities are accelerated by adding such agents as fertilizers or dispersants, or on introducing pollutant-degrading microbes into the site (possibly accompanied by stimulatory chemicals). The bioremediation method to be used at a specific site must be selected to be suitable for that site and its environmental conditions. The basic components of bioremediation are outlined and the background information needed to understand the chemical and biological limitations of the technique are presented. Specifically, the microbial community, the crude oil substrate composition, and biological limiting factors are discussed. Generalized examples of bioremediation applications are illustrated. 10 refs

  10. In situ recycling of contaminated soil uses bioremediation

    International Nuclear Information System (INIS)

    OxyChem Pipeline Operations, primarily an ethylene and propylene products mover, has determined that substantial savings can be realized by adopting a bioremediation maintenance and recycling approach to hydrocarbon-contaminated soil. By this method, the soil can be recycled in situ, or in containers. To implement the soil-recycling program, OxyChem elected to use a soil remediator and natural absorbent product, Oil Snapper. This field maintenance material, based on an Enhanced Urea Technology, provides a diet to stimulate the growth of hydrocarbon-eating microbes. It works well either with indigenous soil microbes or with commercial microbes. The product is carried in field vehicles, which makes it immediately available when leaks or spills are discovered. Procedure for clean-up is to apply product and mix it into affected soil. Thus the contaminant is contained, preventing further migration; the contaminant is dispersed throughout the product, making it more accessible to the microbes; nutrients are immediately available to the microbes; and the material contributes aeration and moisture-retention properties

  11. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications.

    Science.gov (United States)

    Fuentes, Sebastián; Méndez, Valentina; Aguila, Patricia; Seeger, Michael

    2014-06-01

    Bioremediation is an environmental sustainable and cost-effective technology for the cleanup of hydrocarbon-polluted soils and coasts. In spite of that longer times are usually required compared with physicochemical strategies, complete degradation of the pollutant can be achieved, and no further confinement of polluted matrix is needed. Microbial aerobic degradation is achieved by the incorporation of molecular oxygen into the inert hydrocarbon molecule and funneling intermediates into central catabolic pathways. Several families of alkane monooxygenases and ring hydroxylating dioxygenases are distributed mainly among Proteobacteria, Actinobacteria, Firmicutes and Fungi strains. Catabolic routes, regulatory networks, and tolerance/resistance mechanisms have been characterized in model hydrocarbon-degrading bacteria to understand and optimize their metabolic capabilities, providing the basis to enhance microbial fitness in order to improve hydrocarbon removal. However, microbial communities taken as a whole play a key role in hydrocarbon pollution events. Microbial community dynamics during biodegradation is crucial for understanding how they respond and adapt to pollution and remediation. Several strategies have been applied worldwide for the recovery of sites contaminated with persistent organic pollutants, such as polycyclic aromatic hydrocarbons and petroleum derivatives. Common strategies include controlling environmental variables (e.g., oxygen availability, hydrocarbon solubility, nutrient balance) and managing hydrocarbon-degrading microorganisms, in order to overcome the rate-limiting factors that slow down hydrocarbon biodegradation.

  12. Solid-phase bioremediation of diesel fuel-contaminated soil utilizing indigenous microorganisms

    International Nuclear Information System (INIS)

    In the spring of 1993, R.E. Wright Environmental, Inc. (REWEI) was retained by BP Oil Company (BP) to evaluate the use of bioremediation technology to remediate approximately 3,000 cubic yards (yd3) of soil impacted with diesel fuel. The impacted soil resulted from the release of several hundred gallons of diesel fuel from a ruptured valve on an aboveground pipeline within a terminal. The overland flow of the diesel fuel resulted in a significant area of soil being impacted by the fuel. Immediate response activities limited vertical migration of the fuel through the excavation and stockpiling of the surface-impacted soil. The nature of the contaminant -- an unweathered, refined petroleum product comprised primarily of alkanes of a medium chain length -- and the biodegradable nature of the diesel fuel made bioremediation a cost-effective and technically feasible remedial option. The objective of the project was to reduce the concentrations of the petroleum hydrocarbons to below the Pennsylvania Department of Environmental Protection (DEP) soil cleanup levels in order to reuse the soil on-site as fill. Basic agronomic principles were applied throughout all phases of the project in order to successfully biodegrade the hydrocarbon

  13. A summary of the report on prospects for pyrolysis technologies in managing municipal, industrial, and Department of Energy cleanup wastes

    Energy Technology Data Exchange (ETDEWEB)

    Reaven, S.J.

    1994-08-01

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes and special wastes such as tires, medical wastes and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. In the past twenty years, advances in the engineering of pyrolysis systems and in sorting and feeding technologies for solid waste industries have ensured consistent feedstocks and system performance. Some vendors now offer complete pyrolysis systems with performance warranties. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates the four most promising pyrolytic systems for their readiness, applicability to regional waste management needs and conformity with DOE environmental restoration and waste management requirements. This summary characterizes the engineering performance, environmental effects, costs, product applications and markets for these pyrolysis systems.

  14. Bioremediation and detoxification of hydrocarbon pollutants in soil

    International Nuclear Information System (INIS)

    As a cleanup alterative, the bioremediation potential of soil, contaminated by spills of three medium petroleum distillates, jet fuel heating oil (No. 2 fuel oil) and diesel fuel was evaluated in controlled-temperature laboratory soil columns and in outdoor lysimeters. Solvent extraction followed by gas chromatography (GC) was used routinely for analysis of fuel residues. Occasionally, class separation and GC-mass spectrometry (GC-MS) were also used in residue characterization. The decrease in toxic residues was evaluated by Microtox and Ames tests. Seed germination and plant growth bioassays were also performed. Persistence and toxicity of the fuels increased in the order of jet fuel < heating oil < diesel fuel. Bioremediation consisting of liming, fertilization and tilling decreased the half-lives of the pollutants in soil by a factor of 2-3. Biodegradation was faster at 27C than at 17 or 37C, but hydrocarbon concentration and soil quality had only modest influence on biodegradation rates and did not preclude successful bioremediation of these contaminated soils within one growing season. Microbial activity measurements by the fluorescein diacetate hydrolysis assay confirmed that microbial activity was the principal force in hydrocarbon elimination. Bioremediation was highly effective in eliminating also the polycyclic aromatic components of diesel fuel. The bioremediation and detoxification of fuel-contaminated soil was corroborated by Microtox, Ames and plant growth bioassays

  15. Bioremediation of oil-contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Balba, T. [Conestoga-Rovers and Associates, Calgary, AB (Canada)

    2003-07-01

    One of the most prevalent contaminants in subsurface soil and groundwater are petroleum hydrocarbons. This paper presented bioremediation of petroleum hydrocarbons as one of the most promising treatment technologies. Petroleum hydrocarbons are categorized into four simple fractions: saturates, aromatics, resins, and asphaltenes. Bioremediation refers to the treatment process whereby contaminants are metabolized into less toxic or nontoxic compounds by naturally occurring organisms. The various strategies include: use of constitutive enzymes, enzyme induction, co-metabolism, transfer of plasmids coding for certain metabolic pathways, and production of biosurfactants to enhance bioavailability of hydrophobic compounds. Three case studies were presented: (1) bioremediation of heavy oils in soil at a locomotive maintenance yard in California, involving a multi-step laboratory treatability study followed by a field demonstration achieving up to 94 per cent removal of TPH in less than 16 weeks, (2) bioremediation of light oils in soil at an oil refinery in Germany where a dual process was applied (excavation and in-situ treatment), achieving an 84 per cent reduction within 24 weeks, and (3) bioremediation of oil-contaminated desert soil in Kuwait which involved landfarming, composting piles, and bioventing soil piles, achieving an 80 per cent reduction within 12 months. 7 refs., 1 tab., 3 figs.

  16. ROLE OF MICROORGANISMS IN THE BIOREMEDIATION OF THE OIL SPILL INPRINCE WILLIAM SOUND, ALASKA

    Science.gov (United States)

    The U.S. Environmental Protection Agency's Alaskan BioremediationProject was initiated in the aftermath of the March 24, 1989, EXXONVALDEZ oil Spill. he objective of the project was to demonstratean alternative cleanup method for oil-contaminated shorelines basedon enhancing natu...

  17. Cleanup of a jet fuel spill

    Science.gov (United States)

    Fesko, Steve

    1996-11-01

    Eaton operates a corporate aircraft hanger facility in Battle Creek, Michigan. Tests showed that two underground storage tanks leaked. Investigation confirmed this release discharged several hundred gallons of Jet A kerosene into the soil and groundwater. The oil moved downward approximately 30 feet and spread laterally onto the water table. Test results showed kerosene in the adsorbed, free and dissolved states. Eaton researched and investigated three clean-up options. They included pump and treat, dig and haul and bioremediation. Jet fuel is composed of readily biodegradable hydrocarbon chains. This fact coupled with the depth to groundwater and geologic setting made bioremediation the low cost and most effective alternative. A recovery well was installed at the leading edge of the dissolved contamination. A pump moved water from this well into a nutrient addition system. Nutrients added included nitrogen, phosphorous and potassium. Additionally, air was sparged into the water. The water was discharged into an infiltration gallery installed when the underground storage tanks were removed. Water circulated between the pump and the infiltration basin in a closed loop fashion. This oxygenated, nutrient rich water actively and aggressively treated the soils between the bottom of the gallery and the top of the groundwater and the groundwater. The system began operating in August of 1993 and reduced jet fuel to below detection levels. In August of 1995 The State of Michigan issued a clean closure declaration to the site.

  18. World Record Earned Value Management System Certification for Cleanup of the East Tennessee Technology Park, Oak Ridge, Tennessee, USA - 13181

    International Nuclear Information System (INIS)

    On projects that require Earned Value Management (EVMS) Certification, it is critical to quickly prepare for and then successfully obtain certification. This is especially true for government contracts. Projects that do poorly during the review are subject to financial penalties to their company and they lose creditability with their customer creating problems with the project at the outset. At East Tennessee Technology Park (ETTP), we began preparing for Department of Energy (DOE) certification early during proposal development. Once the contract was awarded, while still in transition phase from the previous contractor to our new company, we immediately began reviewing the project controls systems that were in place on the project and determined if any replacements needed to be made immediately. The ETTP contract required the scheduling software to be upgraded to Primavera P6 and we determined that no other software changes would be done prior to certification. Next, preparation of the Project Controls System Description (PCSD) and associated procedures began using corporate standards as related to the project controls systems. During the transition phase, development was started on the Performance Measurement Baseline which is the resource loaded schedule used to measure our performance on the project and which is critical to good Earned Value Management of the project. Early on, and throughout the baseline review, there was positive feedback from the Department of Energy that the quality of the new baseline was good. Having this superior baseline also contributed to our success in EVMS certification. The combined companies of URS and CH2M Hill had recent experience with certifications at other Department of Energy sites and we were able to capitalize on that knowledge and experience. Generic PCSD and procedures consistent with our co-operations approach to Earned Value Management were available to us and were easily tailorable to the specifics of our contract

  19. In-situ bioremediation via horizontal wells

    International Nuclear Information System (INIS)

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade TCE, PCE and their daughter products in situ by addition of nutrients to the contaminated zone. In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work (Radian 1989). Subsurface soils and water adjacent to an abandoned process sewer line at the SRS have been found to have elevated levels of TCE (Marine and Bledsoe 1984). This area of subsurface and groundwater contamination is the focus of a current integrated demonstration of new remediation technologies utilizing horizontal wells. Bioremediation has the potential to enhance the performance of in situ air stripping as well as offering stand-alone remediation of this and other contaminated sites (Looney et al. 1991). Horizontal wells could also be used to enhance the recovery of groundwater contaminants for bioreactor conversions from deep or inaccessible areas (e.g., under buildings) and to enhance the distribution of nutrient or microbe additions in an in situ bioremediation

  20. In situ bioremediation of nitrate and perchlorate in vadose zone soil for groundwater protection using gaseous electron donor injection technology.

    Science.gov (United States)

    Evans, Patrick J; Trute, Mary M

    2006-12-01

    When present in the vadose zone, potentially toxic nitrate and perchlorate anions can be persistent sources of groundwater contamination. Gaseous electron donor injection technology (GEDIT), an anaerobic variation of petroleum hydrocarbon bioventing, involves injecting electron donor gases, such as hydrogen or ethyl acetate, into the vadose zone, to stimulate biodegradation of nitrate and perchlorate. Laboratory microcosm studies demonstrated that hydrogen and ethanol promoted nitrate and perchlorate reduction in vadose zone soil and that moisture content was an important factor. Column studies demonstrated that transport of particular electron donors varied significantly; ethyl acetate and butyraldehyde were transported more rapidly than butyl acetate and ethanol. Nitrate removal in the column studies, up to 100%, was best promoted by ethyl acetate. Up to 39% perchlorate removal was achieved with ethanol and was limited by insufficient incubation time. The results demonstrate that GEDIT is a promising remediation technology warranting further validation.

  1. Effect of alternating bioremediation and electrokinetics on the remediation of n-hexadecane-contaminated soil

    OpenAIRE

    Sa Wang; Shuhai Guo; Fengmei Li; Xuelian Yang; Fei Teng; Jianing Wang

    2016-01-01

    This study demonstrated the highly efficient degradation of n-hexadecane in soil, realized by alternating bioremediation and electrokinetic technologies. Using an alternating technology instead of simultaneous application prevented competition between the processes that would lower their efficiency. For the consumption of the soil dissolved organic matter (DOM) necessary for bioremediation by electrokinetics, bioremediation was performed first. Because of the utilization and loss of the DOM a...

  2. Bioremediation: A countermeasure for marine oil spills

    International Nuclear Information System (INIS)

    Three main types of bioremediation techniques are currently being developed or used for treatment of oil spills: adding nutrients to oiled shorelines; adding microbes to oiled shorelines; and addition of nutrients and/or microbes to open water oil slicks. Since all these technologies attempt to accelerate biodegradation, the processes of biodegradation of oil are summarized. Some of the potential uses of this technology are discussed, including specific instances where bioremediation has been applied at oil spills. Guidelines for evaluating and monitoring bioremediation applications are presented. Of the three types of bioremediation discussed, nutrient addition seems to hold the most immediate promise, especially for use in areas that would be adversely affected by physical or other removal methods. Environments where nutrient addition may play an important role in shoreline treatment include sheltered shorelines that are heavily oiled, shorelines with subsurface oil, and sensitive environments, especially wetlands. Nutrient additions are less likely to be effective in environments that are already nutrient-rich and for short-term, immediate response actions. 41 refs., 1 tab

  3. Assessment of synfuel spill cleanup options

    Energy Technology Data Exchange (ETDEWEB)

    Petty, S.E.; Wakamiya, W.; English, C.J.; Strand, J.A.; Mahlum, D.D.

    1982-04-01

    Existing petroleum-spill cleanup technologies are reviewed and their limitations, should they be used to mitigate the effects of synfuels spills, are discussed. The six subsections of this report address the following program goals: synfuels production estimates to the year 2000; possible sources of synfuel spills and volumes of spilled fuel to the year 2000; hazards of synfuels spills; assessment of existing spill cleanup technologies for oil spills; assessment of cleanup technologies for synfuel spills; and disposal of residue from synfuel spill cleanup operations. The first goal of the program was to obtain the most current estimates on synfuel production. These estimates were then used to determine the amount of synfuels and synfuel products likely to be spilled, by location and by method of transportation. A review of existing toxicological studies and existing spill mitigation technologies was then completed to determine the potential impacts of synthetic fuel spills on the environment. Data are presented in the four appendixes on the following subjects: synfuel production estimates; acute toxicity of synfuel; acute toxicity of alcohols.

  4. Environmental compliance and cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the roles of the principal agencies, organizations, and public in environmental compliance and cleanup of the Hanford Site. Regulatory oversight, the Federal Facility Agreement and Consent Order, the role of Indian tribes, public participation, and CERCLA Natural Resource Damage Assessment Trustee Activities are all discussed.

  5. Bioremediation of nanomaterials

    Science.gov (United States)

    Chen, Frank Fanqing; Keasling, Jay D; Tang, Yinjie J

    2013-05-14

    The present invention provides a method comprising the use of microorganisms for nanotoxicity study and bioremediation. In some embodiment, the microorganisms are bacterial organisms such as Gram negative bacteria, which are used as model organisms to study the nanotoxicity of the fullerene compounds: E. coli W3110, a human related enterobacterium and Shewanella oneidensis MR-1, an environmentally important bacterium with versatile metabolism.

  6. Louisiana's statewide beach cleanup

    Science.gov (United States)

    Lindstedt, Dianne M.; Holmes, Joseph C.

    1989-01-01

    Litter along Lousiana's beaches has become a well-recognized problem. In September 1987, Louisiana's first statewide beach cleanup attracted about 3300 volunteers who filled 16,000 bags with trash collected along 15 beaches. An estimated 800,173 items were gathered. Forty percent of the items were made of plastic and 11% were of polystyrene. Of all the litter collected, 37% was beverage-related. Litter from the oil and gas, commercial fishing, and maritime shipping industries was found, as well as that left by recreational users. Although beach cleanups temporarily rid Louisiana beaches of litter, the real value of the effort is in public participation and education. Civic groups, school children, and individuals have benefited by increasing their awareness of the problems of trash disposal.

  7. Effects of bioremediation agents on oil degradation in mineral and sandy salt marsh sediments

    International Nuclear Information System (INIS)

    Although bioremediation for oil spill cleanup has received considerable attention in recent years, its satisfactory use in the cleanup of oil spills in the wetland environment is still generally untested. A study of the often most used bioremediation agents, fertiliser, microbial product and soil oxidation, as a means of enhancing oil biodegradation in coastal mineral and sandy marsh substrates was conducted in controlled greenhouse conditions. Artificially weathered south Louisiana crude oil was applied to sods of marsh (soil and intact vegetation) at the rate of 2 l m-2. Fertiliser application enhanced marsh plant growth, soil microbial populations, and oil biodegradation rate. The live aboveground biomass of Spartina alterniflora with fertiliser application was higher than that without fertiliser. The application of fertiliser significantly increased soil microbial respiration rates, indicating the potential for enhancing oil biodegradation. Bioremediation with fertiliser application significantly reduced the total targeted normal hydrocarbons (TTNH) and total targeted aromatic hydrocarbons (TTAH) remaining in the soil, by 81% and 17%, respectively, compared to those of the oil controls. TTNH/hopane and TTAAH/hopane ratios showed a more consistent reduction, further suggesting an enhancement of oil biodegradation by fertilisation. Furthermore, soil type affected oil bioremediation; the extent of fertiliser-enhanced oil biodegradation was greater for sandy (13% TTNH remaining in the treatments with fertiliser compared to the control) than for mineral soils (26% of the control), suggesting that fertiliser application was more effective in enhancing TTNH degradation in the former. Application of microbial product and soil oxidant had no positive effects on the variables mentioned above under the present experimental conditions, suggesting that microbial degraders are not limiting biodegradation in this soil. Thus, the high cost of microbial amendments during

  8. DEMONSTRATION BULLETIN: NEW YORK STATE MULTI-VENDOR BIOREMEDIATION - R.E. WRIGHT ENVIRONMENTAL, INC.'S IN-SITU BIOREMEDIATION TREATMENT SYSTEM

    Science.gov (United States)

    The R.E. Wright Environmental, Inc.‘s (REWEI) In-situ Bioremediation Treatment System is an in-situ bioremediation technology for the treatment of soils contaminated with organic compounds. According to the Developer, contaminated soils are remediated in-situ by stimulating the a...

  9. HARVESTING EMSP RESEARCH RESULTS FOR WASTE CLEANUP

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna Post; Nielson, R. Bruce; Phillips, Ann Marie; Lebow, Scott

    2003-02-27

    The extent of environmental contamination created by the nuclear weapons legacy combined with expensive, ineffective waste cleanup strategies at many U.S. Department of Energy (DOE) sites prompted Congress to pass the FY96 Energy and Water Development Appropriations Act, which directed the DOE to: ''provide sufficient attention and resources to longer-term basic science research, which needs to be done to ultimately reduce cleanup costs'', ''develop a program that takes advantage of laboratory and university expertise, and'' ''seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective.'' In response, the DOE initiated the Environmental Management Science Program (EMSP)-a targeted, long-term research program intended to produce solutions to DOE's most pressing environmental problems. EMSP funds basic research to lower cleanup cost and reduce risk to workers, the public, and the environment; direct the nation's scientific infrastructure towards cleanup of contaminated waste sites; and bridge the gap between fundamental research and technology development activities. EMSP research projects are competitively awarded based on the project's scientific, merit coupled with relevance to addressing DOE site needs. This paper describes selected EMSP research projects with long, mid, and short-term deployment potential and discusses the impacts, focus, and results of the research. Results of EMSP research are intended to accelerate cleanup schedules, reduce cost or risk for current baselines, provide alternatives for contingency planning, or provide solutions to problems where no solutions exist.

  10. Bioremediation of wastewater using microalgae

    Science.gov (United States)

    Chalivendra, Saikumar

    Population expansion and industrial development has deteriorated the quality of freshwater reservoirs around the world and has caused freshwater shortages in certain areas. Discharge of industrial effluents containing toxic heavy metals such as Cd and Cr into the environment have serious impact on human, animal and aquatic life. In order to solve these problems, the present study was focused on evaluating and demonstrating potential of microalgae for bioremediation of wastewater laden with nitrogen (N) in the form of nitrates, phosphorous (P) in the form of phosphates, chromium (Cr (VI)) and cadmium (Cd (II)). After screening several microalgae, Chlorella vulgaris and algae taken from Pleasant Hill Lake were chosen as candidate species for this study. The viability of the process was demonstrated in laboratory bioreactors and various experimental parameters such as contact time, initial metal concentration, algae concentration, pH and temperature that would affect remediation rates were studied. Based on the experimental results, correlations were developed to enable customizing and designing a commercial Algae based Wastewater Treatment System (AWTS). A commercial AWTS system that can be easily customized and is suitable for integration into existing wastewater treatment facilities was developed, and capital cost estimates for system including installation and annual operating costs were determined. The work concludes that algal bioremediation is a viable alternate technology for treating wastewater in an economical and sustainable way when compared to conventional treatment processes. The annual wastewater treatment cost to remove N,P is ~26x lower and to remove Cr, Cd is 7x lower than conventional treatment processes. The cost benefit analysis performed shows that if this technology is implemented at industrial complexes, Air Force freight and other Department of Defense installations with wastewater treatment plants, it could lead to millions of dollars in

  11. Bioremediation of Creosote - contaminated Soil

    OpenAIRE

    BYSS, Marius

    2008-01-01

    Bioremediation of creosote-contaminated soil was studied employing the methods of soil microbial biology and using new gas chromatography-mass spectrometry-mass spectrometry analytical approach. The changes of the soil microbial community under the polycyclic aromatic hydrocarbons (PAH) pollution impact were analyzed and described, as well as the changes during the bioremediation experiments. Laboratory-scale bioremediation experiments using the soil microbial community (consisted of bacteria...

  12. The Status and Bioremediation Technology of Ecological Environment in Water-level-fluctuating Zone of the Three Gorges Reservoir%三峡水库消落区生态环境现状及生物治理技术

    Institute of Scientific and Technical Information of China (English)

    王迪友; 邓文强; 杨帆

    2012-01-01

    三峡水库消落区具有水淹时间长、消落幅度大、水位涨落节律逆反自然枯洪规律及面积大、生境类型复杂等特点.从三峡水库消落区目前所面临的生态环境问题出发,总结了国内外关于库区生态环境问题及生物治理的研究进展,提出了三峡水库消落区的生物治理方案.%Water-level-fluctuating zone of the Three Gorges Reservoir possesses some specific characters such as long flooding duration, wide-range fluctuation of water level (30 m), reversed flooding time to winter, large area and complex habitat types and so on. Based on the ecological environmental problems of water-level-fluctuating zone of the Three Gorges Reservoir, the ecological environmental problems and research advances on bioremediation technologies of water-level-fluctuating zone of the reservoir at home and abroad were summarized. The bioremediation strategies for water-level-fluctuating zone of the Three Gorges Reservoir were proposed.

  13. Use of molecular techniques in bioremediation.

    Science.gov (United States)

    Płaza, G; Ulfig, K; Hazen, T C; Brigmon, R L

    2001-01-01

    In a practical sense, biotechnology is concerned with the production of commercial products generated by biological processes. More formally, biotechnology may be defined as "the application of scientific and engineering principles to the processing of material by biological agents to provide goods and services" (Cantor, 2000). From a historical perspective, biotechnology dates back to the time when yeast was first used for beer or wine fermentation, and bacteria were used to make yogurt. In 1972, the birth of recombinant DNA technology moved biotechnology to new heights and led to the establishment of a new industry. Progress in biotechnology has been truly remarkable. Within four years of the discovery of recombinant DNA technology, genetically modified organisms (GMOs) were making human insulin, interferon, and human growth hormone. Now, recombinant DNA technology and its products--GMOs are widely used in environmental biotechnology (Glick and Pasternak, 1988; Cowan, 2000). Bioremediation is one of the most rapidly growing areas of environmental biotechnology. Use of bioremediation for environmental clean up is popular due to low costs and its public acceptability. Indeed, bioremediation stands to benefit greatly and advance even more rapidly with the adoption of molecular techniques developed originally for other areas of biotechnology. The 1990s was the decade of molecular microbial ecology (time of using molecular techniques in environmental biotechnology). Adoption of these molecular techniques made scientists realize that microbial populations in the natural environments are much more diverse than previously thought using traditional culture methods. Using molecular ecological methods, such as direct DNA isolation from environmental samples, denaturing gradient gel electrophoresis (DGGE), PCR methods, nucleic acid hybridization etc., we can now study microbial consortia relevant to pollutant degradation in the environment. These techniques promise to

  14. In-situ bioremediation of soil polluted by fuel oil, Strasbourg, France

    International Nuclear Information System (INIS)

    In 1987, a 17,000 gallon fuel oil spill occurred on an industrial site in Strasbourg, France. The Bureau de Recherche Geologique et Miniere (French equivalent to the US Bureau of Mines and the US Geological Survey), and ESYS, a subsidiary of ELF AQUITAINE, a French based oil, chemical, and pharmaceutical corporation, jointly developed a strategy to remediate this site. In-situ bioremediation with addition of exogenous bacteria, as well as hydrogen peroxide and a surfactant, was the process selected for the clean-up. This paper describes the clean-up operation and the results obtained

  15. 压裂助排工艺优化设计研究%Optimization of Liquid Nitrogen and Carbon Dioxide Cleanup Technology

    Institute of Scientific and Technical Information of China (English)

    张波; 温庆志; 罗明良; 翟恒立; 于姣姣; 刘广忠

    2012-01-01

    如何提高返排率、减少压裂液对地层的伤害,实现人工裂缝高导流能力,已经成为油气藏增产改造技术面临的重要课题。通过分析氮气、CO2的物理化学特性,研究了液氮、CO2的助排机理,建立气体伴注排液模型,编制了气体伴注设计软件,对影响压裂井气体伴注效果的因素进行了研究,并对助排工艺参数进行了优化设计。结果表明,随着井深增加和压力梯度的降低,液氮伴注比和氮气伴注排量略有增大;井深每增加100m,液氮伴注比增加约0.3%;压力梯度每增加O.01MPa/m,液氮伴注比降低约0.6%。随着泵注排量的增加,液氮伴注比增大。井底压力的变化幅度与井口注入压力的变化幅度基本相同;井口注入压力每增加5MPa,井底压力也增加约5MPa。随注入流量的增加,井筒压力逐渐减小;注入流量每增加0.5m3/min,井底压力降低约1.75MPa。对胜利油田某井进行液氮助排参数优化设计,压裂液返排率达到90%,压裂井产量增加了2.7倍,表明所建立的数学模型准确可靠,可以用于指导油田现场施工。图7表3参9%The task of how to improve flow back ratio, decrease the formation damage caused by fracturing liquid, and achieve high flow conductivity of artificial fracture had already Become a vital question for the reservoir stimulation technology. Through the physical and chemical behavior analysis of nitrogen and carbon dioxide, their cleanup mechanism was researched, the flowing-hack model of accompanying gas was built, and the design software of accompanying gas was drawn up. Associating with oilfidd examples, the affecting elements of accompanying gas were researched, meanwhile the parameters of flowing back technology were optimized. The results showed that when the well depth and pump injection increased or start-up pressure gradient decreased, the companion ratio and the companion

  16. Metagenomic applications in environmental monitoring and bioremediation.

    Science.gov (United States)

    Techtmann, Stephen M; Hazen, Terry C

    2016-10-01

    With the rapid advances in sequencing technology, the cost of sequencing has dramatically dropped and the scale of sequencing projects has increased accordingly. This has provided the opportunity for the routine use of sequencing techniques in the monitoring of environmental microbes. While metagenomic applications have been routinely applied to better understand the ecology and diversity of microbes, their use in environmental monitoring and bioremediation is increasingly common. In this review we seek to provide an overview of some of the metagenomic techniques used in environmental systems biology, addressing their application and limitation. We will also provide several recent examples of the application of metagenomics to bioremediation. We discuss examples where microbial communities have been used to predict the presence and extent of contamination, examples of how metagenomics can be used to characterize the process of natural attenuation by unculturable microbes, as well as examples detailing the use of metagenomics to understand the impact of biostimulation on microbial communities. PMID:27558781

  17. Department of Energy - Oak Ridge Operations and URS - CH2M Oak Ridge LLC. Partnering Framework for the Cleanup of the East Tennessee Technology Park, Oak Ridge, Tennessee, USA - 12348

    International Nuclear Information System (INIS)

    The cleanup and re-industrialization of the East Tennessee Technology Park (ETTP) hinges on a collaborative working relationship between the cleanup contractor and the U.S. Department of Energy's (DOE)-Oak Ridge Office (ORO). A Partnering Framework document was signed on June 30, 2011, with an ultimate goal of completing the contract scope of work ahead of schedule and under budget. This partnering process was the first time that DOE and its contractor, jointly developed and signed such an agreement before the contractor assumed management responsibilities of the Site. A strong desire of both parties to utilize a partnering approach in the performance of their respective responsibilities is evident. The Partnering Framework was modeled after a partnering process employed by the California Department of Transportation, Division of Construction. This partnering process has been used successfully by the California Department of Transportation and its major contractors for many years with great success. The partnering process used at ETTP was a phased approach. First, a Partnering Framework document was developed and signed June 30, 2011, by the Partnering Sponsors, the two leaders of the ETTP cleanup and re-industrialization project, the DOE-ORO Assistant Manager for Environmental Management and the contractor's President and Program Manager. In this way the partnering process could begin when the contactor assumed ETTP Site management responsibilities on August 1, 2011. The Partnering Framework then set the stage for the second phase of the partnering process which would be development of the Partnering Agreement and the kick-off of the first of a number of facilitated Partnering Workshops. Key elements of the Partnering Framework document include: (1) a statement of commitment which affirms the desire of both parties to work collaboratively toward the cleanup and re-industrialization of the ETTP Site; (2) a vision which describes both parties ultimate goal of safe

  18. Reactor coolant cleanup facility

    International Nuclear Information System (INIS)

    A depressurization device is disposed in pipelines upstream of recycling pumps of a reactor coolant cleanup facility to reduce a pressure between the pressurization device and the recycling pump at the downstream, thereby enabling high pressure coolant injection from other systems by way of the recycling pumps. Upon emergency, the recycling pumps of the coolant cleanup facility can be used in common to an emergency reactor core cooling facility and a reactor shutdown facility. Since existent pumps of the emergency reactor core cooling facility and the reactor shutdown facility which are usually in a stand-by state can be removed, operation confirmation test and maintenance for equipments in both of facilities can be saved, so that maintenance and reliability of the plant are improved and burdens on operators can also be mitigated. Moreover, low pressure design can be adopted for a non-regenerative heat exchanger and recycling coolant pumps, which enables to improve the reliability and economical property due to reduction of possibility of leakage. (N.H.)

  19. Preliminary evaluation of the utilization of biopiles technology to the bioremediation of the soil of Guamare/RN (Brazil); Avaliacao preliminar da aplicacao da tecnologia de biopilhas para a biorremediacao do solo de Guamare/RN (Brasil)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edmilson P.; Macedo, Gorete R.; Duarte, Marcia M.L. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica; Costa, Alex S.S. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2004-07-01

    The aim of this work was to evaluate the use of biopiles to the bioremediation of the soil of Stabilization Station of Guamare-RN-Brazil. The evaluation was performed by the characterization of the soil, tests of biodegradation in laboratory scale and by the use of a complete 2{sup 3} factorial design with triplicate at the central point. The input variables were: Nitrogen concentration; diesel-oil concentration; and inoculum concentration. The response variable was the percentage gravimetric loss of organic matter. Statistical analyses of the main factors and their interactions on the response variable were performed using contour curves and Pareto obtained from the software STATISTICA for Windows, Release 5.5. The results showed that biopiles technology can be used to remediate eventual contaminated areas in that region. (author)

  20. Overview of established and emerging treatment technologies for polycyclic aromatic hydrocarbons at wood preserving facilities

    International Nuclear Information System (INIS)

    The contamination of soil and groundwater by polycyclic aromatic hydrocarbons (PAHs) is common to wood preserving facilities and manufactured gas plants. Since the inception of RCRA and CERCLA, much attention has been focused upon the remediation of both active and defunct wood preserving facilities. The experiences gleaned from the use of proven technologies, and more importantly, the lessons being learned in the trials of emerging technologies on creosote-derived PAH clean-ups at wood preserving sites, should have direct bearing on the clean-up of similar contaminants at MGP sites. In this paper, a review of several remedial actions using waste removal/disposal, on-site incineration, and bioremediation will be presented. Additionally, emerging technologies for the treatment of PAH-contaminated soil and water will be reviewed. Lastly, recent information on risk assessment results for creosote sites and treated PAH waste will be discussed

  1. The development and application of engineered proteins for bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J. [ed.

    1995-09-26

    Clean up of the toxic legacy of the Cold War is projected to be the most expensive domestic project the nation has yet undertaken. Remediation of the Department of Energy and Department of Defense toxic waste sites alone are projected to cost {approximately}$1 trillion over a 20-30 year period. New, cost effective technologies are needed to attack this enormous problem. Los Alamos has put together a cross-divisional team of scientist to develop science based bioremediation technology to work toward this goal. In the team we have expertise in: (1) molecular, ecosystem and transport modeling; (2) genetic and protein engineering; (3) microbiology and microbial ecology; (4) structural biology; and (5) bioinorganic chemistry. This document summarizes talks at a workshop of different aspects of bioremediation technology including the following: Introducing novel function into a Heme enzyme: engineering by excavation; cytochrome P-450: ideal systems for bioremediation?; selection and development of bacterial strains for in situ remediation of cholorinated solvents; genetic analysis and preparation of toluene ortho-monooxygenase for field application in remediation of trichloroethylene; microbial ecology and diversity important to bioremediation; engineering haloalkane dehalogenase for bioremediation; enzymes for oxidative biodegradation; indigenous bacteria as hosts for engineered proteins; performance of indigenous bacterial, hosting engineered proteins in microbial communities.

  2. Research Progress on the Bioremediation Technology of Polycyclic Aromatic Hydrocarbons Contaminated Soil%多环芳烃污染土壤生物修复技术研究进展

    Institute of Scientific and Technical Information of China (English)

    杨辉; 王海霞; 李晓军; 毛华军; 吴海燕; 于秀娜; 罗宏宇

    2011-01-01

    With the biomass fuels widely used, the area and extent of the PAH-Contaminated soil increased quickly. Thus, the study on the remediation technology of PAH-Contaminated soil is becoming extremely urgent. Compared with physical and chemical remediation, bioremediation is cheap, effective and secondary pollution-free. Plant-microbial remediation system is the most effective technology with the largest market potential. The paper introduces in details the mechanism and application of microbial and plant-microbial remediation, and forecasts the development tendency of the bioremediation of polyeyclic aromatic hydrocarbons contaminated soil.%多环芳烃污染土壤的面积伴随着生物质燃料的广泛应用不断增加,污染程度亦随之增强,研究污染土壤高效修复方法已刻不容缓.生物修复相对于物理和化学修复具有费用低、效果好、不产生二次污染等优点.植物-微生物联合修复体系则是其中最为高效、最具市场潜力的修复技术.详细介绍了微生物修复与植物-微生物联合修复技术的机理及应用, 并展望了多环芳烃污染土壤生物修复的发展趋势.

  3. Microbial inoculants and fertilization for bioremediation of oil in wetlands

    International Nuclear Information System (INIS)

    Bioremediation is an attractive alternative to physical methods of oil spill cleanup in wetlands where the ecosystem can be easily damaged. Because populations of oil-degrading microorganisms are usually low in wetlands, there is potential for increasing bioremediation through bioaugmentation in conjunction with N and P supplementation. Eight microbial inoculant products were added to microcosms containing soil from a salt marsh. Four of these products were also used in mesocosms containing Spartina alterniflora grown in a glasshouse. In unfertilized microcosms, the extent of oil degraded as measured by carbon dioxide evolution during 90 days, was 30% higher in the product with the highest activity than was recorded in the control with oil by 36%. None of the products when added to the fertilized soil increased activity above that of the fertilized control with oil. Addition of oil to microcosms increased populations of hydrocarbon-degrading microorganisms, but bioaugmentation products did not increase populations. Neither addition of products nor fertilization enhanced the disappearance of oil in mesocosms in the glasshouse. Approximately 50% of the weathered oil disappeared in 41 d for all treatments. Because bioaugmentation did not enhance oil degradation, it seems that natural populations of hydrocarbon-degrading microorganisms were adequate in the salt marsh soil for bioremediation

  4. Application of Bioremediation Technology in Polluted Waters%基于水体污染生物修复技术现状

    Institute of Scientific and Technical Information of China (English)

    张连水; 齐树亭; 张青松; 王康; 蔡灵; 彭婷

    2015-01-01

    介绍了水体污染生物修复技术的概念、方法、特点及应用实例。概述了近年来国内外生物修复技术的研究应用现状,指出生物修复技术存在的问题和研究方向。%This paper introduces the concept ,methods ,characteristics and some application of bioreme‐diation in polluted waters .An overview of the status of research inland and overseas in recent years , the problems involved in the application of bioremediation are presented and suggestions for further improvement are given .

  5. Coupling risk-based remediation with innovative technology

    International Nuclear Information System (INIS)

    Tiered risk-based cleanup approaches have been effectively used at petroleum sites, pesticide sites and other commercial/industrial facilities. For example, the Illinois Environmental Protection Agency (IEPA) has promulgated guidance for a Tiered Approach to Corrective action Objectives (TACO) to establish site-specific remediation goals for contaminated soil and groundwater. As in the case of many other state programs, TACO is designed to provide for adequate protection of human health and the environment based on potential risks posed by site conditions. It also incorporates site-related information that may allow more cost-effective remediation. IEPA developed TACO to provide flexibility to site owners/operators when formulating site-specific remediation activities, as well as to hasten property redevelopment to return sites to more productive use. Where appropriate, risk-based cleanup objectives as set by TACO-type programs may be coupled with innovative remediation technologies such as air sparging, bioremediation and soil washing

  6. ORD RESEARCH PRIORITIES IN BIOREMEDIATION

    Science.gov (United States)

    ORD is conducting research on bioremediation impacting Superfund sites, RCRA facilities, underground storage tanks and oil spills. Work supporting Superfund is focused on understanding monitored natural recovery in sediments for contaminants including PCBs and PAHs. Under RCRA,...

  7. Mechanisms of mercury bioremediation.

    Science.gov (United States)

    Essa, A M M; Macaskie, L E; Brown, N L

    2002-08-01

    Mercury is one of the most toxic heavy metals, and has significant industrial and agricultural uses. These uses have led to severe localized mercury pollution. Mercury volatilization after its reduction to the metallic form by mercury-resistant bacteria has been reported as a mechanism for mercury bioremediation [Brunke, Deckwer, Frischmuth, Horn, Lunsdorf, Rhode, Rohricht, Timmis and Weppen (1993) FEMS Microbiol. Rev. 11, 145-152; von Canstein, Timmis, Deckwer and Wagner-Dobler (1999) Appl. Environ. Microbiol. 65, 5279-5284]. The reduction/volatilization system requires to be studied further, in order to eliminate the escape of the metallic mercury into the environment. Recently we have demonstrated three different mechanisms for mercury detoxification in one organism, Klebsiella pneumoniae M426, which may increase the capture efficiency of mercury.

