WorldWideScience

Sample records for bioremediated soil dominated

  1. Phylogenetic diversity of dominant bacterial communities during bioremediation of crude oil-polluted soil

    Directory of Open Access Journals (Sweden)

    Eugene Thomas Cloete

    2011-08-01

    degradation. Cluster analysis of DGGE bands using simple matching group average setting revealed that poultry droppings-amended soils and calcium ammonium nitrate-amended soils formed distinct clades meaning that the treatment selected similar bacterial populations for each of the treatments whereas NPK soils showed less association. Excision, reamplification and sequencing of dominant DGGE bands in biostimulated soils revealed the presence of distinct hydrocarbon degraders like Corynebacterium spp., Dietzia spp., low G+C Gram positive bacteria and some uncultured bacterial clones. Phylogenetic analysis of the 16S rRNA gene sequences of these dominant bacterial communities was conducted using the neighbour joining method of PHYLIP. Two distinct clades appeared in the tree clustered members of the Actinobacteria and Firmicutes separately. The overall data suggested that Gram positive bacteria especially members of the Actinobacteria may have a key role in bioremediation of crude oil-polluted soil.

  2. From Rare to Dominant: a Fine-Tuned Soil Bacterial Bloom during Petroleum Hydrocarbon Bioremediation.

    Science.gov (United States)

    Fuentes, Sebastián; Barra, Bárbara; Caporaso, J Gregory; Seeger, Michael

    2016-02-01

    Hydrocarbons are worldwide-distributed pollutants that disturb various ecosystems. The aim of this study was to characterize the short-lapse dynamics of soil microbial communities in response to hydrocarbon pollution and different bioremediation treatments. Replicate diesel-spiked soil microcosms were inoculated with either a defined bacterial consortium or a hydrocarbonoclastic bacterial enrichment and incubated for 12 weeks. The microbial community dynamics was followed weekly in microcosms using Illumina 16S rRNA gene sequencing. Both the bacterial consortium and enrichment enhanced hydrocarbon degradation in diesel-polluted soils. A pronounced and rapid bloom of a native gammaproteobacterium was observed in all diesel-polluted soils. A unique operational taxonomic unit (OTU) related to the Alkanindiges genus represented ∼ 0.1% of the sequences in the original community but surprisingly reached >60% after 6 weeks. Despite this Alkanindiges-related bloom, inoculated strains were maintained in the community and may explain the differences in hydrocarbon degradation. This study shows the detailed dynamics of a soil bacterial bloom in response to hydrocarbon pollution, resembling microbial blooms observed in marine environments. Rare community members presumably act as a reservoir of ecological functions in high-diversity environments, such as soils. This rare-to-dominant bacterial shift illustrates the potential role of a rare biosphere facing drastic environmental disturbances. Additionally, it supports the concept of "conditionally rare taxa," in which rareness is a temporary state conditioned by environmental constraints. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Strong Impact on the Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Community of a PAH-Polluted Soil but Marginal Effect on PAH Degradation when Priming with Bioremediated Soil Dominated by Mycobacteria

    DEFF Research Database (Denmark)

    Johnsen, Anders R.; Schmidt, Stine; Hybholdt, Trine K.

    2007-01-01

    Bioaugmentation of soil polluted with polycyclic aromatic hydrocarbons (PAHs) is often disappointing because of the low survival rate and low activity of the introduced degrader bacteria. We therefore investigated the possibility of priming PAH degradation in soil by adding 2% of bioremediated soil...... with a high capacity for PAH degradation. The culturable PAH-degrading community of the bioremediated primer soil was dominated by Mycobacterium spp. A microcosm containing pristine soil artificially polluted with PAHs and primed with bioremediated soil showed a fast, 100- to 1,000-fold increase in numbers...... of culturable phenanthrene-, pyrene-, and fluoranthene degraders and a 160-fold increase in copy numbers of the mycobacterial PAH dioxygenase gene pdo1. A nonpolluted microcosm primed with bioremediated soil showed a high rate of survival of the introduced degrader community during the 112 days of incubation...

  4. Bioremediation of soils

    International Nuclear Information System (INIS)

    Woodward, D.

    1991-01-01

    Bioremediation of hydrocarbon contaminated soils has evolved from the refinery land treatment units of thirty years ago to the modern slurry reactors of today. Modifications in the process include engineering controls designed to prevent the migration of hydrocarbons into the unsaturated zone, the saturated zone and groundwater, and the atmosphere. Engineering innovations in the area of composting and bioaugmentation that have focused on further process control and the acceleration of the treatment process will form the basis for future improvements in bioremediation technology. Case studies for established methods that have survived this development process and continue to be used as cost effective biological treatments like engineered land farms, soil heap treatment and in situ treatment will be discussed

  5. Soil and brownfield bioremediation.

    Science.gov (United States)

    Megharaj, Mallavarapu; Naidu, Ravi

    2017-09-01

    Soil contamination with petroleum hydrocarbons, persistent organic pollutants, halogenated organic chemicals and toxic metal(loid)s is a serious global problem affecting the human and ecological health. Over the past half-century, the technological and industrial advancements have led to the creation of a large number of brownfields, most of these located in the centre of dense cities all over the world. Restoring these sites and regeneration of urban areas in a sustainable way for beneficial uses is a key priority for all industrialized nations. Bioremediation is considered a safe economical, efficient and sustainable technology for restoring the contaminated sites. This brief review presents an overview of bioremediation technologies in the context of sustainability, their applications and limitations in the reclamation of contaminated sites with an emphasis on brownfields. Also, the use of integrated approaches using the combination of chemical oxidation and bioremediation for persistent organic pollutants is discussed. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. Bioremediation of contaminated soil

    International Nuclear Information System (INIS)

    Balba, M.T.; Ying, A.C.; McNeice, T.G.

    1992-01-01

    Microorganisms, especially bacteria, yeast and fungi are capable of degrading many kinds of xenobiotic compounds and toxic chemicals such as petroleum hydrocarbon compounds. These microorganisms are ubiquitous in nature and, despite their enormous versatility, there are numerous cases in which long-term contamination of soil and groundwater has been observed. The persistence of the contamination is usually caused by the inability of microorganisms to metabolize these compounds under the prevailing environmental condition. This paper reports on biological remediation of contaminated sites which can be accomplished by using naturally-occurring microorganisms to treat the contaminants. The development of a bioremediation program for a specific contaminated soil system usually includes: A thorough site/soil/waste characterization; Treatability studies

  7. Bioremediation of oil contaminated soils

    International Nuclear Information System (INIS)

    Beeson, D.L.; Hogue, J.I.; Peterson, J.C.; Guerra, G.W.

    1994-01-01

    The Baldwin Waste Oil Site was an abandoned waste oil recycling facility located in Robstown, Nueces County, Texas. As part of their site assessment activities, the US Environmental Protection Agency (EPA) requested that the Ecology and Environment, Inc., Technical Assistance Team (TAT) investigate the feasibility of using in-situ bioremediation to remediate soils contaminated with oil and grease components, petroleum hydrocarbons, and volatile organic compounds. Bioremediation based on the land treatment concept was tested. The land treatment concept uses techniques to optimize indigenous microbial populations and bring them in contact with the contaminants. The study was designed to collect data upon which to base conclusions on the effectiveness of bioremediation, to demonstrate the effectiveness of bioremediation under field conditions, and to identify potential problems in implementing a full-scale project. Bioremediation effectiveness was monitored through total petroleum hydrocarbons (TPH) and Oil and Grease (O and G) analyses. Site specific treatment goals for the pilot project were concentrations of less than 1% for O and G and less than 10,000 mg/kg for TPH. Based on the reduction of TPH and O and G concentrations and the cost effectiveness of bioremediation based on the land treatment concept, full-scale in-situ bioremediation was initiated by the EPA at the Baldwin Waste Oil Site in February of 1993

  8. Bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    Autry, A.R.; Ellis, G.M.

    1992-01-01

    This paper reports on bioremediation, which offers a cost-competitive, effective remediation alternative for soil contaminated with petroleum products. These technologies involve using microorganisms to biologically degrade organic constituents in contaminated soil. All bioremediation applications must mitigate various environmental rate limiting factors so that the biodegradation rates for petroleum hydrocarbons are optimized in field-relevant situations. Traditional bioremediation applications include landfarming, bioreactors, and composting. A more recent bioremediation application that has proven successful involves excavation of contaminated soil. The process involves the placement of the soils into a powerscreen, where it is screened to remove rocks and larger debris. The screened soil is then conveyed to a ribbon blender, where it is mixed in batch with nutrient solution containing nitrogen, phosphorus, water, and surfactants. Each mixed soil batch is then placed in a curing pile, where it remains undisturbed for the remainder of the treatment process, during which time biodegradation by naturally occurring microorganisms, utilizing biochemical pathways mediated by enzymes, will occur

  9. Soil bioremediation at CFB Trenton: evaluation of bioremediation processes

    International Nuclear Information System (INIS)

    Ouellette, L.; Cathum, S.; Avotins, J.; Kokars, V.; Cooper, D.

    1996-01-01

    Bioremediation processes and their application in the cleanup of contaminated soil, were discussed. The petroleum contaminated soil at CFB Trenton, was evaluated to determine which bioremediation process or combination of processes would be most effective. The following processes were considered: (1) white hot fungus, (2) Daramend proprietary process, (3) composting, (4) bioquest proprietary bioremediation processes, (5) Hobbs and Millar proprietary bioremediation process, and (6) farming. A brief summary of each of these options was included. The project was also used as an opportunity to train Latvian and Ukrainian specialists in Canadian field techniques and laboratory analyses. Preliminary data indicated that bioremediation is a viable method for treatment of contaminated soil. 18 refs., 3 figs

  10. Biosurfactant-enhanced soil bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Kosaric, N.; Lu, G.; Velikonja, J. [Univ. of Western Ontario, London, Ontario (Canada)

    1995-12-01

    Bioremediation of soil contaminated with organic chemicals is a viable alternative method for clean-up and remedy of hazardous waste sites. The final objective in this approach is to convert the parent toxicant into a readily biodegradable product which is harmless to human health and/or the environment. Biodegradation of hydrocarbons in soil can also efficiently be enhanced by addition or in-situ production of biosufactants. It was generally observed that the degradation time was shortened and particularly the adaptation time for the microbes. More data from our laboratories showed that chlorinated aromatic compounds, such as 2,4-dichlorophenol, a herbicide Metolachlor, as well as naphthalene are degraded faster and more completely when selected biosurfactants are added to the soil. More recent data demonstrated an enhanced biodegradation of heavy hydrocarbons in petrochemical sludges, and in contaminated oil when biosurfactants were present or were added prior to the biodegradation process.

  11. Bioremediation of fossil fuel contaminated soils

    International Nuclear Information System (INIS)

    Atlas, R.M.

    1991-01-01

    Bioremediation involves the use of microorganisms and their biodegradative capacity to remove pollutants. The byproducts of effective bioremediation, such as water and carbon dioxide, are nontoxic and can be accommodated without harm to the environment and living organisms. This paper reports that using bioremediation to remove pollutants has many advantages. This method is cheap, whereas physical methods for decontaminating the environment are extraordinarily expensive. Neither government nor private industry can afford the cost to clean up physically the nation's known toxic waste sites. Therefore, a renewed interest in bioremediation has developed. Whereas current technologies call for moving large quantities of toxic waste and its associated contaminated soil to incinerators, bioremediation can be done on site and requires simple equipment that is readily available. Bioremediation, though, is not the solution for all environmental pollution problems. Like other technologies, bioremediation has limitations

  12. Bioremediating silty soil contaminated by phenanthrene, pyrene ...

    African Journals Online (AJOL)

    ... followed in the order of their increasing molecular weight. The synergy of the bacterial isolates and the biosurfactant produced from B. vulgaris agrowaste could be used in environmental bioremediation of PAHs even in silty soil. Keywords: Benz(a)anthracene, benzo(a)pyrene, bioremediation, biosurfactant, Beta vulgaris, ...

  13. Desorption and bioremediation of hydrocarbon contaminated soils

    International Nuclear Information System (INIS)

    Gray, M.R.

    1998-01-01

    A study was conducted in which the extent and pattern of contaminant biodegradation during bioremediation of four industrially-contaminated soils were examined to determine which factors control the ultimate extent of biodegradation and which limit the success of biological treatment. It was noted that although bioremediation is inexpensive and has low environmental impact, it often fails to completely remove the hydrocarbons in soils because of the complex interactions between contaminants, the soil environment, and the active microorganisms. In this study, the competency of the microorganisms in the soil to degrade the contaminants was examined. The equilibrium partitioning of the contaminants between the soil and the aqueous phase was also examined along with the transport of contaminants out of soil particles. The role of diffusion of compounds in the soil and the importance of direct contact between microorganisms and the hydrocarbons was determined. Methods for selecting suitable sites for biological treatment were also described

  14. Soil mesocosm studies on atrazine bioremediation.

    Science.gov (United States)

    Sagarkar, Sneha; Nousiainen, Aura; Shaligram, Shraddha; Björklöf, Katarina; Lindström, Kristina; Jørgensen, Kirsten S; Kapley, Atya

    2014-06-15

    Accumulation of pesticides in the environment causes serious issues of contamination and toxicity. Bioremediation is an ecologically sound method to manage soil pollution, but the bottleneck here, is the successful scale-up of lab-scale experiments to field applications. This study demonstrates pilot-scale bioremediation in tropical soil using atrazine as model pollutant. Mimicking field conditions, three different bioremediation strategies for atrazine degradation were explored. 100 kg soil mesocosms were set-up, with or without atrazine application history. Natural attenuation and enhanced bioremediation were tested, where augmentation with an atrazine degrading consortium demonstrated best pollutant removal. 90% atrazine degradation was observed in six days in soil previously exposed to atrazine, while soil without history of atrazine use, needed 15 days to remove the same amount of amended atrazine. The bacterial consortium comprised of 3 novel bacterial strains with different genetic atrazine degrading potential. The progress of bioremediation was monitored by measuring the levels of atrazine and its intermediate, cyanuric acid. Genes from the atrazine degradation pathway, namely, atzA, atzB, atzD, trzN and trzD were quantified in all mesocosms for 60 days. The highest abundance of all target genes was observed on the 6th day of treatment. trzD was observed in the bioaugmented mesocosms only. The bacterial community profile in all mesocosms was monitored by LH-PCR over a period of two months. Results indicate that the communities changed rapidly after inoculation, but there was no drastic change in microbial community profile after 1 month. Results indicated that efficient bioremediation of atrazine using a microbial consortium could be successfully up-scaled to pilot scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Bioremediation of petroleum-contaminated soil

    International Nuclear Information System (INIS)

    Pearce, K.; Snyman, H.G.; Oellermann, R.A.; Gerber, A.

    1995-01-01

    A pilot-scale study was conducted to evaluate the application of land-farming techniques in bioremediating a soil highly contaminated with petroleum products. A commercial biosupplement, and one prepared with indigenous microorganisms from the contaminated soil, were tested. Application of either of the biosupplements, in addition to the control of pH, moisture, and oxygen levels, resulted in a 94% reduction of the initial total petroleum hydrocarbon concentration (TPHC) (32% mass/mass) over a 70-day period. Implementation of these findings at full scale to bioremediate highly weathered petroleum products showed an average reduction of 89% over 5.5 months. Target levels of 1,400 mg/kg soil were reached from an initial average TPHC concentration of 12,200 mg/kg soil

  16. Bioremediation of uranium contaminated Fernald soils

    International Nuclear Information System (INIS)

    Delwiche, M.E.; Wey, J.E.; Torma, A.E.

    1994-01-01

    This study investigated the use of microbial bioleaching for removal of uranium from contaminated soils. The ability of bacteria to assist in oxidation and solubilization of uranium was compared to the ability of fungi to produce complexing compounds which have the same effect. Biosorption of uranium by fungi was also measured. Soil samples were examined for changes in mineralogical properties due to these processes. On the basis of these laboratory scale studies a generalized flow sheet is proposed for bioremediation of contaminated Fernald soils

  17. Bioremediation of petroleum hydrocarbons in soil environments

    International Nuclear Information System (INIS)

    Rowell, M.J.; Ashworth, J.; Qureshi, A.A.

    1992-12-01

    The bioremediation of petroleum hydrocarbons in soil environments was reviewed via a literature survey and discussions with workers in relevant disciplines. The impacts of hydrocarbons on soil are discussed along with a range of methods available to assist in their decomposition by soil microorganisms. The range of petroleum-based materials considered includes conventional and synthetic crude oils, refined oils, sludges, asphalts and bitumens, drilling mud residues, creosote tars, and some pesticides. The degradability of hydrocarbons largely depends upon their aqueous solubility and their adsorption on soil surfaces and, therefore, is related to their molecular structures. The ease of decomposition decreases with increasing complexity of structure, in the order aliphatics > aromatics > heterocyclics and asphaltenes (most recalcitrant). Most soils contain an adequate population of microorganisms and hence bioaugmentation may only be needed in special circumstances. Decomposition is fastest in soils where the hydrocarbon loading rate, aeration, nutrition, moisture, and pH are all optimized. At spill sites there is little control over the application rate, although containment measures can assist in either limiting contamination or distributing it more evenly. The enhancement of bioremediation is discussed in light of all these factors. Other techniques such as enhanced aeration, hydrocarbon decomposition by anaerobic processes, surfactants, and burning are also discussed. 211 refs., 11 figs., 10 tabs

  18. Bioremediation of petroleum hydrocarbons in soil environments

    Energy Technology Data Exchange (ETDEWEB)

    Rowell, M J; Ashworth, J; Qureshi, A A

    1992-12-01

    The bioremediation of petroleum hydrocarbons in soil environments was reviewed via a literature survey and discussions with workers in relevant disciplines. The impacts of hydrocarbons on soil are discussed along with a range of methods available to assist in their decomposition by soil microorganisms. The range of petroleum-based materials considered includes conventional and synthetic crude oils, refined oils, sludges, asphalts and bitumens, drilling mud residues, creosote tars, and some pesticides. The degradability of hydrocarbons largely depends upon their aqueous solubility and their adsorption on soil surfaces and, therefore, is related to their molecular structures. The ease of decomposition decreases with increasing complexity of structure, in the order aliphatics > aromatics > heterocyclics and asphaltenes (most recalcitrant). Most soils contain an adequate population of microorganisms and hence bioaugmentation may only be needed in special circumstances. Decomposition is fastest in soils where the hydrocarbon loading rate, aeration, nutrition, moisture, and pH are all optimized. At spill sites there is little control over the application rate, although containment measures can assist in either limiting contamination or distributing it more evenly. The enhancement of bioremediation is discussed in light of all these factors. Other techniques such as enhanced aeration, hydrocarbon decomposition by anaerobic processes, surfactants, and burning are also discussed. 211 refs., 11 figs., 10 tabs.

  19. Chemometric assessment of enhanced bioremediation of oil contaminated soils

    DEFF Research Database (Denmark)

    Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H.

    2013-01-01

    Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting...... relative removal of isoprenoids (e.g. norpristane, pristane and phytane). It is concluded that the CHEMSIC method is a valuable tool for assessing bioremediation efficiency....

  20. Bioremediation of chlorinated solvents and diesel soils

    International Nuclear Information System (INIS)

    Huismann, S.S.; Peterson, M.A.; Jardine, R.J.

    1995-01-01

    The US Army, in a cooperative effort with the Tennessee Valley Authority (TVA) and its cooperator, ENSR, performed an innovative enhanced bioremediation project at Fort Gillem in Atlanta, Georgia. The objective of the project was to remediate six hundred cubic yards of soil affected by a mixture of chlorinated compounds and petroleum hydrocarbons which posed a threat to uppermost groundwater and private drinking water wells. ENSR completed a demonstration project to measure the effects of bioremediation on both chlorinated compounds (primarily TCE) and petroleum hydrocarbons (number-sign 2 diesel). Contaminated soil was placed on top of a bermed polyethylene liner to construct an ex-situ biovault. Nutrients were added to the soil as it was loaded onto the liner. Contaminated soil was also used to construct a control vault. A methane barrier cover was placed over both piles. The cover was designed to prevent short circuiting of induced airflow in and around the enhanced pile, and to prevent the release of fugitive emissions from either pile

  1. Treatment of chromium contaminated soil using bioremediation

    Science.gov (United States)

    Purwanti, Ipung Fitri; Putri, Tesya Paramita; Kurniawan, Setyo Budi

    2017-11-01

    Chromium contamination in soil occurs due to the disposal of chromium industrial wastewater or sludge that excess the quality standard. Chromium concentration in soil is ranged between 1 to 300 mg/kg while the maximum health standard is 2.5 mg/kg. Bioremediation is one of technology that could be used for remediating heavy metal contamination in soil. Bacteria have an ability to remove heavy metal from soil. One bacteria species that capable to remove chromium from soil is Bacillus subtilis. The aim of this research was to know the chromium removal percentage in contaminated soil by Bacillus subtilis. Artificial chromium contaminated soil was used by mixing 425gram sand and chromium trichloride solution. Concentration of chromium added into the spiked soil were 50, 75, and 100 mg/L. During 14 days, pH, soil temperature and soil moisture were tested. Initial and final number of bacterial colony and chromium concentration analysed. The result showed that the highest percentage of chromium removal was 11% at a chromium concentration of 75 mg/L

  2. BIOREMEDIATION OF CONTAMINATED SURFACE SOILS

    Science.gov (United States)

    Biological remediation of soils contaminated with organic chemicals is an alternative treatment technology that can often meet the goal of achieving a permanent clean-up remedy at hazardous waste sites, as encouraged by the U.S. Environmental Protection Agency (U.S. EPA) for impl...

  3. Bioremediation of textile effluent polluted soil using kenaf (Hibiscus ...

    African Journals Online (AJOL)

    DR BADA

    Bioremediation of textile effluent polluted soil using kenaf (Hibiscus cannabinus Linn.) and composted ... Lead, Cadmium, Chromium and Zinc levels in plants and soil were determined using Atomic ..... Contaminated land in the EC: Report of ...

  4. Enhanced ex-situ bioremediation of soil contaminated with ...

    African Journals Online (AJOL)

    contaminated soil. Thus, the objective of this study was to investigate the feasibility and effectiveness of using electrical biostimulation processes to enhance ex-situ bioremediation of soils contaminated with organic pollutants. The effect of ...

  5. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    Directory of Open Access Journals (Sweden)

    G. U. Chibuike

    2014-01-01

    Full Text Available Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for the bioremediation of polluted soils. Using plants for the treatment of polluted soils is a more common approach in the bioremediation of heavy metal polluted soils. Combining both microorganisms and plants is an approach to bioremediation that ensures a more efficient clean-up of heavy metal polluted soils. However, success of this approach largely depends on the species of organisms involved in the process.

  6. Bioremediation of textile effluent polluted soil using kenaf ( Hibiscus ...

    African Journals Online (AJOL)

    Bioremediation of textile effluent polluted soil using kenaf ( Hibiscus cannabinus Linn.) and composted ... Journal of Applied Sciences and Environmental Management. Journal Home ... Twelve-litre plastic pots were filled with 10 kg soil.

  7. Approaches to bioremediation of fossil fuel contaminated soil: An ...

    African Journals Online (AJOL)

    Approaches to bioremediation of fossil fuel contaminated soil: An overview. ... African Journal of Biotechnology ... neither generates waste nor pollutes the soil environment, the final products either through accidental or deliberate spillage can ...

  8. Ex-situ bioremediation of Brazilian soil contaminated with plasticizers process wastes

    Directory of Open Access Journals (Sweden)

    I. D. Ferreira

    2012-03-01

    Full Text Available The aim of this research was to evaluate the bioremediation of a soil contaminated with wastes from a plasticizers industry, located in São Paulo, Brazil. A 100-kg soil sample containing alcohols, adipates and phthalates was treated in an aerobic slurry-phase reactor using indigenous and acclimated microorganisms from the sludge of a wastewater treatment plant of the plasticizers industry (11gVSS kg-1 dry soil, during 120 days. The soil pH and temperature were not corrected during bioremediation; soil humidity was corrected weekly to maintain 40%. The biodegradation of the pollutants followed first-order kinetics; the removal efficiencies were above 61% and, among the analyzed plasticizers, adipate was removed to below the detection limit. Biological molecular analysis during bioremediation revealed a significant change in the dominant populations initially present in the reactor.

  9. Bioremediation of diesel fuel contaminated soils

    International Nuclear Information System (INIS)

    Troy, M.A.; Jerger, D.E.

    1992-01-01

    Bioremediation techniques were successfully employed in the cost-effective cleanup of approximately 8400 gallons of diesel fuel which had been accidentally discharged at a warehouse in New Jersey. Surrounding soils were contaminated with the diesel fuel at concentrations exceeding 1,470 mg/kg total petroleum hydrocarbons as measured by infrared spectroscopy (TPH-IR, EPA method 418.1, modified for soils). This paper reports on treatment of the contaminated soils through enhanced biological land treatment which was chosen for the soil remediation pursuant to a New Jersey Pollutant Discharge Elimination System - Discharge to Ground Water (NJPDES-DGW) permit. Biological land treatment of diesel fuel focuses on the breakdown of the hydrocarbon fractions by indigenous aerobic microorganisms in the layers of soil where oxygen is made available. Metabolism by these microorganisms can ultimately reduce the hydrocarbons to innocuous end products. The purpose of biological land treatment was to reduce the concentration of the petroleum hydrocarbon constituents of the diesel fuel in the soil to 100 ppm total petroleum hydrocarbons (TPH)

  10. Bioremediation of PAH contaminated soil samples

    International Nuclear Information System (INIS)

    Joshi, M.M.; Lee, S.

    1994-01-01

    Soils contaminated with polynuclear aromatic hydrocarbons (PAHs) pose a hazard to life. The remediation of such sites can be done using physical, chemical, and biological treatment methods or a combination of them. It is of interest to study the decontamination of soil using bioremediation. The experiments were conducted using Acinetobacter (ATCC 31012) at room temperature without pH or temperature control. In the first series of experiments, contaminated soil samples obtained from Alberta Research Council were analyzed to determine the toxic contaminant and their composition in the soil. These samples were then treated using aerobic fermentation and removal efficiency for each contaminant was determined. In the second series of experiments, a single contaminant was used to prepare a synthetic soil sample. This sample of known composition was then treated using aerobic fermentation in continuously stirred flasks. In one set of flasks, contaminant was the only carbon source and in the other set, starch was an additional carbon source. In the third series of experiments, the synthetic contaminated soil sample was treated in continuously stirred flasks in the first set and in fixed bed in the second set and the removal efficiencies were compared. The removal efficiencies obtained indicated the extent of biodegradation for various contaminants, the effect of additional carbon source, and performance in fixed bed without external aeration

  11. Insight in the PCB-degrading functional community in long-term contaminated soil under bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Petric, Ines; Hrsak, Dubravka; Udikovic-Kolic, Nikolina [Ruder Boskovic Inst., Division for Marine and Environmental Research, Zagreb (Croatia); Fingler, Sanja [Inst. for Medical Research and Occupational Health, Zagreb (Croatia); Bru, David; Martin-Laurent, Fabrice [INRA, Univ. der Bourgogne, Soil and Environmental Microbiology, Dijon (France)

    2011-02-15

    A small-scale bioremediation assay was developed in order to get insight into the functioning of a polychlorinated biphenyl (PCB) degrading community during the time course of bioremediation treatment of a contaminated soil. The study was conducted with the aim to better understand the key mechanisms involved in PCB-removal from soils. Materials and methods Two bioremediation strategies were applied in the assay: (a) biostimulation (addition of carvone as inducer of biphenyl pathway, soya lecithin for improving PCB bioavailability, and xylose as supplemental carbon source) and (b) bioaugmentation with selected seed cultures TSZ7 or Rhodococcus sp. Z6 originating from the transformer station soil and showing substantial PCB-degrading activity. Functional PCB-degrading community was investigated by using molecular-based approaches (sequencing, qPCR) targeting bphA and bphC genes, coding key enzymes of the upper biphenyl pathway, in soil DNA extracts. In addition, kinetics of PCBs removal during the bioremediation treatment was determined using gas chromatography mass spectrometry analyses. Results and discussion bphA-based phylogeny revealed that bioremediation affected the structure of the PCB-degrading community in soils, with Rhodococcus-like bacterial populations developing as dominant members. Tracking of this population further indicated that applied bioremediation treatments led to its enrichment within the PCB-degrading community. The abundance of the PCB-degrading community, estimated by quantifying the copy number of bphA and bphC genes, revealed that it represented up to 0.3% of the total bacterial community. All bioremediation treatments were shown to enhance PCB reduction in soils, with approximately 40% of total PCBs being removed during a 1-year period. The faster PCB reduction achieved in bioaugmented soils suggested an important role of the seed cultures in bioremediation processes. Conclusions The PCBs degrading community was modified in response to

  12. MUTAGENICITY OF PAH-CONTAMINATED SOILS DURING BIOREMEDIATION

    Science.gov (United States)

    Bioremediation of contaminated soils is considered an effective method for reducing potential health hazards. Although it is assumed that (bio)remediation is a detoxifying process, degradation products of compounds such as polycyclic aromatic compounds (PACs) can be more toxic th...

  13. Bioremediation of a crude oil polluted tropical rain forest soil ...

    African Journals Online (AJOL)

    These results suggest that Biostimulation with tilling (nutrient enhanced in-situ bioremediation) and or the combination ofBiostimulation and Bioaugumentation with indigenous hydrocarbon utilizers would be effective in the remediation of crude oil polluted tropical soils. Key Words: Bioremediation, Bioaugumentation, ...

  14. Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil.

    Science.gov (United States)

    Wu, Manli; Ye, Xiqiong; Chen, Kaili; Li, Wei; Yuan, Jing; Jiang, Xin

    2017-04-01

    A laboratory study was conducted to evaluate the impact of bioaugmentation plus biostimulation (BR, added both nutrients and bacterial consortia), and natural attenuation (NA) on hydrocarbon degradation efficiency and microflora characterization during remediation of a freshly contaminated soil. After 112 days of remediation, the initial level of total petroleum hydrocarbon (TPH) (61,000 mg/kg soil) was reduced by 4.5% and 5.0% in the NA and BR treatments, respectively. Bioremediation did not significantly enhance TPH biodegradation compared to natural attenuation. The degradation of the aliphatic fraction was the most active with the degradation rate of 30.3 and 28.7 mg/kg/day by the NA and BR treatments, respectively. Soil microbial activities and counts in soil were generally greater for bioremediation than for natural attenuation. MiSeq sequencing indicated that the diversity and structure of microbial communities were affected greatly by bioremediation. In response to bioremediation treatment, Promicromonospora, Pseudomonas, Microcella, Mycobacterium, Alkanibacter, and Altererythrobacter became dominant genera in the soil. The result indicated that combining bioaugmentation with biostimulation did not improve TPH degradation, but soil microbial activities and structure of microbial communities are sensitive to bioremediation in short-term and heavily oil-contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Ex situ bioremediation of oil-contaminated soil.

    Science.gov (United States)

    Lin, Ta-Chen; Pan, Po-Tsen; Cheng, Sheng-Shung

    2010-04-15

    An innovative bioprocess method, Systematic Environmental Molecular Bioremediation Technology (SEMBT) that combines bioaugmentation and biostimulation with a molecular monitoring microarray biochip, was developed as an integrated bioremediation technology to treat S- and T-series biopiles by using the landfarming operation and reseeding process to enhance the bioremediation efficiency. After 28 days of the bioremediation process, diesel oil (TPH(C10-C28)) and fuel oil (TPH(C10-C40)) were degraded up to approximately 70% and 63% respectively in the S-series biopiles. When the bioaugmentation and biostimulation were applied in the beginning of bioremediation, the microbial concentration increased from approximately 10(5) to 10(6) CFU/g dry soil along with the TPH biodegradation. Analysis of microbial diversity in the contaminated soils by microarray biochips revealed that Acinetobacter sp. and Pseudomonas aeruginosa were the predominant groups in indigenous consortia, while the augmented consortia were Gordonia alkanivorans and Rhodococcus erythropolis in both series of biopiles during bioremediation. Microbial respiration as influenced by the microbial activity reflected directly the active microbial population and indirectly the biodegradation of TPH. Field experimental results showed that the residual TPH concentration in the complex biopile was reduced to less than 500 mg TPH/kg dry soil. The above results demonstrated that the SEMBT technology is a feasible alternative to bioremediate the oil-contaminated soil. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.

  16. In-Situ Bioremediation of Perchlorate in Groundwater and Soil

    OpenAIRE

    Jin, Liyan

    2012-01-01

    Historical, uncontrolled disposal practices have made perchlorate a significant threat to drinking water supplies in the United States. In-situ bioremediation (ISB) technologies are cost effective and provide an environmental friendly solution for treating contaminated groundwater and soil. In situ bioremediation was considered as an option for treatment of perchlorate in groundwater and soil in Lockheed Martin Corporation's Beaumont Site 2 (Beaumont, CA). Based on the perchlorate distribu...

  17. TECHNOLOGIES FOR BIOREMEDIATION OF SOILS CONTAMINATED WITH PETROLEUM PRODUCTS

    Directory of Open Access Journals (Sweden)

    Roxana Gabriela POPA

    2012-05-01

    Full Text Available Biological methods for remediation of soils is based on the degradation of pollutants due to activity of microorganisms (bacteria, fungi. Effectiveness of biological decontamination of soils depends on the following factors: biodegradation of pollutants, type of microorganisms used, choice of oxidant and nutrient and subject to clean up environmental characteristics. Ex situ techniques for bioremediation of soils polluted are: composting (static / mechanical agitation, land farming and biopiles. Techniques in situ bioremediation of soils polluted are: bioventingul, biospargingul and biostimulation – bioaugumentarea.

  18. Remediation of soils combining soil vapor extraction and bioremediation: benzene.

    Science.gov (United States)

    Soares, António Alves; Albergaria, José Tomás; Domingues, Valentina Fernandes; Alvim-Ferraz, Maria da Conceição M; Delerue-Matos, Cristina

    2010-08-01

    This work reports the study of the combination of soil vapor extraction (SVE) with bioremediation (BR) to remediate soils contaminated with benzene. Soils contaminated with benzene with different water and natural organic matter contents were studied. The main goals were: (i) evaluate the performance of SVE regarding the remediation time and the process efficiency; (ii) study the combination of both technologies in order to identify the best option capable to achieve the legal clean up goals; and (iii) evaluate the influence of soil water content (SWC) and natural organic matter (NOM) on SVE and BR. The remediation experiments performed in soils contaminated with benzene allowed concluding that: (i) SVE presented (a) efficiencies above 92% for sandy soils and above 78% for humic soils; (b) and remediation times from 2 to 45 h, depending on the soil; (ii) BR showed to be an efficient technology to complement SVE; (iii) (a) SWC showed minimum impact on SVE when high airflow rates were used and led to higher remediation times for lower flow rates; (b) NOM as source of microorganisms and nutrients enhanced BR but hindered the SVE due the limitation on the mass transfer of benzene from the soil to the gas phase. (c) 2010 Elsevier Ltd. All rights reserved.

  19. Bioremediation and detoxification of hydrocarbon pollutants in soil

    International Nuclear Information System (INIS)

    Wang, Xiao Ping.

    1991-01-01

    As a cleanup alterative, the bioremediation potential of soil, contaminated by spills of three medium petroleum distillates, jet fuel heating oil (No. 2 fuel oil) and diesel fuel was evaluated in controlled-temperature laboratory soil columns and in outdoor lysimeters. Solvent extraction followed by gas chromatography (GC) was used routinely for analysis of fuel residues. Occasionally, class separation and GC-mass spectrometry (GC-MS) were also used in residue characterization. The decrease in toxic residues was evaluated by Microtox and Ames tests. Seed germination and plant growth bioassays were also performed. Persistence and toxicity of the fuels increased in the order of jet fuel < heating oil < diesel fuel. Bioremediation consisting of liming, fertilization and tilling decreased the half-lives of the pollutants in soil by a factor of 2-3. Biodegradation was faster at 27C than at 17 or 37C, but hydrocarbon concentration and soil quality had only modest influence on biodegradation rates and did not preclude successful bioremediation of these contaminated soils within one growing season. Microbial activity measurements by the fluorescein diacetate hydrolysis assay confirmed that microbial activity was the principal force in hydrocarbon elimination. Bioremediation was highly effective in eliminating also the polycyclic aromatic components of diesel fuel. The bioremediation and detoxification of fuel-contaminated soil was corroborated by Microtox, Ames and plant growth bioassays

  20. Bioremediation of petroleum-contaminated soil: A Review

    Science.gov (United States)

    Yuniati, M. D.

    2018-02-01

    Petroleum is the major source of energy for various industries and daily life. Releasing petroleum into the environment whether accidentally or due to human activities is a main cause of soil pollution. Soil contaminated with petroleum has a serious hazard to human health and causes environmental problems as well. Petroleum pollutants, mainly hydrocarbon, are classified as priority pollutants. The application of microorganisms or microbial processes to remove or degrade contaminants from soil is called bioremediation. This microbiological decontamination is claimed to be an efficient, economic and versatile alternative to physicochemical treatment. This article presents an overview about bioremediation of petroleum-contaminated soil. It also includes an explanation about the types of bioremediation technologies as well as the processes.

  1. ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS

    Science.gov (United States)

    An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...

  2. Bioremediation of Pyrene-Contaminated Soils Using Biosurfactant

    OpenAIRE

    Jorfi; Rezaee; Jaafarzadeh; Esrafili; Akbari; Moheb Ali

    2014-01-01

    Background Polycyclic aromatic hydrocarbons (PAHs) are persistence organic chemicals with proved carcinogenic and mutagenic hazards. These compounds are usually adsorbed in soils in vicinity of oil and gas industries. Bioremediation of PAHs contaminated soils is difficult due to hydrophobic nature of PAHs. Objectives The main purpose of the current study was to determine the pyrene removal efficiency in synthetically contaminated ...

  3. Compost bioremediation of hydrocarbon-contaminated soil ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... The use of composting in bioremediation has received little attention (Potter et al., ..... Counts of microorganisms in the compost during composting. Values are means of three ..... chlorinated pesticides. J. Water Poll. Cont. Fed.

  4. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    OpenAIRE

    Chibuike, G. U.; Obiora, S. C.

    2014-01-01

    Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for...

  5. Bioremediation of lead contaminated soil with Rhodobacter sphaeroides.

    Science.gov (United States)

    Li, Xiaomin; Peng, Weihua; Jia, Yingying; Lu, Lin; Fan, Wenhong

    2016-08-01

    Bioremediation with microorganisms is a promising technique for heavy metal contaminated soil. Rhodobacter sphaeroides was previously isolated from oil field injection water and used for bioremediation of lead (Pb) contaminated soil in the present study. Based on the investigation of the optimum culturing conditions and the tolerance to Pb, we employed the microorganism for the remediation of Pb contaminated soil simulated at different contamination levels. It was found that the optimum temperature, pH, and inoculum size for R. sphaeroides is 30-35 °C, 7, and 2 × 10(8) mL(-1), respectively. Rhodobacter sphaeroides did not remove the Pb from soil but did change its speciation. During the bioremediation process, more available fractions were transformed to less accessible and inert fractions; in particular, the exchangeable phase was dramatically decreased while the residual phase was substantially increased. A wheat seedling growing experiment showed that Pb phytoavailability was reduced in amended soils. Results inferred that the main mechanism by which R. sphaeroides treats Pb contaminated soil is the precipitation formation of inert compounds, including lead sulfate and lead sulfide. Although the Pb bioremediation efficiency on wheat was not very high (14.78% root and 24.01% in leaf), R. sphaeroides remains a promising alternative for Pb remediation in contaminated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Bioremediation potential of diesel-contaminated Libyan soil.

    Science.gov (United States)

    Koshlaf, Eman; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Taha, Mohamed; Haleyur, Nagalakshmi; Makadia, Tanvi H; Morrison, Paul D; Ball, Andrew S

    2016-11-01

    Bioremediation is a broadly applied environmentally friendly and economical treatment for the clean-up of sites contaminated by petroleum hydrocarbons. However, the application of this technology to contaminated soil in Libya has not been fully exploited. In this study, the efficacy of different bioremediation processes (necrophytoremediation using pea straw, bioaugmentation and a combination of both treatments) together with natural attenuation were assessed in diesel contaminated Libyan soils. The addition of pea straw was found to be the best bioremediation treatment for cleaning up diesel contaminated Libyan soil after 12 weeks. The greatest TPH degradation, 96.1% (18,239.6mgkg(-1)) and 95% (17,991.14mgkg(-1)) were obtained when the soil was amended with pea straw alone and in combination with a hydrocarbonoclastic consortium respectively. In contrast, natural attenuation resulted in a significantly lower TPH reduction of 76% (14,444.5mgkg(-1)). The presence of pea straw also led to a significant increased recovery of hydrocarbon degraders; 5.7log CFU g(-1) dry soil, compared to 4.4log CFUg(-1) dry soil for the untreated (natural attenuation) soil. DGGE and Illumina 16S metagenomic analyses confirm shifts in bacterial communities compared with original soil after 12 weeks incubation. In addition, metagenomic analysis showed that original soil contained hydrocarbon degraders (e.g. Pseudoxanthomonas spp. and Alcanivorax spp.). However, they require a biostimulant (in this case pea straw) to become active. This study is the first to report successful oil bioremediation with pea straw in Libya. It demonstrates the effectiveness of pea straw in enhancing bioremediation of the diesel-contaminated Libyan soil. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Electromigration of Contaminated Soil by Electro-Bioremediation Technique

    Science.gov (United States)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Shaylinda, M. Z. N.; Azim, M. A. M.

    2016-07-01

    Soil contamination with heavy metals poses major environmental and human health problems. This problem needs an efficient method and affordable technological solution such as electro-bioremediation technique. The electro-bioremediation technique used in this study is the combination of bacteria and electrokinetic process. The aim of this study is to investigate the effectiveness of Pseudomonas putida bacteria as a biodegradation agent to remediate contaminated soil. 5 kg of kaolin soil was spiked with 5 g of zinc oxide. During this process, the anode reservoir was filled with Pseudomonas putida while the cathode was filled with distilled water for 5 days at 50 V of electrical gradient. The X-Ray Fluorescent (XRF) test indicated that there was a significant reduction of zinc concentration for the soil near the anode with 89% percentage removal. The bacteria count is high near the anode which is 1.3x107 cfu/gww whereas the bacteria count at the middle and near the cathode was 5.0x106 cfu/gww and 8.0x106 cfu/gww respectively. The migration of ions to the opposite charge of electrodes during the electrokinetic process resulted from the reduction of zinc. The results obtained proved that the electro-bioremediation reduced the level of contaminants in the soil sample. Thus, the electro-bioremediation technique has the potential to be used in the treatment of contaminated soil.

  8. TECHNOLOGIES FOR BIOREMEDIATION OF SOILS CONTAMINATED WITH PETROLEUM PRODUCTS

    OpenAIRE

    Roxana Gabriela POPA

    2012-01-01

    Biological methods for remediation of soils is based on the degradation of pollutants due to activity of microorganisms (bacteria, fungi). Effectiveness of biological decontamination of soils depends on the following factors: biodegradation of pollutants, type of microorganisms used, choice of oxidant and nutrient and subject to clean up environmental characteristics. Ex situ techniques for bioremediation of soils polluted are: composting (static / mechanical agitation), land farming and biop...

  9. [Effects and Biological Response on Bioremediation of Petroleum Contaminated Soil].

    Science.gov (United States)

    Yang, Qian; Wu, Man-li; Nie, Mai-qian; Wang, Ting-ting; Zhang, Ming-hui

    2015-05-01

    Bioaugmentation and biostimulation were used to remediate petroleum-contaminated soil which were collected from Zichang city in North of Shaanxi. The optimal bioremediation method was obtained by determining the total petroleum hydrocarbon(TPH) using the infrared spectroscopy. During the bioremediation, number of degrading strains, TPH catabolic genes, and soil microbial community diversity were determined by Most Probable Number (MPN), polymerase chain reaction (PCR) combined agarose electrophoresis, and PCR-denaturing gradient electrophoresis (DGGE). The results in different treatments showed different biodegradation effects towards total petroleum hydrocarbon (TPH). Biostimulation by adding N and P to soils achieved the best degradation effects towards TPH, and the bioaugmentation was achieved by inoculating strain SZ-1 to soils. Further analysis indicated the positive correlation between catabolic genes and TPH removal efficiency. During the bioremediation, the number of TPH and alkanes degrading strains was higher than the number of aromatic degrading strains. The results of PCR-DGGE showed microbial inoculums could enhance microbial community functional diversity. These results contribute to understand the ecologically microbial effects during the bioremediation of petroleum-polluted soil.

  10. Bioremediation of a pesticide polluted soil: Case DDT

    International Nuclear Information System (INIS)

    Betancur Corredor, Bibiana; Pino, Nancy; Penuela, Gustavo A; Cardona Gallo, Santiago

    2013-01-01

    1,1,1-trichloro-2,2 bis (p-chlorophenyl) ethane (DDT) has been used since the Second World War to control insect-borne diseases in humans and domestic animals. The use of these organochlorine insecticides has been banned in most countries because of its persistence in the environment, biomagnification and potential susceptibility to toxicity to higher animals. Bioremediation involves the use of microorganisms to degrade organic contaminants in the environment, transforming them into simpler and less dangerous, even harmless compounds. This decontamination strategy has low costs, and wide public acceptance, also it can take place on the site. Compared to other methods, bioremediation is a more promising and less expensive to eliminate contaminants in soil and water. In soil, compounds such as DDT, chlorinated biphenyls can be partially biodegraded by a group of aerobic bacteria that cometabolize the contaminant. The bioavailability of pollutants may be enhanced by treating the soil in the presence of contaminant mobilizing agents such as surfactants. In this review we discuss the different strategies for bioremediation of soil contaminated with DDT, including mechanisms and degradation pathways. The application of these techniques in contaminated soil is also described. This review also discusses which is the best strategy for bioremediation of DDT.

  11. Bioremediation evaluation of surface soils contaminated with organic compounds

    International Nuclear Information System (INIS)

    Tezak, J.; Miller, J.A.; Lawrence, A.W.; Keffer, R.E.; Weightman, R.; Hayes, T.D.

    1994-01-01

    This paper presents background information on bioremediation; information on biotechnologies that have been proven in other industries and that may be applicable to the natural gas industry; a protocol for assessing the feasibility of bioremediation; and, some preliminary results on some soils that were evaluated using the protocol. Background information related to natural gas production and processing sites and chemicals that are typically used are presented because both are important preliminary feasibility screening criteria. Applications of bioremediation to sites with similar chemicals such as refineries, wood treating plants, and former manufactured gas plants (MGP's) have been used for approximately 30 years, however bioremediation is not widely used to treat wellhead sites or natural gas production and processing sites. Examples of applications of bioremediation to non-natural gas industry sites are presented and the similarities, primarily chemical, are presented. The GRI developed an Accelerated Biotreatability Protocol for former MGP sites and it is currently being modified for application to the Exploration and Production (E and P) industry. The Accelerated Treatability Protocol is a decision-making framework to evaluate the potential full-scale biological treatment options. Preliminary results from some soils collected and evaluated using the protocol are presented

  12. Bioremediation of soil contaminated crude oil by Agaricomycetes.

    Science.gov (United States)

    Mohammadi-Sichani, M Maryam; Assadi, M Mazaheri; Farazmand, A; Kianirad, M; Ahadi, A M; Ghahderijani, H Hadian

    2017-01-01

    One of the most important environmental problems is the decontamination of petroleum hydrocarbons polluted soil, particularly in the oil-rich country. Bioremediation is the most effective way to remove these pollutants in the soil. Spent mushroom compost has great ability to decompose lignin-like pollution. The purpose of this study was the bioremediation of soil contaminated with crude oil by an Agaricomycetes . Soil sample amended with spent mushroom compost into 3%, 5% and 10% (w/w) with or without fertilizer. Ecotoxicity germination test was conducted with Lipidium sativa . The amplified fragment (18 s rDNA) sequence of this mushroom confirmed that the strain belonged to Pleurotus ostreatus species with complete homology (100% identity). All tests experiment sets were effective at supporting the degradation of petroleum hydrocarbons contaminated soil after three months. Petroleum contaminated soil amended with Spent mushroom compost 10% and fertilizer removed 64.7% of total petroleum hydrocarbons compared control. The germination index (%) in ecotoxicity tests ranged from 60.4 to 93.8%. This showed that the petroleum hydrocarbons contaminated soil amended with 10% Spent mushroom compost had higher bioremediation ability and reduced soil toxicity in less than three months.

  13. Bioremediation of soil contaminated by spent diesel oil using ...

    African Journals Online (AJOL)

    Objectives: To investigate the potential of Pleurotus pulmonarius in the bioremediation of soil contaminated with spent diesel oil at 5, 10 and 15% (v/w) level of contamination over a period of one and two months of incubation. Methodology and results: A pure culture of P. pulmonarius was obtained from the Plant physiology ...

  14. Use of Additives in Bioremediation of Contaminated Groundwater and Soil

    Science.gov (United States)

    This chapter reviews application of additives used in bioremediation of chlorinated solvents and fuels for groundwater and soil remediation. Soluble carbon substrates are applicable to most site conditions except aquifers with very high or very low groundwater flow. Slow-release ...

  15. Influence of salinity on bioremediation of oil in soil

    International Nuclear Information System (INIS)

    Rhykerd, R.L.; Weaver, R.W.; McInnes, K.J.

    1995-01-01

    Spills from oil production and processing result in soils being contaminated with oil and salt. The effect of NaCl on degradation of oil in a sandy-clay loam and a clay loam soil was determined. Soils were treated with 50 g kg -1 non-detergent motor oil (30 SAE). Salt treatments included NaCl amendments to adjust the soil solution electrical conductivities to 40, 120, and 200 dS m -1 . Soils were amended with nutrients and incubated at 25 o C. Oil degradation was estimated from the quantities of CO 2 evolved and from gravimetric determinations of remaining oil. Salt concentrations of 200 dS m -1 in oil amended soils resulted in a decrease in oil mineralized by 44% for a clay loam and 20% for a sandy-clay loam soil. A salt concentration of 40 dS m -1 reduced oil mineralization by about 10% in both soils. Oil mineralized in the oil amended clay-loam soil was 2-3 times greater than for comparable treatments of the sandy-clay loam soil. Amending the sandy-clay loam soil with 5% by weight of the clay-loam soil enhanced oil mineralization by 40%. Removal of salts from oil and salt contaminated soils before undertaking bioremediation may reduce the time required for bioremediation. (author)

  16. Biodegradation and Bioremediation of Petroleum Pollutants in Soil

    Energy Technology Data Exchange (ETDEWEB)

    Huesemann, Michael H.

    2004-08-02

    During bioremediation, petroleum hydrocarbons are converted by naturally occurring or indigenous soil microorganisms to carbon dioxide, water, bacterial cells (biomass), and humic materials. Numerous factors are known to affect both the rate and the extent of hydrocarbon biodegradation in contaminated soils. These include soil properties such as moisture content, aeration, nutrient status, pH, and temperature as well as waste characteristics such as the concentration and molecular structure of hydrocarbon compounds or classes, the presence of inhibitors and cometabolic substrates, and the degree of contaminant sequestration which often leads to serious bioavailability limitations, particularly in aged soils. It is the objective of this chapter to outline a strategy for optimizing the hydrocarbon bioremediation process by adjusting the various operational parameters so that none of them become a limiting factor during treatment.

  17. Soil bioremediation approaches for petroleum hydrocarbon polluted environments

    Directory of Open Access Journals (Sweden)

    Eman Koshlaf

    2017-01-01

    Full Text Available Increasing industrialisation, continued population growth and heavy demand and reliance on petrochemical products have led to unprecedented economic growth and development. However, inevitably this dependence on fossil fuels has resulted in serious environmental issues over recent decades. The eco-toxicity and the potential health implications that petroleum hydrocarbons pose for both environmental and human health have led to increased interest in developing environmental biotechnology-based methodologies to detoxify environments impacted by petrogenic compounds. Different approaches have been applied for remediating polluted sites with petroleum derivatives. Bioremediation represents an environmentally sustainable and economical emerging technology for maximizing the metabolism of organic pollutants and minimizing the ecological effects of oil spills. Bioremediation relies on microbial metabolic activities in the presence of optimal ecological factors and necessary nutrients to transform organic pollutants such as petrogenic hydrocarbons. Although, biodegradation often takes longer than traditional remediation methods, the complete degradation of the contaminant is often accomplished. Hydrocarbon biodegradation in soil is determined by a number of environmental and biological factors varying from site to site such as the pH of the soil, temperature, oxygen availability and nutrient content, the growth and survival of hydrocarbon-degrading microbes and bioavailability of pollutants to microbial attack. In this review we have attempted to broaden the perspectives of scientists working in bioremediation. We focus on the most common bioremediation technologies currently used for soil remediation and the mechanisms underlying the degradation of petrogenic hydrocarbons by microorganisms.

  18. Changes in bacterial diversity associated with bioremediation of used lubricating oil in tropical soils.

    Science.gov (United States)

    Meeboon, Naruemon; Leewis, Mary-Cathrine; Kaewsuwan, Sireewan; Maneerat, Suppasil; Leigh, Mary Beth

    2017-08-01

    Used lubricating oil (ULO) is a widespread contaminant, particularly throughout tropical regions, and may be a candidate for bioremediation. However, little is known about the biodegradation potential or basic microbial ecology of ULO-contaminated soils. This study aims to determine the effects of used ULO on bacterial community structure and diversity. Using a combination of culture-based (agar plate counts) and molecular techniques (16S rRNA gene sequencing and DGGE), we investigated changes in soil bacterial communities from three different ULO-contaminated soils collected from motorcycle mechanical workshops (soil A, B, and C). We further explored the relationship between bacterial community structure, physiochemical soil parameters, and ULO composition in three ULO-contaminated soils. Results indicated that the three investigated soils had different community structures, which may be a result of the different ULO characteristics and physiochemical soil parameters of each site. Soil C had the highest ULO concentration and also the greatest diversity and richness of bacteria, which may be a result of higher nutrient retention, organic matter and cation exchange capacity, as well as freshness of oil compared to the other soils. In soils A and B, Proteobacteria (esp. Gammaproteobacteria) dominated the bacterial community, and in soil C, Actinobacteria and Firmicutes dominated. The genus Enterobacter, a member of the class Gammaproteobacteria, is known to include ULO-degraders, and this genus was the only one found in all three soils, suggesting that it could play a key role in the in situ degradation of ULO-contaminated tropical Thai soils. This study provides insights into our understanding of soil microbial richness, diversity, composition, and structure in tropical ULO-contaminated soils, and may be useful for the development of strategies to improve bioremediation.

  19. Bioremediation of contaminated soil: Strategy and case histories

    International Nuclear Information System (INIS)

    Balba, M.T.; Ying, A.C.; McNeice, T.G.

    1991-01-01

    Microorganisms are capable of degrading many kinds of xenobiotic compounds and toxic chemicals. These microorganisms are ubiquitous in nature and there are numerous cases in which long-term contamination of soil and groundwater has been observed. The persistence of the contamination is usually caused by the inability of micro-organisms to metabolize these compounds under the prevailing environmental conditions. Two general reasons account for the failure of microbes to degrade pollutants in any environment: (1) inherent molecular recalcitrance of the contaminants and (2) environmental factors. The inherent molecular recalcitrance is usually associated with xenobiotic compounds where the chemical structure of the molecule is such that microbes and enzymes required for its catabolism have not evolved yet in nature. The environmental factors include a range of physicochemical conditions which influence microbial growth and activity. Biological remediation of contaminated sites can be accomplished using naturally-occurring microorganisms to treat the contaminants. Only particular groups of microorganisms are capable of decomposing specific compounds. The development of a bioremediation program for a specific contaminated soil system usually includes: thorough site/soil/waste characterization; treatability studies; and design and implementation of the bioremediation plan. The results of in situ and ex situ treatment programs involving the cleanup of petroleum hydrocarbon-contaminated soil will be discussed in detail. The paper will address key issues affecting the success of the bioremediation process such as nutrient transport, metal precipitation and potential soil clogging, microbial inoculation, etc

  20. Assisted bioremediation tests on three natural soils contaminated with benzene

    Directory of Open Access Journals (Sweden)

    Maria Manuela Carvalho

    2015-07-01

    Full Text Available Bioremediation is an attractive and useful method of remediation of soils contaminated with petroleum hydrocarbons because it is simple to maintain, applicable in large areas, is economic and enables an effective destruction of the contaminant. Usually, the autochthone microorganisms have no ability to degrade these compounds, and otherwise, the contaminated sites have inappropriate environmental conditions for microorganism’s development. These problems can be overcome by assisted bioremediation (bioaugmentation and/or biostimulation. In this study the assisted bioremediation capacity on the rehabilitation of three natural sub-soils (granite, limestone and schist contaminated with benzene was evaluated. Two different types of assisted bioremediation were used: without and with ventilation (bioventing. The bioaugmentation was held by inoculating the soil with a consortium of microorganisms collected from the protection area of crude oil storage tanks in a refinery. In unventilated trials, biostimulation was accomplished by the addition of a nutrient mineral media, while in bioventing oxygen was also added. The tests were carried out at controlled temperature of 25 ºC in stainless steel columns where the moist soil contaminated with benzene (200 mg per kg of soil occupied about 40% of the column’s volume. The processes were daily monitored in discontinued mode. Benzene concentration in the gas phase was quantified by gas chromatography (GC-FID, oxygen and carbon dioxide concentrations were monitored by respirometry. The results revealed that the three contaminated soils were remediated using both technologies, nevertheless, the bioventing showed faster rates. With this work it was proved that respirometric analysis is an appropriate instrument for monitoring the biological activity.

  1. Importance of soil-water relation in assessment endpoint in bioremediated soils: Plant growth and soil physical properties

    International Nuclear Information System (INIS)

    Li, X.; Sawatsky, N.

    1995-01-01

    Much effort has been focused on defining the end-point of bioremediated soils by chemical analysis (Alberta Tier 1 or CCME Guideline for Contaminated Soils) or toxicity tests. However, these tests do not completely assess the soil quality, or the capability of soil to support plant growth after bioremediation. This study compared barley (Hordeum vulgare) growth on: (i) non-contaminated, agricultural topsoil, (2) oil-contaminated soil (4% total extractable hydrocarbons, or TEH), and (3) oil-contaminated soil treated by bioremediation (< 2% TEH). Soil physical properties including water retention, water uptake, and water repellence were measured. The results indicated that the growth of barley was significantly reduced by oil-contamination of agricultural topsoil. Furthermore, bioremediation did not improve the barley yield. The lack of effects from bioremediation was attributed to development of water repellence in hydrocarbon contaminated soils. There seemed to be a critical water content around 18% to 20% in contaminated soils. Above this value the water uptake by contaminated soil was near that of the agricultural topsoil. For lower water contents, there was a strong divergence in sorptivity between contaminated and agricultural topsoil. For these soils, water availability was likely the single most important parameter controlling plant growth. This parameter should be considered in assessing endpoint of bioremediation for hydrocarbon contaminated soils

  2. Bioremediation in soil contaminated with hydrocarbons in Colombia.

    OpenAIRE

    María Alejandra Trujillo Toro; Juan Fernando Ramírez Quirama

    2012-01-01

    This study analyzes bioremediation processes of hydrocarbon contaminated soils in Colombia as a sustainable alternative to the deterioration of environmental quality by hydrocarbon spillage. According to national and international environmental law, all waste contaminated with hydrocarbons is considered dangerous waste, and therefore it cannot be released in the ground, water or be incinerated. Such legislation has motivated companies around the world to implement treatment processes for cont...

  3. Assisted bioremediation tests on three natural soils contaminated with benzene

    OpenAIRE

    Carvalho, Maria Manuela; Vila, Maria Cristina; Matos, Cristina Delerue; Teles, Maria Teresa Oliva; Fiúza, António

    2015-01-01

    Bioremediation is an attractive and useful method of remediation of soils contaminated with petroleum hydrocarbons because it is simple to maintain, applicable in large areas, is economic and enables an effective destruction of the contaminant. Usually, the autochthone microorganisms have no ability to degrade these compounds, and otherwise, the contaminated sites have inappropriate environmental conditions for microorganism’s development. These problems can be overcome by assisted bioremedia...

  4. GENOTOXICITY OF BIOREMEDIATED SOILS FROM THE REILLY TARSITE, ST. LOUIS PARK, MINNESOTA

    Science.gov (United States)

    An in vitro approach was used to measure the genotoxicity of creosote-contaminated soil before and after four bioremediation processes. The soil was taken from the Reilly Tar site, a closed Superfund site in Saint Louis Park, Minnesota. The creosote soil was bioremediated in bios...

  5. Nitrate removal by electro-bioremediation technology in Korean soil

    International Nuclear Information System (INIS)

    Choi, Jeong-Hee; Maruthamuthu, Sundaram; Lee, Hyun-Goo; Ha, Tae-Hyun; Bae, Jeong-Hyo

    2009-01-01

    The nitrate concentration of surface has become a serious concern in agricultural industry through out the world. In the present study, nitrate was removed in the soil by employing electro-bioremediation, a hybrid technology of bioremediation and electrokinetics. The abundance of Bacillus spp. as nitrate reducing bacteria were isolated and identified from the soil sample collected from a greenhouse at Jinju City of Gyengsangnamdo, South Korea. The nitrate reducing bacterial species were identified by 16 s RNA sequencing technique. The efficiency of bacterial isolates on nitrate removal in broth was tested. The experiment was conducted in an electrokinetic (EK) cell by applying 20 V across the electrodes. The nitrate reducing bacteria (Bacillus spp.) were inoculated in the soil for nitrate removal process by the addition of necessary nutrient. The influence of nitrate reducers on electrokinetic process was also studied. The concentration of nitrate at anodic area of soil was higher when compared to cathode in electrokinetic system, while adding bacteria in EK (EK + bio) system, the nitrate concentration was almost nil in all the area of soil. The bacteria supplies electron from organic degradation (humic substances) and enhances NO 3 - reduction (denitrification). Experimental results showed that the electro-bio kinetic process viz. electroosmosis and physiological activity of bacteria reduced nitrate in soil environment effectively. Involvement of Bacillus spp. on nitrification was controlled by electrokinetics at cathode area by reduction of ammonium ions to nitrogen gas. The excellence of the combined electro-bio kinetics technology on nitrate removal is discussed.

  6. Bioremediation of Pyrene-Contaminated Soils Using Biosurfactant

    Directory of Open Access Journals (Sweden)

    Jorfi

    2014-10-01

    Full Text Available Background Polycyclic aromatic hydrocarbons (PAHs are persistence organic chemicals with proved carcinogenic and mutagenic hazards. These compounds are usually adsorbed in soils in vicinity of oil and gas industries. Bioremediation of PAHs contaminated soils is difficult due to hydrophobic nature of PAHs. Objectives The main purpose of the current study was to determine the pyrene removal efficiency in synthetically contaminated soil, using biosurfactant. Materials and Methods Four pure bacterial strains capable of pyrene degradation were isolated from contaminated soils via enrichment techniques. The soil samples were spiked with an initial pyrene concentration of 500 mg/kg and subjected to bioremediation using a mixed culture comprised of previously isolated strains, in addition to application of biosurfactant during 63 days. Results The pyrene removal efficiency in samples containing biosurfactant, without biosurfactant and controls, were 86.4%, 59.8% and 14%, respectively, after 63 days. The difference of pyrene removal efficiency between the biosurfactant-containing samples and the ones without it was significant (P < 0.05. Conclusions Application of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa significantly improved pyrene removal in contaminated soils.

  7. Ex-situ bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    Minier, M.R.

    1994-01-01

    The use of stress acclimated bacteria and nutrient supplements to enhance the biodegradation of petroleum contaminated soil can be a cost effective and reliable treatment technology to reduce organic contaminant levels to below established by local, state, and federal regulatory clean-up criteria. This paper will summarize the results of a field study in which 12,000 yds 3 of petroleum contaminated soil was successfully treated via ex-situ bioremediation and through management of macro and micronutrient concentrations, as well as, other site specific environmental factors that are essential for optimizing microbial growth

  8. Bioremediation of soils contaminated with fuel oils

    International Nuclear Information System (INIS)

    Baker, K.H.; Herson, D.S.; Vercellon-Smith, P.; Cronce, R.C.

    1991-01-01

    A utility company discovered soils in their plant contaminated with diesel fuel and related fuel oils (300-450 ppm). The soils were excavated and removed to a concrete pad for treatment. The authors conducted laboratory studies to determine if biostimulation or bioaugmentation would be appropriate for treating the soils. Microbial numbers and soil respiration were monitored in microcosms supplemented with: (1) organic nutrients, (2) inorganic nutrients, and (3) inorganic nutrients plus additional adapted microorganisms. Their studies indicated that biostimulation via the addition of inorganic nutrients would be appropriate at this site. Treatment cells for the contaminated soils were constructed. Initial data indicates that a 35% reduction in the concentration of contaminants has occurred within the first month of operation

  9. Chemometric assessment of enhanced bioremediation of oil contaminated soils.

    Science.gov (United States)

    Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H

    2013-06-15

    Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting, and addition of nitrogen and phosphorous, molasses, hydrogen peroxide, and a surfactant (Tween 80). Total petroleum hydrocarbon (TPH) concentrations and CHEMometric analysis of Selected Ion Chromatograms (SIC) termed CHEMSIC method of petroleum biomarkers including terpanes, regular, diaromatic and triaromatic steranes were used for determining the level and type of hydrocarbon contamination. The same methods were used to study oil weathering of 2 to 6 ring polycyclic aromatic compounds (PACs). Results demonstrated that bacterial enrichment and addition of nutrients were most efficient with 50% to 62% removal of TPH. Furthermore, the CHEMSIC results demonstrated that the bacterial enrichment was more efficient in degradation of n-alkanes and low molecular weight PACs as well as alkylated PACs (e.g. C₃-C₄ naphthalenes, C₂ phenanthrenes and C₂-C₃ dibenzothiophenes), while nutrient addition led to a larger relative removal of isoprenoids (e.g. norpristane, pristane and phytane). It is concluded that the CHEMSIC method is a valuable tool for assessing bioremediation efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. A petroleum contaminated soil bioremediation facility

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, K.; Hazen, T.

    1994-06-01

    The amount of petroleum contaminated soil (PCS) at the Savannah River site (SRS) that has been identified, excavated and is currently in storage has increased several fold during the last few years. Several factors have contributed to this problem: (1) South Carolina Department of Health ad Environmental control (SCDHEC) lowered the sanitary landfill maximum concentration for total petroleum hydrocarbons (TPH) in the soil from 500 to 100 parts per million (ppm), (2) removal and replacement of underground storage tanks at several sites, (3) most recently SCDHEC disallowed aeration for treatment of contaminated soil, and (4) discovery of several very large contaminated areas of soil associated with leaking underground storage tanks (LUST), leaking pipes, disposal areas, and spills. Thus, SRS has an urgent need to remediate large quantities of contaminated soil that are currently stockpiled and the anticipated contaminated soils to be generated from accidental spills. As long as we utilize petroleum based compounds at the site, we will continue to generate contaminated soil that will require remediation.

  11. A petroleum contaminated soil bioremediation facility

    International Nuclear Information System (INIS)

    Lombard, K.; Hazen, T.

    1994-01-01

    The amount of petroleum contaminated soil (PCS) at the Savannah River site (SRS) that has been identified, excavated and is currently in storage has increased several fold during the last few years. Several factors have contributed to this problem: (1) South Carolina Department of Health ad Environmental control (SCDHEC) lowered the sanitary landfill maximum concentration for total petroleum hydrocarbons (TPH) in the soil from 500 to 100 parts per million (ppm), (2) removal and replacement of underground storage tanks at several sites, (3) most recently SCDHEC disallowed aeration for treatment of contaminated soil, and (4) discovery of several very large contaminated areas of soil associated with leaking underground storage tanks (LUST), leaking pipes, disposal areas, and spills. Thus, SRS has an urgent need to remediate large quantities of contaminated soil that are currently stockpiled and the anticipated contaminated soils to be generated from accidental spills. As long as we utilize petroleum based compounds at the site, we will continue to generate contaminated soil that will require remediation

  12. Bioremediation potential of crude oil spilled on soil

    International Nuclear Information System (INIS)

    McMillen, S.J.; Young, G.N.; Davis, P.S.; Cook, P.D.; Kerr, J.M.; Gray, N.R.; Requejo, A.G.

    1995-01-01

    Spills sometimes occur during routine operations associated with exploration and production (E and P) of crude oil. These spills at E and P sites typically are small, less than 1 acre (0.4 ha), and the spill may be in remote locations. As a result, bioremediation often represents a cost-effective alternative to other cleanup technologies. The goal of this study was to determine the potential for biodegrading a range of crude oil types and determining the effect of process variables such as soil texture and soil salinity. Crude oils evaluated ranged in American Petroleum institute (API) gravity from 14 degree to 45 degree. The extent of biodegradation was calculated from oxygen uptake data and the total extractable material (TEM) concentration. Based on the data collected, a simple model was developed for predicting the bioremediation potential of a range of crude oil types. Biodegradation rates were significantly lower in sandy soils. Soil salinities greater than approximately 40 mmhos/cm adversely impacted soil microbial activity and biodegradation rate

  13. Bioremediation of oil%contaminated soil

    OpenAIRE

    Marchenko1, M.; Shuktueva, M.; Vinokurov, V.; Krasnopolskaya, L.

    2011-01-01

    Stocks of crude oil remains at a high level, does not stop the construction of new pipelines, increasing the output and at the same time the transportation of oil. At the same time, it gives rise to accidents resulting in oil and oil products fall in different ecosystems: the atmosphere, soil, waters. This paper provides an overview of the mechanical, physical, chemical, and biological methods for the elimination of oil-contaminated soils. Create optimal conditions for growth and development ...

  14. Recent Trend on Bioremediation of Polluted Salty Soils and Waters Using Haloarchaea

    OpenAIRE

    Aracil-Gisbert, Sonia; Torregrosa-Crespo, Javier; Martínez-Espinosa, Rosa María

    2018-01-01

    Pollution of soils, sediments, and groundwater is a matter of concern at global level. Industrial waste effluents have damaged several environments; thus, pollutant removal has become a priority worldwide. Currently, bioremediation has emerged as an effective solution for these problems, and, indeed, the use of haloarchaea in bioremediation has been tested successfully. A bibliographic review is here presented to show the recent advances in bioremediation of polluted soil and wastewater using...

  15. Overview of a large-scale bioremediation soil treatment project

    International Nuclear Information System (INIS)

    Stechmann, R.

    1991-01-01

    How long does it take to remediate 290,000 yd 3 of impacted soil containing an average total petroleum hydrocarbon concentration of 3,000 ppm? Approximately 15 months from start to end of treatment using bioremediation. Mittelhauser was retained by the seller of the property (a major oil company) as technical manager to supervise remediation of a 45-ac parcel in the Los Angeles basin. Mittelhauser completed site characterization, negotiated clean-up levels with the regulatory agencies, and prepared the remedial action plan (RAP) with which the treatment approach was approved and permitted. The RAP outlined the excavation, treatment, and recompaction procedures for the impacted soil resulting from leakage of bunker fuel oil from a large surface impoundment. The impacted soil was treated on site in unline Land Treatment Units (LTUs) in 18-in.-thick lifts. Due to space restraints, multiple lifts site. The native microbial population was cultivated using soil stabilization mixing equipment with the application of water and agricultural grade fertilizers. Costs on this multimillion dollar project are broken down as follows: general contractor cost (47%), bioremediation subcontractor cost (35%), site characterization (10%), technical management (7%), analytical services (3%), RAP preparation and permitting (1%), and civil engineering subcontractor cost (1%). Start-up of field work could have been severely impacted by the existence of Red Fox habitation. The foxes were successfully relocated prior to start of field work

  16. Bioremediation of copper-contaminated soils by bacteria.

    Science.gov (United States)

    Cornu, Jean-Yves; Huguenot, David; Jézéquel, Karine; Lollier, Marc; Lebeau, Thierry

    2017-02-01

    Although copper (Cu) is an essential micronutrient for all living organisms, it can be toxic at low concentrations. Its beneficial effects are therefore only observed for a narrow range of concentrations. Anthropogenic activities such as fungicide spraying and mining have resulted in the Cu contamination of environmental compartments (soil, water and sediment) at levels sometimes exceeding the toxicity threshold. This review focuses on the bioremediation of copper-contaminated soils. The mechanisms by which microorganisms, and in particular bacteria, can mobilize or immobilize Cu in soils are described and the corresponding bioremediation strategies-of varying levels of maturity-are addressed: (i) bioleaching as a process for the ex situ recovery of Cu from Cu-bearing solids, (ii) bioimmobilization to limit the in situ leaching of Cu into groundwater and (iii) bioaugmentation-assisted phytoextraction as an innovative process for in situ enhancement of Cu removal from soil. For each application, the specific conditions required to achieve the desired effect and the practical methods for control of the microbial processes were specified.

  17. Bioremediation in soil contaminated with hydrocarbons in Colombia.

    Directory of Open Access Journals (Sweden)

    María Alejandra Trujillo Toro

    2012-10-01

    Full Text Available This study analyzes bioremediation processes of hydrocarbon contaminated soils in Colombia as a sustainable alternative to the deterioration of environmental quality by hydrocarbon spillage. According to national and international environmental law, all waste contaminated with hydrocarbons is considered dangerous waste, and therefore it cannot be released in the ground, water or be incinerated. Such legislation has motivated companies around the world to implement treatment processes for contaminated soils. Within Colombia, oil companies have been implementing the bioremediation of hydrocarbon contaminated soils in order to manage the waste coming from activities of oil drilling, refinement, transport and distribution.These practices must be considered viable for their ease of implementation, their low overhead costs, and for the benefits they provide towards environmental quality. Among the positive impacts that these practices have generated, it may consider the following: a solution for the problem of hydrocarbon contaminated soils, alternatives for the ultimate disposal of said waste without affecting ground, water or air resources, the low cost of the operation, and the technical experience of sustainable development which can continue to be implemented in companies dealing with dangerous waste.

  18. Feasibility of electrokinetic oxygen supply for soil bioremediation purposes.

    Science.gov (United States)

    Mena Ramírez, E; Villaseñor Camacho, J; Rodrigo Rodrigo, M A; Cañizares Cañizares, P

    2014-12-01

    This paper studies the possibility of providing oxygen to a soil by an electrokinetic technique, so that the method could be used in future aerobic polluted soil bioremediation treatments. The oxygen was generated from the anodic reaction of water electrolysis and transported to the soil in a laboratory-scale electrokinetic cell. Two variables were tested: the soil texture and the voltage gradient. The technique was tested in two artificial soils (clay and sand) and later in a real silty soil, and three voltage gradients were used: 0.0 (control), 0.5, and 1.0 V cm(-1). It was observed that these two variables strongly influenced the results. Oxygen transport into the soil was only available in the silty and sandy soils by oxygen diffusion, obtaining high dissolved oxygen concentrations, between 4 and 9 mg L(-1), useful for possible aerobic biodegradation processes, while transport was not possible in fine-grained soils such as clay. Electro-osmotic flow did not contribute to the transport of oxygen, and an increase in voltage gradients produced higher oxygen transfer rates. However, only a minimum fraction of the electrolytically generated oxygen was efficiently used, and the maximum oxygen transport rate observed, approximately 1.4 mgO2 L(-1)d(-1), was rather low, so this technique could be only tested in slow in-situ biostimulation processes for organics removal from polluted soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Process, engineering and design aspects of contaminated soil bioremediation. Pt. 1 In situ treatments

    International Nuclear Information System (INIS)

    De Fraja Frangipane, E.; Andreottola, G.; Tatano, F.

    1995-01-01

    The present paper is an up-to-date overview of contaminated soil bioremediation techniques, which are analyzed in detail with regard to main process, engineering and design aspects. General biochemical/kinetic aspects of bioremediation of contaminated soil, and in situ treatments, are discussed in this part one

  20. Bioremediation of industrially contaminated soil using compost and plant technology.

    Science.gov (United States)

    Taiwo, A M; Gbadebo, A M; Oyedepo, J A; Ojekunle, Z O; Alo, O M; Oyeniran, A A; Onalaja, O J; Ogunjimi, D; Taiwo, O T

    2016-03-05

    Compost technology can be utilized for bioremediation of contaminated soil using the active microorganisms present in the matrix of contaminants. This study examined bioremediation of industrially polluted soil using the compost and plant technology. Soil samples were collected at the vicinity of three industrial locations in Ogun State and a goldmine site in Iperindo, Osun State in March, 2014. The compost used was made from cow dung, water hyacinth and sawdust for a period of twelve weeks. The matured compost was mixed with contaminated soil samples in a five-ratio pot experimental design. The compost and contaminated soil samples were analyzed using the standard procedures for pH, electrical conductivity (EC), organic carbon (OC), total nitrogen (TN), phosphorus, exchangeable cations (Na, K, Ca and Mg) and heavy metals (Fe, Mn, Cu, Zn and Cr). Kenaf (Hibiscus cannabinus) seeds were also planted for co-remediation of metals. The growth parameters of Kenaf plants were observed weekly for a period of one month. Results showed that during the one-month remediation experiment, treatments with 'compost-only' removed 49 ± 8% Mn, 32 ± 7% Fe, 29 ± 11% Zn, 27 ± 6% Cu and 11 ± 5% Cr from the contaminated soil. On the other hand, treatments with 'compost+plant' remediated 71 ± 8% Mn, 63 ± 3% Fe, 59 ± 11% Zn, 40 ± 6% Cu and 5 ± 4% Cr. Enrichment factor (EF) of metals in the compost was low while that of Cu (EF=7.3) and Zn (EF=8.6) were high in the contaminated soils. Bioaccumulation factor (BF) revealed low metal uptake by Kenaf plant. The growth parameters of Kenaf plant showed steady increments from week 1 to week 4 of planting. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Bioremediation of uranium contaminated soils and wastes

    International Nuclear Information System (INIS)

    Francis, A.J.

    1998-01-01

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs

  2. Enhance soil bioremediation with electric fields

    International Nuclear Information System (INIS)

    Acar, Y.B.; Rabbi, M.F.; Gale, R.J.; Ozsu, E.E.; Alshawabkeh, A.N.

    1996-01-01

    Electrokinetic remediation is an in situ remediation technique that uses low-level direct-current electric potential differences (on the order of volts per centimeter) or an electric current (on the order of milliamps per square centimeter of cross-sectional area between electrodes) applied across a soil mass by electrodes placed in an open- or closed-flow arrangement. In electrokinetic methods, the groundwater in the boreholes or an externally supplied fluid (processing fluid) is used as the conductive medium. Electrokinetic remediation technology for metal extraction is expected to decrease the cost of remediating contaminated soils to the lower end of the $100--$1,000/m 3 range. This would be a significant savings in the $350 billion hazardous waste site cleanup and remediation market. The environmental restoration cost for the mixed (radioactive)-waste market is separately estimated to be $65 billion. The potential of the electrokinetic remediation technique in remediating soils contaminated with radioactive mixed waste using depolarization agents and complexing agents is noteworthy. The authors have removed uranyl ions from spiked kaolinite using the technique

  3. Evaluation of bio-remediation technologies for PAHs contaminated soils

    International Nuclear Information System (INIS)

    Garcia Frutos, F.J.; Diaz, J.; Rodriguez, V.; Escolano, O.; Garcia, S.; Perez, R.; Martinez, R.; Oromendia, R.

    2005-01-01

    Natural attenuation is a new concept related to polluted soil remediation. Can be understood like an 'in situ' bio-remediation process with low technical intervention. This low intervention may be in order to follow the behaviour of pollutants 'monitored natural attenuation' or include an optimisation process to improve biological remediation. The use of this technology is a fact for light hydrocarbon polluted soil, but few is known about the behaviour of polycyclic aromatic hydrocarbons (PAHs) in this process. PAHs are more recalcitrant to bio-remediation due to their physic-chemical characteristics, mainly hydrophobicity and electrochemical stability. PAHs are a kind of pollutants widely distributed in the environment, not only in the proximity of the source. This linked to the characteristics of some of them related to toxicity and mutagenicity implies its inclusion as target compounds from an environmental point of view. Their low availability, solubility and the strong tendency to bind to soil particle, especially to the organic phase affect PAHs biological mineralisation. So, if the pollutant is not available to microorganisms it can not be bio-degraded. Bioavailability can be assessed form several but complementary points of view: physico-chemical and biological. First including the term availability and the second to point out the capacity of soil microorganisms to mineralize PAHs. Availability and Bio-degradability must be determined, as well as the presence and activity of specific degraders among the soil organisms, once settled these points is necessary to study the biological requirements to optimise biodegradation kinetics of these compounds. In this work we present a study carried out on a soil, contaminated by PAHs, the study includes three main topics: bioavailability assessment (both term availability and bio-degradability), bio-remediation assessment, once optimised conditions for natural attenuation and finally a simulation of the

  4. Transformation of a petroleum pollutant during soil bioremediation experiments

    Directory of Open Access Journals (Sweden)

    B. JOVANCICEVIC

    2008-05-01

    Full Text Available The experiment of ex situ soil bioremediation was performed at the locality of the Oil Refinery in Pančevo (alluvial formation of the Danube River, Serbia polluted with an oil type pollutant. The experiments of biostimulation, bioventilation and reinoculation of an autochthonous microbial consortium were performed during the six-month period (May–November 2006. The changes in the quantity and composition of the pollutant, or the bioremediation effect, were monitored by analysis of the samples of the polluted soil taken in time spans of two weeks. In this way, from the beginning until the end of the experiment, 12 samples were collected and marked as P1–P12 (Pančevo 1–Pančevo 12. The results obtained showed that more significant changes in the composition of the oil pollutant occurred only during the last phases of the experiment (P8–P12. The activity of microorganisms was reflected in the increase of the quantity of polar oil fractions, mainly fatty acid fractions. In this way, the quantity of total eluate increased, and the quantity of the insoluble residue was reduced to a minimum, whereby the oil pollutant was transformed to a form that could be removed more efficiently and more completely from the soil, as a segment of the environment.

  5. Bioremediation of soil heavily contaminated with crude oil and its products: composition of the microbial consortium

    Directory of Open Access Journals (Sweden)

    JELENA S. MILIĆ

    2009-04-01

    Full Text Available Bioremediation, a process that utilizes the capability of microorganism to degrade toxic waste, is emerging as a promising technology for the treatment of soil and groundwater contamination. The technology is very effective in dealing with petroleum hydrocarbon contamination. The aim of this study was to examine the composition of the microbial consortium during the ex situ experiment of bioremediation of soil heavily contaminated with crude oil and its products from the Oil Refinery Pančevo, Serbia. After a 5.5-month experiment with biostimulation and bioventilation, the concentration of the total petroleum hydrocarbons (TPH had been reduced from 29.80 to 3.29 g/kg (89 %. In soil, the dominant microorganism population comprised Gram-positive bacteria from actinomycete-Nocardia group. The microorganisms which decompose hydrocarbons were the dominant microbial population at the end of the process, with a share of more than 80 % (range 107 CFU/g. On the basis of the results, it was concluded that a stable microbial community had been formed after initial fluctuations.

  6. Bioremediation of hydrocarbon polluted soil - Improvement of in situ bioremediation by bioaugmentation with endogenous and exogenous strains

    OpenAIRE

    Tarayre, Cédric

    2010-01-01

    Petroleum pollution has now become a real problem because hydrocarbons are persistent contaminants in soils and water. Contamination problems increase when ages of relevant facilities, such as oil storage tanks and pipelines, increase over time. The evolution of Legislation concerning soil pollution has led to the need of efficient techniques able to restore the polluted ground. Unfortunately, these techniques are expensive. Bioremediation of hydrocarbon polluted soils has been recognized as...

  7. Test plan for the soils facility demonstration: A petroleum contaminated soil bioremediation facility

    International Nuclear Information System (INIS)

    Lombard, K.H.

    1994-01-01

    The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing new and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays

  8. The effect of soil type on the bioremediation of petroleum contaminated soils.

    Science.gov (United States)

    Haghollahi, Ali; Fazaelipoor, Mohammad Hassan; Schaffie, Mahin

    2016-09-15

    In this research the bioremediation of four different types of contaminated soils was monitored as a function of time and moisture content. The soils were categorized as sandy soil containing 100% sand (type I), clay soil containing more than 95% clay (type II), coarse grained soil containing 68% gravel and 32% sand (type III), and coarse grained with high clay content containing 40% gravel, 20% sand, and 40% clay (type IV). The initially clean soils were contaminated with gasoil to the concentration of 100 g/kg, and left on the floor for the evaporation of light hydrocarbons. A full factorial experimental design with soil type (four levels), and moisture content (10 and 20%) as the factors was employed. The soils were inoculated with petroleum degrading microorganisms. Soil samples were taken on days 90, 180, and 270, and the residual total petroleum hydrocarbon (TPH) was extracted using soxhlet apparatus. The moisture content of the soils was kept almost constant during the process by intermittent addition of water. The results showed that the efficiency of bioremediation was affected significantly by the soil type (Pvalue soil with the initial TPH content of 69.62 g/kg, and the lowest for the clay soil (23.5%) with the initial TPH content of 69.70 g/kg. The effect of moisture content on bioremediation was not statistically significant for the investigated levels. The removal percentage in the clay soil was improved to 57% (within a month) in a separate experiment by more frequent mixing of the soil, indicating low availability of oxygen as a reason for low degradation of hydrocarbons in the clay soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Sequential Application of Soil Vapor Extraction and Bioremediation Processes for the Remediation of Ethylbenzene-Contaminated Soils

    DEFF Research Database (Denmark)

    Soares, António Carlos Alves; Pinho, Maria Teresa; Albergaria, José Tomás

    2012-01-01

    Soil vapor extraction (SVE) is an efficient, well-known and widely applied soil remediation technology. However, under certain conditions it cannot achieve the defined cleanup goals, requiring further treatment, for example, through bioremediation (BR). The sequential application of these technol......Soil vapor extraction (SVE) is an efficient, well-known and widely applied soil remediation technology. However, under certain conditions it cannot achieve the defined cleanup goals, requiring further treatment, for example, through bioremediation (BR). The sequential application...

  10. Aerobic Bioremediation of PAH Contaminated Soil Results in Increased Genotoxicity and Developmental Toxicity

    Science.gov (United States)

    Chibwe, Leah; Geier, Mitra C.; Nakamura, Jun; Tanguay, Robert L.; Aitken, Michael D.; Simonich, Staci L. Massey

    2015-01-01

    The formation of more polar and toxic polycyclic aromatic hydrocarbon (PAH) transformation products is one of the concerns associated with the bioremediation of PAH-contaminated soils. Soil contaminated with coal tar (pre-bioremediation) from a former manufactured gas plant (MGP) site was treated in a laboratory scale bioreactor (post-bioremediation) and extracted using pressurized liquid extraction. The soil extracts were fractionated, based on polarity, and analyzed for 88 PAHs (unsubstituted, oxygenated, nitrated, and heterocyclic PAHs). The PAH concentrations in the soil tested, post-bioremediation, were lower than their regulatory maximum allowable concentrations (MACs), with the exception of the higher molecular weight PAHs (BaA, BkF, BbF, BaP, and IcdP), most of which did not undergo significant biodegradation. The soil extract fractions were tested for genotoxicity using the DT40 chicken lymphocyte bioassay and developmental to xicity using the embryonic zebrafish (Danio rerio) bioassay. A statistically significant increase in genotoxicity was measured in the unfractionated soil extract, as well as in four polar soil extract fractions, post-bioremediation (p bioremediation (p bioremediation. The increased toxicity measured post-bioremediation is not likely due to the 88 PAHs measured in this study (including quinones), because most were not present in the toxic polar fractions and/or because their concentrations did not increase post-bioremediation. However, the increased toxicity measured post-bioremediation is likely due to hydroxylated and carboxylated transformation products of the 3- and 4-ring PAHs (PHE, 1MPHE, 2MPHE, PRY, BaA, and FLA) that were most degraded. PMID:26200254

  11. Integrating Electrokinetic and Bioremediation Process for Treating Oil Contaminated Low Permeability Soil

    Directory of Open Access Journals (Sweden)

    Surya Ramadan Bimastyaji

    2018-01-01

    Full Text Available Traditional oil mining activities always ignores environmental regulation which may cause contamination in soil and environment. Crude oil contamination in low-permeability soil complicates recovery process because it requires substantial energy for excavating and crushing the soil. Electrokinetic technology can be used as an alternative technology to treat contaminated soil and improve bioremediation process (biostimulation through transfer of ions and nutrient that support microorganism growth. This study was conducted using a combination of electrokinetic and bioremediation processes. Result shows that the application of electrokinetic and bioremediation in low permeability soils can provide hydrocarbon removal efficiency up to 46,3% in 7 days operation. The highest amount of microorganism can be found in 3-days operation, which is 2x108 CFU/ml using surfactant as flushing fluid for solubilizing hydrocarbon molecules. Enhancing bioremediation using electrokinetic process is very potential to recover oil contaminated low permeability soil in the future.

  12. Integrating Electrokinetic and Bioremediation Process for Treating Oil Contaminated Low Permeability Soil

    Science.gov (United States)

    Ramadan, Bimastyaji Surya; Effendi, Agus Jatnika; Helmy, Qomarudin

    2018-02-01

    Traditional oil mining activities always ignores environmental regulation which may cause contamination in soil and environment. Crude oil contamination in low-permeability soil complicates recovery process because it requires substantial energy for excavating and crushing the soil. Electrokinetic technology can be used as an alternative technology to treat contaminated soil and improve bioremediation process (biostimulation) through transfer of ions and nutrient that support microorganism growth. This study was conducted using a combination of electrokinetic and bioremediation processes. Result shows that the application of electrokinetic and bioremediation in low permeability soils can provide hydrocarbon removal efficiency up to 46,3% in 7 days operation. The highest amount of microorganism can be found in 3-days operation, which is 2x108 CFU/ml using surfactant as flushing fluid for solubilizing hydrocarbon molecules. Enhancing bioremediation using electrokinetic process is very potential to recover oil contaminated low permeability soil in the future.

  13. Germination and initial growth of Campomanesia xanthocarpa O. Berg. (Myrtaceae, in petroleum-contaminated soil and bioremediated soil

    Directory of Open Access Journals (Sweden)

    AM. Gogosz

    Full Text Available In 2000 there was an oil spill at the Getúlio Vargas Refinery (REPAR in Paraná. Nearly five years after contamination and the use of bioremediation, a study was carried out to identify the effects of the contaminated soil and the bioremediated soil on the germination and initial growth of C. xanthocarpa. The experiment was established with soil from REPAR, with three treatment groups: contaminated soil (C, bioremediated soil (B and uncontaminated soil (U; with five repetitions of 50 seeds each. There was no significant difference in the percentage of germination and the speed of germination index. The production of total biomass (30 - 60 days and shoot biomass (60 days was greater in the bioremediated soil compared to the other treatments. The averages for the root biomass were lower in the contaminated soil than in the bioremediated soil. The shoot length and the total length of the seedling in the contaminated soil and uncontaminated soil were lower than in the bioremediated soil.

  14. Bioremediation of a tropical clay soil contaminated with diesel oil.

    Science.gov (United States)

    Chagas-Spinelli, Alessandra C O; Kato, Mario T; de Lima, Edmilson S; Gavazza, Savia

    2012-12-30

    The removal of polyaromatic hydrocarbons (PAH) in tropical clay soil contaminated with diesel oil was evaluated. Three bioremediation treatments were used: landfarming (LF), biostimulation (BS) and biostimulation with bioaugmentation (BSBA). The treatment removal efficiency for the total PAHs differed from the efficiencies for the removal of individual PAH compounds. In the case of total PAHs, the removal values obtained at the end of the 129-day experimental period were 87%, 89% and 87% for LF, BS and BSBA, respectively. Thus, the efficiency was not improved by the addition of nutrients and microorganisms. Typically, two distinct phases were observed. A higher removal rate occurred in the first 17 days (P-I) and a lower rate occurred in the last 112 days (P-II). In phase P-I, the zero-order kinetic parameter (μg PAH g(-1) soil d(-1)) values were similar (about 4.6) for all the three treatments. In P-II, values were also similar but much lower (about 0.14). P-I was characterized by a sharp pH decrease to less than 5.0 for the BS and BSBA treatments, while the pH remained near 6.5 for LF. Concerning the 16 individual priority PAH compounds, the results varied depending on the bioremediation treatment used and on the PAH species of interest. In general, compounds with fewer aromatic rings were better removed by BS or BSBA, while those with 4 or more rings were most effectively removed by LF. The biphasic removal behavior was observed only for some compounds. In the case of naphthalene, pyrene, chrysene, benzo[k]fluoranthene and benzo[a]pyrene, removal occurred mostly in the P-I phase. Therefore, the best degradation process for total or individual PAHs should be selected considering the target compounds and the local conditions, such as native microbiota and soil type. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The Influence of Soil Chemical Factors on In Situ Bioremediation of Soil Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Breedveld, Gijs D.

    1997-12-31

    Mineral oil is the major energy source in Western society. Production, transport and distribution of oil and oil products cause serious contamination problems of water, air and soil. The present thesis studies the natural biodegradation processes in the soil environment which can remove contamination by oil products and creosote. The main physical/chemical processes determining the distribution of organic contaminants between the soil solid, aqueous and vapour phase are discussed. Then a short introduction to soil microbiology and environmental factors important for biodegradation is given. There is a discussion of engineered and natural bioremediation methods and the problems related to scaling up laboratory experiments to field scale remediation. Bioremediation will seldom remove the contaminants completely; a residue remains. Factors affecting the level of residual contamination and the consequences for contaminant availability are discussed. Finally, the main findings of the work are summarized and recommendations for further research are given. 111 refs., 41 figs., 19 tabs.

  16. Implications of Bioremediation of Polycyclic Aromatic Hydrocarbon-Contaminated Soils for Human Health and Cancer Risk

    Energy Technology Data Exchange (ETDEWEB)

    Davie-Martin, Cleo L. [Department; Department; Stratton, Kelly G. [Pacific Northwest; Teeguarden, Justin G. [Pacific Northwest; Waters, Katrina M. [Pacific Northwest; Simonich, Staci L. Massey [Department; Department

    2017-08-09

    Background: Bioremediation uses microorganisms to degrade polycyclic aromatic hydrocarbons (PAHs) in contaminated soils. Its success is largely evaluated through targeted analysis of PAH concentrations in soil and cancer risk (exposure) estimates. However, bioremediation often fails to significantly degrade the most carcinogenic PAHs and can initiate formation of more polar metabolites, some of which may be more toxic. Objectives: We aimed to investigate whether the cancer risk associated with PAH-contaminated soils was reduced post-bioremediation and to identify the most effective bioremediation strategies for degrading the carcinogenic and high molecular weight (≥MW302) PAHs. Methods: Pre- and post-bioremediation concentrations of eight B2 group carcinogenic PAHs in soils were collated from the literature and used to calculate excess lifetime cancer risks (ELCR) for adult populations exposed via non-dietary ingestion, per current U.S. Environmental Protection Agency (USEPA) recommendations. Due to the nature of the collated data (reported as mean concentrations ± standard deviations pre- and post-bioremediation), we used simulation methods to reconstruct the datasets and enable statistical comparison of ELCR values pre- and post-bioremediation. Additionally, we measured MW302 PAHs in a contaminated soil prior to and following treatment in an aerobic bioreactor and examined their contributions to cancer risk. Results: 120 of 158 treated soils (76%) exhibited a statistically significant reduction in cancer risk following bioremediation; however, 67% (106/158) of soils had post-bioremediation ELCR values over 10 fold higher than the USEPA health-based ‘acceptable’ risk level. Composting treatments were most effective at biodegrading PAHs in soils and reducing the ELCR. MW302 PAHs were not significantly degraded during bioremediation and dibenzo(a,l)pyrene, alone, contributed an additional 35% to the cancer risk associated with the eight B2 group PAHs in the

  17. Bioremediation potential of coal-tar-oil-contaminated soil

    International Nuclear Information System (INIS)

    Lajoie, C.A.

    1991-01-01

    The bioremediation of coal tar oil contaminated soil was investigated in 90 day laboratory simulation experiments. The effect of soil moisture, humic acid amendment, and coal tar oil concentration on the rate of disappearance of individual coal tar oil constituents (PAHs and related compounds) was determined by methylene chloride extraction and gas chromatography. Mass balance experiments determined the fate of both the individual 14 C-labeled PAHs phenanthrene, pyrene, and benzo(a)pyrene, and the total coal tar oil carbon. Mineralization, volatilization, incorporation into microbial biomass, disappearance of individual coal tar oil constitutents, and the distribution of residual 14 C-activity in different soil fractions were measured. The rate of disappearance of coal tar oil constituents increased with increasing soil moisture over the experimental range. Humic acid amendment initially enhanced the rate of disappearance, but decreased the extent of disappearance. The amount of contamination removed decreased at higher coal tar oil concentrations. The practical limit for biodegradation in the system tested appeared to be between 1.0 and 2.5% coal tar oil. Mineralization accounted for 40 to 50% of the applied coal tar oil. Volatilization was a minor pathway of disappearance

  18. In situ air sparging for bioremediation of groundwater and soils

    International Nuclear Information System (INIS)

    Lord, D.; Lei, J.; Chapdelaine, M.C.; Sansregret, J.L.; Cyr, B.

    1995-01-01

    Activities at a former petroleum products depot resulted in the hydrocarbon contamination of soil and groundwater over a 30,000-m 2 area. Site remediation activities consisted of three phases: site-specific characterization and treatability study, pilot-scale testing, and full-scale bioremediation. During Phase 1, a series of site/soil/waste characterizations was undertaken to ascertain the degree of site contamination and to determine soil physical/chemical and microbiological characteristics. Treatability studies were carried out to simulate an air sparging process in laboratory-scale columns. Results indicated 42% mineral oil and grease removal and 94% benzene, toluene, ethylbenzene, and xylenes (BTEX) removal over an 8-week period. The removal rate was higher in the unsaturated zone than in the saturated zone. Phase 2 involved pilot-scale testing over a 550-m 2 area. The radius of influence of the air sparge points was evaluated through measurements of dissolved oxygen concentrations in the groundwater and of groundwater mounding. A full-scale air sparging system (Phase 3) was installed on site and has been operational since early 1994. Physical/chemical and microbiological parameters, and contaminants were analyzed to evaluate the system performance

  19. Bioremediation a potential approach for soil contaminated with polycyclic aromatic hydrocarbons: An Overview

    OpenAIRE

    Norzila Othman; Mohd Irwan Juki; Norhana Hussain; Suhaimi Abdul Talib

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) represent a group of priority pollutants which are present at high concentration in soils of many industrially contaminated sites. Standards and criteria for the remediation of soils contaminated with PAHs vary widely between countries. Bioremediation has gained preference as a technology for remediation contaminated sites as it is less expensive and more environmental friendly. Bioremediation utilizes microorganisms to degrade PAHs to less toxic compou...

  20. Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils

    International Nuclear Information System (INIS)

    Margesin, R.

    2000-01-01

    The environmental contamination by organic pollutants is a widespread problem in all climates. The most widely distributed pollution can be attributed to oil contamination. Bioremediation methods can provide efficient, inexpensive and environmentally safe cleanup tools. The role of cold-adapted microorganisms for the bioremediation of experimentally and chronically oil-contaminated Alpine soils was evaluated in the studies described. The results demonstrated that there is a considerable potential for oil bioremediation in Alpine soils. Oil biodegradation can be significantly enhanced by biostimulation (inorganic nutrient supply), but a complete oil elimination is not possible by employing biological decontamination alone. (Author)

  1. Ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation.

    Science.gov (United States)

    Shen, Weihang; Zhu, Nengwu; Cui, Jiaying; Wang, Huajin; Dang, Zhi; Wu, Pingxiao; Luo, Yidan; Shi, Chaohong

    2016-02-01

    A series of toxicity bioassays was conducted to monitor the ecotoxicity of soils in the different phases of bioremediation. Artificially oil-contaminated soil was inoculated with a petroleum hydrocarbon-degrading bacterial consortium containing Burkholderia cepacia GS3C, Sphingomonas GY2B and Pandoraea pnomenusa GP3B strains adapted to crude oil. Soil ecotoxicity in different phases of bioremediation was examined by monitoring total petroleum hydrocarbons, soil enzyme activities, phytotoxicity (inhibition of seed germination and plant growth), malonaldehyde content, superoxide dismutase activity and bacterial luminescence. Although the total petroleum hydrocarbon (TPH) concentration in soil was reduced by 64.4%, forty days after bioremediation, the phytotoxicity and Photobacterium phosphoreum ecotoxicity test results indicated an initial increase in ecotoxicity, suggesting the formation of intermediate metabolites characterized by high toxicity and low bioavailability during bioremediation. The ecotoxicity values are a more valid indicator for evaluating the effectiveness of bioremediation techniques compared with only using the total petroleum hydrocarbon concentrations. Among all of the potential indicators that could be used to evaluate the effectiveness of bioremediation techniques, soil enzyme activities, phytotoxicity (inhibition of plant height, shoot weight and root fresh weight), malonaldehyde content, superoxide dismutase activity and luminescence of P. phosphoreum were the most sensitive. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Bioremediation of cadmium- and zinc-contaminated soil using Rhodobacter sphaeroides.

    Science.gov (United States)

    Peng, Weihua; Li, Xiaomin; Song, Jingxiang; Jiang, Wei; Liu, Yingying; Fan, Wenhong

    2018-04-01

    Bioremediation using microorganisms is a promising technique to remediate soil contaminated with heavy metals. In this study, Rhodobacter sphaeroides was used to bioremediate soils contaminated with cadmium (Cd) and zinc (Zn). The study found that the treatment reduced the overall bioavailable fractions (e.g., exchangeable and carbonate bound phases) of Cd and Zn. More stable fractions (e.g., Fe-Mn oxide, organic bound, and residual phases (only for Zn)) increased after bioremediation. A wheat seedling experiment revealed that the phytoavailability of Cd was reduced after bioremediation using R. sphaeroides. After bioremediation, the exchangeable phases of Cd and Zn in soil were reduced by as much as 30.7% and 100.0%, respectively; the Cd levels in wheat leaf and root were reduced by as much as 62.3% and 47.2%, respectively. However, when the soils were contaminated with very high levels of Cd and Zn (Cd 54.97-65.33 mg kg -1 ; Zn 813.4-964.8 mg kg -1 ), bioremediation effects were not clear. The study also found that R. sphaeroides bioremediation in soil can enhance the Zn/Cd ratio in the harvested wheat leaf and root overall. This indicates potentially favorable application in agronomic practice and biofortification. Although remediation efficiency in highly contaminated soil was not significant, R. sphaeroides may be potentially and practically applied to the bioremediation of soils co-contaminated by Cd and Zn. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Dynamics of indigenous bacterial communities associated with crude oil degradation in soil microcosms during nutrient-enhanced bioremediation.

    Science.gov (United States)

    Chikere, Chioma B; Surridge, Karen; Okpokwasili, Gideon C; Cloete, Thomas E

    2012-03-01

    Bacterial population dynamics were examined during bioremediation of an African soil contaminated with Arabian light crude oil and nutrient enrichment (biostimulation). Polymerase chain reaction followed by denaturing gradient gel electrophoresis (DGGE) were used to generate bacterial community fingerprints of the different treatments employing the 16S ribosomal ribonucleic acid (rRNA) gene as molecular marker. The DGGE patterns of the nutrient-amended soils indicated the presence of distinguishable bands corresponding to the oil-contaminated-nutrient-enriched soils, which were not present in the oil-contaminated and pristine control soils. Further characterization of the dominant DGGE bands after excision, reamplification and sequencing revealed that Corynebacterium spp., Dietzia spp., Rhodococcus erythropolis sp., Nocardioides sp., Low G+C (guanine plus cytosine) Gram positive bacterial clones and several uncultured bacterial clones were the dominant bacterial groups after biostimulation. Prominent Corynebacterium sp. IC10 sequence was detected across all nutrient-amended soils but not in oil-contaminated control soil. Total heterotrophic and hydrocarbon utilizing bacterial counts increased significantly in the nutrient-amended soils 2 weeks post contamination whereas oil-contaminated and pristine control soils remained fairly stable throughout the experimental period. Gas chromatographic analysis of residual hydrocarbons in biostimulated soils showed marked attenuation of contaminants starting from the second to the sixth week after contamination whereas no significant reduction in hydrocarbon peaks were seen in the oil-contaminated control soil throughout the 6-week experimental period. Results obtained indicated that nutrient amendment of oil-contaminated soil selected and enriched the bacterial communities mainly of the Actinobacteria phylogenetic group capable of surviving in toxic contamination with concomitant biodegradation of the hydrocarbons. The

  4. Bioremediation of soil and ground water impacted with organic contaminants

    International Nuclear Information System (INIS)

    Woods, W.B.

    1991-01-01

    Two case studies demonstrate the controlled use of micro-organisms to degrade organic contaminants under aerobic and anaerobic conditions. The aerobic study illustrates the degradation of hydrocarbons in a soil matrix. Data are presented that show a two-phase degradation of total petroleum hydrocarbons (TPH) from about 1,300 ppm TPH to cleanup levels of 100 ppm or less in two months. Total aerobic microorganism and substate-specific degrader counts were tracked throughout the study. Typical total aerobic counts of 10 6 colony forming units (CFU)/g and hydrocarbon degrader counts of 10 4 CFU/g were observed. Hydrocarbon degraders were enumerated on minimal salts media incubated in the presence of hydrocarbon vapors. The anaerobic study documents the successful use of a supplemental carbon source and fertilizers to stimulate indigenous microbe to degrade ketones. A nutrient mix of s polysaccharide, a nitrate electron acceptor and an inorganic orthophosphate was used to augment 100,000 yd 3 of soil contaminated with ketones at about 1,000 ppm. The key elements of a biotreatment project are discussed (i.e., site characterization, treatability studies, biotreatment design, site construction, system maintenance, final disposal and site closure). Lastly, the benefits of bioremediation vs. other remediation alternatives such as landfill disposal, incineration, and stabilization/fixation are discussed in terms of cost and liability

  5. Assessment Bioremediation of Contaminated Soils to Petroleum Compounds and Role of Chemical Fertilizers in the Decomposition Process

    OpenAIRE

    H. Parvizi Mosaed; S. Sobhan Ardakani; M. Cheraghi

    2013-01-01

    Today oil removal from contaminated soil by new methods such as bioremediation is necessary.  In this paper, the effect of chemical fertilizers and aeration on bioremediation of oil-contaminated soil has been investigated. Also the control group, (bioremediation of petroleum hydrocarbons in contaminated soil without treatment by chemical fertilizers and aeration treatment was examined. The condition of experiment is as following: those were treated 70 days in glass columns (30×30×30cm dimensi...

  6. Bioremediation of petroleum hydrocarbon contaminated soils using soil vapor extraction: Case study

    International Nuclear Information System (INIS)

    Roth, R.J.; Peterson, R.M.

    1994-01-01

    Soils contaminated with petroleum hydrocarbons are being remediated in situ at a site in Lakewood, New Jersey by bioremediation in conjunction with soil vapor extractions (SVE) and nutrient addition. The contaminants were from hydraulic oils which leaked from subsurface hydraulic lifts, waste oil from leaking underground storage tanks (USTs), an aboveground storage tank, and motor oil from a leaking UST. The oils contaminated subsurface soils at the site to a depth of 25 feet. Approximately 900 cubic yards of soil were contaminated. Soil sample analyses showed total petroleum hydrocarbon (TPH) concentrations up to 31,500 ppm. The design of the remedial system utilized the results of a treatability study which showed that TPH degrading microorganisms, when supplied with oxygen and nutrients, affected a 14% reduction in TPH in 30 days. A SVE system was installed which used three wells, each installed to a depth of 25 feet below grade. The SVE system was operated to achieve an extracted air flow of approximately 20 to 30 scfm from each well. Bioremediation of the TPH was monitored by measuring CO 2 and O 2 concentrations at the wellheads and vapor monitoring probes. After four months of remediation, CO 2 concentrations were at a minimum, at which point the subsurface soils were sampled and analyzed for TPH. The soil analyses showed a removal of TPH by biodegradation of up to 99.8% after four months of remediation

  7. Changes in microbial populations and enzyme activities during the bioremediation of oil-contaminated soil.

    Science.gov (United States)

    Lin, Xin; Li, Xiaojun; Sun, Tieheng; Li, Peijun; Zhou, Qixing; Sun, Lina; Hu, Xiaojun

    2009-10-01

    In the process of bioremediation in the soil contaminated by different oil concentrations, the changes in the microbial numbers (bacteria and fungi) and the enzyme (catalase (CAT), polyphenol oxidase (PPO) and lipase) activities were evaluated over a 2-year period. The results showed that the microbial numbers after 2-year bioremediation were one to ten times higher than those in the initial. The changes in the bacterial and the fungal populations were different during the bioremediation, and the highest microbial numbers for bacteria and fungi were 5.51 x 10(9) CFU g(-1) dry soil in treatment 3 (10,000 mg kg(-1)) in the initial and 5.54 x 10(5) CFU g(-1) dry soil in treatment 5 (50,000 mg kg(-1)) after the 2-year bioremediation period, respectively. The CAT and PPO activities in the contaminated soil decreased with increasing oil concentration, while the lipase activity increased. The activities of CAT and PPO improved after the bioremediation, but lipase activity was on the contrary. The CAT activity was more sensible to the oil than others, and could be alternative to monitor the bioremediation process.

  8. Bioremediation of hydrocarbon contaminated surface water, groundwater, and soils

    International Nuclear Information System (INIS)

    Piotrowski, M.R.

    1991-01-01

    Bioremediation is currently receiving considerable attention as a remediation option for sites contaminated with hazardous organic compounds. There is an enormous amount of interest in bioremediation, and numerous journals now publish research articles concerning some aspect of the remediation approach. A review of the literature indicates that two basic forms of bioremediation are currently being practiced: the microbiological approach and the microbial ecology approach. Each form has its advocates and detractors, and the microbiological approach is generally advocated by most of the firms that practice bioremediation. In this paper, the merits and disadvantages of these forms are reviewed and a conceptual approach is presented for assessing which form may be most useful for a particular contaminant situation. I conclude that the microbial ecology form of bioremediation may be the most useful for the majority of contaminant situations, and I will present two case histories in support of this hypothesis

  9. Groundbreaking technology: in-situ anaerobic bioremediation for treatment of contaminated soil and groundwater

    International Nuclear Information System (INIS)

    Fernandes, K.A.