  8. Optimal nutrient application strategy for bioremediation of oil-polluted beaches. Volume 1

    International Nuclear Information System (INIS)

    Offshore oil spills in coastal areas generally occur in the intertidal zone of beaches and affect the top 25 cm of soil, known as the bioremediation zone. Biostimulation by nutrient application such as nitrogen and phosphorus is a viable technology for restoring oil-contaminated beaches. The key for achieving a rapid cost-effective cleanup is to ensure maximum nutrient residence time. This study proposed a strategy that consisted of injecting nutrients through a perforated pipe at the high tide line. Beach hydraulics were numerically simulated to estimate the optimal injection flow rate of nutrient solution. It was shown that the optimal application should begin following high tide just as it drops and should last for half a tidal cycle. The flow rate ensures that the saturated wet-front of the nutrient solution on the beach surface moves seaward with the same speed of the falling tide keeping a constant distance with the tide line. The numerical results were generalized to a broad range of hydraulic and tidal properties of beaches using an innovative dimensionless formulation for water flow and solute transport in porous media. Nomographs were presented to provide the flow rate based on 4 parameters, notably the beach slope, permeability, tidal amplitude and tidal period. 29 refs., 1 tab., 5 figs

  9. Graphite waste pit cleanup

    International Nuclear Information System (INIS)

    The UP1 plant in Marcoule reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. During more than 40 years, the decladding operations produced thousands of tons of processed waste, mainly magnesium and graphite fragments. In the absence of a French repository for the graphite waste, the graphite sludge content of the storage pit had to be retrieved and transferred into a newer and safer pit. So, this project consists in the full retrieval and transfer of 15 m3 of water mixed with graphite dust located in the decladding facility, as well as the complete cleanup and decontamination of the pit. The equipment and process necessary for retrieval operations were designed, built and tested. The process is mainly based on the use of two pumps (one to capture and the other one to transfer the sludge) working one after the other and a robotic arm mounted on a telescopic mast. A dedicated process was also set up for the removal of the biggest fragments. In the pit, the sludge retrieval and transfer operations have been almost completed. Most of the non-pumpable graphite fragments has been removed and transferred to a new storage pit. As irradiant fragments have been discovered in the pit, specific studies are in progress in order to remove them to the laboratory for dissolution. This work is expected to 2014. (authors)

  10. Predicting bioremediation of hydrocarbons: laboratory to field scale.

    Science.gov (United States)

    Diplock, E E; Mardlin, D P; Killham, K S; Paton, G I

    2009-06-01

    There are strong drivers to increasingly adopt bioremediation as an effective technique for risk reduction of hydrocarbon impacted soils. Researchers often rely solely on chemical data to assess bioremediation efficiently, without making use of the numerous biological techniques for assessing microbial performance. Where used, laboratory experiments must be effectively extrapolated to the field scale. The aim of this research was to test laboratory derived data and move to the field scale. In this research, the remediation of over thirty hydrocarbon sites was studied in the laboratory using a range of analytical techniques. At elevated concentrations, the rate of degradation was best described by respiration and the total hydrocarbon concentration in soil. The number of bacterial degraders and heterotrophs as well as quantification of the bioavailable fraction allowed an estimation of how bioremediation would progress. The response of microbial biosensors proved a useful predictor of bioremediation in the absence of other microbial data. Field-scale trials on average took three times as long to reach the same endpoint as the laboratory trial. It is essential that practitioners justify the nature and frequency of sampling when managing remediation projects and estimations can be made using laboratory derived data. The value of bioremediation will be realised when those that practice the technology can offer transparent lines of evidence to explain their decisions. PMID:19232804

  11. ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS

    Science.gov (United States)

    An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...

  12. Bioremediation of Petroleum Hydrocarbon-Contaminated Soils, Comprehensive Report

    Energy Technology Data Exchange (ETDEWEB)

    Altman, D.J.

    2001-01-12

    The US Department of Energy and the Institute for Ecology of Industrial Areas, Katowice, Poland have been cooperating in the development and implementation of innovative environmental remediation technologies since 1995. U.S. experts worked in tandem with counterparts from the IETU and CZOR throughout this project to characterize, assess and subsequently, design, implement and monitor a bioremediation system.

  13. Accelerating cleanup: Paths to closure

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This report describes the status of Environmental Management`s (EM`s) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE`s 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM`s accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document.

  14. Accelerating cleanup: Paths to closure

    International Nuclear Information System (INIS)

    This report describes the status of Environmental Management's (EM's) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE's 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM's accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document

  15. 典型POPs的生物降解修复技术研究与发展%Research and development of bioremediation technology for persistent organic pollutants degradation

    Institute of Scientific and Technical Information of China (English)

    吴海珍; 韦朝海; 周盛

    2012-01-01

    engineered bacteria composed of multi-plasmids that are capable of degrading different pollutants due to the change of metabolic pathway; (iii) the technique of enzyme immobilization using carriers for improving enzyme stability, recycling and reuse; and (iv) the construction of biodegradation enzymes by subunit molecular replacement, enzyme-directed mutagenesis, and in vitro evolution of enzymes. In addition, the principles for improving POPs bioremediation by molecular biology are analyzed. The obstacles for the practical application of the genetically engineered microorganisms and immobilized enzymes are presented. Based on the analysis of polybrominated diphenyl ethers (PBDEs) degradation as a typical case of bioremediation of POPs, it is stressed that it is necessary to establish multi-scale functions for the strengthen of biodegradation process. The fundamental scientific issues to resolve POPs pollution problems by the combination of molecular biology and genetic engineering are also proposed. This means that the typical POPs bioremediation techniques emphasize the need to build a synergic degradation theory for degradation of both POPs and macro-pollutants, and the pursuit of more functions with respect to the gene level, molecular level, reactor level and project level.

  16. Bioremediation of metals and radionuclides: What it is and How itWorks

    Energy Technology Data Exchange (ETDEWEB)

    McCullough, J.; Hazen, Terry; Benson, Sally

    1999-01-01

    This primer is intended for people interested in DOE environmental problems and in their potential solutions. It will specifically look at some of the more hazardous metal and radionuclide contaminants found on DOE lands and at the possibilities for using bioremediation technology to clean up these contaminants. Bioremediation is a technology that can be used to reduce, eliminate, or contain hazardous waste. Over the past two decades, it has become widely accepted that microorganisms, and to a lesser extent plants, can transform and degrade many types of contaminants. These transformation and degradation processes vary, depending on physical environment, microbial communities, and nature of contaminant. This technology includes intrinsic bioremediation, which relies on naturally occurring processes, and accelerated bioremediation, which enhances microbial degradation or transformation through inoculation with microorganisms (bioaugmentation) or the addition of nutrients (biostimulation).

  17. Document image cleanup and binarization

    Science.gov (United States)

    Wu, Victor; Manmatha, Raghaven

    1998-04-01

    Image binarization is a difficult task for documents with text over textured or shaded backgrounds, poor contrast, and/or considerable noise. Current optical character recognition (OCR) and document analysis technology do not handle such documents well. We have developed a simple yet effective algorithm for document image clean-up and binarization. The algorithm consists of two basic steps. In the first step, the input image is smoothed using a low-pass filter. The smoothing operation enhances the text relative to any background texture. This is because background texture normally has higher frequency than text does. The smoothing operation also removes speckle noise. In the second step, the intensity histogram of the smoothed image is computed and a threshold automatically selected as follows. For black text, the first peak of the histogram corresponds to text. Thresholding the image at the value of the valley between the first and second peaks of the histogram binarizes the image well. In order to reliably identify the valley, the histogram is smoothed by a low-pass filter before the threshold is computed. The algorithm has been applied to some 50 images from a wide variety of source: digitized video frames, photos, newspapers, advertisements in magazines or sales flyers, personal checks, etc. There are 21820 characters and 4406 words in these images. 91 percent of the characters and 86 percent of the words are successfully cleaned up and binarized. A commercial OCR was applied to the binarized text when it consisted of fonts which were OCR recognizable. The recognition rate was 84 percent for the characters and 77 percent for the words.

  18. Effectiveness and regulatory issues in oil spill bioremediation: Experiences with the Exxon Valdez oil spill in Alaska

    International Nuclear Information System (INIS)

    The use of bioremediation as a supplemental cleanup technology in the Exxon Valdez oil spill, in Prince William Sound, Alaska, has proven to be a good example of the problems and successes associated with the practical application of this technology. Field studies conducted by scientists from the US Environmental Protection Agency have demonstrated that oil degradation by indigenous microflora on the beaches of Prince William Sound could be significantly accelerated by adding fertilizer directly to the surfaces of oil-contaminated beaches. The author's results from the application of an oleophilic fertilizer are presented as exemplary field and laboratory information. The fertilizer enhanced biodegradation of the oil, as measured by changes in oil composition and bulk oil weight per unit of beach material, by approximately twofold relative to untreated controls. The emphasis of this chapter will be on some of the difficulties and problems associated with the fertilizer application and its effect on oil degradation. The author will concentrate primarily on the separate application of an oleophilic fertilizer which occurred at a site called Snug Harbor on Knight Island in Prince William Sound, and on the application of slow-release fertilizer granules which occurred on Disk Island in Prince William Sound

  19. Genetic engineering microbes for bioremediation/ biorecovery of uranium

    International Nuclear Information System (INIS)

    Bioremediation (both bioremoval and biorecovery) of metals is considered a feasible, economic and eco-friendly alternative to chemical methods of metal extraction, particularly when the metal concentration is very low. Scanty distribution along with poor ore quality makes biomining of uranium an attractive preposition. Biosorption, bioprecipitation or bioaccumulation of uranium, aided by recombinant DNA technology, offer a promising technology for recovery of uranium from acidic or alkaline nuclear waste, tailings or from sea-water. Genetic engineering of bacteria, with a gene encoding an acid phosphatase, has yielded strains that can bioprecipitate uranium from very low concentrations at acidic-neutral pH, in a relatively short time. Organisms overproducing alkaline phosphatase have been selected for uranium precipitation from alkaline waste. Such abilities have now been transferred to the radioresistant microbe Deinococcus radiodurans to facilitate in situ bioremediation of nuclear waste, with some success. Sulfate-reducing bacteria are being characterized for bioremediation of uranium in tailings with the dual objective of uranium precipitation and reduction of sulfate to sulphide. Certain marine cyanobacteria have shown promise for uranium biosorption to extracellular polysaccharides, and intracellular accumulation involving metal sequestering metallothionin proteins. Future work is aimed at understanding the genetic basis of these abilities and to engineer them into suitable organisms subsequently. As photosynthetic, nitrogen-fixing microbes, which are considerably resistant to ionizing radiations, cyanobacteria hold considerable potential for bioremediation of nuclear waste. (author)

  20. San Jacinto River oil spill: wetland bioremediation project

    International Nuclear Information System (INIS)

    Gasoline, diesel and unrefined Arabian light crude oil were accidentally released into the San Jacinto River after a series of pipelines ruptured. Natural removal processes (volatilization, dissolution, weathering), fire, and the spill clean-up effort, removed approximately 95% of the petroleum. The area where residual oil was found was an estuarine wetland on the lower San Jacinto River. Samples were collected from 21 study areas and an evaluation of the varying levels of bioremediation was conducted. Phase one has been completed and involved the evaluation of the natural recovery of oil from the spill. Phase two was still in progress and involved the addition of inorganic nutrients and the alternate electron acceptor to enhance the biodegradation of the petroleum. Results showed that biodegradation was responsible for much of the reduction of certain components in petroleum within the first 150 days. 12 refs., 8 figs

  1. Systems biology approach to bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.

    2012-06-01

    Bioremediation has historically been approached as a ‘black box’ in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Finally, understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potential for making bioremediation breakthroughs and illuminating the ‘black box’.

  2. Bioremediation of petroleum hydrocarbo-contaminated soils, comprehensive report, December 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry

    2000-04-01

    The US Department of Energy and the Institute for Ecology of Industrial Areas (IETU), Katowice, Poland have been cooperating in the development and implementation of innovative environmental remediation technologies since 1995. A major focus of this program has been the demonstration of bioremediation techniques to cleanup the soil and sediment associated with a waste lagoon at the Czechowice Oil Refinery (CZOR) in southern Poland. After an expedited site characterization (ESC), treatability study, and risk assessment study, a remediation system was designed that took advantage of local materials to minimize cost and maximize treatment efficiency. U.S. experts worked in tandem with counterparts from the IETU and CZOR throughout this project to characterize, assess and subsequently, design, implement and monitor a bioremediation system. The CZOR, our industrial partner for this project, was chosen because of their foresight and commitment to the use of new approaches for environmental restoration. This program sets a precedent for Poland in which a portion of the funds necessary to complete the project were provided by the company responsible for the problem. The CZOR was named by PIOS (State Environmental Protection Inspectorate of Poland) as one of the top 80 biggest polluters in Poland. The history of the CZOR dates back more than 100 years to its establishment by the Vacuum Oil Company (a U.S. company and forerunner of Standard Oil). More than a century of continuous use of a sulfuric acid-based oil refining method by the CZOR has produced an estimated 120,000 tons of acidic, highly weathered, petroleum sludge. This waste has been deposited into three open, unlined process waste lagoons, 3 meters deep, now covering 3.8 hectares. Initial analysis indicated that the sludge was composed mainly of high molecular weight paraffinic and polynuclear aromatic hydrocarbons (PAHs). The overall objective of this full-scale demonstration project was to characterize, assess

  3. Hot/warm clean-up technology of gaseous pollutants%气体污染物之中高温净化技术

    Institute of Scientific and Technical Information of China (English)

    邱耀平; 陈一顺; 黄亮维

    2012-01-01

    核能研究所从2005年起,开始执行净碳技术领域研究,而气体污染物之中高温净化技术为其中的重点之一.中高温净化程序系将典型低温气体处理程序由室温提升至中高温层级,藉由气体处理温度的增高,可降低因温度变化所导致的可用能量减损,进而提升系统整体效能.主要涵盖两大领域技术,首先为流动式颗粒床过滤器气体净化技术,其原生技术为一可应用于中高温的粉尘过滤装置,本研究将其延伸发展为一种复合型过滤系统.其次,中高温脱硫为具有前瞻性的气体减排技术之一,本研究以含浸法制备脱硫剂,并于固定床反应器中进行化性测试;目前得到的最佳吸附容量为7.4g-S/100g sorbent.藉由上述技术之发展,希望提供温室气体排放减量的可行技术.%To comply with the domestic technology RD strategy,a feasibility study project on sustainable clean coal technologies has been undertaken at the Institute of Nuclear Energy Research(INER) since 2005.This work represents the follow-up efforts for mitigating greenhouse gas emissions from sustainable development viewpoints.It is expected that this strategic planning will establish the essential foundation for technologies needed to fulfill the policy of energy saving and carbon abatement.This work focuses on the strategic planning of clean carbon-based energy technologies,from the viewpoints of both practical development and advanced research.The exhibited technology consists of two categories.The first one is advanced gas filtration technology in moving granular bed filter,which is associated with the development of multistage granular moving bed apparatus.Using filter granules under different kinds or particle sizes,higher filtration efficiency collected in the dirty gas conditions could be achieved.The other technology is the so-called hot/warm gas desulfurization,which displays potential to control sulfide emission.In the present study

  4. Recycling Facilities - Land Recycling Cleanup Locations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Land Recycling Cleanup Location Land Recycling Cleanup Locations (LRCL) are divided into one or more sub-facilities categorized as media: Air, Contained Release or...

  5. Bioremediation of Metals and Radionuclides: What It Is and How It Works (2nd Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Palmisano, Anna; Hazen, Terry

    2003-09-30

    This primer is intended for people interested in environmental problems of the U.S. Department of Energy (DOE) and in their potential solutions. It will specifically look at some of the more hazardous metal and radionuclide contaminants found on DOE lands and at the possibilities for using bioremediation technology to clean up these contaminants. The second edition of the primer incorporates recent findings by researchers in DOE's Natural and Accelerated Bioremediation Research (NABIR) Program. Bioremediation is a technology that can be used to reduce, eliminate, or contain hazardous waste. Over the past two decades, it has become widely accepted that microorganisms, and to a lesser extent plants, can transform and degrade many types of contaminants. These transformation and degradation processes vary, depending on the physical-chemical environment, microbial communities, and nature of the contaminant. This technology includes intrinsic bioremediation, which relies on naturally occurring processes, and accelerated bioremediation, which enhances microbial degradation or transformation through the addition of nutrients (biostimulation) or inoculation with microorganisms (bioaugmentation). Over the past few years, interest in bioremediation has increased. It has become clear that many organic contaminants such as hydrocarbon fuels can be degraded to relatively harmless products such as CO{sub 2} (the end result of the degradation process). Waste water managers and scientists have also found that microorganisms can interact with metals and convert them from one chemical form to another. Laboratory tests and ex situ bioremediation applications have shown that microorganisms can change the valence, or oxidation state, of some heavy metals (e.g., chromium and mercury) and radionuclides (e.g., uranium) by using them as electron acceptors. In some cases, the solubility of the altered species decreases and the contaminant is immobilized in situ, i.e., precipitated into

  6. Methodology for setting cleanup criteria

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) has developed guidance for establishing cleanup criteria or authorized limits for sites containing residual radioactive material. The DOE requires that the as-low-as-reasonably-achievable (ALARA) process be applied. This process results in the development of cleanup levels that are as low as practicable giving due consideration to health, environment, economics, cultural, and natural resources and other factors. The process employs a cost-benefit optimization analysis and, where appropriate and feasible, considers multiple attributes. Frequently, some important factors or attributes do not lend themselves to quantification in a cost-benefit study and therefore must be considered qualitatively in the process. While the cost-benefit analysis is not the only consideration, it is an important clement in the establishment of cleanup criteria and selection of remedial alternatives. Key to the cost-benefit process is the relation between cleanup level and dose. This is determined through pathway analysis methodology. This paper discusses the pathway analysis process and will cover radiologically and nonradiologically contaminated sites and building contamination

  7. Role of Microbial Enzymes in the Bioremediation of Pollutants: A Review

    OpenAIRE

    Karigar, Chandrakant S.; Rao, Shwetha S.

    2011-01-01

    A large number of enzymes from bacteria, fungi, and plants have been reported to be involved in the biodegradation of toxic organic pollutants. Bioremediation is a cost effective and nature friendly biotechnology that is powered by microbial enzymes. The research activity in this area would contribute towards developing advanced bioprocess technology to reduce the toxicity of the pollutants and also to obtain novel useful substances. The information on the mechanisms of bioremediation-related...

  8. United States Policies for Cleanup at Radioactively Contaminated Sites

    International Nuclear Information System (INIS)

    The United States Environmental Protection Agency (EPA) Office of Superfund Remediation and Technology Innovation is responsible for implementing the long term (non-emergency) portion of a key law regulating cleanup: the Comprehensive Environmental Response, Compensation and Liability Act, CERCLA, nicknamed ‘Superfund.’ This paper provides a brief overview of the approach used by EPA to conduct Superfund cleanups at contaminated sites, including those that are contaminated with radionuclides, and to ensure protection of human health and the environment. The theme emphasized throughout the paper is that within the Superfund remediation framework, radioactive contamination is dealt with in a manner consistent with chemical contamination, except to account for the technical differences between radionuclides and chemicals. This consistency is important since at every radioactively contaminated site being addressed under Superfund’s primary programme for long term cleanup (the National Priorities List), chemical contamination is also present. (author)

  9. Oil Spill Cleanup

    Science.gov (United States)

    1994-01-01

    Petroleum Remediation Product (PRP) is a new way of cleaning up oil spills. It consists of thousands of microcapsules, tiny balls of beeswax with hollow centers, containing live microorganisms and nutrients to sustain them. As oil flows through the microcapsule's shell, it is consumed and digested by the microorganisms. Pressure buildup causes the PRP to explode and the enzymes, carbon dioxide and water are released into the BioBoom used in conjunction with PRP, preventing contaminated water from spreading. The system incorporates technology originally developed at the Jet Propulsion Laboratory and Marshall Space Flight Center.

  10. Review of Remediation Technologies for Oil -Contaminated Soil and Effect of Different Soil Amendments on Bioremediation Efficacy%石油污染土壤的原位生物修复技术和多种土壤改良剂应用研究

    Institute of Scientific and Technical Information of China (English)

    尚俊腾; 王志

    2016-01-01

    土壤中的石油污染是一类严重的环境危害.针对石油污染的土壤修复技术有物理法、化学法和生物法.其中原位生物修复法由于简易性和生态可持续等优点成为了具有前景的一个发展方向.土壤改良剂的选取和添加是原位生物修复法中重要的一个部分,对生物修复的改进起到了至关重要的作用.土壤改良剂的种类有无机改良剂、有机改良剂和吸附性改良剂.以N、P、K为主的无机改良剂主要为生物生长提供营养元素;有机改良剂则可提高石油污染物流动性,提供生物碳源;吸附改良剂则通过吸附污染物,减少毒性,提供生物生长依附.通过对不同种类改良剂的分析和讨论,可为生物修复发展提供进一步的理论基础.%Oil pollution incurred during transporting and refining is a big environmental concern, because the heavy hydrocar-bons in oil can cause serious damage to soil and the species residing in soil .The remediation technologies targeting oil-polluted sites are generally categorized into three types-physical, chemical and biological remediation methods .Among them, bioremedi-ation is considered a promising technology by academia and industry due to its cost-effective and eco-friendly features.Soil a-mendments, such as inorganic fertilizers, organic amendments and adsorbents, play a vital role in bioremediation process.The appropriate selection of soil amendments and the addition ratio can improve removal efficiency and accelerate treatment processes . This paper reviews all the soil amendments and their effect on bioremediation process, hoping to provide some expertise for further development of bioremediation technology.

  11. Monitoring Genetic and Metabolic Potential for In-Site Bioremediation: Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, M.V.

    2000-07-20

    A number of DOE sites are contaminated with mixtures of dense non-aqueous phase liquids (DNAPLs) such as carbon tetrachloride, chloroform, perchloroethylene, and trichloroethylene. At many of these sites, in situ microbial bioremediation is an attractive strategy for cleanup, since it has the potential to degrade DNAPLs in situ without the need for pump-and-treat or soil removal procedures, and without producing toxic byproducts. A rapid screening method to determine broad range metabolic and genetic potential for contaminant degradation would greatly reduce the cost and time involved in assessment for in situ bioremediation, as well as for monitoring ongoing bioremediation treatment. The objective of this project was the development of mass-spectrometry-based methods to screen for genetic potential for both assessment and monitoring of in situ bioremediation of DNAPLs. These methods were designed to provide more robust and routine methods for DNA-based characterization of the genetic potential of subsurface microbes for degrading pollutants. Specifically, we sought to (1) Develop gene probes that yield information equivalent to conventional probes, but in a smaller size that is more amenable to mass spectrometric detection, (2) Pursue improvements to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) methodology in order to allow its more general application to gene probe detection, and (3) Increase the throughput of microbial characterization by integrating gene probe preparation, purification, and MALDI-MS analysis.

  12. Ecogenomics of microbial communities in bioremediation of chlorinated contaminated sites

    Directory of Open Access Journals (Sweden)

    Farai Maphosa

    2012-10-01

    Full Text Available Organohalide compounds such as chloroethenes, chloroethanes and polychlorinated benzenes are among the most significant pollutants in the world. These compounds are often found in contamination plumes with other pollutants such as solvents, pesticides and petroleum derivatives. Microbial bioremediation of contaminated sites, has become commonplace whereby key processes involved in bioremediation include anaerobic degradation and transformation of these organohalides by organohalide respiring bacteria and also via hydrolytic, oxygenic and reductive mechanisms by aerobic bacteria. Microbial ecogenomics has enabled us to not only study the microbiology involved in these complex processes but also develop tools to better monitor and assess these sites during bioremediation. Microbial ecogenomics have capitalized on recent advances in high-throughput and -output genomics technologies in combination with microbial physiology studies to address these complex bioremediation problems at a system level. Advances in environmental metagenomics, transcriptomics and proteomics have provided insights into key genes and their regulation in the environment. They have also given us clues into microbial community structures, dynamics and functions at contaminated sites. These techniques have not only aided us in understanding the lifestyles of common organohalide respirers, for example Dehalococcoides, Dehalobacter and Desulfitobacterium, but also provided insights into novel and yet uncultured microorganisms found in organohalide respiring consortia. In this paper we look at how ecogenomic studies have aided us to understand the microbial structures and functions in response to environmental stimuli such as the presence of chlorinated pollutants.

  13. Electromigration of Contaminated Soil by Electro-Bioremediation Technique

    Science.gov (United States)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Shaylinda, M. Z. N.; Azim, M. A. M.

    2016-07-01

    Soil contamination with heavy metals poses major environmental and human health problems. This problem needs an efficient method and affordable technological solution such as electro-bioremediation technique. The electro-bioremediation technique used in this study is the combination of bacteria and electrokinetic process. The aim of this study is to investigate the effectiveness of Pseudomonas putida bacteria as a biodegradation agent to remediate contaminated soil. 5 kg of kaolin soil was spiked with 5 g of zinc oxide. During this process, the anode reservoir was filled with Pseudomonas putida while the cathode was filled with distilled water for 5 days at 50 V of electrical gradient. The X-Ray Fluorescent (XRF) test indicated that there was a significant reduction of zinc concentration for the soil near the anode with 89% percentage removal. The bacteria count is high near the anode which is 1.3x107 cfu/gww whereas the bacteria count at the middle and near the cathode was 5.0x106 cfu/gww and 8.0x106 cfu/gww respectively. The migration of ions to the opposite charge of electrodes during the electrokinetic process resulted from the reduction of zinc. The results obtained proved that the electro-bioremediation reduced the level of contaminants in the soil sample. Thus, the electro-bioremediation technique has the potential to be used in the treatment of contaminated soil.

  14. 城市河流生物修复技术的研究进展%Research Progress of Bioremediation Technology of Pollution in Urban River

    Institute of Scientific and Technical Information of China (English)

    许列峰; 陈婕; 邵之剑

    2013-01-01

    城市河流的污染严重影响市容和居住环境,已成为人们重点关注的环境问题之一.结合国内外河道治理现状,重点评述了微生物修复技术、植物修复技术、人工浮岛、人工湿地等生物修复技术的研究进展,并展望今后河道治理技术的重点发展方向.%Urban rivers pollution seriously affect city appearance and residential environment, which has become one of people focusing environmental issues. Combined with control status of rivers at home and abroad, the research pogress of microbial remediation technology, phy-toremediation technology, artificial floating island, artificial wetlands were reviewed, and the development direction of remediation technology was forecasted.

  15. 电动生物修复湖泊底泥中直链烷基苯磺酸钠%Bioremediation of Lake Sediment Contaminated by Linear Alkylbenzene Sulphonates Using Electrokinetic Technology

    Institute of Scientific and Technical Information of China (English)

    刘广容; 叶春松; 钱勤; 张静

    2011-01-01

    Electrodynamic and biological technologies are combined and applied to the remediation of LAS-contaminated lake sediments. A bench scale experiment was conducted with an electrodynamic apparatus and the sediment samples were taken up from East Lake, the largest urban lake in Wuhan, polluted by domestic wastewater containing organic pollutants such as linear alkylbenzene sulphonates(LAS). The experiment started from culture of Bacilli which belong to LAS degrading strains and then electric field was exerted. The coupled electrodynamic bioremediation of the sediment resulted in removal of LAS by 40.5%, a remarked increase compared to biological method singly used. It was found as well that electric field polarity reversal could boost LAS degradation in sediment.%直链烷基苯磺酸钠(Linear Alkylbenzene Sulfonates,LAS)是环境中最常见的具有代表性的一类有机污染物,城市湖泊长期以来接纳了大量的污染物,致使底泥沉积了大最的LAS.采用电动生物复合技术修复东湖底泥中LAS,由于其LAS含量过高,当直接添加芽孢杆菌降解LAS时,发现无明显的降解效果.经过驯化培养芽孢杆菌,得到了降解LAS的菌株.电动生物修复LAS去除率达到40.5%,比单纯的生物修复高出三十多个百分点,比单纯电动修复高出二十个百分点.电极正负极交替有利于底泥中LAS的降解与去除.

  16. Numerical simulations in support of the in situ bioremediation demonstration at Savannah River

    International Nuclear Information System (INIS)

    This report assesses the performance of the in situ bioremediation technology demonstrated at the Savannah River Integrated Demonstration (SRID) site in 1992--1993. The goal of the technology demonstration was to stimulate naturally occurring methanotrophic bacteria at the SRID site with injection of methane, air and air-phase nutrients (nitrogen and phosphate) such that significant amounts of the chlorinated solvent present in the subsurface would be degraded. Our approach is based on site-specific numerical simulations using the TRAMP computer code. In this report, we discuss the interactions among the physical and biochemical processes involved in in situ bioremediation. We also investigate improvements to technology performance, make predictions regarding the performance of this technology over long periods of time and at different sites, and compare in situ bioremediation with other remediation technologies

  17. Kinetics of in situ bioremediation of Hanford groundwater

    International Nuclear Information System (INIS)

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl4), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and may require the remediation of existing contaminated groundwaters. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl4, nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on-going effort to quantify the biological and chemical reactions that would occur during in situ bioremediation

  18. Bioremediation of PCBs. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, K.T. [Oak Ridge National Lab., TN (United States). Chemical Technology Div., TN (United States); Abramowicz, D.A. [General Electric Co. Corporate Research and Development, Niskayuna, NY (United States)

    1996-06-01

    The Cooperative Research and Development Agreement was signed between Oak Ridge National Laboratory (ORNL) and General Electric Company (GE) on August 12, 1991. The objective was a collaborative venture between researchers at GE and ORNL to develop bioremediation of polychlorinated biphenyls (PCBs). The work was conducted over three years, and this report summarizes ORNL`s effort. It was found that the total concentration of PCBs decreased by 70% for sequential anaerobic-aerobic treatment compared with a 67% decrease for aerobic treatment alone. The sequential treatment resulted in PCB products with fewer chlorines and shorter halflives in humans compared with either anaerobic or aerobic treatment alone. The study was expected to lead to a technology applicable to a field experiment that would be performed on a DOE contaminated site.

  19. Bioremediation of PCBs. CRADA final report

    International Nuclear Information System (INIS)

    The Cooperative Research and Development Agreement was signed between Oak Ridge National Laboratory (ORNL) and General Electric Company (GE) on August 12, 1991. The objective was a collaborative venture between researchers at GE and ORNL to develop bioremediation of polychlorinated biphenyls (PCBs). The work was conducted over three years, and this report summarizes ORNL's effort. It was found that the total concentration of PCBs decreased by 70% for sequential anaerobic-aerobic treatment compared with a 67% decrease for aerobic treatment alone. The sequential treatment resulted in PCB products with fewer chlorines and shorter halflives in humans compared with either anaerobic or aerobic treatment alone. The study was expected to lead to a technology applicable to a field experiment that would be performed on a DOE contaminated site

  20. GUIDELINES FOR THE BIOREMEDIATION OF OIL-CONTAMINATED SALT MARSHES

    Science.gov (United States)

    The objective of this document is to present a detailed technical guideline for use by spill responders for the cleanup of coastal wetlands contaminated with oil and oil products by using one of the least intrusive approachesbioremediation technology. This manual is a supplem...

  1. Historical research in the Hanford site waste cleanup

    International Nuclear Information System (INIS)

    This paper will acquaint the audience with role of historical research in the Hanford Site waste cleanup - the largest waste cleanup endeavor ever undertaken in human history. There were no comparable predecessors to this massive waste remediation effort, but the Hanford historical record can provide a partial road map and guide. It can be, and is, a useful tool in meeting the goal of a successful, cost-effective, safe and technologically exemplary waste cleanup. The Hanford historical record is rich and complex. Yet, it poses difficult challenges, in that no central and complete repository or data base exists, records contain obscure code words and code numbers, and the measurement systems and terminology used in the records change many times over the years. Still, these records are useful to the current waste cleanup in technical ways, and in ways that extend beyond a strictly scientific aspect. Study and presentations of Hanford Site history contribute to the huge educational and outreach tasks of helping the Site's work force deal with 'culture change' and become motivated for the cleanup work that is ahead, and of helping the public and the regulators to place the events at Hanford in the context of WWII and the Cold War. This paper traces historical waste practices and policies as they changed over the years at the Hanford Site, and acquaints the audience with the generation of the major waste streams of concern in Hanford Site cleanup today. It presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Examples of the strengths and limitations of the

  2. Spreading, retention and clean-up of oil spills. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Jr, M P

    1976-05-01

    This study reviews and assesses the technology of oil spill spreading, retention and cleanup and proposes research needs in these areas. Sources of oil spills are analyzed and the difficulty of gathering meaningful statistics is discussed. Barrier technology is reviewed and problem areas analyzed. Natural and forced biodegradation and natural and chemical dispersion of oil spills are considered. Research recommendations are categorized under the following two headings (1) Preventive techniques and (2) Containment, Cleanup and Dispersion.

  3. Enhanced in situ aerobic bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Sharfe, K. [CleanEARTH Solutions Ltd., Concord, ON (Canada)

    2007-07-01

    An enhanced in situ aerobic bioremediation process was described. The process used microbe supporting emulsifications to enhance bioavailability as well as to attenuate microbe competition and boost microbial production. Microbes were added prior to application and rapidly initiated bioremediation once applied to impacted areas. The microbe supporting emulsifiers were metabolically active. The study showed that exposed surface areas increased as hydrocarbon masses were divided, which in turn increased the water/substrate interface where microbial action occurred. Nutrients were used to ensure that crowding and waste accumulation were attenuated in order to ensure that the speed of growth and reproduction progressed exponentially. Water-carrying bacteria, enzymes and nutrients were adsorbed to the soil's particle surface and then diffused between particles. The sequestered hydrocarbons were then emulsified and removed in order to be bioremediated. It was concluded that biological catalysts were used to increase microbial activity and to trigger anabolic responses in microbes. Details of a biocatalyst laboratory solution analysis were also included. tabs., figs.

  4. Bioremediation of Metals and Radionuclides: What It Is and How It Works (2nd Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Palmisano, Anna; Hazen, Terry

    2003-09-30

    This primer is intended for people interested in environmental problems of the U.S. Department of Energy (DOE) and in their potential solutions. It will specifically look at some of the more hazardous metal and radionuclide contaminants found on DOE lands and at the possibilities for using bioremediation technology to clean up these contaminants. The second edition of the primer incorporates recent findings by researchers in DOE's Natural and Accelerated Bioremediation Research (NABIR) Program. Bioremediation is a technology that can be used to reduce, eliminate, or contain hazardous waste. Over the past two decades, it has become widely accepted that microorganisms, and to a lesser extent plants, can transform and degrade many types of contaminants. These transformation and degradation processes vary, depending on the physical-chemical environment, microbial communities, and nature of the contaminant. This technology includes intrinsic bioremediation, which relies on naturally occurring processes, and accelerated bioremediation, which enhances microbial degradation or transformation through the addition of nutrients (biostimulation) or inoculation with microorganisms (bioaugmentation). Over the past few years, interest in bioremediation has increased. It has become clear that many organic contaminants such as hydrocarbon fuels can be degraded to relatively harmless products such as CO{sub 2} (the end result of the degradation process). Waste water managers and scientists have also found that microorganisms can interact with metals and convert them from one chemical form to another. Laboratory tests and ex situ bioremediation applications have shown that microorganisms can change the valence, or oxidation state, of some heavy metals (e.g., chromium and mercury) and radionuclides (e.g., uranium) by using them as electron acceptors. In some cases, the solubility of the altered species decreases and the contaminant is immobilized in situ, i.e., precipitated into

  5. Literature review and assessment of various approaches to bioremediation of oil and associated hydrocarbons in soil and groundwater

    International Nuclear Information System (INIS)

    A study was conducted of available techniques for the biological treatment of oil and associated hydrocarbon contamination in soil and groundwater. The study involved a detailed literature search and review, as well as discussions with the users and developers of a number of the bioremediation techniques assessed. The result is a compendium of selected state-of-the-art bioremediation technologies which can serve to guide the selection process for treatment technology for a particular site subject to remediation. Background is provided on the various classes of sites on which petroleum-related contamination could occur, and the nature of contaminants typical of such sites. The mechanisms of hydrocarbon biodegradation are outlined along with various approaches to bioremediation such as in-situ, on-site, bioreactors, landfarming, composting, and physical/chemical treatments. Field trials required to characterize the site and provide an indication of the suitability of bioremediation and the most appropriate bioremediation approach are described. Commercially available bioremediation technologies are briefly discussed. A number of the bioremedial techniques reviewed are compared to more conventional treatment processes in terms of such criteria as operating cost, effectiveness, advantages, risks, applicability, equipment and manpower requirements, and considerations regarding usage in Canadian conditions. 15 figs., 17 tabs

  6. 土壤石油污染的生物修复技术%Bioremediation Technology of Oil-Contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    刘小二

    2014-01-01

    Bioremediation technology of oil-contaminated soil is the most vitality and the representative technology. In this paper, the features of plants remediation, microorganism remediation and plants-microorganism remediation technology were analyzed, and the optimum processing methods for three soil samples polluted in high, medium and low concentration were introduced by the application examples.%生物修复技术改良土壤石油污染,是最有生命力、最具代表性的技术。本文分析了植物修复技术、微生物修复技术和植物-微生物联合修复技术的特点,并通过应用实例,介绍了对高、中、低3种污染浓度油污土壤的最佳修复处理方法。

  7. Challenging Oil Bioremediation at Deep-Sea Hydrostatic Pressure

    Science.gov (United States)

    Scoma, Alberto; Yakimov, Michail M.; Boon, Nico

    2016-01-01

    The Deepwater Horizon accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (bio)technology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons within deep-sea environments remain unanswered, as well as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil bioassimilation are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled oil. The fate of solid alkanes (tar), hydrocarbon degradation rates and the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea despite being present at hydrocarbon seeps at the Gulf of Mexico have been largely overlooked. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation. PMID:27536290

  8. Intrinsic bioremediation of landfills interim report

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L. [Westinghouse Savannah River Company, Aiken, SC (United States); Fliermans, C.B.

    1997-07-14

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP).

  9. Intrinsic bioremediation of landfills interim report

    International Nuclear Information System (INIS)

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP)

  10. BIOREMEDIATION OF LOW GRADE ORES

    OpenAIRE

    Rashmi Mishra*

    2016-01-01

    The research work presented in this paper is on a Bioremediation for the recovery of zinc from mining waste i.e. Low grade ore of Hindustan Zinc Limited. They are waste product for the mines, as the recovery process is expensive compared to the recovery product moreover it causes lots of pollution   Bioleaching Studies were carried out at different pH using mixed culture grown from mine water. Recovery of zinc in control set (without culture) was 8% in 37 days and at the same pH ...

  11. BIOVENTING OF CHLORINATED SOLVENTS FOR GROUND-WATER CLEANUP THROUGH BIOREMEDIATION

    Science.gov (United States)

    Chlorinated solvents such as tetrachloroethylene, trichloroethylene, carbon tetrachloride, chloroform, 1,2-dichloroethane, and dichloromethane (methylene chloride) can exist in contaminated subsurface material as (1) the neat oil, (2) a component of a mixed oily waste, (3) a solu...

  12. BIOREMEDIATION TREATABILITY TRIALS USING NUTRIENT APPLICATION TO ENHANCE CLEANUP OF OIL-CONTAMINATED SHORELINE

    Science.gov (United States)

    On March 24, 1989, the supertanker Exxon Valdez went aground in Prince William Sound, Alaska, releasing approximately 11 million gallons of Prudhoe Bay crude oil. he spilled oil spread over, an estimated 350 miles of shoreline. he oil settled into the beach gravel and on rock sur...

  13. Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama Region (Chile)

    International Nuclear Information System (INIS)

    Since early 1900s, with the beginning of mining operations and especially in the last decade, small, although repetitive spills of fuel oil had occurred frequently in the Chilean mining desert industry during reparation and maintenance of machinery, as well as casual accidents. Normally, soils and sawdust had been used as cheap readily available sorbent materials of spills of fuel oil, consisting of complex mixtures of aliphatic and aromatic hydrocarbons. Chilean legislation considers these fuel oil contaminated mixtures of soil and sawdust as hazardous wastes, and thus they must be contained. It remains unknown whether it would be feasible to clean-up Chilean desert soils with high salinity and metal content, historically polluted with different commercial fuel oil, and contained during years. Thus, this study evaluated the feasibility of aerated in-vessel composting at a laboratory scale as a bioremediation technology to clean-up contaminated desert mining soils (fuel concentration > 50,000 mg kg-1) and sawdust (fuel concentration > 225,000 mg kg-1) in the Atacama Region. The composting reactors were operated using five soil to sawdust ratios (S:SD, 1:0, 3:1, 1:1, 1:3, 0:1, on a dry weight basis) under mesophilic temperatures (30-40 deg. C), constant moisture content (MC, 50%) and continuous aeration (16 l min-1) during 56 days. Fuel oil concentration and physico-chemical changes in the composting reactors were monitored following standard procedures. The highest (59%) and the lowest (35%) contaminant removals were observed in the contaminated sawdust and contaminated soil reactors after 56 days of treatment, respectively. The S:SD ratio, time of treatment and interaction between both factors had a significant effect (p < 0.050) on the contaminant removal. The results of this research indicate that bioremediation of an aged contaminated mixture of desert mining soil and sawdust with fuel oil is feasible. This study recommends a S:SD ratio 1:3 and a correct

  14. Assisted bioremediation tests on three natural soils contaminated with benzene

    Directory of Open Access Journals (Sweden)

    Maria Manuela Carvalho

    2015-07-01

    Full Text Available Bioremediation is an attractive and useful method of remediation of soils contaminated with petroleum hydrocarbons because it is simple to maintain, applicable in large areas, is economic and enables an effective destruction of the contaminant. Usually, the autochthone microorganisms have no ability to degrade these compounds, and otherwise, the contaminated sites have inappropriate environmental conditions for microorganism’s development. These problems can be overcome by assisted bioremediation (bioaugmentation and/or biostimulation. In this study the assisted bioremediation capacity on the rehabilitation of three natural sub-soils (granite, limestone and schist contaminated with benzene was evaluated. Two different types of assisted bioremediation were used: without and with ventilation (bioventing. The bioaugmentation was held by inoculating the soil with a consortium of microorganisms collected from the protection area of crude oil storage tanks in a refinery. In unventilated trials, biostimulation was accomplished by the addition of a nutrient mineral media, while in bioventing oxygen was also added. The tests were carried out at controlled temperature of 25 ºC in stainless steel columns where the moist soil contaminated with benzene (200 mg per kg of soil occupied about 40% of the column’s volume. The processes were daily monitored in discontinued mode. Benzene concentration in the gas phase was quantified by gas chromatography (GC-FID, oxygen and carbon dioxide concentrations were monitored by respirometry. The results revealed that the three contaminated soils were remediated using both technologies, nevertheless, the bioventing showed faster rates. With this work it was proved that respirometric analysis is an appropriate instrument for monitoring the biological activity.

  15. HANFORD SITE RIVER CORRIDOR CLEANUP

    International Nuclear Information System (INIS)

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km2 Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal

  16. Applicability and Limits of Bioremediation of Contaminated Groundwater by Organic Compounds

    Institute of Scientific and Technical Information of China (English)

    Taboure Aboubacar; Lin Xueyu

    2001-01-01

    This paper gives in some ways a broad look at the Bioremediation Technology in the treatment of polluted groundwater. Environmentalists and Hydrologeologists around the world, especially in the developed countries welcomed this revolutionizing technique at a moment when other methods were becoming rather expensive and sources of secondary and more challenging pollution problems across sole fresh groundwater. Bioremediation of contaminated groundwater is based on the use of bacteria which breakdown organic matters to more stable forms, which will not create nuisance or give off foul odors. The Applicability of this technology at a specific site lies in the understanding of the site's hydrogeologic, physiochemical backgrounds and the knowledge of the properties of the designated bacteria colonies, which would likely stabilize the contaminants. These are key points, which determine the success of the all process. Only, by complying with all those measures, Bioremediation can meet all the expectations.

  17. Model-based Analysis of Mixed Uranium(VI) Reduction by Biotic and Abiotic Pathways During in Situ Bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan

    2013-10-24

    Uranium bioremediation has emerged as a potential strategy of cleanup of radionuclear contamination worldwide. An integrated geochemical & microbial community model is a promising approach to predict and provide insights into the bioremediation of a complicated natural subsurface. In this study, an integrated column-scale model of uranium bioremediation was developed, taking into account long-term interactions between biotic and abiotic processes. It is also combined with a comprehensive thermodynamic analysis to track the fate and cycling of biogenic species. As compared with other bioremediation models, the model increases the resolution of the connection of microbial community to geochemistry and establishes direct quantitative correlation between overall community evolution and geochemical variation, thereby accurately predicting the community dynamics under different sedimentary conditions. The thermodynamic analysis examined a recently identified homogeneous reduction of U(VI) by Fe(II) under dynamic sedimentary conditions across time and space. It shows that the biogenic Fe(II) from Geobacter metabolism can be removed rapidly by the biogenic sulphide from sulfate reducer metabolism, hence constituting one of the reasons that make the abiotic U(VI) reduction thermodynamically infeasible in the subsurface. Further analysis indicates that much higher influent concentrations of both Fe(II) and U(VI) than normal are required to for abiotic U(VI) reduction to be thermodynamically feasible, suggesting that the abiotic reduction cannot be an alternative to the biotic reduction in the remediation of uranium contaminated groundwater.

  18. A novel bioremediation strategy for petroleum hydrocarbon pollutants using salt tolerant Corynebacterium variabile HRJ4 and biochar.

    Science.gov (United States)

    Zhang, Hairong; Tang, Jingchun; Wang, Lin; Liu, Juncheng; Gurav, Ranjit Gajanan; Sun, Kejing

    2016-09-01

    The present work aimed to develop a novel strategy to bioremediate the petroleum hydrocarbon contaminants in the environment. Salt tolerant bacterium was isolated from Dagang oilfield, China and identified as Corynebacterium variabile HRJ4 based on 16S rRNA gene sequence analysis. The bacterium had a high salt tolerant capability and biochar was developed as carrier for the bacterium. The bacteria with biochar were most effective in degradation of n-alkanes (C16, C18, C19, C26, C28) and polycyclic aromatic hydrocarbons (NAP, PYR) mixture. The result demonstrated that immobilization of C. variabile HRJ4 with biochar showed higher degradation of total petroleum hydrocarbons (THPs) up to 78.9% after 7-day of incubation as compared to the free leaving bacteria. The approach of this study will be helpful in clean-up of petroleum-contamination in the environments through bioremediation process using eco-friendly and cost effective materials like biochar. PMID:27593267

  19. An evaluation of in-situ bioremediation processes

    International Nuclear Information System (INIS)

    Remediation of petroleum hydrocarbons in groundwater was the primary focus in the initial application of in-situ bioremediation which, from its development in the 1970s, has grown to become one of the most promising technologies for the degradation of a wide variety of organic contaminants. The degradation of contaminants in subsurface soils is the current new focus of the technology. While the need for improvements in the technology does exist, the indisputable fact remains that this technology is by far the least expensive and that it has the capability to provide long term reduced levels of contaminants or long term complete remediation of contaminated sites. The aim of this paper is to disclose pertinent information related to current conditions and current feelings in the area of new research, novel applications, new government regulations, and an overview of new topics on the horizon that relate to the overall technology

  20. An evaluation of in-situ bioremediation processes

    Energy Technology Data Exchange (ETDEWEB)

    Cole, L.L. [Prairie View A and M Univ., TX (United States); Rashidi, M. [Lawrence Livermore National Lab., CA (United States). Environmental Programs Directorate

    1996-08-01

    Remediation of petroleum hydrocarbons in groundwater was the primary focus in the initial application of in-situ bioremediation which, from its development in the 1970s, has grown to become one of the most promising technologies for the degradation of a wide variety of organic contaminants. The degradation of contaminants in subsurface soils is the current new focus of the technology. While the need for improvements in the technology does exist, the indisputable fact remains that this technology is by far the least expensive and that it has the capability to provide long term reduced levels of contaminants or long term complete remediation of contaminated sites. The aim of this paper is to disclose pertinent information related to current conditions and current feelings in the area of new research, novel applications, new government regulations, and an overview of new topics on the horizon that relate to the overall technology.

  1. Petroleum biodegradation and oil spill bioremediation

    International Nuclear Information System (INIS)

    Hydrocarbon-utilizing microorganisms are ubiquitously distributed in the marine environment following oil spills. These microorganisms naturally biodegrade numerous contaminating petroleum hydrocarbons, thereby cleansing the oceans of oil pullutants. Bioremediation, which is accomplished by adding exogenous microbial populations or stimulating indigenous ones, attempts to raise the rates of degradation found naturally to significantly higher rates. Seeding with oil degraders has not been demonstrated to be effective, but addition of nitrogenous fertilizers has been shown to increase rates of petroleum biodegradation. In the case of the Exxon Valdez spill, the largest and most thoroughly studied application of bioremediation, the application of fertilizer (slow release or oleophilic) increased rates of biodegradation 3-5 times. Because of the patchiness of oil, an internally conserved compound, hopane, was critical for demonstrating the efficacy of bioremediation. Multiple regression models showed that the effectiveness of bioremediation depended upon the amount of nitrogen delivered, the concentration of oil, and time. (author)

  2. NHC's contribution to cleanup of the Hanford Site

    International Nuclear Information System (INIS)

    The one billion dollars per year Project Hanford Management Contract (PHMC), managed by Fluor Daniel Hanford, calls for cleanup of the Hanford Site for the Department of Energy. Project Hanford comprises four major subprojects, each managed by a different major contractor. Numatec Hanford Corporation (NHC) is a fifth major subcontractor which provides energy and technology to each of the Hanford projects. NHC draws on the experience and capabilities of its parent companies, COGEMA and SGN, and relies on local support from its sister Company in Richland, COGEMA Engineering Corporation, to bring the best commercial practices and new technology to the Project

  3. HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY

    Energy Technology Data Exchange (ETDEWEB)

    BERGMAN TB

    2011-01-14

    Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the {approx}200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of the River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were

  4. Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils.

    Directory of Open Access Journals (Sweden)

    Etienne Yergeau

    Full Text Available As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorganisms and functional genes are abundant and active during hydrocarbon degradation at cold temperature? To answer this question, we sequenced the soil metagenome of an ongoing bioremediation project in Alert, Canada through a time course. We also used reverse-transcriptase real-time PCR (RT-qPCR to quantify the expression of several hydrocarbon-degrading genes. Pseudomonas species appeared as the most abundant organisms in Alert soils right after contamination with diesel and excavation (t = 0 and one month after the start of the bioremediation treatment (t = 1m, when degradation rates were at their highest, but decreased after one year (t = 1y, when residual soil hydrocarbons were almost depleted. This trend was also reflected in hydrocarbon degrading genes, which were mainly affiliated with Gammaproteobacteria at t = 0 and t = 1m and with Alphaproteobacteria and Actinobacteria at t = 1y. RT-qPCR assays confirmed that Pseudomonas and Rhodococcus species actively expressed hydrocarbon degradation genes in Arctic biopile soils. Taken together, these results indicated that biopile treatment leads to major shifts in soil microbial communities, favoring aerobic bacteria that can degrade hydrocarbons.

  5. Solvent enhanced bioremediation of weathered oil contamination

    International Nuclear Information System (INIS)

    This paper describes a novel bioremediation process for the treatment of oil spills on land. The method was developed specifically to deal with long term oil contamination where the volatile fractions have evaporated leaving the more recalcitrant fractions. A model system of sand and Kuwaiti crude oil was used to test the system. A combined treatment which introduced an additional solvent component was found to enhance mobility and availability of oil, enhancing bioremediation. (author)

  6. Conceptualizing "suicidal genetically engineered microorganisms" for bioremediation applications.

    Science.gov (United States)

    Pandey, Gunjan; Paul, Debarati; Jain, Rakesh K

    2005-02-18

    Use of genetically modified microorganisms (GEMs) for pollution abatement has been limited because of risks associated with their release in the environment. Recent developments in the area of recombinant DNA technologies have paved the way for conceptualizing "suicidal genetically engineered microorganisms" (S-GEMS) to minimize such anticipated hazards and to achieve efficient and safer bioremediation of contaminated sites. Our strategy of designing a novel S-GEM is based on the knowledge of killer-anti-killer gene(s) that would be susceptible to programmed cell death after detoxification of any given contaminated site(s). PMID:15649393

  7. Particulate hot gas stream cleanup technical issues

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This is the tenth in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic bed filter elements. Task I is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task I during the past quarter, analyses were performed on a particulate sample from the Transport Reactor Demonstration Unit (TRDU) located at the University of North Dakota Energy and Environmental Research Center. Analyses are in progress on ash samples from the Advanced Particulate Filter (APF) at the Pressurized Fluidized-Bed Combustor (PFBC) that was in operation at Tidd and ash samples from the Pressurized Circulating Fluid Bed (PCFB) system located at Karhula, Finland. A site visit was made to the Power Systems Development Facility (PSDF) to collect ash samples from the filter vessel and to document the condition of the filter vessel with still photographs and videotape. Particulate samples obtained during this visit are currently being analyzed for entry into the Hot Gas Cleanup (HGCU) data base. Preparations are being made for a review meeting on ash bridging to be held at Department of Energy Federal Energy Technology Center - Morgantown (DOE/FETC-MGN) in the near future. Most work on Task 2 was on hold pending receipt of additional funds; however, creep testing of Schumacher FT20 continued. The creep tests on Schumacher FT20 specimens just recently ended and data analysis and comparisons to other data are ongoing. A summary and analysis of these creep results will be sent out shortly. Creep

  8. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications.

    Science.gov (United States)

    Gill, R T; Harbottle, M J; Smith, J W N; Thornton, S F

    2014-07-01

    There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios. PMID:24875868

  9. Increased leukemia risk in Chernobyl cleanup workers

    Science.gov (United States)

    A new study found a significantly elevated risk for chronic lymphocytic leukemia among workers who were engaged in recovery and clean-up activities following the Chernobyl power plant accident in 1986.

  10. Assessment, Cleanup and Redevelopment Exchange System (ACRES)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Assessment, Cleanup and Redevelopment Exchange System (ACRES) is an online database for Brownfields Grantees to electronically submit data directly to EPA.

  11. Nuclear radiation cleanup and uranium prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Mariella, Jr., Raymond P.; Dardenne, Yves M.

    2016-02-02

    Apparatus, systems, and methods for nuclear radiation cleanup and uranium prospecting include the steps of identifying an area; collecting samples; sample preparation; identification, assay, and analysis; and relating the samples to the area.

  12. Bioavailability: implications for science/cleanup policy

    Energy Technology Data Exchange (ETDEWEB)

    Denit, Jeffery; Planicka, J. Gregory

    1998-12-01

    This paper examines the role of bioavailability in risk assessment and cleanup decisions. Bioavailability refers to how chemicals ''behave'' and their ''availability'' to interact with living organisms. Bioavailability has significant implications for exposure risks, cleanup goals, and site costs. Risk to human health and the environment is directly tied to the bioavailability of the chemicals of concern.

  13. Rocky Flats Cleanup Agreement implementation successes and challenges

    International Nuclear Information System (INIS)

    On July 19, 1996 the US Department of Energy (DOE), State of Colorado (CDPHE), and US Environmental Protection Agency (EPA) entered into an agreement called the Rocky Flats Cleanup Agreement (RFCA) for the cleanup and closure of the Rocky Flats Environmental Technology Site (RFETS or Rocky Flats). Major elements of the agreement include: an Integrated Site-Wide Baseline; up to twelve significant enforceable milestones per year; agreed upon soil and water action levels and standards for cleanup; open space as the likely foreseeable land use; the plutonium and TRU waste removed by 2015; streamlined regulatory process; agreement with the Defense Nuclear Facilities Safety Board (DNFSB) to coordinate activities; and a risk reduction focus. Successful implementation of RFCA requires a substantial effort by the parties to change their way of thinking about RFETS and meet the deliverables and commitments. Substantial progress toward Site closure through the implementation of RFCA has been accomplished in the short time since the signing, yet much remains to be done. Much can be learned from the Rocky Flats experience by other facilities in similar situations

  14. Deploying in situ bioremediation at the Hanford Site

    International Nuclear Information System (INIS)

    An innovative in-situ bioremediation technology was developed by Pacific Northwest Laboratory (PNL) to destroy nitrate and carbon tetrachloride (CC14) in the Hanford ground water. The goal of this in-situ treatment process is to stimulate native microorganisms to degrade nitrate and CCl4. Nutrient solutions are distributed in the contaminated aquifer to create a biological treatment zone. This technology is being demonstrated at the US Department of Energy's Hanford Site to provide the design, operating, and cost information needed to assess its effectiveness in contaminated ground water. The process design and field operations for demonstration of this technology are influenced by the physical, chemical, and microbiological properties observed at the site. A description of the technology is presented including the well network design, nutrient injection equipment, and means for controlling the hydraulics and microbial reactions of the treatment process

  15. A geometric construction of traveling waves in a bioremediation.

    NARCIS (Netherlands)

    Beck, M.; Doelman, A.; Kaper, T.J.

    2005-01-01

    Bioremediation is a promising technique for cleaning contaminated soil. We study an idealized bioremediation model involving a substrate (contaminant to be removed), electron acceptor (added nutrient), and microorganisms in a one-dimensional soil column. Using geometric singular perturbation theory,

  16. A geometric construction of traveling waves in a bioremediation model

    NARCIS (Netherlands)

    M.A. Beck; A. Doelman; T.J. Kaper

    2006-01-01

    Bioremediation is a promising technique for cleaning contaminated soil. We study an idealized bioremediation model involving a substrate (contaminant to be removed), electron acceptor (added nutrient), and microorganisms in a one-dimensional soil column. Using geometric singular perturbation theory,

  17. Microorganisms in heavy metal bioremediation: strategies for applying microbial-community engineering to remediate soils

    Directory of Open Access Journals (Sweden)

    Jennifer L. Wood

    2016-06-01

    Full Text Available The remediation of heavy-metal-contaminated soils is essential as heavy metals persist and do not degrade in the environment. Remediating heavy-metal-contaminated soils requires metals to be mobilized for extraction whilst, at the same time, employing strategies to avoid mobilized metals leaching into ground-water or aquatic systems. Phytoextraction is a bioremediation strategy that extracts heavy metals from soils by sequestration in plant tissues and is currently the predominant bioremediation strategy investigated for remediating heavy-metal-contaminated soils. Although the efficiency of phytoextraction remains a limiting feature of the technology, there are numerous reports that soil microorganisms can improve rates of heavy metal extraction.This review highlights the unique challenges faced when remediating heavy-metal-contaminated soils as compared to static aquatic systems and suggests new strategies for using microorganisms to improve phytoextraction. We compare how microorganisms are used in soil bioremediation (i.e. phytoextraction and water bioremediation processes, discussing how the engineering of microbial communities, used in water remediation, could be applied to phytoextraction. We briefly outline possible approaches for the engineering of soil communities to improve phytoextraction either by mobilizing metals in the rhizosphere of the plant or by promoting plant growth to increase the root-surface area available for uptake of heavy metals. We highlight the technological advances that make this research direction possible and how these technologies could be employed in future research.

  18. Effect of alternating bioremediation and electrokinetics on the remediation of n-hexadecane-contaminated soil

    Science.gov (United States)

    Wang, Sa; Guo, Shuhai; Li, Fengmei; Yang, Xuelian; Teng, Fei; Wang, Jianing

    2016-04-01

    This study demonstrated the highly efficient degradation of n-hexadecane in soil, realized by alternating bioremediation and electrokinetic technologies. Using an alternating technology instead of simultaneous application prevented competition between the processes that would lower their efficiency. For the consumption of the soil dissolved organic matter (DOM) necessary for bioremediation by electrokinetics, bioremediation was performed first. Because of the utilization and loss of the DOM and water-soluble ions by the microbial and electrokinetic processes, respectively, both of them were supplemented to provide a basic carbon resource, maintain a high electrical conductivity and produce a uniform distribution of ions. The moisture and bacteria were also supplemented. The optimal DOM supplement (20.5 mg·kg-1 glucose; 80-90% of the total natural DOM content in the soil) was calculated to avoid competitive effects (between the DOM and n-hexadecane) and to prevent nutritional deficiency. The replenishment of the water-soluble ions maintained their content equal to their initial concentrations. The degradation rate of n-hexadecane was only 167.0 mg·kg-1·d-1 (1.9%, w/w) for the first 9 days in the treatments with bioremediation or electrokinetics alone, but this rate was realized throughout the whole process when the two technologies were alternated, with a degradation of 78.5% ± 2.0% for the n-hexadecane after 45 days of treatment.

  19. Semifield testing of a bioremediation tool for atrazine-contaminated soils: evaluating the efficacy on soil and aquatic compartments.

    Science.gov (United States)

    Chelinho, Sónia; Moreira-Santos, Matilde; Silva, Cátia; Costa, Catarina; Viana, Paula; Viegas, Cristina A; Fialho, Arsénio M; Ribeiro, Rui; Sousa, José Paulo

    2012-07-01

    The present study evaluated the bioremediation efficacy of a cleanup tool for atrazine-contaminated soils (Pseudomonas sp. ADP plus citrate [P. ADP + CIT]) at a semifield scale, combining chemical and ecotoxicological information. Three experiments representing worst-case scenarios of atrazine contamination for soil, surface water (due to runoff), and groundwater (due to leaching) were performed in laboratory simulators (100 × 40 × 20 cm). For each experiment, three treatments were set up: bioremediated, nonbioremediated, and a control. In the first, the soil was sprayed with 10 times the recommended dose (RD) for corn of Atrazerba and with P. ADP + CIT at day 0 and a similar amount of P. ADP at day 2. The nonbioremediated treatment consisted of soil spraying with 10 times the RD of Atrazerba (day 0). After 7 d of treatment, samples of soil (and eluates), runoff, and leachate were collected for ecotoxicological tests with plants (Avena sativa and Brassica napus) and microalgae (Pseudokirchneriella subcapitata) species. In the nonbioremediated soils, atrazine was very toxic to both plants, with more pronounced effects on plant growth than on seed emergence. The bioremediation tool annulled atrazine toxicity to A. sativa (86 and 100% efficacy, respectively, for seed emergence and plant growth). For B. napus, results point to incomplete bioremediation. For the microalgae, eluate and runoff samples from the nonbioremediated soils were extremely toxic; a slight toxicity was registered for leachates. After only 7 d, the ecotoxicological risk for the aquatic compartments seemed to be diminished with the application of P. ADP + CIT. In aqueous samples obtained from the bioremediated soils, the microalgal growth was similar to the control for runoff samples and slightly lower than control (by 11%) for eluates.

  20. Characterization, monitoring, and sensor technology catalogue

    International Nuclear Information System (INIS)

    This document represents a summary of 58 technologies that are being developed by the Department of Energy's (DOE's) Office of Science and Technology (OST) to provide site, waste, and process characterization and monitoring solutions to the DOE weapons complex. The information was compiled to provide performance data on OST-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and preparing plans and compliance documents for DOE cleanup and waste management programs. The information may also be used to identify opportunities for partnering and commercialization with industry, DOE laboratories, other federal and state agencies, and the academic community. Each technology is featured in a format that provides: (1) a description, (2) technical performance data, (3) applicability, (4) development status, (5) regulatory considerations, (6) potential commercial applications, (7) intellectual property, and (8) points-of-contact. Technologies are categorized into the following areas: (1) Bioremediation Monitoring, (2) Decontamination and Decommissioning, (3) Field Analytical Laboratories, (4) Geophysical and Hydrologic Characterization, (5) Hazardous Inorganic Contaminant Analysis, (6) Hazardous Organic Contaminant Analysis, (7) Mixed Waste, (8) Radioactive Contaminant Analysis, (9) Remote Sensing,(10)Sampling and Drilling, (11) Statistically Guided Sampling, and (12) Tank Waste

  1. Characterization, monitoring, and sensor technology catalogue

    Energy Technology Data Exchange (ETDEWEB)

    Matalucci, R.V. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Esparza-Baca, C.; Jimenez, R.D. [Applied Sciences Laboratory, Inc., Albuquerque, NM (United States)

    1995-12-01

    This document represents a summary of 58 technologies that are being developed by the Department of Energy`s (DOE`s) Office of Science and Technology (OST) to provide site, waste, and process characterization and monitoring solutions to the DOE weapons complex. The information was compiled to provide performance data on OST-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and preparing plans and compliance documents for DOE cleanup and waste management programs. The information may also be used to identify opportunities for partnering and commercialization with industry, DOE laboratories, other federal and state agencies, and the academic community. Each technology is featured in a format that provides: (1) a description, (2) technical performance data, (3) applicability, (4) development status, (5) regulatory considerations, (6) potential commercial applications, (7) intellectual property, and (8) points-of-contact. Technologies are categorized into the following areas: (1) Bioremediation Monitoring, (2) Decontamination and Decommissioning, (3) Field Analytical Laboratories, (4) Geophysical and Hydrologic Characterization, (5) Hazardous Inorganic Contaminant Analysis, (6) Hazardous Organic Contaminant Analysis, (7) Mixed Waste, (8) Radioactive Contaminant Analysis, (9) Remote Sensing,(10)Sampling and Drilling, (11) Statistically Guided Sampling, and (12) Tank Waste.

  2. Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids

    Directory of Open Access Journals (Sweden)

    Kareem A. Mosa

    2016-03-01

    Full Text Available Global mechanization, urbanization and various natural processes have led to the increased release of toxic compounds into the biosphere. These hazardous toxic pollutants include a variety of organic and inorganic compounds, which pose a serious threat to the ecosystem. The contamination of soil and water are the major environmental concerns in the present scenario. This leads to a greater need for remediation of contaminated soils and water with suitable approaches and mechanisms. The conventional remediation of contaminated sites commonly involves the physical removal of contaminants, and their disposition. Physical remediation strategies are expensive, non-specific and often make the soil unsuitable for agriculture and other uses by disturbing the microenvironment. Owing to these concerns, there has been increased interest in eco-friendly and sustainable approaches such as bioremediation, phytoremediation and rhizomediation for the cleanup of contaminated sites. This review lays particular emphasis on biotechnological approaches and strategies for heavy metal and metalloid containment removal from the environment, highlighting the advances and implications of bioremediation and phytoremediation as well as their utilization in cleaning-up toxic pollutants from contaminated environments.

  3. Bioremediation technologies for polluted seawater sampled after an oil-spill in Taranto Gulf (Italy): A comparison of biostimulation, bioaugmentation and use of a washing agent in microcosm studies.

    Science.gov (United States)

    Crisafi, F; Genovese, M; Smedile, F; Russo, D; Catalfamo, M; Yakimov, M; Giuliano, L; Denaro, R

    2016-05-15

    One of the main challenges of bioremediation is to define efficient protocols having a low environmental impact. We have investigated the effect of three treatments in oily-seawater after a real oil-spill occurred in the Gulf of Taranto (Italy). Biostimulation with inorganic nutrients allowed the biodegradation of the 73±2.4% of hydrocarbons, bioaugmentation with a selected hydrocarbonoclastic consortium consisting of Alcanivorax borkumensis, Alcanivorax dieselolei, Marinobacter hydrocarbonoclasticus, Cycloclasticus sp. 78-ME and Thalassolituus oleivorans degraded 79±3.2%, while the addition of nutrients and a washing agent has allowed the degradation of the 69±2.6%. On the other hand, microbial community was severely affected by the addition of the washing agent and the same product seemed to inhibit the growth of the majority of strains composing the selected consortium at the tested concentration. The use of dispersant should be accurately evaluated also considering its effect on the principal actors of biodegradation. PMID:26992747

  4. Large Scale Bioremediation of Petroleum Hydrocarbon Contaminated Waste at Various Installations of ONGC. India: Case Studies

    Directory of Open Access Journals (Sweden)

    Ajoy Kumar Mandal

    2014-07-01

    Full Text Available In situ and ex situ bioremediation of oil contaminated effluent pits, sludge pits, oil spilled land and tank bottom, and effluent treatment plant (ETP oily sludge was carried out at Ankleshwar, Mehsana, Assam and Cauvery Asset of Oil and Natural Gas Corporation Limited (ONGC, India. The types of contaminant were heavy paraffinic, asphaltic and light crude oil and emulsified oily sludge /contaminated soil. An indigenous microbial consortium was developed by assembling four species of bacteria, isolated from various oil contaminated sites of India, which could biodegrade different fractions of total petroleum hydrocarbon (TPH of the oily waste to environment friendly end products. The said consortium was on a large scale field applied to the above oil installations and it successfully bioremediated 30,706 tonnes of different types of oily waste. In 65 case studies of different batch size of in situ and ex situ bioremediation processes, the initial TPH content varying from 69.20 to 662.70 g/kg of oily waste has been biodegraded to 5.30 – 16.90 g/kg of oily waste in a range of 2 to 33 months. Biodegradation rate varied in the range of 0.22 – 1.10 Kg TPH /day/m2 area due to the climatic condition of the treatment zone and the type of waste treated. The bioremediated soil was non-toxic and natural vegetation was found to be grown on the same ground. Successful eco-restoration of one large effluent pit of 26,000 m2 area was carried out by cultivation of local fish species after completion of bioremediation. Bioremediation technology has helped ONGC with the management of their hazardous oily wastes in an environment friendly manner. DOI: http://dx.doi.org/10.5755/j01.erem.68.2.5632

  5. In situ bioremediation strategies for oiled shoreline environments

    International Nuclear Information System (INIS)

    Despite advances in preventative measures, recent events have demonstrated that accidental oil spills at sea will still occur. While physical (e.g. booms and skimmers) and chemical (e.g. chemical dispersants) methods have been developed to recover and/or disperse oil spilled at sea, they are not 100% effective and are frequently limited by operational constraints attributed to sea state and/or nature of the contamination. As a result, oil spills frequently impact shoreline environments. In situ bioremediation, the addition of substances or modification of habitat at contaminated sites to accelerate natural biodegradation processes, is now recognised as an alternative spill response technology of the remediation of these sites. Recommended for use following the physical removal of bulk oil, this treatment strategy has an operational advantage in that it breaks down and/or removes the residual contamination in place. Laboratory experiments and field trials have demonstrated the feasibility and success of bioremediation strategies such as nutrient enrichment to enhance bacterial degradation of oil on cobble, sand beach and salt marsh environments. With improved knowledge of the factors that limit natural oil degradation rates, the feasibility of other strategies such as phytoremediation, enhanced oil-mineral fines interaction and the addition of oxygen or alternative electron acceptors are now being evaluated. Laboratory and field test protocols are being refined for the selection of effective bioremediation agents and methods of application. It is recommended that future operational guidelines include real time product efficacy test and environmental effects monitoring programs. Termination of treatment should be implemented when: 1) it is no longer effective; 2) the oil has degraded to acceptable biologically benign concentrations; or 3) toxicity due to the treatment is increasing. (Author)

  6. Enhance soil bioremediation with electric fields

    International Nuclear Information System (INIS)

    Electrokinetic remediation is an in situ remediation technique that uses low-level direct-current electric potential differences (on the order of volts per centimeter) or an electric current (on the order of milliamps per square centimeter of cross-sectional area between electrodes) applied across a soil mass by electrodes placed in an open- or closed-flow arrangement. In electrokinetic methods, the groundwater in the boreholes or an externally supplied fluid (processing fluid) is used as the conductive medium. Electrokinetic remediation technology for metal extraction is expected to decrease the cost of remediating contaminated soils to the lower end of the $100--$1,000/m3 range. This would be a significant savings in the $350 billion hazardous waste site cleanup and remediation market. The environmental restoration cost for the mixed (radioactive)-waste market is separately estimated to be $65 billion. The potential of the electrokinetic remediation technique in remediating soils contaminated with radioactive mixed waste using depolarization agents and complexing agents is noteworthy. The authors have removed uranyl ions from spiked kaolinite using the technique

  7. Bioremediation of Petroleum Hydrocarbon Contaminated Sites

    Energy Technology Data Exchange (ETDEWEB)

    Fallgren, Paul

    2009-03-30

    Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop a biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of

  8. Soil mesocosm studies on atrazine bioremediation.

    Science.gov (United States)

    Sagarkar, Sneha; Nousiainen, Aura; Shaligram, Shraddha; Björklöf, Katarina; Lindström, Kristina; Jørgensen, Kirsten S; Kapley, Atya

    2014-06-15

    Accumulation of pesticides in the environment causes serious issues of contamination and toxicity. Bioremediation is an ecologically sound method to manage soil pollution, but the bottleneck here, is the successful scale-up of lab-scale experiments to field applications. This study demonstrates pilot-scale bioremediation in tropical soil using atrazine as model pollutant. Mimicking field conditions, three different bioremediation strategies for atrazine degradation were explored. 100 kg soil mesocosms were set-up, with or without atrazine application history. Natural attenuation and enhanced bioremediation were tested, where augmentation with an atrazine degrading consortium demonstrated best pollutant removal. 90% atrazine degradation was observed in six days in soil previously exposed to atrazine, while soil without history of atrazine use, needed 15 days to remove the same amount of amended atrazine. The bacterial consortium comprised of 3 novel bacterial strains with different genetic atrazine degrading potential. The progress of bioremediation was monitored by measuring the levels of atrazine and its intermediate, cyanuric acid. Genes from the atrazine degradation pathway, namely, atzA, atzB, atzD, trzN and trzD were quantified in all mesocosms for 60 days. The highest abundance of all target genes was observed on the 6th day of treatment. trzD was observed in the bioaugmented mesocosms only. The bacterial community profile in all mesocosms was monitored by LH-PCR over a period of two months. Results indicate that the communities changed rapidly after inoculation, but there was no drastic change in microbial community profile after 1 month. Results indicated that efficient bioremediation of atrazine using a microbial consortium could be successfully up-scaled to pilot scale.

  9. Technical Basis for Assessing Uranium Bioremediation Performance

    Energy Technology Data Exchange (ETDEWEB)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N’Guessan

    2008-04-01

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.

  10. Technical Basis for Assessing Uranium Bioremediation Performance

    International Nuclear Information System (INIS)

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation

  11. Feasibility of on-site bioremediation of loam soil contaminated by diesel oil.

    Science.gov (United States)

    Rubin, H; Narkis, N

    2001-09-01

    This study originated from an accidental event of diesel oil contamination in a loam soil area of 7,000 m2. Approximately a volume of 1,300 m3 of diesel oil was released into the environment. Reclamation of the contaminated soil by on-site bioremediation was selected as the most appropriate treatment method. A major concern was associated with the nature of the local loam soil. Loam has a very low hydraulic conductivity and very quickly becomes impermeable after its contact with water. The bioremediation approach incorporated excavation of the contaminated soil, mixing it with an agent, which increased its permeability. Following this preliminary treatment came the construction of bioreactors as a suitable environment of nutrients, moisture, dissolved oxygen, and enriched culture of microorganisms, which enabled breakdown of the diesel oil. This case study indicated that the target of 99% of diesel oil clean up could be achieved by using the technology of on-site bioremediation. The selected treatment method was found to be technologically and economically feasible. However, some improvement in the application of the basic treatment approach might increase the bioremediation efficiency. PMID:11597113

  12. Strategies for chromium bioremediation of tannery effluent.

    Science.gov (United States)

    Garg, Satyendra Kumar; Tripathi, Manikant; Srinath, Thiruneelakantan

    2012-01-01

    Bioremediation offers the possibility of using living organisms (bacteria, fungi, algae,or plants), but primarily microorganisms, to degrade or remove environmental contaminants, and transform them into nontoxic or less-toxic forms. The major advantages of bioremediation over conventional physicochemical and biological treatment methods include low cost, good efficiency, minimization of chemicals, reduced quantity of secondary sludge, regeneration of cell biomass, and the possibility of recover-ing pollutant metals. Leather industries, which extensively employ chromium compounds in the tanning process, discharge spent-chromium-laden effluent into nearby water bodies. Worldwide, chromium is known to be one of the most common inorganic contaminants of groundwater at pollutant hazardous sites. Hexavalent chromium poses a health risk to all forms of life. Bioremediation of chromium extant in tannery waste involves different strategies that include biosorption, bioaccumulation,bioreduction, and immobilization of biomaterial(s). Biosorption is a nondirected physiochemical interaction that occurs between metal species and the cellular components of biological species. It is metabolism-dependent when living biomass is employed, and metabolism-independent in dead cell biomass. Dead cell biomass is much more effective than living cell biomass at biosorping heavy metals, including chromium. Bioaccumulation is a metabolically active process in living organisms that works through adsorption, intracellular accumulation, and bioprecipitation mechanisms. In bioreduction processes, microorganisms alter the oxidation/reduction state of toxic metals through direct or indirect biological and chemical process(es).Bioreduction of Cr6+ to Cr3+ not only decreases the chromium toxicity to living organisms, but also helps precipitate chromium at a neutral pH for further physical removal,thus offering promise as a bioremediation strategy. However, biosorption, bioaccumulation, and

  13. Natural and accelerated bioremediation research program plan

    International Nuclear Information System (INIS)

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE's Office of Environmental Management (EM). The program builds on OHER's tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER's and Office of Energy Research's (OER's) commitment to supporting DOE's environmental management mission and the belief that bioremediation is an important part of the solution to DOE's environmental problems

  14. Retroactive insurance may fund TMI-2 cleanup

    International Nuclear Information System (INIS)

    A Pennsylvania task force recommended that nuclear utilities insure their plants with a mandatory national property insurance program. The proposed Nuclear Powerplant Property Damage Insurance Act of 1981 will cover the cleanup costs of onsite damage in excess of $350 million for a single accident ($50 million when private insurance is added on) and a ceiling of two billion dollars. Participation in the insurance pool would be in conjunction with licensing and would permit no grandfathering. Total payout for Three Mile Island-2 would cover 75% of the cleanup costs, the remainder to be apportioned among other parties. The insurance pool will have a $750 million goal supported by utility premiums

  15. Removing environmental organic pollutants with bioremediation and phytoremediation.

    Science.gov (United States)

    Kang, Jun Won

    2014-06-01

    Hazardous organic pollutants represent a threat to human, animal, and environmental health. If left unmanaged, these pollutants could cause concern. Many researchers have stepped up efforts to find more sustainable and cost-effective alternatives to using hazardous chemicals and treatments to remove existing harmful pollutants. Environmental biotechnology, such as bioremediation and phytoremediation, is a promising field that utilizes natural resources including microbes and plants to eliminate toxic organic contaminants. This technology offers an attractive alternative to other conventional remediation processes because of its relatively low cost and environmentally-friendly method. This review discusses current biological technologies for the removal of organic contaminants, including chlorinated hydrocarbons, focusing on their limitation and recent efforts to correct the drawbacks.

  16. The effect of bioremediation on the microbial populations of oiled beaches in Prince William Sound, Alaska

    International Nuclear Information System (INIS)

    Bioremediation, the stimulation of the natural process of biodegradation, played an important role in the cleanup of the oil spill from the Exxon Valdez in Prince William Sound, Alaska. Since there were already substantial indigenous populations of oil-degrading microbes in the area, it was apparent that degradation was likely to be nutrient - not microbial - limited. Bioremediation therefore involved the application of carefully selected fertilizers to provide assimilable nitrogen and phosphorus to the indigenous organisms, with the intent to stimulate their activity and enhance their numbers. The authors show here that the indigenous microbial populations were indeed substantially increased, throughout the sound, approximately one month after wide-spread fertilizer applications in both 1989 and 1990. Furthermore, while oil-degrading bacteria made up a significant fraction of the microbial populations on contaminated beaches in September and October 1989, they had declined to less than 1 percent by the summer of 1990, suggesting that the microbial populations on the shorelines were returning to their prespill conditions

  17. Use of decision analysis techniques to determine Hanford cleanup priorities

    International Nuclear Information System (INIS)

    In January 1991, the U.S. Department of Energy (DOE) Richland Field Office, Westinghouse Hanford Company, and the Pacific Northwest Laboratory initiated the Hanford Integrated Planning Process (HIPP) to ensure that technically sound and publicly acceptable decisions are made that support the environmental cleanup mission at Hanford. One of the HIPP's key roles is to develop an understanding of the science and technology (S and T) requirements to support the cleanup mission. This includes conducting an annual systematic assessment of the S and T needs at Hanford to support a comprehensive technology development program and a complementary scientific research program. Basic to success is a planning and assessment methodology that is defensible from a technical perspective and acceptable to the various Hanford stakeholders. Decision analysis techniques were used to help identify and prioritize problems and S and T needs at Hanford. The approach used structured elicitations to bring many Hanford stakeholders into the process. Decision analysis, which is based on the axioms and methods of utility and probability theory, is especially useful in problems characterized by uncertainties and multiple objectives. Decision analysis addresses uncertainties by laying out a logical sequence of decisions, events, and consequences and by quantifying event and consequence probabilities on the basis of expert judgments

  18. Firms vie to offer DOE a prize-winning recipe for cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Powers, M.B.

    1994-04-25

    Eager to get the most bang for its waste cleanup bucks, the US Department of Energy is conducting its own version of the Pillsbury bake-off. DOE is pitting two environmental contractors, Rust International Corp. and Lockheed Environmental Systems and Technologies Co., against each other to come up with the prize-winning recipe for cleaning up some nasty waste problems.

  19. Firms vie to offer DOE a prize-winning recipe for cleanup

    International Nuclear Information System (INIS)

    Eager to get the most bang for its waste cleanup bucks, the US Department of Energy is conducting its own version of the Pillsbury bake-off. DOE is pitting two environmental contractors, Rust International Corp. and Lockheed Environmental Systems and Technologies Co., against each other to come up with the prize-winning recipe for cleaning up some nasty waste problems

  20. Bioremediation effectiveness following the Exxon Valdez spill

    International Nuclear Information System (INIS)

    Statistical analyses of changes in the composition of oil residues remaining on beaches following the Exxon Valdez oil spill in Prince William Sound have demonstrated that bioremediation was effective in accelerating oil removal. Extensive data were obtained in a joint bioremediation monitoring program conducted during the summer of 1990 by the US Environmental Protection Agency (EPA), the State of Alaska, and Exxon. Composition changes in the oil relative to hopane, a trace oil component very resistant to biodegradation, provided the basis for accurately determining rates and extent of biodegradation. Results show that on fertilized beaches the rate of oil biodegradation was from three to more than five times faster than on adjacent, unfertilized control beaches. Further, most hydrocarbon components of the oil were biodegraded simultaneously, although at different rates. On one beach studied, about 60 percent of the total hydrocarbons detectable by gas chromatograph and 45 percent of the total PAH were biodegraded in three months. Bioremediation effectiveness was determined to depend primarily on the amount of nitrogen fertilizer delivered to the sediment per unit of oil present, time, and the extent of oil degradation prior to fertilizer application. The results suggest ways to improve future bioremediation application strategies and monitoring

  1. Bioremediation: Effectiveness in reducing the ecological impact

    International Nuclear Information System (INIS)

    Bioremediation becomes an important technique in oil spill combat programmes. The purpose is to shorten the exposure time of biota to oil compounds, in order to reduce long term environmental effects. Although bioremediation products have the advantage of stimulating the natural capacity to degrade oil, there are some limitations to be considered. Application as a technique for first emergency actions following an oil spill is not effective, and can therefore be no alternative for dispersion or mechanical removal of floating or freshly stranded oil slicks. Acute toxic effects are related to the short term exposure to unweathered oils. An immediate removal of oil is necessary to reduce the extent of the environmental impact of an oil spill. Physical processes (transport, dilution and evaporation) are determining the initial fate of environmentally released oil. Biodegradation only becomes important as a process of removing oil in the next phase. It is the only effective way to further reduce the concentration of oil that is left in (intertidal) coastal areas. Bioremediation thus reduces the duration of the environmental impact of an oil spill. This is especially important in ecosystems with a low recovery potential (e.g., salt marshes, rocky shores). The experimental evaluation of bioremediation products is mainly based on the capacity to reduce fresh oil and the acute toxicity of the product itself, rather than on the capacity to enhance the further reduction of weathered oil and the toxicological consequences of higher release rates of intermediate metabolites produced during the biotransformation processes

  2. Final report: Fuel spill cleanup at the Del Air Unit

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the cleanup of a fuel spill on the Delair Unit of Great River NWR in 1994. Soil test results are provided, the cleanup process is summarized,...