    2002-01-01

    Anaerobic in-situ bioremediation is a technique often used to cleanse contaminated soil and groundwater. 'Anaerobic in-situ bioremediation' is a phrase with distinct terms all having relevance in the application of this technique. Anaerobic implies the absence of dissolved oxygen, while 'in-situ' simply means that the environmental cleansing occurs with out removing, displacing, or significantly disturbing the specimen or surrounding area. 'Bioremediation' is a term used to describe the biological use of microbes or plants to detoxify the environment. In order to properly implement this complex process, one must have an understanding of microbiology, biochemistry, genetics, metabolic processes, and structure and function of natural microbial communities. (author)

  10. Distribution of hydrocarbon-degrading bacteria in the soil environment and their contribution to bioremediation.

    Science.gov (United States)

    Fukuhara, Yuki; Horii, Sachie; Matsuno, Toshihide; Matsumiya, Yoshiki; Mukai, Masaki; Kubo, Motoki

    2013-05-01

    A real-time PCR quantification method for indigenous hydrocarbon-degrading bacteria (HDB) carrying the alkB gene in the soil environment was developed to investigate their distribution in soil. The detection limit of indigenous HDB by the method was 1 × 10(6) cells/g-soil. The indigenous HDB were widely distributed throughout the soil environment and ranged from 3.7 × 10(7) to 5.0 × 10(8) cells/g-soil, and the ratio to total bacteria was 0.1-4.3 %. The dynamics of total bacteria, indigenous HDB, and Rhodococcus erythropolis NDKK6 (carrying alkB R2) during bioremediation were analyzed. During bioremediation with an inorganic nutrient treatment, the numbers of these bacteria were slightly increased. The numbers of HDB (both indigenous bacteria and strain NDKK6) were gradually decreased from the middle stage of bioremediation. Meanwhile, the numbers of these bacteria were highly increased and were maintained during bioremediation with an organic nutrient. The organic treatment led to activation of not only the soil bacteria but also the HDB, so an efficient bioremediation was carried out.

  11. Ecotoxicological evaluation of diesel-contaminated soil before and after a bioremediation process.

    Science.gov (United States)

    Molina-Barahona, L; Vega-Loyo, L; Guerrero, M; Ramírez, S; Romero, I; Vega-Jarquín, C; Albores, A

    2005-02-01

    Evaluation of contaminated sites is usually performed by chemical analysis of pollutants in soil. This is not enough either to evaluate the environmental risk of contaminated soil nor to evaluate the efficiency of soil cleanup techniques. Information on the bioavailability of complex mixtures of xenobiotics and degradation products cannot be totally provided by chemical analytical data, but results from bioassays can integrate the effects of pollutants in complex mixtures. In the preservation of human health and environment quality, it is important to assess the ecotoxicological effects of contaminated soils to obtain a better evaluation of the healthiness of this system. The monitoring of a diesel-contaminated soil and the evaluation of a bioremediation technique conducted on a microcosm scale were performed by a battery of ecotoxicological tests including phytotoxicity, Daphnia magna, and nematode assays. In this study we biostimulated the native microflora of soil contaminated with diesel by adding nutrients and crop residue (corn straw) as a bulking agent and as a source of microorganisms and nutrients; in addition, moisture was adjusted to enhance diesel removal. The bioremediation process efficiency was evaluated directly by an innovative, simple phytotoxicity test system and the diesel extracts by Daphnia magna and nematode assays. Contaminated soil samples were revealed to have toxic effects on seed germination, seedling growth, and Daphnia survival. After biostimulation, the diesel concentration was reduced by 50.6%, and the soil samples showed a significant reduction in phytotoxicity (9%-15%) and Daphnia assays (3-fold), confirming the effectiveness of the bioremediation process. Results from our microcosm study suggest that in addition to the evaluation of the bioremediation processes efficiency, toxicity testing is different with organisms representative of diverse phylogenic levels. The integration of analytical, toxicological and bioremediation data

  12. Microorganisms in heavy metal bioremediation: strategies for applying microbial-community engineering to remediate soils

    Directory of Open Access Journals (Sweden)

    Jennifer L. Wood

    2016-06-01

    Full Text Available The remediation of heavy-metal-contaminated soils is essential as heavy metals persist and do not degrade in the environment. Remediating heavy-metal-contaminated soils requires metals to be mobilized for extraction whilst, at the same time, employing strategies to avoid mobilized metals leaching into ground-water or aquatic systems. Phytoextraction is a bioremediation strategy that extracts heavy metals from soils by sequestration in plant tissues and is currently the predominant bioremediation strategy investigated for remediating heavy-metal-contaminated soils. Although the efficiency of phytoextraction remains a limiting feature of the technology, there are numerous reports that soil microorganisms can improve rates of heavy metal extraction.This review highlights the unique challenges faced when remediating heavy-metal-contaminated soils as compared to static aquatic systems and suggests new strategies for using microorganisms to improve phytoextraction. We compare how microorganisms are used in soil bioremediation (i.e. phytoextraction and water bioremediation processes, discussing how the engineering of microbial communities, used in water remediation, could be applied to phytoextraction. We briefly outline possible approaches for the engineering of soil communities to improve phytoextraction either by mobilizing metals in the rhizosphere of the plant or by promoting plant growth to increase the root-surface area available for uptake of heavy metals. We highlight the technological advances that make this research direction possible and how these technologies could be employed in future research.

  13. Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils.

    Science.gov (United States)

    Sharma, Jitendra K; Gautam, Ravindra K; Nanekar, Sneha V; Weber, Roland; Singh, Brajesh K; Singh, Sanjeev K; Juwarkar, Asha A

    2018-06-01

    In recent years, microbial degradation and bioremediation approaches of polychlorinated biphenyls (PCBs) have been studied extensively considering their toxicity, carcinogenicity and persistency potential in the environment. In this direction, different catabolic enzymes have been identified and reported for biodegradation of different PCB congeners along with optimization of biological processes. A genome analysis of PCB-degrading bacteria has led in an improved understanding of their metabolic potential and adaptation to stressful conditions. However, many stones in this area are left unturned. For example, the role and diversity of uncultivable microbes in PCB degradation are still not fully understood. Improved knowledge and understanding on this front will open up new avenues for improved bioremediation technologies which will bring economic, environmental and societal benefits. This article highlights on recent advances in bioremediation of PCBs in soil. It is demonstrated that bioremediation is the most effective and innovative technology which includes biostimulation, bioaugmentation, phytoremediation and rhizoremediation and acts as a model solution for pollution abatement. More recently, transgenic plants and genetically modified microorganisms have proved to be revolutionary in the bioremediation of PCBs. Additionally, other important aspects such as pretreatment using chemical/physical agents for enhanced biodegradation are also addressed. Efforts have been made to identify challenges, research gaps and necessary approaches which in future, can be harnessed for successful use of bioremediation under field conditions. Emphases have been given on the quality/efficiency of bioremediation technology and its related cost which determines its ultimate acceptability.

  14. Bioremediation of oil-contaminated soils: A recipe for success

    Energy Technology Data Exchange (ETDEWEB)

    Wittenbach, S.A.

    1995-12-31

    Bioremediation of land crude oil and lube oil spills is an effective and economical option. Other options include road spreading (where permitted), thermal desorption, and off-site disposal. The challenge for environment and operations managers is to select the best approach for each remediation site. Costs and liability for off-site disposal are ever increasing. Kerr-McGee`s extensive field research in eastern and western Texas provides the data to support bioremediation as a legitimate and valid option. Both practical and economical bioremediation as a legitimate and valid option. Both practical and economical, bioremediation also offers a lower risk of, for example, Superfund clean-up exposure than off-site disposal.

  15. Integrating Electrokinetic and Bioremediation Process for Treating Oil Contaminated Low Permeability Soil

    OpenAIRE

    Surya Ramadan Bimastyaji; Jatnika Effendi Agus; Helmy Qomarudin

    2018-01-01

    Traditional oil mining activities always ignores environmental regulation which may cause contamination in soil and environment. Crude oil contamination in low-permeability soil complicates recovery process because it requires substantial energy for excavating and crushing the soil. Electrokinetic technology can be used as an alternative technology to treat contaminated soil and improve bioremediation process (biostimulation) through transfer of ions and nutrient that support microorganism gr...

  16. Bioremediation of soil and water: application to chemical and nuclear pollutions

    International Nuclear Information System (INIS)

    Vavasseur, Alain

    2014-06-01

    Bioremediation is a branch of biotechnology that uses natural or diverted biological mechanisms to address environmental problems. The biological agents can be simple organic molecules, such as DNA or antibodies, or live or dead organisms (bacteria, microalgae, fungi, higher algae and plants). Phyto-remediation refers more specifically to using plants to decontaminate polluted soil, water, or air. Unlike organic pollutants such as PCBs1, TNT2, TCE3, which can be metabolized by soil microorganisms and plant roots, radionuclides - like most heavy metals - cannot be degraded. Thus, bioremediation strategies for radionuclides will consist into: - stabilization/mineralization to reduce their bioavailability through a change in their redox state; - for soil, their extraction using the plant nutrition mechanisms; - for polluted solutions, their extraction using the 'cation traps' properties of plant cell walls. Compared to physicochemical methods conventionally used to decontaminate soils but which lead to a sharp decline in fertility and productivity, bioremediation is considered a friendly environmental technology. An important advantage of this technique is its cost, much lower than traditional remediation techniques. By cons, bioremediation cannot be applied in an emergency, because processing times are spread over several years - even decades - depending on the degree of pollution. Therefore current research focuses on optimizing the processing time. We present in this paper several examples of in situ bioremediation of heavy metals and radionuclides, and we discuss in conclusion the negative and positive aspects of this technique. (author)

  17. Enhanced bioremediation of lead-contaminated soil by Solanum nigrum L. with Mucor circinelloides.

    Science.gov (United States)

    Sun, Liqun; Cao, Xiufeng; Li, Min; Zhang, Xu; Li, Xinxin; Cui, Zhaojie

    2017-04-01

    Strain selected from mine tailings in Anshan for Pb bioremediation was characterized at the genetic level by internal transcribed spacer (ITS) sequencing. Results revealed that the strain belongs to Mucor circinelloides. Bioremediation of lead-contaminated soil was conducted using Solanum nigrum L. combined with M. circinelloides. The removal efficacy was in the order microbial/phytoremediation > phytoremediation > microbial remediation > control. The bioremediation rates were 58.6, 47.2, and 40.2% in microbial/phytoremediation, microbial remediation, and phytoremediation groups, respectively. Inoculating soil with M. circinelloides enhanced Pb removal and S. nigrum L. growth. The bioaccumulation factor (BF, 1.43), enrichment factor (EF, 1.56), and translocation factor (TF, 1.35) were higher than unit, suggesting an efficient ability of S. nigrum L. in Pb bioremediation. Soil fertility was increased after bioremediation according to change in enzyme activities. The results indicated that inoculating S. nigrum L. with M. circinelloides enhanced its efficiency for phytoremediation of soil contaminated with Pb.

  18. Initial assessment of intrinsic and assisted bioremediation potential for diesel fuel impacted soils at Eureka, NWT

    International Nuclear Information System (INIS)

    Wilson, J. J.; Yeske, B.; Lee, D.; Nahir, M.

    1999-01-01

    Two diesel fuel-impacted soil columns prepared to simulate in situ conditions for assessing intrinsic bioremediation were studied. The samples were from Eureka in the Northwest Territories. Two soil jars that were mixed periodically to simulate the ex situ land treatment bioremediation option, were also part of the treatability study. Results strongly suggest that bioremediation at Eureka is a viable option, although the slow rate of biodegradation and the short operating season will necessitate treatment over several years to achieve the remediation endpoint. The intrinsic bioremediation process can be accelerated using periodic addition of a water soluble nitrogen fertilizer, as shown by the nitrogen-amended soil column test. Ex situ bioremediation also appears to be possible judged by the response of the natural bacterial population to periodic mixing and oxygen uptake at 5 degrees C. The principal challenge will be to adequately mix the soil at the surface and to prevent it from drying out. The addition of organic bulking material may be required. 1 ref., 3 tabs., 4 figs

  19. Bioremediation: is it the solution to reclamation of heavy oil contaminated soils in the Canadian climate?

    International Nuclear Information System (INIS)

    Goodman, R.; Nicholson, P.; Varga, M.; Boadi, D.; Yang, A.

    1997-01-01

    The issue of bioremediation of heavy oil contaminated soils in cold climates was discussed. No model of the bioremediation system for cold climates exists. Environmental groups use three environmental concepts as the basis to evaluate petroleum activities: (1) cradle to grave responsibility, (2) the precautionary principle, and (3) sustainable development. The reclamation of an abandoned petroleum production facility must meet stringent standards. Most sites are contaminated with weathered hydrocarbons, brine and other chemicals that have been used at the location. Bioremediation, either in-situ or ex-situ, is one of the lowest cost remediation techniques available and has been used extensively by the downstream petroleum industry in warm climates. However, there are many unresolved issues with the use of bioremediation in cold climates, for heavy or weathered crude oil products and in areas of clay or other low permeability. Some of these unresolved issues are highlighted

  20. In-situ bioremediation: Or how to get nutrients to all the contaminated soil

    International Nuclear Information System (INIS)

    Jackson, D.S.; Scovazzo, P.

    1994-01-01

    Petroleum contamination is a pervasive environmental problem. Bioremediation is winning favor primarily because the soil may be treated on site and systems can be installed to operate without interfering with facility activities. Although bioremediation has been utilized for many years, its acceptance as a cost-effective approach is only now being realized. KEMRON applied in-situ bioremediation at a retired rail yard which had maintained a diesel locomotive refueling station supplied by two 20,000 gallon above ground storage tanks. Contamination originated from both spillage at the pumps and leaking fuel distribution lines. The contamination spread over a 3 acre area from the surface to a depth of up to 20 feet. Levels of diesel contamination found in the soil ranged from less than a 100 ppm to more than 25,000 ppm. The volume of soil which ultimately required treatment was more than 60,000 cubic yards. Several remedial options were examined including excavation and disposal. Excavation was rejected because it would have been cost prohibitive due to the random distribution of the contaminated soil. In-situ Bioremediation was selected as the only alternative which could successfully treat all the contaminated soils. This paper focuses on how KEMRON solved four major problems which would have prevented a successful remediation project. These problems were: soil compaction, random distribution of contaminated soils, potential free product, and extremely high levels of dissolved iron in the groundwater

  1. Fates of nickel and fluoranthene during the bioremediation by Pleurotus eryngii in three different soils.

    Science.gov (United States)

    Tang, Xia; Dong, Shunwen; Shi, Wenjin; Gao, Ni; Zuo, Lei; Xu, Heng

    2016-11-01

    This study focused on the bioremediation role of Pleurotus eryngii in different characteristics soils contaminated with nickel (Ni) and fluoranthene. The results of bioremediation experiments showed that fluoranthene had a positive effect on the growth of P. eryngii, whereas Ni exerted a negative influence. The concentration of fluoranthene significantly decreased in inoculated soil accounting for 86.39-91.95% of initial concentration in soils and 71.46-81.76% in non-inoculated soils, which showed that the dissipation of fluoranthene was enhanced by mushroom inoculating. The highest removal rates of fluoranthene in sandy loam, loamy clay, and sandy soils reached to 87.81, 86.39, and 91.95%, respectively, which demonstrated that P. eryngii was more suitable for the bioremediation of sandy soil contaminated with fluoranthene. In addition, the presence of Ni tended to decrease the dissipation of fluoranthene in inoculated soil. Higher ligninolytic enzymes activities were detected in inoculated soils, resulting in the enhanced dissipation of fluoranthene in inoculated soils. Furthermore, P. eryngii had the ability to uptake Ni (4.88-39.53 mg kg -1 ) in co-contamination soil. In conclusion, the inoculating of P. eryngii was effective in remediating of Ni-fluoranthene co-contaminated soils. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Immobilized Native Bacteria as a Tool for Bioremediation of Soils and Waters: Implementation and Modeling

    Directory of Open Access Journals (Sweden)

    C. Lobo

    2002-01-01

    Full Text Available Based on 3,4-dihydroxyphenylacetate (3,4-DHPA dioxygenase amino acid sequence and DNA sequence data for homologous genes, two different oligonucleotides were designed. These were assayed to detect 3,4-DHPA related aromatic compound—degrading bacteria in soil samples by using the FISH method. Also, amplification by PCR using a set of ERIC primers was assayed for the detection of Pseudomonas GCH1 strain, which used in the soil bioremediation process. A model was developed to understand and predict the behavior of bacteria and pollutants in a bioremediation system, taking into account fluid dynamics, molecular/cellular scale processes, and biofilm formation.

  3. Bioremediation of soils and sediments containing PAHs and PCP using Daramend trademark

    International Nuclear Information System (INIS)

    Seech, A.; Burwell, S.; Marvan, I.

    1994-01-01

    A full-scale demonstration of Grace Dearborn's Daramend trademark for bioremediation of soil containing chlorinated phenols, PAHs and petroleum hydrocarbons is being conducted at an industrial wood treatment site in Ontario. A pilot-scale demonstration of Daramend for the clean-up of sediments contaminated with PAHs was also conducted. The full-scale demonstration, which includes bioremediation of approximately 4,500 m 3 of soil, was initiated at a wood preserving facility in Ontario, in the summer of 1993. The soil contains chlorinated phenols, PAHs and total petroleum hydrocarbons at concentrations of up to 700, 1,400 and 6,300 mg/kg respectively. Full-scale bioremediation at this site employs the same Daramend protocols and organic amendment treatments that were used at the pilot-scale phase where the PAH, total petroleum hydrocarbon, and pentachlorophenol concentrations were reduced to below the Canadian clean-up guidelines for industrial soils. In addition, the toxicity of the soil to earthworms was eliminated while the rate of seed germination was increased to that of an agricultural soil during the pilot scale demonstration phase. The ex-situ portion of the full-scale demonstration is currently being audited by the EPA under the SITE program. This paper will focus on the ex-situ work. The pilot-scale demonstration of sediment remediation consisted of ex-situ bioremediation of approximately 90 tonnes of PAH-contaminated sediment in a confined treatment area

  4. Preliminary identification of the bioremediation limiting factors of a clay bearing soil contaminated with crude oil

    OpenAIRE

    Rizzo, Andréa C. L.; Cunha, Claudia D. da; Santos, Ronaldo L. C.; Santos, Renata M.; Magalhães, Hugo M.; Leite, Selma G. F.; Soriano, Adriana U.

    2008-01-01

    Bioremediation is an attractive alternative to treat soils contaminated with petroleum hydrocarbons. However, the effectiveness of biodegradation process can be limited by both contaminant characteristics and its bioavailability in soil. This work aims at establishing a preliminary procedure to identify the main factor (hydrocarbon recalcitrance or its bioavailability) that impairs the biodegradation, possibly resulting in low remediation efficiencies. Tests in soil microcosms were carried ou...

  5. Microorganisms in heavy metal bioremediation: strategies for applying microbial-community engineering to remediate soils

    OpenAIRE

    Jennifer L. Wood; Caixian Tang; Ashley E. Franks; Wuxing Liu

    2016-01-01

    The remediation of heavy-metal-contaminated soils is essential as heavy metals persist and do not degrade in the environment. Remediating heavy-metal-contaminated soils requires metals to be mobilized for extraction whilst, at the same time, employing strategies to avoid mobilized metals leaching into ground-water or aquatic systems. Phytoextraction is a bioremediation strategy that extracts heavy metals from soils by sequestration in plant tissues and is currently the predominant bioremediat...

  6. Bioremediation of petroleum hydrocarbons in soil environments. Report No. EE-141

    Energy Technology Data Exchange (ETDEWEB)

    Rowell, M J; Ashworth, J; Qureshi, A A

    1992-01-01

    The bioremediation of petroleum hydrocarbons in soil environments was reviewed by means of a literature survey and also through discussions with workers in relevent disciplines. This report discusses both the impacts of hydrocarbons on soil and a range of methods available to assist in the decomposition by soil microorganisms. The range of petroleum-based materials considered includes conventional and synthetic crude oils, refined oils, oily sludges, asphalts and bitumens, drilling mud residues, creosote tars and some pesticides.

  7. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation.

    Science.gov (United States)

    Bento, Fatima M; Camargo, Flávio A O; Okeke, Benedict C; Frankenberger, William T

    2005-06-01

    Bioremediation of diesel oil in soil can occur by natural attenuation, or treated by biostimulation or bioaugmentation. In this study we evaluated all three technologies on the degradation of total petroleum hydrocarbons (TPH) in soil. In addition, the number of diesel-degrading microorganisms present and microbial activity as indexed by the dehydrogenase assay were monitored. Soils contaminated with diesel oil in the field were collected from Long Beach, California, USA and Hong Kong, China. After 12 weeks of incubation, all three treatments showed differing effects on the degradation of light (C12-C23) and heavy (C23-C40) fractions of TPH in the soil samples. Bioaugmentation of the Long Beach soil showed the greatest degradation in the light (72.7%) and heavy (75.2%) fractions of TPH. Natural attenuation was more effective than biostimulation (addition of nutrients), most notably in the Hong Kong soil. The greatest microbial activity (dehydrogenase activity) was observed with bioaugmentation of the Long Beach soil (3.3-fold) and upon natural attenuation of the Hong Kong sample (4.0-fold). The number of diesel-degrading microorganisms and heterotrophic population was not influenced by the bioremediation treatments. Soil properties and the indigenous soil microbial population affect the degree of biodegradation; hence detailed site specific characterization studies are needed prior to deciding on the proper bioremediation method.

  8. Assessment and Comparison of Electrokinetic and Electrokinetic-bioremediation Techniques for Mercury Contaminated Soil

    Science.gov (United States)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Zaidi, E.; Azim, M. A. M.; Farhana, S. M. S.

    2016-11-01

    Landfills are major sources of contamination due to the presence of harmful bacteria and heavy metals. Electrokinetic-Bioremediation (Ek-Bio) is one of the techniques that can be conducted to remediate contaminated soil. Therefore, the most prominent bacteria from landfill soil will be isolated to determine their optimal conditions for culture and growth. The degradation rate and the effectiveness of selected local bacteria were used to reduce soil contamination. Hence, this enhances microbiological activities to degrade contaminants in soil and reduce the content of heavy metals. The aim of this study is to investigate the ability of isolated bacteria (Lysinibacillus fusiformis) to remove mercury in landfill soil. 5 kg of landfill soil was mixed with deionized water to make it into slurry condition for the purpose of electrokinetic and bioremediation. This remediation technique was conducted for 7 days by using 50 V/m of electrical gradient and Lysinibacillus fusiformis bacteria was applied at the anode reservoir. The slurry landfill soil was located at the middle of the reservoir while distilled water was placed at the cathode of reservoir. After undergoing treatment for 7 days, the mercury analyzer showed that there was a significant reduction of approximately up to 78 % of mercury concentration for the landfill soil. From the results, it is proven that electrokinetic bioremediation technique is able to remove mercury within in a short period of time. Thus, a combination of Lysinibacillus fusiformis and electrokinetic technique has the potential to remove mercury from contaminated soil in Malaysia.

  9. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.

    Science.gov (United States)

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2016-01-01

    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Profiling microbial community structures across six large oilfields in China and the potential role of dominant microorganisms in bioremediation.

    Science.gov (United States)

    Sun, Weimin; Li, Jiwei; Jiang, Lei; Sun, Zhilei; Fu, Meiyan; Peng, Xiaotong

    2015-10-01

    Successful bioremediation of oil pollution is based on a comprehensive understanding of the in situ physicochemical conditions and indigenous microbial communities as well as the interaction between microorganisms and geochemical variables. Nineteen oil-contaminated soil samples and five uncontaminated controls were taken from six major oilfields across different geoclimatic regions in China to investigate the spatial distribution of the microbial ecosystem. Microbial community analysis revealed remarkable variation in microbial diversity between oil-contaminated soils taken from different oilfields. Canonical correspondence analysis (CCA) further demonstrated that a suite of in situ geochemical parameters, including soil moisture and sulfate concentrations, were among the factors that influenced the overall microbial community structure and composition. Phylogenetic analysis indicated that the vast majority of sequences were related to the genera Arthrobacter, Dietzia, Pseudomonas, Rhodococcus, and Marinobacter, many of which contain known oil-degrading or oil-emulsifying species. Remarkably, a number of archaeal genera including Halalkalicoccus, Natronomonas, Haloterrigena, and Natrinema were found in relatively high abundance in some of the oil-contaminated soil samples, indicating that these Euryarchaeota may play an important ecological role in some oil-contaminated soils. This study offers a direct and reliable reference of the diversity of the microbial community in various oil-contaminated soils and may influence strategies for in situ bioremediation of oil pollution.

  11. Bioremediation of Petroleum Hydrocarbon-Contaminated Soils, Comprehensive Report

    Energy Technology Data Exchange (ETDEWEB)

    Altman, D.J.

    2001-01-12

    The US Department of Energy and the Institute for Ecology of Industrial Areas, Katowice, Poland have been cooperating in the development and implementation of innovative environmental remediation technologies since 1995. U.S. experts worked in tandem with counterparts from the IETU and CZOR throughout this project to characterize, assess and subsequently, design, implement and monitor a bioremediation system.

  12. Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15.

    Science.gov (United States)

    Yu, X M; Yu, T; Yin, G H; Dong, Q L; An, M; Wang, H R; Ai, C X

    2015-11-23

    Glyphosate and glyphosate-containing herbicides have an adverse effect on mammals, humans, and soil microbial ecosystems. Therefore, it is important to develop methods for enhancing glyphosate degradation in soil through bioremediation. We investigated the potential of glyphosate degradation and bioremediation in soil by Bacillus subtilis Bs-15. Bs-15 grew well at high concentrations of glyphosate; the maximum concentration tolerated by Bs-15 reached 40,000 mg/L. The optimal conditions for bacterial growth and glyphosate degradation were less than 10,000 mg/L glyphosate, with a temperature of 35°C and a pH of 8.0. Optimal fermentation occurred at 180 rpm for 60 h with an inoculum ratio of 4%. Bs-15 degraded 17.65% (12 h) to 66.97% (96 h) of glyphosate in sterile soil and 19.01% (12 h) to 71.57% (96 h) in unsterilized soil. Using a BIOLOG ECO plate test, we observed no significant difference in average well color development values between the soil inoculated with Bs-15 and the control soil before 72 h, although there was a significant difference (P bioremediation of glyphosate-contaminated soils.

  13. Monitoring bioremediation of atrazine in soil microcosms using molecular tools

    International Nuclear Information System (INIS)

    Sagarkar, Sneha; Mukherjee, Shinjini; Nousiainen, Aura; Björklöf, Katarina; Purohit, Hemant J.; Jørgensen, Kirsten S.; Kapley, Atya

    2013-01-01

    Molecular tools in microbial community analysis give access to information on catabolic potential and diversity of microbes. Applied in bioremediation, they could provide a new dimension to improve pollution control. This concept has been demonstrated in the study using atrazine as model pollutant. Bioremediation of the herbicide, atrazine, was analyzed in microcosm studies by bioaugmentation, biostimulation and natural attenuation. Genes from the atrazine degrading pathway atzA/B/C/D/E/F, trzN, and trzD were monitored during the course of treatment and results demonstrated variation in atzC, trzD and trzN genes with time. Change in copy number of trzN gene under different treatment processes was demonstrated by real-time PCR. The amplified trzN gene was cloned and sequence data showed homology to genes reported in Arthrobacter and Nocardioides. Results demonstrate that specific target genes can be monitored, quantified and correlated to degradation analysis which would help in predicting the outcome of any bioremediation strategy. - Highlights: ► Degradation of herbicide, atrazine. ► Comparison of bioremediation via bioaugmentation, biostimulation and natural attenuation. ► Gene profile analysis in all treatments. ► Variation in trzN gene numbers correlated to degradation efficiency. ► Cloning and sequence analysis of trzN gene demonstrates very high homology to reported gene. - This study demonstrates the use of molecular tools in bioremediation to monitor and track target genes; correlates the results with degradation and thereby predicts the efficiency of treatment.

  14. Ecotoxicity monitoring of hydrocarbon-contaminated soil during bioremediation: a case study

    Czech Academy of Sciences Publication Activity Database

    Hubálek, Tomáš; Vosáhlová, S.; Matějů, V.; Kováčová, Nora; Novotný, Čeněk

    2007-01-01

    Roč. 52, č. 1 (2007), s. 1-7 ISSN 0090-4341 R&D Projects: GA MŠk LN00B030; GA AV ČR KJB600200514 Institutional research plan: CEZ:AV0Z50200510 Keywords : bioremediation * ecotoxicity * hydrocarbon-contaminated soil Subject RIV: EE - Microbiology, Virology Impact factor: 1.620, year: 2007

  15. Bioremediation of engine-oil polluted soil by Pleurotus tuber-regium ...

    African Journals Online (AJOL)

    White-rot fungi have been used in various parts of the world for bioremediation of polluted sites. Pleurotus tuber-regium was noted to have the ability to increase nutrient contents in soils polluted with 1 - 40% engine-oil concentration after six months of incubation. P. tuber-regium increased organic matter, carbon and ...

  16. Bioremediation of PAH-contaminated soil with fungi - from laboratory to field scale

    Czech Academy of Sciences Publication Activity Database

    Winquist, E.; Björklöf, K.; Schultz, E.; Räsänen, M.; Salonen, K.; Anasonye, F.; Cajthaml, Tomáš; Steffen, K.; Jorgensen, K.S.; Tuomela, M.

    2014-01-01

    Roč. 86, č. 2 (2014), s. 238-247 ISSN 0964-8305 R&D Projects: GA TA ČR TE01020218 Institutional support: RVO:61388971 Keywords : bioremediation * contaminated soil * PAH * field scale Subject RIV: EE - Microbiology, Virology Impact factor: 2.131, year: 2014

  17. Characterization of bacterial consortia for its use in bioremediation of gas-oil contaminated antarctic soils

    International Nuclear Information System (INIS)

    Ruberto, L.; Vazquez, S.; Mestre, C.; Nogales, B.; Christie-Oleza, J.; Bosch, R.; Mac Cormack, W. P.

    2009-01-01

    Success of bio augmentation of chronically-contaminated soils is controversial, mainly because the inocula are frequently unable to establish in the matrix under bioremediation. In Antarctica, the environmental conditions and the restriction for the introduction of non-autochthonous organisms (imposed by the Antarctic Treaty) prevent inoculation with foreign bacteria. (Author)

  18. Bioremediation of engine-oil polluted soil by Pleurotus tuber-regium ...

    African Journals Online (AJOL)

    SERVER

    2008-01-04

    Jan 4, 2008 ... White-rot fungi have been used in various parts of the world for bioremediation of polluted sites. Pleurotus tuber-regium was noted to have the ability to increase nutrient contents in soils polluted with. 1 - 40% engine-oil concentration after six months of incubation. P. tuber-regium increased organic matter ...

  19. Semifield testing of a bioremediation tool for atrazine-contaminated soils: evaluating the efficacy on soil and aquatic compartments.

    Science.gov (United States)

    Chelinho, Sónia; Moreira-Santos, Matilde; Silva, Cátia; Costa, Catarina; Viana, Paula; Viegas, Cristina A; Fialho, Arsénio M; Ribeiro, Rui; Sousa, José Paulo

    2012-07-01

    The present study evaluated the bioremediation efficacy of a cleanup tool for atrazine-contaminated soils (Pseudomonas sp. ADP plus citrate [P. ADP + CIT]) at a semifield scale, combining chemical and ecotoxicological information. Three experiments representing worst-case scenarios of atrazine contamination for soil, surface water (due to runoff), and groundwater (due to leaching) were performed in laboratory simulators (100 × 40 × 20 cm). For each experiment, three treatments were set up: bioremediated, nonbioremediated, and a control. In the first, the soil was sprayed with 10 times the recommended dose (RD) for corn of Atrazerba and with P. ADP + CIT at day 0 and a similar amount of P. ADP at day 2. The nonbioremediated treatment consisted of soil spraying with 10 times the RD of Atrazerba (day 0). After 7 d of treatment, samples of soil (and eluates), runoff, and leachate were collected for ecotoxicological tests with plants (Avena sativa and Brassica napus) and microalgae (Pseudokirchneriella subcapitata) species. In the nonbioremediated soils, atrazine was very toxic to both plants, with more pronounced effects on plant growth than on seed emergence. The bioremediation tool annulled atrazine toxicity to A. sativa (86 and 100% efficacy, respectively, for seed emergence and plant growth). For B. napus, results point to incomplete bioremediation. For the microalgae, eluate and runoff samples from the nonbioremediated soils were extremely toxic; a slight toxicity was registered for leachates. After only 7 d, the ecotoxicological risk for the aquatic compartments seemed to be diminished with the application of P. ADP + CIT. In aqueous samples obtained from the bioremediated soils, the microalgal growth was similar to the control for runoff samples and slightly lower than control (by 11%) for eluates. Copyright © 2012 SETAC.

  20. A review on slurry bioreactors for bioremediation of soils and sediments

    Directory of Open Access Journals (Sweden)

    Poggi-Varaldo Héctor M

    2008-02-01

    Full Text Available Abstract The aim of this work is to present a critical review on slurry bioreactors (SB and their application to bioremediation of soils and sediments polluted with recalcitrant and toxic compounds. The scope of the review encompasses the following subjects: (i process fundamentals of SB and analysis of advantages and disadvantages; (ii the most recent applications of SB to laboratory scale and commercial scale soil bioremediation, with a focus on pesticides, explosives, polynuclear aromatic hydrocarbons, and chlorinated organic pollutants; (iii trends on the use of surfactants to improve availability of contaminants and supplementation with degradable carbon sources to enhance cometabolism of pollutants; (iv recent findings on the utilization of electron acceptors other than oxygen; (v bioaugmentation and advances made on characterization of microbial communities of SB; (vi developments on ecotoxicity assays aimed at evaluating bioremediation efficiency of the process. From this review it can be concluded that SB is an effective ad situ and ex situ technology that can be used for bioremediation of problematic sites, such as those characterized by soils with high contents of clay and organic matter, by pollutants that are recalcitrant, toxic, and display hysteretic behavior, or when bioremediation should be accomplished in short times under the pressure and monitoring of environmental agencies and regulators. SB technology allows for the convenient manipulation and control of several environmental parameters that could lead to enhanced and faster treatment of polluted soils: nutrient N, P and organic carbon source (biostimulation, inocula (bioaugmentation, increased availability of pollutants by use of surfactants or inducing biosurfactant production inside the SB, etc. An interesting emerging area is the use of SB with simultaneous electron acceptors, which has demonstrated its usefulness for the bioremediation of soils polluted with

  1. A review on slurry bioreactors for bioremediation of soils and sediments.

    Science.gov (United States)

    Robles-González, Ireri V; Fava, Fabio; Poggi-Varaldo, Héctor M

    2008-02-29

    The aim of this work is to present a critical review on slurry bioreactors (SB) and their application to bioremediation of soils and sediments polluted with recalcitrant and toxic compounds. The scope of the review encompasses the following subjects: (i) process fundamentals of SB and analysis of advantages and disadvantages; (ii) the most recent applications of SB to laboratory scale and commercial scale soil bioremediation, with a focus on pesticides, explosives, polynuclear aromatic hydrocarbons, and chlorinated organic pollutants; (iii) trends on the use of surfactants to improve availability of contaminants and supplementation with degradable carbon sources to enhance cometabolism of pollutants; (iv) recent findings on the utilization of electron acceptors other than oxygen; (v) bioaugmentation and advances made on characterization of microbial communities of SB; (vi) developments on ecotoxicity assays aimed at evaluating bioremediation efficiency of the process.From this review it can be concluded that SB is an effective ad situ and ex situ technology that can be used for bioremediation of problematic sites, such as those characterized by soils with high contents of clay and organic matter, by pollutants that are recalcitrant, toxic, and display hysteretic behavior, or when bioremediation should be accomplished in short times under the pressure and monitoring of environmental agencies and regulators. SB technology allows for the convenient manipulation and control of several environmental parameters that could lead to enhanced and faster treatment of polluted soils: nutrient N, P and organic carbon source (biostimulation), inocula (bioaugmentation), increased availability of pollutants by use of surfactants or inducing biosurfactant production inside the SB, etc. An interesting emerging area is the use of SB with simultaneous electron acceptors, which has demonstrated its usefulness for the bioremediation of soils polluted with hydrocarbons and some

  2. Methodology for bioremediation monitoring of oil wastes contaminated soils by using vegetal bio indicators; Metodologia para monitoramento de biorremediacao de solos contaminados com residuos oleosos com bioindicadores vegetais

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento Neto, Durval; Carvalho, Francisco Jose Pereira de Campos [Parana Univ., Curitiba, PR (Brazil). Curso de Pos-Graduacao em Ciencia do Solo]. E-mail: fjcampos@cce.ufpr.br

    1998-07-01

    This work studies the development of a methodology for the evaluation of the bioremediation status of oil waste contaminated soils, by using vegetal bioindicators for the bioremediation process monitoring, and evaluation of the environmental impacts on the contaminated areas.

  3. Soil Tillage Conservation and its Effect on Soil Properties Bioremediation and Sustained Production of Crops

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Muresan, Liliana; Andriuca, Valentina; Cojocaru, Olesea

    2017-04-01

    Soil Tillage Conservation (STC) is considered major components of agricultural technology for soil conservation strategies and part of Sustainable Agriculture (SA). Human action upon soil by tillage determines important morphological, physical-chemical and biological changes, with different intensities and evaluative directions. Nowadays, internationally is unanimous accepted the fact that global climatic changes are the results of human intervention in the bio-geo-chemical water and material cycle, and the sequestration of carbon in soil is considered an important intervention to limit these changes. STC involves reducing the number of tillage's (minimum tillage) to direct sowing (no-tillage) and plant debris remains at the soil surface in the ratio of at least 30%. Plant debris left on the soil surface or superficial incorporated contributes to increased biological activity and is an important source of carbon sequestration. STC restore soil structure and improve overall soil drainage, allowing more rapid infiltration of water into soil. The result is a soil bioremediation, more productive, better protected against wind and water erosion and requires less fuel for preparing the germinative bed. Carbon sequestration in soil is net advantageous, improving the productivity and sustainability. We present the influence of conventional plough tillage system on soil, water and organic matter conservation in comparison with an alternative minimum tillage (paraplow, chisel plow and rotary harrow) and no-tillage system. The application of STC increased the organic matter content 0.8 to 22.1% and water stabile aggregate content from 1.3 to 13.6%, in the 0-30 cm depth, as compared to the conventional system. For the organic matter content and the wet aggregate stability, the statistical analysis of the data showed, increasing positive significance of STC. While the soil fertility and the wet aggregate stability were initially low, the effect of conservation practices on the

  4. Assessment of the role of plants in the bioremediation of two hydrocarbon-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, V L; McGill, W G [Alberta Univ., Edmonton, AB (Canada). Dept. of Renewable Resources

    1999-01-01

    Phytoremediation has been considered as a viable alternative for cleaning up contaminated soils. A study was conducted to examine the potential for plant-assisted bioremediation of hydrocarbon contaminated soils using wheat, canola, sunflower, fababean, and alsike clover. Crops were grown to maturity in greenhouses. Creosote and oil contaminated soils were used. The soils and plant tissues were then extracted and measured for dichloromethane-extractable organic (DEO) materials. The concentrations of DEO within the soil was them compared with non-planted samples. The study showed that at the end of a three month period there was no major difference in DEO concentrations in any of the soils. After six months, the DEO concentrations of the greenhouse soils had decreased compared to the reserved samples, but there was no major change in concentration due to the presence of any of the plant species. The results indicate that the role of plants in bioremediation systems, both as enhancers of bioremediation systems and as the possible sinks of contaminant C, should be further studied. 22 refs., 1 tab., 7 figs.

  5. Assessment of the role of plants in the bioremediation of two hydrocarbon-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, V.L.; McGill, W.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Renewable Resources

    1999-07-01

    Phytoremediation has been considered as a viable alternative for cleaning up contaminated soils. A study was conducted to examine the potential for plant-assisted bioremediation of hydrocarbon contaminated soils using wheat, canola, sunflower, fababean, and alsike clover. Crops were grown to maturity in greenhouses. Creosote and oil contaminated soils were used. The soils and plant tissues were then extracted and measured for dichloromethane-extractable organic (DEO) materials. The concentrations of DEO within the soil was them compared with non-planted samples. The study showed that at the end of a three month period there was no major difference in DEO concentrations in any of the soils. After six months, the DEO concentrations of the greenhouse soils had decreased compared to the reserved samples, but there was no major change in concentration due to the presence of any of the plant species. The results indicate that the role of plants in bioremediation systems, both as enhancers of bioremediation systems and as the possible sinks of contaminant C, should be further studied. 22 refs., 1 tab., 7 figs.

  6. Assessment of the role of plants in the bioremediation of two hydrocarbon-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, V.L.; McGill, W.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Renewable Resources

    1999-09-01

    Phytoremediation has been considered as a viable alternative for cleaning up contaminated soils. A study was conducted to examine the potential for plant-assisted bioremediation of hydrocarbon contaminated soils using wheat, canola, sunflower, fababean, and alsike clover. Crops were grown to maturity in greenhouses. Creosote and oil contaminated soils were used. The soils and plant tissues were then extracted and measured for dichloromethane-extractable organic (DEO) materials. The concentrations of DEO within the soil was them compared with non-planted samples. The study showed that at the end of a three month period there was no major difference in DEO concentrations in any of the soils. After six months, the DEO concentrations of the greenhouse soils had decreased compared to the reserved samples, but there was no major change in concentration due to the presence of any of the plant species. The results indicate that the role of plants in bioremediation systems, both as enhancers of bioremediation systems and as the possible sinks of contaminant C, should be further studied. 22 refs., 1 tab., 7 figs.

  7. Assessment of the role of plants in the bioremediation of two hydrocarbon-contaminated soils

    International Nuclear Information System (INIS)

    Bailey, V.L.; McGill, W.G.

    1999-01-01

    Phytoremediation has been considered as a viable alternative for cleaning up contaminated soils. A study was conducted to examine the potential for plant-assisted bioremediation of hydrocarbon contaminated soils using wheat, canola, sunflower, fababean, and alsike clover. Crops were grown to maturity in greenhouses. Creosote and oil contaminated soils were used. The soils and plant tissues were then extracted and measured for dichloromethane-extractable organic (DEO) materials. The concentrations of DEO within the soil was them compared with non-planted samples. The study showed that at the end of a three month period there was no major difference in DEO concentrations in any of the soils. After six months, the DEO concentrations of the greenhouse soils had decreased compared to the reserved samples, but there was no major change in concentration due to the presence of any of the plant species. The results indicate that the role of plants in bioremediation systems, both as enhancers of bioremediation systems and as the possible sinks of contaminant C, should be further studied. 22 refs., 1 tab., 7 figs

  8. Evaluation of Four Bio fertilizers for Bioremediation of Pesticide contaminated Soil

    International Nuclear Information System (INIS)

    El- Kabbany, S.

    1999-01-01

    Experiments were conducted to asses the ability of mixed populations of microorganisms which produced as a bio fertilizers by the General Organization of Agriculture Fund, Ministry of Agriculture, Egypt (phosphoren, microbien, cerealin and azospirillum) to degrade five selected pesticides representing different classes including organophosphate, carbamate and chlorinated organic compounds. There were differences in rates of biotransformation, suggesting the selective induction of certain metabolic enzymes. Inoculation of soil incorporated with malathion, fenamiphos, carbaryl, aldicarb and dieldrin, resulted in ca. 80-90% removal of malathion and fenamiphos within 8 days, carbaryl and aldicarb within 11-15 days respectively. Dieldrin removal occurred slowly within 2 months. These data suggest that bioremediate may act as potential candidates for soil inoculation to bioremediate pesticide contaminated soil. The production of Co2 (soil respiration ) was stimulated by some pesticides. In samples with microbien, an about 2 times higher Co2 production was measured

  9. Bioremediation of hydrocarbon-contaminated soils: are treatability and ecotoxicity endpoints related?

    International Nuclear Information System (INIS)

    Visser, S.

    1999-01-01

    To determine if there is a relationship between biotreatability and ecotoxicity endpoints in a wide range of hydrocarbon-contaminated soils, including medium and heavy crude oil-contaminated flare pit wastes and lubrication oil contaminated soil, research was conducted. Each test material was analyzed for pH, water repellency, electrical conductivity, available N and P, total extractable hydrocarbons, oil and grease, and toxicity to seedling emergence, root elongation in barley, lettuce and canola, earthworm survival and luminescent bacteria (Microtox), prior to, and following three months of bioremediation in the laboratory. By monitoring soil respiration, progress of the bioremediation process and determination of a treatment endpoint were assessed. The time required to attain a treatment endpoint under laboratory conditions can range from 30 days to 100 days depending on the concentration of hydrocarbons and degree of weathering. Most flare pits are biotreatable, averaging a loss of 25-30% of hydrocarbons during bioremediation. Once a treatment endpoint is achieved, residual hydrocarbons contents almost always exceeds Alberta Tier I criteria for mineral oil and grease. As a result of bioremediation treatments, hydrophobicity is often reduced from severe to low. Many flare pit materials are still moderately to extremely toxic after reaching a treatment endpoint. (Abstract only)

  10. Effect of alternating bioremediation and electrokinetics on the remediation of n-hexadecane-contaminated soil

    Science.gov (United States)

    Wang, Sa; Guo, Shuhai; Li, Fengmei; Yang, Xuelian; Teng, Fei; Wang, Jianing

    2016-04-01

    This study demonstrated the highly efficient degradation of n-hexadecane in soil, realized by alternating bioremediation and electrokinetic technologies. Using an alternating technology instead of simultaneous application prevented competition between the processes that would lower their efficiency. For the consumption of the soil dissolved organic matter (DOM) necessary for bioremediation by electrokinetics, bioremediation was performed first. Because of the utilization and loss of the DOM and water-soluble ions by the microbial and electrokinetic processes, respectively, both of them were supplemented to provide a basic carbon resource, maintain a high electrical conductivity and produce a uniform distribution of ions. The moisture and bacteria were also supplemented. The optimal DOM supplement (20.5 mg·kg-1 glucose; 80-90% of the total natural DOM content in the soil) was calculated to avoid competitive effects (between the DOM and n-hexadecane) and to prevent nutritional deficiency. The replenishment of the water-soluble ions maintained their content equal to their initial concentrations. The degradation rate of n-hexadecane was only 167.0 mg·kg-1·d-1 (1.9%, w/w) for the first 9 days in the treatments with bioremediation or electrokinetics alone, but this rate was realized throughout the whole process when the two technologies were alternated, with a degradation of 78.5% ± 2.0% for the n-hexadecane after 45 days of treatment.

  11. Bioremediation of soil polluted with crude oil and its derivatives: Microorganisms, degradation pathways, technologies

    Directory of Open Access Journals (Sweden)

    Beškoski Vladimir P.

    2012-01-01

    Full Text Available The contamination of soil and water with petroleum and its products occurs due to accidental spills during exploitation, transport, processing, storing and use. In order to control the environmental risks caused by petroleum products a variety of techniques based on physical, chemical and biological methods have been used. Biological methods are considered to have a comparative advantage as cost effective and environmentally friendly technologies. Bioremediation, defined as the use of biological systems to destroy and reduce the concentrations of hazardous waste from contaminated sites, is an evolving technology for the removal and degradation of petroleum hydrocarbons as well as industrial solvents, phenols and pesticides. Microorganisms are the main bioremediation agents due to their diverse metabolic capacities. In order to enhance the rate of pollutant degradation the technology optimizes the conditions for the growth of microorganisms present in soil by aeration, nutrient addition and, if necessary, by adding separately prepared microorganisms cultures. The other factors that influence the efficiency of process are temperature, humidity, presence of surfactants, soil pH, mineral composition, content of organic substance of soil as well as type and concentration of contaminant. This paper presents a review of our ex situ bioremediation procedures successfully implemented on the industrial level. This technology was used for treatment of soils contaminated by crude oil and its derivatives originated from refinery as well as soils polluted with oil fuel and transformer oil.

  12. Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils.

    Science.gov (United States)

    Popp, Nicole; Schlömann, Michael; Mau, Margit

    2006-11-01

    Soils contaminated with mineral oil hydrocarbons are often cleaned in off-site bioremediation systems. In order to find out which bacteria are active during the degradation phase in such systems, the diversity of the active microflora in a degrading soil remediation system was investigated by small-subunit (SSU) rRNA analysis. Two sequential RNA extracts from one soil sample were generated by a procedure incorporating bead beating. Both extracts were analysed separately by generating individual SSU rDNA clone libraries from cDNA of the two extracts. The sequencing results showed moderate diversity. The two clone libraries were dominated by Gammaproteobacteria, especially Pseudomonas spp. Alphaproteobacteria and Betaproteobacteria were two other large groups in the clone libraries. Actinobacteria, Firmicutes, Bacteroidetes and Epsilonproteobacteria were detected in lower numbers. The obtained sequences were predominantly related to genera for which cultivated representatives have been described, but were often clustered together in the phylogenetic tree, and the sequences that were most similar were originally obtained from soils and not from pure cultures. Most of the dominant genera in the clone libraries, e.g. Pseudomonas, Acinetobacter, Sphingomonas, Acidovorax and Thiobacillus, had already been detected in (mineral oil hydrocarbon) contaminated environmental samples. The occurrence of the genera Zymomonas and Rhodoferax was novel in mineral oil hydrocarbon-contaminated soil.

  13. Economical and environmental valorization of compost: possible utilization for contaminated soil bioremediation

    International Nuclear Information System (INIS)

    Fontanarosa, E.; Belfiore, A.; Napoletano, M.; Gandolfi, I.; Sicolo, M.; Franzetti, A.; Santagostino, A.; Bestetti, G.; Centemero, M.

    2009-01-01

    The Bo.S.Co project (Bioremediation of contaminated soils by compost) aims at creating an innovative bioremediation technology ready-to-use and competitive in price. This technology use a particular kind of certified compost that optimizes cleaning processes. Compost, in fact, is a very rich matrix that can supply nutrients, used by the autochthonous microflora. In the present study compost was used to enhance diesel oil and PAHs degradation in two heavily contaminated soils; laboratory scale experiments were performed by preparing four soil-bio piles, under laboratory conditions chemical, microbiological and eco toxic parameters were analyzed at different times. Compost addition was effective in enhancing biodegradation of diesel oil compounds and simultaneous reduction of genotoxicity with respect to the control. [it

  14. Comparative Bioremediation of Crude Oil-Amended Tropical Soil Microcosms by Natural Attenuation, Bioaugmentation, or Bioenrichment

    Directory of Open Access Journals (Sweden)

    Vanessa Marques Alvarez

    2011-01-01

    Full Text Available Bioremediation is an efficient strategy for cleaning up sites contaminated with organic pollutants. In this study, we evaluated the effectiveness of monitored natural attenuation, bioenrichment, and bioaugmentation using a consortium of three actinomycetes strains in remediating two distinct typical Brazilian soils from the Atlantic Forest and Cerrado biomes that were contaminated with crude oil, with or without the addition of NaCl. Microcosms were used to simulate bioremediation treatments over a 120-day period. During this period, we monitored total petroleum hydrocarbons (TPHs and n-alkanes degradation and changes in bacterial communities. Over time, we found the degradation rate of n-alkanes was higher than TPH in both soils, independent of the treatment used. In fact, our data show that the total bacterial community in the soils was mainly affected by the experimental period of time, while the type of bioremediation treatment used was the main factor influencing the actinomycetes populations in both soils. Based on these data, we conclude that monitored natural attenuation is the best strategy for remediation of the two tropical soils studied, with or without salt addition.

  15. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Wang, Lingwen; Li, Feng; Zhan, Yu; Zhu, Lizhong

    2016-07-01

    This study aims to reveal the microbial mechanism of in situ surfactant-enhanced bioremediation (SEBR). Various concentrations of rhamnolipids, Tween 80, and sodium dodecyl benzenesulfonate (SDBS) were separately sprayed onto soils contaminated with polycyclic aromatic hydrocarbons (PAHs) for years. Within 90 days, the highest level of degradation (95 %) was observed in the soil treated with rhamnolipids (10 mg/kg), followed by 92 % degradation with Tween 80 (50 mg/kg) and 90 % degradation with SDBS (50 mg/kg). The results of the microbial phospholipid fatty acids (PLFAs) suggest that bacteria dominated the enhanced PAH biodegradation (94 % of the maximum contribution). The shift of bacterial community structure during the surfactant treatment was analyzed by using the 16S rRNA gene high-throughput sequencing. In the presence of surfactants, the number of the operational taxonomic units (OTUs) associated with Bacillus, Pseudomonas, and Sphingomonas increased from 2-3 to 15-30 % at the end of the experiment (two to three times of control). Gene prediction with phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) shows that the PAH-degrading genes, such as 1-hydroxy-2-naphthoate dioxygenase and PAH dioxygenase large subunit, significantly increased after the surfactant applications (p bioremediation.

  16. Evaluating the efficacy of bioremediating a diesel-contaminated soil using ecotoxicological and bacterial community indices.

    Science.gov (United States)

    Khudur, Leadin Salah; Shahsavari, Esmaeil; Miranda, Ana F; Morrison, Paul D; Nugegoda, Dayanthi; Ball, Andrew S

    2015-10-01

    Diesel represents a common environmental contaminant as a result of operation, storage, and transportation accidents. The bioremediation of diesel in a contaminated soil is seen as an environmentally safe approach to treat contaminated land. The effectiveness of the remediation process is usually assessed by the degradation of the total petroleum hydrocarbon (TPH) concentration, without considering ecotoxicological effects. The aim of this study was to assess the efficacy of two bioremediation strategies in terms of reduction in TPH concentration together with ecotoxicity indices and changes in the bacterial diversity assessed using PCR-denaturing gradient gel electrophoresis (DGGE). The biostimulation strategy resulted in a 90 % reduction in the TPH concentration versus 78 % reduction from the natural attenuation strategy over 12 weeks incubation in a laboratory mesocosm-containing diesel-contaminated soil. In contrast, the reduction in the ecotoxicity resulting from the natural attenuation treatment using the Microtox and earthworm toxicity assays was more than double the reduction resulting from the biostimulation treatment (45 and 20 % reduction, respectively). The biostimulated treatment involved the addition of nitrogen and phosphorus in order to stimulate the microorganisms by creating an optimal C:N:P molar ratio. An increased concentration of ammonium and phosphate was detected in the biostimulated soil compared with the naturally attenuated samples before and after the remediation process. Furthermore, through PCR-DGGE, significant changes in the bacterial community were observed as a consequence of adding the nutrients together with the diesel (biostimulation), resulting in the formation of distinctly different bacterial communities in the soil subjected to the two strategies used in this study. These findings indicate the suitability of both bioremediation approaches in treating hydrocarbon-contaminated soil, particularly biostimulation. Although

  17. Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils.

    Science.gov (United States)

    Yergeau, Etienne; Sanschagrin, Sylvie; Beaumier, Danielle; Greer, Charles W

    2012-01-01

    As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorganisms and functional genes are abundant and active during hydrocarbon degradation at cold temperature? To answer this question, we sequenced the soil metagenome of an ongoing bioremediation project in Alert, Canada through a time course. We also used reverse-transcriptase real-time PCR (RT-qPCR) to quantify the expression of several hydrocarbon-degrading genes. Pseudomonas species appeared as the most abundant organisms in Alert soils right after contamination with diesel and excavation (t = 0) and one month after the start of the bioremediation treatment (t = 1m), when degradation rates were at their highest, but decreased after one year (t = 1y), when residual soil hydrocarbons were almost depleted. This trend was also reflected in hydrocarbon degrading genes, which were mainly affiliated with Gammaproteobacteria at t = 0 and t = 1m and with Alphaproteobacteria and Actinobacteria at t = 1y. RT-qPCR assays confirmed that Pseudomonas and Rhodococcus species actively expressed hydrocarbon degradation genes in Arctic biopile soils. Taken together, these results indicated that biopile treatment leads to major shifts in soil microbial communities, favoring aerobic bacteria that can degrade hydrocarbons.

  18. Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils.

    Directory of Open Access Journals (Sweden)

    Etienne Yergeau

    Full Text Available As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorganisms and functional genes are abundant and active during hydrocarbon degradation at cold temperature? To answer this question, we sequenced the soil metagenome of an ongoing bioremediation project in Alert, Canada through a time course. We also used reverse-transcriptase real-time PCR (RT-qPCR to quantify the expression of several hydrocarbon-degrading genes. Pseudomonas species appeared as the most abundant organisms in Alert soils right after contamination with diesel and excavation (t = 0 and one month after the start of the bioremediation treatment (t = 1m, when degradation rates were at their highest, but decreased after one year (t = 1y, when residual soil hydrocarbons were almost depleted. This trend was also reflected in hydrocarbon degrading genes, which were mainly affiliated with Gammaproteobacteria at t = 0 and t = 1m and with Alphaproteobacteria and Actinobacteria at t = 1y. RT-qPCR assays confirmed that Pseudomonas and Rhodococcus species actively expressed hydrocarbon degradation genes in Arctic biopile soils. Taken together, these results indicated that biopile treatment leads to major shifts in soil microbial communities, favoring aerobic bacteria that can degrade hydrocarbons.

  19. Metagenomic Analysis of the Bioremediation of Diesel-Contaminated Canadian High Arctic Soils

    Science.gov (United States)

    Yergeau, Etienne; Sanschagrin, Sylvie; Beaumier, Danielle; Greer, Charles W.

    2012-01-01

    As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorganisms and functional genes are abundant and active during hydrocarbon degradation at cold temperature? To answer this question, we sequenced the soil metagenome of an ongoing bioremediation project in Alert, Canada through a time course. We also used reverse-transcriptase real-time PCR (RT-qPCR) to quantify the expression of several hydrocarbon-degrading genes. Pseudomonas species appeared as the most abundant organisms in Alert soils right after contamination with diesel and excavation (t = 0) and one month after the start of the bioremediation treatment (t = 1m), when degradation rates were at their highest, but decreased after one year (t = 1y), when residual soil hydrocarbons were almost depleted. This trend was also reflected in hydrocarbon degrading genes, which were mainly affiliated with Gammaproteobacteria at t = 0 and t = 1m and with Alphaproteobacteria and Actinobacteria at t = 1y. RT-qPCR assays confirmed that Pseudomonas and Rhodococcus species actively expressed hydrocarbon degradation genes in Arctic biopile soils. Taken together, these results indicated that biopile treatment leads to major shifts in soil microbial communities, favoring aerobic bacteria that can degrade hydrocarbons. PMID:22253877

  20. Temporal ecological assessment of oil contaminated soils before and after bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Dorn, Philip B.; Salanitro, Joseph P. [Equilon Enterprises, Westhollow Technology Center, Houston, TX (United States)

    2000-02-01

    Ecotoxicity methods were used to assess different soil and oil combinations before, during and after laboratory bioremediation with associated hydrocarbon analyses. Heavy, medium and light crude oil (API gravity 14, 30 and 55) was spiked (ca. 5% w/w) into two sandy soils in the laboratory having organic carbon concentrations of 0.3 (Norwood) and 4.7% (Norwood/Baccto). The earthworm (Eisenia fetida) 14-d lethality assay, the modified Microbics Microtox Solid-Phase assay, and the 14-d plant seed germination and growth assays using corn, wheat and oats, were spiked and tested during a 360-d laboratory remediation. Eisenia was the most sensitive of the three methods utilised with survival increasing throughout bioremediation with fastest toxicity reduction in the high carbon Norwood/Baccto soils where LC50s were 100% or greater at the end of 90-d whereas, >150-d were required to achieve a similar result in the low carbon soil. Analysis of the undiluted treatments with oily soil alone showed that earthworm survival was high after 90-d in all high organic carbon soils, and after eight months in the low carbon soils, except for the Norwood soil-light oil treatment, which required 360-d to achieve 100% survival. The Microtox assay was less sensitive with EC50s 100% or greater observed after 90-d in high carbon soils and after 245-d for all low carbon soils. After bioremediation, no effects on seed germination were observed, although some plant growth inhibition effects remained. There was no direct correlation between total petroleum hydrocarbon concentrations and toxicity. (Author)

  1. Bioremediation: Effective treatment of petroleum-fuel-contaminated soil, a common environmental problem at industrial and governmental agency sites

    International Nuclear Information System (INIS)

    Jolley, R.L.; Donaldson, T.L.; Siegrist, R.L.; Walker, J.F.; MacNeill, J.J.; Ott, D.W.; Machanoff, R.A.; Adler, H.I.; Phelps, T.J.

    1992-01-01

    Bioremediation methods are receiving increased attention for degradation of petroleum-fuel-hydrocarbon contamination in soils. An in situ bioremediation demonstration is being conducted on petroleum-fuel-contaminated soil at Kwajalein Island, a remote Pacific site. Bioreaction parameters studied include water, air, nutrient, and microorganism culture addition. This paper presents planning and design aspects of the demonstration that is scheduled to be completed in 1993

  2. Integration of pneumatic fracturing with bioremediation from the enhanced removal of BTX from low permeability gasoline-contaminated soils

    International Nuclear Information System (INIS)

    Venkatraman, S.N.; Kosson, D.S.; Schuring, J.R.; Boland, T.M.

    1995-01-01

    A pilot-scale evaluation of the integrated pneumatic fracturing and bioremediation system was carried out to demonstrate the enhanced removal of BTX from a gasoline contaminated, low permeability soil formation. The fracturing enhanced subsurface permeability by an average of over 36 times, and established an extended bioremediation zone supporting aerobic, denitrifying and methanogenic populations. Subsurface amendment injections consisting of phosphate and nitrogen were made periodically over a 50-week period to stimulate microbial activity. Results indicate that 79% of the soil-phase BTX was removed during the field test, with over 85% of the mass removed attributable to bioremediation

  3. [Dynamic changes in functional genes for nitrogen bioremediation of petroleum-contaminated soil cycle during].

    Science.gov (United States)

    Wu, Bin-Bin; Lu, Dian-Nan; Liu, Zheng

    2012-06-01

    Microorganisms in nitrogen cycle serve as an important part of the ecological function of soil. The aim of this research was to monitor the abundance of nitrogen-fixing, denitrifying and nitrifying bacteria during bioaugmentation of petroleum-contaminated soil using real-time polymerase chain reaction (real-time PCR) of nifH, narG and amoA genes which encode the key enzymes in nitrogen fixation, nitrification and ammoniation respectively. Three different kinds of soils, which are petroleum-contaminated soil, normal soil, and remediated soil, were monitored. It was shown that the amounts of functional microorganisms in petroleum-contaminated soil were far less than those in normal soil, while the amounts in remediated soil and normal soil were comparable. Results of this experiment demonstrate that nitrogen circular functional bacteria are inhibited in petroleum-contaminated soil and can be recovered through bioremediation. Furthermore, copies of the three functional genes as well as total petroleum hydrocarbons (TPH) for soils with six different treatments were monitored. Among all treatments, the one, into which both E. cloacae as an inoculant and wheat straw as an additive were added, obtained the maximum copies of 2.68 x 10(6), 1.71 x 10(6) and 8.54 x 10(4) per gram dry soil for nifH, narG and amoA genes respectively, companying with the highest degradation rate (48% in 40 days) of TPH. The recovery of functional genes and removal of TPH were better in soil inoculated with E cloacae and C echinulata collectively than soil inoculated with E cloacae only. All above results suggest that the nitrogen circular functional genes could be applied to monitor and assess the bioremediation of petroleum-contaminated soil.

  4. Pilot-scale feasibility of petroleum hydrocarbon-contaminated soil in situ bioremediation

    International Nuclear Information System (INIS)

    Walker, J.F. Jr.; Walker, A.B.

    1995-01-01

    An environmental project was conducted to evaluate in situ bioremediation of petroleum hydrocarbon-contaminated soils on Kwajalein Island, a US Army Kwajalein Atoll base in the Republic of the Marshall Islands. Results of laboratory column studies determined that nutrient loadings stimulated biodegradation rates and that bioremediation of hydrocarbon-contaminated soils at Kwajalein was possible using indigenous microbes. The column studies were followed by an ∼10-month on-site demonstration at Kwajalein to further evaluate in situ bioremediation and to determine design and operating conditions necessary to optimize the process. The demonstration site contained low levels of total petroleum hydrocarbons (diesel fuel) in the soil near the ground surface, with concentrations increasing to ∼10,000 mg/kg in the soil near the groundwater. The demonstration utilized 12 in situ plots to evaluate the effects of various combinations of water, air, and nutrient additions on both the microbial population and the hydrocarbon concentration within the treatment plots as a function of depth from the ground surface

  5. Effects of biosurfactant production by indigenous soil microorganisms on bioremediation of a co-contaminated soil in batch experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, F.; Mulligan, C.N. [Concordia Univ., Centre for Building Studies, Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering

    2007-07-01

    The challenge of remediating soils that are contaminated with both hydrocarbon compounds and metals was discussed, with particular reference to an in-situ bioremediation technique that was developed in the 1970s to deal with contaminated soils. The technique involves a two-stage process where water with added oxygen and nutrients is applied onto and injected into a contaminated area to stimulate the indigenous microbial populations in the soil. In addition to using organic pollutants as their carbon source, microorganisms can facilitate the removal of metals from the soil matrix and attenuate the toxicity of certain metals. Extraction wells placed downstream of the contaminated soils are used to remove and treat the water to eliminate any mobilized contaminants. This paper presented the results of batch experiments that evaluated the feasibility of biosurfactant production for the purpose of bioremediating a soil contaminated with aged petroleum hydrocarbons and heavy metals. The first phase of the study examined the growth of the native microbial population and the biodegradation of petroleum hydrocarbons, the production of biosurfactant and the mobilization of the total petroleum hydrocarbons (TPH) and metals into the aqueous phase. Biodegradation of petroleum hydrocarbons was observed in both soil and soil amended with nitrogen and phosphorous. However, the nutrient-amended soil had higher biodegradation of petroleum hydrocarbons, where 36 per cent of TPH was degraded by the end of the 50 day experiment, compared to 15 per cent for the non-amended soils. The concentration of biosurfactants in the same period increased 3 times their critical micelle concentration. It was concluded that biosurfactant production enhances the bioremediation of co-contaminated soils. 36 refs., 1 tab., 8 figs.

  6. Bioremediation Potential of Native Hydrocarbons Degrading Bacteria in Crude Oil Polluted Soil

    Directory of Open Access Journals (Sweden)

    Mariana MARINESCU

    2017-05-01

    Full Text Available Bioremediation of crude oil contaminated soil is an effective process to clean petroleum pollutants from the environment. Crude oil bioremediation of soils is limited by the bacteria activity in degrading the spills hydrocarbons. Native crude oil degrading bacteria were isolated from different crude oil polluted soils. The isolated bacteria belong to the genera Pseudomonas, Mycobacterium, Arthrobacter and Bacillus. A natural biodegradable product and bacterial inoculum were used for total petroleum hydrocarbon (TPH removal from an artificial polluted soil. For soil polluted with 5% crude oil, the bacterial top, including those placed in the soil by inoculation was 30 days after impact, respectively 7 days after inoculum application, while in soil polluted with 10% crude oil,  multiplication top of bacteria was observed in the determination made at 45 days after impact and 21 days after inoculum application, showing once again how necessary is for microorganisms habituation and adaptation to environment being a function of pollutant concentration. The microorganisms inoculated showed a slight adaptability in soil polluted with 5% crude oil, but complete inhibition in the first 30 days of experiment at 10% crude oil.

  7. Bioremediation of soils containing petroleum hydrocarbons, chlorinated phenols, and polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Seech, A.; Burwell, S.; Marvan, I.

    1994-01-01

    Bench-scale treatability investigations, pilot-scale and full-scale bioremediation projects were conducted to evaluate Daramend trademark bioremediation of soils containing petroleum hydrocarbons, heavy oils, paraffins, chlorinated phenols and polycyclic aromatic hydrocarbons (PAHs). Bench-scale investigations were conducted using glass microcosms. Pilot-scale and full-scale demonstrations were conducted at industrial sites and included treatment of excavated soils and sediments in on-site cells constructed using synthetic liners and covered by steel/polyethylene structures as well as in-situ treatment. A total of approximately 5,000 tons of soil was treated. The soil treatment included organic soil amendments, specialized tillage/aeration apparatus, and strict control of soil moisture. The amendments are composed of naturally-occurring organic materials prepared to soil-specific particle size distributions, nutrient profiles, and nutrient-release kinetics. Bench-scale work indicated that in refinery soil containing high concentrations of heavy oils, extractable hydrocarbon concentrations could be rapidly reduced to industrial clean-up criteria, and that the hydrocarbons were fully mineralized with release of CO 2

  8. Bioremediation of contaminated soil. Fighting hydrocarbons with microorganisms. Bioremediation verseuchter Boeden. Mit Mikroorganismen gegen Kohlenwasserstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Eiermann, D [Ebiox AG, Mikrobiologische Sanierungstechnologien, Sursee (Switzerland)

    1992-10-02

    Contaminated soil can either be dumped or burnt. Neither possibility constitutes an optimum, for these out-of-sight-out-of-mind techniques are expensive and present problems. An alternative could be a biological method which uses microorganisms for pollutant degradation. Their work done,the microorganisms die off and mineralize into material to be used further. (orig.).

  9. Changes in the microbial community during bioremediation of gasoline-contaminated soil

    OpenAIRE

    Leal, Aline Jaime; Rodrigues, Edmo Montes; Leal, Patr?cia Lopes; J?lio, Aline Daniela Lopes; Fernandes, Rita de C?ssia Rocha; Borges, Arnaldo Chaer; T?tola, Marcos Rog?rio

    2016-01-01

    Abstract We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N–P, but no gas...

  10. Bioremediation of organophosphates by fungi and bacteria in agricultural soils. A systematic review

    OpenAIRE

    Gina María Hernández-Ruiz; Natalia Andrea Álvarez-Orozco; Leonardo Alberto Ríos-Osorio

    2017-01-01

    Organophosphates are a type of pesticides widely used in agriculture for pest control. Since these are highly toxic compounds, their excessive use has caused great deterioration of arable soils, as well as serious damage to ecosystems and human health. Bioremediation is used as an alternative way to transform pesticides into simple, less polluting compounds, using the metabolic potential of microorganisms. Therefore, the objective of t...

  11. Soil pollution in the railway junction Niš (Serbia) and possibility of bioremediation of hydrocarbon-contaminated soil

    Science.gov (United States)

    Jovanovic, Larisa; Aleksic, Gorica; Radosavljevic, Milan; Onjia, Antonije

    2015-04-01

    Mineral oil leaking from vehicles or released during accidents is an important source of soil and ground water pollution. In the railway junction Niš (Serbia) total 90 soil samples polluted with mineral oil derivatives were investigated. Field work at the railway Niš sites included the opening of soil profiles and soil sampling. The aim of this work is the determination of petroleum hydrocarbons concentration in the soil samples and the investigation of the bioremediation technique for treatment heavily contaminated soil. For determination of petroleum hydrocarbons in the soil samples method of gas-chromatography was carried out. On the basis of measured concentrations of petroleum hydrocarbons in the soil it can be concluded that: Obtained concentrations of petroleum hydrocarbons in 60% of soil samples exceed the permissible values (5000 mg/kg). The heavily contaminated soils, according the Regulation on the program of systematic monitoring of soil quality indicators for assessing the risk of soil degradation and methodology for development of remediation programs, Annex 3 (Official Gazette of RS, No.88 / 2010), must be treated using some of remediation technologies. Between many types of phytoremediation of soil contaminated with mineral oils and their derivatives, the most suitable are phytovolatalisation and phytostimulation. During phytovolatalisation plants (poplar, willow, aspen, sorgum, and rye) absorb organic pollutants through the root, and then transported them to the leaves where the reduced pollutants are released into the atmosphere. In the case of phytostimulation plants (mulberry, apple, rye, Bermuda) secrete from the roots enzymes that stimulates the growth of bacteria in the soil. The increase in microbial activity in soil promotes the degradation of pollutants. Bioremediation is performed by composting the contaminated soil with addition of composting materials (straw, manure, sawdust, and shavings), moisture components, oligotrophs and

  12. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils.

    Science.gov (United States)

    Park, Jin Hee; Lamb, Dane; Paneerselvam, Periyasamy; Choppala, Girish; Bolan, Nanthi; Chung, Jae-Woo

    2011-01-30

    As land application becomes one of the important waste utilization and disposal practices, soil is increasingly being seen as a major source of metal(loid)s reaching food chain, mainly through plant uptake and animal transfer. With greater public awareness of the implications of contaminated soils on human and animal health there has been increasing interest in developing technologies to remediate contaminated sites. Bioremediation is a natural process which relies on soil microorganisms and higher plants to alter metal(loid) bioavailability and can be enhanced by addition of organic amendments to soils. Large quantities of organic amendments, such as manure compost, biosolid and municipal solid wastes are used as a source of nutrients and also as a conditioner to improve the physical properties and fertility of soils. These organic amendments that are low in metal(loid)s can be used as a sink for reducing the bioavailability of metal(loid)s in contaminated soils and sediments through their effect on the adsorption, complexation, reduction and volatilization of metal(loid)s. This review examines the mechanisms for the enhanced bioremediation of metal(loid)s by organic amendments and discusses the practical implications in relation to sequestration and bioavailability of metal(loid)s in soils. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Studies concerning the decontamination of hydrocarbons- polluted soil areas using bioremediation techniques

    Science.gov (United States)

    Deac, C.; Barbulescu, A.; Gligor, A.; Bibu, M.; Petrescu, V.

    2016-11-01

    The accidental or historic contamination of soils with hydrocarbons, in areas crossed by oil pipelines or where oil- or gas-extraction installations are located, is a major concern and has significant financial and ecological consequences, both for the owners of those areas and for the oil transportation or exploitation companies. Therefore it is very important to find the optimal method for removing the pollution. The current paper presents measures, mainly involving bioremediation, recommended and applied for the depollution of a contaminated area in Romania. While the topic of dealing with polluted soils is well-established in the Romanian speciality literature, bioremediation is a relatively novel approach and this paper presents important considerations in this regard. Contaminated soil samples were taken from 10 different locations within the targeted area and subjected to a thorough physical and chemical analysis, which led to determining a specific scoring table for assessing the bioremediation potential of the various samples. This has allowed the authors to establish for each of the sampled areas the best mix of factors such as nutrients (nitrogen, phosphorus, potassium), gypsum, microelements etc., that would lead to obtaining the best results in terms of the contaminants' biodegradation.

  14. Bacterial community dynamics during bioremediation of diesel oil-contaminated Antarctic soil.

    Science.gov (United States)

    Vázquez, S; Nogales, B; Ruberto, L; Hernández, E; Christie-Oleza, J; Lo Balbo, A; Bosch, R; Lalucat, J; Mac Cormack, W

    2009-05-01

    The effect of nutrient and inocula amendment in a bioremediation field trial using a nutrient-poor Antarctic soil chronically contaminated with hydrocarbons was tested. The analysis of the effects that the treatments caused in bacterial numbers and hydrocarbon removal was combined with the elucidation of the changes occurring on the bacterial community, by 16S rDNA-based terminal restriction fragment length polymorphism (T-RFLP) typing, and the detection of some of the genes involved in the catabolism of hydrocarbons. All treatments caused a significant increase in the number of bacteria able to grow on hydrocarbons and a significant decrease in the soil hydrocarbon content, as compared to the control. However, there were no significant differences between treatments. Comparison of the soil T-RFLP profiles indicated that there were changes in the structure and composition of bacterial communities during the bioremediation trial, although the communities in treated plots were highly similar irrespective of the treatment applied, and they had a similar temporal dynamics. These results showed that nutrient addition was the main factor contributing to the outcome of the bioremediation experiment. This was supported by the lack of evidence of the establishment of inoculated consortia in soils, since their characteristic electrophoretic peaks were only detectable in soil profiles at the beginning of the experiment. Genetic potential for naphthalene degradation, evidenced by detection of nahAc gene, was observed in all soil plots including the control. In treated plots, an increase in the detection of catechol degradation genes (nahH and catA) and in a key gene of denitrification (nosZ) was observed as well. These results indicate that treatments favored the degradation of aromatic hydrocarbons and probably stimulated denitrification, at least transiently. This mesocosm study shows that recovery of chronically contaminated Antarctic soils can be successfully accelerated

  15. Bioremediation of diesel oil-contaminated soil by composting with biowaste

    International Nuclear Information System (INIS)

    Gestel, Kristin van; Mergaert, Joris; Swings, Jean; Coosemans, Jozef; Ryckeboer, Jaak

    2003-01-01

    Composting of biowaste and diesel contaminated-soil is an efficient bioremediation method, with mature compost as a usable end product. - Soil spiked with diesel oil was mixed with biowaste (vegetable, fruit and garden waste) at a 1:10 ratio (fresh weight) and composted in a monitored composting bin system for 12 weeks. Pure biowaste was composted in parallel. In order to discern the temperature effect from the additional biowaste effect on diesel degradation, one recipient with contaminated soil was hold at room temperature, while another was kept at the actual composting temperature. Measurements of composting parameters together with enumerations and identifications of microorganisms demonstrate that the addition of the contaminated soil had a minor impact on the composting process. The first-order rate constant of diesel degradation in the biowaste mixture was four times higher than in the soil at room temperature, and 1.2 times higher than in the soil at composting temperature

  16. Enhanced bioremediation of PAH contaminated soils from coal processing sites

    International Nuclear Information System (INIS)

    Joshi, M.M.; Lee, S.

    1995-01-01

    The polycyclic aromatic hydrocarbons (PAH) are a potential hazard to health due to their carcinogenic, mutagenic nature and acute toxicity and there is an imminent need for remediation of PAH contaminated soils abounding the several coke oven and town gas sites. Aerobic biological degradation of PAHs is an innovative technology and has shown high decontamination efficiencies, complete mineralization of contaminants, and is environmentally safe. The present study investigates the remediation of PAH contaminated soils achieved using Acinetobacter species and fungal strain Phanerochaete Chrysosporium. The soil used for the experiments was an industrially contaminated soil obtained from Alberta Research Council (ARC) primary cleanup facility, Alberta, Canada. Soil characterization was done using High Performance Liquid Chromatography (HPLC) to qualitatively and quantitatively determine the contaminants in the soil. Artificially contaminated soil was also used for some experiments. All the experiments were conducted under completely mixed conditions with suitable oxygen and nutrient amendments. The removal efficiency obtained for various PAHs using the two microorganisms was compared

  17. Enhancing Bioremediation of Oil-contaminated Soils by Controlling Nutrient Transport using Dual Characteristics of Soil Pore Structure

    Science.gov (United States)

    Mori, Y.; Suetsugu, A.; Matsumoto, Y.; Fujihara, A.; Suyama, K.; Miyamoto, T.

    2012-12-01

    Soil structure is heterogeneous with cracks or macropores allowing bypass flow, which may lead to applied chemicals avoiding interaction with soil particles or the contaminated area. We investigated the bioremediation efficiency of oil-contaminated soils by applying suction at the bottom of soil columns during bioremediation. Unsaturated flow conditions were investigated so as to avoid bypass flow and achieve sufficient dispersion of chemicals in the soil column. The boundary conditions at the bottom of the soil columns were 0 kPa and -3 kPa, and were applied to a volcanic ash soil with and without macropores. Unsaturated flow was achieved with -3 kPa and an injection rate of 1/10 of the saturated hydraulic conductivity. The resultant biological activities of the effluent increased dramatically in the unsaturated flow with macropores condition. Unsaturated conditions prevented bypass flow and allowed dispersion of the injected nutrients. Unsaturated flow achieved 60-80% of saturation, which enhanced biological activity in the soil column. Remediation results were better for unsaturated conditions because of higher biological activity. Moreover, unsaturated flow with macropores achieved uniform remediation efficiency from upper through lower positions in the column. Finally, taking the applied solution volume into consideration, unsaturated flow with -3 kPa achieved 10 times higher efficiency when compared with conventional saturated flow application. These results suggest that effective use of nutrients or remediation chemicals is possible by avoiding bypass flow and enhancing biological activity using relatively simple and inexpensive techniques.

  18. DEVELOPMENT OF BIOAVAILABILITY AND BIOKINETICS DETERMINATION METHODS FOR ORGANIC POLLUTANTS IN SOIL TO ENHANCE IN-SITU AND ON-SITE BIOREMEDIATION

    Science.gov (United States)

    Determination of biodegradation rates of organics in soil slurry and compacted soil systems is essential for evaluating the efficacy of bioremediation for treatment of contaminated soils. In this paper, a systematic protocol has been developed for evaluating bioknetic and transp...

  19. Solid-phase bioremediation of diesel fuel-contaminated soil utilizing indigenous microorganisms

    International Nuclear Information System (INIS)

    Cagnetta, P.J.; Laubacher, R.C.

    1995-01-01

    In the spring of 1993, R.E. Wright Environmental, Inc. (REWEI) was retained by BP Oil Company (BP) to evaluate the use of bioremediation technology to remediate approximately 3,000 cubic yards (yd 3 ) of soil impacted with diesel fuel. The impacted soil resulted from the release of several hundred gallons of diesel fuel from a ruptured valve on an aboveground pipeline within a terminal. The overland flow of the diesel fuel resulted in a significant area of soil being impacted by the fuel. Immediate response activities limited vertical migration of the fuel through the excavation and stockpiling of the surface-impacted soil. The nature of the contaminant -- an unweathered, refined petroleum product comprised primarily of alkanes of a medium chain length -- and the biodegradable nature of the diesel fuel made bioremediation a cost-effective and technically feasible remedial option. The objective of the project was to reduce the concentrations of the petroleum hydrocarbons to below the Pennsylvania Department of Environmental Protection (DEP) soil cleanup levels in order to reuse the soil on-site as fill. Basic agronomic principles were applied throughout all phases of the project in order to successfully biodegrade the hydrocarbon

  20. Enrichment of degrading microbes and bioremediation of petrochemical contaminants in polluted soil

    International Nuclear Information System (INIS)

    Li, G.; Huang, W.; Zhang, X.; Lerner, D.N.

    2000-01-01

    Soil at a site near Zibo City, China, is polluted with hydrocarbons at concentrations up to 200 g kg -1 dry soil. Samples contained 10 7 microbial cells g -1 dry soil, and the concentration of aerobic degradation bacteria is 10 7 cells g -1 dry soil. The most active species were Xanthomonas, Bacillus and Hyphomicrobium. The nitrogen and phosphorus contents of the polluted soil are typically 0.1 %, and are sufficient to sustain natural or enhanced biodegradation. The BAC (Biological Activated Carbon) system was used to enrich indigenous microbes to enhance bioremediation rates in the laboratory. The BAC used the large surface area and sorption characteristics to fix bacteria and media, and effectively culture and enrich the microbes. Effluent from the BAC system contained up to 4 x 10 11 cells ml -1 , and was introduced to the contaminated soil to enhance biodegradation. The results indicated that the natural biodegradation rate of the petroleum hydrocarbons is lower than the BAC enhanced bioremediation rate, 1.7% as opposed to 42% in 32 days. (Author)

  1. The concomitant use of indigenous soil bacteria and fungi to enhance the bioremediation of refinery waste

    Energy Technology Data Exchange (ETDEWEB)

    Campos Carvalho, F.J.P. de [Universidade Federal do Parana, Curitiba (Brazil)

    2001-07-01

    Usually, the use of indigenous soil bacteria for the remediation of petroleum-contaminated soils was restricted to the biodegradation of low-molecular weight petroleum hydrocarbons such as gasoline, diesel, fuel oil and jet fuel. The advantage of using indigenous microorganisms is the minimization of the impact of the treatment on the microbial diversity. As a rule,these techniques are also well accepted by the public. Other studies have shown that fungi is successful for the bioremediation of heavier-weight contaminants. The concomitant transformation of low-molecular weight and heavier recalcitrant oil fractions to inorganic and humic form can be accomplished with the concomitant action of bacteria and fungi. The development of a soil biotreatment program using this concomitant technique was performed by PETROBRAS Petroleo Brasileiro S.A. - Refinaria Presidente Getulio Vargas in conjunction with the Universidade Federal do Parana. It resulted in a full-scale technology that allows the degradation of oil waste. Approximately two years of treatment are required to achieve the desired results. The use of standard analytical methods and bioindicators used on the treated soil indicated that the treated soil met the standards for agricultural soil quality. A recent oil spill occurred in Araucaria, Brazil and a bioremediation area was inoculated, and to date the results prove the beneficial effects to be derived from the use of inoculation. Some results were presented in table format. 3 tabs.

  2. Landfarming of phthalate ester-contaminated soil: Two years of bioremediation results

    International Nuclear Information System (INIS)

    Kunze, C.M.; Yu, J.; Wilson, S.; Rezin, J.L.; Andronico, A.

    1995-01-01

    Biorem Technologies Inc. collaborated with Regal Plastics Corporation over 2 years to clean up approximately 600 cubic yards of soil contaminated with di-2-ethylhexyl phthalate ester (DEHP) and No. 2 fuel oil using a landfarming bioremediation process. The contaminated soils consisted of sandy backfill material which had been excavated during the removal of two underground storage tanks (USTs). In 1994, the initial average DEHP concentration was 4,551 ppm while the TPH concentration was 7,252 ppm. In 1995, the initial DEHP concentration was 1067 ppm while TPH was 3,733 ppm. Prior to the implementation of the project, Biorem Technologies completed a laboratory biofeasibility study to demonstrate that a bacterial culture isolated from the site had the capacity to efficiently degrade DEBP in the soil. It was determined during this study that nitrogen and phosphorus nutrient amendments were needed to promote the bioremediation process. In 1994, the soils were loaded on to a lined treatment bed to a depth of 14--16 in. The bed was covered with a greenhouse structure to eliminate stormwater runoff concerns associated with the contaminated soil. To optimize biodegradation, soil moisture and nutrient levels were adjusted. In 1995, a windrow turner replaced the 1994 tilling system. Tarps were used to cover the piles in place of the greenhouse. A leachate collection system was implemented to contain stormwater and leachate

  3. Bioremediation of oil-contaminated soils by composting

    Science.gov (United States)

    Golodyaev, G. P.; Kostenkov, N. M.; Oznobikhin, V. I.

    2009-08-01

    Composting oil-contaminated soils under field conditions with the simultaneous optimization of their physicochemical and agrochemical parameters revealed the high efficiency of the soil purification, including that from benz[a]pyrene. The application of fertilizers and lime favored the intense development of indigenous microcenoses and the effective destruction of the oil. During the 95-day experimental period, the average daily rate of the oil decomposition was 157 mg/kg of soil. After the completion of the process, the soil became ecologically pure.

  4. BIOREMEDIATION - TECHNOLOGY FOR DECONTAMINATION OF SOILS POLLUTED WITH PETROLEUM HYDROCARBONS

    Directory of Open Access Journals (Sweden)

    Irina-Ramona PECINGINĂ

    2013-05-01

    Full Text Available The pollution of soil with petroleum hydrocarbons prevents unfolding processes ofwater infiltration in soil, its circulation and the exchanges of the gaseous substances with theatmosphere. The biodegradation speed of the pollutants by the microorganisms is influenced ofsome factors: nutrients, soil type, humidity, temperature, pH, the type and the metabolism of themicroorganisms. The spill of the crude oil in the soil results in numerical growth of bacteriapopulations, with a concomitant reduction in their diversity, respectively with the predominantspecies that degrade hydrocarbons to simpler compounds, determining their gradualdisappearance.

  5. Bioremediation of oil-based drill cuttings by a halophilic consortium isolated from oil-contaminated saline soil.

    Science.gov (United States)

    Rezaei Somee, Maryam; Shavandi, Mahmoud; Dastgheib, Seyed Mohammad Mehdi; Amoozegar, Mohammad Ali

    2018-05-01

    Oil-based drill cuttings are hazardous wastes containing complex hydrocarbons, heavy metals, and brine. Their remediation is a crucial step before release to the environment. In this work, we enriched a halophilic consortium, from oil-polluted saline soil, which is capable of degrading diesel as the main pollutant of oil-based drill cuttings. The degradation ability of the consortium was evaluated in microcosms using two different diluting agents (fine sand and biologically active soil). During the bioremediation process, the bacterial community dynamics of the microcosms was surveyed using PCR amplification of a fragment of 16S rRNA gene followed by denaturing gradient gel electrophoresis (DGGE). The diesel degradation rates were monitored by total petroleum hydrocarbon (TPH) measurement and the total count of heterotrophic and diesel-degrading bacteria. After 3 months, the microcosm containing fine sand and drill cuttings with the ratio of 1:1 (initial TPH of 36,000 mg/kg) showed the highest TPH removal (40%) and its dominant bacterial isolates belonged to the genera Dietzia, Arthrobacter , and Halomonas . DGGE results also confirmed the role of these genera in drill cuttings remediation. DGGE analysis of the bacterial diversity showed that Propionibacterium, Salinimicrobium, Marinobacter , and Dietzia are dominant in active soil microcosm; whereas Bacillus, Salinibacillus , and Marinobacter are abundant in sand microcosm. Our results suggest that the bioaugmentation strategy would be more successful if the diluting agent does not contain a complex microbial community.

  6. Effect of Sewage-Sludge on Bioremediation of a Crude-Oil Polluted Soil

    Directory of Open Access Journals (Sweden)

    Sara Sharifi Hosseini

    2010-06-01

    Full Text Available Khuzestan Province accommodates the largest oil-fields with huge petroleum production in Iran. During the Persian Gulf war in 1991, more than 6-8 million gallons of oil was spilt in the Persian Gulf, the greatest amount of which was transported into Khuzestan soil. Thus, oil removal from contaminated soil by advanced technologies such as bioremediation seems to be of vital necessity. The aim of this study was to evaluate the effect of sewage-sludge application on bioremediation of oil-contaminated soil. Soil samples (5kg were artificially contaminated with crude oil to a level of 1000 mg/kg. Sewage sludge treatments were applied at the 3 levels of 0, 100, and 200 gr/5kg soil in 3 replicates. The soils were kept in the normal moisture aerobic environment for 5 and 10 weeks. The soils were then analyzed for Hydrocarbon-degrading heterotrophic bacterial count. Oil extraction from the samples was accomplished using the oil Soxhlet extraction method and oil degradation was measured by GC chromatography. The results showed that the hydrocarbon-degrading and heterotrophic bacterial counts in all the treatments increased with time. Results indicate that heterotrophic bacterial population increased from 6×103 cfu/gr soil to  2×1010  cfu/gr soil. Also, C/N ratio decreased from 6 to 3. GC results indicated that all normal Alkanes and Isopernoids, i.e. Phytane and Pristane, decreased by 50-90 percent in all the treatments. It was also found that the application of sewage sludge at 100 gr/5kg soil to oil-contaminated soil leads to greater rates of biodegradation after 5 weeks

  7. Effect of Fenton pre-oxidation on mobilization of nutrients and efficient subsequent bioremediation of crude oil-contaminated soil.

    Science.gov (United States)

    Xu, Jinlan; Kong, Fanxing; Song, Shaohua; Cao, Qianqian; Huang, Tinglin; Cui, Yiwei

    2017-08-01

    Fenton pre-oxidation and a subsequent bioremediation phase of 80 days were used to investigate the importance of matching concentration of residual indigenous bacteria and nutrient levels on subsequent bioremediation of crude oil. Experiments were performed using either high (>10 7.7 ± 0.2  CFU/g soil) or low ( 9.8), moderate (C/N:5-9.8), and lacking nutrient level (C/N bioremediation of crude oil. In addition, the biodegradation of long chain molecules (C 26 C 30 ) required a high level of NH 4 + -N. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Bioremediation of crude oil contaminated tea plantation soil using ...

    African Journals Online (AJOL)

    Crude oil contamination of soil is a major concern for tea industry in Assam, India. Crude oil is a persistent organic contaminant which alters soil physical and biochemical characteristics and makes tea plants more susceptible against crude oil contamination. Therefore, two native bacterial strains designated as AS 03 and ...

  9. PAH loss during bioremediation of manufactured gas plant site soils

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, D C [and others

    1993-01-01

    Laboratory studies using soil samples from a former gas works site showed that PAH in the soil were present in a form resistant to biodegradation, whereas added naphthalene and phenanthrene were quickly degraded. The PAH already present were not extractable into water, and were not toxic to bacteria.

  10. Ex situ bioremediation of mineral oil in soils: Aerated pile treatment. Final report

    International Nuclear Information System (INIS)

    Graves, D.

    1998-04-01

    Under a contract with Southern Company Services, a pilot-scale evaluation of mineral oil biodegradation was conducted at Plant Mitchell. The evaluation consisted of two demonstrations to examine land treatment and aerated pile treatment of soil contaminated with the mineral insulating oil used in electrical transformers. Treatment of mineral oil contaminated soil is problematic in the State of Georgia and throughout the US because current practice is to excavate and landfill the contaminated soil. In many cases, the cost associated with these activities far exceeds the environmental risk of mineral oil in soil. This project was designed to evaluate the performance of bioremediation for the treatment of mineral oil in soil. Testing was carried out in a demonstration facility prepared by Georgia Power Company. The facility consisted of 12 independent treatment cells constructed on a concrete pad and covered with a roof

  11. Amendment trials for bioremediation of sodium and chloride contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D. [Western Alfalfa Milling Co. Ltd., Norquay, SK (Canada)

    2005-06-30

    Details of a soil amendment experiment was presented. Soil samples from sodium and chloride contaminated soil were taken from a site located in southeastern Alberta. Soil amendments included high protein dehydrated alfalfa pellets, 2 types of Zeolite, and used coconut coir. The aim of the study was to find an effective in-situ method of remediating the soil while establishing the highest possible plant biomass. Preliminary trial data indicated a strong trend for high plant protein pellets to increase plant productivity on sodium and chloride contaminated soil. The addition of alfalfa increased plant height and stem diameter, as well as leaf width, which increased incrementally with higher volumes of alfalfa. Equivalent rates of .5 MT to 4 MT per acre application rates were used in the trial. Coconut coir was used at a rate of 30 per cent of the volume of the growing medium and also showed increased growth. An experiment was conducted using harvested plant matter from the samples to determine the effect of the 3 amendments on sodium uptake by the plants. Results showed that the sodium uptake significantly increased with the application of soil amendments, particularly when alfalfa pellets were applied, with percentages of sodium found in the plant tissue almost twice as high as percentages found in the control sample. Sodium levels also increased in the plant tissues where coconut coir was used, although to a lesser degree than levels found in plants grown with the alfalfa amended soils. Zeolite did not perform as well on its own. However, it was noted that previous trials have shown good performance when Zeolite was mixed into sodium/chloride contaminated soils and combined with water filtration. It was concluded that the soil amendments improved plant growth, and increased the sodium uptake by plants. The consortium is pursuing industry support to plan larger field studies in the 2006 season. 2 tabs., 5 figs.

  12. Bioremediation of the Soils Contaminated with Cadmium and Chromium, by the Earthworm Eisenia fetida

    Directory of Open Access Journals (Sweden)

    Elham Aseman- Bashiz1

    2014-07-01

    Full Text Available One of the most important environmental problems in the world is the soils contamination by heavy metals in the industrial areas, and especially the contamination of the agricultural lands. The use of earthworms to bioremediate the soils results in reducing the pollutants concentration through a bioaccumulation mechanism on the contaminants in the earthworm's body. Hence, the present study aimed to prove the biological effectiveness of Eisenia fetida earthworms in bioremediation the soils contaminated with chromium and cadmium. Concentration of chromium and cadmium pollution in soil was determined to be 0.04 mg/g and 0.08 mg/g respectively. 30 worms were added to 500 g soil samples. Chromium and cadmium concentration in soil and in the body of worms was measured at two time periods of 21 and 42 days. To measure the concentration of chromium and cadmium we used ICP spectrometry. Software in usage was SPSS version 17. There was a significant correlation between the reduction of chromium and cadmium metals in the soils and the accumulation of chromium and cadmium metals in the worm’s body. A significant decline of chromium levels of the soil was observed in the days 21 and 42 during the study compared to initial amount of 0.1 mg/g. on the other hand chromium concentration of the soil decreased from 0.14 mg/g to 0.1 mg/g after 42 days. Comparison of mortality in two different time periods showed that by passing the time and by increase in soil chromium and cadmium concentrations the death toll of worms rises. The increased mortality of worms in the soil at a concentration of 0.08 mg/g of chromium, say that using the worms for bioremediation is not recommended at such concentration of chromium but using the worms for the removal of cadmium at concentrations of 0.04 mg/g and 0.08 mg/g in the soil is recommended.

  13. Evaluation of soil bioremediation techniques in an aged diesel spill at the Antarctic Peninsula.

    Science.gov (United States)

    de Jesus, Hugo E; Peixoto, Raquel S; Cury, Juliano C; van Elsas, Jan D; Rosado, Alexandre S

    2015-12-01

    Many areas on the Antarctic continent already suffer from the direct and indirect influences of human activities. The main cause of contamination is petroleum hydrocarbons because this compound is used as a source of energy at the many research stations around the continent. Thus, the current study aims to evaluate treatments for bioremediation (biostimulation, bioaugmentation, and bioaugmentation + biostimulation) using soils from around the Brazilian Antarctic Station "Comandante Ferraz" (EACF), King George Island, Antarctic Peninsula. The experiment lasted for 45 days, and at the end of this period, chemical and molecular analyses were performed. Those analyses included the quantification of carbon and nitrogen, denaturing gradient gel electrophoresis (DGGE) analysis (with gradient denaturation), real-time PCR, and quantification of total hydrocarbons and polyaromatics. Molecular tests evaluated changes in the profile and quantity of the rrs genes of archaea and bacteria and also the alkB gene. The influence of the treatments tested was directly related to the type of soil used. The work confirmed that despite the extreme conditions found in Antarctic soils, the bacterial strains degraded hydrocarbons and bioremediation treatments directly influenced the microbial communities present in these soils even in short periods. Although the majority of the previous studies demonstrate that the addition of fertilizer seems to be most effective at promoting bioremediation, our results show that for some conditions, autochthonous bioaugmentation (ABA) treatment is indicated. This work highlights the importance of understanding the processes of recovery of contaminated environments in polar regions because time is crucial to the soil recovery and to choosing the appropriate treatment.

  14. Laboratory-scale bioremediation of oil-contaminated soil of Kuwait with soil amendment materials.

    Science.gov (United States)

    Cho, B H; Chino, H; Tsuji, H; Kunito, T; Nagaoka, K; Otsuka, S; Yamashita, K; Matsumoto, S; Oyaizu, H

    1997-10-01

    A huge amount of oil-contaminated soil remains unremediated in the Kuwait desert. The contaminated oil has the potentiality to cause pollution of underground water and to effect the health of people in the neighborhood. In this study, laboratory scale bioremediation experiments were carried out. Hyponex (Hyponex, Inc.) and bark manure were added as basic nutrients for microorganisms, and twelve kinds of materials (baked diatomite, microporous glass, coconut charcoal, an oil-decomposing bacterial mixture (Formula X from Oppenheimer, Inc.), and eight kinds of surfactants) were applied to accelerate the biodegradation of oil hydrocarbons. 15% to 33% of the contaminated oil was decomposed during 43 weeks' incubation. Among the materials tested, coconut charcoal enhanced the biodegradation. On the contrary, the addition of an oil-decomposing bacterial mixture impeded the biodegradation. The effects of the other materials were very slight. The toxicity of the biodegraded compounds was estimated by the Ames test and the tea pollen tube growth test. Both of the hydrophobic (dichloromethane extracts) and hydrophilic (methanol extracts) fractions showed a very slight toxicity in the Ames test. In the tea pollen tube growth test, the hydrophobic fraction was not toxic and enhanced the growth of pollen tubes.

  15. Potential of Trichoderma spp. strains for the bioremediation of soils contaminated with petroleum

    Directory of Open Access Journals (Sweden)

    Marcia Pesántez

    2016-10-01

    Full Text Available Fungi species can degrade xenobiotic compounds contaminating the soil, including hydrocarbons. The objective of this work was to determine the potential of three strains of Trichoderma, isolated from soil contaminated with petroleum, for bioremediation. Trichoderma harzianum CCECH-Te1, Trichoderma viride CCECH-Te2 and Trichoderma psedokoningii CCECH-Te3 were included in one assay with each independent strain. The inoculum was adjusted to a concentration of 1x1010 conidia ml-1 which was applied to soil contaminated by an oil spill. After 96 days of inoculation, soil samples were taken at 10 and 15 cm depth. The content of total hydrocarbons, polycyclic aromatic hydrocarbons and heavy metals such as cadmium, nickel and lead were determined. With the data, it was calculated the percentage of removal of the analyzed compounds by each strain. At 10 cm and 15 cm depth, it was observed the removal of the compounds in percentages that reached between 47 and 69.1% in the hydrocarbons and up to 53.72% in the heavy metals. It which denoted the potential of the three strains for bioremediation in contaminated soils.   Keywords: heavy metals, polycyclic aromatic hydrocarbons, xenobiotic compounds

  16. In situ vadose zone bioremediation of soil contaminated with nonvolatile hydrocarbons

    International Nuclear Information System (INIS)

    Hogg, D.S.; Burden, R.J.; Riddell, P.J.

    1992-01-01

    In situ bioremediation has been successfully carried out on petroleum hydrocarbon-contaminated soil at a decommissioned bulk storage terminal in New Zealand. The site soils were contaminated mainly with diesel fuel and spent oil at concentrations ranging up to 95,000 mg/kg of total recoverable petroleum hydrocarbons. The in situ remediation system combines an enhanced bioremediation with vapor extraction and is installed almost entirely below grade, thereby allowing above ground activities to continue unimpeded. Laboratory-scale feasibility testing indicated that although appreciable volatilization of low molecular weight components would occur initially, biodegradation would be the primary mechanism by which contaminated soil would be remediated. During the remedial design phase, preliminary field testing was conducted to evaluate the optimum spacing for extraction wells and inlet vents. A pilot-scale system was installed in a 15-m by 35-m area of the site in June 1989 and operated for approximately 1 year. Soil monitoring performed approximately every 3 months indicated an overall reduction in soil petroleum hydrocarbon concentrations of 87% for the period from June 1989 to May 1991

  17. Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation.

    Science.gov (United States)

    Alkorta, Itziar; Epelde, Lur; Garbisu, Carlos

    2017-10-16

    Bioremediation, based on the use of microorganisms to break down pollutants, can be very effective at reducing soil pollution. But the climate change we are now experiencing is bound to have an impact on bioremediation performance, since the activity and degrading abilities of soil microorganisms are dependent on a series of environmental parameters that are themselves being altered by climate change, such as soil temperature, moisture, amount of root exudates, etc. Many climate-induced effects on soil microorganisms occur indirectly through changes in plant growth and physiology derived from increased atmospheric CO2 concentrations and temperatures, the alteration of precipitation patterns, etc., with a concomitant effect on rhizoremediation performance (i.e. the plant-assisted microbial degradation of pollutants in the rhizosphere). But these effects are extremely complex and mediated by processes such as acclimation and adaptation. Besides, soil microorganisms form complex networks of interactions with a myriad of organisms from many taxonomic groups that will also be affected by climate change, further complicating data interpretation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Bioremediation case study: Fuel-contaminated soil cleanup in the Marshall Islands

    International Nuclear Information System (INIS)

    Machanoff, R.

    1992-01-01

    Using microbes to degrade fuels in contaminated soils is becoming increasingly more attractive as an approach to environmental restoration. Removing contamination by traditional methods is costly, does not always eliminate the problem, and often just moves it somewhere else. Biodegradation of contaminants can often be accomplished in situ, resulting in the actual destruction of the contaminants by microbial conversion to harmless by-products. Bioremediation is not applicable to all forms of environmental contamination but has been demonstrated to be particularly effective on petroleum hydrocarbon based fuels. Bioremediation can offer a cost-effective means for site cleanup, particularly where challenging logistical considerations have to be factored into cleanup projects. Logistical considerations have made bioremediation the method of choice for the decontamination of fuel-containing soils on Kwajalein Island, Republic of the Marshall Islands. Kwajalein is located more than 2,100 miles west of Hawaii in the southernmost part of the North Pacific. The site of a major missile range of the Strategic Defense Command (SDC), Kwajalein has been the center of US defense activities for almost 50 years. The island is part of a typical coral atoll and is only 2.5 miles long and 0.5 miles wide. Mission-related activities over the past 5 decades have resulted in about 10% of the island being contaminated with diesel, gasoline, and jet fuels. SDC has executed an agreement with the Department of Energy for the Hazardous Waste Remedial Actions Program (HAZWRAP), a division of Martin Marietta Energy Systems, Inc., to assist the US Army Kwajalein Atoll (USAKA) in the management of the Base restoration activities on Kwajalein Atoll. HAZWRAP initiated sampling and feasibility studies to determine whether bioremediation was a viable choice for site cleanup at USAKA

  19. SOLID OXYGEN SOURCE FOR BIOREMEDIATION IN SUBSURFACE SOILS

    Science.gov (United States)

    Sodium percarbonate was encapsulated in poly(vinylidene chloride) to determine its potential as a slow-release oxygen source for biodegradation of contaminan ts in subsurface soils. In laboratory studies under aqueous conditions, the encapsulated sodium percarbonate was estimate...

  20. enhanced ex-situ bioremediation of soil contaminated

    African Journals Online (AJOL)

    user

    refinery waste effluent having total organic compound (TOC) as model organic pollutant. .... the surface layer using white tissue paper. A soil .... the electrical stimulation of microbial PCB degradation in ... decrease of toxicity for bacterial action.

  1. Community based bioremediation: grassroots responses to urban soil contamination

    Directory of Open Access Journals (Sweden)

    Scott Kellogg

    2016-12-01

    Full Text Available The past 150 years of industrial processes have left a legacy of toxicity in the soils of today’s urban environments. Exposure to soil based pollutants disproportionately affects low-income communities who are frequently located within formerly industrialized zones. Both gardeners, who come into direct contact with soil, as well as those who eat the products grown in the soil, are at risk to exposure from industrial contaminants. Options for low-income communities for remediating contaminated soils are limited, with most remediation work being carried out by costly engineering firms. Even more problematic is the overall lack of awareness and available information regarding safety and best practices with soils. In response to these challenges, a grassroots movement has emerged that seeks to empower urban residents with the tools and information necessary to address residual industrial toxicity in their ecosystems. Focusing on methods that are simple and affordable, this movement wishes to remove the barriers of cost and technical expertise that may be otherwise prohibitive. This paper will give an overview of this exemplar of generative justice, looking at case studies of organizations that have been successful in implementing these strategies.

  2. Bioremediation of petroleum hydrocarbon contaminated soil by Rhodobacter sphaeroides biofertilizer and plants.

    Science.gov (United States)

    Jiao, Haihua; Luo, Jinxue; Zhang, Yiming; Xu, Shengjun; Bai, Zhihui; Huang, Zhanbin

    2015-09-01

    Bio-augmentation is a promising technique for remediation of polluted soils. This study aimed to evaluate the bio-augmentation effect of Rhodobacter sphaeroides biofertilizer (RBF) on the bioremediation of total petroleum hydrocarbons (TPH) contaminated soil. A greenhouse pot experiment was conducted over a period of 120 days, three methods for enhancing bio-augmentation were tested on TPH contaminated soils, including single addition RBF, planting, and combining of RBF and three crop species, such as wheat (W), cabbage (C) and spinach (S), respectively. The results demonstrated that the best removal of TPH from contaminated soil in the RBF bio-augmentation rhizosphere soils was found to be 46.2%, 65.4%, 67.5% for W+RBF, C+RBF, S+RBF rhizosphere soils respectively. RBF supply impacted on the microbial community diversity (phospholipid fatty acids, PLFA) and the activity of soil enzymes, such as dehydrogenase (DH), alkaline phosphatase (AP) and urease (UR). There were significant difference among the soil only containing crude oil (CK), W, C and S rhizosphere soils and RBF bio-augmentation soils. Moreover, the changes were significantly distinct depended on crops species. It was concluded that the RBF is a valuable material for improving effect of remediation of TPH polluted soils.

  3. Changes in the microbial community during bioremediation of gasoline-contaminated soil

    Directory of Open Access Journals (Sweden)

    Aline Jaime Leal

    Full Text Available Abstract We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N–P, but no gasoline. The inoculants were applied to gasoline-contaminated soil at 10, 30, or 50 g/kg. Mineralization of gasoline hydrocarbons in soil was evaluated by respirometric analysis. The viability of the inoculants was evaluated after 103 days of storage under refrigeration or room temperature. The relative proportions of microbial groups in the inoculants and soil were evaluated by FAME. The dose of 50 g/kg of inoculants A and B led to the largest CO2 emission from soil. CO2 emissions in treatments with inoculant C were inversely proportional to the dose of inoculant. Heterotrophic bacterial counts were greater in soil treated with inoculants A and B. The application of inoculants decreased the proportion of actinobacteria and increased of Gram-negative bacteria. Decline in the density of heterotrophic bacteria in inoculants occurred after storage. This reduction was bigger in inoculants stored at room temperature. The application of stored inoculants in gasoline-contaminated soil resulted in a CO2 emission twice bigger than that observed in uninoculated soil. We concluded that MSWC is an effective material for the production of microbial inoculants for the bioremediation of gasoline-contaminated soil.

  4. Changes in the microbial community during bioremediation of gasoline-contaminated soil.

    Science.gov (United States)

    Leal, Aline Jaime; Rodrigues, Edmo Montes; Leal, Patrícia Lopes; Júlio, Aline Daniela Lopes; Fernandes, Rita de Cássia Rocha; Borges, Arnaldo Chaer; Tótola, Marcos Rogério

    We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N-P, but no gasoline. The inoculants were applied to gasoline-contaminated soil at 10, 30, or 50g/kg. Mineralization of gasoline hydrocarbons in soil was evaluated by respirometric analysis. The viability of the inoculants was evaluated after 103 days of storage under refrigeration or room temperature. The relative proportions of microbial groups in the inoculants and soil were evaluated by FAME. The dose of 50g/kg of inoculants A and B led to the largest CO 2 emission from soil. CO 2 emissions in treatments with inoculant C were inversely proportional to the dose of inoculant. Heterotrophic bacterial counts were greater in soil treated with inoculants A and B. The application of inoculants decreased the proportion of actinobacteria and increased of Gram-negative bacteria. Decline in the density of heterotrophic bacteria in inoculants occurred after storage. This reduction was bigger in inoculants stored at room temperature. The application of stored inoculants in gasoline-contaminated soil resulted in a CO 2 emission twice bigger than that observed in uninoculated soil. We concluded that MSWC is an effective material for the production of microbial inoculants for the bioremediation of gasoline-contaminated soil. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. Application of radiochemical methods for development of new biological preparation designed for soil bioremediation

    International Nuclear Information System (INIS)

    Kim, A.A.; Djuraeva, G.T.; Djumaniyazova, G.I.; Yadgarov, Kh.T.