  3. Evaluation of contaminated groundwater cleanup objectives

    International Nuclear Information System (INIS)

    The US Department of Energy's (DOE's) Environmental Restoration Program will be responsible for remediating the approximately 230 contaminated groundwater sites across the DOE Complex. A major concern for remediation is choosing the appropriate cleanup objective. The cleanup objective chosen will influence the risk to the nearby public during and after remediation; risk to remedial and non-involved workers during remediation; and the cost of remediation. This paper discusses the trends shown in analyses currently being performed at Oak Ridge National Laboratories' (ORNL's) Center for Risk Management (CRM). To evaluate these trends, CRM is developing a database of contaminated sites. This paper examines several contaminated groundwater sites selected for assessment from CRM's data base. The sites in this sample represent potential types of contaminated groundwater sites commonly found at an installation within DOE. The baseline risk from these sites to various receptors is presented. Residual risk and risk during remediation is reported for different cleanup objectives. The cost associated with remediating to each of these objectives is also estimated for each of the representative sites. Finally, the general trends of impacts as a function of cleanup objective will be summarized. The sites examined include the Savannah River site, where there was substantial ground pollution from radionuclides, oil, coal stockpiles, and other forms of groundwater contamination. The effects of various types of groundwater contamination on various types of future user is described. 4 refs., 3 figs., 2 tabs

  4. Fuel cleanup system for the tritium systems test assembly: design and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, E.C.; Bartlit, J.R.; Sherman, R.H.

    1980-01-01

    A major subsystem of the Tritium Systems Test Assembly is the Fuel Cleanup System (FCU) whose functons are to: (1) remove impurities in the form of argon and tritiated methane, water, and ammonia from the reactor exhaust stream and (2) recover tritium for reuse from the tritiated impurities. To do this, a hybrid cleanup system has been designed which utilizes and will test concurrently two differing technologies - one based on disposable, hot metal (U and Ti) getter beds and a second based on regenerable cryogenic asdorption beds followed by catalytic oxidation of impurities to DTO and stackable gases and freezout of the resultant DTO to recover essentially all tritium for reuse.

  5. Proceedings of Japan-Germany Workshop of Bioremediation; Nichidoku bio remediation workshop hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-04

    This is a proceedings of Japan-Germany Workshop on Bioremediation held on December 4 and 5, 1995. The keynote lectures include `Environmental preservation using biotechnology` by Prof. Karube of University of Tokyo, and `Environmental technology in Germany: status, achievements, and problems` by Prof. R.D.Schmid of University of Stuttgart. In the oral session, 7 papers are presented in the microbiological aspects of bioremediation, 10 papers in the environmental monitoring, and 6 papers in the engineering aspects of bioremediation. This workshop was sponsored by the German Federal Ministry for Education, Science and Technology, New Energy and Industrial Technology Development Organization, and Research Institute of Innovative Technology for the Earth. According to the lecture by Prof. Karube, key technologies for the environmental preservation include biotechnologies, such as the culture of fine algae with high CO2 concentration resistant properties using a solar light condenser, production of effective substances from CO2, and production of organic fertilizer from the sediments of lakes and sea. 19 refs., 12 figs., 3 tabs.

  6. Cleanups In My Community (CIMC) - Recovery Act Funded Cleanups, National Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer provides access to Recovery Act Funded Cleanup sites as part of the CIMC web service. The American Recovery and Reinvestment Act was signed into law...

  7. A review on slurry bioreactors for bioremediation of soils and sediments

    Directory of Open Access Journals (Sweden)

    Poggi-Varaldo Héctor M

    2008-02-01

    Full Text Available Abstract The aim of this work is to present a critical review on slurry bioreactors (SB and their application to bioremediation of soils and sediments polluted with recalcitrant and toxic compounds. The scope of the review encompasses the following subjects: (i process fundamentals of SB and analysis of advantages and disadvantages; (ii the most recent applications of SB to laboratory scale and commercial scale soil bioremediation, with a focus on pesticides, explosives, polynuclear aromatic hydrocarbons, and chlorinated organic pollutants; (iii trends on the use of surfactants to improve availability of contaminants and supplementation with degradable carbon sources to enhance cometabolism of pollutants; (iv recent findings on the utilization of electron acceptors other than oxygen; (v bioaugmentation and advances made on characterization of microbial communities of SB; (vi developments on ecotoxicity assays aimed at evaluating bioremediation efficiency of the process. From this review it can be concluded that SB is an effective ad situ and ex situ technology that can be used for bioremediation of problematic sites, such as those characterized by soils with high contents of clay and organic matter, by pollutants that are recalcitrant, toxic, and display hysteretic behavior, or when bioremediation should be accomplished in short times under the pressure and monitoring of environmental agencies and regulators. SB technology allows for the convenient manipulation and control of several environmental parameters that could lead to enhanced and faster treatment of polluted soils: nutrient N, P and organic carbon source (biostimulation, inocula (bioaugmentation, increased availability of pollutants by use of surfactants or inducing biosurfactant production inside the SB, etc. An interesting emerging area is the use of SB with simultaneous electron acceptors, which has demonstrated its usefulness for the bioremediation of soils polluted with

  8. 75 FR 62923 - WRC-07 Table Clean-up Order

    Science.gov (United States)

    2010-10-13

    ... Communications Commission 47 CFR Parts 1, 2, 15, et al. WRC-07 Table Clean-up Order; Final Rule #0;#0;Federal... COMMUNICATIONS COMMISSION 47 CFR Parts 1, 2 15, 25, 73, and 90 WRC-07 Table Clean-up Order AGENCY: Federal... Table Clean-up Order, the Commission adopted the ITU's placement methodology for footnote references...

  9. Review of arctic Norwegian bioremediation research

    International Nuclear Information System (INIS)

    Traditional oil spill onshore clean up in arctic and sub-arctic parts of Norway involves methods that are both time-consuming, and labor intensive. The applicability of the methods depends both on the environmental constraints of the area, and the availability of man-power. If oil exploration is successful this will mean that the exploitation of oil moves north into the arctic regions of Norway. This area is remote, both in terms of accessability and lack of inhabitants. The threat to natural resources that always accompanies oil activities, will move into areas that are considered vulnerable, and which are also highly valued in terms of natural resources. Contingency measures must be adapted both to be feasible and to meet the framework in which they must operate. This situation has increased the focus on alternative methods for oil spill clean-ups, especially on shorelines. SINTEF (The Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology) Applied Chemistry has evaluated the application of fertilizers as a practical measure in oil spill treatment for years. Several fertilizers have been assessed, in different environments. The effect of these products is difficult to establish categorically since their efficiency seems to be greatly dependent on the environment in which the test is conducted, as well as the design of the test. The aim of this paper is to summarize and evaluate a series of tests conducted with INIPOL EAP22, an oil soluble fertilizer developed by Elf Aquitaine, and water soluble fertilizers. The paper will emphasize treatment failure and success, and point out some necessary prerequisites that must be met for fertilizers to work. 14 refs., 3 figs

  10. Marine Oil Pollution Biodegradation Process and Bioremediation Technology Prospects%海洋石油污染的微生物降解过程及生态修复技术展望

    Institute of Scientific and Technical Information of China (English)

    张信芳

    2012-01-01

    海洋石油污染物的微生物降解是一个复杂的过程。受石油组分与物理化学性质、环境条件以及微生物群落组成等多方面因素的影响,氮和磷营养的缺乏是海洋石油污染物生物降解的主要限制因子。文章阐述了石油烃类的微生物代谢途径、影响因素、常规的生物修复技术以及两种海洋专性解烃菌降解石油的协同效应和极地海洋石油污染的生物降解过程和方式,对未来海洋石油污染控制进行了展望。%Microbial degradation of marine oil pollution is a complex process,which is affected by oil component,physical and chemical properties,environmental conditions,microbial community composition and many other factors.The lack of nitrogen and phosphorus nutrition in marine oil pollution is a major limit for biodegradation.This essay describes the microbial metabolic pathway of petroleum hydrocarbons,influencing factors,conventional bioremediation techniques and two marine bacteria specifically degradation of petroleum hydrocarbon solution of the synergy and polar marine biodegradation of oil pollution.

  11. Bioremediation of organic pollutants in a radioactive wastewater

    International Nuclear Information System (INIS)

    Bioremediation holds the promise as a cost effective treatment technology for a wide variety of hazardous pollutants. In this study, the biodegradation of organic compounds discharged together with radioactive wastes is investigated. Nuclear process wastewater was simulated by a mixture of phenol and strontium, which is a major radionuclide found in radioactive wastewater. Phenol was used in the study as a model compound due to its simplicity of molecular structure. Moreover, the biodegradation pathway of phenol is well known. Biodegradation studies were conducted using pure cultures of Pseudomonas aeruginosa and Pseudomonas putida. The rate of phenol degradation by both species was found to be higher in the test without strontium. This suggests some degree of inhibition in the degradation of phenol by strontium. There was no phenol degradation in the sterile controls. The results indicate the feasibility of the biodegradation of organic pollutants discharged in radioactive effluents by specialised microbial cultures. (authors)

  12. Oil combatting in a cold environment using bioremediation techniques

    International Nuclear Information System (INIS)

    The clean-up of oil spills in the Arctic environment is often limited by severe and cold environmental conditions. Mechanical methods are usually considered to be most favorable for oil spill combatting. However, remote spill sites, long distances, severe environmental conditions and sensitive ecosystems mean that more advanced combatting techniques are also needed to back up conventional recovery and clean-up measures. This paper describes the results of macro-scale tests conducted by VTT Manufacturing Technology to study the effectiveness of biosorbent technology against marine oil spills. The use of biosorbents was studied as a joint research project involving VTT (Finland) and the Murmansk Marine Biological Institute (Russia). Selected biosorbent products of Marine Systems, U.S.A., and the Bios Group, Russia, were used in macro-scale tests conducted in a basin measuring 15.0 x 3.0 m in length and width, respectively. This paper outlines the macro-scale test project, including microbiological and chemical studies, supported by toxicity tests and various analyses to understand better the fate of oil, especially the degree of biodegradation during the test

  13. Oil combatting in a cold environment using bioremediation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rytkoenen, J.; Liukkonen, S.; Levchenko, A.; Worthington, T.; Matishov, G.; Petrov, V.

    1995-12-31

    The clean-up of oil spills in the Arctic environment is often limited by severe and cold environmental conditions. Mechanical methods are usually considered to be most favorable for oil spill combatting. However, remote spill sites, long distances, severe environmental conditions and sensitive ecosystems mean that more advanced combatting techniques are also needed to back up conventional recovery and clean-up measures. This paper describes the results of macro-scale tests conducted by VTT Manufacturing Technology to study the effectiveness of biosorbent technology against marine oil spills. The use of biosorbents was studied as a joint research project involving VTT (Finland) and the Murmansk Marine Biological Institute (Russia). Selected biosorbent products of Marine Systems, U.S.A., and the Bios Group, Russia, were used in macro-scale tests conducted in a basin measuring 15.0 {times} 3.0 m in length and width, respectively. This paper outlines the macro-scale test project, including microbiological and chemical studies, supported by toxicity tests and various analyses to understand better the fate of oil, especially the degree of biodegradation during the test.

  14. Bioremediation of Crude Oil Using Bacterium from the Coastal Sediments of Kish Island, Iran

    OpenAIRE

    SADEGHI HADDAD ZAVAREH, Maryam; Ebrahimipour, Gholamhossein; SHAHRIARI MOGHADAM, Mohsen; Fakhari, Javad; ABDOLI, Tahereh

    2016-01-01

    Background: Much of the environment is affected by petroleum contamination. It imposes serious health problems for humans as well as serious environmental impact. Bioremediation is an important consideration for removing environmental pollutants because, compared with other technologies, it incurrs lower costs and is environmentally compatible. Methods: Crude oil degrading bacteria were isolated using serial dilutions of a bacterial consortium. The Taguchi experimental design L16 (45) was use...

  15. GPU seeks new funding for TMI cleanup

    International Nuclear Information System (INIS)

    General Public Utilities (GPU) wants approval for annual transfer of money from base rate increases in other accounts to pay for the cleanup at Three Mile Island (TMI) until TMI-1 returns to service or the public utility commission takes further action. This proposal confirms fears of a delay in TMI-1 startup and demonstrates that the January negotiated settlement will produce little funding for TMI-2 cleanup. A review of the settlement terms outlines the three-step process for base rate increases and revenue adjustments after the startup of TMI-1, and points out where controversy and delays due to psychological stress make a new source of money essential. GPU thinks customer funding will motivate other parties to a broad-based cost-sharing agreement

  16. Cleanup around an old waste site

    International Nuclear Information System (INIS)

    42,500 m3 of contaminated soil were removed from off-site areas around an old, low-level radioactive waste site near Port Hope, Ontario. The cleanup was done by means of conventional excavation equipment to criteria developed by Eldorado specific to the land use around the company's waste management facility. These cleanup criteria were based on exposure analyses carried out for critical receptors in two different scenarios. The excavated soils, involving eight different landowners, were placed on the original burial area of the waste management facility. Measures were also undertaken to stabilize the soils brought on-site and to ensure that there would be no subsequent recontamination of the off-site areas

  17. Improving Bioremediation of PAH Contaminated Soils by Thermal Pretreatment

    OpenAIRE

    Bonten, L.T.C.

    2001-01-01

    Numerous sites and large volumes of sediments in the Netherlands are contaminated with polycyclic aromatic hydrocarbons (PAH), which are of great concern because of their toxic and carcinogenic effects. Since PAH tend to sorb very strongly to the soil matrix, bioremediation is a slow process with often high residual concentrations after remediation. In this study it was tried to develop methods to improve bioremediation, this means to decrease residual concentrations after bioremediation. In ...

  18. DEMONSTRATION BULLETIN: NEW YORK STATE MULTI-VENDOR BIOREMEDIATION - ENSR CONSULTING AND ENGINEERING/LARSEN ENGINEERS EX-SITU BIOVAULT

    Science.gov (United States)

    The ENSR Biovault Treatment Process is an ex-situ bioremediation technology for the treatment of organic contaminated soils. Contaminated soils placed in specially designed soil piles, referred to as biovaults, are remediated by stimulating the indigenous soil microbes to prolife...

  19. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

  20. Biosurfactant-enhanced bioremediation of hydrophobic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Makkar, R.S. [Inst. of Microbial Technology, Chandigarh (India)

    2010-01-15

    Biosurfactants are surface-active compounds synthesized by a wide variety of microorganisms. They are molecules that have both hydrophobic and - philic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures-lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs), crude on sludge, and pesticides call be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released into the environment as a result of oil spillage and by-products of coal treatment processes. The low water solubility of these compounds limits their availability to microorganisms, which is a potential problem for bioremediation of contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of pollutants has potential hioremediation applications.

  1. Molecular Tools for Monitoring and Validating Bioremediation

    Science.gov (United States)

    Stenuit, Ben; Eyers, Laurent; Schuler, Luc; George, Isabelle; Agathos, Spiros N.

    Bioremediation is now in a position to take advantage of genomic-driven strategies to analyze, monitor and assess its course by considering multiple micro-organisms with various genomes, expressed transcripts and proteins. High-throughput methodologies, including microarrays, fingerprinting, real-time PCR, metagenomics and metaproteomics, show great promise in our environmental interventions against recalcitrant contaminants such as 2,4,6-trinitrotoluene (TNT) that we have been studying for many years. The emerging genomic and metagenomic methodologies will allow us to promote or restore environmental health in impacted sites, monitor remediation activities, identify key microbial players and processes, and finally compile an intelligent database of genes for targeted use in bioremediation.

  2. Natural and accelerated bioremediation research program plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE`s Office of Environmental Management (EM). The program builds on OHER`s tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER`s and Office of Energy Research`s (OER`s) commitment to supporting DOE`s environmental management mission and the belief that bioremediation is an important part of the solution to DOE`s environmental problems.

  3. Accelerating cleanup. Paths to closure Hanford Site

    International Nuclear Information System (INIS)

    This document was previously referred to as the Draft 2006 Plan. As part of the DOE's national strategy, the Richland Operations Office's Paths to Closure summarizes an integrated path forward for environmental cleanup at the Hanford Site. The Hanford Site underwent a concerted effort between 1994 and 1996 to accelerate the cleanup of the Site. These efforts are reflected in the current Site Baseline. This document describes the current Site Baseline and suggests strategies for further improvements in scope, schedule and cost. The Environmental Management program decided to change the name of the draft strategy and the document describing it in response to a series of stakeholder concerns, including the practicality of achieving widespread cleanup by 2006. Also, EM was concerned that calling the document a plan could be misconstrued to be a proposal by DOE or a decision-making document. The change in name, however, does not diminish the 2006 vision. To that end, Paths to Closure retains a focus on 2006, which serves as a point in time around which objectives and goals are established

  4. Fungal Bioremediation of Creosote-contaminated Soil

    OpenAIRE

    BYSS, Marius

    2008-01-01

    The influence of two ligninolytic fungi (Pleurotus ostreatus and Irpex lacteus) on bioremediation of creosote-contaminated soil was studied. The thesis describes the polycyclic aromatic hydrocarbon concentration decrease during the laboratory-scale experiments and reveals the changes in the present soil microbial community under the influence of either fungus. The thesis compares different impact on PAH concentrations and soil microbial community depending on the fungus applied.

  5. Bioremediation Kinetics of Pharmaceutical Industrial Effluent

    OpenAIRE

    Šabić, M.; Vuković Domanovac, M.; Findrik Blažević, Z.; Meštrović, E.

    2015-01-01

    In recent years, concerns about the occurrence and fate of pharmaceuticals that could be present in water and wastewater has gained increasing attention. With the public’s enhanced awareness of eco-safety, environmentally benign methods based on microorganisms have become more accepted methods of removing pollutants from aquatic systems. This study investigates bioremediation of pharmaceutical wastewater from pharmaceutical company Pliva Hrvatska d.o.o., using activated sludge and bioaugmente...

  6. Field evaluations of marine oil spill bioremediation.

    OpenAIRE

    Swannell, R P; Lee, K; McDonagh, M

    1996-01-01

    Bioremediation is defined as the act of adding or improving the availability of materials (e.g., nutrients, microorganisms, or oxygen) to contaminated environments to cause an acceleration of natural biodegradative processes. The results of field experiments and trials following actual spill incidents have been reviewed to evaluate the feasibility of this approach as a treatment for oil contamination in the marine environment. The ubiquity of oil-degrading microorganisms in the marine environ...

  7. BIOREMEDIATION MECHANISMS AND TECHNOLOGIES OF PCBs-POLLUTED FARMLAND SOILS AROUND E-WASTES DISASSEMBLING SITES%电子垃圾影响区多氯联苯污染农田土壤的生物修复机制与技术发展

    Institute of Scientific and Technical Information of China (English)

    涂晨; 滕应; 骆永明; 马婷婷; 潘澄; 李振高; 刘五星

    2012-01-01

    电子垃圾中含有大量多氯联苯等有毒有害物质,对电子垃圾的不当拆解可造成土壤、水体和大气的污染,进而对生态环境和人体健康构成潜在的威胁.生物修复是利用生物对环境污染物的吸收、代谢、降解等功能,加速去除环境中污染物质的过程.根据修复所用的主体,生物修复又可分为植物修复、微生物修复、动物修复及其联合修复等.本文结合笔者的研究工作,综述了我国东南沿海某典型电子垃圾拆解区土壤多氯联苯的污染特征,并介绍了当前国内外对多氯联苯污染土壤的微生物修复、植物修复和植物-微生物联合修复技术及其机理研究的现状,并提出未来研究趋势,旨在为促进污染区土壤环境生物修复的深入研究、保障污染区的农产品质量安全和人体健康提供理论参考.%Electric and electronic wastes (e-wastes) contain plenty of toxic and hazardous materials, such as poly-chlorinated biphenyls ( PCBs) . Improper dissembling of these e-wastes can cause pollution to the soil, water and air, thus posing a potential threat to the ecological environment and human health. Bioremediation is an option that may accelerate removal of various environmental contaminants using the functions of biomes absorbing, metabolizing and biodegrading the contaminants. Based on the subject used, bioremediation can be divided into phytoremediation, microbial remediation, animal remediation, and joint remediation. Based on the author's research work, this paper summarizes characteristics of PCBs pollution of the soils around an e-wastes dissembling typical zone along the coast of Southeast China, and introduces status quo of the researches on technologies for and mechanisms of microbial remediation, phytoremediation, and phyto-microbial joint remediation of PCB-contaminated soils, and proposes the future research trends, with a view to providing a theoretical reference for in-depth study on

  8. Bioremediation a potential approach for soil contaminated with polycyclic aromatic hydrocarbons: An Overview

    Directory of Open Access Journals (Sweden)

    Norzila Othman

    2011-12-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs represent a group of priority pollutants which are present at high concentration in soils of many industrially contaminated sites. Standards and criteria for the remediation of soils contaminated with PAHs vary widely between countries. Bioremediation has gained preference as a technology for remediation contaminated sites as it is less expensive and more environmental friendly. Bioremediation utilizes microorganisms to degrade PAHs to less toxic compounds. This technology degrades contaminants through natural biodegradation mechanisms or enhanced biodegradation mechanism and can be performed in-situ or ex-situ under aerobic or anaerobic conditions. The purpose of this paper is to highlight potential of using isolated strains from municipal sludge on soil remediation. Several indigenous bacteria from municipal sludge namely genus Micrococus, Sphingomonas, and Corynebacterium demonstrated a high removal rate of PAHs with more than 80% of lower molecular weight of PAHs degraded after one week incubation. Laboratory studies had established that these genus able to degrade PAHs on contaminated soil. The successful application of bacteria to the bioremediation of PAHs contaminated sites requires a deeper understanding of how microbial PAH degradation proceeds. An overview of research focusing on biodegradation of PAHs will be presented.

  9. Biological sand filters: low-cost bioremediation technique for production of clean drinking water.

    Science.gov (United States)

    Lea, Michael

    2014-05-01

    Approximately 1.1 billion people in rural and peri-urban communities of developing countries do not have access to safe drinking water. The mortality from diarrheal-related diseases amounts to ∼2.2 million people each year from the consumption of unsafe water. Most of them are children under 5 years of age--250 deaths an hour from microbiologically contaminated water. There is conclusive evidence that one low-cost household bioremediation intervention, use of biological sand filters, is capable of dramatically improving the microbiological quality of drinking water. This unit will describe this relatively new and proven bioremediation technology's ability to empower at-risk populations to use naturally occurring biological principles and readily available materials as a sustainable way to achieve the health benefits of safe drinking water.

  10. Role of Microbial Enzymes in the Bioremediation of Pollutants: A Review

    Directory of Open Access Journals (Sweden)

    Chandrakant S. Karigar

    2011-01-01

    Full Text Available A large number of enzymes from bacteria, fungi, and plants have been reported to be involved in the biodegradation of toxic organic pollutants. Bioremediation is a cost effective and nature friendly biotechnology that is powered by microbial enzymes. The research activity in this area would contribute towards developing advanced bioprocess technology to reduce the toxicity of the pollutants and also to obtain novel useful substances. The information on the mechanisms of bioremediation-related enzymes such as oxido-reductases and hydrolases have been extensively studied. This review attempts to provide descriptive information on the enzymes from various microorganisms involved in the biodegradation of wide range of pollutants, applications, and suggestions required to overcome the limitations of their efficient use.

  11. 黄浦江支流富营养化原水的生物膜修复技术试验研究%Experimental Study of Bioremedial Technology of Eutrophic Source Waters in Branches of the Huangpu River

    Institute of Scientific and Technical Information of China (English)

    牛天新; 陈月儿

    2012-01-01

    Internal Airlift Loop with Cell Immobilized onto Ceramic Honeycomb Support(IAL-CHS) reactor was used for bioremedy of polluted water in the Branches of the Huangpu River.The natural biofilm formation was used for the reactor to start up at a lower temperature and the biofilm was successfully formed in the ninth day.After the start-up for five months,the removal rate of NH4 ^+-N was 84.8%-99.2% when hydraulic retention time was 1.03 hour,and the hydraulic loading could reach 33.68 m^3/(m^2 · d),volume loading of NH4 ^+-N could reach 0.60 kg/(m^3 · d),NH4 ^+-N removal could reach 0.53 kg/(m^3 · d).The removal rates of NO2^——N,TP,CODCr,TOC,UV254 and turbidity were 40.7%-69.9%,9.26%-27.1%,8.22%-41.1%,9.49%-29.8%,11.4%-19.5%,27.0%-62.8% respectively.The microscope of the IAL-CHS reactor showed the biophase was rich and biomass was large.%采用气升式内循环蜂窝陶瓷反应器(IAL-CHS)对受污染黄浦江支流进行生物修复,反应器采用自然挂膜法低温启动挂膜,第9天就完成挂膜。经过5个月的运行,在HRT为1.03 h时,反应器对氨氮去除率达到84.8%~99.2%,水力负荷可达到33.68 m^3/(m^2·d),氨氮容积负荷达到0.60 kg/(m^3·d),氨氮去除速率能达到0.53 kg/(m^3·d)。对NO2--N、TP、CODCr、TOC、UV254、浊度的去除率分别为40.7%~69.9%、9.26%~27.1%、8.22%~41.1%、9.49%~29.8%、11.4%~19.5%、27.0%~62.8%。微生物镜检表明此反应器生物相丰富,生物量大。

  12. Ecogenomics of microbial communities in bioremediation of chlorinated contaminated sites

    OpenAIRE

    Maphosa, Farai; Lieten, Shakti H.; Dinkla, Inez; Stams, Alfons J.; Smidt, Hauke; Fennell, Donna E.

    2012-01-01

    Organohalide compounds such as chloroethenes, chloroethanes, and polychlorinated benzenes are among the most significant pollutants in the world. These compounds are often found in contamination plumes with other pollutants such as solvents, pesticides, and petroleum derivatives. Microbial bioremediation of contaminated sites, has become commonplace whereby key processes involved in bioremediation include anaerobic degradation and transformation of these organohalides by organohalide respirin...

  13. Ecogenomics of microbial communities in bioremediation of chlorinated contaminated sites

    OpenAIRE

    FaraiMaphosa; ShaktiHLieten; DonnaE.Fennell

    2012-01-01

    Organohalide compounds such as chloroethenes, chloroethanes and polychlorinated benzenes are among the most significant pollutants in the world. These compounds are often found in contamination plumes with other pollutants such as solvents, pesticides and petroleum derivatives. Microbial bioremediation of contaminated sites, has become commonplace whereby key processes involved in bioremediation include anaerobic degradation and transformation of these organohalides by organohalide respiring ...

  14. Shoreline clean-up methods : biological treatments

    Energy Technology Data Exchange (ETDEWEB)

    Massoura, S.T. [Oil Spill Response Limited, Southampton (United Kingdom)

    2009-07-01

    The cleanup of oil spills in shoreline environments is a challenging issue worldwide. Oil spills receive public and media attention, particularly in the event of a coastal impact. It is important to evaluate the efficiency and effectiveness of cleanup methods when defining the level of effort and consequences that are appropriate to remove or treat different types of oil on different shoreline substrates. Of the many studies that have compared different mechanical, chemical and biological treatments for their effectiveness on various types of oil, biological techniques have received the most attention. For that reason, this paper evaluated the effectiveness and effects of shoreline cleanup methods using biological techniques. It summarized data from field experiments and oil spill incidents, including the Exxon Valdez, Sea Empress, Prestige, Grand Eagle, Nakhodka, Guanabara Bay and various Gulf war oil spills. Five major shoreline types were examined, notably rocky intertidal, cobble/pebble/gravel, sand/mud, saltmarsh, and mangrove/sea-grass. The biological techniques that were addressed were nutrient enrichment, hydrocarbon-utilizing bacteria, vegetable oil biosolvents, plants, surf washing, oil-particle interactions and natural attenuation. The study considered the oil type, volume and fate of stranded oil, location of coastal materials, extent of pollution and the impact of biological techniques. The main factors that affect biodegradation of hydrocarbons are the volume, chemical composition and weathering state of the petroleum product as well as the temperature, oxygen availability of nutrients, water salinity, pH level, water content, and microorganisms in the shoreline environment. The interaction of these factors also affect the biodegradation of oil. It was concluded that understanding the fate of stranded oil can help in the development of techniques that improve the weathering and degradation of oil on complex shoreline substrates. 39 refs.

  15. TRUEX process solvent cleanup with solid sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Tse, Pui-Kwan; Reichley-Yinger, L.; Vandegrift, G.F.

    1989-01-01

    Solid sorbents, alumina, silica gel, and Amberlyst A-26 have been tested for the cleanup of degraded TRUEX-NPH solvent. A sodium carbonate scrub alone does not completely remove acidic degradation products from highly degraded solvent and cannot restore the stripping performance of the solvent. By following the carbonate scrub with either neutral alumina or Amberlyst A-26 anion exchange resin, the performance of the TRUEX-NPH is substantially restored. The degraded TRUEX-NPH was characterized before and after treatment by supercritical fluid chromatography. Its performance was evaluated by americium distribution ratios, phase-separation times, and lauric acid distribution coefficients. 17 refs., 2 figs., 5 tabs.

  16. Landfill gas cleanup for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    EPRI is to test the feasibility of using a carbonate fuel cell to generate electricity from landfill gas. Landfills produce a substantial quantity of methane gas, a natural by-product of decaying organic wastes. Landfill gas, however, contains sulfur and halogen compounds, which are known contaminants to fuel cells and their fuel processing equipment. The objective of this project is to clean the landfill gas well enough to be used by the fuel cell without making the process prohibitively expensive. The cleanup system tested in this effort could also be adapted for use with other fuel cells (e.g., solid oxide, phosphoric acid) running on landfill gas.

  17. Oil spill cleanup method and apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Mayes, F.M.

    1980-06-24

    A method for removing oil from the surface of water where an oil spill has occurred, particularly in obstructed or shallow areas, which comprises partially surrounding a hovercraft with a floating oil-collecting barrier, there being no barrier at the front of the hovercraft, moving the oil-barrier-surrounded-hovercraft into oil contaminated water, and collecting oil gathered within the barrier behind the hovercraft through a suction line which carries the oil to a storage tank aboard the hovercraft. The invention also embodies the hovercraft adapted to effect an oil spill cleanup.

  18. Particulate hot gas stream cleanup technical issues

    Energy Technology Data Exchange (ETDEWEB)

    Pontius, D.H.; Snyder, T.R.

    1999-09-30

    The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

  19. Global modeling of Hanford tank waste pretreatment alternatives within a total cleanup system using ASPEN PLUS{trademark}

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, B.J.; Jansen, G. Jr.; Zimmerman, B.D.; Niccoli, L.G. [Westinghouse Hanford Co., Richland, WA (United States); Lauerhass, L. [Pacific Northwest Lab., Richland, WA (United States)

    1994-11-01

    The purpose of this work is to evaluate and compare radionuclide separations/processing technologies being developed or considered as Hanford tank waste pretreatment alternatives. These technologies are integrated into a total cleanup system that includes tank waste retrieval, treatment, and disposal. Current Hanford flowsheets typically include only mature, developed technologies, not new technologies. Thus, this work examines the impact/benefits of inserting new technologies into Hanford flowsheets. Waste treatment must produce disposal fractions which are less troublesome than the original material. Researchers seeking effective treatment methods may lack the tools or expertise to fully understand the implications of their approach in terms of secondary and tertiary waste streams or the extent to which a unique new process will affect upstream or downstream processes. This work has developed and demonstrated mass balance methods that clarify the effect of including individual processes in an integrated waste treatment system, such as the Hanford cleanup system. The methods provide a measure of treatment effectiveness and a format for the researcher to understand waste stream interrelationships and determine how a particular treatment technology can best be used in a cleanup system. A description of the Hanford tank waste cleanup model developed using the ASPEN PLUS flowsheet simulation tool is given. Important aspects of the modeling approach are discussed along with a description of how performance measures were developed and integrated within the simulation to evaluate and compare various Hanford tank waste pretreatment alternatives.

  20. Global modeling of Hanford tank waste pretreatment alternatives within a total cleanup system using ASPEN PLUS trademark

    International Nuclear Information System (INIS)

    The purpose of this work is to evaluate and compare radionuclide separations/processing technologies being developed or considered as Hanford tank waste pretreatment alternatives. These technologies are integrated into a total cleanup system that includes tank waste retrieval, treatment, and disposal. Current Hanford flowsheets typically include only mature, developed technologies, not new technologies. Thus, this work examines the impact/benefits of inserting new technologies into Hanford flowsheets. Waste treatment must produce disposal fractions which are less troublesome than the original material. Researchers seeking effective treatment methods may lack the tools or expertise to fully understand the implications of their approach in terms of secondary and tertiary waste streams or the extent to which a unique new process will affect upstream or downstream processes. This work has developed and demonstrated mass balance methods that clarify the effect of including individual processes in an integrated waste treatment system, such as the Hanford cleanup system. The methods provide a measure of treatment effectiveness and a format for the researcher to understand waste stream interrelationships and determine how a particular treatment technology can best be used in a cleanup system. A description of the Hanford tank waste cleanup model developed using the ASPEN PLUS flowsheet simulation tool is given. Important aspects of the modeling approach are discussed along with a description of how performance measures were developed and integrated within the simulation to evaluate and compare various Hanford tank waste pretreatment alternatives

  1. Bioremediation of hydrocarbon contaminated surface water, groundwater, and soils

    International Nuclear Information System (INIS)

    Bioremediation is currently receiving considerable attention as a remediation option for sites contaminated with hazardous organic compounds. There is an enormous amount of interest in bioremediation, and numerous journals now publish research articles concerning some aspect of the remediation approach. A review of the literature indicates that two basic forms of bioremediation are currently being practiced: the microbiological approach and the microbial ecology approach. Each form has its advocates and detractors, and the microbiological approach is generally advocated by most of the firms that practice bioremediation. In this paper, the merits and disadvantages of these forms are reviewed and a conceptual approach is presented for assessing which form may be most useful for a particular contaminant situation. I conclude that the microbial ecology form of bioremediation may be the most useful for the majority of contaminant situations, and I will present two case histories in support of this hypothesis

  2. Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up

    International Nuclear Information System (INIS)

    Air-blown IGCC systems with hot fuel gas clean-up are investigated. In detail, the gas clean-up station consists of two reactors: in the first, the raw syngas exiting the gasifier and passed through high-temperature syngas coolers is desulfurized by means of a zinc oxide-based sorbent, whereas in the second the sulfided sorbent is duly regenerated. The hot fuel gas clean-up station releases H2S-free syngas, which is ready to fuel the combustion turbine after hot gas filtration, and a SO2-laden stream, which is successively treated in a wet scrubber. A thermodynamic analysis of two air-blown IGCC systems, the first with cold fuel gas clean-up and the second with hot fuel gas clean-up, both with a state-of-the-art combustion turbine as topping cycle, shows that it is possible to obtain a really attractive net efficiency (more than 51%) for the second system, with significant improvements in comparison with the first system. Nevertheless, higher efficiency is accomplished with a small reduction in the power output and no sensible efficiency improvements seem to be appreciated when the desulfurization temperature increases. Other IGCC systems, with an advanced 1500 °C-class combustion turbine as the result of technology improvements, are investigated as well, with efficiency as high as 53%. - Highlights: ► Hot fuel gas clean-up is a highly favorable technology for IGCC concepts. ► Significant IGCC efficiency improvements are possible with hot fuel gas clean-up. ► Size reductions of several IGCC components are possible. ► Higher desulfurization temperatures do not sensibly affect IGCC efficiency. ► IGCC efficiency as high as 53% is possible with a 1500°C-class combustion turbine

  3. CRADA opportunities with METC`s gasification and hot gas cleanup facility

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, E.N.; Rockey, J.M.; Tucker, M.S.

    1995-06-01

    Opportunities exist for Cooperative Research and Development Agreements (CRADA) at the Morgantown Energy Technology Center (METC) to support commercialization of IGCC power systems. METC operates an integrated gasifier and hot gas cleanup facility for the development of gasification and hot gas cleanup technologies. The objective of our program is to gather performance data on gasifier operation, particulate removal, desulfurization and regeneration technologies. Additionally, slip streams are provided for developing various technologies such as; alkali monitoring, particulate measuring, chloride removal, and contaminate recovery processes. METC`s 10-inch diameter air blown Fluid Bed Gasifier (FBG) provides 300 lb/hr of coal gas at 1100{degrees}F and 425 psig. The particulate laden gas is transported to METC`s Modular Gas Cleanup Rig (MGCR). The gas pressure is reduced to 285 psig before being fed into a candle filter vessel. The candle filter vessel houses four candle filters and multiple test coupons. The particulate free gas is then desulfurized in a sorbent reactor. Starting in 1996 the MGCR system will be able to regenerate the sorbent in the same vessel.

  4. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes

    Directory of Open Access Journals (Sweden)

    Ruchita Dixit

    2015-02-01

    Full Text Available Heavy metals are natural constituents of the environment, but indiscriminate use for human purposes has altered their geochemical cycles and biochemical balance. This results in excess release of heavy metals such as cadmium, copper, lead, nickel, zinc etc. into natural resources like the soil and aquatic environments. Prolonged exposure and higher accumulation of such heavy metals can have deleterious health effects on human life and aquatic biota. The role of microorganisms and plants in biotransformation of heavy metals into nontoxic forms is well-documented, and understanding the molecular mechanism of metal accumulation has numerous biotechnological implications for bioremediation of metal-contaminated sites. In view of this, the present review investigates the abilities of microorganisms and plants in terms of tolerance and degradation of heavy metals. Also, advances in bioremediation technologies and strategies to explore these immense and valuable biological resources for bioremediation are discussed. An assessment of the current status of technology deployment and suggestions for future bioremediation research has also been included. Finally, there is a discussion of the genetic and molecular basis of metal tolerance in microbes, with special reference to the genomics of heavy metal accumulator plants and the identification of functional genes involved in tolerance and detoxification.

  5. Hot particulate removal and desulfurization results from the METC integrated gasification and hot gas cleanup facility

    Energy Technology Data Exchange (ETDEWEB)

    Rockey, J.M.

    1995-06-01

    The Morgantown Energy Technology Center (METC) is conducting experimental testing using a 10-inch diameter fluid-bed gasifier (FBG) and modular hot gas cleanup rig (MGCR) to develop advanced methods for removing contaminants in hot coal gasifier gas streams for commercial development of integrated gasification combined-cycle (IGCC) power systems. The program focus is on hot gas particulate removal and desulfurization technologies that match the temperatures and pressures of the gasifier, cleanup system, and power generator. The purpose of this poster is to present the program objectives and results of the work conducted in cooperation with industrial users and vendors to meet the vision for IGCC of reducing the capital cost per kilowatt to $1050 and increasing the plant efficiency to 52% by the year 2010.

  6. POTENTIAL FUNGI FOR BIOREMEDIATION OF INDUSTRIAL EFFLUENTS

    Directory of Open Access Journals (Sweden)

    Vara Saritha

    2010-02-01

    Full Text Available Two fungi (unidentified were isolated from soil and marine environ-ments. These isolates were used for bioremediation of pulp and paper mill effluent at the laboratory scale. The treatment resulted in the reduction of color, lignin, and COD of the effluent in the order of 78.6%, 79.0%, and 89.4% in 21 days. A major part of reductions in these parameters occurred within 5 days of the treatment, which was also characterized by a steep decline in the pH of the effluent. The enzyme activity of these fungi was also tested, and the clearance zone was obtained in the plate assay.

  7. POTENTIAL FUNGI FOR BIOREMEDIATION OF INDUSTRIAL EFFLUENTS

    OpenAIRE

    Vara Saritha; Avasn Maruthi; Mukkanti, K.

    2010-01-01

    Two fungi (unidentified) were isolated from soil and marine environ-ments. These isolates were used for bioremediation of pulp and paper mill effluent at the laboratory scale. The treatment resulted in the reduction of color, lignin, and COD of the effluent in the order of 78.6%, 79.0%, and 89.4% in 21 days. A major part of reductions in these parameters occurred within 5 days of the treatment, which was also characterized by a steep decline in the pH of the effluent. The enzyme activity of t...

  8. Bioremediation of uranium contaminated Fernald soils

    International Nuclear Information System (INIS)

    This study investigated the use of microbial bioleaching for removal of uranium from contaminated soils. The ability of bacteria to assist in oxidation and solubilization of uranium was compared to the ability of fungi to produce complexing compounds which have the same effect. Biosorption of uranium by fungi was also measured. Soil samples were examined for changes in mineralogical properties due to these processes. On the basis of these laboratory scale studies a generalized flow sheet is proposed for bioremediation of contaminated Fernald soils

  9. Test plan for in situ bioremediation demonstration of the Savannah River Integrated Demonstration Project DOE/OTD TTP No.: SR 0566-01. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C.

    1991-09-18

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms will be simulated to degrade trichloroethylene (TCE), tetrachloroethylene (PCE) and their daughter products in situ by addition of nutrients to the contaminated zone. in situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work.

  10. Role of Penicillium chrysogenum XJ-1 in the detoxification and bioremediation of cadmium

    Directory of Open Access Journals (Sweden)

    Xingjian eXu

    2015-12-01

    Full Text Available Microbial bioremediation is a promising technology to treat heavy metal-contaminated soils. However, the efficiency of filamentous fungi as bioremediation agents remains unknown, and the detoxification mechanism of heavy metals by filamentous fungi remains unclear. Therefore, in this study, we investigated the cell morphology and antioxidant systems of Penicillium chrysogenum XJ-1 in response to different Cd concentrations (0–10 mM by using physico-chemical and biochemical methods. Cd in XJ-1 was mainly bound to the cell wall. The malondialdehyde (MDA level in XJ-1 cells was increased by 14.82–94.67 times with the increase in Cd concentration. The activities of superoxide dismutase (SOD, glutathione reductase (GR, and glucose-6-phosphate dehydrogenase (G6PDH peaked at 1 mM Cd, whereas that of catalase (CAT peaked at 5 mM Cd. Cd exposure increased the glutathione/oxidized glutathione ratio and the activities of GR and G6PDH in XJ-1. These results suggested that the Cd detoxification mechanism of XJ-1 included biosorption, cellular sequestration, and antioxidant defense. The application of XJ-1 in Cd-polluted soils (5–50 mg kg−1 successfully reduced bioavailable Cd and increased the plant yield, indicating that this fungus was a promising candidate for in-situ bioremediation of Cd-polluted soil.