    2006-01-01

    Full text: Internationally the bioremediation of agricultural lands contaminated by persistent chloroorganic compounds by means of the microbial methods are used as the most low-cost and the most effective. One of the factors reducing efficacy of microbial degradation, is often the low quantity of microorganisms - destructors in the soil. Therefore, we have designed bioremediation technology of soils, contaminated by organochlorine compounds, with use of the alive microorganisms as active agent. We developed the biological preparation containing 5 aboriginal active strains of bacteria - destructors of persistent chloroorganic compounds and investigated the ability of biological preparation to increase the bioremediation potential of contaminated soils. To carry out the investigation we developed the complex of radiochemical methods with use of tritium labeled PCBs, including the following methods: 1.The method to define the accumulation and degradation of PCBs in soil bacteria in culture allows determination of quantitative characteristics of bacterial strains. 2. The method to define the PCBs degradation by soil bacteria strains in model conditions in the soil allows to estimate the PCB-destructive activity of strains after introducing in soil. 3. A method to define the PCB-destructive activity of own microbiota of contaminated soil. 4. A method to define the effect of stimulation of the PCB-destructive activity of biological preparation and own microbiota of soil with the help of biofertilizers. By using the developed radiochemical methods we have carried out investigation on creation of new biological preparation on the basis of strains of soil bacteria - destructors of PCBs. We also determined the quality and quantity characteristics of HCCH and PCBs-destructive activity of new biological preparation. It is shown that the new biological preparation is capable of accumulation and destruction of the PCBs in culture and in soil at model conditions. Thus, the

  6. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil

    NARCIS (Netherlands)

    Sutton, N.B.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton’s

  7. Literature review and assessment of various approaches to bioremediation of oil and associated hydrocarbons in soil and groundwater

    International Nuclear Information System (INIS)

    1993-08-01

    A study was conducted of available techniques for the biological treatment of oil and associated hydrocarbon contamination in soil and groundwater. The study involved a detailed literature search and review, as well as discussions with the users and developers of a number of the bioremediation techniques assessed. The result is a compendium of selected state-of-the-art bioremediation technologies which can serve to guide the selection process for treatment technology for a particular site subject to remediation. Background is provided on the various classes of sites on which petroleum-related contamination could occur, and the nature of contaminants typical of such sites. The mechanisms of hydrocarbon biodegradation are outlined along with various approaches to bioremediation such as in-situ, on-site, bioreactors, landfarming, composting, and physical/chemical treatments. Field trials required to characterize the site and provide an indication of the suitability of bioremediation and the most appropriate bioremediation approach are described. Commercially available bioremediation technologies are briefly discussed. A number of the bioremedial techniques reviewed are compared to more conventional treatment processes in terms of such criteria as operating cost, effectiveness, advantages, risks, applicability, equipment and manpower requirements, and considerations regarding usage in Canadian conditions. 15 figs., 17 tabs

  8. Literature review and assessment of various approaches to bioremediation of oil and associated hydrocarbons in soil and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    A study was conducted of available techniques for the biological treatment of oil and associated hydrocarbon contamination in soil and groundwater. The study involved a detailed literature search and review, as well as discussions with the users and developers of a number of the bioremediation techniques assessed. The result is a compendium of selected state-of-the-art bioremediation technologies which can serve to guide the selection process for treatment technology for a particular site subject to remediation. Background is provided on the various classes of sites on which petroleum-related contamination could occur, and the nature of contaminants typical of such sites. The mechanisms of hydrocarbon biodegradation are outlined along with various approaches to bioremediation such as in-situ, on-site, bioreactors, landfarming, composting, and physical/chemical treatments. Field trials required to characterize the site and provide an indication of the suitability of bioremediation and the most appropriate bioremediation approach are described. Commercially available bioremediation technologies are briefly discussed. A number of the bioremedial techniques reviewed are compared to more conventional treatment processes in terms of such criteria as operating cost, effectiveness, advantages, risks, applicability, equipment and manpower requirements, and considerations regarding usage in Canadian conditions. 15 figs., 17 tabs.

  9. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination.

    Science.gov (United States)

    Wu, Manli; Li, Wei; Dick, Warren A; Ye, Xiqiong; Chen, Kaili; Kost, David; Chen, Liming

    2017-02-01

    Bioremediation of hydrocarbon degradation in petroleum-polluted soil is carried out by various microorganisms. However, little information is available for the relationships between hydrocarbon degradation rates in petroleum-contaminated soil and microbial population and activity in laboratory assay. In a microcosm study, degradation rate and efficiency of total petroleum hydrocarbons (TPH), alkanes, and polycyclic aromatic hydrocarbons (PAH) in a petroleum-contaminated soil were determined using an infrared photometer oil content analyzer and a gas chromatography mass spectrometry (GC-MS). Also, the populations of TPH, alkane, and PAH degraders were enumerated by a modified most probable number (MPN) procedure, and the hydrocarbon degrading activities of these degraders were determined by the Biolog (MT2) MicroPlates assay. Results showed linear correlations between the TPH and alkane degradation rates and the population and activity increases of TPH and alkane degraders, but no correlation was observed between the PAH degradation rates and the PAH population and activity increases. Petroleum hydrocarbon degrading microbial population measured by MPN was significantly correlated with metabolic activity in the Biolog assay. The results suggest that the MPN procedure and the Biolog assay are efficient methods for assessing the rates of TPH and alkane, but not PAH, bioremediation in oil-contaminated soil in laboratory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation.

    Science.gov (United States)

    Guo, Meixia; Gong, Zongqiang; Allinson, Graeme; Tai, Peidong; Miao, Renhui; Li, Xiaojun; Jia, Chunyun; Zhuang, Jie

    2016-02-01

    The aim of this study was to demonstrate the variations in bioavailability remaining in industrial and agricultural soils contaminated by polycyclic aromatic hydrocarbons (PAHs) after bioremediation. After inoculation of Mycobacterium sp. and Mucor sp., PAH biodegradation was tested on a manufactured gas plant (MGP) soil and an agricultural soil. PAH bioavailability was assessed before and after biodegradation using solid-phase extraction (Tenax-TA extraction) and solid-phase micro-extraction (SPME) to represent bioaccessibility and chemical activity of PAHs, respectively. Only 3- and 4-ring PAHs were noticeably biodegradable in the MGP soil. PAH biodegradation in the agricultural soil was different from that in the MGP soil. The rapidly desorbing fractions (F(rap)) extracted by Tenax-TA and the freely dissolved concentrations of 3- and 4-ring PAHs determined by SPME from the MGP soil decreased after 30 days biodegradation; those values of the 5- and 6-ring PAHs changed to a lesser degree. For the agricultural soil, the F(rap) values of the 3- and 4-ring PAHs also decreased after the biodegradation experiment. The Tenax-TA extraction and the SPME have the potential to assess variations in the bioavailability of PAHs and the degree of biodegradation in contaminated MGP soils. In addition, Tenax-TA extraction is more sensitive than SPME when used in the agricultural soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Analysis of bioremediation of pesticides by soil microorganisms

    Science.gov (United States)

    Ruml, Tomas; Klotz, Dietmar; Tykva, Richard

    1995-10-01

    The application of new pesticides requires careful monitoring of their distribution in the environment. The effect of the soil microflora on the stability of the [14C]- labelled juvenoid hormone analogue W-328 was estimated. The micro-organisms from two different soil samples were isolated and tested for their ability to decompose W-328. One bacterial strain, yeast and mold isolates, exhibited the degradation activity. The growth characteristics such as pH and temperature optima were determined. The degradation products were estimated using HPLC.

  12. Bioremediation of petroleum hydrocarbons in soil: Activated sludge treatability study

    International Nuclear Information System (INIS)

    Rue-Van Es, J.E. La.

    1993-05-01

    Batch activated sludge treatability studies utilizing petroleum hydrocarbon contaminated soils (diesel oil and leaded gasoline) were conducted to determine: initial indigenous biological activity in hydrocarbon-contaminated soils; limiting factors of microbiological growth by investigating nutrient addition, chemical emulsifiers, and co-substrate; acclimation of indigenous population of microorganisms to utilize hydrocarbons as sole carbon source; and temperature effects. Soil samples were taken from three different contaminated sites and sequencing batch reactors were run. Substrate (diesel fuel) and nutrient were added as determined by laboratory analysis of orthophosphate, ammonia nitrogen, chemical oxygen demand, and total organic carbon. Substrate was made available to the bacterial mass by experimenting with four different chemical emulsifiers. Indigenous microorganisms capable of biotransforming hydrocarbons seem to be present in all the contaminated soil samples received from all sites. Microscopic analysis revealed no visible activity at the beginning of the study and presence of flagellated protozoa, paramecium, rotifers, and nematodes at the end of the year. Nutrient requirements and the limiting factors in microorganism growth were determined for each site. An emulsifier was initially necessary to make the substrate available to the microbial population. Decreases in removal were found with lowered temperature. Removal efficiencies ranged from 50-90%. 95 refs., 11 figs., 13 tabs

  13. Bioremediation of soil contaminated with spent and fresh cutting ...

    African Journals Online (AJOL)

    Contamination of soil with industrial cutting fluids containing heavy metals and petroleum hydrocarbons has detrimental effects on ecosystems. As such contaminants constitute risk to human health; they can enter the food chain through agricultural products or contaminated drinking water. This growing concern about ...

  14. Bioremediation of soil contaminated with spent and fresh cutting ...

    African Journals Online (AJOL)

    OLAYONWAOLUWOLE JOHN

    2013-10-16

    Oct 16, 2013 ... 2Department of Chemistry, University of Ibadan, Nigeria. Accepted 30 ... At this level, soil pH was 6.9 and organic carbon, organic matter and phosphate contents increased by ... oil and their high molecular weight components. Different ... depends to a large extent on the nature of the exchange cation.

  15. Bioremediation of soil contaminated with spent and fresh cutting ...

    African Journals Online (AJOL)

    OLAYONWAOLUWOLE JOHN

    2013-10-16

    Oct 16, 2013 ... Contamination of soil with industrial cutting fluids containing heavy metals and petroleum ... White rot fungus, Pleurotus pulmonarius was investigated in this pilot study for its potential to ... improve machine tools performance and productivity. ... membrane separation in which case fouling of membrane.

  16. SUMMARY PAPER: IN SITU BIOREMEDIATION OF CONTAMINATED VADOSE ZONE SOIL

    Science.gov (United States)

    The Robert S. Kerr Environmental Research Laboratory (RSKERL) has developed a number of Issue Papers and Briefing Documents which are designed to exchange up-to-date information related to the remediation of contaminated soil and ground water at hazardous waste sites. In an attem...

  17. Bioremediation of petroleum hydrocarbons in soil: Activated sludge treatability study

    Energy Technology Data Exchange (ETDEWEB)

    Rue-Van Es, J.E. La.

    1993-05-01

    Batch activated sludge treatability studies utilizing petroleum hydrocarbon contaminated soils (diesel oil and leaded gasoline) were conducted to determine: initial indigenous biological activity in hydrocarbon-contaminated soils; limiting factors of microbiological growth by investigating nutrient addition, chemical emulsifiers, and co-substrate; acclimation of indigenous population of microorganisms to utilize hydrocarbons as sole carbon source; and temperature effects. Soil samples were taken from three different contaminated sites and sequencing batch reactors were run. Substrate (diesel fuel) and nutrient were added as determined by laboratory analysis of orthophosphate, ammonia nitrogen, chemical oxygen demand, and total organic carbon. Substrate was made available to the bacterial mass by experimenting with four different chemical emulsifiers. Indigenous microorganisms capable of biotransforming hydrocarbons seem to be present in all the contaminated soil samples received from all sites. Microscopic analysis revealed no visible activity at the beginning of the study and presence of flagellated protozoa, paramecium, rotifers, and nematodes at the end of the year. Nutrient requirements and the limiting factors in microorganism growth were determined for each site. An emulsifier was initially necessary to make the substrate available to the microbial population. Decreases in removal were found with lowered temperature. Removal efficiencies ranged from 50-90%. 95 refs., 11 figs., 13 tabs.

  18. Land treatment testing of diesel contaminated soils using bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Demque, D E

    1994-01-01

    A study was carried out of degradation rates of diesel contaminated soil (10,000 ppM by weight of diesel to dry soil) under different treatment conditions and tillage rates over a 14 week testing period. A total of 10 treatment-tillage conditions were duplicated to provide confidence in the test results. Each test cell was built to contain 80 kg of contaminated soil with a drainage system. The 20 boxes were sampled on a weekly basis for the first 4 weeks, semimonthly for the following 6 weeks and at the end of 14 weeks. Each test consisted of 3 random total petroleum hydrocarbons (TPH) and 3 random BTEX samples per box. In addition, each box was monitored for leachate TPH, moisture content, microorganism concentration, and ground temperature. After the last samples were taken the underlying drainage layer was analyzed for TPH, and the boxes were checked for leaks. The tests revealed the effectiveness of the various treatment methods and tillage rates. Greatest degradation of diesel contaminated soil was obtained with the addition of nutrients and a frequent tillage rate. It was apparent that indigenous microorganisms adapted quickly to the diesel contaminant. Soil that was biostimulated with no drainage or bioaugmentation demonstrated that the addition of acclimated microorganisms had little effect on either the rate of degradation or the ultimate degradation achieved. Use of chlorine to inhibit biodegradation, allowing examination of other degradation mechanisms was effective for only ca 3 weeks, and had an adverse effect on TPH testing. 51 refs., 46 figs., 31 tabs.

  19. Effects of soil amendment with different carbon sources and other factors on the bioremediation of an aged PAH-contaminated soil.

    Science.gov (United States)

    Teng, Ying; Luo, Yongming; Ping, Lifeng; Zou, Dexun; Li, Zhengao; Christie, Peter

    2010-04-01

    Carbon supplementation, soil moisture and soil aeration are believed to enhance in situ bioremediation of PAH-contaminated soils by stimulating the growth of indigenous microorganisms. However, the effects of added carbon and nitrogen together with soil moisture and soil aeration on the dissipation of PAHs and on associated microbial counts have yet to be fully assessed. In this study the effects on bioremediation of carbon source, carbon-to-nitrogen ratio, soil moisture and aeration on an aged PAH-contaminated agricultural soil were studied in microcosms over a 90-day period. Additions of starch, glucose and sodium succinate increased soil bacterial and fungal counts and accelerated the dissipation of phenanthrene and benzo(a)pyrene in soil. Decreases in phenanthrene and benzo(a)pyrene concentrations were effective in soil supplemented with glucose and sodium succinate (both 0.2 g C kg(-1) dry soil) and starch (1.0 g C kg(-1) dry soil). The bioremediation effect at a C/N ratio of 10:1 was significantly higher (P Soil microbial counts and PAH dissipation were lower in the submerged soil but soil aeration increased bacterial and fungal counts, enhanced indigenous microbial metabolic activities, and accelerated the natural degradation of phenanthrene and benzo(a)pyrene. The results suggest that optimizing carbon source, C/N ratio, soil moisture and aeration conditions may be a feasible remediation strategy in certain PAH contaminated soils with large active microbial populations.

  20. Bio-remediation of Pb and Cd polluted soils by switchgrass: A case study in India.

    Science.gov (United States)

    Arora, Kalpana; Sharma, Satyawati; Monti, Andrea

    2016-01-01

    In the present study bioremediation potential of a high biomass yielding grass, Panicum virgatum (switchgrass), along with plant associated microbes (AM fungi and Azospirillum), was tested against lead and cadmium in pot trials. A pot trial was set up in order to evaluate bioremediation efficiency of P. virgatum in association with PAMs (Plant Associated Microbes). Growth parameters and bioremediation potential of endomycorrhizal fungi (AMF) and Azospirillum against different concentrations of Pb and Cd were compared. AM fungi and Azospirillum increased the root length, branches, surface area, and root and shoot biomass. The soil pH was found towards neutral with AMF and Azospirillum inoculations. The bioconcentration factor (BCF) for Pb (12 mg kg(-1)) and Cd (10 mg kg(-1)) were found to be 0.25 and 0.23 respectively and translocation index (Ti) was 17.8 and 16.7 respectively (approx 45% higher than control). The lower values of BCF and Ti, even at highest concentration of Pb and Cd, revealed the capability of switchgrass of accumulating high concentration of Pb and Cd in the roots, while preventing the translocation of Pb and Cd to aerial biomass.

  1. [Biological treatments for contaminated soils: hydrocarbon contamination. Fungal applications in bioremediation treatment].

    Science.gov (United States)

    Martín Moreno, Carmen; González Becerra, Aldo; Blanco Santos, María José

    2004-09-01

    Bioremediation is a spontaneous or controlled process in which biological, mainly microbiological, methods are used to degrade or transform contaminants to non or less toxic products, reducing the environmental pollution. The most important parameters to define a contaminated site are: biodegradability, contaminant distribution, lixiviation grade, chemical reactivity of the contaminants, soil type and properties, oxygen availability and occurrence of inhibitory substances. Biological treatments of organic contaminations are based on the degradative abilities of the microorganisms. Therefore the knowledge on the physiology and ecology of the biological species or consortia involved as well as the characteristics of the polluted sites are decisive factors to select an adequate biorremediation protocol. Basidiomycetes which cause white rot decay of wood are able to degrade lignin and a variety of environmentally persistent pollutants. Thus, white rot fungi and their enzymes are thought to be useful not only in some industrial process like biopulping and biobleaching but also in bioremediation. This paper provides a review of different aspects of bioremediation technologies and recent advances on ligninolytic metabolism research.

  2. Ecotoxicological evaluation of in situ bioremediation of soils contaminated by the explosive 2,4,6-trinitrotoluene (TNT)

    International Nuclear Information System (INIS)

    Frische, Tobias

    2003-01-01

    The luminescent bacteria assay, using soil leachates, was the most sensitive toxicity indicator. - To evaluate the environmental relevance of in situ bioremediation of contaminated soils, effective and reliable monitoring approaches are of special importance. The presented study was conducted as part of a research project investigating in situ bioremediation of topsoils contaminated by the explosive 2,4,6-trinitrotoluene (TNT). Changes in soil toxicity within different experimental fields at a former ordnance factory were evaluated using a battery of five bioassays (plant growth, Collembola reproduction, soil respiration, luminescent bacteria acute toxicity and mutagenicity test) in combination to chemical contaminant analysis. Resulting data reveal clear differences in sensitivities between methods with the luminescent bacteria assay performed with soil leachates as most sensitive toxicity indicator. Complete test battery results are presented in so-called soil toxicity profiles to visualise and facilitate the interpretation of data. Both biological and chemical monitoring results indicate a reduction of soil toxicity within 17 months of remediation

  3. Development and application of techniques for monitoring the bioremediation of petroleum hydrocarbon-contaminated soils

    International Nuclear Information System (INIS)

    Greer, C.; Hawar, J.; Samson, R.

    1994-01-01

    A series of tests was designed to examine bioremediation potential in soil and to monitor performance during the treatment operation. Physical and chemical characterization of the soil provides information on the types of organics, their concentrations, and whether interfering materials are present. Microbiological assessment involves culturing of bacterial populations in the soil and examination of the colonies to determine which have the genetic potential to degrade the soil contaminants. Catabolic gene probes are used to survey viable bacteria from petroleum hydrocarbon contaminated soils. Such soils consistently demonstrate the presence of bacteria possessing the genetic capability to degrade simple straight-chain alkanes and aromatics. Mineralization and respirometric studies are indicators of the biological activity in the soil, and can be directed at microbial activity towards specific substrates. Gene probe monitoring of a petroleum hydrocarbon contaminated soil during biopile treatment demonstrated that hydrocarbon-degrading bacterial numbers and activity were temperature dependent. The results showed that the activity of the indigenous bacteria as measured by hexadecane mineralization also correlated with the disappearance of the oil and grease. The application of this protocol has provided a useful means to screen contaminated soils for bacteria with desirable catabolic properties and to monitor pollutant-degrading bacteria during biotreatment. 15 refs., 10 figs

  4. Bioremediation treatment of MTBE and ETBE in contaminated soils

    Directory of Open Access Journals (Sweden)

    Alissara Reungsang

    2006-07-01

    Full Text Available Three Methyl Tertiary Butyl Ether (MTBE degradative consortia were isolated from gasoline-contaminated soil namely: mKMS, mKGS1 and mKGS2. These consortia were tested for the ability to degrade Ethyl Tertiary Butyl Ether (ETBE at the concentration of 100 mg/L and to degrade a mixture of MTBE and ETBE in the Nutrient Broth (NB media at the concentration of 50 mg/L each. The results showed that mKGS1 was the best degraders in which 74% of MTBE, 25% of ETBE and 16% of MTBE and 23% of ETBE in the mixture were degraded, within 30 days. mKGS1 was then further used in the bioaugmentation and biostimulation experiments. Degradation of MTBE increased from 34% to 61% after 70 days when mKGS1 was amended in soil mixed with the combination of MTBE and ETBE (at 50 mg/L each. However, mKGS1 did not significantly help the ETBE degradation when it was amended in soil (biostimulation technique. One percent glucose significantly stimulated the degradation of MTBE by the indigenous microorganisms. The presence of mKGS1 and an addition of 1% glucose as extra carbon source improved the degradation of MTBE, from 42 to 51%, suggesting mKGS1 played an important role in the degradation of MTBE.

  5. Bioremediation of soil with diesel Through the use of autochthonous microorganisms

    International Nuclear Information System (INIS)

    Arrieta Ramirez, Olga Maria; Rivera Rivera, Angela Patricia; Arias Marin, Lida; Rojano, Benjamin Alberto; Ruiz, Orlando; Cardona Gallo, Santiago Alonso

    2012-01-01

    In this study was isolated and characterized biochemical and molecular a bacterial consortium able to degrade hydrocarbons several, comprised of the following genres: Enterobacter sp, Bacillus sp, Staphylococcus aureus, Sanguibacter soli, Arthrobacter spy Flavobacterium sp, from soil contaminated with diesel fuel in a laboratory scale, and treated with two technologies for bioremediation: natural attenuation and biostimulation. We obtained a reduction in the concentration of Total Petroleum Hydrocarbons (TPH) in a period of 4 months was 36,86% for natural attenuation and 50,99% for biostimulation.

  6. Bioremediation of organophosphates by fungi and bacteria in agricultural soils. A systematic review

    Directory of Open Access Journals (Sweden)

    Gina María Hernández-Ruiz

    2017-01-01

    Full Text Available Organophosphates are a type of pesticides widely used in agriculture for pest control. Since these are highly toxic compounds, their excessive use has caused great deterioration of arable soils, as well as serious damage to ecosystems and human health. Bioremediation is used as an alternative way to transform pesticides into simple, less polluting compounds, using the metabolic potential of microorganisms. Therefore, the objective of this study was to summarize the fungi and bacteria involved in bioremediation of the main organophos-phorus pesticides used in agricultural soils through a systematic review of the scientific literature, in order to provide useful information for conducting further studies. Scientific information was obtained ResumoOs organofosforados são um tipo de praguicidas amplamente utilizados no setor agrícola para o controle de pragas. Dado que estes são compostos químicos altamente tóxicos, o uso excessivo destes há causado grande deterioro nos solos cultiváveis, assim como graves danos contra os ecossistemas e na saúde humana. A biorremediação surge como uma alternativa para transformar os praguicidas em compostos mais simples e pouco contaminantes mediante o uso do potencial metabólico dos micro-rganismos. Pelo anterior, o objetivo desta pesquisa foi descrever os fungos e bactérias envolvidos na biorremediação dos principais praguicidas organo-fosforados empregados em solos agrícolas por meio de uma revisão sistemática da literatura científica, com o fim de aportar informação útil para a through the use of databases such as ScienceDirect and Springer Link and unindexed information was also gathered from Google Scholar, as a result of this study, it was found that the most studied organophosphate pesticide is chlorpyrifos (Toxicity category III and microorganisms most commonly used in the bioremediation of organophosphate pesticides belongs to the genera Serratia, Bacillus and Pseudomonas. It is

  7. Kinetic modelling of a diesel-polluted clayey soil bioremediation process

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, Engracia Lacasa; Merlo, Elena Moliterni [Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla La Mancha, 13071 Ciudad Real (Spain); Mayor, Lourdes Rodríguez [National Institute for Hydrogen Research, C/Fernando el Santo, 13500 Puertollano (Spain); Camacho, José Villaseñor, E-mail: jose.villasenor@uclm.es [Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla La Mancha, 13071 Ciudad Real (Spain)

    2016-07-01

    A mathematical model is proposed to describe a diesel-polluted clayey soil bioremediation process. The reaction system under study was considered a completely mixed closed batch reactor, which initially contacted a soil matrix polluted with diesel hydrocarbons, an aqueous liquid-specific culture medium and a microbial inoculation. The model coupled the mass transfer phenomena and the distribution of hydrocarbons among four phases (solid, S; water, A; non-aqueous liquid, NAPL; and air, V) with Monod kinetics. In the first step, the model simulating abiotic conditions was used to estimate only the mass transfer coefficients. In the second step, the model including both mass transfer and biodegradation phenomena was used to estimate the biological kinetic and stoichiometric parameters. In both situations, the model predictions were validated with experimental data that corresponded to previous research by the same authors. A correct fit between the model predictions and the experimental data was observed because the modelling curves captured the major trends for the diesel distribution in each phase. The model parameters were compared to different previously reported values found in the literature. Pearson correlation coefficients were used to show the reproducibility level of the model. - Highlights: • A mathematical model is proposed to describe a soil bioremediation process. • The model couples mass transfer phenomena among phases with biodegradation. • Model predictions were validated with previous data reported by the authors. • A correct fit and correlation coefficients were observed.

  8. Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings

    International Nuclear Information System (INIS)

    Chaillan, F.; Chaineau, C.H.; Point, V.; Saliot, A.; Oudot, J.

    2006-01-01

    Oily drill cuttings and a soil contaminated with weathered crude oils were treated by enhanced biodegradation under tropical conditions in industrial scaled experiments. Oil contaminants were characterized by gas chromatography and mass spectrometry. This allowed for the identification of a mixture of two crude oils in the contaminated soil. After 12 months of bioremediation process, the removal of hydrocarbons reached by biodegradation an extent of 60% although nutrient amendment with elevated concentration of N-urea had highly detrimental effects on the hydrocarbon degrading fungal populations due to the production of toxic concentration of ammonia gas by nitrification. The saturated hydrocarbons were extensively assimilated, though n-alkanes were not completely removed. Aromatic hydrocarbons were less degraded than saturated whereas resin and asphaltene fractions were, surprisingly, partly assimilated. In laboratory conditions, the residual hydrocarbons in the field-treated materials were 15-20% further degraded when metabolic byproducts resulting from biodegradation were diluted or removed. - Bioremediation of oil-polluted soils can be impaired if urea is used as nitrogen source, and metabolic byproducts can limit biodegradation rates in industrial scaled experiments

  9. A dual phased approach for bioremediation of petroleum contaminated soil and ground water

    International Nuclear Information System (INIS)

    Kennel, N.D.; Maher, A.; Buckallew, B.

    1994-01-01

    A case study will be presented to demonstrate an effective and timely method of site remediation which yields complete contaminant destruction rather than the contaminant transfer that traditional ground water extraction and treatment techniques result in. By utilizing bioremediation at this site, the client was able to completely degrade the contamination beneath the property, and in the process avoid future liability from transfer of the contamination to another party (i.e. landfill) or phase (i.e. liquid to vapor through air stripping). The provisions of a real estate transaction involving a former service station site in Central Iowa stipulated that the site be remediated prior to title transfer. Previous Environmental Investigative activities revealed significant soil and ground water contamination resulting from over 50 years of diesel and gasoline fuel storage and dispensing operations at the site. Microbial Environmental Services, Inc. (MES) utilized a dual phased bioremediation approach to meet regulatory clean-up guidelines in order for a timely property transfer to occur. To facilitate and expedite ground water remediation, contaminated soil was excavated and remediated via Advanced Biological Surface Treatment (ABST) techniques. ABST techniques are utilized by MES to treat excavated soil in closed cell to control emissions and treatment conditions. Following contaminant source removal, ground water was extracted and treated in a submerged, fixed film, flow through 1,000 gallon fixed film bioreactor at a rate of 2.5 gallons per minute

  10. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils.

    Science.gov (United States)

    Sutton, Nora B; Langenhoff, Alette A M; Lasso, Daniel Hidalgo; van der Zaan, Bas; van Gaans, Pauline; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-03-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.

  11. Kinetic modelling of a diesel-polluted clayey soil bioremediation process

    International Nuclear Information System (INIS)

    Fernández, Engracia Lacasa; Merlo, Elena Moliterni; Mayor, Lourdes Rodríguez; Camacho, José Villaseñor

    2016-01-01

    A mathematical model is proposed to describe a diesel-polluted clayey soil bioremediation process. The reaction system under study was considered a completely mixed closed batch reactor, which initially contacted a soil matrix polluted with diesel hydrocarbons, an aqueous liquid-specific culture medium and a microbial inoculation. The model coupled the mass transfer phenomena and the distribution of hydrocarbons among four phases (solid, S; water, A; non-aqueous liquid, NAPL; and air, V) with Monod kinetics. In the first step, the model simulating abiotic conditions was used to estimate only the mass transfer coefficients. In the second step, the model including both mass transfer and biodegradation phenomena was used to estimate the biological kinetic and stoichiometric parameters. In both situations, the model predictions were validated with experimental data that corresponded to previous research by the same authors. A correct fit between the model predictions and the experimental data was observed because the modelling curves captured the major trends for the diesel distribution in each phase. The model parameters were compared to different previously reported values found in the literature. Pearson correlation coefficients were used to show the reproducibility level of the model. - Highlights: • A mathematical model is proposed to describe a soil bioremediation process. • The model couples mass transfer phenomena among phases with biodegradation. • Model predictions were validated with previous data reported by the authors. • A correct fit and correlation coefficients were observed.

  12. Potential of glycerol and soybean oil for bioremediation of weathered oily-sludge contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, T.C.F.; Franca, F.P. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica], E-mail: fpfranca@eq.ufrj.br; Oliveira, F.J.S. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-04-15

    The bioremediation of petroleum-contaminated soil was investigated on laboratory scale. This work evaluated the effect of co-substrate addition in tropical climate soil highly contaminated with oily residue. Glycerol and soybean oil were used as auxiliary co-substrates for contaminant degradation. Three different concentrations of co-substrate were tested, and the experiments were carried out over 60 days. The following parameters were monitored: humidity, pH, total heterotrophic bacteria, total fungi, total petroleum hydrocarbons (TPH), and the concentrations of benzo[a]pyrene and chrysene. The soil supplementation with renewable co-substrates improved the efficiency of the biodegradation TPH, with removals of 85% and 83% for glycerol and soybean oil, respectively, compared to a 55% removal yielded by the biodegradation process without supplementation. The use of glycerol increased Chrysene and Benzo[a]pyrene biodegradation by 50%, while soybean oil supplementation increased their removal by 36%. (author)

  13. Laboratory bioremediation of diesel fuel contaminated soil using indigenous cultures and surfactants

    International Nuclear Information System (INIS)

    Mas, Z.; Morin, P.; Walter, D.

    1998-01-01

    To help verify soil and groundwater remediation techniques, an Environmental Testing Facility (ETF) was built in Argentia, Newfoundland. A laboratory program has been developed and the influence of various parameters such as temperature, pH, nutrients and bacterial seeding on the biodegradation of diesel fuel-contaminated soils by indigenous microorganisms has been evaluated. Two non-toxic surfactants, Triton X-100 and Tween-60, have also been tested to determine their leaching potential for possible use in hydrocarbon removal, alone, or in combination with bioremediation. The addition of Triton X-100 showed no significant effect on the biotreatment of diesel fuel, but improved markedly diesel fuel leaching by percolation, indicating good potential for global remediation of the test soil by a combination of leaching and biodegradation. Tween-60 appears to inhibit biological activity, causing the efficiency of bacterial growth to drop from 50 per cent to 35 per cent. 8 refs., 4 tabs., 6 figs

  14. Simple surface foam application enhances bioremediation of oil-contaminated soil in cold conditions.

    Science.gov (United States)

    Jeong, Seung-Woo; Jeong, Jongshin; Kim, Jaisoo

    2015-04-09

    Landfarming of oil-contaminated soil is ineffective at low temperatures, because the number and activity of micro-organisms declines. This study presents a simple and versatile technique for bioremediation of diesel-contaminated soil, which involves spraying foam on the soil surface without additional works such as tilling, or supply of water and air. Surfactant foam containing psychrophilic oil-degrading microbes and nutrients was sprayed twice daily over diesel-contaminated soil at 6 °C. Removal efficiencies in total petroleum hydrocarbon (TPH) at 30 days were 46.3% for landfarming and 73.7% for foam-spraying. The first-order kinetic biodegradation rates for landfarming and foam-spraying were calculated as 0.019 d(-1) and 0.044 d(-1), respectively. Foam acted as an insulating medium, keeping the soil 2 °C warmer than ambient air. Sprayed foam was slowly converted to aqueous solution within 10-12h and infiltrated the soil, providing microbes, nutrients, water, and air for bioaugmentation. Furthermore, surfactant present in the aqueous solution accelerated the dissolution of oil from the soil, resulting in readily biodegradable aqueous form. Significant reductions in hydrocarbon concentration were simultaneously observed in both semi-volatile and non-volatile fractions. As the initial soil TPH concentration increased, the TPH removal rate of the foam-spraying method also increased. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Determine the Efficacy of Salinity on Bioremediation of Polluted Soil by Phenanthrene

    Directory of Open Access Journals (Sweden)

    Masoumeh Ravanipour

    2011-04-01

    Full Text Available Background: Phenanthrene is one of the Polycyclic Aromatic Hydrocarbons (PAHs that are formed during the incomplete combustion of fossil fuels, oil pollution and different process of oil and gas plants. PAHs-contaminated area have increased a health risk to humans and environments due to toxicity, carcinogenicity, hydrophobicity and their tendency to accumulation in soil and sediment and their entrance to food chain. Bioremediation is an effective method for removing toxic pollutants from soils such as Phenanthrene. The main object of this study is the assessment of the effects of salinity on the efficacy of the process of bioremediation on polluted soils by Phenanthrene. Methods: The bare soil of any organic and microbial pollution was first polluted artificially to the phenanthrene then a nutrient solution with two minimum and maximum concentrations of salinity were added to it in order to have the proportion of 10% w:v (soil: water. After that a microbial mixture which was enable degradation the phenanthrene added to the slurry and aerated. After the extraction of phenanthrene by ultrasonic, the residual concentration in the soil was analyzed by GC. Results: In the conditions that salinity concentration was maximum, the microbial growth has a longer lag phase than the minimum salinity. The findings from extraction process by GC depict the removal percentage of maximum and minimum salinity in 56th %70.5 day and %71.8, respectively. Conclusion: In In spite of the longer log phase of maximum concentration of salinity and according to GC results, there was just a little difference between two solutions. Therefore it reveals that salinity can increase the lag phase but haven't any inhibitory effect on Phenanthrene removal.

  16. Could saponins be used to enhance bioremediation of polycyclic aromatic hydrocarbons in aged-contaminated soils?

    Science.gov (United States)

    Davin, Marie; Starren, Amandine; Deleu, Magali; Lognay, Georges; Colinet, Gilles; Fauconnier, Marie-Laure

    2018-03-01

    Polycyclic aromatic hydrocarbons (PAH) are persistent organic compounds of major concern that tend to accumulate in the environment, threatening ecosystems and health. Brownfields represent an important tank for PAHs and require remediation. Researches to develop bioremediation and phytoremediation techniques are being conducted as alternatives to environmentally aggressive, expensive and often disruptive soil remediation strategies. The objectives of the present study were to investigate the potential of saponins (natural surfactants) as extracting agents and as bioremediation enhancers on an aged-contaminated soil. Two experiments were conducted on a brownfield soil containing 15 PAHs. In a first experiment, soil samples were extracted with saponins solutions (0; 1; 2; 4 and 8 g.L -1 ). In a second experiment conducted in microcosms (28 °C), soil samples were incubated for 14 or 28 days in presence of saponins (0; 2.5 and 5 mg g -1 ). CO 2 emissions were monitored throughout the experiment. After the incubation, dehydrogenase activity was measured as an indicator of microbiological activity and residual PAHs were determined. In both experiments PAHs were determined using High-Performance Liquid Chromatography and Fluorimetric Detection. The 4 g.L -1 saponins solution extracted significantly more acenaphtene, fluorene, phenanthrene, anthracene, and pyrene than water. PAHs remediation was not enhanced in presence of saponins compared to control samples after 28 days. However CO 2 emissions and dehydrogenase activities were significantly more important in presence of saponins, suggesting no toxic effect of these surfactants towards soil microbiota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The Effects of Subsurface Bioremediation on Soil Structure, Colloid Formation, and Contaminant Transport

    Science.gov (United States)

    Wang, Y.; Liang, X.; Zhuang, J.; Radosevich, M.

    2016-12-01

    Anaerobic bioremediation is widely applied to create anaerobic subsurface conditions designed to stimulate microorganisms that degrade organic contaminants and immobilize toxic metals in situ. Anaerobic conditions that accompany such techniques also promotes microbially mediated Fe(III)-oxide mineral reduction. The reduction of Fe(III) could potentially cause soil structure breakdown, formation of clay colloids, and alternation of soil surface chemical properties. These processes could then affect bioremediation and the migration of contaminants. Column experiments were conducted to investigate the impact of anaerobic bioreduction on soil structure, hydraulic properties, colloid formation, and transport of three tracers (bromide, DFBA, and silica shelled silver nanoparticles). Columns packed with inoculated water stable soil aggregates were placed in anaerobic glovebox, and artificial groundwater media was pumped into the columns to simulate anaerobic bioreduction process for four weeks. Decent amount of soluble Fe(II) accompanied by colloids were detected in the effluent from bioreduction columns a week after initiation of bioreduction treatment, which demonstrated bioreduction of Fe(III) and formation of colloids. Transport experiments were performed in the columns before and after bioreduction process to assess the changes of hydraulic and surface chemical properties through bioreduction treatment. Earlier breakthrough of bromide and DFBA after treatment indicated alterations in flow paths (formation of preferential flow paths). Less dispersion of bromide and DFBA, and less tailing of DFBA after treatment implied breakdown of soil aggregates. Dramatically enhanced transport and early breakthrough of silica shelled silver nanoparticles after treatment supported the above conclusion of alterations in flow paths, and indicated changes of soil surface chemical properties.

  18. Dynamics of bacterial populations during bench-scale bioremediation of oily seawater and desert soil bioaugmented with coastal microbial mats.

    Science.gov (United States)

    Ali, Nidaa; Dashti, Narjes; Salamah, Samar; Sorkhoh, Naser; Al-Awadhi, Husain; Radwan, Samir

    2016-03-01

    This study describes a bench-scale attempt to bioremediate Kuwaiti, oily water and soil samples through bioaugmentation with coastal microbial mats rich in hydrocarbonoclastic bacterioflora. Seawater and desert soil samples were artificially polluted with 1% weathered oil, and bioaugmented with microbial mat suspensions. Oil removal and microbial community dynamics were monitored. In batch cultures, oil removal was more effective in soil than in seawater. Hydrocarbonoclastic bacteria associated with mat samples colonized soil more readily than seawater. The predominant oil degrading bacterium in seawater batches was the autochthonous seawater species Marinobacter hydrocarbonoclasticus. The main oil degraders in the inoculated soil samples, on the other hand, were a mixture of the autochthonous mat and desert soil bacteria; Xanthobacter tagetidis, Pseudomonas geniculata, Olivibacter ginsengisoli and others. More bacterial diversity prevailed in seawater during continuous than batch bioremediation. Out of seven hydrocarbonoclastic bacterial species isolated from those cultures, only one, Mycobacterium chlorophenolicum, was of mat origin. This result too confirms that most of the autochthonous mat bacteria failed to colonize seawater. Also culture-independent analysis of seawater from continuous cultures revealed high-bacterial diversity. Many of the bacteria belonged to the Alphaproteobacteria, Flavobacteria and Gammaproteobacteria, and were hydrocarbonoclastic. Optimal biostimulation practices for continuous culture bioremediation of seawater via mat bioaugmentation were adding the highest possible oil concentration as one lot in the beginning of bioremediation, addition of vitamins, and slowing down the seawater flow rate. © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Bioremediation of MGP soils with mixed fungal and bacterial cultures

    International Nuclear Information System (INIS)

    Lee, C.J.B.; Fletcher, M.A.; Avila, O.I.; Munnecke, D.M.; Callanan, J.; Yunker, S.

    1995-01-01

    This culture selection study examines the degradation of polycyclic automatic hydrocarbon (PAH) by a number of brown- and white-rot fungi and bacterial cultures for the treatment of coal tar wastes. Cultures were screened for naphthalene degradation in shake flasks, and selected organisms were then examined for their ability to degrade a mixture of PAHs in aqueous culture. PAH degradation in the presence of the surfactant, TWEEN 80, was examined for some cultures. Many of the organisms were observed to be resistant to greater than 10 mg/L free cyanide. Solid substrate growth conditions were optimized for the selected fungal cultures in preparation for manufactured gas plant (MGP) soil microcosm experiments. The fungi generally produced more biomass under conditions of acidic to neutral pH, incubation at 30 C with 90% moisture saturation, and with granulated corncobs or alfalfa pellets supplied as a lignocellulosic substrate. Of the cultures screened, nine fungal cultures were selected based on their ability to degrade at least 40% of naphthalene, fluorene, or benzo(a)pyrene in 2 weeks or less. A bacterial culture capable of degrading 30 mg/L of naphthalene in 1 week was also selected, and the cultures were examined further in PAH-degradation studies in contaminated soils

  20. Developments in Bioremediation of Soils and Sediments Pollutedwith Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.; Tabak, Henry H.

    2007-03-15

    Bioremediation of metals and radionuclides has had manyfield tests, demonstrations, and full-scale implementations in recentyears. Field research in this area has occurred for many different metalsand radionuclides using a wide array of strategies. These strategies canbe generally characterized in six major categories: biotransformation,bioaccumulation/bisorption, biodegradation of chelators, volatilization,treatment trains, and natural attenuation. For all field applicationsthere are a number of critical biogeochemical issues that most beaddressed for the successful field application. Monitoring andcharacterization parameters that are enabling to bioremediation of metalsand radionuclides are presented here. For each of the strategies a casestudy is presented to demonstrate a field application that uses thisstrategy.

  1. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review

    Science.gov (United States)

    Cycoń, Mariusz; Piotrowska-Seget, Zofia

    2016-01-01

    Pyrethroid insecticides have been used to control pests in agriculture, forestry, horticulture, public health and for indoor home use for more than 20 years. Because pyrethroids were considered to be a safer alternative to organophosphate pesticides (OPs), their applications significantly increased when the use of OPs was banned or limited. Although, pyrethroids have agricultural benefits, their widespread and continuous use is a major problem as they pollute the terrestrial and aquatic environments and affect non-target organisms. Since pyrethroids are not degraded immediately after application and because their residues are detected in soils, there is an urgent need to remediate pyrethroid-polluted environments. Various remediation technologies have been developed for this purpose; however, bioremediation, which involves bioaugmentation and/or biostimulation and is a cost-effective and eco-friendly approach, has emerged as the most advantageous method for cleaning-up pesticide-contaminated soils. This review presents an overview of the microorganisms that have been isolated from pyrethroid-polluted sites, characterized and applied for the degradation of pyrethroids in liquid and soil media. The paper is focused on the microbial degradation of the pyrethroids that have been most commonly used for many years such as allethrin, bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, fenpropathrin, fenvalerate, and permethrin. Special attention is given to the bacterial strains from the genera Achromobacter, Acidomonas, Bacillus, Brevibacterium, Catellibacterium, Clostridium, Lysinibacillus, Micrococcus, Ochrobactrum, Pseudomonas, Serratia, Sphingobium, Streptomyces, and the fungal strains from the genera Aspergillus, Candida, Cladosporium, and Trichoderma, which are characterized by their ability to degrade various pyrethroids. Moreover, the current knowledge on the degradation pathways of pyrethroids, the enzymes that are involved in the cleavage of

  2. Bioremediation of heavy metals and petroleum hydrocarbons in diesel contaminated soil with the earthworm: Eudrilus eugeniae.

    Science.gov (United States)

    Ekperusi, Ogheneruemu Abraham; Aigbodion, Iruobe Felix

    2015-01-01

    A laboratory study on the bioremediation of diesel contaminated soil with the earthworm Eudrilus eugeniae (Kingberg) was conducted. 5 ml of diesel was contaminated into soils in replicates and inoculated with E. eugeniae for 90 days. Physicochemical parameters, heavy metals and total petroleum hydrocarbons were analyzed using AAS. BTEX in contaminated soil and tissues of earthworms were determined with GC-FID. The activities of earthworms resulted in a decrease in pH (3.0 %), electrical conductivity (60.66 %), total nitrogen (47.37 %), chloride (60.66 %), total organic carbon (49.22 %), sulphate (60.59 %), nitrate (60.65 %), phosphate (60.80 %), sodium (60.65 %), potassium (60.67 %), calcium (60.67 %), magnesium (60.68 %), zinc (60.59 %), manganese (60.72 %), copper (60.68 %), nickel (60.58 %), cadmium (60.44 %), vanadium (61.19 %), chromium (53.60 %), lead (60.38 %), mercury (61.11 %), arsenic (80.85 %), TPH (84.99 %). Among the BTEX constituents, only benzene (8.35 %) was detected in soil at the end of the study. Earthworm tissue analysis showed varying levels of TPH (57.35 %), benzene (38.91 %), toluene (27.76 %), ethylbenzene (42.16 %) and xylene (09.62 %) in E. eugeniae at the end of the study. The study has shown that E. eugeniae could be applied as a possible bioremediator in diesel polluted soil.

  3. Bioremediation potential of a tropical soil contaminated with a mixture of crude oil and production water.

    Science.gov (United States)

    Alvarez, Vanessa Marques; Santos, Silvia Cristina Cunha Dos Santos; Casella, Renata da Costa; Vital, Ronalt Leite; Sebastin, Gina Vasquez; Seldin, Lucy

    2008-12-01

    A typical tropical soil from the northeast of Brazil, where an important terrestrial oil field is located, was accidentally contaminated with a mixture of oil and saline production water. To study the bioremediation potential in this area, molecular methods based on PCR-DGGE were used to determine the diversity of the bacterial communities in bulk and in contaminated soils. Bacterial fingerprints revealed that the bacterial communities were affected by the presence of the mixture of oil and production water, and different profiles were observed when the contaminated soils were compared with the control. Halotolerant strains capable of degrading crude oil were also isolated from enrichment cultures obtained from the contaminated soil samples. Twenty-two strains showing these features were characterized genetically by amplified ribosomal DNA restriction analysis (ARDRA) and phenotypically by their colonial morphology and tolerance to high NaCl concentrations. Fifteen ARDRA groups were formed. Selected strains were analyzed by 16S rDNA sequencing, and Actinobacteria was identified as the main group found. Strains were also tested for their growth capability in the presence of different oil derivatives (hexane, dodecane, hexadecane, diesel, gasoline, toluene, naphthalene, o-xylene, and p-xylene) and different degradation profiles were observed. PCR products were obtained from 12 of the 15 ARDRA representatives when they were screened for the presence of the alkane hydroxylase gene (alkB). Members of the genera Rhodococcus and Gordonia were identified as predominant in the soil studied. These genera are usually implicated in oil degradation processes and, as such, the potential for bioremediation in this area can be considered as feasible.

  4. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review

    Directory of Open Access Journals (Sweden)

    Mariusz Sebastian Cycoń

    2016-09-01

    Full Text Available Pyrethroid insecticides have been used to control pests in agriculture, forestry, horticulture, public health and for indoor home use for more than 20 years. Because pyrethroids were considered to be a safer alternative to organophosphate pesticides (OPs, their applications significantly increased when the use of OPs was banned or limited. Although pyrethroids have agricultural benefits, their widespread and continuous use is a major problem as they pollute the terrestrial and aquatic environments and affect non-target organisms. Since pyrethroids are not degraded immediately after application and because their residues are detected in soils, there is an urgent need to remediate pyrethroid-polluted environments. Various remediation technologies have been developed for this purpose; however, bioremediation, which involves bioaugmentation and/or biostimulation and is a cost-effective and eco-friendly approach, has emerged as the most advantageous method for cleaning-up pesticide-contaminated soils. This review presents an overview of the microorganisms that have been isolated from pyrethroid-polluted sites, characterized and applied for the degradation of pyrethroids in liquid and soil media. The paper is focused on the microbial degradation of the pyrethroids that have been most commonly used for many years such as allethrin, bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, fenpropathrin, fenvalerate and permethrin. Special attention is given to the bacterial strains from the genera Achromobacter, Acidomonas, Bacillus, Brevibacterium, Catellibacterium, Clostridium, Lysinibacillus, Micrococcus, Ochrobactrum, Pseudomonas, Serratia, Sphingobium, Streptomyces and the fungal strains from the genera Aspergillus, Candida, Cladosporium and Trichoderma, which are characterized by their ability to degrade various pyrethroids. Moreover, the current knowledge on the degradation pathways of pyrethroids, the enzymes that are involved in the

  5. Bioremediation of polychlorinated-p-dioxins/dibenzofurans contaminated soil using simulated compost-amended landfill reactors under hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Yu; Wu, Jer-Horng, E-mail: enewujh@mail.ncku.edu.tw; Lin, Shih-Chiang; Chang, Juu-En

    2016-07-15

    Highlights: • We developed a new hypoxic reactor system for remediating PCDD/Fs. • We demonstrated effects of compost on the degradation of PCDD/Fs. • We uncovered microbial compositions and dynamics during the degradation of PCDD/Fs. - Abstract: Compost-amended landfill reactors were developed to reduce polychlorinated-p-dioxins and dibenzofurans (PCDD/Fs) in contaminated soils. By periodically recirculating leachate and suppling oxygen, the online monitoring of the oxidation reduction potential confirmed that the reactors were maintained under hypoxic conditions, with redox levels constantly fluctuating between −400 and +80 mV. The subsequent reactor operation demonstrated that PCDD/F degradation in soil could be facilitated by amending compost originating from the cow manure and waste sludge and that the degradation might be affected by the availability of easily degradable substrates in the soil and compost. The pyrosequencing analysis of V4/V5 regions of bacterial 16S rRNA genes suggested that species richness of the soil microbial community was increased by a factor of 1.37–1.61. Although the bacterial community varied with the compost origin and changed markedly during reactor operation, it was dominated by Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Firmicutes. The aerotolerant anaerobic Sedimentibacter and Propionibacterium spp., and the uncultured Chloroflexi group could be temporarily induced to a high abundance by amending the cow manure compost; the bacterial growths were associated with the rapid degradation of PCDD/Fs. Overall, the novel bioremediation method for PCDD/F-contaminated soils using hypoxic conditions was effective, simple, energy saving, and thus easily practicable.

  6. Bioremediation of polychlorinated-p-dioxins/dibenzofurans contaminated soil using simulated compost-amended landfill reactors under hypoxic conditions

    International Nuclear Information System (INIS)

    Chen, Wei-Yu; Wu, Jer-Horng; Lin, Shih-Chiang; Chang, Juu-En

    2016-01-01

    Highlights: • We developed a new hypoxic reactor system for remediating PCDD/Fs. • We demonstrated effects of compost on the degradation of PCDD/Fs. • We uncovered microbial compositions and dynamics during the degradation of PCDD/Fs. - Abstract: Compost-amended landfill reactors were developed to reduce polychlorinated-p-dioxins and dibenzofurans (PCDD/Fs) in contaminated soils. By periodically recirculating leachate and suppling oxygen, the online monitoring of the oxidation reduction potential confirmed that the reactors were maintained under hypoxic conditions, with redox levels constantly fluctuating between −400 and +80 mV. The subsequent reactor operation demonstrated that PCDD/F degradation in soil could be facilitated by amending compost originating from the cow manure and waste sludge and that the degradation might be affected by the availability of easily degradable substrates in the soil and compost. The pyrosequencing analysis of V4/V5 regions of bacterial 16S rRNA genes suggested that species richness of the soil microbial community was increased by a factor of 1.37–1.61. Although the bacterial community varied with the compost origin and changed markedly during reactor operation, it was dominated by Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Firmicutes. The aerotolerant anaerobic Sedimentibacter and Propionibacterium spp., and the uncultured Chloroflexi group could be temporarily induced to a high abundance by amending the cow manure compost; the bacterial growths were associated with the rapid degradation of PCDD/Fs. Overall, the novel bioremediation method for PCDD/F-contaminated soils using hypoxic conditions was effective, simple, energy saving, and thus easily practicable.

  7. Effects of Triton X-100 and Quillaya Saponin on the ex situ bioremediation of a chronically polychlorobiphenyl-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Fava, F.; Di Gioia, D. [Bologna Univ. (Italy). Dept. of Applied Chemistry and Material Science

    1998-12-31

    The possibility of enhancing the ex situ bioremediation of a chronically polychlorinated biphenyl (PCB)-contaminated soil by using Triton X-100 or Quillaya Saponin, a synthetic and a biogenic surfactant, respectively, was studied. The soil, which contained about 350 mg/kg of PCBs and indigenous aerobic bacteria capable of growing on biphenyl or on monochlorobenzoic acids, was amended with inorganic nutrients and biphenyl, saturated with water and treated in aerobic batch slurry- and fixed-phase reactors. Triton X-100 and Quillays Saponin were added to the reactors at a final concentration of 10 g/l at the 42nd day of treatment, and at the 43rd and 100th day, respectively. Triton X-100 was not metabolised by the soil microflora and it exerted inhibitory effects on the indigenous bacteria. Quillaya Saponin, on the contrary, was readily metabolised by the soil microflora. Under slurry-phase conditions, Triton X-100 negatively influenced the soil bioremediation process by affecting the availability of the chlorobenzoic acid degrading indigenous bacteria, wheres Quillays Saponin slightly enhanced the biological degradation and dechlorination of the soil PCBs. In the fixed-phase reactors, where both the surfactant availability and the mixing of the soil were lower, Triton X-100 did not exert inhibitory effects on the soil biomass and enhanced significantly the soil PCB depletion, whereas Quillays Saponin did not influence the bioremediation process. (orig.)

  8. Comparative study of remediation of Cr(VI)-contaminated soil using electrokinetics combined with bioremediation.

    Science.gov (United States)

    He, Jiaying; He, Chiquan; Chen, Xueping; Liang, Xia; Huang, Tongli; Yang, Xuecheng; Shang, Hai

    2018-06-01

    The purpose of this research is to design a new bioremediation-electrokinetic (Bio-EK) remediation process to increase treatment efficiency of chromium contamination in soil. Upon residual chromium analysis, it is shown that traditional electrokinetic-PRB system (control) does not have high efficiency (80.26%) to remove Cr(VI). Bio-electrokinetics of exogenous add with reduction bacteria Microbacterium sp. Y2 and electrokinetics can enhance treatment efficiency Cr(VI) to 90.67% after 8 days' remediation. To optimize the overall performance, integrated bio-electrokinetics were designed by synergy with 200 g humic substances (HS) into the systems. According to our results, Cr(VI) (98.33%) was effectively removed via electrokinetics. Moreover, bacteria and humic substances are natural, sustainable, and economical enhancement agents. The research results indicated that the use of integrated bio-electrokinetics is an effective method to remediate chromium-contaminated soils.

  9. Enhanced bioremediation of soil contaminated with viscous oil through microbial consortium construction and ultraviolet mutation.

    Science.gov (United States)

    Chen, Jing; Yang, Qiuyan; Huang, Taipeng; Zhang, Yongkui; Ding, Ranfeng

    2011-06-01

    This study focused on enhancing the bioremediation of soil contaminated with viscous oil by microorganisms and evaluating two strategies. Construction of microbial consortium and ultraviolet mutation were both effective applications in the remediation of soil contaminated with viscous oil. Results demonstrated that an interaction among the microorganisms existed and affected the biodegradation rate. Strains inoculated equally into the test showed the best remediation, and an optimal microbial consortium was achieved with a 7 days' degradation rate of 49.22%. On the other hand, the use of ultraviolet mutation increased one strain's degrading ability from 41.83 to 52.42% in 7 days. Gas chromatography and mass spectrum analysis showed that microbial consortium could treat more organic fractions of viscous oil, while ultraviolet mutation could be more effect on increasing one strain's degrading ability.

  10. Low-cost bioremediation of heavy metals and radionuclides of contaminated soils

    International Nuclear Information System (INIS)

    Sathiyamoorthy, P.; Golan-Goldhrish, A.

    2005-01-01

    The environmental pollution by toxic metals, especially lead (Pb), mercury (Hg), cadmium (Cd), nickel (Ni), copper (Cu), selenium (Se), chromium (Cr) and radionuclides ( 137 Cs, 90 Sr, 238 Pu, 226 Ra) is a potential hazard to health and welfare of mankind. Rapid industrial revolution has left an international legacy of soil and water contaminated with a combination of toxic and potentially carcinogenic compounds and heavy metals. Many of the contaminated sites were abandoned due to high cost of traditional clean-up approaches. Various approaches are being practiced to decontaminate heavy metals and radionuclides from polluted-soil. Remediation of heavy metal and radionuclides contaminated soils poses a significant expense to many industries and government organizations. Remediation cost in the United States and European Union alone is expected to exceed US$20 billion annually. Bioremediation strategy depends on the limitations of technology, cost and nature of the contaminant in the soil. Certain higher plants are capable of accumulation of heavy metals (2-5 %) in roots and shoots to the level far exceeding those present in the soils, these are called hyper-accumulators. Using heavy metal hyper-accumulating higher plants for environmental clean-up of contaminated soil is a recently emerged technology known as 'phytoremediation'. Genetically engineered (Transgenic) plants have a remarkable potential to absorb heavy metals and show a new avenue for biotechnology technique in Phytoremediation. The cost-effective approach of using heavy metal and radionuclide hyper-accumulators in phytoremediation is discussed. (author)

  11. Isolation and evaluation of potent Pseudomonas species for bioremediation of phorate in amended soil.

    Science.gov (United States)

    Jariyal, Monu; Gupta, V K; Jindal, Vikas; Mandal, Kousik

    2015-12-01

    Use of phorate as a broad spectrum pesticide in agricultural crops is finding disfavor due to persistence of both the principal compound as well as its toxic residues in soil. Three phorate utilizing bacterial species (Pseudomonas sp. strain Imbl 4.3, Pseudomonas sp. strain Imbl 5.1, Pseudomonas sp. strain Imbl 5.2) were isolated from field soils. Comparative phorate degradation analysis of these species in liquid cultures identified Pseudomonas sp. strain Imbl 5.1 to cause complete metabolization of phorate during seven days as compared to the other two species in 13 days. In soils amended with phorate at different levels (100, 200, 300 mg kg(-1) soil), Pseudomonas sp. strain Imbl 5.1 resulted in active metabolization of phorate by between 94.66% and 95.62% establishing the same to be a potent bacterium for significantly relieving soil from phorate residues. Metabolization of phorate to these phorate residues did not follow the first order kinetics. This study proves that Pseudomonas sp. strain Imbl 5.1 has huge potential for active bioremediation of phorate both in liquid cultures and agricultural soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds.

    Science.gov (United States)

    Balaji, V; Arulazhagan, P; Ebenezer, P

    2014-05-01

    The present study focuses on fungal strains capable of secreting extracellular enzymes by utilizing hydrocarbons present in the contaminated soil. Fungal strains were enriched from petroleum hydrocarbons contaminated soil samples collected from Chennai city, India. The potential fungi were isolated and screened for their enzyme secretion such as lipase, laccase, peroxidase and protease and also evaluated fungal enzyme mediated PAHs degradation. Total, 21 potential PAHs degrading fungi were isolated from PAHs contaminated soil, which belongs to 9 genera such as Aspergillus, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor Penicillium, Rhizopus, Trichoderma, and two oilseed-associated fungal genera such as Colletotrichum and Lasiodiplodia were used to test their efficacy in degradation of PAHs in polluted soil. Maximum lipase production was obtained with P. chrysogenum, M. racemosus and L. theobromae VBE1 under optimized cultural condition, which utilized PAHs in contaminated soil as sole carbon source. Fungal strains, P. chrysogenum, M. racemosus and L. theobromae VBE1, as consortia, used in the present study were capable of degrading branched alkane isoprenoids such as pristine (C17) and pyrene (C18) present in PAHs contaminated soil with high lipase production. The fungal consortia acts as potential candidate for bioremediation of PAHs contaminated environments.

  13. Bioremediation of petroleum hydrocarbons from crude oil-contaminated soil with the earthworm: Hyperiodrilus africanus.

    Science.gov (United States)

    Ekperusi, O A; Aigbodion, F I

    2015-12-01

    A study on the bioremediation potentials of the earthworm Hyperiodrilus africanus (Beddard) in soil contaminated with crude oil was investigated. Dried and sieved soils were contaminated with 5 ml each of crude oil with replicates and inoculated with earthworms and monitored daily for 12 weeks. Physicochemical parameters such as pH, total organic carbon, sulfate, nitrate, phosphate, sodium, potassium, calcium and magnesium were determined using standard procedures. Total petroleum hydrocarbon (TPH) was determined using atomic absorption spectrophotometer (AAS), while BTEX constituents and earthworms tissues were analyzed using Gas Chromatography with Flame Ionization Detector (GC-FID). The results showed that the earthworm significantly enhanced the physicochemical parameters of the contaminated soil resulting in a decrease of the total organic carbon (56.64 %), sulfate (57.66 %), nitrate (57.69 %), phosphate (57.73 %), sodium (57.69 %), potassium (57.68 %), calcium (57.69 %) and magnesium (57.68 %) except pH (3.90 %) that slightly increased. There was a significant decrease in the TPH (84.99 %), benzene (91.65 %), toluene (100.00 %), ethylbenzene (100.00 %) and xylene (100.00 %). Analyses of the tissues of the earthworm at the end of the experiment showed that the earthworms bioaccumulated/biodegraded 57.35/27.64 % TPH, 38.91/52.73 % benzene, 27.76/72.24 % toluene, 42.16/57.85 % ethylbenzene and 09.62/90.38 % xylene. The results showed that the earthworms H. africanus could be used to bioremediate moderately polluted soil with crude oil contamination in the Niger Delta region of Nigeria.

  14. Plant residues--a low cost, effective bioremediation treatment for petrogenic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Shahsavari, Esmaeil; Adetutu, Eric M; Anderson, Peter A; Ball, Andrew S

    2013-01-15

    Petrogenic hydrocarbons represent the most commonly reported environmental contaminant in industrialised countries. In terms of remediating petrogenic contaminated hydrocarbons, finding sustainable non-invasive technologies represents an important goal. In this study, the effect of 4 types of plant residues on the bioremediation of aliphatic hydrocarbons was investigated in a 90 day greenhouse experiment. The results showed that contaminated soil amended with different plant residues led to statistically significant increases in the utilisation rate of Total Petroleum Hydrocarbon (TPH) relative to control values. The maximum TPH reduction (up to 83% or 6800 mg kg(-1)) occurred in soil mixed with pea straw, compared to a TPH reduction of 57% (4633 mg kg(-1)) in control soil. A positive correlation (0.75) between TPH reduction rate and the population of hydrocarbon-utilising microorganisms was observed; a weaker correlation (0.68) was seen between TPH degradation and bacterial population, confirming that adding plant materials significantly enhanced both hydrocarbonoclastic and general microbial soil activities. Microbial community analysis using Denaturing Gradient Gel Electrophoresis (DGGE) showed that amending the contaminated soil with plant residues (e.g., pea straw) caused changes in the soil microbial structure, as observed using the Shannon diversity index; the diversity index increased in amended treatments, suggesting that microorganisms present on the dead biomass may become important members of the microbial community. In terms of specific hydrocarbonoclastic activity, the number of alkB gene copies in the soil microbial community increased about 300-fold when plant residues were added to contaminated soil. This study has shown that plant residues stimulate TPH degradation in contaminated soil through stimulation and perhaps addition to the pool of hydrocarbon-utilising microorganisms, resulting in a changed microbial structure and increased alkB gene

  15. Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baoliang; Yuan, Miaoxin; Qian, Linbo [Zhejiang Univ., Hangzhou (China). Dept. of Environmental Science; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou (China)

    2012-10-15

    Polycyclic aromatic hydrocarbons (PAHs) are largely accumulated in soils in China. The immobilized-microorganism technique (IMT) is a potential approach for abating soil contamination with PAHs. However, few studies about the application of IMT to contaminated soil remediation were reported. Due to recalcitrance to decomposition, biochar application to soil may enhance soil carbon sequestration, but few studies on the application of biochars to remediation of contaminated soil were reported. In this study, we illustrated enhanced bioremediation of soil having a long history of PAH contamination by IMT using plant residues and biochars as carriers. Two PAH-degrading bacteria, Pseudomonas putida and an unidentified indigenous bacterium, were selected for IMT. The extractability and biodegradation of 15 PAHs in solution and an actual PAH-contaminated soil amended with immobilized-bacteria materials were investigated under different incubation periods. The effects of carriers and the molecular weight of PAHs on bioremediation efficiency were determined to illustrate their different bio-dissipation mechanisms of PAHs in soil. The IMT can considerably enhance the removal of PAHs. Carriers impose different effects on PAH bio-dissipation by amended soil with immobilized-bacteria, which can directly degrade the carrier-associated PAHs. The removal of PAHs from soil depended on PAH molecular weight and carrier types. Enhanced bio-dissipation by IMT was much stronger for 4- and 5-ring PAHs than for 3- and 6-ring ones in soil. Only P400 biochar-immobilized bacteria enhanced bio-dissipation of all PAHs in contaminated soil after a 90-day incubation. Biochar can promote bioremediation of contaminated soil as microbial carriers of IMT. It is vital to select an appropriate biochar as an immobilized carrier to stimulate biodegradation. It is feasible to use adsorption carriers with high sorptive capabilities to concentrate PAHs as well as microorganisms and thereby enhance

  16. Evaluation of biostimulation and Tween 80 addition for the bioremediation of long-term DDT-contaminated soil.

    Science.gov (United States)

    Betancur-Corredor, Bibiana; Pino, Nancy J; Cardona, Santiago; Peñuela, Gustavo A

    2015-02-01

    The bioremediation of a long-term contaminated soil through biostimulation and surfactant addition was evaluated. The concentrations of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) and its metabolites 1,1-dichloro-2,2-bis(4-chlorophenyl) ethane (DDD) and 1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene (DDE) were monitored during an 8-week remediation process. Physicochemical characterization of the treated soil was performed before and after the bioremediation process. The isolation and identification of predominant microorganisms during the remediation process were also carried out. The efficiency of detoxification was evaluated after each bioremediation protocol. Humidity and pH and the heterotrophic microorganism count were monitored weekly. The DDT concentration was reduced by 79% after 8 weeks via biostimulation with surfactant addition (B+S) and 94.3% via biostimulation alone (B). Likewise, the concentrations of the metabolites DDE and DDD were reduced to levels below the quantification limits. The microorganisms isolated during bioremediation were identified as Bacillus thuringiensis, Flavobacterium sp., Cuprivadius sp., Variovorax soli, Phenylobacterium sp. and Lysobacter sp., among others. Analysis with scanning electron microscopy (SEM) allowed visualization of the colonization patterns of soil particles. The toxicity of the soil before and after bioremediation was evaluated using Vibrio fischeri as a bioluminescent sensor. A decrease in the toxic potential of the soil was verified by the increase of the concentration/effect relationship EC50 to 26.9% and 27.2% for B+S and B, respectively, compared to 0.4% obtained for the soil before treatment and 2.5% by natural attenuation after 8 weeks of treatment. Copyright © 2014. Published by Elsevier B.V.

  17. Endosulfan Resistance Profile of Soil Bacteria and Potential Application of Resistant Strains in Bioremediation

    Directory of Open Access Journals (Sweden)

    Chandini P.K.

    2014-05-01

    Full Text Available In the present study, bacterial strains were isolated from the soils of Wayanad District, Kerala, India and the isolates were tested for their tolerance to endosulfan and potential in bioremediation technology. Pesticide contamination in the soils, soil physico-chemical characteristics and socio-economic impacts of pesticide application were also analyzed. 28 pesticide compounds in the soil samples were analyzed and the results revealed that there was no pesticide residues in the soils. As per the survey conducted the pesticide application is very high in the study area and the level of awareness among the farmers was very poor regarding the method of application and its socio-economic and ecological impacts. A total of 9 bacterial strains were isolated with 50μg/ml of endosulfan in the isolating media and the results showed that most of the bacterial strains were highly resistance to endosulfan. Out of the 9 strains isolated 6 were highly resistant to endosulfan (500- 700μg/ml and the other 3 isolates showed the resistance of 250-500μg/ml. From the studied isolate, isolate 9 demonstrating prolific growth and high resistance was selected to check their capability to degrade endosulfan over time. Identification of the selected strain reveals that it belongs to the genus Bacillus. Results of endosulfan removal studies showed that with increase in time, the biomass of the bacterial strains increased. The complete disappearance of endosulfan from the spiked and inoculated broth during the first day of incubation (24 hour interval was observed. While the control flask showed the presence of endosulfan during the experimental period. Pesticide resistant bacteria are widely distributed in the soils of selected study area and the tolerance varied between bacteria even though they were isolated from the soils of the same area. The selected Bacillus species carry the ability to degrade endosulfan at accelerated rates and it could be useful in framing a

  18. Aerobic Bioremediation of PAH Contaminated Soil Results in Increased Genotoxicity and Developmental Toxicity.

    Science.gov (United States)

    Chibwe, Leah; Geier, Mitra C; Nakamura, Jun; Tanguay, Robert L; Aitken, Michael D; Simonich, Staci L Massey

    2015-12-01

    The formation of more polar and toxic polycyclic aromatic hydrocarbon (PAH) transformation products is one of the concerns associated with the bioremediation of PAH-contaminated soils. Soil contaminated with coal tar (prebioremediation) from a former manufactured gas plant (MGP) site was treated in a laboratory scale bioreactor (postbioremediation) and extracted using pressurized liquid extraction. The soil extracts were fractionated, based on polarity, and analyzed for 88 PAHs (unsubstituted, oxygenated, nitrated, and heterocyclic PAHs). The PAH concentrations in the soil tested, postbioremediation, were lower than their regulatory maximum allowable concentrations (MACs), with the exception of the higher molecular weight PAHs (BaA, BkF, BbF, BaP, and IcdP), most of which did not undergo significant biodegradation. The soil extract fractions were tested for genotoxicity using the DT40 chicken lymphocyte bioassay and developmental toxicity using the embryonic zebrafish (Danio rerio) bioassay. A statistically significant increase in genotoxicity was measured in the unfractionated soil extract, as well as in four polar soil extract fractions, postbioremediation (p toxicity was measured in one polar soil extract fraction, postbioremediation (p soil extract fractions in embryonic zebrafish, both pre- and postbioremediation. The increased toxicity measured postbioremediation is not likely due to the 88 PAHs measured in this study (including quinones), because most were not present in the toxic polar fractions and/or because their concentrations did not increase postbioremediation. However, the increased toxicity measured postbioremediation is likely due to hydroxylated and carboxylated transformation products of the 3- and 4-ring PAHs (PHE, 1MPHE, 2MPHE, PRY, BaA, and FLA) that were most degraded.

  19. Partial Characterization of Biosurfactant from Lactobacillus pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil

    Directory of Open Access Journals (Sweden)

    A. B. Moldes

    2013-01-01

    Full Text Available The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-. The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage, as well as CH2–CH3 and C–O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg−1 of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment.

  20. Assessment Bioremediation of Contaminated Soils to Petroleum Compounds and Role of Chemical Fertilizers in the Decomposition Process

    Directory of Open Access Journals (Sweden)

    H. Parvizi Mosaed

    2013-06-01

    Full Text Available Today oil removal from contaminated soil by new methods such as bioremediation is necessary.  In this paper, the effect of chemical fertilizers and aeration on bioremediation of oil-contaminated soil has been investigated. Also the control group, (bioremediation of petroleum hydrocarbons in contaminated soil without treatment by chemical fertilizers and aeration treatment was examined. The condition of experiment is as following: those were treated 70 days in glass columns (30×30×30cm dimensions, ambient temperature (25-30 0C, relative humidity 70%, aeration operation with flow 0.7 lit/min.  The total number of heterotrophic bacteria of break down oil and the total of petroleum hydrocarbons were analyzed using gas chromatography analysis. all experiments were replicated three times. The microbial population results for control soil, treated soil by aeration and treated soil by aeration and chemical fertilizers columns are 2.3×105, 1.04×1010, and 1.14×1011 CFU/gr, respectively. The concentrations of total petroleum hydrocarbons of remaining are 46965, 38124, and 22187 mg kg-1respectively. The obtained results show that the aeration operation and chemical fertilizers have effective role on degradation of petroleum hydrocarbon by oil degrading bacteria from soil.

  1. Partial Characterization of Biosurfactant from Lactobacillus pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil

    Science.gov (United States)

    Moldes, A. B.; Paradelo, R.; Vecino, X.; Cruz, J. M.; Gudiña, E.; Rodrigues, L.; Teixeira, J. A.; Domínguez, J. M.; Barral, M. T.

    2013-01-01

    The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-). The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR) that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage), as well as CH2–CH3 and C–O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg−1 of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment. PMID:23691515

  2. A laboratory feasibility study on a new electrokinetic nutrient injection pattern and bioremediation of phenanthrene in a clayey soil

    International Nuclear Information System (INIS)

    Xu Wei; Wang Cuiping; Liu Haibin; Zhang Zhiyuan; Sun Hongwen

    2010-01-01

    Electrokinetic (EK) injection has recently been proposed to supply nutrients and electron acceptors in bioremediation of low permeable soils. However, effective pH control and uniform injection of inorganic ions have yet to be developed. The present study investigated a new EK injection pattern, which combined electrolyte circulation and electrode polarity reversal on a clayey soil. Soil pH could be controlled ranging from 7.0 to 7.6 by circulating the mixed electrolyte at a suitable rate (800 mL/h in this study) without any buffer. Ammonium and nitrate ions were distributed more uniformly in soil by electrode polarity reversal. The developed electrokinetic injection technology was applied primarily in bioremediation of phenanthrene contaminated soil. Over 80% of the initial 200 mg/kg phenanthrene in soil could be removed in 20 d, and greater phenanthrene removal was achieved using electrode polarity reversal. Hence, the present study provides a promising electrokinetic injection technology for bioremediation of contaminated soils.

  3. Treatability testing of intrinsic bioremediation, biostimulation, and bioaugmentation of diesel-oil contaminated soil at 5 degrees C

    International Nuclear Information System (INIS)

    Wilson, J. J.

    1997-01-01

    The likely success of in-situ bioremediation on diesel-contaminated soil was studied at 5 degrees C under four conditions of soil amendments. The four conditions were: (1) intrinsic bioremediation where the soil received only water, (2) biostimulation with one application of slow-release fertilizer, (3) bioaugmentation with one application of fertilizer and a cold-adapted hydrocarbon-degrading bacterial culture, and (4) surfactant enhanced bioavailability, where the soil received one application of fertilizer and treatment with a biodegradable surfactant solution. All tests showed significant reduction in diesel range under aerobic conditions after a 40-day incubation. The intrinsic control (No.1) was least effective, with 66 per cent of extractable hydrocarbons (TEH) at 5 degrees C. The biostimulated soil (No.2) was most effective, allowing a reduction in TEH of 86 per cent. The bioaugmented soil and surfactant treated soil allowed TEH reduction of about 75 per cent. Based on these results, biostimulation with slow-release fertilizer will be implemented as the most cost-effective means of bioremediation, combined with appropriate monitoring of results. 2 refs., 3 tabs., 4 figs

  4. Bioremediation of engine oil polluted soil by the tropical white rot fungus, Lentinus squarrosulus Mont. (Singer).

    Science.gov (United States)

    Adenipekun, Clementina O; Isikhuemhen, Omoanghe S

    2008-06-15

    This study was conducted to test the efficacy of an indigenous white rot fungus Lentinus squarrosulus in degrading engine oil in soil. Flasks containing sterilized garden soil (100 g) moistened with 75% distilled water (w/v) were contaminated with engine oil 1, 2.5, 5, 10, 20 and 40% w/w concentrations, inoculated with L. squarrosulus and incubated at room temperature for 90 days. Levels of organic matter, pH, total hydrocarbon and elemental content (C, Cu, Fe, K, N, Ni, Zn and available P) were determined post-fungal treatment. Results indicate that contaminated soils inoculated with L. squarrosulus had increased organic matter, carbon and available phosphorus, while the nitrogen and available potassium was reduced. A relatively high percentage degradation of Total Petroleum Hydrocarbon (TPH) was observed at 1% engine oil concentration (94.46%), which decreased to 64.05% TPH degradation at 40% engine oil contaminated soil after 90 days of incubation. The concentrations of Fe, Cu, Zn and Ni recovered from straw/fungal biomass complex increased with the increase of engine-oil contamination and bio-accumulation by the white-rot fungus. The improvement of nutrient content values as well as the bioaccumulation of heavy metals at all levels of engine oil concentrations tested through inoculations with L. squarrosulus is of importance for the bioremediation of engine-oil polluted soils.

  5. Bioremediation of soil and groundwater contaminated with stoddard solvent and mop oil using the PetroClean bioremediation system

    International Nuclear Information System (INIS)

    Schmitt, E.K.; Lieberman, M.T.; Caplan, J.A.; Blaes, D.; Keating, P.; Richards, W.

    1991-01-01

    This paper reports that Environmental Science and Engineering Inc. (ESE) was contracted by a confidential industrial client to perform a three-phased project. Phase I involved characterizing the site and delineating the extent of subsurface contamination. Phase II included biofeasibility and pilot-scale evaluations, determining remedial requirements, and designing the full-scale treatment system. Phase III involved implementing and operating the designed in situ bioremediation system (i.e., PetroClean 4000) to achieve site closure

  6. Bioremediation of soils contaminated by hydrocarbons at the coastal zone of “Punta Majagua”.

    Directory of Open Access Journals (Sweden)

    Jelvys Bermúdez Acosta

    2012-03-01

    Full Text Available The purpose of this research was to describe and assess the main results in the process of bioremediation of 479 m3 of petroleum residuals spilled on the soil and restrained into four deposits of fuel on the coastal zone of “Punta Majagua”, Cienfuegos. The volume of hydrocarbons spilled and contained into the tanks was determined by means of their previous mixture with fertile ground in a ratio of 3/1. The hydrocarbons were disposed in a bioremediation area of 115 m X 75m built in situ. In turn 54, 5 m3 of BIOIL - FC were applied, which were fermented in an industrial bioreactor of 12000 L. An initial sampling was carried out registering values of total hydrocarbons (HTP higher than 41880 mg/kg, with high concentrations of Saturated hydrocarbons, aromatics, resins, asphaltens (SARA. Three subsequent samples were taken with a sampling interval of 0, 45, 90 and 120 days of the application. An average concentration of 1884.57 mg/kg of total hydrocarbons was obtained at 120 days with an average removal rate of 94.8%, moreover values of 94.6%, 90.78%, 86.99% y 79.9% of SARA were respectively reported.

  7. [Bioremediation of oil-polluted soils: using the [13C]/[12C] ratio to characterize microbial products of oil hydrocarbon biodegradation].

    Science.gov (United States)

    Ziakun, A M; Brodskiĭ, E S; Baskunov, B P; Zakharchenko, V N; Peshenko, V P; Filonov, A E; Vetrova, A A; Ivanova, A A; Boronin, A M

    2014-01-01

    We compared data on the extent of bioremediation in soils polluted with oil. The data were obtained using conventional methods of hydrocarbon determination: extraction gas chromatography-mass spectrometry, extraction IR spectroscopy, and extraction gravimetry. Due to differences in the relative abundances of the stable carbon isotopes (13C/12C) in oil and in soil organic matter, these ratios could be used as natural isotopic labels of either substance. Extraction gravimetry in combination with characteristics of the carbon isotope composition of organic products in the soil before and after bioremediation was shown to be the most informative approach to an evaluation of soil bioremediation. At present, it is the only method enabling quantification of the total petroleum hydrocarbons in oil-polluted soil, as well as of the amounts of hydrocarbons remaining after bioremediation and those microbially transformed into organic products and biomass.

  8. Dynamics and role of sphingomonas/mycobacterium populations during bio-remediation of weathered PAH-contaminated soils

    International Nuclear Information System (INIS)

    Bastiaens, L.; Ryngaert, A.; Leys, N.; Van Houtven, D.; Gemoets, J.; Goethals, L.; Springael, D.

    2005-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are major soil pollutants in many industrialized countries. During the last decades, a diversity of PAH-degrading micro-organisms has been isolated, suggesting possibilities for bio-remediation. However, biodegradation of PAHs in contaminated soils is not always successful. The low bio-availability of the PAHs is the major problem, especially in weathered soils. In these soils a tightly sorbed PAH-fraction is present which is in general hardly accessible for microorganisms. In order to bio-remedy PAHs also in weathered soils, stimulation of bacteria which have special strategies to access sorbed organics may be a solution. Sphingomonas and Mycobacterium strains may represent such bacteria as (I) they are often isolated as PAH degraders, (II) they are ubiquitously present in PAH-contaminated soils, and (III) they display features which might promote bioavailability. Lab- and pilot-scale experiments were set up in order (A) to study the dynamics of indigenous Sphingomonas and Mycobacterium populations during bio-remediation, and (B) to evaluate their role in the biodegradation of the less bio-available PAH-fraction during treatment of an historic PAH polluted soil. The soil was treated under natural soil moisture conditions and slurry conditions. The experimental set-ups ranged from 2 g lab-scale test to pilot experiments in 1 ton bio-piles and dry solid reactors (50 kg 70% dry matter soil). Different additives were evaluated for stimulation of the Sphingomonas and Mycobacterium population as a strategy to improve bio-remediation of PAHs. The evolution of this microbial population was followed using culture-independent general and genus-specific PCR-based detection methods targeting the 16S rRNA genes of the eu-bacterial community, Mycobacterium or the Sphingomonas populations, respectively. During the different bio-remediation experiments that were conducted, the Mycobacterium population remained very stable, only minor

  9. Dynamics and role of sphingomonas/mycobacterium populations during bio-remediation of weathered PAH-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Bastiaens, L.; Ryngaert, A.; Leys, N.; Van Houtven, D.; Gemoets, J. [Flemish Institute for Technological Research-Vito, Mol (Belgium); Goethals, L. [ENVISAN, Aalst, (Belgium); Springael, D. [Catholic University of Leuven-KUL, Leuven (Belgium)

    2005-07-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are major soil pollutants in many industrialized countries. During the last decades, a diversity of PAH-degrading micro-organisms has been isolated, suggesting possibilities for bio-remediation. However, biodegradation of PAHs in contaminated soils is not always successful. The low bio-availability of the PAHs is the major problem, especially in weathered soils. In these soils a tightly sorbed PAH-fraction is present which is in general hardly accessible for microorganisms. In order to bio-remedy PAHs also in weathered soils, stimulation of bacteria which have special strategies to access sorbed organics may be a solution. Sphingomonas and Mycobacterium strains may represent such bacteria as (I) they are often isolated as PAH degraders, (II) they are ubiquitously present in PAH-contaminated soils, and (III) they display features which might promote bioavailability. Lab- and pilot-scale experiments were set up in order (A) to study the dynamics of indigenous Sphingomonas and Mycobacterium populations during bio-remediation, and (B) to evaluate their role in the biodegradation of the less bio-available PAH-fraction during treatment of an historic PAH polluted soil. The soil was treated under natural soil moisture conditions and slurry conditions. The experimental set-ups ranged from 2 g lab-scale test to pilot experiments in 1 ton bio-piles and dry solid reactors (50 kg 70% dry matter soil). Different additives were evaluated for stimulation of the Sphingomonas and Mycobacterium population as a strategy to improve bio-remediation of PAHs. The evolution of this microbial population was followed using culture-independent general and genus-specific PCR-based detection methods targeting the 16S rRNA genes of the eu-bacterial community, Mycobacterium or the Sphingomonas populations, respectively. During the different bio-remediation experiments that were conducted, the Mycobacterium population remained very stable, only minor

  10. Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons.

    Science.gov (United States)

    Martinkosky, Luke; Barkley, Jaimie; Sabadell, Gabriel; Gough, Heidi; Davidson, Seana

    2017-02-15

    Crude oil contamination widely impacts soil as a result of release during oil and gas exploration and production activities. The success of bioremediation methods to meet remediation goals often depends on the composition of the crude oil, the soil, and microbial community. Earthworms may enhance bioremediation by mixing and aerating the soil, and exposing soil microorganisms to conditions in the earthworm gut that lead to increased activity. In this study, the common composting earthworm Eisenia fetida was tested for utility to improve remediation of oil-impacted soil. E. fetida survival in soil contaminated with two distinct crude oils was tested in an artificial (lab-mixed) sandy loam soil, and survival compared to that in the clean soil. Crude oil with a high fraction of light-weight hydrocarbons was more toxic to earthworms than the crude oil with a high proportion of heavy polyaromatic and aliphatic hydrocarbons. The heavier crude oil was added to soil to create a 30,000mg/kg crude oil impacted soil, and degradation in the presence of added earthworms and feed, feed alone, or no additions was monitored over time and compared. Earthworm feed was spread on top to test effectiveness of no mixing. TPH degradation rate for the earthworm treatments was ~90mg/day slowing by 200days to ~20mg/day, producing two phases of degradation. With feed alone, the rate was ~40mg/day, with signs of slowing after 500days. Both treatments reached the same end point concentrations, and exhibited faster degradation of aliphatic hydrocarbons C21, decreased. During these experiments, soils were moderately toxic during the first three months, then earthworms survived well, were active and reproduced with petroleum hydrocarbons present. This study demonstrated that earthworms accelerate bioremediation of crude oil in soils, including the degradation of the heaviest polyaromatic fractions. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Bioremediation of oil-contaminated soil using Candida catenulata and food waste

    International Nuclear Information System (INIS)

    Joo, Hung-Soo; Ndegwa, Pius M.; Shoda, Makoto; Phae, Chae-Gun

    2008-01-01

    Even though petroleum-degrading microorganisms are widely distributed in soil and water, they may not be present in sufficient numbers to achieve contaminant remediation. In such cases, it may be useful to inoculate the polluted area with highly effective petroleum-degrading microbial strains to augment the exiting ones. In order to identify a microbial strain for bioaugmentation of oil-contaminated soil, we isolated a microbial strain with high emulsification and petroleum hydrocarbon degradation efficiency of diesel fuel in culture. The efficacy of the isolated microbial strain, identified as Candida catenulata CM1, was further evaluated during composting of a mixture containing 23% food waste and 77% diesel-contaminated soil including 2% (w/w) diesel. After 13 days of composting, 84% of the initial petroleum hydrocarbon was degraded in composting mixes containing a powdered form of CM1 (CM1-solid), compared with 48% of removal ratio in control reactor without inoculum. This finding suggests that CM1 is a viable microbial strain for bioremediation of oil-contaminated soil with food waste through composting processes. - Enhancement on degradation ability of petroleum hydrocarbon by the microbial strain in the composting process with food waste

  12. Bioremediation of oil-contaminated soil using Candida catenulata and food waste.

    Science.gov (United States)

    Joo, Hung-Soo; Ndegwa, Pius M; Shoda, Makoto; Phae, Chae-Gun

    2008-12-01

    Even though petroleum-degrading microorganisms are widely distributed in soil and water, they may not be present in sufficient numbers to achieve contaminant remediation. In such cases, it may be useful to inoculate the polluted area with highly effective petroleum-degrading microbial strains to augment the exiting ones. In order to identify a microbial strain for bioaugmentation of oil-contaminated soil, we isolated a microbial strain with high emulsification and petroleum hydrocarbon degradation efficiency of diesel fuel in culture. The efficacy of the isolated microbial strain, identified as Candida catenulata CM1, was further evaluated during composting of a mixture containing 23% food waste and 77% diesel-contaminated soil including 2% (w/w) diesel. After 13 days of composting, 84% of the initial petroleum hydrocarbon was degraded in composting mixes containing a powdered form of CM1 (CM1-solid), compared with 48% of removal ratio in control reactor without inoculum. This finding suggests that CM1 is a viable microbial strain for bioremediation of oil-contaminated soil with food waste through composting processes.

  13. Bioremediation capability and characterization of bacteria isolated from petroleum contaminated soils in Iran

    Directory of Open Access Journals (Sweden)

    Golafarin Ghoreishi

    2017-07-01

    Full Text Available This study was carried out to isolate bacteria for bioremediation of petroleum polluted soils. Five samples were used for isolation in this study. They were four soil samples in addition to one kerosene sample. The soil samples including soils contaminated by crude oil and gas oil and two soil samples with no outward contamination which were collected from Shiraz Oil Refinery sites. Seven strains were selected among the isolated colonies for further experiments. The selected isolates were cultured in standard succinate medium (SSM minimal medium in which 2.5% v/v kerosene was used as carbon source. In another bacterial SSM culture, carbon, sulfur or nitrogen source was removed and 20% v/v kerosene added to check the ability of isolates to utilizekerosene as sole source for C, N and S. Finally, cultures of four strains with higher growth in modified SSM cultures were selected for GC analysis. In this study they were named C2 and C4 which were isolated from crude oil contaminated soil and SI1 and SI2 isolated from soils with no outward contamination. GC analysis showed that C2 could degrade 69% of 5% v/v kerosene in 7 d, while C4 and SI1 degraded 48% and 42% of 5% v/v kerosene during this 7-d period respectively, and the degradation ability of SI2 was 38% after 7 d. Analysis of 16S rRNA gene showed that C2 was close to Citrobacter sedlakii, C4 and SI1 were related to Entrobacter hormeachei and SI2 was close to Entrobacter cloacae, respectively.

  14. Bioremediation of petroleum contaminated soil at CFS Alert - Laboratory scale respirometry experiment

    International Nuclear Information System (INIS)

    Haidar, S.; Bennett, J.; Jarrett, P.; Biggar, K.

    1998-01-01

    The feasibility of 'biopiling' was tested at Canadian Forces Station 'Alert', located in the high Arctic where the feasibility of bioremediation is yet to be proven. Laboratory respirometer experiments were conducted at 11 degrees C that examined the behaviour of indigenous microorganisms. Experiments were also carried out at one contaminated site. Various soil properties were analyzed, as well as total petroleum hydrocarbons. Results showed that the respirometer system functioned properly in monitoring the behaviour of microorganisms, that indigenous microorganisms were active at 11 degrees C, and that they functioned at a constant rate of oxygen consumption. These results suggest that biopiling may be feasible under the conditions existing at CFS 'Alert'. 12 refs., 5 tabs., 8 figs

  15. An innovative approach to bioremediation of mercury contaminated soils from industrial mining operations.

    Science.gov (United States)

    McCarthy, Damien; Edwards, Grant C; Gustin, Mae S; Care, Andrew; Miller, Matthieu B; Sunna, Anwar

    2017-10-01

    Soils contaminated with mercury (Hg) have proved expensive and logistically difficult to remediate. Research continues into finding suitable environmentally-friendly and efficient ways of achieving this end. Bioremediation is an option, which employs the strategies microorganisms have evolved to deal with Hg. One microbial strategy involves uptake and intracellular volatilisation of mercuric ions, which passively diffuse from the cell and back into the atmosphere. In this work, Pseudomonas veronii cells grown to stationary phase were immobilised in a xanthan gum-based biopolymer via encapsulation. The P. veronii-biopolymer mix was then coated onto natural zeolite granules. Zeolite immobilised cells remained viable for at least 16 weeks stored under ambient room temperature. Furthermore, the immobilised cells were shown to retain both viability and Hg volatilisation functionality after transportation from Australia to the USA, where they were applied to Hg contaminated soil. Maximum flux rates exceeded 10 μg Hg m 2  h -1 from mine tailings (≈7 mg kg -1  Hg with 50% v/v water). This was 4 orders of magnitude above background flux levels. It is envisioned that emitted gaseous elemental mercury (GEM) can be readily captured, and transformed back into metallic Hg, which can then be stored appropriately or recycled. This breaks the Hg cycle, as GEM is no longer translocated back to the atmospheric compartment. The immobilising excipients used in this research overcome many logistical issues with delivery of suitable microbial loads to locations of mercury contamination and presents a facile and inexpensive method of augmenting contaminated sites with selected microbial consortia for bioremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Bioremediation of Crude Oil Contaminated Desert Soil: Effect of Biostimulation, Bioaugmentation and Bioavailability in Biopile Treatment Systems.

    Science.gov (United States)

    Benyahia, Farid; Embaby, Ahmed Shams

    2016-02-15

    This work was aimed at evaluating the relative merits of bioaugmentation, biostimulation and surfactant-enhanced bioavailability of a desert soil contaminated by crude oil through biopile treatment. The results show that the desert soil required bioaugmentation and biostimulation for bioremediation of crude oil. The bioaugmented biopile system led to a total petroleum hydrocarbon (TPH) reduction of 77% over 156 days while the system with polyoxyethylene (20) sorbitan monooleate (Tween 80) gave a 56% decrease in TPH. The biostimulated system with indigenous micro-organisms gave 23% reduction in TPH. The control system gave 4% TPH reduction. The addition of Tween 80 led to a respiration rate that peaked in 48 days compared to 88 days for the bioaugmented system and respiration declined rapidly due to nitrogen depletion. The residual hydrocarbon in the biopile systems studied contained polyaromatics (PAH) in quantities that may be considered as hazardous. Nitrogen was found to be a limiting nutrient in desert soil bioremediation.

  17. Application of compost for effective bioremediation of organic contaminants and pollutants in soil.

    Science.gov (United States)

    Kästner, Matthias; Miltner, Anja

    2016-04-01

    Soils contaminated with hazardous chemicals worldwide are awaiting remediation activities; bioremediation is often considered as a cost-effective remediation approach. Potential bioapproaches are biostimulation, e.g. by addition of nutrients, fertiliser and organic substrates, and bioaugmentation by addition of compound-degrading microbes or of organic amendments containing active microorganisms, e.g. activated sludge or compost. In most contaminated soils, the abundance of the intrinsic metabolic potential is too low to be improved by biostimulation alone, since the physical and chemical conditions in these soils are not conducive to biodegradation. In the last few decades, compost or farmyard manure addition as well as composting with various organic supplements have been found to be very efficient for soil bioremediation. In the present minireview, we provide an overview of the composting and compost addition approaches as 'stimulants' of natural attenuation. Laboratory degradation experiments are often biased either by not considering the abiotic factors or by focusing solely on the elimination of the chemicals without taking the biotic factors and processes into account. Therefore, we first systemise the concepts of composting and compost addition, then summarise the relevant physical, chemical and biotic factors and mechanisms for improved contaminant degradation triggered by compost addition. These factors and mechanisms are of particular interest, since they are more relevant and easier to determine than the composition of the degrading community, which is also addressed in this review. Due to the mostly empirical knowledge and the nonstandardised biowaste or compost materials, the field use of these approaches is highly challenging, but also promising. Based on the huge metabolic diversity of microorganisms developing during the composting processes, a highly complex metabolic diversity is established as a 'metabolic memory' within developing and mature

  18. Comparative Bioremediation of Crude Oil-Amended Tropical Soil Microcosms by Natural Attenuation, Bio augmentation, or Bio enrichment

    International Nuclear Information System (INIS)

    Alvarez, V.M; Marques, J.M; Korenblum, E; Seldin, L

    2011-01-01

    Bioremediation is an efficient strategy for cleaning up sites contaminated with organic pollutants. In this study, we evaluated the effectiveness of monitored natural attenuation, bio enrichment, and bio augmentation using a consortium of three actinomycetes strains in remediating two distinct typical Brazilian soils from the Atlantic Forest and Cerrado biomes that were contaminated with crude oil, with or without the addition of NaCl. Microcosms were used to simulate bioremediation treatments over a 120-day period. During this period, we monitored total petroleum hydrocarbons (TPHs) and n-alkanes degradation and changes in bacterial communities. Over time, we found the degradation rate of n-alkanes was higher than TPH in both soils, independent of the treatment used. In fact, our data show that the total bacterial community in the soils was mainly affected by the experimental period of time, while the type of bioremediation treatment used was the main factor influencing the actinomycetes populations in both soils. Based on these data, we conclude that monitored natural attenuation is the best strategy for remediation of the two tropical soils studied, with or without salt addition.

  19. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Ali; Ghoshal, Subhasis, E-mail: subhasis.ghoshal@mcgill.ca

    2014-09-15

    Highlights: • Aeration and moisture addition alone caused extensive hydrocarbon biodegradation. • 30-day slurry reactor remediation endpoints attained in 385 days in biopiles. • High nitrogen concentrations inhibited hydrocarbon degradation. • Inhibition of biodegradation linked to lack of shifts in soil microbial community. - Abstract: Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16–C34) in a pilot-scale biopile experiment conducted at 15 °C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16–C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day{sup −1} in biopile tank compared to 0.11 day{sup −1} in slurry bioreactors for C16–C34 hydrocarbons, the biodegradation extents for this fraction

  20. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site

    International Nuclear Information System (INIS)

    Akbari, Ali; Ghoshal, Subhasis

    2014-01-01

    Highlights: • Aeration and moisture addition alone caused extensive hydrocarbon biodegradation. • 30-day slurry reactor remediation endpoints attained in 385 days in biopiles. • High nitrogen concentrations inhibited hydrocarbon degradation. • Inhibition of biodegradation linked to lack of shifts in soil microbial community. - Abstract: Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16–C34) in a pilot-scale biopile experiment conducted at 15 °C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16–C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day −1 in biopile tank compared to 0.11 day −1 in slurry bioreactors for C16–C34 hydrocarbons, the biodegradation extents for this fraction were

  1. Improving Polycyclic Aromatic Hydrocarbon Biodegradation in Contaminated Soil Through Low-Level Surfactant Addition After Conventional Bioremediation.

    Science.gov (United States)

    Adrion, Alden C; Singleton, David R; Nakamura, Jun; Shea, Damian; Aitken, Michael D

    2016-09-01

    Efficacy of bioremediation for soil contaminated with polycyclic aromatic hydrocarbons (PAHs) may be limited by the fractions of soil-bound PAHs that are less accessible to PAH-degrading microorganisms. In previous test-tube-scale work, submicellar doses of nonionic surfactants were screened for their ability to enhance the desorption and biodegradation of residual PAHs in soil after conventional bioremediation in a laboratory-scale, slurry-phase bioreactor. Polyoxyethylene sorbitol hexaoleate (POESH) was the optimum surfactant for enhancing PAH removal, especially the high-molecular weight PAHs. This work extends that concept by treating the effluent from the slurry-phase bioreactor in a second-stage batch reactor, to which POESH was added, for an additional 7 or 12 days. Surfactant amendment removed substantial amounts of the PAHs and oxy-PAHs remaining after conventional slurry-phase bioremediation, including more than 80% of residual 4-ring PAHs. Surfactant-amended treatment decreased soil cytotoxicity, but often increased the genotoxicity of the soil as measured using the DT-40 chicken lymphocyte DNA damage response assay. Potential ecotoxicity, measured using a seed germination assay, was reduced by bioreactor treatment and was reduced further after second-stage treatment with POESH. Of bacteria previously implicated as potential PAH degraders under POESH-amended conditions in a prior study, members of the Terrimonas genus were associated with differences in high-molecular weight PAH removal in the current study. Research using submicellar doses of surfactant as a second-stage treatment step is limited and these findings can inform the design of bioremediation systems at field sites treating soil contaminated with PAHs and other hydrophobic contaminants that have low bioaccessibility.

  2. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)--a field experiment.

    Science.gov (United States)

    Beškoski, Vladimir P; Gojgić-Cvijović, Gordana; Milić, Jelena; Ilić, Mila; Miletić, Srdjan; Solević, Tatjana; Vrvić, Miroslav M

    2011-03-01

    Mazut (heavy residual fuel oil)-polluted soil was exposed to bioremediation in an ex situ field-scale (600 m(3)) study. Re-inoculation was performed periodically with biomasses of microbial consortia isolated from the mazut-contaminated soil. Biostimulation was conducted by adding nutritional elements (N, P and K). The biopile (depth 0.4m) was comprised of mechanically mixed polluted soil with softwood sawdust and crude river sand. Aeration was improved by systematic mixing. The biopile was protected from direct external influences by a polyethylene cover. Part (10 m(3)) of the material prepared for bioremediation was set aside uninoculated, and maintained as an untreated control pile (CP). Biostimulation and re-inoculation with zymogenous microorganisms increased the number of hydrocarbon degraders after 50 d by more than 20 times in the treated soil. During the 5 months, the total petroleum hydrocarbon (TPH) content of the contaminated soil was reduced to 6% of the initial value, from 5.2 to 0.3 g kg(-1) dry matter, while TPH reduced to only 90% of the initial value in the CP. After 150 d there were 96%, 97% and 83% reductions for the aliphatic, aromatic, and nitrogen-sulphur-oxygen and asphaltene fractions, respectively. The isoprenoids, pristane and phytane, were more than 55% biodegraded, which indicated that they are not suitable biomarkers for following bioremediation. According to the available data, this is the first field-scale study of the bioremediation of mazut and mazut sediment-polluted soil, and the efficiency achieved was far above that described in the literature to date for heavy fuel oil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils

    Directory of Open Access Journals (Sweden)

    Mohsenzadeh Fariba

    2012-12-01

    Full Text Available Abstract Background Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation. Methods In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran and their growth ability was checked in potato dextrose agar (PDA media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase was evaluated in the fungal colonies and bioremediation ability of the fungi was checked in the experimental pots containing 3 kg sterilized soil and different concentrations of petroleum (0-10% w/w. Results Four fungal strains, Acromonium sp., Alternaria sp., Aspergillus terreus and Penicillium sp., were selected as the most resistant ones. They were able to growth in the subjected concentrations and Alternaria sp. showed the highest growth ability in the petroleum containing media. The enzyme assay showed that the enzymatic activity was increased in the oil-contaminated media. Bioremediation results showed that the studied fungi were able to decrease petroleum pollution. The highest petroleum removing efficiency of Aspergillus terreus, Penicillium sp., Alternaria sp. and Acromonium sp. was evaluated in the 10%, 8%, 8% and 2% petroleum pollution respectively. Conclusions Fungi are important microorganisms in decreasing of petroleum pollution. They have bioremediation potency that is related to their enzymatic activities.

  4. Evaluation of Oil Removal Efficiency and Enzymatic Activity in Some fungal Strains for Bioremediation of Petroleum-Polluted Soils

    Directory of Open Access Journals (Sweden)

    Fariba Mohsenzadeh

    2012-12-01

    Full Text Available Background: Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation.Methods: In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran and their growth ability was checked in potato dextrose agar (PDA media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase was evaluated in the fungal colonies and bioremediation ability of the fungi was checked in the experimental pots containing 3 kg sterilized soil and different concentrations of petroleum (0-10% w/w.Results: Four fungal strains, Acromonium sp., Alternaria sp., Aspergillus terreus and Penicillium sp., were selected asthe most resistant ones. They were able to growth in the subjected concentrations and Alternaria sp. showed thehighest growth ability in the petroleum containing media. The enzyme assay showed that the enzymatic activity was increased in the oil-contaminated media. Bioremediation results showed that the studied fungi were able to decrease petroleum pollution. The highest petroleum removing efficiency of Aspergillus terreus, Penicillium sp.,Alternaria sp. and Acromonium sp. was evaluated in the 10%, 8%, 8% and 2% petroleum pollution respectively.Conclusions: Fungi are important microorganisms in decreasing of petroleum pollution. They have bioremediation potency that is related to their enzymatic activities.

  5. Synergistic effects of bioremediation and electrokinetics in the remediation of petroleum-contaminated soil.

    Science.gov (United States)

    Guo, Shuhai; Fan, Ruijuan; Li, Tingting; Hartog, Niels; Li, Fengmei; Yang, Xuelian

    2014-08-01

    The present study evaluated the coupling interactions between bioremediation (BIO) and electrokinetics (EK) in the remediation of total petroleum hydrocarbons (TPH) by using bio-electrokinetics (BIO-EK) with a rotatory 2-D electric field. The results demonstrated an obvious positive correlation between the degradation extents of TPH and electric intensity both in the EK and BIO-EK tests. The use of BIO-EK showed a significant improvement in degradation of TPH as compared to BIO or EK alone. The actual degradation curve in BIO-EK tests fitted well with the simulated curve obtained by combining the degradation curves in BIO- and EK-only tests during the first 60 d, indicating a superimposed effect of biological degradation and electrochemical stimulation. The synergistic effect was particularly expressed during the later phase of the experiment, concurrent with changes in the microbial community structure. The community composition changed mainly according to the duration of the electric field, leading to a reduction in diversity. No significant spatial shifts in microbial community composition and bacterial numbers were detected among different sampling positions. Soil pH was uniform during the experimental process, soil temperature showed no variations between the soil chambers with and without an electric field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Bioremediation and reclamation of soil contaminated with petroleum oil hydrocarbons by exogenously seeded bacterial consortium: a pilot-scale study.

    Science.gov (United States)

    Mukherjee, Ashis K; Bordoloi, Naba K

    2011-03-01

    Spillage of petroleum hydrocarbons causes significant environmental pollution. Bioremediation is an effective process to remediate petroleum oil contaminant from the ecosystem. The aim of the present study was to reclaim a petroleum oil-contaminated soil which was unsuitable for the cultivation of crop plants by using petroleum oil hydrocarbon-degrading microbial consortium. Bacterial consortium consisting of Bacillus subtilis DM-04 and Pseudomonas aeruginosa M and NM strains were seeded to 20% (v/w) petroleum oil-contaminated soil, and bioremediation experiment was carried out for 180 days under laboratory condition. The kinetics of hydrocarbon degradation was analyzed using biochemical and gas chromatographic (GC) techniques. The ecotoxicity of the elutriates obtained from petroleum oil-contaminated soil before and post-treatment with microbial consortium was tested on germination and growth of Bengal gram (Cicer aretinum) and green gram (Phaseolus mungo) seeds. Bacterial consortium showed a significant reduction in total petroleum hydrocarbon level in contaminated soil (76% degradation) as compared to the control soil (3.6% degradation) 180 days post-inoculation. The GC analysis confirmed that bacterial consortium was more effective in degrading the alkane fraction compared to aromatic fraction of crude petroleum oil hydrocarbons in soil. The nitrogen, sulfur, and oxygen compounds fraction was least degraded. The reclaimed soil supported the germination and growth of crop plants (C. aretinum and P. mungo). In contrast, seeds could not be germinated in petroleum oil-contaminated soil. The present study reinforces the application of bacterial consortium rather than individual bacterium for the effective bioremediation and reclamation of soil contaminated with petroleum oil.

  7. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site.

    Science.gov (United States)

    Akbari, Ali; Ghoshal, Subhasis

    2014-09-15

    Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16-C34) in a pilot-scale biopile experiment conducted at 15°C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16-C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day(-1) in biopile tank compared to 0.11 day(-1) in slurry bioreactors for C16-C34 hydrocarbons, the biodegradation extents for this fraction were comparable in these two systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Bioremediation of oil sludge contaminated soil using bulking agent mixture enriched consortia of microbial inoculants based by irradiated compost

    International Nuclear Information System (INIS)

    Tri Retno, D.L.; Mulyana, N.

    2013-01-01

    Bulking agent mixture enriched consortia of microbial inoculants based by irradiated compost was used on bioremediation of microcosm scale contaminated by hydrocarbon soil. Bioremediation composting was carried out for 42 days. Composting was done with a mixture of bulking agent (sawdust, residual sludge biogas and compost) by 30%, mud petroleum (oil sludge) by 20% and 50% of soil. Mixture of 80% soil and 20% oil sludge was used as a control. Irradiated compost was used as a carrier for consortia of microbial inoculants (F + B) which biodegradable hydrocarbons. Treatment variations include A1, A2, B1, B2, C1, C2, D1 and D2. Process parameters were observed to determine the optimal conditions include: temperature, pH, water content, TPC (Total Plate Count) and degradation of % TPH (Total Petroleum Hydrocarbon). Optimal conditions were achieved in the remediation of oil sludge contamination of 20% using the B2 treatment with the addition consortia of microbial inoculants based by irradiated compost of sawdust (bulking agentby 30% at concentrations of soil by 50% with TPH degradation optimal efficiency of 81.32%. The result of GC-MS analysis showed that bioremediation for 42 days by using a sawdust as a mixture of bulking agents which enriched consortia of microbial inoculants based by irradiated compost is biodegradeable, so initial hydrocarbons with the distribution of the carbon chain C-7 to C-54 into final hydrocarbons with the distribution of carbon chain C-6 to C-8. (author)

  9. Insights into microbial communities mediating the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site.

    Science.gov (United States)

    Siles, José A; Margesin, Rosa

    2018-05-01

    The study of microbial communities involved in soil bioremediation is important to identify the specific microbial characteristics that determine improved decontamination rates. Here, we characterized bacterial, archaeal, and fungal communities in terms of (i) abundance (using quantitative PCR) and (ii) taxonomic diversity and structure (using Illumina amplicon sequencing) during the bioremediation of long-term hydrocarbon-contaminated soil from an Alpine former military site during 15 weeks comparing biostimulation (inorganic NPK fertilization) vs. natural attenuation and considering the effect of temperature (10 vs. 20 °C). Although a considerable amount of total petroleum hydrocarbon (TPH) loss could be attributed to natural attenuation, significantly higher TPH removal rates were obtained with NPK fertilization and at increased temperature, which were related to the stimulation of the activities of indigenous soil microorganisms. Changing structures of bacterial and fungal communities significantly explained shifts in TPH contents in both natural attenuation and biostimulation treatments at 10 and 20 °C. However, archaeal communities, in general, and changing abundances and diversities in bacterial and fungal communities did not play a decisive role on the effectiveness of soil bioremediation. Gammaproteobacteria and Bacteroidia classes, within bacterial community, and undescribed/novel groups, within fungal community, proved to be actively involved in TPH removal in natural attenuation and biostimulation at both temperatures.