  11. Role of Penicillium chrysogenum XJ-1 in the Detoxification and Bioremediation of Cadmium

    Science.gov (United States)

    Xu, Xingjian; Xia, Lu; Zhu, Wei; Zhang, Zheyi; Huang, Qiaoyun; Chen, Wenli

    2015-01-01

    Microbial bioremediation is a promising technology to treat heavy metal-contaminated soils. However, the efficiency of filamentous fungi as bioremediation agents remains unknown, and the detoxification mechanism of heavy metals by filamentous fungi remains unclear. Therefore, in this study, we investigated the cell morphology and antioxidant systems of Penicillium chrysogenum XJ-1 in response to different cadmium (Cd) concentrations (0–10 mM) by using physico-chemical and biochemical methods. Cd in XJ-1 was mainly bound to the cell wall. The malondialdehyde level in XJ-1 cells was increased by 14.82–94.67 times with the increase in Cd concentration. The activities of superoxide dismutase, glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PDH) peaked at 1 mM Cd, whereas that of catalase peaked at 5 mM Cd. Cd exposure increased the glutathione/oxidized glutathione ratio and the activities of GR and G6PDH in XJ-1. These results suggested that the Cd detoxification mechanism of XJ-1 included biosorption, cellular sequestration, and antioxidant defense. The application of XJ-1 in Cd-polluted soils (5–50 mg kg-1) successfully reduced bioavailable Cd and increased the plant yield, indicating that this fungus was a promising candidate for in situ bioremediation of Cd-polluted soil. PMID:26733967

  12. Anaerobic bioremediation of chlorinated solvents in groundwater using edible oil substrate EOS

    Energy Technology Data Exchange (ETDEWEB)

    Sedor, M.; Yoseph, Y. [Remediation Sciences Inc., Newport Beach, CA (United States); Baker, J. [Vironex Inc., Wilmington, DE (United States); Sankey, J. [True Blue Technologies Inc., BC (Canada)

    2007-07-01

    This paper discussed an enhanced anaerobic bioremediation technique that used emulsified edible oils to remediate ground around a dry cleaning establishment in San Jose, California. The project aimed to find a substrate that was easily distributed into the contaminated soils using anaerobic bioremediation. The anaerobic bioremediation process consisted of organic substrates and halorespiring bacteria. Vitamins and trace minerals were used to stimulate Dehalococcoides growth. Soybean oil was used to ferment the hydrogen. Details of the soy and lactate emulsions prepared for the project were provided. Edible oils were used because of their slow-release properties as well as the fact that they are easy to inject and distribute. A barrier technique was also used to define treatment zone dimensions. An in-line metering system was used to dilute the emulsions. Total costs for project were provided. Injection system design options were reviewed. Results of the study demonstrated that the EOS was effectively distributed throughout the treatment area. It was concluded that dramatic improvements in groundwater conditions were observed using the technology. tabs., figs.

  13. [Biological treatments for contaminated soils: hydrocarbon contamination. Fungal applications in bioremediation treatment].

    Science.gov (United States)

    Martín Moreno, Carmen; González Becerra, Aldo; Blanco Santos, María José

    2004-09-01

    Bioremediation is a spontaneous or controlled process in which biological, mainly microbiological, methods are used to degrade or transform contaminants to non or less toxic products, reducing the environmental pollution. The most important parameters to define a contaminated site are: biodegradability, contaminant distribution, lixiviation grade, chemical reactivity of the contaminants, soil type and properties, oxygen availability and occurrence of inhibitory substances. Biological treatments of organic contaminations are based on the degradative abilities of the microorganisms. Therefore the knowledge on the physiology and ecology of the biological species or consortia involved as well as the characteristics of the polluted sites are decisive factors to select an adequate biorremediation protocol. Basidiomycetes which cause white rot decay of wood are able to degrade lignin and a variety of environmentally persistent pollutants. Thus, white rot fungi and their enzymes are thought to be useful not only in some industrial process like biopulping and biobleaching but also in bioremediation. This paper provides a review of different aspects of bioremediation technologies and recent advances on ligninolytic metabolism research.

  14. Bioremediation:A review of applications and problems to be resolved

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qixing; HUA Tao

    2004-01-01

    This review article describes the factors affecting bioremediation processes including: goals of bioremediation and the optimal ecological conditions required; inoculation of microorganisms; cometabolism; bioavailability and its improvement; biological evolution and its utilization;monitoring and control of bioremediation processes; identification of bioremediation effectiveness and ecological remediation and its key elements. The current progress in bioremediation techniques is summarized. The direction of future development, research and applications is also examined.

  15. Bioremediation of petroleum hydrocarbons in soil environments

    International Nuclear Information System (INIS)

    The bioremediation of petroleum hydrocarbons in soil environments was reviewed via a literature survey and discussions with workers in relevant disciplines. The impacts of hydrocarbons on soil are discussed along with a range of methods available to assist in their decomposition by soil microorganisms. The range of petroleum-based materials considered includes conventional and synthetic crude oils, refined oils, sludges, asphalts and bitumens, drilling mud residues, creosote tars, and some pesticides. The degradability of hydrocarbons largely depends upon their aqueous solubility and their adsorption on soil surfaces and, therefore, is related to their molecular structures. The ease of decomposition decreases with increasing complexity of structure, in the order aliphatics > aromatics > heterocyclics and asphaltenes (most recalcitrant). Most soils contain an adequate population of microorganisms and hence bioaugmentation may only be needed in special circumstances. Decomposition is fastest in soils where the hydrocarbon loading rate, aeration, nutrition, moisture, and pH are all optimized. At spill sites there is little control over the application rate, although containment measures can assist in either limiting contamination or distributing it more evenly. The enhancement of bioremediation is discussed in light of all these factors. Other techniques such as enhanced aeration, hydrocarbon decomposition by anaerobic processes, surfactants, and burning are also discussed. 211 refs., 11 figs., 10 tabs

  16. Influence of a precepitator on bioremedial processes

    Directory of Open Access Journals (Sweden)

    Nježić Zvonko B.

    2010-01-01

    Full Text Available Natural environment represents a dynamic bioreactor with numerous chemical, biochemical and microbiological processes through which harmful materials are destroyed, so that living organisms and human beings are not endanger. Controlled anthropogenic actions can assist the natural ecosystem to become an efficient bioremedial unit and to reduce the level of effluents produced in the biotechnological transformations during massive food production. In this study, a monitoring system for the chemical oxygen demand (COD and the heavy metal levels in water was established, followed by construction and building of a precipitator in order to prevent discharging of sludge. The results contribute to the hypothesis of existence of in situ bioremedial processes in the observed ecosystem. The significant influence of the precipitator on the decrease of pollution was demonstrated: a decrease of both the COD value and the heavy metal levels downstream from the precipitator for about 15%. Therefore it can be concluded that the precipitator significantly contributes to the ecosystem by the reduction of pollutant level.

  17. Bioremediation of Carbendazim by Streptomyces albogriseolus

    Directory of Open Access Journals (Sweden)

    Ridhima Arya

    2014-08-01

    Full Text Available Carbendazim (methyl-1H-benzimidazol-2-ylcarbamate, or MBC is a benzimidazole fungicide which is used to protect crops against the attack of fungi. MBC has a half-life of about 3-12 months and remain persistent in the environment which may lead to many harmful consequences. Besides chemical and photo-catalytic degradation of pesticides, microbial degradation has now been evolved as a much effective and safer way to eliminate these harmful compounds from the environment. However, in the literature very few reports are available where microbial community is involved in degrading MBC. Hence, the present study was planned to investigate the role of microbes isolated from the field soils for the bioremediation of MBC. Soil samples were collected from wheat fields of northern regions of India. Enrichment culture technique was employed to isolate the bacterium which was found to be growing at higher concentrations of MBC up to 500µg/ml. After biochemical and morphological analysis, the bacterium was identified as Streptomyces albogriseolus. Streptomyces albogriseolus was found to degrade MBC in a time-dependent manner from the initial concentration of 29 ppm to 285.67ppb and 62.73ppb in 24hrs and 48hrs respectively. LCMS-MS analysis was carried out to detect 2-aminobenzimidazole, a metabolite formed after degradation in 10 hrs of growth which eventually disappeared after 24hrs of growth. The strain Streptomyces albogriseolus holds a promising potential to be an efficient MBC bioremediation agent.

  18. The Kwajalein bioremediation demonstration: Final technical report

    International Nuclear Information System (INIS)

    The US Army Kwajalein Atoll (USAKA) Base, located in the Republic of the Marshall Islands (RMI) in the east-central Pacific Ocean, has significant petroleum hydrocarbon contamination resulting from years of military activities. Because of its remoteness, the lack of on-site sophisticated remediation or waste disposal facilities, the amenability of petroleum hydrocarbons to biodegradation, and the year-round temperature favorable for microbial activity, USAKA requested, through the Hazardous Waste Remedial Actions Program (HAZWRAP), that a project be conducted to evaluate the feasibility of using bioremediation for environmental restoration of contaminated sites within the atoll. The project was conducted in four distinct phases: (1) initial site characterization and on-site biotreatability studies, (2) selection of the demonstration area and collection of soil columns, (3) laboratory column biotreatability studies, and (4) an on-site bioremediation demonstration. The results of phases (1) and (3) have been detailed in previous reports. This report summarizes the results of phases (1) and (3) and presents phases (2) and (4) in detail

  19. The Kwajalein bioremediation demonstration: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.R. Jr.; Walker, A.B.

    1994-12-01

    The US Army Kwajalein Atoll (USAKA) Base, located in the Republic of the Marshall Islands (RMI) in the east-central Pacific Ocean, has significant petroleum hydrocarbon contamination resulting from years of military activities. Because of its remoteness, the lack of on-site sophisticated remediation or waste disposal facilities, the amenability of petroleum hydrocarbons to biodegradation, and the year-round temperature favorable for microbial activity, USAKA requested, through the Hazardous Waste Remedial Actions Program (HAZWRAP), that a project be conducted to evaluate the feasibility of using bioremediation for environmental restoration of contaminated sites within the atoll. The project was conducted in four distinct phases: (1) initial site characterization and on-site biotreatability studies, (2) selection of the demonstration area and collection of soil columns, (3) laboratory column biotreatability studies, and (4) an on-site bioremediation demonstration. The results of phases (1) and (3) have been detailed in previous reports. This report summarizes the results of phases (1) and (3) and presents phases (2) and (4) in detail.

  20. Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation

    OpenAIRE

    MariaGenovese; DanielaRusso; AlfonsoModica; LauraGiuliano; PeterN.Golyshin

    2014-01-01

    The purpose of present study was the simulation of an oil spill accompanied by burial of significant amount of petroleum hydrocarbons (PHs) in coastal sediments. Approximately 1,000 kg of sediments collected in Messina harbor were spiked with Bunker C furnace fuel oil (6,500 ppm). The rapid consumption of oxygen by aerobic heterotrophs created highly reduced conditions in the sediments with subsequent recession of biodegradation rates. As follows, after three months of ageing, the anaerobic s...

  1. Evaluating the efficacy of bioremediating a diesel-contaminated soil using ecotoxicological and bacterial community indices.

    Science.gov (United States)

    Khudur, Leadin Salah; Shahsavari, Esmaeil; Miranda, Ana F; Morrison, Paul D; Nugegoda, Dayanthi; Ball, Andrew S

    2015-10-01

    biostimulation represents a commercially viable bioremediation technology for use in diesel-contaminated soils, further research is required to determine the ecotoxicological impacts of the intervention.

  2. Bioremediation Kinetics of Pharmaceutical Industrial Effluent

    Directory of Open Access Journals (Sweden)

    M. Šabić

    2015-05-01

    Full Text Available In recent years, concerns about the occurrence and fate of pharmaceuticals that could be present in water and wastewater has gained increasing attention. With the public’s enhanced awareness of eco-safety, environmentally benign methods based on microorganisms have become more accepted methods of removing pollutants from aquatic systems. This study investigates bioremediation of pharmaceutical wastewater from pharmaceutical company Pliva Hrvatska d.o.o., using activated sludge and bioaugmented activated sludge with isolated mixed bacterial culture. The experiments were conducted in a batch reactor in submerged conditions, at initial concentration of organic matter in pharmaceutical wastewater, expressed as COD, 5.01 g dm–3 and different initial concentrations of activated sludge, which ranged from 1.16 to 3.54 g dm–3. During the experiments, the COD, pH, concentrations of dissolved oxygen and biomass were monitored. Microscopic analyses were performed to monitor the quality of activated sludge. Before starting with the bioremediation in the batch reactor, toxicity of the pharmaceutical wastewater was determined by toxicity test using bacteria Vibrio fischeri. The obtained results showed that the effective concentration of the pharmaceutical wastewater was EC50 = 17 % and toxicity impact index was TII50 = 5.9, meaning that the untreated pharmaceutical industrial effluent must not be discharged into the environment before treatment. The results of the pharmaceutical wastewater bioremediation process in the batch reactor are presented in Table 1. The ratio γXv ⁄ γX maintained high values throughout all experiments and ranged from 0.90 and 0.95, suggesting that the concentrations of biomass remained unchanged during the experiments. The important kinetic parameters required for performance of the biological removal process, namely μmax, Ks, Ki, Y and kd were calculated from batch experiments (Table 2. Figs. 1 and 2 show the experimental

  3. Architecture synthesis basis for the Hanford Cleanup system: First issue

    International Nuclear Information System (INIS)

    This document describes a set of candidate alternatives proposed to accomplish the Hanford Cleanup system functions defined in a previous work. Development of alternatives is part of a sequence of system engineering activities which lead to definition of all the products which, when completed, accomplish the cleanup mission. The alternative set is developed to functional level four or higher depending on need

  4. Fungal degradation of pesticides - construction of microbial consortia for bioremediation

    DEFF Research Database (Denmark)

    Ellegaard-Jensen, Lea

    and Mortierella sp. LEJ703. In the experimental setup a layer of sterile glass beads was added between the organisms and the sand column above; simulating air-filled gaps in soil. [Ring-U-14C]-diuron was mixed into the sand to a concentration of 100 μg diuron kg-1. Degradation was measured as the amount of 14C......-diuron mineralized and as 14C residues in the sand at experimental termination. Mineralization results established the three-member consortium LEJ702/SRS16/D47 as the most efficient transforming 32% of the diuron to 14CO2, while the single strains or other consortia mineralized no more than 10%. Furthermore...... in groundwater contamination. New technologies are therefore needed for cleaning up contaminated soil and water resources. This PhD was part of the project entitled Microbial Remediation of Contaminated Soil and Water Resources (MIRESOWA) where the overall aim is to develop new technologies for bioremediation...

  5. Lipids and Molecular Tools as Biomarkers in Monitoring Air Sparging Bioremediation Processes

    Science.gov (United States)

    Heipieper, Hermann J.; Fischer, Janett

    2010-05-01

    The fluctuation of membrane lipids offers a promising tool as biomarkers for the analysis of microbial population changes as well as for the physiological status of micro-organisms. The investigation of changes in lipid composition is of common use for the assessment of physiological conditions in pure cultures. However, as lipid composition does not show drastic diversity among living organisms the use of lipids as biomarkers in mixed cultures and environmental samples has certain limitations. Therefore, special marker phospholipid fatty acids as well as modern statistical analysis of the results are necessary to receive certain information about the qualitative and quantitative changes of e.g. a soil microflora due to a contamination with organic compounds and its bioremediation. The use of lipids as biomarker in monitoring bioremediation are shown at the Hradčany site, a former Russian air force base in the Czech Republic that operated until 1990. In this time in an area of 32 ha soil and groundwater were contaminated with kerosene and BTEX compounds in an amount of 7,150 tons. This highly contaminated site is treated with the so-called air sparging method to clean-up the contamination by aerobic biodegradation. The results of PLFA analysis demonstrated a community shift to a gram-negative bacterial biomass with time. The results, including a principal component analysis (PCA) of the obtained fatty acid profiles, showed that the air sparging leads to substantial differences in microbial communities depending on the contamination levels and length of treatment, respectively. Obviously, the length of air sparging treatment controlling the BTEX concentration in soils causes temporal changes of bacterial community and adaptations of its respective members. This work was supported by the project BIOTOOL (Contract No. 003998) of the European Commission within its Sixth Framework Programme. Kabelitz N., Machackova J., Imfeld G., Brennerova M., Pieper D.H., Heipieper H

  6. Nanoporous polystyrene fibers for oil spill cleanup.

    Science.gov (United States)

    Lin, Jinyou; Shang, Yanwei; Ding, Bin; Yang, Jianmao; Yu, Jianyong; Al-Deyab, Salem S

    2012-02-01

    The development of oil sorbents with high sorption capacity, low cost, scalable fabrication, and high selectivity is of great significance for water environmental protection, especially for oil spillage on seawater. In this work, we report nanoporous polystyrene (PS) fibers prepared via a one-step electrospinning process used as oil sorbents for oil spill cleanup. The oleophilic-hydrophobic PS oil sorbent with highly porous structures shows a motor oil sorption capacity of 113.87 g/g, approximately 3-4 times that of natural sorbents and nonwoven polypropylene fibrous mats. Additionally, the sorbents also exhibit a relatively high sorption capacity for edible oils, such as bean oil (111.80 g/g) and sunflower seed oil (96.89 g/g). The oil sorption mechanism of the PS sorbent and the sorption kinetics were investigated. Our nanoporous material has great potential for use in wastewater treatment, oil accident remediation and environmental protection.

  7. Improving oiled shoreline cleanup with COREXIT 9580

    Energy Technology Data Exchange (ETDEWEB)

    Fiocco, R.J.; Lessard, R.R. [Exxon Research and Engineering Co., Florham Park, NJ (United States); Canevari, G.P. [G.P. Canevari Associates, Cranford, NJ (United States)

    1996-08-01

    The cleanup of oiled shorelines has generally been by mechanical, labor-intensive means. The use of a chemical shoreline cleaner to assist in water-flushing oil from the surfaces can result in more complete and more rapid cleaning. Not only is the cleaning process more efficient, but it can also be less environmentally damaging since there is potentially much less human intrusion and stress on the biological community. This paper describes research and applications of COREXIT 9580 shoreline cleaner for treatment of oiled shorelines, including four recent applications in Puerto Rico, Bermuda, Texas and Nova Scotia. Research work on shoreline vegetation, such as mangroves, has also demonstrated the potential use of this product to save and restore oiled vegetation.

  8. Helping with the clean-up

    International Nuclear Information System (INIS)

    Successes in public involvement efforts for nuclear waste management are so few that they deserve careful documentation and analysis. This paper chronicles the goals, process, problems and outcomes of one such success, the Northwest Defense Waste Citizens Forum (CF), created by the DOE-Richland manager in 1986 to advise DOE on its plans for nuclear waste disposal and cleanup of the Hanford site n eastern Washington state. In the evolving, often-controversial, highly-visible area of agency-public interactions, citizen task forces (TFs) have been shown to be useful in developing public policy at the local level. Making them work at the state level is more problematic. This case shows that a diverse, two-state citizen group can make significant contributions to complex EIS evaluations with heavy technical components. The CFs principal contribution to public policy was communication of its findings to business and professional groups, to area political representatives and state agencies, thereby laying the ground work for refocusing the Northwest upon the need for action on DW cleanup at Hanford. In going well beyond NEPA requirements for public involvement in agency decision making, DOE-Richland demonstrated innovative ways of dealing with the difficult issues of public confidence and public trust by means of agency openness, responsiveness to citizen needs for information, and good faith two-way communication. The success of this pro-active DOE initiative was due to many factors including selecting the right issue (existing wastes), structuring the CF at a broad, regional level, and intensive implementation of trust-building strategies

  9. Raw Materials Synthesis from Heavy Metal Industry Effluents with Bioremediation and Phytomining: A Biomimetic Resource Management Approach

    Directory of Open Access Journals (Sweden)

    Salmah B. Karman

    2015-01-01

    Full Text Available Heavy metal wastewater poses a threat to human life and causes significant environmental problems. Bioremediation provides a sustainable waste management technique that uses organisms to remove heavy metals from contaminated water through a variety of different processes. Biosorption involves the use of biomass, such as plant extracts and microorganisms (bacteria, fungi, algae, yeast, and represents a low-cost and environmentally friendly method of bioremediation and resource management. Biosorption-based biosynthesis is proposed as a means of removing heavy metals from wastewaters and soils as it aids the development of heavy metal nanoparticles that may have an application within the technology industry. Phytomining provides a further green method of managing the metal content of wastewater. These approaches represent a viable means of removing toxic chemicals from the effluent produced during the process of manufacturing, and the bioremediation process, furthermore, has the potential to save metal resources from depletion. Biomimetic resource management comprises bioremediation, biosorption, biosynthesis, phytomining, and further methods that provide innovative ways of interpreting waste and pollutants as raw materials for research and industry, inspired by materials, structures, and processes in living nature.

  10. Risk assessment applications for determining cleanup limits for uranium in treated and untreated soils

    International Nuclear Information System (INIS)

    Uranium-contaminated soils are present at various locations across the US where uranium was processed for nuclear fuels or atomic weapons. Important issues relative to such contamination include the assessment of potential health risks associated with human exposures to the residual uranium and the determination of safe levels of uranium in soils that have been treated by a given technology. This paper discusses various risk assessment considerations that must be dealt with when developing cleanup limits for uranium in treated and untreated soils. Key issues addressed include alternative land use scenarios, potential exposure pathways, characterization of the bioavailability of uranium compounds in food and water, a brief overview of health risks associated with uranium and its daughter products as well as a summary of considerations for development of risk-based cleanup limits for uranium in soils

  11. Radiological assessment in case of an incident at the hot cells clean-up

    Directory of Open Access Journals (Sweden)

    Dragolici Cristian A.

    2014-01-01

    Full Text Available The clean-up and decontamination of the hot cells will be performed in the second phase of the WWR-S research reactor decommissioning. Identification of possible incidents or accidents is the key element in radiological assessment and prevention. As major incident it was considered a fire burst that occurred during the progress of the clean-up operations. The postulated incident has, as a consequence, thick smoke generation from the burned radioactive material and the dispersion of this material in the environment through the technological ventilation system and the evacuation chimney. From the performed analysis it can be seen that in the case of an incident to the reactor hot cells, an operator engaged in intervention operations could take an effective dose of 5.29 Sv per event, coming from both external and internal exposure. Such an incident, if it happens, would be classified of level 3 on the INES scale.

  12. Risk assessment applications for determining cleanup limits for uranium in treated and untreated soils

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, A.Q. [Oak Ridge National Lab., TN (United States); Layton, D.W. [Lawrence Livermore National Lab., CA (United States); Rutz, E.E. [Univ. of Cincinnati, OH (United States)

    1994-06-01

    Uranium-contaminated soils are present at various locations across the US where uranium was processed for nuclear fuels or atomic weapons. Important issues relative to such contamination include the assessment of potential health risks associated with human exposures to the residual uranium and the determination of safe levels of uranium in soils that have been treated by a given technology. This paper discusses various risk assessment considerations that must be dealt with when developing cleanup limits for uranium in treated and untreated soils. Key issues addressed include alternative land use scenarios, potential exposure pathways, characterization of the bioavailability of uranium compounds in food and water, a brief overview of health risks associated with uranium and its daughter products as well as a summary of considerations for development of risk-based cleanup limits for uranium in soils.

  13. In situ bioremediation of chlorinated solvent with natural gas

    International Nuclear Information System (INIS)

    A bioremediation system for the removal of chlorinated solvents from ground water and sediments is described. The system involves the the in-situ injection of natural gas (as a microbial nutrient) through an innovative configuration of horizontal wells

  14. Bioremediation of chlorinated ethenes in aquifer thermal energy storage

    NARCIS (Netherlands)

    Ni, Z.

    2015-01-01

      Subjects: bioremediation; biodegradation; environmental biotechnology, subsurface and groundwater contamination; biological processes; geochemistry; microbiology The combination of enhanced natural attenuation (ENA) of chlorinated volatile organic compounds (CVOCs) and aquife

  15. Ecogenomics of microbial communities in bioremediation of chlorinated contaminated sites

    NARCIS (Netherlands)

    Maphosa, F.; Lieten, S.; Dinkla, I.; Stams, A.J.M.; Fennel, D.E.

    2012-01-01

    Organohalide compounds such as chloroethenes, chloroethanes, and polychlorinated benzenes are among the most significant pollutants in the world. These compounds are often found in contamination plumes with other pollutants such as solvents, pesticides, and petroleum derivatives. Microbial bioremedi

  16. Chemometric assessment of enhanced bioremediation of oil contaminated soils

    DEFF Research Database (Denmark)

    Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H.

    2013-01-01

    Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting, and addi......Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting...... steranes were used for determining the level and type of hydrocarbon contamination. The same methods were used to study oil weathering of 2 to 6 ring polycyclic aromatic compounds (PACs). Results demonstrated that bacterial enrichment and addition of nutrients were most efficient with 50% to 62% removal...

  17. Bacteria and bioremediation of marine oil spills

    International Nuclear Information System (INIS)

    Virtually all marine ecosystems harbor indigenous hydrocarbon-degrading bacteria. These hydrocarbon degraders comprise less than one percent of the bacterial community in unpolluted environments, but generally increase to one to ten percent following petroleum contamination. Various hydrocarbons are degraded by these microorganisms at different rates, so there is an evolution in the residual hydrocarbon mixture, and some hydrocarbons and asphaltic petroleum hydrocarbons remain undegraded. Fortunately, these persistent petroleum pollutants are, for the most part, insoluble or are bound to solids; hence they are not biologically available and therefore not toxic to marine organisms. Carbon dioxide, water, and cellular biomass produced by the microorganisms from the degradable hydrocarbons may be consumed by detrital feeders and comprise the end products of the natural biological degradation process. Bioremediation attempts to accelerate the natural hydrocarbon degradation rates by overcoming factors that limit bacterial hydrocarbon degrading activities

  18. 土壤重金属镉污染的生物修复技术研究进展%Research Progress of Bioremediation Technology of Cadmium Polluted Soil

    Institute of Scientific and Technical Information of China (English)

    徐良将; 张明礼; 杨浩

    2011-01-01

    With the development of agriculture and industry, the heavy metal-cadmium pollution is becoming increasingly severe. In order to alleviate the effect of cadmium pollution, many researchers have engaged in phytoremediation research of soil polluted by cadmium and have proposed restoration measures, chemical treatment measures, agro-ecology restoration measures and phytoremediation technology etc. In this paper, comparing the merit and demerit of various ways of restoration, it is found that the phytoremediation technology is more preferred for it is more environment-friendly and economical. This paper focuses on the concept, types and research status of phytoremediation of cadmium polluted soil and the perspectives of phytoremediation of cadmium polluted soil is also discussed.%随着工农业的发展,重金属Cd污染也日益严重,为了减轻Cd污染带来的危害,众多研究人员进行了镉污染土壤的植物修复研究,并提出工程修复措施、化学治理措施、农业生态修复措施和生物修复措施等技术,本文比较了各种修复方法的优势和局限,发现生物修复中的植物修复技术因其环保、经济等特点备受推崇.并重点阐述了Cd污染土壤植物修复的概念、类型和研究现状,进而对Cd污染土壤的植物修复技术进行了展望.

  19. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Wood Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for treatment of wood-derived syngas for use in the synthesis of liquid fuels. Two different 2,000 metric tonne per day gasification schemes, a low-pressure, indirect system using the gasifier, and a high-pressure, direct system using gasification technology were evaluated. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  20. Healthy environments for healthy people: bioremediation today and tomorrow.

    OpenAIRE

    Bonaventura, C; Johnson, F. M.

    1997-01-01

    Increases in environmental contamination lead to a progressive deterioration of environmental quality. This condition challenges our global society to find effective measures of remediation to reverse the negative conditions that severely threaten human and environmental health. We discuss the progress being made toward this goal through application of bioremediation techniques. Bioremediation generally utilizes microbes (bacteria, fungi, yeast, and algae), although higher plants are used in ...

  1. Effectiveness of bioremediation for the Exxon Valdez oil spill

    Science.gov (United States)

    Bragg, James R.; Prince, Roger C.; Harner, E. James; Atlas, Ronald M.

    1994-03-01

    The effectiveness of bioremediation for oil spills has been difficult to establish on dynamic, heterogeneous marine shorelines. A new interpretative technique used following the 1989 Exxon Valdez spill in Alaska shows that fertilizer applications significantly increased rates of oil biodegradation. Biodegradation rates depended mainly on the concentration of nitrogen within the shoreline, the oil loading, and the extent to which natural biodegradation had already taken place. The results suggest ways to improve the effectiveness of bioremediation measures in the future.

  2. Effectiveness of bioremediation for the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    The effectiveness of bioremediation for oil spills has been difficult to establish on dynamic, heterogeneous marine shorelines. A new interpretative technique used following the 1989 Exxon Valdez spill in Alaska shows that fertilizer applications significantly increased rates of oil biodegradation. Biodegradation rates depended mainly on the concentration of nitrogen within the shoreline, the oil loading, and the extent to which natural biodegradation had already taken place. The results suggest ways to improve the effectiveness of bioremediation measures in the future. (Author)

  3. A breakthrough in flue gas cleanup, CO2 mitigation and H2S removal

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Wolf; Wasas, James; Stenger, Raymond; Howell, Evan

    2010-09-15

    SWAPSOL Corp. is developing commercial processes around a newly discovered reaction that reduces H2S below detectable levels while reacting with CO2 to form water, sulfur and carsuls, a carbon-sulfur polymer. The Stenger-Wasas Process (SWAP) stands to simplify sulfur removal technology as it consumes CO2 in an exothermic reaction. The SWAP has applications in landfill, sour, flue and Claus tail gas cleanup and may replace Claus technology. Destruction of waste hydrocarbons provides a source of H2S. The primary reactions and variants have been independently verified and the chemical kinetics determined by a third party laboratory.

  4. Bioremediation of an area contaminated by a fuel spill.

    Science.gov (United States)

    Vallejo, B; Izquierdo, A; Blasco, R; Pérez del Campo, P; Luque de Castro, M D

    2001-06-01

    In order to decontaminate a large area of restricted access contaminated by a fuel spill, laboratory and field studies were developed in two steps: (a) monitoring of the laboratory experiment on bacterial growth under aerobic and anaerobic conditions with and without addition of nutrients; and (b) use of the best conditions obtained in (a) for the decontamination of the soil. A hydraulic barrier was installed both to clean the aquifer and to avoid migration of hydrocarbons as a consequence of their solution in the groundwater and subsequent displacement. The objective was to create an ideal environment for the treatment of the affected area that favoured the growth of the indigenous bacteria (Pseudomonas and Arthrobacter) that biodegrade the hydrocarbons. Monitoring of the changes in the total concentration of petroleum hydrocarbons in the soil subjected to bacterial action was performed by gas chromatography. In a field study, the progress of biodegradation of hydrocarbons was evaluated in situ by changes in subsurface CO2/O2 levels by means of an analyser equipped with an infrared detector. Biostimulation and oxygen were the most influential factors for the biodegradation of the hydrocarbons. The use of bioventing of the soil was shown as an excellent technology to promote in situ bioremediation of the polluted area.

  5. Potential of Penicillium Species in the Bioremediation Field

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Leitão

    2009-04-01

    Full Text Available The effects on the environment of pollution, particularly that caused by various industrial activities, have been responsible for the accelerated fluxes of organic and inorganic matter in the ecosphere. Xenobiotics such as phenol, phenolic compounds, polycyclic aromatic hydrocarbons (PAHs, and heavy metals, even at low concentrations, can be toxic to humans and other forms of life. Many of the remediation technologies currently being used for contaminated soil and water involve not only physical and chemical treatment, but also biological processes, where microbial activity is the responsible for pollutant removal and/or recovery. Fungi are present in aquatic sediments, terrestrial habitats and water surfaces and play a significant part in natural remediation of metal and aromatic compounds. Fungi also have advantages over bacteria since fungal hyphae can penetrate contaminated soil, reaching not only heavy metals but also xenobiotic compounds. Despite of the abundance of such fungi in wastes, penicillia in particular have received little attention in bioremediation and biodegradation studies. Additionally, several studies conducted with different strains of imperfecti fungi, Penicillium spp. have demonstrated their ability to degrade different xenobiotic compounds with low co-substrate requirements, and could be potentially interesting for the development of economically feasible processes for pollutant transformation.

  6. Tritium research laboratory cleanup and transition project final report

    International Nuclear Information System (INIS)

    This Tritium Research Laboratory Cleanup and Transition Project Final Report provides a high-level summary of this project's multidimensional accomplishments. Throughout this report references are provided for in-depth information concerning the various topical areas. Project related records also offer solutions to many of the technical and or administrative challenges that such a cleanup effort requires. These documents and the experience obtained during this effort are valuable resources to the DOE, which has more than 1200 other process contaminated facilities awaiting cleanup and reapplication or demolition

  7. Technology cottons on to oil spill clean-ups

    International Nuclear Information System (INIS)

    Characteristics of Oil Gator(TM) a plant fibre absorbent, chemically modified to encourage biodegradation of hydrocarbons by indigenous bacteria are discussed. The petrophyllic bacteria are safe to humans and animals and are environmentally benign. They utilize hydrocarbons as a food source when activated by air or moisture. Oil Gator(TM) works by encapsulating the oil; ammonium sulphate, an effective delayed-reaction nitrogen source, renders the absorbed oil less flammable. The cotton-based raw material is readily available, which is another advantage over peat or clay which require mining and stripping. Oil Gator(TM) can also be incinerated, and is designed to allow safe handing and begin neutralization of most acid spills quickly and efficiently. Disposal of the saturated Acid Gator has to be carried out in compliance with the appropriate government regulations for the particular acids absorbed

  8. Bioremediation Well Borehole Soil Sampling and Data Analysis Summary Report for the 100-N Area Bioremediation Project

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Gamon

    2009-09-28

    The purpose of this report is to present data and findings acquired during the drilling and construction of seven bioremediation wells in the 100-N Area in conjunction with remediation of the UPR-100-N-17 petroleum waste site.

  9. Assessing mixtures risks for cleanup and stewardship

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) is responsible for addressing contamination from past research, production, and disposal activities at over 100 sites and facilities across the country. Use of emerging science to assess risks for these facilities is the key to defining appropriate solutions. Safely managing contamination is a priority to protect workers in the near term, and sustained protection is a priority for local communities over the long term. The Department conducts its environmental management program with input from a number of groups who have expressed concern about the safety of DOE sites over time and the possible conversion of some lands to other uses. In general, past facility activities and disposal operations have contaminated about 10% of the total collective area of DOE sites while surrounding lands have served as buffer zones. Portions of several sites have been released for other uses, such as wildlife preserves. Soil, surface water, and groundwater have been contaminated in most instances, and on-site waste disposal is targeted for many sites. Wastes and contamination that will remain in the environment are at the heart of ongoing future use and long-term management deliberations. For this reason, oversight groups and local citizens are scrutinizing the risk assessments being conducted to support decisions on final cleanup and long-term stewardship. Contaminants exist throughout the world not as individual chemicals but as combinations. The standard risk assessment process broadly applied to support cleanup decisions for contaminated sites is based on single-chemical analyses that do not consider joint toxicity. That is, possible nonadditive effects (commonly termed synergistic or antagonistic) of multiple exposures to multiple chemicals are not generally addressed. The U.S. Environmental Protection Agency (EPA) has been developing a process to assess risks of multiple chemicals (EPA 1990, 2000), but it is not yet being applied to address

  10. Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives.

    Science.gov (United States)

    Passatore, Laura; Rossetti, Simona; Juwarkar, Asha A; Massacci, Angelo

    2014-08-15

    This review summarizes the bioremediation and phytoremediation technologies proposed so far to detoxify PCB-contaminated sites. A critical analysis about the potential and limits of the PCB pollution treatment strategies by means of plants, fungi and bacteria are elucidated, including the new insights emerged from recent studies on the rhizosphere potential and on the implementation of simultaneous aerobic and anaerobic biodegradation processes. The review describes the biodegradation and phytoremediation processes and elaborates on the environmental variables affecting contaminant degradation rates, summarizing the amendments recommended to enhance PCB degradation. Additionally, issues connected with PCB toxicology, actual field remediation strategies and economical evaluation are discussed.

  11. Investigation of post hydraulic fracturing well cleanup physics in the Cana Woodford Shale

    Science.gov (United States)

    Lu, Rong

    Hydraulic fracturing was first carried out in the 1940s and has gained popularity in current development of unconventional resources. Flowing back the fracturing fluids is critical to a frac job, and determining well cleanup characteristics using the flowback data can help improve frac design. It has become increasingly important as a result of the unique flowback profiles observed in some shale gas plays due to the unconventional formation characteristics. Computer simulation is an efficient and effective way to tackle the problem. History matching can help reveal some mechanisms existent in the cleanup process. The Fracturing, Acidizing, Stimulation Technology (FAST) Consortium at Colorado School of Mines previously developed a numerical model for investigating the hydraulic fracturing process, cleanup, and relevant physics. It is a three-dimensional, gas-water, coupled fracture propagation-fluid flow simulator, which has the capability to handle commonly present damage mechanisms. The overall goal of this research effort is to validate the model on real data and to investigate the dominant physics in well cleanup for the Cana Field, which produces from the Woodford Shale in Oklahoma. To achieve this goal, first the early time delayed gas production was explained and modeled, and a simulation framework was established that included all three relevant damage mechanisms for a slickwater fractured well. Next, a series of sensitivity analysis of well cleanup to major reservoir, fracture, and operational variables was conducted; five of the Cana wells' initial flowback data were history matched, specifically the first thirty days' gas and water producing rates. Reservoir matrix permeability, net pressure, Young's modulus, and formation pressure gradient were found to have an impact on the gas producing curve's shape, in different ways. Some moderately good matches were achieved, with the outcome of some unknown reservoir information being proposed using the

  12. Thermal cleanups using dynamic underground stripping and hydrous pyrolysis oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Aines, R D; Knauss, K; Leif, R; Newmark, R L

    1999-05-01

    In the early 1990s, in collaboration with the School of Engineering at the University of California, Berkeley, Lawrence Livermore National Laboratory developed dynamic underground stripping (DUS), a method for treating subsurface contaminants with heat that is much faster and more effective than traditional treatment methods. more recently, Livermore scientists developed hydrous pyrolysis/oxidation (HPO), which introduces both heat and oxygen to the subsurface to convert contaminants in the ground to such benign products as carbon dioxide, chloride ion, and water. This process has effectively destroyed all contaminants it encountered in laboratory tests. With dynamic underground stripping, the contaminants are vaporized and vacuumed out of the ground, leaving them still to be destroyed elsewhere. Hydrous pyrolysis/oxidation technology takes the cleanup process one step further by eliminating the treatment, handling, and disposal requirements and destroying the contamination in the ground. When used in combination, HPO is especially useful in the final polishing of a site containing significant free-product contaminant, once the majority of the contaminant has been removed.

  13. Reactor cavity cleanup system shielded filter installation

    International Nuclear Information System (INIS)

    The Seabrook Station reactor cavity cleanup system provides a flow path for refueling pool purification and drain down during plant refueling evolutions. The original system design included refueling pool surface skimmers and drains, a skimmer pump, an unshielded duplex basket type pump suction strainer and interconnecting stainless steel piping. The piping design utilized socket welded joints in small bore pipe with diaphragm values installed in the horizontal pipe runs downstream of the skimmer pump. The previously installed unshielded strainer in addition to the skimmer pump downstream piping components were determined to be inconsistent with Seabrook's proactive approach to dose reduction. To be consistent with ALARA (As Low As Reasonably Achievable) policy, a plant design change was authorized to install a lead shielded filter unit as a replacement for the existing duplex strainer. This filter unit, which utilizes multiple micron rating disposable basket type cartridges, has a threefold function of protecting the skimmer pump from large solids, providing bulk filtration of activated corrosion products from the refueling water in order to minimize CRUD buildup in downstream components, and enabling retrieval of foreign material drawn into the refueling pool drains

  14. The Secretary's Vision of the Cleanup Program

    Energy Technology Data Exchange (ETDEWEB)

    Golan, Paul

    2003-02-24

    This paper discusses the Secretary of Energy's vision of the cleanup program. Topics include development a new plan to swiftly clean up serious problems at sites and reduce the risks to human health, safety and the environment.

  15. Geographical information system (GIS) support for shoreline cleanup operations

    International Nuclear Information System (INIS)

    A GIS-based system was introduced which was capable of simplifying map production. The importance of an accurate map in shoreline cleanup operations was emphasized. Maps are used to analyze data and are also an effective communication tool, simplifying work coordination between teams. A GIS-based system allows spatial representations to be used much more extensively in integrating information. Two software products, SHORECLEAN and MAPINFO, were used to create a set of maps to be evaluated. The four main categories of tasks involved in shoreline operations were: (1) to collect data on the state of oiling, (2) to plan cleanup operations, (3) to keep track of cleanup operations, and (4) to monitor long-term changes in the state of the shoreline. It was suggested that electronic data captured directly with the portable computer on site on an oiled shoreline, helps accelerate the cleanup decision making process. 14 refs., 2 tabs., 8 figs

  16. Solvent degradation and cleanup: a survey and recent ORNL studies

    Energy Technology Data Exchange (ETDEWEB)

    Mailen, J.C.; Tallent, O.K.

    1984-01-01

    This paper surveys the mechanisms for degradation of the tributyl phosphate and diluent components of Purex solvent by acid and radiation, reviews the problems encountered in plant operations resulting from the presence of these degradation products, and discusses methods for minimizing the formation of degradation products and accomplishing their removal. Scrubbing solutions containing sodium carbonate or hydroxylamine salts and secondary cleanup of solvents using solid sorbents are evaluated. Finally, recommendations for improved solvent cleanup are presented. 50 references, 4 figures, 3 tables.

  17. Budgeting for environmental clean-up of Army bases

    OpenAIRE

    Goette, Herbert

    1996-01-01

    Approved for public release; distribution is unlimited The United States Army obtained congressional approval in 1995 to close or realign 40 installations. These actions create a unique opportunity for the civilian communities surrounding the installations to reuse them to satisfy commercial or community needs. However, future reuse can be impeded by the need for environmental clean-up, which is an expensive business. The current clean-up cost estimate for 32 of the 40 installations is $1 ...

  18. An investigation into improving non-NPS cleanup process.

    OpenAIRE

    Whitson, Mark E.

    1992-01-01

    Approved for public release; distribution is unlimited This research investigates the process required to remediate (cleanup) non-National Priorities List (non-NPL) hazardous waste sites. The research addresses the many laws and regulations on hazardous waste cleanup specific to Department of Defence and Navy processes to correct and remediate existing sites. The thesis gathered data through survey of the seven Engineering Field Divisions within the Naval Facilities Command organi...

  19. Solvent degradation and cleanup: a survey and recent ORNL studies

    International Nuclear Information System (INIS)

    This paper surveys the mechanisms for degradation of the tributyl phosphate and diluent components of Purex solvent by acid and radiation, reviews the problems encountered in plant operations resulting from the presence of these degradation products, and discusses methods for minimizing the formation of degradation products and accomplishing their removal. Scrubbing solutions containing sodium carbonate or hydroxylamine salts and secondary cleanup of solvents using solid sorbents are evaluated. Finally, recommendations for improved solvent cleanup are presented. 50 references, 4 figures, 3 tables

  20. Cleanup of large areas contaminated as a result of a nuclear accident

    International Nuclear Information System (INIS)

    The purposes of the report are to provide an overview of the methodology and technology available to clean up contaminated areas and to give preliminary guidance on matters related to the planning, implementation and management of such cleanups. This report provides an integrated overview of important aspects related to the cleanup of very large areas contaminated as a result of a serious nuclear accident, including information on methods and equipment available to: characterize the affected area and the radioactive fallout; stabilize or isolate the contamination; and clean up contaminated urban, rural and forested areas. The report also includes brief sections on planning and management considerations and the transport and disposal of the large volumes of wastes arising from such cleanups. For the purposes of this report, nuclear accidents which could result in the deposition of decontamination over large areas if the outer containment fails badly include: 1) An accident with a nuclear weapon involving detonation of the chemical high explosive but little, if any, nuclear fission. 2) A major loss of medium/high level liquid waste (HLLW) due to an explosion/fire at a storage site for such waste. 3) An accident at a nuclear power plant (NPP), for example a loss of coolant accident, which results in some core disruption and fuel melting. 4) An accident at an NPP involving an uncontrolled reactivity excursion resulting in the violent ejection of a reactor core material and rupture of the containment building. 117 refs, 32 figs, 12 tabs

  1. Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

    1987-08-01

    On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster dsplays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume II covers papers presented at sessions 5 and 6 on system for the production of synthesis gas, and on system for the production of power. All papers have been processed for inclusion in the Energy Data Base.

  2. Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

    1987-08-01

    On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster displays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume I covers information presented at sessions 1 through 4 on systems for the production of Co-products and industrial fuel gas, environmental projects, and components and materials. Individual papers have been processed for the Energy Data Base.

  3. Rehabilitation of oil polluted soils by bioremediation

    Science.gov (United States)

    Dumitru, Mihail; Parvan, Lavinia; Cioroianu, Mihai; Carmen, Sirbu; Constantin, Carolina

    2015-04-01

    In Romania about 50,000 ha are polluted with oil and/or brine. The main sources of pollution are the different activities using petroleum products: extraction, transport, treatment, refining and distribution. Taking into acoount the large areas and the cost per unit area, bioremediation was tested as a method of rehabilitation. To stimulate the performance of the bioremediation process for a polluted soil (luvisol) by 3% oil, different methods were tested: -application of a bacterial inoculum consisting of species of the Pseudomonas and Arthrobacter genera;- application of two types of absorbent materials, 16 t/ha peat and 16, respectively, 32 kg/ha Zeba (starch-based polymer, superabsorbent); -mineral fertilization with N200P200K200 and 5 different liquid fertilizer based on potassium humates extracted from lignite in a NPK matrix with micronutrients and added monosaccharides (4 and 8%). After 45 days from the treatment (60 days from pollution) the following observations have been noticed: • the application of only bacterial inoculum had no significant effect on the degradation of petroleum hydrocarbons; • the use of 650 l/ha AH-SH fertilizer (potassium humate in a NPK matrix) led to a 47% decrease of TPH (total petroleum hydrocarbons); • the application of 16 t/ha peat, together with the bacterial inoculum and the AH-SG2 liquid fertilizer (containing humates of potassium in a NPK matrix with microelements and 8% monosaccharides, in which the nitrogen is amide form) led to a 50% decrease of the TPH content; • the application of 16 kg/ha Zeba absorbent together with bacterial inoculum and 650 l/ha AH-SG1 liquid fertilizer (containing humates of potassium in a NPK matrix with microelements and 4% monosaccharide in which the nitrogen is in amide form) led to a 57% decrease of the TPH content; • the application of 32 kg/ha Zeba absorbent, together with the AH-SG2 fertilizer, led to a 58% decrease of the TPH content.

  4. Bioremediation of soluble heavy metals with recombinant Caulobacter crescentus.

    Science.gov (United States)

    Xu, Zhaohui; Lei, Yu; Patel, Jigar

    2010-01-01

    To achieve one-step separation of heavy metal ions from contaminated water, we have developed a novel bioremediation technology based on self-immobilization of the Caulobacter crescentus recombinant strain JS4022/p723-6H, which overexpresses hexahistidine peptide on the surface of the bacterial cells and serves as a whole-cell adsorbent for dissolved heavy metals. Biofilms formed by JS4022/p723-6H are effective at retaining cadmium from bacterial growth media or environmental water samples. Here we provide additional experiment data discussing the application potential of this new technology. Supplementation of calcium to the growth media produced robust JS4022/p723-6H cells by alleviating their sensitivity to chelators. After growth in the presence of 0.3% CaCl(2)·2H(2)O, double the amount of JS4022/p723-6H cells survived the treatment with 2 mM EDTA. Free cells of JS4022/p723-6H effectively sequestered 51% of the total cadmium from a Lake Erie water sample at pH 5.4, compared to 37% retrieved by the control strain. Similar levels of adsorption were observed at pH 4.2 as well. Cells of JS4022/p723-6H were tolerant of acid treatment for 90 min at pH ≥1.1 or 120 min at pH ≥2.5, which provides an avenue for the convenient regeneration of the bacterial cells metal-binding capacity with acidic solutions. Designs of possible bioreactors and an operation system are also presented.

  5. SEMINAR PROCEEDINGS: RCRA CORRECTIVE ACTION STABILIZATION TECHNOLOGIES

    Science.gov (United States)

    The seminar publication provides an overview of many technologies that can be used in applying the stabilization concept to RCRA cleanup activities. Technologies discussed include covers, grouting, slurry walls, hydrofracture, horizontal well drilling, a vacuum extraction, and b...

  6. Response of Archaeal Communities in Beach Sediments to Spilled Oil and Bioremediation

    OpenAIRE

    Röling, Wilfred F. M.; Couto de Brito, Ivana R.; Swannell, Richard P. J.; Head, Ian M.

    2004-01-01

    While the contribution of Bacteria to bioremediation of oil-contaminated shorelines is well established, the response of Archaea to spilled oil and bioremediation treatments is unknown. The relationship between archaeal community structure and oil spill bioremediation was examined in laboratory microcosms and in a bioremediation field trial. 16S rRNA gene-based PCR and denaturing gradient gel analysis revealed that the archaeal community in oil-free laboratory microcosms was stable for 26 day...

  7. Fungal Laccases and Their Applications in Bioremediation

    Directory of Open Access Journals (Sweden)

    Buddolla Viswanath

    2014-01-01

    Full Text Available Laccases are blue multicopper oxidases, which catalyze the monoelectronic oxidation of a broad spectrum of substrates, for example, ortho- and para-diphenols, polyphenols, aminophenols, and aromatic or aliphatic amines, coupled with a full, four-electron reduction of O2 to H2O. Hence, they are capable of degrading lignin and are present abundantly in many white-rot fungi. Laccases decolorize and detoxify the industrial effluents and help in wastewater treatment. They act on both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants, and they can be effectively used in paper and pulp industries, textile industries, xenobiotic degradation, and bioremediation and act as biosensors. Recently, laccase has been applied to nanobiotechnology, which is an increasing research field, and catalyzes electron transfer reactions without additional cofactors. Several techniques have been developed for the immobilization of biomolecule such as micropatterning, self-assembled monolayer, and layer-by-layer techniques, which immobilize laccase and preserve their enzymatic activity. In this review, we describe the fungal source of laccases and their application in environment protection.

  8. Oil bioremediation using insoluble nitrogen source.

    Science.gov (United States)

    Rosenberg, E; Legman, R; Kushmaro, A; Adler, E; Abir, H; Ron, E Z

    1996-11-15

    Oil bioremediation is limited by the availability of nitrogen and phosphorous, which are needed by the bacteria and not present in sufficient amounts in hydrocarbons. The supply of these two essential elements as water-soluble salts presents several problems. These include the rapid dilution of the salts in the large volumes of polluted land or water and their utilization by other bacteria that do not degrade oil. In addition, increasing the concentration of mobile nitrogen creates further environmental problems. The use of hydrophobic sources of nitrogen and phosphorous that have a low water solubility can overcome these problems. We have studied one such compound. F-1, that is not used by most bacteria but serves as a good nitrogen and phosphorous source for those bacterial strains that are capable of utilizing it. We have shown that bacteria using F-1 do not cross-feed other bacterial strains. Moreover, when the concentration of the pollutant is sufficiently reduced, the multiplication of the bacteria slows down until they become a negligible fraction of the bacterial population. Chemical analysis indicated that following a 28-day treatment of Alaskan crude oil, most of the hydrocarbons, including polycyclic aromatics, are degraded to undetectable levels. The C34 and C35 components were also degraded, although their degradation was not completed within this time period. In treatment of a sandy beach that was accidentally polluted with crude heavy oil, about 90% degradation was obtained within about 4 months at an outside average temperature of 5 -10 degrees C. PMID:8988651

  9. Oil bioremediation processes in Brazilian marine environments : laboratory simulations

    International Nuclear Information System (INIS)

    Bioremediation methods have been used in Brazil to remediate contaminated soils from refinery residues. In particular, bioremediation is a process that can reduce the amount of oil that reaches shorelines, by enhancing natural biodegradation. This presentation presents the results of a laboratory study in which seawater contaminated with light crude oil was bioremediated in a period of 28 days using NPK fertilizer. Whole oil gas chromatography and gas chromatography-mass spectrometry analyses of the hydrocarbon fractions were used to determine the extent of oil biodegradation. It was determined that natural degradation occurred in the first 4 days, and mostly through the evaporation of light end n-alkanes. Biodegradation of n-alkanes was found to be most effective after 7 days, and no changes were observed in the relative abundance of steranes and triterpanes. It appears that the addition of NPK nutrient reduces the biodegradation potential of polyaromatic compounds. Seawater samples were also measured to determine the efficiency of bioremediation. The use of NPK fertilizer resulted in higher toxicity after 14 days probably due to the creation of metabolites as polyaromatic compounds biodegrade. Non toxic levels were found to be reestablished after 28 days of bioremediation. 16 refs., 4 tabs., 6 figs

  10. Enhancing plant-microbe associated bioremediation of phenanthrene and pyrene contaminated soil by SDBS-Tween 80 mixed surfactants.

    Science.gov (United States)

    Ni, Hewei; Zhou, Wenjun; Zhu, Lizhong

    2014-05-01

    The use of surfactants to enhance plant-microbe associated dissipation in soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is a promising bioremediation technology. This comparative study was conducted on the effects of plant-microbe treatment on the removal of phenanthrene and pyrene from contaminated soil, in the presence of low concentration single anionic, nonionic and anionic-nonionic mixed surfactants. Sodium dodecyl benzene sulfonate (SDBS) and Tween 80 were chosen as representative anionic and nonionic surfactants, respectively. We found that mixed surfactants with concentrations less than 150 mg/kg were more effective in promoting plant-microbe associated bioremediation than the same amount of single surfactants. Only about (m/m) of mixed surfactants was needed to remove the same amount of phenanthrene and pyrene from either the planted or unplanted soils, when compared to Tween 80. Mixed surfactants (soils. In the concentration range of 60-150 mg/kg, both ryegrass roots and shoots could accumulate 2-3 times the phenanthrene and pyrene with mixed surfactants than with Tween 80. These results may be explained by the lower sorption loss and reduced interfacial tension of mixed surfactants relative to Tween 80, which enhanced the bioavailability of PAHs in soil and the microbial degradation efficiency. The higher remediation efficiency of low dosage SDBS-Tween 80 mixed surfactants thus advanced the technology of surfactant-enhanced plant-microbe associated bioremediation.

  11. A laboratory feasibility study on a new electrokinetic nutrient injection pattern and bioremediation of phenanthrene in a clayey soil

    International Nuclear Information System (INIS)

    Electrokinetic (EK) injection has recently been proposed to supply nutrients and electron acceptors in bioremediation of low permeable soils. However, effective pH control and uniform injection of inorganic ions have yet to be developed. The present study investigated a new EK injection pattern, which combined electrolyte circulation and electrode polarity reversal on a clayey soil. Soil pH could be controlled ranging from 7.0 to 7.6 by circulating the mixed electrolyte at a suitable rate (800 mL/h in this study) without any buffer. Ammonium and nitrate ions were distributed more uniformly in soil by electrode polarity reversal. The developed electrokinetic injection technology was applied primarily in bioremediation of phenanthrene contaminated soil. Over 80% of the initial 200 mg/kg phenanthrene in soil could be removed in 20 d, and greater phenanthrene removal was achieved using electrode polarity reversal. Hence, the present study provides a promising electrokinetic injection technology for bioremediation of contaminated soils.

  12. Bioremediation of soil heavily contaminated with crude oil and its products: composition of the microbial consortium

    Directory of Open Access Journals (Sweden)

    JELENA S. MILIĆ

    2009-04-01

    Full Text Available Bioremediation, a process that utilizes the capability of microorganism to degrade toxic waste, is emerging as a promising technology for the treatment of soil and groundwater contamination. The technology is very effective in dealing with petroleum hydrocarbon contamination. The aim of this study was to examine the composition of the microbial consortium during the ex situ experiment of bioremediation of soil heavily contaminated with crude oil and its products from the Oil Refinery Pančevo, Serbia. After a 5.5-month experiment with biostimulation and bioventilation, the concentration of the total petroleum hydrocarbons (TPH had been reduced from 29.80 to 3.29 g/kg (89 %. In soil, the dominant microorganism population comprised Gram-positive bacteria from actinomycete-Nocardia group. The microorganisms which decompose hydrocarbons were the dominant microbial population at the end of the process, with a share of more than 80 % (range 107 CFU/g. On the basis of the results, it was concluded that a stable microbial community had been formed after initial fluctuations.

  13. Enhanced bioremediation of soil from Tianjin, China, contaminated with polybrominated diethyl ethers.

    Science.gov (United States)

    Zhang, Zhiyuan; Wang, Cuiping; Li, Jing; Wang, Baolin; Wu, Jianyu; Jiang, Yan; Sun, Hongwen

    2014-12-01

    This work aimed to evaluate the effectiveness of nutrients, H2O2, and tourmaline on the bioremediation of fields where the soil was contaminated with polybrominated diethyl ethers (PBDEs). The results showed that 39.2, 38.3, and 48.1 % of total PBDE removal was observed in microcosms with the addition of nutrients, such as NaNO3, NH4Cl, and NH4NO3, respectively, compared to only 15.2 and 5.8 % of PBDE removal from soil with added Aspergillus niger and control soil, respectively, after 50 days of incubation. In addition, 50.8 and 56.5 % of total PBDE removal were observed in microcosms with 0.5 and 1 μL H2O2. The addition of tourmaline increased total PBDE removal to 32.4 %. Significant increases in soil enzymatic activity with PBDE degraders and bacterial communities were observed using polymerase chain reaction (PCR)--denaturing gradient gel electrophoresis (DGGE). These observations suggested that the combination of inorganic nutrients with chemical, mineral, and biological treatment could improve the PBDE removal efficiency. However, the combination of H2O2 and biological treatment processes is the most efficient technology. This combination of technologies would not cause adverse effects on the subsequent bioremediation process. Therefore, this work offers a potential alternative for the remediation of soil contaminated with PBDE pollutants.

  14. Bioremediation: Technology for treating hydrocarbon-contaminated wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Towprayoon, S.; Kuntrangwattana, S. [King Mongkut`s Institute of Technology, Bangkok (Thailand)

    1996-12-31

    Cutting oil wastewater from an iron and steel factory was applied to the soil windrow. Self-remediation was then compared with remediation with acclimatized indigenous microbes. The incremental reduction rate of the microorganisms and hydrocarbon-degradable microbes was slower in self-remediation than in the latter treatment. Within 30 days, when the acclimatized indigenous microbes were used, there was a significant reduction of the contaminated hydrocarbons, while self-remediation took longer to reduce to the same concentration. Various nitrogen sources were applied to the soil pile, namely, organic compost, chemical fertilizer, ammonium sulfate, and urea. The organic compost induced a high yield of hydrocarbon-degradable microorganisms, but the rate at which the cutting oil in the soil decreased was slower than when other nitrogen sources were used. The results of cutting oil degradation studied by gas chromatography showed the absence of some important hydrocarbons. The increment of the hydrocarbon-degradable microbes in the land treatment ecosystem does not necessarily correspond to the hydrocarbon reduction efficiency. 3 refs., 3 figs.

  15. BIOREMEDIATION - TECHNOLOGY FOR DECONTAMINATION OF SOILS POLLUTED WITH PETROLEUM HYDROCARBONS

    OpenAIRE

    Irina-Ramona PECINGINĂ; Daniela CÎRŢÎNĂ

    2013-01-01

    The pollution of soil with petroleum hydrocarbons prevents unfolding processes ofwater infiltration in soil, its circulation and the exchanges of the gaseous substances with theatmosphere. The biodegradation speed of the pollutants by the microorganisms is influenced ofsome factors: nutrients, soil type, humidity, temperature, pH, the type and the metabolism of themicroorganisms. The spill of the crude oil in the soil results in numerical growth of bacteriapopulations, with a concomitant redu...

  16. BIOREMEDIATION - TECHNOLOGY FOR DECONTAMINATION OF SOILS POLLUTED WITH PETROLEUM HYDROCARBONS

    Directory of Open Access Journals (Sweden)

    Irina-Ramona PECINGINĂ

    2013-05-01

    Full Text Available The pollution of soil with petroleum hydrocarbons prevents unfolding processes ofwater infiltration in soil, its circulation and the exchanges of the gaseous substances with theatmosphere. The biodegradation speed of the pollutants by the microorganisms is influenced ofsome factors: nutrients, soil type, humidity, temperature, pH, the type and the metabolism of themicroorganisms. The spill of the crude oil in the soil results in numerical growth of bacteriapopulations, with a concomitant reduction in their diversity, respectively with the predominantspecies that degrade hydrocarbons to simpler compounds, determining their gradualdisappearance.

  17. Particulate hot gas stream cleanup technical issues

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This is the eleventh in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic bed filter elements. Task 1 is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task 1 during the past quarter, analyses were completed on samples obtained during a site visit to the Power Systems Development Facility (PSDF). Analyses are in progress on ash samples from the Advanced Particulate Filter (APF) at the Pressurized Fluidized-Bed Combustor (PFBC) that was in operation at Tidd and ash samples from the Pressurized Circulating Fluid Bed (PCFB) system located at Karhula, Finland. An additional analysis was performed on a particulate sample from the Transport Reactor Demonstration Unit (TRDU) located at the University of North Dakota Energy and Environmental Research Center. A manuscript and poster were prepared for presentation at the Advanced Coal-Based Power and Environmental Systems `97 Conference scheduled for July 22 - 24, 1997. A summary of recent project work covering the mechanisms responsible for ash deposit consolidation and ash bridging in APF`s collecting PFB ash was prepared and presented at FETC-MGN in early July. The material presented at that meeting is included in the manuscript prepared for the Contractor`s Conference and also in this report. Task 2 work during the past quarter included mechanical testing and microstructural examination of Schumacher FT20 and Pall 326 as- manufactured, after 540 hr in service at Karhula, and after 1166 hr in service at

  18. Application of Fingerprinting Molecular Methods in Bioremediation Studies

    Science.gov (United States)

    Karpouzas, Dimitrios G.; Singh, Brajesh K.

    Bioremediation has been identified as a beneficial and effective strategy for the removal of recalcitrant environmental contaminants. Bioaugmentation of polluted environments with exogenous degrading microorganisms constitutes a major strategy of bioremediation. However, the ecological role of these strains and their impact on the endogenous microbial community of the micro-ecosystems where they are released should be known. Fingerprinting PCR-based methods, like denaturating gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (TRFLP), could be used in studies exploring the ecology of pollutant-degrading microorganisms and their effects on the structure of the soil microbial community. This chapter provides a brief outline of the technical details involved in the application of DGGE and TRFLP fingerprinting in soil microbial ecology, with particular reference to bioremediation studies.

  19. Hot gas cleanup test facility for gasification and pressurized combustion project. Quarterly report, October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDs) into the structural and process designs. Substantial progress in construction activities was achieved during this quarter.

  20. NASA Remediation Technology Collaboration Development Task, Overview and Project Summaries

    Science.gov (United States)

    Romeo, James G.

    2014-01-01

    An overview presentation of NASA's Remediation Technology Collaboration Development Task including the following project summaries: in situ groundwater monitor, in situ chemical oxidation, in situ bioremediation, horizontal multi-port well, and high resolution site characterization.

  1. Amine-based post-combustion CO2 capture in air-blown IGCC systems with cold and hot gas clean-up

    International Nuclear Information System (INIS)

    Highlights: • Hot fuel gas clean-up is a very favorable technology for IGCC concepts. • IGCC net efficiency reduces to 41.5% when realizing post-combustion CO2 capture. • Complex IGCC layouts are necessary if exhaust gas recirculation is realized. • IGCC performance does not significantly vary with exhaust gas recirculation. - Abstract: This paper focuses on the thermodynamic performance of air-blown IGCC systems with post-combustion CO2 capture by chemical absorption. Two IGCC technologies are investigated in order to evaluate two different strategies of coal-derived gas clean-up. After outlining the layouts of two power plants, the first with conventional cold gas clean-up and the second with hot gas clean-up, attention is paid to the CO2 capture station and to issues related to exhaust gas recirculation in combined cycles. The results highlight that significant improvements in IGCC performance are possible if hot coal-derived gas clean-up is realized before the syngas fuels the combustion turbine, so the energy cost of CO2 removal in an amine-based post-combustion mode is less strong. In particular, IGCC net efficiency as high as 41.5% is calculated, showing an interesting potential if compared to the one of IGCC systems with pre-combustion CO2 capture. Thermodynamic effects of exhaust gas recirculation are investigated as well, even though IGCC performance does not significantly vary against a more complicated plant layout

  2. Deriving cleanup guidelines for radionuclides at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL's Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory. With the exception of radium, there are no regulations or guidelines to establish cleanup guidelines for radionuclides in soils at BNL. BNL must derive radionuclide soil cleanup guidelines for a number of Operable Units (OUs) and Areas of Concern (AOCs). These guidelines are required by DOE under a proposed regulation for radiation protection of public health and the environment as well as to satisfy the requirements of CERCLA. The objective of this report is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL. Implementation of the approach is briefly discussed

  3. Deriving cleanup guidelines for radionuclides at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Meinhold, A.F.; Morris, S.C.; Dionne, B.; Moskowitz, P.D.

    1997-01-01

    Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL`s Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory. With the exception of radium, there are no regulations or guidelines to establish cleanup guidelines for radionuclides in soils at BNL. BNL must derive radionuclide soil cleanup guidelines for a number of Operable Units (OUs) and Areas of Concern (AOCs). These guidelines are required by DOE under a proposed regulation for radiation protection of public health and the environment as well as to satisfy the requirements of CERCLA. The objective of this report is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL. Implementation of the approach is briefly discussed.

  4. Evaluation of beach cleanup effects using linear system analysis.

    Science.gov (United States)

    Kataoka, Tomoya; Hinata, Hirofumi

    2015-02-15

    We established a method for evaluating beach cleanup effects (BCEs) based on a linear system analysis, and investigated factors determining BCEs. Here we focus on two BCEs: decreasing the total mass of toxic metals that could leach into a beach from marine plastics and preventing the fragmentation of marine plastics on the beach. Both BCEs depend strongly on the average residence time of marine plastics on the beach (τ(r)) and the period of temporal variability of the input flux of marine plastics (T). Cleanups on the beach where τ(r) is longer than T are more effective than those where τ(r) is shorter than T. In addition, both BCEs are the highest near the time when the remnants of plastics reach the local maximum (peak time). Therefore, it is crucial to understand the following three factors for effective cleanups: the average residence time, the plastic input period and the peak time.

  5. Implications of the KONVERGENCE Model for Difficult Cleanup Decisions

    Energy Technology Data Exchange (ETDEWEB)

    Piet, Steven James; Dakins, Maxine Ellen; Gibson, Patrick Lavern; Joe, Jeffrey Clark; Kerr, Thomas A; Nitschke, Robert Leon

    2002-08-04

    Abstract—Some cleanup decisions, such as cleanup of intractable contaminated sites or disposal of spent nuclear fuel, have proven difficult to make. Such decisions face high resistance to agreement from stakeholders possibly because they do not trust the decision makers, view the consequences of being wrong as too high, etc. Our project’s goal is to improve sciencebased cleanup decision-making. This includes diagnosing intractable situations, as a step to identifying a path toward sustainable solutions. Companion papers describe the underlying philosophy of the KONVERGENCE Model for Sustainable Decisions,1 and the overall framework and process steps.2 Where knowledge, values, and resources converge (the K, V, and R in KONVERGENCE), you will find a sustainable decision – a decision that works over time. For intractable cases, serious consideration of the adaptable class of alternatives is warranted – if properly implemented and packaged.

  6. Smithville OCB cleanup project: TAGA 6000 survey results

    Energy Technology Data Exchange (ETDEWEB)

    Ng, A.C.

    1994-12-31

    The mobile TAGA 6000 air pollution monitoring unit conducted a five-phase ambient polychlorinated biphenyl (PCB) monitoring survey in Smithville, Ontario. The survey objective was to provide on-site ambient concentration measurements of selected PCBs in the vicinity of the Smithville PCB disposal site during different phases of the site cleanup operation. The mobile unit screened air samples for ambient PCBs every two minutes, analyzing over 3,500 air samples for PCB congeners during the cleanup process. This report presents results of the monitoring survey for all phases of the cleanup, including periods before, during, and after utilization of the PCB incinerator. Appendices provide information on the incinerator and the PCB sampling and analysis equipment and techniques.

  7. Interim Site Assessment and Clean-up Guidebook

    International Nuclear Information System (INIS)

    In April 1995 an Interim Site Investigation and Clean-up Guidebook (for petroleum hydrocarbon and volatile organic compound impacted sites) was developed for public use. The purpose of the Guidebook was to offer a new approach to the site cleanup process: one that reduces time, cuts costs, and establishes a defined endpoint for investigations and cleanup actions. The Guidebook provided a matrix to screen for low-risk contaminated sites. After a year of use, the Guidebook was revised in May 1996. The most notable change was in the Petroleum Hydrocarbon Section and the modification of the screening table for petroleum hydrocarbon contaminated sites. The changes considered the strong influence of lithology on contaminant transport and recognized the large attenuation of the long chain, heavy oil and tar, hydrocarbons in soils

  8. Uranium mill tailings cleanup: Federal leadership at last

    International Nuclear Information System (INIS)

    The Department of Energy has proposed legislation that would allow it to enter into cooperative agreements with various States to clean up residual radioactive materials--commonly called uranium mill tailings--at 22 inactive uranium mills. About 25 million tons of mill tailings have accumulated at these sites since the 1940s. GAO analyzed the need for, and adequacy of, the proposed legislation and recommends that the cleanup program be endorsed. While the Federal Government has no apparent legal responsibility for such a cleanup, it does have a moral responsibility since the mills primarily produced uranium for Federal programs. Further, it is the only organization able to undertake such a cleanup program on a comprehensive basis. GAO also suggests several areas where the proposed legislation could be strengthened

  9. Needs for Risk Informing Environmental Cleanup Decision Making - 13613

    International Nuclear Information System (INIS)

    This paper discusses the needs for risk informing decision making by the U.S. Department of Energy (DOE) Office of Environmental Management (EM). The mission of the DOE EM is to complete the safe cleanup of the environmental legacy brought about from the nation's five decades of nuclear weapons development and production and nuclear energy research. This work represents some of the most technically challenging and complex cleanup efforts in the world and is projected to require the investment of billions of dollars and several decades to complete. Quantitative assessments of health and environmental risks play an important role in work prioritization and cleanup decisions of these challenging environmental cleanup and closure projects. The risk assessments often involve evaluation of performance of integrated engineered barriers and natural systems over a period of hundreds to thousands of years, when subject to complex geo-environmental transformation processes resulting from remediation and disposal actions. The requirement of resource investments for the cleanup efforts and the associated technical challenges have subjected the EM program to continuous scrutiny by oversight entities. Recent DOE reviews recommended application of a risk-informed approach throughout the EM complex for improved targeting of resources. The idea behind this recommendation is that by using risk-informed approaches to prioritize work scope, the available resources can be best utilized to reduce environmental and health risks across the EM complex, while maintaining the momentum of the overall EM cleanup program at a sustainable level. In response to these recommendations, EM is re-examining its work portfolio and key decision making with risk insights for the major sites. This paper summarizes the review findings and recommendations from the DOE internal reviews, discusses the needs for risk informing the EM portfolio and makes an attempt to identify topics for R and D in integrated

  10. Cleanup/stimulation of a horizontal wellbore using propellants

    Energy Technology Data Exchange (ETDEWEB)

    Rougeot, J.E.; Lauterbach, K.A.

    1993-01-01

    This report documents the stimulation/cleanup of a horizontal well bore (Wilson 25) using propellants. The Wilson 25 is a Bartlesville Sand well located in the Flatrock Field, Osage County, Oklahoma. The Wilson 25 was drilled to determine if horizontal drilling could be used as a means to economically recover primary oil that had been left in place in a mostly abandoned oil field because of the adverse effects of water coning. Pump testing of the Wilson 25 horizontal well bore before cleanup or stimulation produced 6 barrels of oil and .84 barrels of water per day. The high percentage of daily oil production to total daily fluid production indicated that the horizontal well bore had accessed potentially economical oil reserves if the fluid production rate could be increased by performing a cleanup/stimulation treatment. Propellants were selected as an inexpensive means to stimulate and cleanup the near well bore area in a uniform manner. The ignition of a propellant creates a large volume of gas which penetrates the formation, creating numerous short cracks through which hydrocarbons can travel into the well bore. More conventional stimulation/cleanup techniques were either significantly more expensive, less likely to treat uniformly, or could not be confined to the near well bore area. Three different propellant torpedo designs were tested with a total of 304' of horizontal well bore being shot and producible. The initial test shot caused 400' of the horizontal well bore to become plugged off, and subsequently it could not be production tested. The second and third test shots were production tested, with the oil production being increased 458% and 349%, respectively, on a per foot basis. The Wilson 25 results indicate that a propellant shot treatment is an economically viable means to cleanup/stimulate a horizontal well bore.

  11. Developments in Bioremediation of Soils and Sediments Pollutedwith Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.; Tabak, Henry H.

    2007-03-15

    Bioremediation of metals and radionuclides has had manyfield tests, demonstrations, and full-scale implementations in recentyears. Field research in this area has occurred for many different metalsand radionuclides using a wide array of strategies. These strategies canbe generally characterized in six major categories: biotransformation,bioaccumulation/bisorption, biodegradation of chelators, volatilization,treatment trains, and natural attenuation. For all field applicationsthere are a number of critical biogeochemical issues that most beaddressed for the successful field application. Monitoring andcharacterization parameters that are enabling to bioremediation of metalsand radionuclides are presented here. For each of the strategies a casestudy is presented to demonstrate a field application that uses thisstrategy.

  12. [Application prospect about bioremediation of polychlorinated biphenyls-contaminated soil with immobilized microorganism technique: a review].

    Science.gov (United States)

    Hu, Jin-Xing; Su, Xiao-Mei; Han, Hui-Bo; Shen, Chao-Feng; Shi, Ji-Yan

    2014-06-01

    As one type of the persistent organic pollutants, polychlorinated biphenyls (PCBs) are tremendously harmful to organisms. These compounds are easily absorbed onto soil particles and able to accumulate in soil after they are released into the environment. Bioremediation technology of PCBs-contaminated soils has become a research hotspot in recent years, and immobilized microorganism technique has high developing and applying value because of its unique advantages in environmental remediation. This paper reviewed the chief remediation technology of PCBs-contaminated soils and then analyzed the characteristics of immobilized microorganism technique and its research progress in remediation of organic polluted soil. Finally, the feasibility and problems of this technique in remediation of PCBs-contaminated soil were also discussed.

  13. BIOREMEDIATION TECHNIQUES ON CRUDE OIL CONTAMINATED SOILS IN OHIO. Final report includes the quarterly report that ended 12/31/1996

    Energy Technology Data Exchange (ETDEWEB)

    David A. Hodges; Richard J. Simmers

    1997-05-30

    The purpose of this study is to define the optimum limits of chemical and physical conditions that reduce soil salinity and maximize indigenous aerobic microbiological populations in the bioremediation of oil field waste solids. Specifically, the study centers around treatment of surface contained oily waste having low density and limited solubility in water. Successful remediation is defined by total petroleum hydrocarbon (TPH) reduction to 1% and no hydrocarbon or salinity impact on ground water resources. The Department of Energy, the US Environmental Protection Agency and the Interstate Oil and Gas Compact Commission have encouraged oil and gas producing states to identify and develop improved methods such as this to reduce, recycle or treat solid waste generated with the exploration and development of domestic petroleum resources (IOGCC, 1995). With encouragement and funding assistance through the Department of Energy, Ohio is developing these bioremediation practices to protect soil and water resources. Ohio produced 8,300,000 barrels of crude oil in 1996 from wells operated by 4310 registered owners (ODNR, 1996). Good well site housekeeping can minimize spills, however accidental spills inevitably occur with oil production of this magnitude. Development of sound environmental and economical clean-up procedures is essential.

  14. A comparison of bioaugmentation and intrinsic in situ bioremediation of a PAH contaminated site

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAHs) are one of the most common environmental hazards, naturally occurring in petroleum and its by-products. They are encountered at nearly all UST sites, and present an impediment to the use of cost effective intrinsic in situ bioremediation due to their recalcitrant nature. Even bacteria isolated specifically for their ability to degrade PAHs in the laboratory have shown no significant degradative capabilities in the field. This is due to the unique balance that exists at every contaminated site between the microbial ecology, chemical, physical, and environmental factors. Therefore, bacteria indigenous to the site and acclimated to these environmental parameters should be well suited for use in bioaugmentation. Based on this assumption, a new and innovative approach to bioaugmentation has been developed which consists of a series of scientifically-sound, rational steps in the use of this technology. Initially, careful chemical and biological analyses of site samples are conducted using conventional analytical instrumentation and state-of-the-art microbiological, biochemical, and molecular biological techniques. Bacteria from site samples that demonstrate potential PAH degradative capability are isolated. The bacteria are then enriched in culture and re-introduced to the site with appropriate nutrients. Further, this approach encompasses the proposed guidelines for proving the efficacy of in situ bioremediation as set forth by the National Science Foundation. To demonstrate the effectiveness of this approach, data are presented here of a laboratory-scale trial of a PAH contaminated site

  15. Bioremediation of oil polluted marine sediments: A bio-engineering treatment.

    Science.gov (United States)

    Cappello, Simone; Calogero, Rosario; Santisi, Santina; Genovese, Maria; Denaro, Renata; Genovese, Lucrezia; Giuliano, Laura; Mancini, Giuseppe; Yakimov, Michail M

    2015-06-01

    The fate of hydrocarbon pollutants and the development of oil-degrading indigenous marine bacteria in contaminated sediments are strongly influenced by abiotic factors such as temperature, low oxygen levels, and nutrient availability. In this work, the effects of different biodegradation processes (bioremediation) on oil-polluted anoxic sediments were analyzed. In particular, as a potential bioremediation strategy for polluted sediments, we applied a prototype of the "Modular Slurry System" (MSS), allowing containment of the sediments and their physical-chemical treatment (by air insufflations, temperature regulation, and the use of a slow-release fertilizer). Untreated polluted sediments served as the blank in a non-controlled experiment. During the experimental period (30 days), bacterial density and biochemical oxygen demand were measured and functional genes were identified by screening. Quantitative measurements of pollutants and an eco-toxicological analysis (mortality of Corophium orientale) were carried out at the beginning and end of the experiments. The results demonstrated the high biodegradative capability achieved with the proposed technology and its strong reduction of pollutant concentrations and thus toxicity. PMID:26496620

  16. In Situ Bioremediation by Natural Attenuation: from Lab to Field Scale

    Science.gov (United States)

    Banwart, S. A.; Thornton, S.; Rees, H.; Lerner, D.; Wilson, R.; Romero-Gonzalez, M.

    2007-03-01

    In Situ Bioremediation is a passive technology to degrade soil and groundwater contamination in order to reduce environmental and human health risk. Natural attenuation is the application of engineering biotechnology principles to soil and groundwater systems as natural bioreactors to transform or immobilize contamination to less toxic or less bioavailable forms. Current advances in computational methods and site investigation techniques now allow detailed numerical models to be adequately parameterized for interpretation of processes and their interactions in the complex sub-surface system. Clues about biodegradation processes point to the dominant but poorly understood behaviour of attached growth microbial populations that exist within the context of biofilm formation. New techniques that combine biological imaging with non-destructive chemical analysis are providing new insights into attached growth influence on Natural Attenuation. Laboratory studies have been carried out in porous media packed bed reactors that physically simulate plume formation in aquifers. Key results show that only a small percentage of the total biomass within the plume is metabolically active and that activity is greatest at the plume fringe. This increased activity coincides with the zone where dispersive mixing brings dissolved O2 from outside the plume in contact with the contamination and microbes. The exciting new experimental approaches in lab systems offer tremendous potential to move Natural Attenuation and other in situ bioremediation approaches away from purely empirical engineering approaches, to process descriptions that are far more strongly based on first principles and that have a far greater predictive capacity for remediation performance assessment.

  17. Combining Solvent Extraction and Bioremediation for Removing Weathered Petroleum from Contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    WU Guo-Zhong; F.COULON; YANG Yue-Wei; LI Hong; SUI Hong

    2013-01-01

    This study aimed to evaluate the efficacy,practicality and sustainability of a combined approach based on solvent extraction and biodegradation to remediate the soils contaminated with high levels of weathered petroleum hydrocarbons.The soils used in this study were obtained from the Shengli Oilfield in China,which had a long history of contamination with high concentrations of petroleum hydrocarbons.The contaminated soils were washed using a composite organic solvent consisting of hexane and pentane (4:1,v/v) and then bioremediated in microcosms which were bioaugmentated with Bacillus subtilis FQ06 strains and/or rhamnolipid.The optimal solvent extraction conditions were determined as extraction for 20 min at 25 ℃ with solvent-soil ratio of 6:1 (v/w).On this basis,total petroleum hydrocarbon was decreased from 140000 to 14000 mg kg-1,which was further reduced to < 4000 mg kg-1 by subsequent bioremediation for 132 d.Sustainability assessment of this integrated technology showed its good performance for both short-and long-term effectiveness.Overall the results encouraged its application for remediating contaminated sites especially with high concentration weathered hydrocarbons.