  10. Enhanced bioremediation of oil contaminated soil by graded modified Fenton oxidation.

    Science.gov (United States)

    Xu, Jinlan; Xin, Lei; Huang, Tinglin; Chang, Kun

    2011-01-01

    Graded modified Fenton's (MF) oxidation is a strategy in which H2O2 is added intermittently to prevent a sharp temperature increase and undesired soil sterilization at soil circumneutral pH versus adding the same amount of H2O2 continuously. The primary objective of the present study was to investigate whether a mild MF pre-oxidation such as a stepwise addition of H2O2 can prevent sterilization and achieve a maximum degradation of tank oil in soil. Optimization experiments of graded MF oxidation were conducted using citric acid, oxalic acid and SOLV-X as iron chelators under different frequencies of H2O2 addition. The results indicated that the activity order of iron chelates decreased as: citric acid (51%) > SOLV-X (44%) > oxalic acid (9%), and citric acid was found to be an optimized iron chelating agent of graded MF oxidation. Three-time addition of H2O2 was found to be favorable and economical due to decreasing total petroleum hydrocarbon removal from three time addition (51%) to five time addition (59%). Biological experiments were conducted after graded MF oxidation of tank oil completed under optimum conditions mentioned above. After graded oxidation, substantially higher increase (31%) in microbial activity was observed with excessive H2O2 (1470 mmol/L, the mol ratio of H2O2:Fe2+ was 210:1) than that of non-oxidized soil. Removal efficiency of tank oil was up to 93% after four weeks. Especially, the oil fraction (C10-C40) became more biodagradable after graded MF oxidation than its absence. Therefore, graded MF oxidation is a mild pretreatment to achieve an effective bioremediation of oil contaminated soil.

  11. Enhancement and inhibition of microbial activity in hydrocarbon- contaminated arctic soils: Implications for nutrient-amended bioremediation

    Science.gov (United States)

    Braddock, J.F.; Ruth, M.L.; Catterall, P.H.; Walworth, J.L.; McCarthy, K.A.

    1997-01-01

    Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus. When nutrients were added to soil in the field at three levels of N:P (100:45, 200:90, and 300:135 mg/kg soil), the greatest stimulation in microbial activity occurred at the lowest, rather than the highest, level of nutrient addition. The total soil-water potentials ranged from -2 to -15 bar with increasing levels of fertilizer. Semivolatile hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus. When nutrients were added to soil in the field at three levels of N:P (100:45, 200:90, and 300:135 mg/kg soil), the greatest stimulation in microbial activity occurred at the lowest, rather than the highest, level of nutrient addition

  12. Bioremediation of anthracene contaminated soil in bio-slurry phase reactor operated in periodic discontinuous batch mode

    International Nuclear Information System (INIS)

    Prasanna, D.; Venkata Mohan, S.; Purushotham Reddy, B.; Sarma, P.N.

    2008-01-01

    Bioremediation of soil-bound anthracene was studied in a series of bio-slurry phase reactors operated in periodic discontinuous/sequencing batch mode under anoxic-aerobic-anoxic microenvironment using native soil microflora. Five reactors were operated for a total cycle period of 144 h (6 days) at soil loading rate of 16.66 kg soil/m 3 /day at 30 ± 2 o C temperature. The performance of the bioreactors was studied at various substrate loading rates (volumetric substrate loading rate (SLR), 0.1, 0.2 and 0.3 g anthracene/kg soil/day) with and without bioaugmentation (domestic sewage inoculum; 2 x 10 6 CFU/g of soil). Control reactor (without microflora) showed negligible degradation of anthracene due to the absence of biological activity. The performance of the bio-slurry system with respect to anthracene degradation was found to depend on both substrate loading rate and bioaugmentation. Application of bioaugmentation showed positive influence on the rate of degradation of anthracene. Anthracene degradation data was analysed using different kinetic models to understand the mechanism of bioremediation process in the bio-slurry phase system. Variation in pH/oxidation-reduction potential (ORP), soil microflora and oxygen consumption rate correlated well with the substrate degradation pattern observed during soil slurry phase anthracene degradation

  13. Distribution of ion contents and microorganisms during the electro-bioremediation of petroleum-contaminated saline soil.

    Science.gov (United States)

    Zhang, Meng; Guo, Shuhai; Li, Fengmei; Wu, Bo

    2017-10-15

    This study investigated the distribution of ion contents and microorganisms during the electro-bioremediation (EK-Bio) of petroleum-contaminated saline soil. The results showed that soil ions tend to accumulate around the electrodes, and the concentration was correlated with the distance from the electrodes. The average soil ion content was 7.92 g/kg around the electrodes (site A) and 0.55 g/kg at the furthest distance from the electrodes (site B) after 112 days of treatment, while the initial average content was 3.92 g/kg. Smooth linear (R 2 = 0.98) loss of soil ions was observed at site C, which was closer to the electrodes than site B, and had a final average soil ion content of 1.96 g/kg. The dehydrogenase activity was much higher in EK-Bio test soil than in the Bio test soil after 28 days of treatment, and followed the order: site C > site B > site A. However, the soil dehydrogenase activity dropped continuously when the soil ion reached very high and low concentrations at sites A and B. The soil microbial community varied in sample sites that had different ion contents, and the soil microbial diversity followed the order: site C > site B > site A. The applied electric field clearly enhanced the biodegradation efficiency for soil petroleum contaminants. However, the biodegradation promotion effects were weakening in soils where the ion contents were extremely high and low (sites A and B). These results can provide useful information for EK-Bioremediation of organic-contaminated saline soil.

  14. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil.

    Science.gov (United States)

    Sutton, Nora B; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-02-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton's reagent and modified Fenton's reagent coupled with a subsequent bioremediation phase of 187d, both with and without nutrient amendment. Chemical oxidation mobilized SOM into the liquid phase, producing dissolved organic carbon (DOC) concentrations 8-16 times higher than the untreated field sample. Higher aqueous concentrations of nitrogen and phosphorous species were also observed following oxidation; NH4(+) increased 14-172 times. During the bioremediation phase, dissolved carbon and nutrient species were utilized for microbial growth-yielding DOC concentrations similar to field sample levels within 56d of incubation. In the absence of nutrient amendment, the highest microbial respiration rates were correlated with higher availability of nitrogen and phosphorus species mobilized by oxidation. Significant diesel degradation was only observed following nutrient amendment, implying that nutrients mobilized by chemical oxidation can increase microbial activity but are insufficient for bioremediation. While all bioremediation occurred in the first 28d of incubation in the biotic control microcosm with nutrient amendment, biodegradation continued throughout 187d of incubation following chemical oxidation, suggesting that chemical treatment also affects the desorption of organic contaminants from SOM. Overall, results indicate that biodegradation of DOC, as an alternative substrate to diesel, and biological utilization of mobilized nutrients have implications for the success of coupled ISCO and ISB treatments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Cadmium tolerance and bioremediation potential of bacteria isolated from soils irrigated with untreated industrial effluent

    International Nuclear Information System (INIS)

    Ahmad, R.; Hassan, M.M.U.

    2015-01-01

    The present study was aimed to investigate the Cd tolerance of bacteria isolated from municipal effluent irrigated soils. Thirty bacterial strains were isolated and screened for their Cd+ tolerance by growing on nutrient agar plates amended with varying amount of Cd +. Out of them four bacteria (GS 2, GS5, GS10 and GS20) were found highly Cd tolerant (600 ppm Cd). The minimum inhibitory concentration of Cd+ was found 200 ppm. The isolates showed optimum growth at 30 degree C and pH 7.5-8.5. Growth curve study against different concentrations of Cd (0-600 ppm) revealed that GS2 was more tolerant among selected strains showing only 33% reduction in growth compared to 64% by GS5 and 77% by both GS 10 and GS20 at 600 ppm Cd. Inoculation of maize seeds with Cd tolerant bacteria for root elongation demonstrated upto 1.7 fold increase in root elongation (in the absence of Cd) and up to 1.5 fold (in the presence of 50 ppm Cd) compared to the un-inoculated plants. The results of the study revealed that the bacterial isolates exhibiting great Cd tolerance and growth promoting activity can be potential candidates for bioremediation of metal contaminated soils and wastewaters. (author)

  16. Determination and Bioremediation of Petroleum Pollutant in Soil of Persian Gulf Coast

    Directory of Open Access Journals (Sweden)

    Manouchehr Vossoughi

    2004-05-01

    Full Text Available The amount of petroleum pollutant in soil of Persian Gulf coast at 8 selected stations were determined and showed the concentration between 14.3-143.6 mg/kg.  Nickel has the highest concentration  level of heavy metal with 58.6 mg/kg in Emam Hassan area at 50 kilometers of west Boushehr port. Bioremediation of contaminated soil were studied in two medium in slurry and solid state fermentation and 8 bacteria types were isolated. Four species: EM2, SH, GN1 and GN3 presented optimal PAH removal efficiency.  Biodegradation efficiency under slurry condition was found after 45 days which during this period, naphthalene and phenanthrene showed 73% and 66% removal efficiency respectively. Under solid state conditions, microbial activity of mixed and pure culture were studied.  The results presented that mixed culture due to high ability of different strains for growth, showed higher degradability compared to pure culture, but due to insufficient mixing under solid state condition, mass transfer velocity of nutrient reduces to the level that caused reduction in cell activity, so removal efficiency under slurry condition was found higher than solid state respectively.

  17. Bioremediation of Contaminated Soil with Oils Residuals through Bioaugmentation and Natural Attenuation

    Directory of Open Access Journals (Sweden)

    Maitê Carla Deon

    2012-04-01

    Full Text Available The potential for soil contamination by oil spills is growing, due to heavy industrialization and economic development of countries. Due to this fact, the bioremediation has become an alternative to remediate areas through the use of biological agents. Two microorganisms, isolated from a lipid-rich effluent, were used in the bioaugmentation of soils contaminated with diesel oil, lubricating oil and soybean oil. Natural attenuation tests were conducted as controls. The removal of diesel fuel at the time of 21 d were of 18.5%, 7.30% and 11.38%, respectively, for the bioaugmentation with isolated I1 and I2 and natural attenuation. The removal of lubricating oil were 41.6%, 14.16% and 6.91% respectively for the bioaugmentation with the isolated I1 and I2 and natural attenuation, while for soybean oil removals were of 87 8%, 73.9% and 49.4%. Considering the processes of bioaugmentatiom and natural attenuation, the bioaugmentation with the isolated I1 showed better results, possibly due to the production of compounds capable of reducing the surface tension during the preparation of bioaugmentation.

  18. The use of transgenic plants in the bioremediation of soils contaminated with trace elements

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, U. [Max Planck Inst. of Molecular Plant Physiology, Potsdam (Germany); Chardonnens, A.N. [Faculty of Biology, Bielefeld Univ. (Germany)

    2001-07-01

    The use of plants to clean-up soils contaminated with trace elements could provide a cheap and sustainable technology for bioremediation. Field trials suggested that the rate of contaminant removal using conventional plants and growth conditions is insufficient. The introduction of novel traits into high biomass plants in a transgenic approach is a promising strategy for the development of effective phytoremediation technologies. This has been exemplified by generating plants able to convert organic and ionic forms of mercury into the less toxic, volatile, elemental mercury, a trait that occurs naturally only in some bacteria and not at all in plants. The engineering of a phytoremediator plant requires the optimization of a number of processes, including trace element mobilization in the soil, uptake into the root, detoxification and allocation within the plant. A number of transgenic plants have been generated in an attempt to modify the tolerance, uptake or homeostasis of trace elements. The phenotypes of these plants provide important insights for the improvement of engineering strategies. A better understanding, both of micronutrient acquisition and homeostasis, and of the genetic, biochemical and physiological basis of metal hyperaccumulation in plants, will be of key importance for the success of phytoremediation. (orig.)

  19. Combined in-situ and ex-situ bioremediation of petroleum hydrocarbon contaminated soils by closed-loop soil vapor extraction and air injection

    International Nuclear Information System (INIS)

    Hu, S.S.; Buckler, M.J.

    1993-01-01

    Treatment and restoration of petroleum hydrocarbon contaminated soils at a bulk petroleum above-ground storage tank (AST) site in Michigan is being conducted through in-situ and ex-situ closed-loop soil vapor extraction (SVE), soil vapor treatment, and treated air injection (AI) processes. The soil vapor extraction process applies a vacuum through the petroleum hydrocarbon affected soils in the ex-situ bio-remediation pile (bio-pile) and along the perimeter of excavated area (in-situ area) to remove the volatile or light petroleum hydrocarbons. This process also draws ambient air into the ex-situ bio-pile and in-situ vadose zone soil along the perimeter of excavated area to enhance biodegradation of light and heavy petroleum hydrocarbons in the soil. The extracted soil vapor is treated using a custom-designed air bio-remediation filter (bio-filter) to degrade the petroleum hydrocarbon compounds in the soil vapor extraction air streams. The treated air is then injected into a flush grade soil bed in the backfill area to perform final polishing of the air stream, and to form a closed-loop air flow with the soil vapor extraction perforated pipes along the perimeter of the excavated area

  20. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes

    Directory of Open Access Journals (Sweden)

    Ruchita Dixit

    2015-02-01

    Full Text Available Heavy metals are natural constituents of the environment, but indiscriminate use for human purposes has altered their geochemical cycles and biochemical balance. This results in excess release of heavy metals such as cadmium, copper, lead, nickel, zinc etc. into natural resources like the soil and aquatic environments. Prolonged exposure and higher accumulation of such heavy metals can have deleterious health effects on human life and aquatic biota. The role of microorganisms and plants in biotransformation of heavy metals into nontoxic forms is well-documented, and understanding the molecular mechanism of metal accumulation has numerous biotechnological implications for bioremediation of metal-contaminated sites. In view of this, the present review investigates the abilities of microorganisms and plants in terms of tolerance and degradation of heavy metals. Also, advances in bioremediation technologies and strategies to explore these immense and valuable biological resources for bioremediation are discussed. An assessment of the current status of technology deployment and suggestions for future bioremediation research has also been included. Finally, there is a discussion of the genetic and molecular basis of metal tolerance in microbes, with special reference to the genomics of heavy metal accumulator plants and the identification of functional genes involved in tolerance and detoxification.

  1. Bioremediation of PAH-contamined soils: Consequences on formation and degradation of polar-polycyclic aromatic compounds and microbial community abundance.

    Science.gov (United States)

    Biache, Coralie; Ouali, Salma; Cébron, Aurélie; Lorgeoux, Catherine; Colombano, Stéfan; Faure, Pierre

    2017-05-05

    A bioslurry batch experiment was carried out over five months on three polycyclic aromatic compound (PAC) contaminated soils to study the PAC (PAH and polar-PAC) behavior during soil incubation and to evaluate the impact of PAC contamination on the abundance of microbial communities and functional PAH-degrading populations. Organic matter characteristics and reactivity, assessed through solvent extractable organic matter and PAC contents, and soil organic matter mineralization were monitored during 5 months. Total bacteria and fungi, and PAH-ring hydroxylating dioxygenase genes were quantified. Results showed that PAHs and polar-PACs were degraded with different degradation dynamics. Differences in degradation rates were observed among the three soils depending on PAH distribution and availability. Overall, low molecular weight compounds were preferentially degraded. Degradation selectivity between isomers and structurally similar compounds was observed which could be used to check the efficiency of bioremediation processes. Bacterial communities were dominant over fungi and were most likely responsible for PAC degradation. Abundance of PAH-degrading bacteria increased during incubations, but their proportion in the bacterial communities tended to decrease. The accumulation of some oxygenated-PACs during the bioslurry experiment underlines the necessity to monitor these compounds during application of remediation treatment on PAH contaminated soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Bioremediation of petroleum hydrocarbo-contaminated soils, comprehensive report, December 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry

    2000-04-01

    The US Department of Energy and the Institute for Ecology of Industrial Areas (IETU), Katowice, Poland have been cooperating in the development and implementation of innovative environmental remediation technologies since 1995. A major focus of this program has been the demonstration of bioremediation techniques to cleanup the soil and sediment associated with a waste lagoon at the Czechowice Oil Refinery (CZOR) in southern Poland. After an expedited site characterization (ESC), treatability study, and risk assessment study, a remediation system was designed that took advantage of local materials to minimize cost and maximize treatment efficiency. U.S. experts worked in tandem with counterparts from the IETU and CZOR throughout this project to characterize, assess and subsequently, design, implement and monitor a bioremediation system. The CZOR, our industrial partner for this project, was chosen because of their foresight and commitment to the use of new approaches for environmental restoration. This program sets a precedent for Poland in which a portion of the funds necessary to complete the project were provided by the company responsible for the problem. The CZOR was named by PIOS (State Environmental Protection Inspectorate of Poland) as one of the top 80 biggest polluters in Poland. The history of the CZOR dates back more than 100 years to its establishment by the Vacuum Oil Company (a U.S. company and forerunner of Standard Oil). More than a century of continuous use of a sulfuric acid-based oil refining method by the CZOR has produced an estimated 120,000 tons of acidic, highly weathered, petroleum sludge. This waste has been deposited into three open, unlined process waste lagoons, 3 meters deep, now covering 3.8 hectares. Initial analysis indicated that the sludge was composed mainly of high molecular weight paraffinic and polynuclear aromatic hydrocarbons (PAHs). The overall objective of this full-scale demonstration project was to characterize, assess

  3. Potential of the Galega – Rhizobium galegae System for Bioremediation of Oil-Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Minna M. Jussila

    2003-01-01

    Full Text Available Bioremediation potential of the nitrogen-fixing leguminous plant Galega orientalis Lam. and its microsymbiont Rhizobium galegae was evaluated in microcosm and mesocosm scale in oil and BTEX (benzene, toluene, ethylbenzene, xylene contaminated soils, with m-toluate serving as a model for the latter group. G. orientalis and Rhizobium galegae remained viable in m-toluate fractions up to 3000 ppm. Plant growth and nodulation were inhibited in 500 ppm m-toluate, but were restored when plants were transferred to clean medium. In soil, G. orientalis nodulated and showed good growth in 2000 ppm m-toluate as well as in diesel-contaminated soil in the field, where the plant was stimulating bacterial growth in the rhizosphere. A collection of 52 indigenous m-toluate-tolerating bacteria isolated from oil-contaminated rhizosphere of G. orientalis was characterised and identified by classical and molecular biological methods. 16SrDNA PCR-RFLP and (GTG5-PCR genomic fingerprinting combined with partial sequencing indicated the presence of five major lineages of the Bacteria domain. A TOL plasmid-specific xylE-PCR was developed in order to detect both active and potential degraders of m-toluate. The ability to degrade m-toluate in the presence of the gene xylE was detected only within the genus Pseudomonas. The isolates were tested for capacity to grow on m-toluate as their sole carbon and energy source. In laboratory experiments, the best rhizosphere isolates performed equally well to the positive control strain and are good candidates for inoculant production in the future. They have been tagged with marker genes for further studies on colonisation and persistence.

  4. Molecular identification and potential of an isolate of white rot fungi in bioremediation of petroleum contaminated soils

    Directory of Open Access Journals (Sweden)

    Maryam Mohammadi-sichani

    2017-06-01

    Full Text Available Introduction:Elimination or reduction of petroleum hydrocarbons from natural resources such as water and soil is a serious problem of countries, particularly oil-rich countries of the world. Using white rotting fungi compost for bioremediation of soils contaminated by petroleum hydrocarbons is effective. The aim of this study is molecular identification and potential of anisolate of white rot fungi in bioremediation of petroleum contaminated soils. Materials and methods: Spent compost of white rotting fungi was inoculated with petroleum contaminated soil into 3%, 5% and 10% (w/w. Treatments were incubated at 25-23 °C for 3 months. Reduction of petroleum hydrocarbons in treated soil was determined by gas chromatography. Ecotoxicity of soil was evaluated by seed germination test. Results: Based on the genome sequence of 18s rRNA, it is revealed that this isolate is Ganoderma lucidum and this isolate is deposited as accession KX525204 in the Gene Bank database. Reduction of petroleum hydrocarbons in soil treated with compost (3, 5 and 10% ranged from 42% to 71%. The germination index (% in ecotoxicity tests ranged from 20.8% to 70.8%. Gas chromatography results also showed a decrease in soil Hydrocarbons compounds. Discussion and conclusion: The compost of Ganoderma lucidum, a white rot fungus, has a potential ability to remove petroleum hydrocarbons in contaminated soil. Removal of hydrocarbons was increased with increase in compost mixed with contaminated soil. Petroleum contaminated soil amended with spent compost of G.lucidum 10% during three months is appropriate to remove this pollutant.

  5. Bioremediation: A natural solution

    International Nuclear Information System (INIS)

    Hicks, B.N.; Caplan, J.A.

    1993-01-01

    Bioremediation is an attractive remediation alternative because most full-scale bioremediation projects involve cost-effective contaminant treatment on-site. Recently, large scale bioremediation projects have included cleanups of ocean tanker spills, land-based chemical spills, and leaking chemical and petroleum storage tanks. Contaminated matrices have included beaches, soils, groundwater, surface waters (i.e., pits, ponds, lagoons), process waste streams and grease traps. Bioremediation is especially cost-effective when both soil and groundwater matrices are impacted because one remediation treatment system can be design to treat both media simultaneously in place. The primary advantages of in situ bioremediation include: on-site destruction of contaminants; accelerated cleanup time; minimal disruption to operations; lower remediation costs; and reduction of future liability

  6. Comparison of analytical methods used to measure petroleum hydrocarbons in soils and their application to bioremediation studies

    International Nuclear Information System (INIS)

    Douglas, G.S.; Wong, W.M.; Rigatti, M.J.; McMillen, S.J.

    1995-01-01

    Chemical measurements provide a means to evaluate crude oil and refined product bioremediation effectiveness in field and laboratory studies. These measurements are used to determine the net decrease in product or target compound concentrations in complex soil systems. The analytical methods used to evaluate these constituents will have a direct impact on the ability of the investigator to; (1) detect losses due to biodegradation, (2) understand the processes responsible for the hydrocarbon degradation and, (3) determine the rates of hydrocarbon degradation. This understanding is critical for the testing and design of bioremediation programs. While standard EPA methods are useful for measuring a wide variety of industrial and agrochemicals, they were not designed for the detection and accurate measurement of petroleum compounds. The chemical data generated with these standard methods are usually of limited utility because they lack the chemical specificity required to evaluate hydrocarbon compositional changes in the oil contamination required to evaluate biodegradation. The applications and limitations of standard EPA methodologies (EPA Methods 418.1, 8270, and modified 8015) will be evaluated and compared to several new analytical methods currently being used by the petroleum industry (e.g., gross compositional analysis, TLC-FID analysis, and enhanced EPA Method 8270) to evaluate bioremediation effectiveness in soils

  7. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems

    International Nuclear Information System (INIS)

    Lu, Lu; Yazdi, Hadi; Jin, Song; Zuo, Yi; Fallgren, Paul H.; Ren, Zhiyong Jason

    2014-01-01

    Highlights: • Pilot bioelectrochemical system showed high-performance hydrocarbon remediation. • Radius of influence characterization demonstrated system efficacy. • Current serves as degradation indicator. - Abstract: Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1–89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1–34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m 2 . The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11–12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures

  8. Natural and bioremediated selective degradation of polycyclic aromatic alkyl isomers in oil-contaminated soils

    International Nuclear Information System (INIS)

    Sauer, T.C.; McCarthy, K.; Uhler, A.; Porta, A.

    1995-01-01

    In studies where 2- to 6-ring polycyclic aromatic hydrocarbons (PAHs) are determined as part of characterizing released oil constituents in environmental samples, the changes in composition of PAHs from weathering (e.g., evaporation, dissolution) and biodegradation are most often represented by PAH alkyl homologue distributions. Concentrations of PAH alkyl groups are the sum of individual PAH isomers of similar carbon number; such as for C2-naphthalenes, the C2 alkyl group consists of dimethyl and ethyl substitutions on the parent naphthalene. In weathering and degradation studies, the changes in relative concentration of the individual isomers within an alkyl group are rarely reported. In a field study of oiled soils, the authors looked at the selective losses, for a period of a year, of individual PAH alkyl isomers that occur both naturally by weathering processes and through the use of bioremediation technology. Results showed that decreases in alkyl group concentrations were not always represented by similar losses of each isomer in the alkyl group, but were often due to the preferential or selective loss of certain isomers in the group

  9. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lu; Yazdi, Hadi [Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO (United States); Jin, Song [Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY (United States); Zuo, Yi [Chevron Energy Technology Company, San Ramon, CA (United States); Fallgren, Paul H. [Department of Civil Engineering, University of Colorado Denver, Denver, CO (United States); Ren, Zhiyong Jason, E-mail: jason.ren@colorado.edu [Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO (United States); Department of Civil Engineering, University of Colorado Denver, Denver, CO (United States)

    2014-06-01

    Highlights: • Pilot bioelectrochemical system showed high-performance hydrocarbon remediation. • Radius of influence characterization demonstrated system efficacy. • Current serves as degradation indicator. - Abstract: Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1–89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1–34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m{sup 2}. The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11–12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures.

  10. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems.

    Science.gov (United States)

    Lu, Lu; Yazdi, Hadi; Jin, Song; Zuo, Yi; Fallgren, Paul H; Ren, Zhiyong Jason

    2014-06-15

    Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1-89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1-34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m(2). The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11-12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation.

    Science.gov (United States)

    Garg, Nidhi; Lata, Pushp; Jit, Simran; Sangwan, Naseer; Singh, Amit Kumar; Dwivedi, Vatsala; Niharika, Neha; Kaur, Jasvinder; Saxena, Anjali; Dua, Ankita; Nayyar, Namita; Kohli, Puneet; Geueke, Birgit; Kunz, Petra; Rentsch, Daniel; Holliger, Christof; Kohler, Hans-Peter E; Lal, Rup

    2016-06-01

    Hexachlorocyclohexane (HCH) contaminated soils were treated for a period of up to 64 days in situ (HCH dumpsite, Lucknow) and ex situ (University of Delhi) in line with three bioremediation approaches. The first approach, biostimulation, involved addition of ammonium phosphate and molasses, while the second approach, bioaugmentation, involved addition of a microbial consortium consisting of a group of HCH-degrading sphingomonads that were isolated from HCH contaminated sites. The third approach involved a combination of biostimulation and bioaugmentation. The efficiency of the consortium was investigated in laboratory scale experiments, in a pot scale study, and in a full-scale field trial. It turned out that the approach of combining biostimulation and bioaugmentation was most effective in achieving reduction in the levels of α- and β-HCH and that the application of a bacterial consortium as compared to the action of a single HCH-degrading bacterial strain was more successful. Although further degradation of β- and δ-tetrachlorocyclohexane-1,4-diol, the terminal metabolites of β- and δ-HCH, respectively, did not occur by the strains comprising the consortium, these metabolites turned out to be less toxic than the parental HCH isomers.

  12. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs.

    Science.gov (United States)

    Chen, Ming; Xu, Piao; Zeng, Guangming; Yang, Chunping; Huang, Danlian; Zhang, Jiachao

    2015-11-01

    Increasing soil pollution problems have caused world-wide concerns. Large numbers of contaminants such as polycyclic aromatic hydrocarbons (PAHs), petroleum and related products, pesticides, chlorophenols and heavy metals enter the soil, posing a huge threat to human health and natural ecosystem. Chemical and physical technologies for soil remediation are either incompetent or too costly. Composting or compost addition can simultaneously increase soil organic matter content and soil fertility besides bioremediation, and thus is believed to be one of the most cost-effective methods for soil remediation. This paper reviews the application of composting/compost for soil bioremediation, and further provides a critical view on the effects of this technology on microbial aspects in contaminated soils. This review also discusses the future research needs for contaminated soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Literature review and assessment of various approaches to bioremediation of oil and associated hydrocarbons in soil and groundwater, vol. I: Report

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Bioremedial technologies, whether applied exclusively or in conjunction with other physical or chemical approaches for the clean-up of organic contamination, constitute powerful tools in the control, management, and diminution of petroleum products in soil and groundwater. This report evaluates the rapidly expanding list of bioremedial techniques developed over the past years and provides a comparison between the feasibility and relative effectiveness of these techniques and conventional physical and/or chemical treatment technologies.

  14. Autochthonous bioaugmentation with environmental samples rich in hydrocarbonoclastic bacteria for bench-scale bioremediation of oily seawater and desert soil.

    Science.gov (United States)

    Ali, Nedaa; Dashti, Narjes; Salamah, Samar; Al-Awadhi, Husain; Sorkhoh, Naser; Radwan, Samir

    2016-05-01

    Oil-contaminated seawater and desert soil batches were bioaugmented with suspensions of pea (Pisum sativum) rhizosphere and soil with long history of oil pollution. Oil consumption was measured by gas-liquid chromatography. Hydrocarbonoclastic bacteria in the bioremediation batches were counted using a mineral medium with oil vapor as a sole carbon source and characterized by their 16S ribosomal RNA (rRNA)-gene sequences. Most of the oil was consumed during the first 2-4 months, and the oil-removal rate decreased or ceased thereafter due to nutrient and oxygen depletion. Supplying the batches with NaNO3 (nitrogen fertilization) at a late phase of bioremediation resulted in reenhanced oil consumption and bacterial growth. In the seawater batches bioaugmented with rhizospheric suspension, the autochthonous rhizospheric bacterial species Microbacterium oxidans and Rhodococcus spp. were established and contributed to oil-removal. The rhizosphere-bioaugmented soil batches selectively favored Arthrobacter nitroguajacolicus, Caulobacter segnis, and Ensifer adherens. In seawater batches bioaugmented with long-contaminated soil, the predominant oil-removing bacterium was the marine species Marinobacter hydrocarbonoclasticus. In soil batches on the other hand, the autochthonous inhabitants of the long-contaminated soil, Pseudomonas and Massilia species were established and contributed to oil removal. It was concluded that the use of rhizospheric bacteria for inoculating seawater and desert soil and of bacteria in long-contaminated soil for inoculating desert soil follows the concept of "autochthonous bioaugmentation." Inoculating seawater with bacteria in long-contaminated soil, on the other hand, merits the designation "allochthonous bioaugmentation."

  15. Soil and groundwater VOCs contamination: How can electrical geophysical measurements help assess post-bioremediation state?

    Science.gov (United States)

    Kessouri, P.; Johnson, T. C.; Day-Lewis, F. D.; Slater, L. D.; Ntarlagiannis, D.; Johnson, C. D.

    2016-12-01

    The former Brandywine MD (Maryland, USA) Defense Reutilization and Marketing Office (DRMO) was designated a hazardous waste Superfund site in 1999. The site was used as a storage area for waste and excess government equipment generated by several U.S. Navy and U.S. Air Force installations, leading to soil and groundwater contamination by volatile organic compounds (VOCs). Active bioremediation through anaerobic reductive dehalogenation was used to treat the groundwater and the aquifer unconsolidated materials in 2008, with electrical geophysical measurements employed to track amendment injections. Eight years later, we used spectral induced polarization (SIP) and time domain induced polarization (TDIP) on 2D surface lines and borehole electrical arrays to assess the long term impact of active remediation on physicochemical properties of the subsurface. Within the aquifer, the treated zone is more electrically conductive, and the phase shift describing the polarization effects is higher than in the untreated zone. Bulk conductivity and phase shift are also locally elevated close to the treatment injection well, possibly due to biogeochemical transformations associated with prolonged bacterial activity. Observed SIP variations could be explained by the presence of biofilms coating the pore space and/or by-products of the chemical reactions catalyzed by the bacterial activity (e.g. iron sulfide precipitation). To investigate these possibilities, we conducted complementary well logging measurements (magnetic susceptibility [MS], nuclear magnetic resonance [NMR], gamma-ray) using 5 boreholes installed at both treated and untreated locations of the site. We also collected water and soil samples on which we conducted microbiological and chemical analyses, along with geophysical observations (SIP, MS and NMR), in the laboratory. These measurements provide further insights into the physicochemical transformations in the subsurface resulting from the treatment and highlight

  16. Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes

    Science.gov (United States)

    The development of an integrated strategy for the remediation of soil co-contaminated by heavy metals and persistent organic pollutants is a major research priority for the decontamination of soil slated for use in agricultural production. The objective of this study was to develop a bioremediation ...

  17. Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant

    International Nuclear Information System (INIS)

    Rahman, K.S.M.; Banat, I.M.; Thahira, J.; Thayumanavan, T.; Lakshmanaperumalsamy, P.

    2002-01-01

    The aim of the present study was to find methods for enhancing rates of hydrocarbon biodegradation in gasoline contaminated soil by ex situ bioremediation. Red soil (RS) was treated with gasoline-spilled soil (GS) from a gasoline station and different combinations of amendments were prepared using (i) mixed bacterial consortium (MC), (ii) poultry litter (PL), (iii) coir pith (CP) and (iv) rhamnolipid biosurfactant (BS) produced by Pseudomonas sp. DS10-129. The study was conducted for a period of 90 days during which bacterial growth, hydrocarbon degradation and growth parameters of Phaseolus aureus RoxB including seed germination, chlorophyll content, shoot and root length were measured. Approximately 67% and 78% of the hydrocarbons were effectively degraded within 60 days in soil samples amended with RS + GS + MC + PL + CP + BS at 0.1% and 1%. Maximum percentage of seed germination, shoot length, root length and chlorophyll content in P. aureus were recorded after 60 days in the above amendments. Further incubation to 90 days did not exhibit significant improvements. Statistical analysis using analysis of variance (ANOVA) and Duncan's multiple range test (DMRT) revealed that the level of amendments, incubation time and combination of amendments significantly influenced bacterial growth, hydrocarbon degradation, seed germination and chlorophyll content at a 1% probability level. All tested additives MC, PL, CP and rhamnolipid BS had significant positive effects on the bioremediation of GS. (author)

  18. Bioremediation model for atrazine contaminated agricultural soils using phytoremediation (using Phaseolus vulgaris L.) and a locally adapted microbial consortium.

    Science.gov (United States)

    Madariaga-Navarrete, Alfredo; Rodríguez-Pastrana, Blanca Rosa; Villagómez-Ibarra, José Roberto; Acevedo-Sandoval, Otilio Arturo; Perry, Gregory; Islas-Pelcastre, Margarita

    2017-06-03

    The objective of the present study was to examine a biological model under greenhouse conditions for the bioremediation of atrazine contaminated soils. The model consisted in a combination of phytoremediation (using Phaseolus vulgaris L.) and rhizopheric bio-augmentation using native Trichoderma sp., and Rhizobium sp. microorganisms that showed no inhibitory growth at 10,000 mg L -1 of herbicide concentration. 33.3 mg of atrazine 50 g -1 of soil of initial concentration was used and an initial inoculation of 1 × 10 9 UFC mL -1 of Rhizobium sp. and 1 × 10 5 conidia mL -1 of Trichoderma sp. were set. Four treatments were arranged: Bean + Trichoderma sp. (B+T); Bean + Rhizobium sp. (BR); Bean + Rhizobium sp. + Trichoderma sp. (B+R+T) and Bean (B). 25.51 mg of atrazine 50 g -1 of soil (76.63%) was removed by the B+T treatment in 40 days (a = 0.050, Tukey). This last indicate that the proposed biological model and methodology developed is useful for atrazine contaminated bioremediation agricultural soils, which can contribute to reduce the effects of agrochemical abuse.

  19. KINETIC MODELLING AND HALF LIFE STUDY OF ADSORPTIVE BIOREMEDIATION OF SOIL ARTIFICIALLY CONTAMINATED WITH BONNY LIGHT CRUDE OIL

    Directory of Open Access Journals (Sweden)

    Samuel Enahoro Agarry

    2015-06-01

    Full Text Available In this study, comparative potential effects of commercial activated carbon (CAC and plantain peel-derived biochar (PPBC of different particle sizes and dosage to stimulate petroleum hydrocarbon biodegradation in soil were investigated. Microcosms containing soil were spiked with weathered Bonny light crude oil (WBLCO (10% w/w and amended with different particle sizes (0.02, 0.07 and 0.48 mm and dosage (20, 30 and 40 g of CAC and PPBC, respectively. The bioremediation experiments were carried out for a period of 28 days under laboratory conditions. The results showed that there was a positive relationship between the rate of petroleum hydrocarbons reduction and presence of the CAC and PPBC in crude oil contaminated soil microcosms. The WBLCO biodegradation data fitted well to the first-order kinetic model. The model revealed that WBLCO contaminated-soil microcosms amended with CAC and PPBC had higher biodegradation rate constants (k as well as lower half-life times (t1/2 than unamended soil (natural attenuation remediation system. The rate constants increased while half-life times decreased with decreased particle size and increased dosage of amendment agents. ANOVA statistical analysis revealed that WBLCO biodegradation in soil was significantly (p = 0.05 influenced by the addition of CAC and biochar amendment agents, respectively. However, Tukey’s post hoc test (at p = 0.05 showed that there was no significant difference in the bioremediation efficiency of CAC and PPBC. Thus, amendment of soils with biochar has the potential to be an inexpensive, efficient, environmentally friendly and relatively novel strategy to mitigate organic compound-contaminated soil.

  20. Monitoring bacterial population dynamics using real-time PCR during the bioremediation of crude-oil-contaminated soil.

    Science.gov (United States)

    Baek, Kyung-Hwa; Yoon, Byung-Dae; Cho, Dae-Hyun; Kim, Byung-Hyuk; Oh, Hee-Mock; Kim, Hee-Sik

    2009-04-01

    We evaluated the activity and abundance of the crude oil- degrading bacterium Nocardia sp. H17-1 during bioremediation of oil-contaminated soil, using real-time PCR. The total petroleum hydrocarbon (TPH) degradation rate constants (k) of the soils treated with and without H17-1 were 0.103 d-1 and 0.028 d-1, respectively. The degradation rate constant was 3.6 times higher in the soil with H17-1 than in the soil without H17-1. In order to detect and quantify the Nocardia sp. H17-1 in soil samples, we quantified the genes encoding 16S ribosomal RNA (16S rRNA), alkane monooxygenase (alkB4), and catechol 2,3-dioxygenase (23CAT) with real-time PCR using SYBR green. The amounts of H17-1 16S rRNA and alkB4 detected increased rapidly up to 1,000-folds for the first 10 days, and then continued to increase only slightly or leveled off. However, the abundance of the 23CAT gene detected in H17-1-treated soil, where H17-1 had neither the 23CAT gene for the degradation of aromatic hydrocarbons nor the catechol 2,3-dioxygenase activity, did not differ significantly from that of the untreated soil (alpha=0.05, p>0.22). These results indicated that H17-1 is a potential candidate for the bioaugmentation of alkane-contaminated soil. Overall, we evaluated the abundance and metabolic activity of the bioremediation strain H17-1 using real-time PCR, independent of cultivation.

  1. Phytoremediation of petroleum-polluted soils: application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils.

    Science.gov (United States)

    Mohsenzadeh, Fariba; Nasseri, Simin; Mesdaghinia, Alireza; Nabizadeh, Ramin; Zafari, Doustmorad; Khodakaramian, Gholam; Chehregani, Abdolkarim

    2010-05-01

    Petroleum-polluted soils are a common disaster in many countries. Bioremediation of oil contamination in soils is based on the stimulation of petroleum-hydrocarbon-degrading fungal and microbial communities. A field study was conducted in a petroleum-contaminated site to find petroleum-resistant plants and their root-associated fungal strains for use in bioremediation of petroleum-polluted soils. Results and observations showed that the amounts of petroleum pollution in nonvegetated soils were several times higher than in vegetated soils. Plants collected from petroleum-polluted areas were identified using morphological characters. Results indicated that seven plant species were growing on the contaminated sites: Alhaji cameleron L. (Fabaceae), Amaranthus retroflexus L. var. retroflexus (Amaranthaceae), Convolvulus arvensis L. (Convolvulaceae), Chrozophora hierosolymitana Spreg. (Euphorbiaceae), Noea mucronata L. (Boraginaceae), Poa sp. (Poaceae), and Polygonum aviculare L. (Polygonaceae). The root-associated fungi of each plant were determined and results showed the presence of 11 species that associated with and also penetrated the roots of plants growing in the polluted areas. Altenaria sp. was common to all of the plants and the others had species-specific distribution within the plants. The largest numbers of fungal species (six) were determined for P. aviculare and Poa sp. in polluted areas. However, the variation of fungal strains in the plants collected from petroleum-polluted areas was greater than for nonpolluted ones. Culture of fungi in oil-contaminated media showed that all the studied fungi were resistant to low petroleum pollution (1% v/v) and a few species, especially Fusarium species, showed resistance to higher petroleum pollution (10% v/v) and may be suitable for bioremediation in highly polluted areas. Bioremediation tests with P. aviculare, with and without fungal strains, showed that application of both the plant and its root-associated fungal

  2. Yeasts dominate soil fungal communities in three lowland Neotropical rainforests.

    Science.gov (United States)

    Dunthorn, Micah; Kauserud, Håvard; Bass, David; Mayor, Jordan; Mahé, Frédéric

    2017-10-01

    Forest soils typically harbour a vast diversity of fungi, but are usually dominated by filamentous (hyphae-forming) taxa. Compared to temperate and boreal forests, though, we have limited knowledge about the fungal diversity in tropical rainforest soils. Here we show, by environmental metabarcoding of soil samples collected in three Neotropical rainforests, that Yeasts dominate the fungal communities in terms of the number of sequencing reads and OTUs. These unicellular forms are commonly found in aquatic environments, and their hyperdiversity may be the result of frequent inundation combined with numerous aquatic microenvironments in these rainforests. Other fungi that are frequent in aquatic environments, such as the abundant Chytridiomycotina, were also detected. While there was low similarity in OTU composition within and between the three rainforests, the fungal communities in Central America were more similar to each other than the communities in South America, reflecting a general biogeographic pattern also seen in animals, plants and protists. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Analysis of petroleum hydrocarbons in soil from view of bioremediation process

    International Nuclear Information System (INIS)

    Mracnova, R.; Sojak, L.; Kubinec, R.; Kraus, A.; Eszenyiova, A.; Ostrovsky, I.

    2002-01-01

    The pollution of the environment by petroleum hydrocarbons is the most often pollution of them all. Nevertheless, hydrocarbons present in environment can be not only of petroleum or anthropogenic origin, but of biogenic as well. Typically the hydrocarbons are presented in the environment as very complex mixtures of individual compounds with very different chemical structure, wide range of the boiling points (∼800 0 C) as well as with the wide range of the number of carbon atoms. Immediately they are spread in any environmental matrix the complex physical, chemical and biochemical reactions start. A lot of methods have been developed and new are permanently in progress for the monitoring and control of petroleum hydrocarbons contamination and/or soils bioremediation. Generally, all methods by whose the hydrocarbons contaminants are determined in GC-FID system do not satisfied recommendations for enough accurate and precise results. Hyphenation of capillary gas chromatography and mass selective detector operated in the selective ion monitoring mode essentially allows detailed specification of non-polar extractable hydrocarbons. Isoprenoid alkanes, alkylhomologues of aromatic hydrocarbons and polycyclic alkanes hopanes-like were investigated as markers for recognition of petroleum and biogenic contamination. C 30 17α(H)21β(H)-hopane (C 30 -hopane) seems to be a suitable marker to identify hydrocarbons origin, to determine composting rates for nonpolar extractable compounds and to calculate real content of non-polar extractable compounds in final composting status on the assumption that the contamination is of mineral oil type. This is the survey into the results obtained in this field published in the literature as well as reached in our laboratory. (author)

  4. Bioremediation protocols

    National Research Council Canada - National Science Library

    Sheehan, David

    1997-01-01

    ... . . .. .. . . . .. . . .. . . . . . .. . . . . . .. . . . .. . .. . . . . . . .. . . . .., . .. . . . . *... *.. . . . . . . .. . .. . . . . . . . .. .. .. . . . . . v IX PART I. OVERVIEW ., .,... . ,.. .. . . . . . . .. .. . . ., 7 1 Uses Emer of Bacteria Colleran in Bioremediation...

  5. Purification by bioremediation of soil and underground water contaminated by volatile organic chloride. Bioremediation gijutsu wo mochiiru kihatsusei yuki enso kagobutsu osen dojo chikasui no joka

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, O; Uchiyama, H [National Institute for Environmental Studies, Tsukuba (Japan)

    1993-08-01

    Taking up a case with trichloroethylene as an example, research is introduced on the purification which is made by utilizing bioremediation technology for the contaminated soil and underground water. That technology can be said to be a method in which the contaminated environment is remedied by utilizing the biological function. First, it is necessary to separate the microorganisms which decompose the trichloroethylene. Decomposing bacteria being searched in different places, discovered was a mixed cultivation system which decomposed the trichloroethylene, if aerobic and co-existent with methane. Upon repeating the separation, a new stock was found and named Methylocystis sp. M stock. That stock proliferates by taking methane and methanol which are the sole carbon source at temperatures below 37 centigrade. That stock decomposes 1, 1-dichloroethylene and chloroform as well as the trichloroethylene, but does not tetrachloroethylene and carbon tetrachloride. That stock was studied to be fixed and used as a bioreactor. Among different fixing bacteria, alginic acid gel gave a high efficiency in decomposing the trichloroethylene. 9 refs., 5 figs., 1 tab.

  6. Bioremediation of Petroleum and Radiological Contaminated Soils at the Savannah River Site: Laboratory to Field Scale Applications

    Energy Technology Data Exchange (ETDEWEB)

    BRIGMON, ROBINL.

    2004-06-07

    In the process of Savannah River Site (SRS) operations limited amounts of waste are generated containing petroleum, and radiological contaminated soils. Currently, this combination of radiological and petroleum contaminated waste does not have an immediate disposal route and is being stored in low activity vaults. SRS developed and implemented a successful plan for clean up of the petroleum portion of the soils in situ using simple, inexpensive, bioreactor technology. Treatment in a bioreactor removes the petroleum contamination from the soil without spreading radiological contamination to the environment. This bioreactor uses the bioventing process and bioaugmentation or the addition of the select hydrocarbon degrading bacteria. Oxygen is usually the initial rate-limiting factor in the biodegradation of petroleum hydrocarbons. Using the bioventing process allowed control of the supply of nutrients and moisture based on petroleum contamination concentrations and soil type. The results of this work have proven to be a safe and cost-effective means of cleaning up low level radiological and petroleum-contaminated soil. Many of the other elements of the bioreactor design were developed or enhanced during the demonstration of a ''biopile'' to treat the soils beneath a Polish oil refinery's waste disposal lagoons. Aerobic microorganisms were isolated from the aged refinery's acidic sludge contaminated with polycyclic aromatic hydrocarbons (PAHs). Twelve hydrocarbon-degrading bacteria were isolated from the sludge. The predominant PAH degraders were tentatively identified as Achromobacter, Pseudomonas Burkholderia, and Sphingomonas spp. Several Ralstonia spp were also isolated that produce biosurfactants. Biosurfactants can enhance bioremediation by increasing the bioavailability of hydrophobic contaminants including hydrocarbons. The results indicated that the diversity of acid-tolerant PAH-degrading microorganisms in acidic oil wastes may

  7. Use of Bacillus thuringiensis supernatant from a fermentation process to improve bioremediation of chlorpyrifos in contaminated soils.

    Science.gov (United States)

    Aceves-Diez, Angel E; Estrada-Castañeda, Kelly J; Castañeda-Sandoval, Laura M

    2015-07-01

    The aim of this research was to investigate the potential of a nutrient-rich organic waste, namely the cell-free supernatant of Bacillus thuringiensis (BtS) gathered from fermentation, as a biostimulating agent to improve and sustain microbial populations and their enzymatic activities, thereby assisting in the bioremediation of chlorpyrifos-contaminated soil at a high dose (70 mg kg(-1)). Experiments were performed for up to 80 d. Chlorpyrifos degradation and its major metabolic product, 3,5,6-trichloro-2-pyridinol (TCP), were quantified by high-performance liquid chromatography (HPLC); total microbial populations were enumerated by direct counts in specific medium; and fluorescein diacetate (FDA) hydrolysis was measured as an index of soil microbial activity. Throughout the experiment, there was higher chlorpyrifos degradation in soil supplemented with BtS (83.1%) as compared to non-supplemented soil. TCP formation and degradation occurred in all soils, but the greatest degradation (30.34%) was observed in soil supplemented with BtS. The total microbial populations were significantly improved by supplementation with BtS. The application of chlorpyrifos to soil inhibited the enzymatic activity; however, this negative effect was counteracted by BtS, inducing an increase of approximately 16% in FDA hydrolysis. These results demonstrate the potential of B. thuringiensis supernatant as a suitable biostimulation agent for enhancing chlorpyrifos and TCP biodegradation in chlorpyrifos-contaminated soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Bioremediation (Natural Attenuation and Biostimulation) of Diesel-Oil-Contaminated Soil in an Alpine Glacier Skiing Area

    Science.gov (United States)

    Margesin, R.; Schinner, F.

    2001-01-01

    We investigated the feasibility of bioremediation as a treatment option for a chronically diesel-oil-polluted soil in an alpine glacier area at an altitude of 2,875 m above sea level. To examine the efficiencies of natural attenuation and biostimulation, we used field-incubated lysimeters (mesocosms) with unfertilized and fertilized (N-P-K) soil. For three summer seasons (July 1997 to September 1999), we monitored changes in hydrocarbon concentrations in soil and soil leachate and the accompanying changes in soil microbial counts and activity. A significant reduction in the diesel oil level could be achieved. At the end of the third summer season (after 780 days), the initial level of contamination (2,612 ± 70 μg of hydrocarbons g [dry weight] of soil−1) was reduced by (50 ± 4)% and (70 ± 2)% in the unfertilized and fertilized soil, respectively. Nonetheless, the residual levels of contamination (1,296 ± 110 and 774 ± 52 μg of hydrocarbons g [dry weight] of soil−1 in the unfertilized and fertilized soil, respectively) were still high. Most of the hydrocarbon loss occurred during the first summer season ([42 ± 6]% loss) in the fertilized soil and during the second summer season ([41 ± 4]% loss) in the unfertilized soil. In the fertilized soil, all biological parameters (microbial numbers, soil respiration, catalase and lipase activities) were significantly enhanced and correlated significantly with each other, as well as with the residual hydrocarbon concentration, pointing to the importance of biodegradation. The effect of biostimulation of the indigenous soil microorganisms declined with time. The microbial activities in the unfertilized soil fluctuated around background levels during the whole study. PMID:11425732

  9. Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Militon, Cécile; Boucher, Delphine; Vachelard, Cédric; Perchet, Geoffrey; Barra, Vincent; Troquet, Julien; Peyretaillade, Eric; Peyret, Pierre

    2010-12-01

    The microbial community response during the oxygen biostimulation process of aged oil-polluted soils is poorly documented and there is no reference for the long-term monitoring of the unsaturated zone. To assess the potential effect of air supply on hydrocarbon fate and microbial community structure, two treatments (0 and 0.056 mol h⁻¹ molar flow rate of oxygen) were performed in fixed bed reactors containing oil-polluted soil. Microbial activity was monitored continuously over 2 years throughout the oxygen biostimulation process. Microbial community structure before and after treatment for 12 and 24 months was determined using a dual rRNA/rRNA gene approach, allowing us to characterize bacteria that were presumably metabolically active and therefore responsible for the functionality of the community in this polluted soil. Clone library analysis revealed that the microbial community contained many rare phylotypes. These have never been observed in other studied ecosystems. The bacterial community shifted from Gammaproteobacteria to Actinobacteria during the treatment. Without aeration, the samples were dominated by a phylotype linked to the Streptomyces. Members belonging to eight dominant phylotypes were well adapted to the aeration process. Aeration stimulated an Actinobacteria phylotype that might be involved in restoring the ecosystem studied. Phylogenetic analyses suggested that this phylotype is a novel, deep-branching member of the Actinobacteria related to the well-studied genus Acidimicrobium. FEMS Microbiology Ecology © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original French government works.

  10. Microbial community dynamics during the bioremediation process of chlorimuron-ethyl-contaminated soil by Hansschlegelia sp. strain CHL1.

    Directory of Open Access Journals (Sweden)

    Liqiang Yang

    Full Text Available Long-term and excessive application of chlorimuron-ethyl has led to a series of environmental problems. Strain Hansschlegelia sp. CHL1, a highly efficient chlorimuron-ethyl degrading bacterium isolated in our previous study, was employed in the current soil bioremediation study. The residues of chlorimuron-ethyl in soils were detected, and the changes of soil microbial communities were investigated by phospholipid fatty acid (PLFA analysis. The results showed that strain CHL1 exhibited significant chlorimuron-ethyl degradation ability at wide range of concentrations between 10μg kg-1 and 1000μg kg-1. High concentrations of chlorimuron-ethyl significantly decreased the total concentration of PLFAs and the Shannon-Wiener indices and increased the stress level of microbes in soils. The inoculation with strain CHL1, however, reduced the inhibition on soil microbes caused by chlorimuron-ethyl. The results demonstrated that strain CHL1 is effective in the remediation of chlorimuron-ethyl-contaminated soil, and has the potential to remediate chlorimuron-ethyl contaminated soils in situ.

  11. Microbial Community Dynamics during the Bioremediation Process of Chlorimuron-Ethyl-Contaminated Soil by Hansschlegelia sp. Strain CHL1

    Science.gov (United States)

    Yang, Liqiang; Li, Xinyu; Li, Xu; Su, Zhencheng; Zhang, Chenggang; Zhang, Huiwen

    2015-01-01

    Long-term and excessive application of chlorimuron-ethyl has led to a series of environmental problems. Strain Hansschlegelia sp. CHL1, a highly efficient chlorimuron-ethyl degrading bacterium isolated in our previous study, was employed in the current soil bioremediation study. The residues of chlorimuron-ethyl in soils were detected, and the changes of soil microbial communities were investigated by phospholipid fatty acid (PLFA) analysis. The results showed that strain CHL1 exhibited significant chlorimuron-ethyl degradation ability at wide range of concentrations between 10μg kg-1 and 1000μg kg-1. High concentrations of chlorimuron-ethyl significantly decreased the total concentration of PLFAs and the Shannon-Wiener indices and increased the stress level of microbes in soils. The inoculation with strain CHL1, however, reduced the inhibition on soil microbes caused by chlorimuron-ethyl. The results demonstrated that strain CHL1 is effective in the remediation of chlorimuron-ethyl-contaminated soil, and has the potential to remediate chlorimuron-ethyl contaminated soils in situ. PMID:25689050

  12. Dynamic changes of bacterial community under bioremediation with Sphingobium sp. LY-6 in buprofezin-contaminated soil.

    Science.gov (United States)

    Liu, Yuan; Hou, Qianqian; Liu, Wanru; Meng, Yawen; Wang, Guangli

    2015-08-01

    Buprofezin is a commonly used chemical with satisfactory biological activity against sucking insect pests, but its disposal can cause serious environmental problems. To study the feasibility of remedying contamination by buprofezin, microcosm experiments were carried out to study the effects of various concentrations of buprofezin and Sphingobium sp. LY-6 on soil bacterial communities in soils collected from vegetable fields. In this experiment, the results showed that buprofezin was effectively degraded by Sphingobium sp. LY-6 in incubation soils. Comparing to non-incubated soils, the cumulative degradation ratio of buprofezin was significantly increased, up to the extent of 85 and 51%, in the initial concentration of 10 and 100 mg kg(-1). The abundance and community structure of the bacterial communities were analysed by real-time PCR (qPCR) and terminal-restriction fragment length polymorphism (T-RFLP). The findings suggest that buprofezin had a negative effect on soil bacterial community, and decreases in bacterial abundance were observed in the later part of the incubation period. The bacterial community structure and diversity shifted significantly at each sampling time. In conclusion, the buprofezin-degrading strain LY-6 played a major role in the bioremediation of the buprofezin-contaminated soil and influenced the dynamics and structure of the bacterial community, demonstrating the great potential of exogenous microorganisms for soil remediation.