  18. Bioremediation of selected contaminants in aquatic environments of the Mississippi River Basin

    International Nuclear Information System (INIS)

    Bioremediation is generally accepted as a long-term and economic treatment option. However, quantitative information on bioremediation and biosorption is required before this option can be adopted successfully. The primary goal of this on-going project is to determine the extent of natural biodegradation of hazardous organics and biosorption of hazardous organics and heavy metals by the consortia of bacteria, fungi, and plants. Methods to enhance the biodegradation process will be studied during the second and third years of this 3-year proposed project. The Devil's Swamp area near Baton Rouge and Bayou St. John in New Orleans have been selected as the first set of test sites. Some samples from Lake Pontchartrain, bordering New Orleans on the north, have also been analyzed. It is expected that many of the contaminants found at the test site(s) are present at other sites of DOE's interest. Further, technology resulting from the proposed research involving enhanced natural biodegradation processes should be transferable to other DOE sites

  19. Remediation of phthalates in river sediment by integrated enhanced bioremediation and electrokinetic process.

    Science.gov (United States)

    Yang, Gordon C C; Huang, Sheng-Chih; Jen, Yu-Sheng; Tsai, Pei-Shin

    2016-05-01

    The objective of this study was to evaluate the feasibility of enhanced bioremediation coupling with electrokinetic process for promoting the growth of intrinsic microorganisms and removing phthalate esters (PAEs) from river sediment by adding an oxygen releasing compound (ORC). Test results are given as follows: Enhanced removal of PAEs was obtained by electrokinetics, through which the electroosmotic flow would render desorption of organic pollutants from sediment particles yielding an increased bioavailability. It was also found that the ORC injected into the sediment compartment not only would alleviate the pH value variation due to acid front and base front, but would be directly utilized as the carbon source and oxygen source for microbial growth resulting in an enhanced degradation of organic pollutants. However, injection of the ORC into the anode compartment could yield a lower degree of microbial growth due to the loss of ORC during the transport by EK. Through the analysis of molecular biotechnology it was found that both addition of an ORC and application of an external electric field can be beneficial to the growth of intrinsic microbial and abundance of microflora. In addition, the sequencing result showed that PAEs could be degraded by the following four strains: Flavobacterium sp., Bacillus sp., Pseudomonas sp., and Rhodococcus sp. The above findings confirm that coupling of enhanced bioremediation and electrokinetic process could be a viable remediation technology to treat PAEs-contaminated river sediment. PMID:26733014

  20. Building organizational technical capabilities: a new approach to address the office of environmental management cleanup challenges in the 21. century

    International Nuclear Information System (INIS)

    The United States Department of Energy (DOE), Office of Environmental Management (EM) is responsible for the nations nuclear weapons program legacy wastes cleanup. The EM cleanup efforts continue to progress, however the cleanup continues to be technologically complex, heavily regulated, long-term, and a high life cycle cost estimate (LCCE) effort. Over the past few years, the EM program has undergone several changes to accelerate its cleanup efforts with varying degrees of success. Several cleanup projects continued to experience schedule delays and cost growth. The schedule delays and cost growth have been attributed to several factors such as changes in technical scope, regulatory and safety considerations, inadequacy of acquisition approach and project management. This article will briefly review the background and schools of thought on strategic management and organizational change practiced in the United States over the last few decades to improve an organisation's competitive edge and cost performance. The article will briefly review examples such as the change at General Electric, and the recent experience obtained from the nuclear industry, namely the long-term response to the 1986 Chernobyl accident. The long-term response to Chernobyl, though not a case of organizational change, could provide some insight in the strategic management approaches used to address people issues. The article will discuss briefly EM attempts to accelerate cleanup over the past few years, and the subsequent paradigm shift. The paradigm shift targets enhancing and/or creating organizational capabilities to achieve cost savings. To improve its ability to address the 21. century environmental cleanup challenges and achieve cost savings, EM has initiated new corporate changes to develop new and enhance existing capabilities. These new and enhanced organizational capabilities include a renewed emphasis on basics, especially technical capabilities including safety, project management

  1. 水环境生物修复技术作用机理及研究进展%Advances in researches on the bioremediation technoIogy for contaminated water treatment

    Institute of Scientific and Technical Information of China (English)

    陈韦丽; 罗欢; 蒋然

    2015-01-01

    The mechanism of bioremediation technology was sys-tematically presented via microbial remediation, phytoremediation and animal remediation. Researches status of bioremediation technology for different pollutants treatment was expatiated on. The difficulties in-volved in application of bioremediation and the suggestions for future development were put forward.%从微生物修复、植物修复和动物修复三个方面系统介绍了生物修复技术的作用原理,阐述了生物修复技术治理水中不同污染物的研究现状,并提出目前存在的问题和今后发展的建议。

  2. Bioremediation of a pesticide polluted soil: Case DDT

    International Nuclear Information System (INIS)

    1,1,1-trichloro-2,2 bis (p-chlorophenyl) ethane (DDT) has been used since the Second World War to control insect-borne diseases in humans and domestic animals. The use of these organochlorine insecticides has been banned in most countries because of its persistence in the environment, biomagnification and potential susceptibility to toxicity to higher animals. Bioremediation involves the use of microorganisms to degrade organic contaminants in the environment, transforming them into simpler and less dangerous, even harmless compounds. This decontamination strategy has low costs, and wide public acceptance, also it can take place on the site. Compared to other methods, bioremediation is a more promising and less expensive to eliminate contaminants in soil and water. In soil, compounds such as DDT, chlorinated biphenyls can be partially biodegraded by a group of aerobic bacteria that cometabolize the contaminant. The bioavailability of pollutants may be enhanced by treating the soil in the presence of contaminant mobilizing agents such as surfactants. In this review we discuss the different strategies for bioremediation of soil contaminated with DDT, including mechanisms and degradation pathways. The application of these techniques in contaminated soil is also described. This review also discusses which is the best strategy for bioremediation of DDT.

  3. [Effects and Biological Response on Bioremediation of Petroleum Contaminated Soil].

    Science.gov (United States)

    Yang, Qian; Wu, Man-li; Nie, Mai-qian; Wang, Ting-ting; Zhang, Ming-hui

    2015-05-01

    Bioaugmentation and biostimulation were used to remediate petroleum-contaminated soil which were collected from Zichang city in North of Shaanxi. The optimal bioremediation method was obtained by determining the total petroleum hydrocarbon(TPH) using the infrared spectroscopy. During the bioremediation, number of degrading strains, TPH catabolic genes, and soil microbial community diversity were determined by Most Probable Number (MPN), polymerase chain reaction (PCR) combined agarose electrophoresis, and PCR-denaturing gradient electrophoresis (DGGE). The results in different treatments showed different biodegradation effects towards total petroleum hydrocarbon (TPH). Biostimulation by adding N and P to soils achieved the best degradation effects towards TPH, and the bioaugmentation was achieved by inoculating strain SZ-1 to soils. Further analysis indicated the positive correlation between catabolic genes and TPH removal efficiency. During the bioremediation, the number of TPH and alkanes degrading strains was higher than the number of aromatic degrading strains. The results of PCR-DGGE showed microbial inoculums could enhance microbial community functional diversity. These results contribute to understand the ecologically microbial effects during the bioremediation of petroleum-polluted soil.

  4. Bioremediation of chlorinated ethenes in aquifer thermal energy storage

    OpenAIRE

    Ni, Z

    2015-01-01

      Subjects: bioremediation; biodegradation; environmental biotechnology, subsurface and groundwater contamination; biological processes; geochemistry; microbiology The combination of enhanced natural attenuation (ENA) of chlorinated volatile organic compounds (CVOCs) and aquifer thermal energy storage (ATES) appears attractive because such integration provides a promising solution for redevelopment of urban areas in terms of improving the local environmental quality as well as achieving ...

  5. Genomic and physiological perspectives on bioremediation processes at the FRC

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Erick; Leigh, Mary Beth; Hemme, Christopher; Gentry, Terry; Harzman, Christina; Wu, Weimin; Criddle, Craig S.; Zhou, Jizhong; Marsh, Terence; Tiedje, James M.

    2006-04-05

    A suite of molecular and physiological studies, including metal reduction assays, metagenomics, functional gene microarrays and community sequence analyses were applied to investigate organisms involved in bioremediation processes at the ERSP Field Research Center and to understand the effects of stress on the makeup and evolution of microbial communities to inform effective remediation strategies.

  6. INTRINSIC BIOREMEDIATION OF A PETROLEUM-IMPACTED WETLAND

    Science.gov (United States)

    Following the 1994 San Jacinto River flood and oil spill in southeast Texas, a petroleum-contaminated wetland was reserved for a long-term research program to evaluate bioremediation as a viable spill response tool. The first phase of this program, presented in this paper, evalua...

  7. MICROBIAL POPULATION CHANGES DURING BIOREMEDIATION OF AN EXPERIMENTAL OIL SPILL

    Science.gov (United States)

    Three crude oil bioremediation techniques were applied in a randomized block field experiment simulating a coastal oil-spill. Four treatments (no oil control, oil alone, oil + nutrients, and oil + nutrients + an indigenous inoculum) were applied. In-situ microbial community str...

  8. Monitoring for bioremediation efficacy: The marrow marsh experience

    International Nuclear Information System (INIS)

    The US Environmental Protection Agency's Environmental Response Team analyzed samples taken from Marrow Marsh, Galveston Bay, Texas, to assess the efficacy of a bioremediation effort in the marsh following the Apex barges spill on July 28, 1990. Samples from the marsh had been collected over a 96-hour period following the first application of the bioremediation agent and then 25 days after the second application, which occurred 8 days after the first. Results of sample analyses to evaluate changes in the chemical characteristics of spilled oil failed to show evidence of oil degradation during the 96 hours after the initial treatment, but did show evidence of degradation 25 days after the second treatment-although differences between samples from treated and untreated sites were not evident. Because control areas had not been maintained after the second application, contamination by the bioremediation agent of previously untreated (control) areas may have occurred, perhaps negating the possibility of detecting differences between treated and control areas. Better preparedness to implement bioremediation and conduct monitoring might have increased the effectiveness of the monitoring effort

  9. OIL SPILL BIOREMEDIATION ON COASTAL SHORELINES: A CRITIQUE

    Science.gov (United States)

    The purpose of this chapter is not to provide an extensive review of the literature on oil spill bioremediation. For that, the reader is referred to Swannell et al. (1996), who have conducted the most exhaustive review I have yet to come across. Other reviews are also av...

  10. Use of Additives in Bioremediation of Contaminated Groundwater and Soil

    Science.gov (United States)

    This chapter reviews application of additives used in bioremediation of chlorinated solvents and fuels for groundwater and soil remediation. Soluble carbon substrates are applicable to most site conditions except aquifers with very high or very low groundwater flow. Slow-release ...

  11. Bioremediation of lead contaminated soil with Rhodobacter sphaeroides.

    Science.gov (United States)

    Li, Xiaomin; Peng, Weihua; Jia, Yingying; Lu, Lin; Fan, Wenhong

    2016-08-01

    Bioremediation with microorganisms is a promising technique for heavy metal contaminated soil. Rhodobacter sphaeroides was previously isolated from oil field injection water and used for bioremediation of lead (Pb) contaminated soil in the present study. Based on the investigation of the optimum culturing conditions and the tolerance to Pb, we employed the microorganism for the remediation of Pb contaminated soil simulated at different contamination levels. It was found that the optimum temperature, pH, and inoculum size for R. sphaeroides is 30-35 °C, 7, and 2 × 10(8) mL(-1), respectively. Rhodobacter sphaeroides did not remove the Pb from soil but did change its speciation. During the bioremediation process, more available fractions were transformed to less accessible and inert fractions; in particular, the exchangeable phase was dramatically decreased while the residual phase was substantially increased. A wheat seedling growing experiment showed that Pb phytoavailability was reduced in amended soils. Results inferred that the main mechanism by which R. sphaeroides treats Pb contaminated soil is the precipitation formation of inert compounds, including lead sulfate and lead sulfide. Although the Pb bioremediation efficiency on wheat was not very high (14.78% root and 24.01% in leaf), R. sphaeroides remains a promising alternative for Pb remediation in contaminated soil.

  12. In situ microcosms in aquifer bioremediation studies.

    Science.gov (United States)

    Mandelbaum, R T; Shati, M R; Ronen, D

    1997-07-01

    The extent to which aquifer microbiota can be studied under laboratory or simulated conditions is limited by our inability to authentically duplicate natural conditions in the laboratory. Therefore, extrapolation of laboratory results to real aquifer situations is often criticized, unless validation of the data is performed in situ. Reliable data acquisition is critical for the estimation of chemical and biological reaction rates of biodegradation processes in groundwater and as input data for mathematical models. Typically, in situ geobiochemical studies relied on the injection of groundwater spiked with compounds or bacteria of interest into the aquifer, followed by monitoring the changes over time and space. In situ microcosms provide a more confined study site for measurements of microbial reactions, yet closer to natural conditions than laboratory microcosms. Two basic types of in situ aquifer microcosm have been described in recent years, and both originated from in situ instruments initially designed for geochemical measurements. Gillham et al. [Ground Water 28 (1990) 858-862] constructed an instrument that isolates a portion of an aquifer for in situ biochemical rate measurements. More recently Shati et al. [Environ. Sci. Technol. 30 (1996) 2646-2653] modified a multilayer sampler for studying the activity of inoculated bacteria in a contaminated aquifer Keeping in mind recent advances in environmental microbiology methodologies such as immunofluorescence direct counts, oligonucleotide and PCR probes, fatty acid methyl esther analysis for the detection and characterization of bacterial communities, measurement of mRNA and expression of proteins, it is evident that much new information can now be gained from in situ work. Using in situ microcosms to study bioremediation efficiencies, the fate of introduced microorganisms and general geobiochemical aquifer processes can shed more realistic light on the microbial underworld. The aim of this paper is to

  13. Hanford groundwater cleanup and restoration conceptual study

    International Nuclear Information System (INIS)

    The purpose of the sitewide groundwater restoration study is to (1)develop groundwater use scenarios, (2) identify potential groundwater restoration technologies that may be appropriate at the Hanford Site, (3) recommend sitewide engineering systems.that satisfy the restoration objectives for each groundwater-use scenario, and (4) identify emerging technologies or research and development (R ampersand D) needs that have potential at the Hanford Site. Three groundwater restoration-use scenarios have been developed to meet specific objectives and land uses at the Hanford Site. These scenarios are described in detail within the next section. This report presents three recommended sitewide systems, one for each scenario, that are engineered to a preconceptual level of detail. Within each scenario, the engineered system is intended to restore groundwater on a sitewide basis, rather than to collect individual systems for each operable unit. Although aggregate areas (100, 200, 300, and 600) may have distinct restoration systems, these systems must be compatible and integrated for successful implementation and operation within each scenario. This report also identifies technologies that were considered during the formulation of the sitewide engineered systems. New and emerging technologies or R ampersand D needs are discussed along with their application and potential to each groundwater-use scenario

  14. Monitoring bioremediation of atrazine in soil microcosms using molecular tools

    International Nuclear Information System (INIS)

    Molecular tools in microbial community analysis give access to information on catabolic potential and diversity of microbes. Applied in bioremediation, they could provide a new dimension to improve pollution control. This concept has been demonstrated in the study using atrazine as model pollutant. Bioremediation of the herbicide, atrazine, was analyzed in microcosm studies by bioaugmentation, biostimulation and natural attenuation. Genes from the atrazine degrading pathway atzA/B/C/D/E/F, trzN, and trzD were monitored during the course of treatment and results demonstrated variation in atzC, trzD and trzN genes with time. Change in copy number of trzN gene under different treatment processes was demonstrated by real-time PCR. The amplified trzN gene was cloned and sequence data showed homology to genes reported in Arthrobacter and Nocardioides. Results demonstrate that specific target genes can be monitored, quantified and correlated to degradation analysis which would help in predicting the outcome of any bioremediation strategy. - Highlights: ► Degradation of herbicide, atrazine. ► Comparison of bioremediation via bioaugmentation, biostimulation and natural attenuation. ► Gene profile analysis in all treatments. ► Variation in trzN gene numbers correlated to degradation efficiency. ► Cloning and sequence analysis of trzN gene demonstrates very high homology to reported gene. - This study demonstrates the use of molecular tools in bioremediation to monitor and track target genes; correlates the results with degradation and thereby predicts the efficiency of treatment.

  15. Planning for cleanup of large areas contaminated as a result of a nuclear accident

    International Nuclear Information System (INIS)

    The cleanup of large areas of contaminated as a result of an accident at a nuclear facility could cost hundreds of millions of dollars and cause inconvenience to the public. Such a cleanup programme would be undertaken only if the detriment to health and social life resulting from cleanup activities would be less than that resulting from further exposures. All reasonable means should, however, be used to minimize the costs and detriment to humans of such a cleanup. For such a cleanup to be carried out safely, efficiently and as quickly as possible under adverse conditions requires: Good preliminary and final planning; A cleanup team having a well defined management structure and well trained personnel; and Suitable cleanup methods and equipment and cleanup criteria. 35 refs, 8 figs, 5 tabs

  16. Technical papers presented at a DOE meeting on criteria for cleanup of transuranium elements in soil

    International Nuclear Information System (INIS)

    Transuranium element soil contamination cleanup experience gained from nuclear weapons accidents and cleanup at Eniwetok Atoll was reviewed. Presentations have been individually abstracted for inclusion in the data base

  17. Technical papers presented at a DOE meeting on criteria for cleanup of transuranium elements in soil

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    Transuranium element soil contamination cleanup experience gained from nuclear weapons accidents and cleanup at Eniwetok Atoll was reviewed. Presentations have been individually abstracted for inclusion in the data base. (ACR)

  18. Cleanup at Los Alamos National Laboratory - the challenges - 9493

    Energy Technology Data Exchange (ETDEWEB)

    Stiger, Susan G [Los Alamos National Laboratory; Hargis, Kenneth M [Los Alamos National Laboratory; Graham, Michael J [Los Alamos National Laboratory; Rael, George J [NNSL/LASO

    2008-01-01

    This paper provides an overview of environmental cleanup at the Los Alamos National Laboratory (LANL) and some of the unique aspects and challenges. Cleanup of the 65-year old Department of Energy Laboratory is being conducted under a RCRA Consent Order with the State of New Mexico. This agreement is one of the most recent cleanup agreements signed in the DOE complex and was based on lessons learned at other DOE sites. A number of attributes create unique challenges for LANL cleanup -- the proximity to the community and pueblos, the site's topography and geology, and the nature of LANL's on-going missions. This overview paper will set the stage for other papers in this session, including papers that present: Plans to retrieve buried waste at Material Disposal Area B, across the street from oen of Los Alamos' commercial districts and the local newspaper; Progress to date and joint plans with WIPP for disposal of the remaining inventory of legacy transuranic waste; Reviews of both groundwater and surface water contamination and the factors complicating both characterization and remediation; Optimizing the disposal of low-level radioactive waste from ongoing LANL missions; A stakeholder environmental data transparency project (RACER), with full public access to all available information on contamination at LANL, and A description of the approach to waste processing cost recovery from the programs that generate hazardous and radioactive waste at LANL.

  19. Enewetak fact book (a resume of pre-cleanup information)

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, W. (comp.)

    1982-09-01

    The book contains a group of short treatises on the precleanup condition of the islands in Enewetak Atoll. Their purpose was to provide brief guidance to the radiological history and radiological condition of the islands for use in cleanup of the atoll. (ACR)

  20. Cleanup Verification Package for the 618-2 Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    W. S. Thompson

    2006-12-28

    This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities.

  1. Cleanup Verification Package for the 118-F-6 Burial Ground

    International Nuclear Information System (INIS)

    This cleanup verification package documents completion of remedial action for the 118-F-6 Burial Ground located in the 100-FR-2 Operable Unit of the 100-F Area on the Hanford Site. The trenches received waste from the 100-F Experimental Animal Farm, including animal manure, animal carcasses, laboratory waste, plastic, cardboard, metal, and concrete debris as well as a railroad tank car

  2. Cleanup at the Los Alamos National Laboratory - The Challenges

    International Nuclear Information System (INIS)

    This paper provides an overview of environmental cleanup at the Los Alamos National Laboratory (LANL) and some of the unique aspects and challenges. Cleanup of the 65-year old Department of Energy laboratory is being conducted under a RCRA Consent Order with the State of New Mexico. This agreement is one of the most recent cleanup agreements signed in the DOE complex and was based on lessons learned at other DOE sites. A number of attributes create unique challenges for LANL cleanup - the proximity to the community and pueblos, the site's topography and geology, and the nature of LANL's on-going missions. This overview paper will set the stage for other papers in this session, including papers that present: - Plans to retrieve buried waste at Material Disposal Area B, across the street from one of Los Alamos' commercial districts and the local newspaper; - Progress to date and joint plans with WIPP for disposal of the remaining inventory of legacy transuranic waste; - Reviews of both groundwater and surface water contamination and the factors complicating both characterization and remediation; - Optimizing the disposal of low-level radioactive waste from ongoing LANL missions; - A stakeholder environmental data transparency project (RACER), with full public access to all available information on contamination at LANL, and - A description of the approach to waste processing cost recovery from the programs that generate hazardous and radioactive waste at LANL. (authors)

  3. Enewetak fact book (a resume of pre-cleanup information)

    International Nuclear Information System (INIS)

    The book contains a group of short treatises on the precleanup condition of the islands in Enewetak Atoll. Their purpose was to provide brief guidance to the radiological history and radiological condition of the islands for use in cleanup of the atoll

  4. Clean-ups at Aberdeen Proving Ground

    International Nuclear Information System (INIS)

    The Department of Defense has utilized radiative material in numerous applications over several decades. Aberdeen Proving Ground has been an integral player in the Army's Research, Development, and Testing of items incorporating radionuclides, as well as developing new and innovative applications. As new information becomes available and society progresses, we find that the best management practices used decades, or even sometimes years earlier are inadequate to meet the current demands. Aberdeen Proving Ground is committed to remediating historic disposal sites, and utilizing the best available technology in current operations to prevent future adverse impact. Two projects which are currently ongoing at Aberdeen Proving Ground illustrates these points. The first, the remediation of contaminated metal storage areas, depicts how available technology has provided a means for recycling material whereby preventing the continued stock piling, and allowing for the decommissioning of the areas. The second, the 26Th Street Disposal Site Removal Action, shows how historic methods of disposition were inadequate to meet today's needs

  5. Hot Gas Cleanup Test Facility for gasification and pressurized combustion. Quarterly report, October--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs. Substantial progress in underground construction activities was achieved during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. MWK equipment at the grade level and the first tier are being set in the structure.

  6. Methodology and data used for estimating the complex-wide impacts of alternative environmental restoration clean-up goals

    International Nuclear Information System (INIS)

    This paper describes the methodologies and data used for estimating the complex-wide impacts of alternative strategies for conducting remediation of all DOE sites and facilities, but does not address issues relating to Waste Management capabilities. Clean-up strategies and their corresponding goals for contaminated media may be driven by concentration-based regulatory standards, land-use standards (e.g., residential, industrial, wild life reserve, or totally restricted), risk-based standards, or other standards determined through stakeholder input. Strategies implemented to achieve these goals usually require the deployment of (a) clean-up technologies to destroy, remove, or contain the contaminants of concern; (b) institutional controls to prevent potential receptors from coming into contact with the contaminants; or (c) a combination of the above

  7. EBR-II Cover Gas Cleanup System (CGCS) upgrade graphical interface design

    International Nuclear Information System (INIS)

    Technology advances in the past few years have prompted an effort at Argonne National Laboratory to replace existing equipment with high performance digital computers and color graphic displays. Improved operation of process systems can be achieved by utilizing state-of-the-art computer technology in the areas of process control and process monitoring. The Cover Gas Cleanup System (CGCS) at EBR-II is the first system to be upgraded with high performance digital equipment. The upgrade consisted of a main control computer, a distributed control computer, a front end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper describes the main control computer and the operator interface control software

  8. In Situ Remediation Integrated Program: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  9. In Situ Remediation Integrated Program: Technology summary

    International Nuclear Information System (INIS)

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed

  10. Scaling methods of sediment bioremediation processes and applications

    Energy Technology Data Exchange (ETDEWEB)

    Adriaens, P.; Li, M.Y.; Michalak, A.M. [The University of Michigan, Department of Civil and Environmental Engineering, 1351 Beal Ave, 175 EWRE Bldg, Ann Arbor, MI 48109-2125 (United States)

    2006-06-15

    Bioremediation has been argued to be one of the most cost-effective remediation technologies available to reduce soil, sediment, or groundwater contamination, particularly because this approach may allow for the implementation of in-place strategies. Recent trends have advocated the application of innovative sediment stabilization strategies through placement of (reactive) capping material to allow long-term biodegradation of contaminants in these complex biogeochemical environments. The potential long-term risk reduction associated with this approach requires a demonstration of causal relationships between sediment or contaminant stability on the one hand, and microbial reactivity on the other. The spatial analysis needed to fully understand and quantify these correlations requires sensitive probabilistic techniques. Geostatistics has been used for the characterization of multi-scale spatial patterns for the last few decades, and the analysis of microbial attributes has shown significant spatial structures on microbial abundance and activity. However, there is a dearth of information on the applicability of geostatistics to quantitatively describe the interaction between the microorganisms and their environment. Using the Passaic River (NJ) dioxin data as a model dataset, multiple scaling models were applied to scale and interpolate sampled dioxin data and derive dechlorination signatures in sediments. Unlike conventional geostatistic tools that are based on the point-to-point spatial structures, the new multi-scale model (M-Scale) introduces a new framework for spatial analysis in which regional values at different scales are anchored by the correlations to each other. Spatial dioxin distributions and microbial dechlorination signatures were used as benchmarks for comparison of M-Scale to ordinary kriging. The results from cross-validation and jackknifing approaches applied to these datasets were analyzed and compared using Quantile-Quantile (Q-Q) plots and

  11. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs.

    Science.gov (United States)

    Chen, Ming; Xu, Piao; Zeng, Guangming; Yang, Chunping; Huang, Danlian; Zhang, Jiachao

    2015-11-01

    Increasing soil pollution problems have caused world-wide concerns. Large numbers of contaminants such as polycyclic aromatic hydrocarbons (PAHs), petroleum and related products, pesticides, chlorophenols and heavy metals enter the soil, posing a huge threat to human health and natural ecosystem. Chemical and physical technologies for soil remediation are either incompetent or too costly. Composting or compost addition can simultaneously increase soil organic matter content and soil fertility besides bioremediation, and thus is believed to be one of the most cost-effective methods for soil remediation. This paper reviews the application of composting/compost for soil bioremediation, and further provides a critical view on the effects of this technology on microbial aspects in contaminated soils. This review also discusses the future research needs for contaminated soils. PMID:26008965

  12. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs.

    Science.gov (United States)

    Chen, Ming; Xu, Piao; Zeng, Guangming; Yang, Chunping; Huang, Danlian; Zhang, Jiachao

    2015-11-01

    Increasing soil pollution problems have caused world-wide concerns. Large numbers of contaminants such as polycyclic aromatic hydrocarbons (PAHs), petroleum and related products, pesticides, chlorophenols and heavy metals enter the soil, posing a huge threat to human health and natural ecosystem. Chemical and physical technologies for soil remediation are either incompetent or too costly. Composting or compost addition can simultaneously increase soil organic matter content and soil fertility besides bioremediation, and thus is believed to be one of the most cost-effective methods for soil remediation. This paper reviews the application of composting/compost for soil bioremediation, and further provides a critical view on the effects of this technology on microbial aspects in contaminated soils. This review also discusses the future research needs for contaminated soils.

  13. Cleanup procedures at the Nevada Test Site and at other radioactively contaminated sites including representative costs of cleanup and treatment of contaminated areas

    International Nuclear Information System (INIS)

    This review summarizes available information on cleanup procedures at the Nevada Test Site and at other radioactively contaminated sites. Radionuclide distribution and inventory, size of the contaminated areas, equipment, and cleanup procedures and results are included. Information about the cost of cleanup and treatment for contaminated land is presented. Selected measures that could be useful in estimating the costs of cleaning up radioactively contaminated areas are described. 76 refs., 16 tabs

  14. Bioremediation of 6 % [w/w] diesel-contaminated mainland soil in singapore: comparison of different biostimulation and bioaugmentation treatments

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, M.; Tan, L.R.; Su, Q.; Yang, X. [Building and Environment Division, School of Engineering, Ngee Ann Polytechnic (Singapore); Baxter, M. [School of Civil Engineering and Geosciences, University of Newcastle upon Tyne, Newcastle NE1 RU (United Kingdom); Senior, E. [School of Health, Natural and Social Sciences, University of Sunderland, Sunderland SR1 3SD (United Kingdom)

    2006-02-15

    The efficacy of indigenous microorganisms to degrade diesel oil in contaminated mainland sites in Singapore was investigated. A semi-scale trial was made by spiking topsoil with 6 % [w/w] of diesel oil. The results indicated that in the presence of NPK commercial (Rosasol registered) fertilizer a 53 % reduction in contaminant concentration was recorded after 60 days compared to untreated controls while the addition of a mixture of urea and K{sub 2}HPO{sub 4} effected a 48 % reduction in the Total Recoverable Petroleum Hydrocarbons. A commercial culture and an enriched/isolated microbial association proved to be the least effective with 25 and 9 % reductions, respectively. The results confirmed the bioremediation potential of indigenous microorganisms for diesel-oil contaminated mainland soil. Identification of the persistent compounds was done and perceived as a tool in decision-making on strategies for speeding up of the degradation process to achieve clean-up standards in shorter remediation periods. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  15. HANFORD TANK CLEANUP UPDATE MAY 2009

    International Nuclear Information System (INIS)

    Retrieval of waste from single-shell tank C-110 resumed in January making it the first waste retrieval operation for WRPS since taking over Hanford's Tank Operations Contract last October. Now, with approximately 90 percent of the waste removed, WRPS believes that modified sluicing has reached the limits of the technology to remove any further waste and is preparing documentation for use in decision making about any future retrieval actions. Tank C-110 is located in C Fann near the center of the Hanford Site. It is a 530,000 gallon tank, built in 1946, and held approximately 126,000 gallons of sludge and other radioactive and chemical waste materials when retrieval resumed. Modified sluicing technology uses liquid waste from a nearby double-shell tank to break up, dissolve and mobilize the solid material so it can be pumped. Because of the variety of waste fon11S, sluicing is often not able to remove all of the waste. The remaining waste will next be sampled for analysis, and results will be used to guide decisions regarding future actions. Work is moving rapidly in preparation to retrieve waste from a second single-shell tank this summer and transfer it to safer double-shell tank storage. Construction activities necessary to retrieve waste from Tank C-104, a 530,000 gallon tank built in 1943, are approximately 60 percent complete as WRPS maintains its focus on reducing the risk posed by Hanford's aging single-shell waste tanks. C-104 is one of Hanford's oldest radioactive and chemical waste storage tanks, containing approximately 263,000 gallons of wet sludge with a top layer that is dry and powdery. This will be the largest sludge volume retrieval ever attempted using modified sluicing technology. Modified sluicing uses high pressure water or liquid radioactive waste sprayed from nozzles above the waste. The liquid dissolves and/or mobilizes the waste so it can be pumped. In addition to other challenges, tank C-104 contains a significant amount of plutonium and

  16. Modelling tools for assessing bioremediation performance and risk of chlorinated solvents in clay tills

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia

    dechlorination than the number of dechlorinating bacteria. This is illustrated with the development of a conceptual model based on experimental data that links expression level of functional genes with dechlorination rates. The mathematical model was used to describe dechlorination dynamics in microcosm...... design are challenging. This thesis presents the development and application of analytical and numerical models to improve our understanding of transport and degradation processes in clay tills, which is crucial for assessing bioremediation performance and risk to groundwater. A set of modelling tools...... experiments. Enhanced Reductive Dechlorination (ERD) has been suggested as a promising remediation technology for clay till sites, but knowledge of degradation processes in clay till and controlling processes is limited. The use of advanced numerical models has shown that it is necessary to overcome mass...

  17. Bioremediation of petroleum-contaminated soil on Kwajalein Island: Microbiological characterization and biotreatability studies

    Energy Technology Data Exchange (ETDEWEB)

    Adler, H.I. (Oak Ridge Associated Universities, Inc., TN (United States)); Jolley, R.L.; Donaldson, T.L. (Oak Ridge National Lab., TN (United States)) (comps.)

    1992-05-01

    Bioremediation technology is being evaluated for use on the Kwajalein Atoll, which is located in the Republic of the Marshall Islands. The study was undertaken by the Oak Ridge National Laboratory (ORNL) on behalf of the US Army Kwajalein Atoll (USAKA). During February of 1991, a team from ORNL and The University of Tennessee (UT) visited the USAKA. In addition to making on-site observations regarding microbial abundance and distribution of petroleum contaminants, they brought back to Oak Ridge various soil and water samples for detailed analyses. This report documents the biological studies of these samples and presents observations made during the period from February to April of 1991 by investigators at ORNL, UT, and the Oak Ridge Associated Universities.

  18. ECONOMIC EFFICIENT PRODUCTION OF BIOMASS ADAPTED TO THE SUBSTRATE OF OIL OXIDIZING ACTINOBACILLOSIS USED IN BIOREMEDIATION PROCESSES

    Directory of Open Access Journals (Sweden)

    Khudokormov A. A.

    2013-10-01

    Full Text Available In the article we have studied the technology of obtaining a biomass of oil oxidizing microorganisms in a nutrient medium containing vegetable oil as the sole source of carbon and energy. In vitro and in soil experiment we have confirmed the effectiveness of the resulting biomass at work on bioremediation of oil contaminated sites. It is shown that the use of vegetable oil during culturing allows obtaining the same amount of biomass and carbohydrate raw materials, but the efficiency of its use is 20% higher, in average

  19. 沉积物中持久性有机污染物生物修复的现状与展望%Development and Prospect of Bioremediation for Persistent Organic Pollutants in Sediments

    Institute of Scientific and Technical Information of China (English)

    黄勤超; 黄民生; 池金萍; 宋力; 陈丽

    2012-01-01

    持久性有机污染物(POPs)是一种具有持久性、半挥发性、生物蓄积性和高毒性的环境污染物。综述了POPs在沉积物中的污染状况、种类来源、危害、物化修复技术和生物修复法,详细介绍了生物修复法的应用与发展,其中包括微生物修复、植物修复、动物修复和现代生物修复,并对各种生物修复法进行了总结和展望。%Persistent organic pollutants(POPs) are a family of environmental pollutants that are persistent,semi-volatile,bioaccumulative and high toxic.This article summarizes the contamination status,types and sources,hazards,physicochemical remediation technology,and bioremediation method of POPs in sediments.It introduces the application of bioremediation method and its development in detail.Including bioremediation,phytoremediation,animal repair and modern bioremediation method.Finally,it provides a summary and outlook of various bioremediation methods.

  20. TREATABILITY STUDY REPORT OF GREEN MOUNTAIN LABORATORIES, INC.'S BIOREMEDIATION PROCESS, TREATMENT OF PCB CONTAMINATED SOILS, AT BEEDE WASTE OIL/CASH ENERGY SUPERFUND SITE, PLAISTOW, NEW HAMPSHIRE

    Science.gov (United States)

    In 1998, Green Mountain Laboratories, Inc. (GML) and the USEPA agreed to carry out a Superfund Innovative Technology Evaluation (SITE) project to evaluate the effectiveness of GML's Bioremediation Process for the treatment of PCB contaminated soils at the Beede Waste Oil/Cash Ene...

  1. Contributions of biosurfactants to natural or induced bioremediation.

    Science.gov (United States)

    Lawniczak, Lukasz; Marecik, Roman; Chrzanowski, Lukasz

    2013-03-01

    The number of studies dedicated to evaluating the influence of biosurfactants on bioremediation efficiency is constantly growing. Although significant progress regarding the explanation of mechanisms behind biosurfactant-induced effects could be observed, there are still many factors which are not sufficiently elucidated. This corresponds to the fact that although positive influence of biosurfactants is often reported, there are also numerous cases where no or negative effect was observed. This review summarizes the recent finding in the field of biosurfactant-amended bioremediation, focusing mainly on a critical approach towards potential limitations and causes of failure while investigating the effects of biosurfactants on the efficiency of biodegradation and phytoextraction processes. It also provides a summary of successive steps, which should be taken into consideration when designing biosurfactant-related treatment processes. PMID:23400445

  2. Structural analysis of enzymes used for bioindustry and bioremediation.

    Science.gov (United States)

    Tanokura, Masaru; Miyakawa, Takuya; Guan, Lijun; Hou, Feng

    2015-01-01

    Microbial enzymes have been widely applied in the large-scale, bioindustrial manufacture of food products and pharmaceuticals due to their high substrate specificity and stereoselectivity, and their effectiveness under mild conditions with low environmental burden. At the same time, bioremedial techniques using microbial enzymes have been developed to solve the problem of industrial waste, particularly with respect to persistent chemicals and toxic substances. And finally, structural studies of these enzymes have revealed the mechanistic basis of enzymatic reactions, including the stereoselectivity and binding specificity of substrates and cofactors. The obtained structural insights are useful not only to deepen our understanding of enzymes with potential bioindustrial and/or bioremedial application, but also for the functional improvement of enzymes through rational protein engineering. This review shows the structural bases for various types of enzymatic reactions, including the substrate specificity accompanying cofactor-controlled and kinetic mechanisms.

  3. Microbial changes in rhizospheric soils contaminated with petroleum hydrocarbons after bioremediation

    Institute of Scientific and Technical Information of China (English)

    LIN Xin; LI Pei-jun; ZHOU Qi-xing; XU Hua-xia; ZHANG Hai-rong

    2004-01-01

    Effects of bioremediation on microbial communities in soils contaminated with petroleum hydrocarbons are a scientific problem to be solved. Changes in dominate microbial species and the total amount of microorganisms including bacteria and fungi in rhizospheric soils after bioremediation were thus evaluated using field bioremediation experiments. The results showed that there were changed dominant microorganisms including 11 bacterial strains which are mostly Gram positive bacteria and 6 fungal species which were identified. The total amount of microorganisms including bacteria and fungi increased after bioremediation of microbial agents combined with planting maize. On the contrary, fungi in rhizospheric soils were inhibited by adding microbial agents combined with planting soybean.

  4. Bioremediation of severely weathered hydrocarbons: is it possible?

    International Nuclear Information System (INIS)

    Weathering processes of spilled hydrocarbons promote a reduced biodegradability of petroleum compounds mixtures, and consequently bioremediation techniques are often ruled out within the selection of suitable remediation approaches. This is truly relevant wherever old spills at abandoned industrial sites have to be remediated. However it is well known most of the remaining fractions and individual compounds of weathered oil are still biodegradable, although at slow rates than alkanes or no and two-ring aromatics. (Author)

  5. Petroleum-Degrading Enzymes: Bioremediation and New Prospects

    OpenAIRE

    R.S Peixoto; A.B. Vermelho; A.S. Rosado

    2011-01-01

    Anthropogenic forces, such as petroleum spills and the incomplete combustion of fossil fuels, have caused an accumulation of petroleum hydrocarbons in the environment. The accumulation of petroleum and its derivatives now constitutes an important environmental problem. Biocatalysis introduces new ways to improve the development of bioremediation strategies. The recent application of molecular tools to biocatalysis may improve bioprospecting research, enzyme yield recovery, and enzyme specific...

  6. Contributions of biosurfactants to natural or induced bioremediation

    OpenAIRE

    Ławniczak, Łukasz; Marecik, Roman; Chrzanowski, Łukasz

    2013-01-01

    The number of studies dedicated to evaluating the influence of biosurfactants on bioremediation efficiency is constantly growing. Although significant progress regarding the explanation of mechanisms behind biosurfactant-induced effects could be observed, there are still many factors which are not sufficiently elucidated. This corresponds to the fact that although positive influence of biosurfactants is often reported, there are also numerous cases where no or negative effect was observed. Th...

  7. Bioremediation of the textile waste effluent by Chlorella vulgaris

    OpenAIRE

    Hala Yassin El-Kassas; Laila Abdelfattah Mohamed

    2014-01-01

    The microalgae biomass production from textile waste effluent is a possible solution for the environmental impact generated by the effluent discharge into water sources. The potential application of Chlorella vulgaris for bioremediation of textile waste effluent (WE) was investigated using 22 Central Composite Design (CCD). This work addresses the adaptation of the microalgae C. vulgaris in textile waste effluent (WE) and the study of the best dilution of the WE for maximum biomass production...

  8. BIOREMEDIATION OF INDUSTRIAL AND MUNICIPAL WASTE WATER USING BACTERIAL ISOLATES

    OpenAIRE

    P.Priya darshini*, J.Sharpudin

    2016-01-01

    Bioremediation is a treatment that uses naturally occurring organisms to break down hazardous substances into less toxic or non toxic substances. The microbes are effective in control of pollution due to waste water. The industrial and municipal waste water is analyzed for different Physico-Chemical parameters such as pH, Temperature, TDS, BOD, COD, Total Alkalinity, Chlorides. The collected waste water samples were serially diluted and pour plated on Nutrient Agar medium and incubated at 37˚...

  9. Environmental Factors and Bioremediation of Xenobiotics Using White Rot Fungi

    OpenAIRE

    Magan, Naresh; Fragoeiro, Silvia; Bastos, Catarina

    2010-01-01

    This review provides background information on the importance of bioremediation approaches. It describes the roles of fungi, specifically white rot fungi, and their extracellular enzymes, laccases, ligninases, and peroxidises, in the degradation of xenobiotic compounds such as single and mixtures of pesticides. We discuss the importance of abiotic factors such as water potential, temperature, and pH stress when considering an environmental screening approach, and examples are provided of the ...

  10. Microbial Population Changes during Bioremediation of an Experimental Oil Spill

    OpenAIRE

    Macnaughton, Sarah J.; Stephen, John R.; Venosa, Albert D.; Davis, Gregory A.; Chang, Yun-juan; White, David C.

    1999-01-01

    Three crude oil bioremediation techniques were applied in a randomized block field experiment simulating a coastal oil spill. Four treatments (no oil control, oil alone, oil plus nutrients, and oil plus nutrients plus an indigenous inoculum) were applied. In situ microbial community structures were monitored by phospholipid fatty acid (PLFA) analysis and 16S rDNA PCR-denaturing gradient gel electrophoresis (DGGE) to (i) identify the bacterial community members responsible for the decontaminat...

  11. The bioremediation potential of marine sandy sediment microbiota

    OpenAIRE

    Dan Răzvan POPOVICIU

    2012-01-01

    The natural microbiota from marine sandy sediments on the Romanian sea coast was tested for resilience in case of hydrocarbon contamination, for estimating the number of (culturable) hydrocarbon and lipid oil-degrading microorganisms and for determining the influence of inorganic nitrate and phosphate nutrients on hydrocarbon spill bioremediation process, by microcosm experiments.Results show that hydrocarbon contamination affects the bacteriobenthos both in terms of cell numbers and composit...

  12. Bioremediation of severely weathered hydrocarbons: is it possible?

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, J. R.; Villa, R.; Sierra, C.; Sotres, A.; Pelaez, A. I.; Sanchez, J.

    2009-07-01

    Weathering processes of spilled hydrocarbons promote a reduced biodegradability of petroleum compounds mixtures, and consequently bioremediation techniques are often ruled out within the selection of suitable remediation approaches. This is truly relevant wherever old spills at abandoned industrial sites have to be remediated. However it is well known most of the remaining fractions and individual compounds of weathered oil are still biodegradable, although at slow rates than alkanes or no and two-ring aromatics. (Author)

  13. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    OpenAIRE

    Chibuike, G. U.; S. C. Obiora

    2014-01-01

    Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for...

  14. Shoreline oil cleanup, recovery and treatment evaluation system (SOCRATES)

    Energy Technology Data Exchange (ETDEWEB)

    Rusin, J.; Lunel, T.; Sommerville, M. [National Environmental Technology Centre, Culham (United Kingdom); Tyler, A.; Marshall, I. [BMT Marine Information Systems Ltd., Hampshire (United Kingdom)

    1996-09-01

    A beach cleanup computer system was developed to mitigate the impact of shoreline oiling. The program, entitled SOCRATES, was meant to determine the most suitable cleanup methodologies for a range of different spill scenarios. The development, operation and capabilities of SOCRATES was described, with recent examples of successful use during the Sea Empress spill. The factors which influenced decision making and which were central to the numerical solution were: (1) the volumetric removal rate of oil, (2) area removal rate of oil, (3) length of oil slick removed per hour, (4) volumetric removal rate of oily waste, (5) area of the oil slick, (6) length of the oil slick, (7) volume of liquid emulsion, and (8) length of beach. 14 figs.

  15. A case study of the intrinsic bioremediation of petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Barker, G.W.; Raterman, K.T.; Fisher, J.B.; Corgan, J.M. [and others

    1995-12-31

    Condensate liquids have been found to contaminate soil and groundwater at two gas production sites in the Denver Basin operated by Amoco Production Co. These sites have been closely monitored since July 1993 to determine whether intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurs at a sufficient rate and to an adequate endpoint to support a no-intervention decision. Groundwater monitoring and analysis of soil cores suggest that intrinsic bioremediation is occurring at these sites by multiple pathways including aerobic oxidation, Fe{sup 3+} reduction, and sulfate reduction. In laboratory experiments the addition of gas condensate hydrocarbons to saturated soil from the gas production site stimulated sulfate reduction under anaerobic and oxygen-limiting conditions, and nitrate and Fe{sup 3+} reduction under oxygen-limiting conditions, compared to biotic controls that lacked hydrocarbon and sterile controls. The sulfate reduction corresponded to a reduction in the amount of toluene relative to other hydrocarbons. These results confirmed that subsurface soils at the gas production site have the potential for intrinsic bioremediation of hydrocarbons.

  16. Characterization of weathered petroleum hydrocarbons during a landfarming bioremediation study

    Directory of Open Access Journals (Sweden)

    Maletić Snežana

    2012-01-01

    Full Text Available Landfarming bioremediation was performed over 2 years on soil heavily polluted with weathered oil and oil derivatives: 23200 mg kg-1 of mineral oil, 35300 mg kg-1 total hydrocarbons, and 8.65 mg kg-1 of total PAHs. During the experiment, mineral oil, total hydrocarbon and PAH concentrations decreased by approximately 53%, 27% and 72%, respectively. A GC/MS-Scan was used to identify the crude oil components that persist after bioremediation treatment of contaminated soil and the metabolites generated during this process. The data shows that in weathered-hydrocarbons contaminated soil, the number of initially detected compounds after the bioremediation process further decreased over a 2 year period, and at the same time several new compounds were observed at the end of experiment. Higher persistence was also shown for heavier n-alkanes and branched alkanes, which could be detected over a longer period of time. The analysis highlights the importance of n-alkanes, their substituted derivatives and polycyclic aromatic hydrocarbons as the most significant pollutants.

  17. Bioremediation of Oil Spills in Cold Environments: A Review

    Institute of Scientific and Technical Information of China (English)

    YANG Si-Zhong; JIN Hui-Jun; WEI Zhi; HE Rui-Xia; JI Yan-Jun; LI Xiu-Mei; YU Shao-Peng

    2009-01-01

    Oil spills have become a serious problem in cold environments with the ever-increasing resource exploitation,transportation,storage,and accidental leakage of oil.Several techniques,including physical,chemical,and biological methods,are used to recover spilled oil from the environment.Bioremediation is a promising option for remediation since it is effective and economic in removing oil with less undue environmental damages.However,it is a relatively slow process in cold regions and the degree of success depends on a number of factors,including the properties and fate of oil spilled in cold environments,and the major microbial and environmental limitations of bioremediation.The microbial factors include bioavailability of hydrocarbons,mass transfer through the cell membrane,and metabolic limitations.As for the environmental limitations in the cold regions,the emphasis is on soil temperatures,freeze-thaw processes,oxygen and nutrients availability,toxicity,and electron acceptors.There have been several cases of success in the polar regions,particularly in the Arctic and sub-Arctic regions.However,the challenges and constraints for bioremediation in cold environments remain large.

  18. A risk-based cleanup criterion for PCE in soil

    International Nuclear Information System (INIS)

    The most important attribute of a chemical contaminant at a hazardous-wastes site for decision makers to consider with regard to its cleanup is the potential risk associated with human exposure. For this reason we have developed a strategy for establishing a risk-based cleanup criterion for chemicals in soil. We describe this strategy by presenting a cleanup criterion for tetrachloroethylene (PCE) in soil associated with a representative California landscape. We being by discussing the environmental fate and transport model, developed at the Lawrence Livermore National Laboratory (LLNL), that we used to predict the equilibrium concentration of PCE in five environmental media from a steady-state source in soil. Next, we explain the concept and application of pathway-exposure factors (PEFs), the hazard index, and cancer-potency factors (CPFs) for translating the predicted concentrations of PCE into estimated potential hazard or risk for hypothetically exposed individuals. Finally, the relationship between concentration and an allowable level of risk is defined and the societal and financial implications are discussed. 22 refs., 6 tabs

  19. MUTAGENICITY OF ALASKAN OIL SPILL ORGANICS DURING EPA BIOREMEDIATION EFFORTS

    Science.gov (United States)

    On 24 March 1989 approximately 11 million gallons of Prudhoe Bay crude oil spilled into the waters of Prince William Sound, Alaska ultimately contaminating nearly 1000 miles of shoreline. pproximately 300 miles of contaminated beach were considered amenable to cleanup by bioremed...

  20. Disposal of waste from the cleanup of large areas contaminated as a result of a nuclear accident

    International Nuclear Information System (INIS)

    The report provides an overview of the methodology and technology available to load, transport and dispose of large volumes of contaminated material arising from the cleanup of areas after a nuclear accident and includes data on the planning, implementation, management and costing of such activities. To demonstrate the use of this information, three cleanup and disposal scenarios are examined, ranging from disposal in many small mounds or trenches within the contaminated area to disposal in a large facility away from the plant. As in the two companion reports, it is assumed that the population has been evacuated from the affected area. The report reviews the generic types of low level radioactive waste which are likely to arise from such a cleanup. The report does not deal with the recovery and disposal of intermediate and high level radioactive material on or near the plant site. This material will have to be recovered, packaged, transported and stored on-site or disposed of at an appropriate facility. These operations should be done by specialist teams using shielded or remotely operated equipment. Also not included are methods of in situ stabilization of contamination, for example ploughing to bury the top contaminated layer at a suitable depth. These techniques, which are likely to be widely used in part of the evacuated are, are discussed in IAEA Technical Reports Series No. 300, Vienna, 1989. 50 refs, 18 figs, 4 tabs

  1. Phylogenetic diversity of dominant bacterial communities during bioremediation of crude oil-polluted soil

    Directory of Open Access Journals (Sweden)

    Eugene Thomas Cloete

    2011-08-01

    Full Text Available Bioremediation of hydrocarbon pollutants is advantageous owing to the cost-effectiveness of the technology and the ubiquity of hydrocarbon degrading microorganisms in the soil. Soil microbial diversity is affected by hydrocarbon perturbation thus selective enrichment of hydrocarbon utilizers occurs. Hydrocarbons interact with the soil matrix and soil microorganisms determining the fate of the contaminants relative to their chemical nature and microbial degradative capabilities respectively. Bacterial dynamics in crude oil-polluted soil microcosms undergoing bioremediation were investigated over a 42-day period. Four out of the five microcosms containing 4kg of pristine soil each were contaminated with 4% Arabian light crude oil. Three microcosms were amended with either 25g of NPK fertilizer, calcium ammonium nitrate or poultry droppings respectively while the fourth designated oil-contaminated control was unamended. The fifth microcosm had only pristine soil and was set up to ascertain indigenous bacterial community structure pre-contamination. Biostimulated soils were periodically tilled and watered. Hydrocarbon degradation was measured throughout the experimental period by gas chromatography. Gas chromatographic tracing of residual hydrocarbons in biostimulated soils showed marked attenuation of contaminants starting from the second (day 14 till the sixth (day 42 week after contamination whereas no significant reduction in hydrocarbon peaks was seen in the oil contaminated control soil throughout the 6-week experimental period. Molecular fingerprints of bacterial communities involved in aerobic biodegradation of crude oil hydrocarbons in biostimulated soils and controls were generated with DGGE using PCR-amplification of 16S rRNA gene obtained from extracted total soil community DNA. DGGE fingerprints demonstrated that NPK, calcium ammonium nitrate and poultry droppings selected different bacterial populations during the active phase of oil

  2. Bioremediation of hydrocarbon polluted soil - Improvement of in situ bioremediation by bioaugmentation with endogenous and exogenous strains

    OpenAIRE

    Tarayre, Cédric

    2010-01-01

    Petroleum pollution has now become a real problem because hydrocarbons are persistent contaminants in soils and water. Contamination problems increase when ages of relevant facilities, such as oil storage tanks and pipelines, increase over time. The evolution of Legislation concerning soil pollution has led to the need of efficient techniques able to restore the polluted ground. Unfortunately, these techniques are expensive. Bioremediation of hydrocarbon polluted soils has been recognized as...

  3. IN SITU AND EX SITU BIODEGRADATION TECHNOLOGIES FOR REMEDIATION OF CONTAMINATED SITES [ENGINEERING ISSUE)

    Science.gov (United States)

    Bioremediation is a grouping of technologies that use microbiota (typically, heterotrophic bacteria and fungi) to degrade or transform hazardous contaminants to materials such as carbon dioxide, water, inorganic salts, microbial biomass, and other byproducts that may be less haza...

  4. Bioremediation as an oil spill response tool

    International Nuclear Information System (INIS)

    In the long run, biodegradation is the principal removal mechanism for spilled oil that cannot be collected or burnt. Stimulating biodegradation is thus an important option for maximising the removal of oil from the environment, and minimising the environmental impact of a spill. While oil is still floating on the sea, dispersants maximise the surface area available for microbial attack, and stimulate biodegradation. If oil reaches a shoreline where physical removal is difficult, beach cleaners can aid washing technologies, and minimise the residual oil remaining for biodegradation to remove. Since oils lack nitrogen and phosphorus, the careful application of fertiliser stimulates the biodegradation of residual beach oil in environments where nitrogen and phosphorus are limiting. Taken together, these approaches epitomise modern environmental technologies; working with natural processes to minimise undesirable environmental impacts. (Author)

  5. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review

    Science.gov (United States)

    Cycoń, Mariusz; Piotrowska-Seget, Zofia

    2016-01-01

    Pyrethroid insecticides have been used to control pests in agriculture, forestry, horticulture, public health and for indoor home use for more than 20 years. Because pyrethroids were considered to be a safer alternative to organophosphate pesticides (OPs), their applications significantly increased when the use of OPs was banned or limited. Although, pyrethroids have agricultural benefits, their widespread and continuous use is a major problem as they pollute the terrestrial and aquatic environments and affect non-target organisms. Since pyrethroids are not degraded immediately after application and because their residues are detected in soils, there is an urgent need to remediate pyrethroid-polluted environments. Various remediation technologies have been developed for this purpose; however, bioremediation, which involves bioaugmentation and/or biostimulation and is a cost-effective and eco-friendly approach, has emerged as the most advantageous method for cleaning-up pesticide-contaminated soils. This review presents an overview of the microorganisms that have been isolated from pyrethroid-polluted sites, characterized and applied for the degradation of pyrethroids in liquid and soil media. The paper is focused on the microbial degradation of the pyrethroids that have been most commonly used for many years such as allethrin, bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, fenpropathrin, fenvalerate, and permethrin. Special attention is given to the bacterial strains from the genera Achromobacter, Acidomonas, Bacillus, Brevibacterium, Catellibacterium, Clostridium, Lysinibacillus, Micrococcus, Ochrobactrum, Pseudomonas, Serratia, Sphingobium, Streptomyces, and the fungal strains from the genera Aspergillus, Candida, Cladosporium, and Trichoderma, which are characterized by their ability to degrade various pyrethroids. Moreover, the current knowledge on the degradation pathways of pyrethroids, the enzymes that are involved in the cleavage of

  6. Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids.

    Science.gov (United States)

    Nikolopoulou, M; Pasadakis, N; Norf, H; Kalogerakis, N

    2013-12-15

    Mediterranean coastal regions are particularly exposed to oil pollution due to extensive industrialization, urbanization and transport of crude and refined oil to and from refineries. Bioremediation of contaminated beach sand through landfarming is both simple and cost-effective to implement compared to other treatment technologies. The purpose of the present study was to investigate the effect of alternative nutrients on biodegradation of crude oil contaminated beach sand in an effort to reduce the time required for bioremediation employing only indigenous hydrocarbon degraders. A natural sandy soil was collected from Agios Onoufrios beach (Chania, Greece) and was contaminated with weathered crude oil. The indigenous microbial population in the contaminated sand was tested alone (control treatment) or in combination with inorganic nutrients (KNO3 and K2HPO4) to investigate their effects on oil biodegradation rates. In addition, the ability of biosurfactants (rhamnolipids), in the presence of organic nutrients (uric acid and lecithin), to further stimulate biodegradation was investigated in laboratory microcosms over a 45-day period. Biodegradation was tracked by GC/MS analysis of aliphatic and polycyclic aromatic hydrocarbons components and the measured concentrations were corrected for abiotic removal by hopane normalizations. It was found that the saturated fraction of the residual oil is degraded more extensively than the aromatic fraction and the bacterial growth after an incubation period of approximately 3 weeks was much greater from the bacterial growth in the control. The results show that the treatments with inorganic or organic nutrients are equally effective over almost 30 days where C12-C35n-alkanes were degraded more than 97% and polyaromatic hydrocarbons with two or three rings were degraded more than 95% within 45 days. The results clearly show that the addition of nutrients to contaminated beach sand significantly enhanced the activity of

  7. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase

    Directory of Open Access Journals (Sweden)

    Gonzalez-Ruiz Gloriene

    2011-08-01

    Full Text Available Abstract Background The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1 and polyphosphate kinase (ppk genes in bacteria in order to provide high mercury resistance and accumulation. Results In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. Conclusion The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and

  8. Technology Catalogue

    International Nuclear Information System (INIS)

    The Department of Energy's Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM's Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM's Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department's clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD's applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina)

  9. Bioremediation of polluted wasewaterwater influent: phiosphorus and nitrogen removal. Scientific Research and Essays

    DEFF Research Database (Denmark)

    Muchie, Mammo; Akpor, OB

    2010-01-01

    Akpor OB and Muchie M. (2010). Bioremediation of polluted wasewaterwater influent: phiosphorus and nitrogen removal. Scientific Research and Essays, Vol. 5(21), pp. 3222–3230......Akpor OB and Muchie M. (2010). Bioremediation of polluted wasewaterwater influent: phiosphorus and nitrogen removal. Scientific Research and Essays, Vol. 5(21), pp. 3222–3230...

  10. BIOREMEDIATION OF AN EXPERIMENTAL OIL SPILL ON THE SHORELINE OF DELAWARE BAY

    Science.gov (United States)

    In the summer of 1994, a field study was undertaken in Delaware in which light crude oil was intentionally released onto plots to evaluate bioremediation. The objectives were to obtain credible statistical evidence to determine if bioremediation with inorganic mineral nutrients ...

  11. Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects.

    Science.gov (United States)

    Azubuike, Christopher Chibueze; Chikere, Chioma Blaise; Okpokwasili, Gideon Chijioke

    2016-11-01

    Environmental pollution has been on the rise in the past few decades owing to increased human activities on energy reservoirs, unsafe agricultural practices and rapid industrialization. Amongst the pollutants that are of environmental and public health concerns due to their toxicities are: heavy metals, nuclear wastes, pesticides, green house gases, and hydrocarbons. Remediation of polluted sites using microbial process (bioremediation) has proven effective and reliable due to its eco-friendly features. Bioremediation can either be carried out ex situ or in situ, depending on several factors, which include but not limited to cost, site characteristics, type and concentration of pollutants. Generally, ex situ techniques apparently are more expensive compared to in situ techniques as a result of additional cost attributable to excavation. However, cost of on-site installation of equipment, and inability to effectively visualize and control the subsurface of polluted sites are of major concerns when carrying out in situ bioremediation. Therefore, choosing appropriate bioremediation technique, which will effectively reduce pollutant concentrations to an innocuous state, is crucial for a successful bioremediation project. Furthermore, the two major approaches to enhance bioremediation are biostimulation and bioaugmentation provided that environmental factors, which determine the success of bioremediation, are maintained at optimal range. This review provides more insight into the two major bioremediation techniques, their principles, advantages, limitations and prospects. PMID:27638318

  12. HANDBOOK FOR CONDUCTING ORAL HISTORY INTERVIEWS RELATED TO TRIBAL AND INDIAN PARTICIPATION IN THE CONSTRUCTION, OPERATION AND CLEANUP OF THE NUCLEAR WEAPONS COMPLEX

    Energy Technology Data Exchange (ETDEWEB)

    Cristann Gibson; Mervyn L. Tano; Albert Wing

    1999-08-31

    There were three major projects undertaken at the outset of the DOE/EM 22 Cooperative Agreement back in September 1995. There was a project relating to Tribal oral histories. Another project of the Cooperative Agreement related to technology and Tribal values and needs. This project by analogy could apply to issues of technology, environmental cleanup and other indigenous peoples internationally. How can Indian Tribes participate in defining the need for technology development rather than merely learning to adapt themselves and their situations and values to technology developed by others with differing needs, values and economic resources? And the third project was the placement of a Tribal intern in EM-22.

  13. Bioremediation of Contaminated Lake Sediments and Evaluation of Maturity Indicies as Indicators of Compost Stability

    Directory of Open Access Journals (Sweden)

    Y. Anjaneyulu

    2005-08-01

    Full Text Available Land contamination is one of the widely addressed problems, which is gaining importance in many developed and developing countries. International efforts are actively envisaged to remediate contaminated sites as a response to adverse health effects. Popular conventional methodologies only transfer the phase of the contaminant involving cost intensive liabilities besides handling risk of the hazardous waste. Physico-chemical methods are effective for specific wastes, but are technically complex and lack public acceptance for land remediation. “Bioremediation”, is one of the emerging low-cost technologies that offer the possibility to destroy various contaminants using natural biological activities. Resultant non -toxic end products due to the microbial activity and insitu applicability of this technology is gaining huge public acceptance. In the present study, composting is demonstrated as a bioremediation methodology for the stabilization of contaminated lake sediments of Hyderabad, A.P, India. Lake sediment contaminated with organics is collected from two stratums – upper (0.25 m and lower (0.5m to set up as Pile I (Upper and Pile II (Lower in the laboratory. Lime as a pretreatment to the lake sediments is carried out to ensure metal precipitation. The pretreated sediment is then mixed with organic and inorganic fertilizers like cow dung, poultry manure, urea and super phosphate as initial seeding amendments. Bulking agents like sawdust and other micronutrients are provided. Continuous monitoring of process control parameters like pH, moisture content, electrical conductivity, total volatile solids and various forms of nitrogen were carried out during the entire course of the study. The stability of the compost was evaluated by assessing maturity indices like C/N, Cw (water soluble carbon, CNw (Cw/Nw, nitrification index (NH4/NO-3, Cation Exchange Capacity (CEC, germination index, humification ratio, compost

  14. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.

    Science.gov (United States)

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2015-12-01

    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons.

  15. Richland Operations Office technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This document has been prepared by the Department of Energy`s Environmental Management Office of Technology Development to highlight its research, development, demonstration, testing, and evaluation activities funded through the Richland Operations Office. Technologies and processes described have the potential to enhance cleanup and waste management efforts.

  16. Richland Operations Office technology summary

    International Nuclear Information System (INIS)

    This document has been prepared by the Department of Energy's Environmental Management Office of Technology Development to highlight its research, development, demonstration, testing, and evaluation activities funded through the Richland Operations Office. Technologies and processes described have the potential to enhance cleanup and waste management efforts

  17. Cost effectiveness studies of environmental technologies: Volume 1

    International Nuclear Information System (INIS)

    This paper examines cost effectiveness studies of environmental technologies including the following: (1) In Situ Air Stripping, (2) Surface Towed Ordinance Locator System, (3) Ditch Witch Horizontal Boring Technology, (4) Direct Sampling Ion Trap Mass Spectrometer, (5) In Situ Vitrification, (6) Site Characterization and Analysis Penetrometer System, (7) In Situ Bioremediation, and (8) SEAMIST Membrane System Technology

  18. CHARACTERIZATION OF POLYLACTIC ACID COLLOIDS FOR IN SITU BIOREMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    Ashley N. Westbrook

    2003-07-01

    Groundwater contamination is a widespread problem. As human activities generate chemical wastes, we seek quick, yet not always environmentally friendly, ways to dispose of them. Often, chemicals are dumped into waste containers and buried. Unfortunately, these chemicals may spill or leak, seep deeper into the ground, and eventually reach groundwater. Chlorinated organic solvents such as trichloroethene, tetrachloroethane, and chloroform are common contaminants in groundwater [1]. These solvents originate from chemical spills, tank leaks, and waste disposal practices [2]. Such contaminants are harmful to humans, and need to be removed to restore clean groundwater. There are two types of methods to clean chemically contaminated soil and groundwater: ex situ and in situ. Both types have advantages and disadvantages. In situ remediation avoids the cost of removing the contaminated material and has a lower risk of worker exposure to the contaminants. One in situ technique that shows promise is remediation, which uses microorganisms to anaerobically degrade contaminants. In bioremediation in situ, the microorganisms that are already present in the ground utilize nutrients that are injected into the ground to metabolize the contaminants into nonhazardous materials. The nutrients serve as a carbon source for the microbes. Though this method has been used with some success, there have been problems with too rapid release of nutrients to the microbes. In these cases, the microbes multiplied too rapidly and caused biofouling. This can occur when the nutrient content of the bioremediation solution is too high, as when lactate or lactic acid is the nutrient. Lactic acid is typically produced in carbohydrate matter by fermentation, and is used mainly in the food and pharmaceutical industries [3]. Because it has been found difficult to uniformly distribute lactate solutions in a contaminated area due to biofouling, it was suggested that polylactic acid, in colloidal form, be used

  19. Hanford: A Conversation About Nuclear Waste and Cleanup

    International Nuclear Information System (INIS)

    The author takes us on a journey through a world of facts, values, conflicts, and choices facing the most complex environmental cleanup project in the United States, the U.S. Department of Energy's Hanford Site. Starting with the top-secret Manhattan Project, Hanford was used to create tons of plutonium for nuclear weapons. Hundreds of tons of waste remain. In an easy-to-read, illustrated text, Gephart crafts the story of Hanford becoming the world's first nuclear weapons site to release large amounts of contaminants into the environment. This was at a time when radiation biology was in its infancy, industry practiced unbridled waste dumping, and the public trusted what it was told. The plutonium market stalled with the end of the Cold War. Public accountability and environmental compliance ushered in a new cleanup mission. Today, Hanford is driven by remediation choices whose outcomes remain uncertain. It's a story whose epilogue will be written by future generations. This book is an information resource, written for the general reader as well as the technically trained person wanting an overview of Hanford and cleanup issues facing the nuclear weapons complex. Each chapter is a topical mini-series. It's an idea guide that encourages readers to be informed consumers of Hanford news, to recognize that knowledge, high ethical standards, and social values are at the heart of coping with Hanford's past and charting its future. Hanford history is a window into many environmental conflicts facing our nation; it's about building upon success and learning from failure. And therein lies a key lesson, when powerful interests are involved, no generation is above pretense. Roy E. Gephart is a geohydrologist and senior program manager at the Pacific Northwest National Laboratory, Richland, Washington. He has 30 years experience in environmental studies and the nuclear waste industry

  20. The value of superfund cleanups : evidence from U.S. Environmental Protection Agency decisions

    OpenAIRE

    Gupta, Shreekant; Van Houtven, George; Cropper, Maureen L.; DEC

    1994-01-01

    Under the Superfund law, the U.S. Environmental Protection Agency (EPA) is responsible for inspecting hazardous waste sites and for putting those with the most serious contamination problems on a national priorities list. The EPA then oversees the cleanup of these sites, suing potentially responsible parties for the costs of cleanup when possible, and funding the cleanup of"orphaned"sites out of the Superfund, money raised taxing chemical and petroleum products. The Superfund program is contr...

  1. Cleanup Verification Package for the 116-K-2 Effluent Trench

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2006-04-04

    This cleanup verification package documents completion of remedial action for the 116-K-2 effluent trench, also referred to as the 116-K-2 mile-long trench and the 116-K-2 site. During its period of operation, the 116-K-2 site was used to dispose of cooling water effluent from the 105-KE and 105-KW Reactors by percolation into the soil. This site also received mixed liquid wastes from the 105-KW and 105-KE fuel storage basins, reactor floor drains, and miscellaneous decontamination activities.

  2. Fernald restoration: ecologists and engineers integrate restoration and cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Eric; Homer, John

    2002-07-15

    As cleanup workers excavate pits and tear down buildings at the Fernald site in southwest Ohio, site ecologists are working side-by-side to create thriving wetlands and develop the early stages of forest, prairie, and savanna ecosystems to restore natural resources that were impacted by years of site operations. In 1998, the U.S. Department of Energy-Fernald Office (DOE-FN) and its cleanup contractor, Fluor Fernald, Inc., initiated several ecological restoration projects in perimeter areas of the site (e.g., areas not used for or impacted by uranium processing or waste management). The projects are part of Fernald's final land use plan to restore natural resources over 904 acres of the 1,050-acre site. Pete Yerace, the DOE-FN Natural Resource Trustee representative is working with the Fernald Natural Resource Trustees in an oversight role to resolve the state of Ohio's 1986 claim against DOE for injuries to natural resources. Fluor Fernald, Inc., and DOE-FN developed the ''Natural Resource Restoration Plan'', which outlines 15 major restoration projects for the site and will restore injured natural resources at the site. In general, Fernald's plan includes grading to maximize the formation of wetlands or expanded floodplain, amending soil where topsoil has been removed during excavation, and establishing native vegetation throughout the site. Today, with cleanup over 35 percent complete and site closure targeted for 2006, Fernald is entering a new phase of restoration that involves heavily remediated areas. By working closely with engineers and cleanup crews, site ecologists can take advantage of remediation fieldwork (e.g., convert an excavated depression into a wetland) and avoid unnecessary costs and duplication. This collaboration has also created opportunities for relatively simple and inexpensive restoration of areas that were discovered during ongoing remediation. To ensure the survival of the plant material in heavily

  3. Cleanup Verification Package for the 118-F-1 Burial Ground

    International Nuclear Information System (INIS)

    This cleanup verification package documents completion of remedial action for the 118-F-1 Burial Ground on the Hanford Site. This burial ground is a combination of two locations formerly called Minor Construction Burial Ground No. 2 and Solid Waste Burial Ground No. 2. This waste site received radioactive equipment and other miscellaneous waste from 105-F Reactor operations, including dummy elements and irradiated process tubing; gun barrel tips, steel sleeves, and metal chips removed from the reactor; filter boxes containing reactor graphite chips; and miscellaneous construction solid waste

  4. Cleanup Verification Package for the 118-F-1 Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    E. J. Farris and H. M. Sulloway

    2008-01-10

    This cleanup verification package documents completion of remedial action for the 118-F-1 Burial Ground on the Hanford Site. This burial ground is a combination of two locations formerly called Minor Construction Burial Ground No. 2 and Solid Waste Burial Ground No. 2. This waste site received radioactive equipment and other miscellaneous waste from 105-F Reactor operations, including dummy elements and irradiated process tubing; gun barrel tips, steel sleeves, and metal chips removed from the reactor; filter boxes containing reactor graphite chips; and miscellaneous construction solid waste.

  5. The TMI-2 clean-up project collection and databases

    International Nuclear Information System (INIS)

    A publicly accessible collection containing several thousand of the videotapes, photographs, slides and technical reports generated during the clean-up of the TMI-2 reactor has been established by the Pennsylvania State University Libraries. The collection is intended to serve as a technical resource for the nuclear industry as well as the interested public. Two Internet-searchable databases describing the videotapes and technical reports have been created. The development and use of these materials and databases are described in this paper. (orig.)

  6. Risky business: Assessing cleanup plans for waste sites

    International Nuclear Information System (INIS)

    ORNL was chosen to perform human health and ecological risk assessments for DOE because of its risk assessment expertise. The U.S. Department of Energy's many production and research sites contain radioactive and hazardous wastes. These waste sites pose potential risks to the health and safety of remediation and waste management workers and the public. The risks, however, vary from site to site. Some sites undoubtedly present larger risks than others and should be cleaned up first. However, before the cleanup begins, DOE is required by law to prepare an environmental impact statement on any actions that may significantly affect the environment-even actions that would clean it up

  7. Throw it overboard: a commentary on coastal pollution and bioremediation

    OpenAIRE

    Charlier, R.H.; Finkl, C.W.; Krystosyk-Gromadzinska, A.

    2012-01-01

    Charlier, R.H.; Finkl, C.W., and Krystosyk-Gromadzinska, A. 2012. Throw it Overboard: A Commentary on Coastal Pollution and Bioremediation. Journal of Coastal Research, 28(4), 881-890. West Palm Beach (Florida), ISSN 0749-0208.The belief that rivers and oceans cleaned themselves faded as humanity expanded and wastes took on an ever more diversified character. The pollution of waterways, bays, inlets, and gulfs made many of them unusable for water transport. The solution commonly applied is to...

  8. In situ bioremediation of oil pollution in the unsaturated zone

    International Nuclear Information System (INIS)

    Leakage of an underground storage tank at the Trandum Army Base caused a 20.000 liter spill of fuel oil. Several options for remediation have been evaluated. In situ bioremediation was chosen as the most cost effective and realistic method and was evaluated in detail. Preliminary laboratory studies showed that a large number of hydrocarbon degrading micro-organism are present and that good degradation rates can be obtained with the addition of a nitrogen and phosphorus source. Since July 1991 a full scale bioventing installation has been in operation. The preliminary monitoring results give an indication of biological activity. 8 refs., 6 figs., 2 tabs

  9. Hanford Long Term Stewardship Program and Transition [Preparing for Environmental Management Cleanup Completion

    International Nuclear Information System (INIS)

    Long-term stewardship (LTS) at the Hanford Site begins at the completion of the U.S. Department of Energy (DOE), Office of Environmental Management (EM) cleanup mission and is the management of the risks (human health and environmental) associated with any residual contamination and the management of the Site's cultural, biological, and natural resources that remain after the Site is reduced to its post-cleanup-mission size. This document describes the anticipated post-cleanup LTS program, the preparations planned to facilitate the safe and timely transition from the completion of the cleanup program to a future LTS program, and when LTS is complete. Although the completion of cleanup remains several decades away, actions are being taken now to ensure the following: DOE's commitment to meet its long-term, post-cleanup obligations is reaffirmed and that its planning efforts to comply with those obligations are visible; The interface between the cleanup program and the LTS program will be clearly defined; Cleanup decisions will include careful and well-documented consideration of their long-term ramifications (e.g., long-term effectiveness and costs) and Potential impediments to a safe and timely turnover from cleanup to LTS are anticipated and a risk management approach is developed and implemented

  10. Land Use and Land Cover - MO 2008 Brownfields Voluntary Cleanup Program Sites (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — The Brownfields/Voluntary Cleanup Program (BVCP) provides property buyers, sellers, developers, bankers, development agencies, local government and other voluntary...

  11. Solvent cleanup using base-treated silica gel solid adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-06-01

    A solvent cleanup method using silica gel columns treated with either sodium hydroxide (NaOH) or lithium hydroxide (LiOH) has been investigated. Its effectiveness compares favorably with that of traditional wash methods. After treatment with NaOH solution, the gels adsorb HNO/sub 3/, dibutyl phosphate (DBP), UO/sub 2//sup 2 +/, Pu/sup 4 +/, various metal-ion fission products, and other species from the solvent. Adsorption mechanisms include neutralization, hydrolysis, polymerization, and precipitation, depending on the species adsorbed. Sodium dibutyl phosphate, which partially distributes to the solvent from the gels, can be stripped with water; the stripping coefficient ranges from 280 to 540. Adsorption rates are diffusion controlled such that temperature effects are relatively small. Recycle of the gels is achieved either by an aqueous elution and recycle sequence or by a thermal treatment method, which may be preferable. Potential advantages of this solvent cleanup method are that (1) some operational problems are avoided and (2) the amount of NaNO/sub 3/ waste generated per metric ton of nuclear fuel reprocessed would be reduced significantly. 19 references, 6 figures, 12 tables.

  12. Hydrophobic modification of polyurethane foam for oil spill cleanup

    International Nuclear Information System (INIS)

    To improve the oleophilic/hydrophobic properties of polyurethane (PU) foams for oil spill cleanup, PU samples were modified by grafting with oleophilic monomer Lauryl methacrylate (LMA) in solvent and/or coating with LMA microspheres through heating and curing. Modified PU cubes were characterized by field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared spectroscopy (FTIR). The water sorption of modified PU cubes was decreased by 24–50%, while the diesel or kerosene sorption of modified PU cubes was increased by 18–27%. In water–oil system, compared with blank PU cubes, the sorption capacity of PU cubes grafted with LMA was increased by 44% for diesel and 100% for kerosene. The sorption capacity of PU cubes coated with LMA microspheres was increased by 20% for diesel and 7% for kerosene. The solvent sorption of modified PU cubes could reach 50–69 g/g. The modified PU cubes can be effectively used in oil/solvent spill cleanup.

  13. Solvent cleanup using base-treated silica gel solid adsorbent

    International Nuclear Information System (INIS)

    A solvent cleanup method using silica gel columns treated with either sodium hydroxide (NaOH) or lithium hydroxide (LiOH) has been investigated. Its effectiveness compares favorably with that of traditional wash methods. After treatment with NaOH solution, the gels adsorb HNO3, dibutyl phosphate (DBP), UO22+, Pu4+, various metal-ion fission products, and other species from the solvent. Adsorption mechanisms include neutralization, hydrolysis, polymerization, and precipitation, depending on the species adsorbed. Sodium dibutyl phosphate, which partially distributes to the solvent from the gels, can be stripped with water; the stripping coefficient ranges from 280 to 540. Adsorption rates are diffusion controlled such that temperature effects are relatively small. Recycle of the gels is achieved either by an aqueous elution and recycle sequence or by a thermal treatment method, which may be preferable. Potential advantages of this solvent cleanup method are that (1) some operational problems are avoided and (2) the amount of NaNO3 waste generated per metric ton of nuclear fuel reprocessed would be reduced significantly. 19 references, 6 figures, 12 tables

  14. The strategic planning initiative for accelerated cleanup of Rocky Flats

    International Nuclear Information System (INIS)

    The difficulties associated with the congressional funding cycles, regulatory redirection, remediation schedule deadlines, and the lack of a mixed waste (MW) repository have adversely impacted the environmental restoration (ER) program across the entire U.S. Department of Energy (DOE) complex including Rocky Flats Plant (RFP). In an effort to counteract and reduce the impacts of these difficulties, RFP management saw the need for developing a revised ER Program. The objective of the revised ER approach is to identify an initiative that would accelerate the cleanup process and reduce costs without compromising either protection of human health or the environment. A special analysis with that assigned objective was initiated in June 1993 using a team that included DOE Headquarters and Rocky Flats Field Office (RFFO), EG ampersand G personnel, and experts from nationally recognized ER firms. The analysis relied on recent regulatory and process innovations such as DOE's Streamlined Approach for Environmental Restoration (SAFER) and EPA's Superfund Accelerated Cleanup Model (SACM) and Corrective Action Management Units (CAMU). The analysis also incorporated other ongoing improvements efforts initiated by RFP, such as the Quality Action Team and the Integrated Planning Process

  15. Technology catalogue. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Department of Energy`s (DOE`s) Office of Environmental Management (EM) is responsible for remediating DOE contaminated sites and managing the DOE waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste-management programs within EM. The purpose of the Technology Catalogue is to: (a) provide performance data on OTD-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and other compliance documents for the DOE`s clean-up and waste-management programs; and (b) identify partnering and commercialization opportunities with industry, other federal and state agencies, and the academic community.

  16. Technology catalogue. Second edition

    International Nuclear Information System (INIS)

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for remediating DOE contaminated sites and managing the DOE waste inventory in a safe and efficient manner. EM's Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste-management programs within EM. The purpose of the Technology Catalogue is to: (a) provide performance data on OTD-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and other compliance documents for the DOE's clean-up and waste-management programs; and (b) identify partnering and commercialization opportunities with industry, other federal and state agencies, and the academic community

  17. BIOREMEDIATION FOR ACID MINE DRAINAGE: ORGANIC SOLID WASTE AS CARBON SOURCES FOR SULFATE-REDUCING BACTERIA: A REVIEW

    Directory of Open Access Journals (Sweden)

    I. N. Jamil

    2013-12-01

    Full Text Available Biological sulfate reduction has been slowly replacing chemical unit processes to treat acid mine drainage (AMD. Bioremediations for AMD treatment are favored due to their low capital and maintenance cost. This paper describes the available AMD treatment, current SRB commercialization such as THIOPAQ® and BioSulphide® technologies, and also the factors and limitations faced. THIOPAQ® and BioSulphide® technologies use expensive carbon sources such as hydrogen as the electron donor. This paper discusses the possibility of organic solid waste as an alternative substrate as it is cheaper and abundant. A possible AMD treatment system setup was also proposed to test the efficiency of sulfate-reducing bacteria utilizing organic solid substrate.

  18. The phage-driven microbial loop in petroleum bioremediation.

    Science.gov (United States)

    Rosenberg, Eugene; Bittan-Banin, Gili; Sharon, Gil; Shon, Avital; Hershko, Galit; Levy, Itzik; Ron, Eliora Z

    2010-07-01

    During the drilling process and transport of crude oil, water mixes with the petroleum. At oil terminals, the water settles to the bottom of storage tanks. This drainage water is contaminated with emulsified oil and water-soluble hydrocarbons and must be treated before it can be released into the environment. In this study, we tested the efficiency of a continuous flow, two-stage bioreactor for treating drainage water from an Israeli oil terminal. The bioreactor removed all of the ammonia, 93% of the sulfide and converted 90% of the total organic carbon (TOC) into carbon dioxide. SYBR Gold staining indicated that reactor 1 contained 1.7 × 10(8) bacteria and 3.7 × 10(8) phages per millilitre, and reactor 2 contained 1.3 × 10(8) bacteria and 1.7 × 10(9) phages per millilitre. The unexpectedly high mineralization of TOC and high concentration of phage in reactor 2 support the concept of a phage-driven microbial loop in the bioremediation of the drainage water. In general, application of this concept in bioremediation of contaminated water has the potential to increase the efficiency of processes. PMID:21255344

  19. Transformation of a petroleum pollutant during soil bioremediation experiments

    Directory of Open Access Journals (Sweden)

    B. JOVANCICEVIC

    2008-05-01

    Full Text Available The experiment of ex situ soil bioremediation was performed at the locality of the Oil Refinery in Pančevo (alluvial formation of the Danube River, Serbia polluted with an oil type pollutant. The experiments of biostimulation, bioventilation and reinoculation of an autochthonous microbial consortium were performed during the six-month period (May–November 2006. The changes in the quantity and composition of the pollutant, or the bioremediation effect, were monitored by analysis of the samples of the polluted soil taken in time spans of two weeks. In this way, from the beginning until the end of the experiment, 12 samples were collected and marked as P1–P12 (Pančevo 1–Pančevo 12. The results obtained showed that more significant changes in the composition of the oil pollutant occurred only during the last phases of the experiment (P8–P12. The activity of microorganisms was reflected in the increase of the quantity of polar oil fractions, mainly fatty acid fractions. In this way, the quantity of total eluate increased, and the quantity of the insoluble residue was reduced to a minimum, whereby the oil pollutant was transformed to a form that could be removed more efficiently and more completely from the soil, as a segment of the environment.

  20. Bioremediation of petrochemical sludge from oil refining operations

    International Nuclear Information System (INIS)

    Petroleum refineries have historically produced large quantities of hydrocarbon sludge as a waste product. A common past practice for disposal of this material was to deposit it in open pits. These hazardous waste sites now require remediation to meet current environmental regulations. This report will present data from a feasibility study on bioremediation for one such site. Data will be presented on the characteristics and composition of the crude sludge including organic analysis by GC/MS techniques, loss on ignition, TOC pH, oil and grease levels, metals content by atomic adsorption and bacteria plate counts. The effectiveness of bioremediation will be examined using data from shaker flask studies with indigenous and other bacteria sources. Key parameters being monitored will include toxicity using a Microtox assay, oil and grease levels, and the concentration of individual chemical species using GC/MS analysis. Biological data such as bacteria growth rates and nutrient uptake rates will also be presented and compared to biodegradation rates