  13. In situ pilot test for bioremediation of energetic compound-contaminated soil at a former military demolition range site.

    Science.gov (United States)

    Jugnia, Louis B; Manno, Dominic; Drouin, Karine; Hendry, Meghan

    2018-05-04

    Bioremediation was performed in situ at a former military range site to assess the performance of native bacteria in degrading hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitrotoluene (2,4-DNT). The fate of these pollutants in soil and soil pore water was investigated as influenced by waste glycerol amendment to the soil. Following waste glycerol application, there was an accumulation of organic carbon that promoted microbial activity, converting organic carbon into acetate and propionate, which are intermediate compounds in anaerobic processes. This augmentation of anaerobic activity strongly correlated to a noticeable reduction in RDX concentrations in the amended soil. Changes in concentrations of RDX in pore water were similar to those observed in the soil suggesting that RDX leaching from the soil matrix, and treatment with waste glycerol, contributed to the enhanced removal of RDX from the water and soil. This was not the case with 2,4-DNT, which was neither found in pore water nor affected by the waste glycerol treatment. Results from saturated conditions and Synthetic Precipitation Leaching Procedure testing, to investigate the environmental fate of 2,4-DNT, indicated that 2,4-DNT found on site was relatively inert and was likely to remain in its current state on the site.

  14. Bioaugmentation and biostimulation as strategies for the bioremediation of a burned woodland soil contaminated by toxic hydrocarbons: a comparative study.

    Science.gov (United States)

    Andreolli, Marco; Lampis, Silvia; Brignoli, Pierlorenzo; Vallini, Giovanni

    2015-04-15

    In this work, the natural attenuation strategy (no soil amendments done) was compared with two different bioremediation approaches, namely bioaugmentation through soil inoculation with a suspension of Trichoderma sp. mycelium and biostimulation by soil addition with a microbial growth promoting formulation, in order to verify the effectiveness of these methods in terms of degradation efficiency towards toxic hydrocarbons, with particular attention to the high molecular weight (HMW) fraction, in a forest area impacted by recent wildfire in Northern Italy. The area under investigation, divided into three parcels, was monitored to figure out the dynamics of decay in soil concentration of C₁₂₋₄₀ hydrocarbons (including isoalkanes, cycloalkanes, alkyl-benzenes and alkyl-naphthalenes besides PAHs) and low molecular weight (LMW) PAHs, following the adoption of the foregoing different remediation strategies. Soil hydrocarbonoclastic potential was even checked by characterizing the autochthonous microbial cenoses. Field experiments proved that the best performance in the abatement of HMW hydrocarbons was reached 60 days after soil treatment through the biostimulation protocol, when about 70% of the initial concentration of HMW hydrocarbons was depleted. Within the same time, about 55% degradation was obtained with the bioaugmentation protocol, whilst natural attenuation allowed only a 45% removal of the starting C12-40 hydrocarbon fraction. Therefore, biostimulation seems to significantly reduce the time required for the remediation, most likely because of the enhancement of microbial degradation through the improvement of nutrient balance in the burned soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Application of sewage sludge and intermittent aeration strategy to the bioremediation of DDT- and HCH-contaminated soil.

    Science.gov (United States)

    Liang, Qi; Lei, Mei; Chen, Tongbin; Yang, Jun; Wan, Xiaoming; Yang, Sucai

    2014-08-01

    Adding organic amendments to stimulate the biodegradation of pesticides is a subject of ongoing interest. The effect of sewage sludge on the bioremediation of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) contaminated soil was investigated in bench scale experiments, and intermittent aeration strategy was also used in this study to form an anaerobic-aerobic cycle. Bioremediation of DDT and HCH was enhanced with the addition of sewage sludge and the intermittent aeration. The removal rates of HCH and DDT were raised by 16.8%-80.8% in 10 days. Sewage sludge increased the organic carbon content from 6.2 to 218 g/kg, and it could also introduce efficient degradation microbes to soil, including Pseudomonas sp., Bacillus sp. and Sphingomonas sp. The unaerated phase enhanced the anaerobic dechlorination of DDT and HCH, and anaerobic removal rates of β-HCH, o,p'-DDT and p,p'-DDT accounted for more than 50% of the total removal rates, but the content of α-HCH declined more in the aerobic phase. Copyright © 2014. Published by Elsevier B.V.

  16. Effect of electric field on the performance of soil electro-bioremediation with a periodic polarity reversal strategy.

    Science.gov (United States)

    Mena, E; Villaseñor, J; Cañizares, P; Rodrigo, M A

    2016-03-01

    In this work, it is studied the effect of the electric fields (within the range 0.0-1.5 V cm(-1)) on the performance of electrobioremediation with polarity reversal, using a bench scale plant with diesel-spiked kaolinite with 14-d long tests. Results obtained show that the periodic changes in the polarity of the electric field results in a more efficient treatment as compared with the single electro-bioremediation process, and it does not require the addition of a buffer to keep the pH within a suitable range. The soil heating was not very important and it did not cause a change in the temperature of the soil up to values incompatible with the life of microorganisms. Low values of water transported by the electro-osmosis process were attained with this strategy. After only 14 d of treatment, by using the highest electric field studied in this work (1.5 V cm(-1)), up to 35.40% of the diesel added at the beginning of the test was removed, value much higher than the 10.5% obtained by the single bioremediation technology in the same period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Field test and mathematical modeling of bioremediation of an oil-contaminated soil. Part 1: Field test

    International Nuclear Information System (INIS)

    Li, K.Y.; Xu, T.; Colapret, J.A.; Cawley, W.A.; Bonner, J.S.; Ernest, A.; Verramachaneni, P.B.

    1994-01-01

    A fire-wall area (about 270 ft x 310 ft) with the Bunker C oil contaminated soil was selected for the bioremediation field test. This fire-wall area was separated into 18 plots by dirt dikes to test 6 bioremediation methods with three tests of each method. The six treatment methods were: (a) aeration with basic nutrients and indigenous organisms (BNIO); (b) aeration with basic nutrients and inoculation from a refinery wastewater treatment facility (BNSIWT); (c) aeration with an oleophilic fertilizer and indigenous organisms (INIPOL); (d) aeration with basic nutrients and biosurfactant organisms (EPA Seal Beach consortia) (EPA); (e) aeration with proprietary nutrients and organisms (PRO); and (f) aeration only for active control (CONTROL). This field test was conducted for 91 days. In general the oil contents in 18 plots were reduced, but the results showed significant fluctuations. A statistical method was used to examine if the oil reductions of six methods were the results from the random error of sampling and sample analysis or biodegradation. The results of the statistical analysis showed that oil reduction was concluded from all but the plots of PRO. From the data analysis, it may be concluded that the oil reduction rate in these studies is controlled by oil transfer from soil into the aqueous solution. An example of calculation was used to illustrate this conclusion

  18. Simple Bioremediation Treatments for the Removal of Polycyclic Aromatic Hydrocarbons (PAHs) from the Polluted Desert Soil of Kuwait

    International Nuclear Information System (INIS)

    Al-Gounaim, Marzooq Yousuf; Abu-Shady, Abdulsatar

    2004-01-01

    A soil microcosm test was designed to evaluate the influence of mixing polluted desert soil with clay soil (which is used as an amendment material and for immobilization of bacterial cells) on the biodegradation of petroleum polycyclic aromatic hydrocarbons (PAHs). Residual PAHs in this type of polluted soil were quantified by using GC analysis. At the begining of experiment 16 PAHs were resolved, of which the mutagenic and carcinogenic compounds flouranthene and pyrene were more frequent than the otherPAHs (14% and 12.4% respectively). Results of total PAH biodegradation show that mixing this polluted desert soil with clay soil or its water extract stimulated the biodegradation of 85.8%-89.1% of these compounds. This is contrast to 61.7%-75.5% in the absence of clay soil. Moreover when the mixed bacterial culture was immobilized in this clay soil 94.4% of total of total PAHs were degraded. On the other hand, the free cells of mixed culture succeeded to remove only 75.5% of these compounds. In this study the six-ranged PAHs were completely degraded in the presence of clay soil. A particularly notable distinction between the immobilized culture (T3) and other treatment in this biodegradation study is the greater efficiency of the immobilized culture to degrade the individuals of the 16 PAHs, especially the carcinogenic compounds: flouranthene, pyrene, chrysene, benzo(a) pyrene and dibenzo (a,h) anthracene. These results lead to the conclusion that mixing the polluted desert soil with clay soil and/or its water extract seems to be a simple cost effective bioremediation method. (author)

  19. Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils.

    Science.gov (United States)

    Cycoń, Mariusz; Żmijowska, Agnieszka; Wójcik, Marcin; Piotrowska-Seget, Zofia

    2013-03-15

    The ability of diazinon-degrading Serratia marcescens to remove organophosphorus pesticides (OPPs), i.e. chlorpyrifos (CP), fenitrothion (FT), and parathion (PT) was studied in a mineral salt medium (MSM) and in three soils of different characteristics. This strain was capable of using all insecticides at concentration of 50 mg/l as the only carbon source when grown in MSM, and 58.9%, 70.5%, and 82.5% of the initial dosage of CP, FT, and PT, respectively was degraded within 14 days. The biodegradation experiment showed that autochthonous microflora in all soils was characterized by a degradation potential of all tested OPPs; however, the initial lag phases for degradation of CP and FT, especially in sandy soil, were observed. During the 42-day experiment, 45.3%, 61.4% and 72.5% of the initial dose of CP, FT, and PT, respectively, was removed in sandy soil whereas the degradation of CP, FT, and PT in the same period, in sandy loam and silty soils reached 61.4%, 79.7% and 64.2%, and 68.9%, 81.0% and 63.6%, respectively. S. marcescens introduced into sterile soils showed a higher degradation potential (5-13%) for OPPs removal than those observed in non-sterile soil with naturally occurring attenuation. Inoculation of non-sterile soils with S. marcescens enhanced the disappearance rates of all insecticides, and DT50 for CP, FT, and PT was reduced by 20.7, 11.3 and 13.0 days, and 11.9, 7.0 and 8.1 days, and 9.7, 14.5 and 12.6 days in sandy, sandy loam, and silty soils, respectively, in comparison with non-sterile soils with only indigenous microflora. This ability of S. marcescens makes it a suitable strain for bioremediation of soils contaminated with OPPs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Bryophyte-dominated biological soil crusts mitigate soil erosion in an early successional Chinese subtropical forest

    Directory of Open Access Journals (Sweden)

    S. Seitz

    2017-12-01

    Full Text Available This study investigated the development of biological soil crusts (biocrusts in an early successional subtropical forest plantation and their impact on soil erosion. Within a biodiversity and ecosystem functioning experiment in southeast China (biodiversity and ecosystem functioning (BEF China, the effect of these biocrusts on sediment delivery and runoff was assessed within micro-scale runoff plots under natural rainfall, and biocrust cover was surveyed over a 5-year period. Results showed that biocrusts occurred widely in the experimental forest ecosystem and developed from initial light cyanobacteria- and algae-dominated crusts to later-stage bryophyte-dominated crusts within only 3 years. Biocrust cover was still increasing after 6 years of tree growth. Within later-stage crusts, 25 bryophyte species were determined. Surrounding vegetation cover and terrain attributes significantly influenced the development of biocrusts. Besides high crown cover and leaf area index, the development of biocrusts was favoured by low slope gradients, slope orientations towards the incident sunlight and the altitude of the research plots. Measurements showed that bryophyte-dominated biocrusts strongly decreased soil erosion, being more effective than abiotic soil surface cover. Hence, their significant role in mitigating sediment delivery and runoff generation in mesic forest environments and their ability to quickly colonise soil surfaces after disturbance are of particular interest for soil erosion control in early-stage forest plantations.

  1. Bryophyte-dominated biological soil crusts mitigate soil erosion in an early successional Chinese subtropical forest

    Science.gov (United States)

    Seitz, Steffen; Nebel, Martin; Goebes, Philipp; Käppeler, Kathrin; Schmidt, Karsten; Shi, Xuezheng; Song, Zhengshan; Webber, Carla L.; Weber, Bettina; Scholten, Thomas

    2017-12-01

    This study investigated the development of biological soil crusts (biocrusts) in an early successional subtropical forest plantation and their impact on soil erosion. Within a biodiversity and ecosystem functioning experiment in southeast China (biodiversity and ecosystem functioning (BEF) China), the effect of these biocrusts on sediment delivery and runoff was assessed within micro-scale runoff plots under natural rainfall, and biocrust cover was surveyed over a 5-year period. Results showed that biocrusts occurred widely in the experimental forest ecosystem and developed from initial light cyanobacteria- and algae-dominated crusts to later-stage bryophyte-dominated crusts within only 3 years. Biocrust cover was still increasing after 6 years of tree growth. Within later-stage crusts, 25 bryophyte species were determined. Surrounding vegetation cover and terrain attributes significantly influenced the development of biocrusts. Besides high crown cover and leaf area index, the development of biocrusts was favoured by low slope gradients, slope orientations towards the incident sunlight and the altitude of the research plots. Measurements showed that bryophyte-dominated biocrusts strongly decreased soil erosion, being more effective than abiotic soil surface cover. Hence, their significant role in mitigating sediment delivery and runoff generation in mesic forest environments and their ability to quickly colonise soil surfaces after disturbance are of particular interest for soil erosion control in early-stage forest plantations.

  2. Irpex lacteus, a white rot fungus applicable to water and soil bioremediation

    Czech Academy of Sciences Publication Activity Database

    Novotný, Čeněk; Erbanová, Pavla; Cajthaml, Tomáš; Rothschild, N.; Dosoretz, C.; Šašek, Václav

    2000-01-01

    Roč. 54, - (2000), s. 850-853 ISSN 0175-7598 R&D Projects: GA ČR GA526/99/0519; GA ČR GA526/00/1303 Institutional research plan: CEZ:AV0Z5020903 Keywords : bioremediation * Irpex lacteus Subject RIV: EH - Ecology, Behaviour Impact factor: 1.505, year: 2000

  3. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils

    NARCIS (Netherlands)

    Sutton, N.B.; Langenhoff, A.A.M.; Hidalgo Lasso, D.; Zaan, van der B.M.; Gaans, van P.; Maphosa, F.; Smidt, H.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in

  4. Modelling and monitoring of Aquifer Thermal Energy Storage : impacts of soil heterogeneity, thermal interference and bioremediation

    NARCIS (Netherlands)

    Sommer, W.T.

    2015-01-01

    Modelling and monitoring of Aquifer Thermal Energy Storage

    Impacts of heterogeneity, thermal interference and bioremediation

    Wijbrand Sommer
    PhD thesis, Wageningen University, Wageningen, NL (2015)
    ISBN 978-94-6257-294-2

    Abstract

    Aquifer

  5. Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil.

    Science.gov (United States)

    Zuo, Zhenqiang; Gong, Ting; Che, You; Liu, Ruihua; Xu, Ping; Jiang, Hong; Qiao, Chuanling; Song, Cunjiang; Yang, Chao

    2015-06-01

    Agricultural soils are usually co-contaminated with organophosphate (OP) and pyrethroid pesticides. To develop a stable and marker-free Pseudomonas putida for co-expression of two pesticide-degrading enzymes, we constructed a suicide plasmid with expression cassettes containing a constitutive promoter J23119, an OP-degrading gene (mpd), a pyrethroid-hydrolyzing carboxylesterase gene (pytH) that utilizes the upp gene as a counter-selectable marker for upp-deficient P. putida. By introduction of suicide plasmid and two-step homologous recombination, both mpd and pytH genes were integrated into the chromosome of a robust soil bacterium P. putida KT2440 and no selection marker was left on chromosome. Functional expression of mpd and pytH in P. putida KT2440 was demonstrated by Western blot analysis and enzyme activity assays. Degradation experiments with liquid cultures showed that the mixed pesticides including methyl parathion, fenitrothion, chlorpyrifos, permethrin, fenpropathrin, and cypermethrin (0.2 mM each) were degraded completely within 48 h. The inoculation of engineered strain (10(6) cells/g) to soils treated with the above mixed pesticides resulted in a higher degradation rate than in noninoculated soils. All six pesticides could be degraded completely within 15 days in fumigated and nonfumigated soils with inoculation. Theses results highlight the potential of the engineered strain to be used for in situ bioremediation of soils co-contaminated with OP and pyrethroid pesticides.

  6. Bioremediation of contaminated sites

    International Nuclear Information System (INIS)

    Schneider, C.

    1996-01-01

    By volatilizing aromatic compounds through aeration, landfarming is a recognized approach to the bioremediation of hydrocarbon contaminated soil. With this method, the soil is cultivated and aided with fertilizer amendment to provide a nutrient source for the microbial population involved in the degradation of hydrocarbons. The effectiveness of bioremediation will depend on several factors, including topographic features, soil properties, and biochemistry. Since bioremediation is inhibited by anaerobic conditions, sites that are sloped or have trenches to collect runoff water are preferable. As for soil properties, the percentage of sand should not be too high, but aeration is essential to avoid anaerobic conditions. Addition of straw is generally beneficial, and fertilizers with nitrogen, phosphorous and potassium will help degrading hydrocarbons. Temperature, pH, and salt content are also important factors since they facilitate microbial activity. 3 refs

  7. EFFICIENCY OF THE EARTHWORM Eisenia fetida UNDER THE EFFECT OF ORGANIC MATTER FOR BIOREMEDIATION OF SOILS CONTAMINATED WITH CADMIUM AND CHROMIUM

    Directory of Open Access Journals (Sweden)

    G. R. Mostafaii

    Full Text Available Abstract The use of earthworms to bioremediate soil results in decreasing the pollutant concentration through a bioaccumulation mechanism of the contaminants in the earthworm's body. The present work is an empirical study that was carried out on soils contaminated with chromium and cadmium. Organic matter in the amount of 5% and 9% of soil weight was added. Chromium and cadmium concentrations in soil and in the body of worms were measured at two time periods of 21 and 42 days. According to the results, increasing from 5% to 9% the organic material of the soil contaminated with chromium at the initial concentration of 0.06 mg/g, the removal efficiency decreased by 5%. In 0.1 mg/g concentration the bioremediation efficiency decreased by 20%, showing that the earthworms probably have more tendency to consume the organic material and low tendency for consuming the soil contaminated by metal. Results showed that, considering the increased mortality of worms in the soil at a concentration of 0.08 mg/g of chromium, using this method is not recommended. For cadmium we require more study, though we can say that the organic material had no influence on the bioremediation of the soil.

  8. Bioremediation of soil contaminated by diesel oil Biorremediação de solos contaminados por óleo diesel

    Directory of Open Access Journals (Sweden)

    Fatima Menezes Bento

    2003-11-01

    Full Text Available Were evaluated natural attenuation, biostimulation and bioaugmentation on the degradation of total petroleum hydrocarbons (TPH in soils contaminated with diesel oil. Bioaugmentation showed the greatest degradation in the light (C12 - C23 fractions (72.7% and heavy (C23 - C40 fractions of TPH (75.2% and natural attenuation was more effective than biostimulation. The greatest dehydrogenase activity was observed upon bioaugmentation of the Long Beach soil (3.3-fold and the natural attenuation of the Hong Kong soil sample (4.0-fold. The number of diesel oil degrading microorganisms and heterotrophic population was not influenced by the bioremediation treatments. The best approach for bioremediation of soil contaminated with diesel oil is the inoculum of microorganisms pre-selected from their own environment.Avaliou-se a degradação de hidrocarbonetos de petróleo (HP em solos contaminados com óleo diesel através da atenuação natural, bioestimulação e bioaumentação. A bioaumentação apresentou a maior degradação da fração leve (72,6% e da fração pesada (75,2% de HP e a atenuação natural foi mais efetiva do que a bioestimulação. A maior atividade da dehidrogenase no solo Long Beach e Hong Kong foi observada nos tratamentos bioaumentação e atenuação natural, respectivamente. O número de microrganismos degradadores de diesel e a população de heterotróficos não foi influenciada pelas técnicas de biorremediação. A melhor performance para a biorremediação do solo contaminado com diesel foi obtida quando foram adicionados microrganismos pré-selecionados do ambiente contaminado.

  9. PROTOCOL FOR DETERMINING BIOAVAILABILITY AND BIOKINETICS OF ORGANIC POLLUTANTS IN DISPERSED, COMPACTED AND INTACT SOIL SYSTEMS TO ENHANCE IN SITU BIOREMEDIATION

    Science.gov (United States)

    The development of effective in situ and on-site bioremediation technologies can facilitate the cleanup of chemically-contaminated soil sites. Knowledge of biodegradation kinetics and bioavailability of organic pollutants can facilitate decisions on the efficacy of in situ and o...

  10. The impact on the soil microbial community and enzyme activity of two earthworm species during the bioremediation of pentachlorophenol-contaminated soils.

    Science.gov (United States)

    Lin, Zhong; Zhen, Zhen; Wu, Zhihao; Yang, Jiewen; Zhong, Laiyuan; Hu, Hanqiao; Luo, Chunling; Bai, Jing; Li, Yongtao; Zhang, Dayi

    2016-01-15

    The ecological effect of earthworms on the fate of soil pentachlorophenol (PCP) differs with species. This study addressed the roles and mechanisms by which two earthworm species (epigeic Eisenia fetida and endogeic Amynthas robustus E. Perrier) affect the soil microbial community and enzyme activity during the bioremediation of PCP-contaminated soils. A. robustus removed more soil PCP than did E. foetida. A. robustus improved nitrogen utilisation efficiency and soil oxidation more than did E. foetida, whereas the latter promoted the organic matter cycle in the soil. Both earthworm species significantly increased the amount of cultivable bacteria and actinomyces in soils, enhancing the utilisation rate of the carbon source (i.e. carbohydrates, carboxyl acids, and amino acids) and improving the richness and evenness of the soil microbial community. Additionally, earthworm treatment optimized the soil microbial community and increased the amount of the PCP-4-monooxygenase gene. Phylogenic classification revealed stimulation of indigenous PCP bacterial degraders, as assigned to the families Flavobacteriaceae, Pseudomonadaceae and Sphingobacteriacea, by both earthworms. A. robustus and E. foetida specifically promoted Comamonadaceae and Moraxellaceae PCP degraders, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. In-situ bioremediation of contaminated soils from Rodna mining areas from Bistrița-Năsăud county

    Directory of Open Access Journals (Sweden)

    Cornel Negrusier

    2016-11-01

    Full Text Available Soil ecosystems contaminated with heavy metals can cause significant damages to the environment and human health due to the mobility and solubility capacity of the contaminants. This research was carried out to set up a suitable bioremediation scheme for cleaning up the soil from the mining sites of Anieș and Glod Valley from Bistrița-Năsăud county. Based on the investigations that have been made (soil colour, pH, organic content of the soil, plant inventory phytoremediation seemed to be the most effective and environmentally-friendly method that could be used to neutralize or remove heavy metals from the soil.

  12. Ecotoxicological assessment of soils polluted with chemical waste from lindane production: Use of bacterial communities and earthworms as bioremediation tools.

    Science.gov (United States)

    Muñiz, Selene; Gonzalvo, Pilar; Valdehita, Ana; Molina-Molina, José Manuel; Navas, José María; Olea, Nicolás; Fernández-Cascán, Jesús; Navarro, Enrique

    2017-11-01

    An ecotoxicological survey of soils that were polluted with wastes from lindane (γ-HCH) production assessed the effects of organochlorine compounds on the metabolism of microbial communities and the toxicity of these compounds to a native earthworm (Allolobophora chlorotica). Furthermore, the bioremediation role of earthworms as facilitators of soil washing and the microbial degradation of these organic pollutants were also studied. Soil samples that presented the highest concentrations of ε-HCH, 2,4,6-trichlorophenol, pentachlorobenzene and γ-HCH were extremely toxic to earthworms in the short term, causing the death of almost half of the population. In addition, these soils inhibited the heterotrophic metabolic activity of the microbial community. These highly polluted samples also presented substances that were able to activate cellular detoxification mechanisms (measured as EROD and BFCOD activities), as well as compounds that were able to cause endocrine disruption. A few days of earthworm activity increased the extractability of HCH isomers (e.g., γ-HCH), facilitating the biodegradation of organochlorine compounds and reducing the intensity of endocrine disruption in soils that had low or medium contamination levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Biodegradation of 2,3,7,8 TCDD by anaerobic and aerobic microcosms collected from bioremediation treatments for cleaning up dioxin contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Dang Thi; Tuan, Mai Anh; Viet, Nguyen Quoc; Sanh, Nguyen Thi [Vietnamese Academy of Science and Technology (VAST) (Viet Nam). Inst. of Biotechnology; Sau, Trinh Khac [Vietnam-Russian Tropical Center (Viet Nam); Papke, O. [ERGO Forschungsgesellschaft, Hamburg (Germany)

    2004-09-15

    There are many microbes that can degrade polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurants (PCDFs) and polychlorinated biphenyls (PCBs) have been isolated including purified bacteria, actinomycetes, white rods, filamentous fungi, anaerobes and also anaerobic and aerobic consortia. Bioremediation one of biological remediation has been studied as hopeful alternative to physical and chemical treatments that using for cleaning up PCDDs, PCDFs. In Vietnam for cleaning up ''hot spot'' of some former military air bases, bioremediation has been studying in different scales of Danang site. After 18 to 24 month treatments, the reduction of toxicity was significally detected. In order to study biodegradability by different groups and one of dominated strain that are existing microorganisms in our treatments, the investigation of 2,3,7,8 TCDD anaerobic and aerobic degradations was carried out in the laboratory condition. Anaerobic microbial consortium containing three different bacteria such as two Gram- negative vibrio and rod and one gram positive cocoides bacteria. This consortium could degrade 118 pg TEQ/ml 2,3,7,8 TCDD after 133 days under sulfate reduction. Concentration of 2,3,7,8 TCDD in the soil extract that adding to medium at starting point of cultivation was 144.6 pg TEQ/ml. About 81% toxicity was removed. Aerobic consortium containing all three Gram-negative bacteria and one fungal strain. After 9 day shaking at 180 rpm/min and 30 C, 85.6 % of 164.45 pg TEQ/ml 2,3,7,8 TCDD was removed. Other preliminary results of study of 2,3,7,8 TCDD biodegradation as sole carbon and energy by show that this strain FDN30 could remove 43,45 pg TEQ/ml (59%) of 73,1 pgTEQ/ml adding dioxin after two weeks. These findings explain why high concentration of contaminants in treated soil was decreased after two year treatment. Indigenous microorganisms play leading role in the detoxification of 2,3,7,8 TCDD in contaminated soils.

  14. Bioremediation protocols

    National Research Council Canada - National Science Library

    Sheehan, David

    1997-01-01

    ..., .. . . . . .. ,. . . .. . . . . . . . .. . . . . .. . . .. . .. 3 2 Granular Nina Sludge Christiansen, Consortia lndra for Bioremediation, M. Mathrani, and Birgitte K. Ahring . 23 PART II PROTOCOLS...

  15. A geometric construction of traveling waves in a bioremediation model

    NARCIS (Netherlands)

    Beck, M.A.; Doelman, A.; Kaper, T.J.

    2006-01-01

    Bioremediation is a promising technique for cleaning contaminated soil. We study an idealized bioremediation model involving a substrate (contaminant to be removed), electron acceptor (added nutrient), and microorganisms in a one-dimensional soil column. Using geometric singular perturbation theory,

  16. Integrated electrochemical treatment systems for facilitating the bioremediation of oil spill contaminated soil.

    Science.gov (United States)

    Cheng, Ying; Wang, Liang; Faustorilla, Vilma; Megharaj, Mallavarapu; Naidu, Ravi; Chen, Zuliang

    2017-05-01

    Bioremediation plays an important role in oil spill management and bio-electrochemical treatment systems are supposed to represent a new technology for both effective remediation and energy recovery. Diesel removal rate increased by four times in microbial fuel cells (MFCs) since the electrode served as an electron acceptor, and high power density (29.05 W m -3 ) at current density 72.38 A m -3 was achieved using diesel (v/v 1%) as the sole substrate. As revealed by Scanning electron microscope images, carbon fibres in the anode electrode were covered with biofilm and the bacterial colloids which build the link between carbon fibres and enhance electron transmission. Trace metabolites produced during the anaerobic biodegradation were identified by gas chromatography-mass spectrometry. These metabolites may act as emulsifying agents that benefit oil dispersion and play a vital role in bioremediation of oil spills in field applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bioremediation of Petroleum hydrocarbon by using Pseudomonas species isolated from Petroleum contaminated soil

    OpenAIRE

    Vijay Kumar; Simranjeet Singh; Anu Manhas; Joginder Singh; Sourav Singla; Parvinder Kaur; Shivika Data; Pritika Negi; Arjun Kalia

    2014-01-01

    A newly isolated strain Pseudomonas fluorescens (Accession number KF 279042.1) have potential in diesel degradation and can be recommended for bioremediation of sites that are contaminated with diesel. This bacterium was characterized on the basis of microbiological, biochemical and molecular analysis. Bacterial growth optimization was studied based on carbon source, nitrogen source, pH and temperature. The strain was selected based on its ability to show growth in medium containing diesel. I...

  18. The use of vinasse as an amendment to ex-situ bioremediation of soil and groundwater contaminated with diesel oil

    Directory of Open Access Journals (Sweden)

    Adriano Pinto Mariano

    2009-08-01

    Full Text Available This work investigated the possibility of using vinasse as an amendment in ex-situ bioremediation processes. Groundwater and soil samples were collected at petrol stations. The soil bioremediation was simulated in Bartha biometer flasks, used to measure the microbial CO2 production, during 48 days, where vinasse was added at a concentration of 33 mL.Kg-1of soil. Biodegradation efficiency was also measured by quantifying the total petroleum hydrocarbons (TPH by gas chromatography. The groundwater bioremediation was carried out in laboratory experiments simulating aerated (bioreactors and not aerated (BOD flasks conditions. In both the cases, the concentration of vinasse was 5 % (v/v and different physicochemical parameters were evaluated during 20 days. Although an increase in the soil fertility and microbial population were obtained with the vinasse, it demonstrated not to be adequate to enhance the bioremediation efficiency of diesel oil contaminated soils. The addition of the vinasse in the contaminated groundwaters had negative effects on the biodegradation of the hydrocarbons, since vinasse, as a labile carbon source, was preferentially consumed.Este trabalho investigou a possibilidade de se usar a vinhaça como um agente estimulador de processos de biorremediação ex-situ. Amostras de água subterrânea e solo foram coletadas em três postos de combustíveis. A biorremediação do solo foi simulada em frascos de Bartha, usados para medir a produção de CO2, durante 48 dias, onde a vinhaça foi adicionada a uma concentração de 33 mL.Kg-1 de solo. A eficiência de biodegradação também foi medida pela quantificação de hidrocarbonetos totais de petróleo (TPH por cromatografia gasosa. A biorremediação da água subterrânea foi realizada em experimentos laboratoriais simulando condições aeradas (bioreatores e não aeradas (frascos de DBO. Em ambos os casos, a concentração de vinhaça foi de 5 % (v/v e diferentes parâmetros f

  19. Monitoring Arthrobacter protophormiae RKJ100 in a 'tag and chase' method during p-nitrophenol bio-remediation in soil microcosms.

    Science.gov (United States)

    Pandey, Gunjan; Pandey, Janmejay; Jain, Rakesh K

    2006-05-01

    Monitoring of micro-organisms released deliberately into the environment is essential to assess their movement during the bio-remediation process. During the last few years, DNA-based genetic methods have emerged as the preferred method for such monitoring; however, their use is restricted in cases where organisms used for bio-remediation are not well characterized or where the public domain databases do not provide sufficient information regarding their sequence. For monitoring of such micro-organisms, alternate approaches have to be undertaken. In this study, we have specifically monitored a p-nitrophenol (PNP)-degrading organism, Arthrobacter protophormiae RKJ100, using molecular methods during PNP degradation in soil microcosm. Cells were tagged with a transposon-based foreign DNA sequence prior to their introduction into PNP-contaminated microcosms. Later, this artificially introduced DNA sequence was PCR-amplified to distinguish the bio-augmented organism from the indigenous microflora during PNP bio-remediation.

  20. The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment.

    Science.gov (United States)

    Bastida, F; Jehmlich, N; Lima, K; Morris, B E L; Richnow, H H; Hernández, T; von Bergen, M; García, C

    2016-03-01

    The linkage between phylogenetic and functional processes may provide profound insights into the effects of hydrocarbon contamination and biodegradation processes in high-diversity environments. Here, the impacts of petroleum contamination and the bioremediation potential of compost amendment, as enhancer of the microbial activity in semiarid soils, were evaluated in a model experiment. The analysis of phospholipid fatty-acids (PLFAs) and metaproteomics allowed the study of biomass, phylogenetic and physiological responses of the microbial community in polluted semiarid soils. Petroleum pollution induced an increase of proteobacterial proteins during the contamination, while the relative abundance of Rhizobiales lowered in comparison to the non-contaminated soil. Despite only 0.55% of the metaproteome of the compost-treated soil was involved in biodegradation processes, the addition of compost promoted the removal of polycyclic aromatic hydrocarbons (PAHs) and alkanes up to 88% after 50 days. However, natural biodegradation of hydrocarbons was not significant in soils without compost. Compost-assisted bioremediation was mainly driven by Sphingomonadales and uncultured bacteria that showed an increased abundance of catabolic enzymes such as catechol 2,3-dioxygenases, cis-dihydrodiol dehydrogenase and 2-hydroxymuconic semialdehyde. For the first time, metaproteomics revealed the functional and phylogenetic relationships of petroleum contamination in soil and the microbial key players involved in the compost-assisted bioremediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Evaluation of hydrocarbons and organochlorine pesticides and their tolerant microorganisms from an agricultural soil to define its bioremediation feasibility.

    Science.gov (United States)

    Islas-García, Alejandro; Vega-Loyo, Libia; Aguilar-López, Ricardo; Xoconostle-Cázares, Beatriz; Rodríguez-Vázquez, Refugio

    2015-01-01

    The concentrations of hydrocarbons and organochlorine pesticides (OCPs), nutrients and tolerant microorganisms in an agricultural soil from a locality in Tepeaca, Puebla, Mexico, were determined to define its feasibility for bioremediation. The OCPs detected were heptachlor, aldrin, trans-chlordane, endosulfán I, endosulfán II, 1,1,1-bis-(4-chlorophenyl)-2,2-trichloroethane (4,4'-DDT), 1,1-bis-(4-chlorophenyl)-2,2-dichloroethene (4,4'-DDE) and endrin aldehyde, with values of 0.69-30.81 ng g(-1). The concentration of hydrocarbons in the soil of Middle Hydrocarbons Fraction (MHF), C10 to C28, was 4608-27,748 mg kg(-1) and 1117-19,610 mg kg(-1) for Heavy Hydrocarbons Fraction (HHF), C28 to C35, due to an oil spill from the rupture of a pipeline. The soil was deficient in nitrogen (0.03-0.07%) and phosphorus (0 ppm), and therefore it was advisable to fertilize to bio-stimulate the native microorganisms of soil. In the soil samples, hydrocarbonoclast fungi 3.72 × 10(2) to 44.6 × 10(2) CFU g(-1) d.s. and hydrocarbonoclast bacteria (0.17 × 10(5) to 8.60 × 10(5) CFU g(-1) d.s.) were detected, with a tolerance of 30,000 mg kg(-1) of diesel. Moreover, pesticideclast fungi (5.13 × 10(2) to 42.2 × 10(2) CFU g(-1) d.s.) and pesticideclast bacteria (0.15 × 10(5) to 9.68 × 10(5) CFU g(-1) d.s.) were determined with tolerance to 20 mg kg(-1) of OCPs. Fungi and bacteria tolerant to both pollutants were also quantified. Therefore, native microorganisms had potential to be stimulated to degrade hydrocarbons and pesticides or both pollutants. The concentration of pollutants and the microbial activity analyzed indicated that bioremediation of the soil contaminated with hydrocarbons and pesticides using bio-stimulation of native microorganisms was feasible.

  2. Method for in situ or ex situ bioremediation of hexavalent chromium contaminated soils and/or groundwater

    Science.gov (United States)

    Turick, Charles E.; Apel, William W.

    1997-10-28

    A method of reducing the concentration of Cr(VI) in a liquid aqueous residue comprises the steps of providing anaerobic Cr(VI) reducing bacteria, mixing the liquid aqueous residue with a nutrient medium to form a mixture, and contacting the mixture with the anaerobic Cr(VI) reducing bacteria such that Cr(VI) is reduced to Cr(III). The anaerobic Cr(VI) reducing bacteria appear to be ubiquitous in soil and can be selected by collecting a soil sample, diluting the soil sample with a sterile diluent to form a diluted sample, mixing the diluted sample with an effective amount of a nutrient medium and an effective amount of Cr(VI) to form a mixture, and incubating the mixture in the substantial absence of oxygen such that growth of Cr(VI) sensitive microorganisms is inhibited and growth of the anaerobic Cr(VI) reducing bacteria is stimulated. A method of in situ bioremediation of Cr(VI) contaminated soil and/or groundwater is also disclosed.

  3. Bioremediation of acidic oily sludge-contaminated soil by the novel yeast strain Candida digboiensis TERI ASN6.

    Science.gov (United States)

    Sood, Nitu; Patle, Sonali; Lal, Banwari

    2010-03-01

    Primitive wax refining techniques had resulted in almost 50,000 tonnes of acidic oily sludge (pH 1-3) being accumulated inside the Digboi refinery premises in Assam state, northeast India. A novel yeast species Candida digboiensis TERI ASN6 was obtained that could degrade the acidic petroleum hydrocarbons at pH 3 under laboratory conditions. The aim of this study was to evaluate the degradation potential of this strain under laboratory and field conditions. The ability of TERI ASN6 to degrade the hydrocarbons found in the acidic oily sludge was established by gravimetry and gas chromatography-mass spectroscopy. Following this, a feasibility study was done, on site, to study various treatments for the remediation of the acidic sludge. Among the treatments, the application of C. digboiensis TERI ASN6 with nutrients showed the highest degradation of the acidic oily sludge. This treatment was then selected for the full-scale bioremediation study conducted on site, inside the refinery premises. The novel yeast strain TERI ASN6 could degrade 40 mg of eicosane in 50 ml of minimal salts medium in 10 days and 72% of heneicosane in 192 h at pH 3. The degradation of alkanes yielded monocarboxylic acid intermediates while the polycyclic aromatic hydrocarbon pyrene found in the acidic oily sludge yielded the oxygenated intermediate pyrenol. In the feasibility study, the application of TERI ASN6 with nutrients showed a reduction of solvent extractable total petroleum hydrocarbon (TPH) from 160 to 28.81 g kg(-1) soil as compared to a TPH reduction from 183.85 to 151.10 g kg(-1) soil in the untreated control in 135 days. The full-scale bioremediation study in a 3,280-m(2) area in the refinery showed a reduction of TPH from 184.06 to 7.96 g kg(-1) soil in 175 days. Degradation of petroleum hydrocarbons by microbes is a well-known phenomenon, but most microbes are unable to withstand the low pH conditions found in Digboi refinery. The strain C. digboiensis could efficiently degrade

  4. Phytoremediation of Polycyclic Aromatic Hydrocarbons in Soils Artificially Polluted Using Plant-Associated-Endophytic Bacteria and Dactylis glomerata as the Bioremediation Plant.

    Science.gov (United States)

    Gałązka, Ann; Gałązka, Rafał

    2015-01-01

    The reaction of soil microorganisms to the contamination of soil artificially polluted with polycyclic aromatic hydrocarbons (PAHs) was evaluated in pot experiments. The plant used in the tests was cock's foot (Dactylis glomerata). Three different soils artificially contaminated with PAHs were applied in the studies. Three selected PAHs (anthracene, phenanthrene, and pyrene) were used at the doses of 100, 500, and 1000 mg/kg d.m. of soil and diesel fuel at the doses of 100, 500, and 1000 mg/kg d.m. of soil. For evaluation of the synergistic effect of nitrogen fixing bacteria, the following strains were selected: associative Azospirillum spp. and Pseudomonas stutzerii. Additionally, in the bioremediation process, the inoculation of plants with a mixture of the bacterial strains in the amount of 1 ml suspension per 500 g of soil was used. Chamber pot-tests were carried out in controlled conditions during four weeks of plant growth period. The basic physical, microbiological and biochemical properties in contaminated soils were determined. The obtained results showed a statistically important increase in the physical properties of soils polluted with PAHs and diesel fuel compared with the control and also an important decrease in the content of PAHs and heavy metals in soils inoculated with Azospirillum spp. and P. stutzeri after cock's foot grass growth. The bioremediation processes were especially intensive in calcareous rendzina soil artificially polluted with PAHs.

  5. Treatability and scale-up protocols for polynuclear aromatic hydrocarbon bioremediation of manufactured-gas-plant soils. Final report, September 1987-July 1991

    International Nuclear Information System (INIS)

    Blackburn, J.W.; DiGrazia, P.M.; Sanseverino, J.

    1991-07-01

    The report describes activities to develop a framework to reliably scale-up and apply challenging bioremediation processes to polynuclear aromatic hydrocarbons in Manufactured Gas Plant (MGP) soils. It includes: a discussion of the accuracy needed for competitive application of bioremediation; a framework and examples for treatability and scale-up protocols for selection, design and application of these processes; both batch and continuous testing protocols for developing predictive rate data; and special predictive relationships that may be used in process selection/scale-up. The work, coupled with subsequent work (as recommended) to develop an MGP soil desorption/diffusion protocol and new scale-up methods, and with subsequent scale-up testing should lead to the capability for improved selection of MGP sites for bioremediation and improved performance, success, and reliability of field applications. With this greater predictive reliability, bioremediation will be used more often in the field on the most favorable applications and its cost advantages over other remediation options will be realized

  6. Tenax TA extraction to understand the rate-limiting factors in methyl-β-cyclodextrin-enhanced bioremediation of PAH-contaminated soil.

    Science.gov (United States)

    Sun, Mingming; Luo, Yongming; Teng, Ying; Christie, Peter; Jia, Zhongjun; Li, Zhengao

    2013-06-01

    The effectiveness of many bioremediation systems for PAH-contaminated soil may be constrained by low contaminant bioaccessibility due to limited aqueous solubility or large sorption capacity. Information on the extent to which PAHs can be readily biodegraded is of vital importance in the decision whether or not to remediate a contaminated soil. In the present study the rate-limiting factors in methyl-β-cyclodextrin (MCD)-enhanced bioremediation of PAH-contaminated soil were evaluated. MCD amendment at 10 % (w/w) combined with inoculation with the PAH-degrading bacterium Paracoccus sp. strain HPD-2 produced maximum removal of total PAHs of up to 35 %. The desorption of PAHs from contaminated soil was determined before and after 32 weeks of bioremediation. 10 % (w/w) MCD amendment (M2) increased the Tenax extraction of total PAHs from 12 to 30 % and promoted degradation by up to 26 % compared to 6 % in the control. However, the percentage of Tenax extraction for total PAHs was much larger than that of degradation. Thus, in the control and M2 treatment it is likely that during the initial phase the bioaccessibility of PAHs is high and biodegradation rates may be limited by microbial processes. On the other hand, when the soil was inoculated with the PAH-degrading bacterium (CKB and MB2), the slowly and very slowly desorbing fractions (F sl and F vl ) became larger and the rate constants of slow and very slow desorption (k sl and k vl ) became extremely small after bioremediation, suggesting that desorption is likely rate limiting during the second, slow phase of biotransformation. These results have practical implications for site risk assessment and cleanup strategies.

  7. Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium.

    Science.gov (United States)

    Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2012-11-01

    Bioremediation of polyaromatic hydrocarbons (PAH) contaminated soils in the presence of heavy metals have proved to be difficult and often challenging due to the ability of toxic metals to inhibit PAH degradation by bacteria. In this study, a mixed bacterial culture designated as consortium-5 was isolated from a former manufactured gas plant (MGP) site. The ability of this consortium to utilise HMW PAHs such as pyrene and BaP as a sole carbon source in the presence of toxic metal Cd was demonstrated. Furthermore, this consortium has proven to be effective in degradation of HMW PAHs even from the real long term contaminated MGP soil. Thus, the results of this study demonstrate the great potential of this consortium for field scale bioremediation of PAHs in long term mix contaminated soils such as MGP sites. To our knowledge this is the first study to isolate and characterize metal tolerant HMW PAH degrading bacterial consortium which shows great potential in bioremediation of mixed contaminated soils such as MGP.

  8. Bioremediation of recalcitrant chemical pollutant-contaminated soil. Applying edible mushroom cultivation waste to bioremediation; Kinoko kinsho ni yoru nanbunkaisei busshitsu osendo no bioremidiation. Kinoko kinsho no rigunin bunkai koso kassei to takan hokozoku tanka suiso no bunkaino

    Energy Technology Data Exchange (ETDEWEB)

    Okada, S.; Oide, E.; Oshima, Y.; Tsuji, H. [Obayashi Corp., Tokyo (Japan)

    2000-01-10

    Bioremediation is a viable and cost effective method for soil contaminated with a variety of chemical pollutants. White-rot fungi, with emitted extracellular free radicals, are known to be able to decompose lignin, which is usually nonbiodegradable by most bacteria. The decomposition mechanism has been shown to be attributed, at least in part, to lignolytic peroxidases. We examined a method that utilizes edible mushroom cultivation waste as the microbial source, and found that these waste materials have high lignolytic peroxidase activity and degradated polyaromatic hydrocarbons in sands. (author)

  9. Degradability of n-alkanes during ex situ natural bioremediation of soil contaminated by heavy residual fuel oil (mazut

    Directory of Open Access Journals (Sweden)

    Ali Ramadan Mohamed Muftah

    2013-01-01

    Full Text Available It is well known that during biodegradation of oil in natural geological conditions, or oil pollutants in the environment, a degradation of hydrocarbons occurs according to the well defined sequence. For example, the major changes during the degradation process of n-alkanes occur in the second, slight and third, moderate level (on the biodegradation scale from 1 to 10. According to previous research, in the fourth, heavy level, when intensive changes of phenanthrene and its methyl isomers begin, n-alkanes have already been completely removed. In this paper, the ex situ natural bioremediation (unstimulated bioremediation, without addition of biomass, nutrient substances and biosurfactant of soil contaminated with heavy residual fuel oil (mazut was conducted during the period of 6 months. Low abundance of n-alkanes in the fraction of total saturated hydrocarbons in the initial sample (identification was possible only after concentration by urea adduction technique showed that the investigated oil pollutant was at the boundary between the third and the fourth biodegradation level. During the experiment, an intense degradation of phenanthrene and its methyl-, dimethyl-and trimethyl-isomers was not followed by the removal of the remaining n-alkanes. The abundance of n-alkanes remained at the initial low level, even at end of the experiment when the pollutant reached one of the highest biodegradation levels. These results showed that the unstimulated biodegradation of some hydrocarbons, despite of their high biodegradability, do not proceed completely to the end, even at final degradation stages. In the condition of the reduced availability of some hydrocarbons, microorganisms tend to opt for less biodegradable but more accessible hydrocarbons.

  10. Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides

    OpenAIRE

    Hazen, Terry C.; Tabak, Henry H.

    2007-01-01

    Bioremediation of metals and radionuclides has had many field tests, demonstrations, and full-scale implementations in recent years. Field research in this area has occurred for many different metals and radionuclides using a wide array of strategies. These strategies can be generally characterized in six major categories: biotransformation, bioaccumulation/bisorption, biodegradation of chelators, volatilization, treatment trains, and natural attenuation. For all field applications there are ...

  11. Low accessibility and chemical activity of PAHs restrict bioremediation and risk of exposure in a manufactured gas plant soil

    International Nuclear Information System (INIS)

    Reichenberg, Fredrik; Karlson, Ulrich Gosewinkel; Gustafsson, Orjan; Long, Sara M.; Pritchard, Parmely H.; Mayer, Philipp

    2010-01-01

    Composting of manufactured gas plant soil by a commercial enterprise had removed most of its polycyclic aromatic hydrocarbons (PAHs), but concentrations remained above regulatory threshold levels. Several amendments and treatments were first tested to restart the PAH degradation, albeit with little success. The working hypothesis was then that PAHs were 'stuck' due to strong sorption to black carbon. Accessibility was measured with cyclodextrin extractions and on average only 4% of the PAHs were accessible. Chemical activity of the PAHs was measured by equilibrium sampling, which confirmed a low exposure level. These results are consistent with strong sorption to black carbon (BC), which constituted 59% of the total organic carbon. Composting failed to remove the PAHs, but it succeeded to minimize PAH accessibility and chemical activity. This adds to accumulating evidence that current regulatory thresholds based on bulk concentrations are questionable and alternative approaches probing actual risk should be considered. - Bioremediation of MGP soil failed to eliminate PAHs but it succeeded to limit their accessibility, chemical activity and the remaining risk of biological exposure.

  12. Characterization of the Rhodococcus sp. MK1 strain and its pilot application for bioremediation of diesel oil-contaminated soil.

    Science.gov (United States)

    Kis, Ágnes Erdeiné; Laczi, Krisztián; Zsíros, Szilvia; Kós, Péter; Tengölics, Roland; Bounedjoum, Naila; Kovács, Tamás; Rákhely, Gábor; Perei, Katalin

    2017-12-01

    Petroleum hydrocarbons and derivatives are widespread contaminants in both aquifers and soil, their elimination is in the primary focus of environmental studies. Microorganisms are key components in biological removal of pollutants. Strains capable to utilize hydrocarbons usually appear at the contaminated sites, but their metabolic activities are often restricted by the lack of nutrients and/or they can only utilize one or two components of a mixture. We isolated a novel Rhodococcus sp. MK1 strain capable to degrade the components of diesel oil simultaneously. The draft genome of the strain was determined and besides the chromosome, the presence of one plasmid could be revealed. Numerous routes for oxidation of aliphatic and aromatic compounds were identified. The strain was tested in ex situ applications aiming to compare alternative solutions for microbial degradation of hydrocarbons. The results of bioaugmentation and biostimulation experiments clearly demonstrated that - in certain cases - the indigenous microbial community could be exploited for bioremediation of oil-contaminated soils. Biostimulation seems to be efficient for removal of aged contaminations at lower concentration range, whereas bioaugmentation is necessary for the treatment of freshly and highly polluted sites.

  13. Long-term bioremediation of a subsurface plume in silty soil

    International Nuclear Information System (INIS)

    Mose, D.G.; Mushrush, G.W.

    2000-01-01

    In northern Virginia, a loss from a tank farm has produced two plumes, containing about 200,000 gal of diesel fuel, jet-A fuel, and gasoline. Evidence suggests that the longest part of the contamination plume moved to its present length of 2,500 ft in less than 5 years. Since natural biodegradation would require about 2,500 years to reduce the hydrocarbon contamination to the remediation endpoints, other methods have been considered. Excavation of the plumes would take an estimated 5 years. However, the tank farm is surrounded by commercial buildings and expensive homes, and many of these buildings would have to be removed to reach the plumes. Enhanced natural bioremediation would require about 200 years at a start-up cost of about $1 million dollars and recurring costs of approximately $500,000/year. Infiltration galleries and enhanced subsurface permeability could reduce the remediation time to as little as 20 years

  14. Enrichment and Characterization of PCB-Degrading Bacteria as Potential Seed Cultures for Bioremediation of Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Dubravka Hršak

    2007-01-01

    Full Text Available The main objective of our study was to obtain seed cultures for enhancing the transformation of polychlorinated biphenyls (PCBs in contaminated soil of the transformer station in Zadar, Croatia, damaged during warfare activities in 1991. For enrichment, six soil samples were collected from different polluted areas and microcosm approach, stimulating the growth of biphenyl-degrading bacteria, was employed. Enrichment experiments resulted in the selection of two fast growing mixed cultures TSZ7 and AIR1, originating from the soil of the transformer station and the airport area, respectively. Both cultures showed significant PCB-degrading activity (56 to 60 % of PCB50 mixture was reduced after a two-week cultivation. Furthermore, the cultures displayed similar PCB-degrading competence and reduced di-to tetrachlorobiphenyls more effectively than penta- to hepta-chlorobiphenyls. Strain Z6, identified as Rhodococcus erythropolis, was found to be the only culture member showing PCB-transformation potential similar to that of the mixed culture TSZ7, from which it was isolated. Based on the metabolites identified in the assay with the single congener 2,4,4’-chlorobiphenyl, we proposed that the strain Z6 was able to use both the 2,3-and 3,4-dioxygenase pathways. Furthermore, the identified metabolites suggested that beside these pathways another unidentified pathway might also be active in strain Z6. Based on the obtained results, the culture TSZ7 and the strain Z6 were designated as potential seed cultures for bioremediation of the contaminated soil.

  15. Using Plants for the Bioremediation (Phyto-remediation) of Chromium-Contaminated Soils

    International Nuclear Information System (INIS)

    Abdel-Sabour, M.F.; Al-Salama, Y.J.

    2003-01-01

    A trial was made to study the use of hyper accumulator plant species to extract Cr out of contaminated soils. Three soils (A,B, and C) were selected in this experiment, Soil A: Polluted soil from El-Gabal El-Asfer farm. (subjected to sewage effluent irrigation for more than 75 years). Soil B: Polluted soil from Bahtem area (subjected to sewage effluent irrigation for more than 30 years). Soil C: Polluted soil from Mostorud area (irrigated with contaminated water for more than 30 years due to direct discharge of industrial wastewater to irrigation water canals). Four Kg of each air-dried surface soil sample (0-20 cm) were packed in plastic containers in three replicates. Four plant species tested in this study namely, Sorghum (Sorghum Vulgar L.), Clover (Trifolium Pretense L.), Panikum (Panicum antidotal) and Canola (Brassica Napous.); were grown on each tested soil in a complete randomized block experimental design. Plant shoots were harvested every 60 days (three cuts) for sorghum, clover and panikum. In case of canola plants, the shoots were harvested after 60 days (vegetative stage) and 85 days(fruiting stage). The roots of all species were collected after the final cut. Initial and final soil samples were taken for Cr analyses using neutron activation analyses technique (NAA)

  16. Inhibition of hydrocarbon bioremediation by lead in a crude oil-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Al-Saleh, E.S.; Obuekwe, C. [Kuwait University (Kuwait). Department of Biological Sciences, Microbiology Program

    2005-07-01

    Analyses of soil samples revealed that the level of lead (total or bioavailable) was three-fold greater in crude oil contaminated than in uncontaminated Kuwaiti soils. Investigation of the possible inhibitory effect of lead on hydrocarbon degradation by the soil microbiota showed that the number of hydrocarbon-degrading bacteria decreased with increased levels of lead nitrate added to soil samples, whether oil polluted or not. At 1.0 mg lead nitrate g{sup -1} dry soil, the number of degraders of hexadecane, naphthalene and crude oil declined by 14%, 23% and 53%, respectively. In a similar manner, the degradation and mineralization of different hydrocarbons decreased with increased lead content in cultures, although the decreases were not significantly different (P>0.05). The dehydrogenase activities of soil samples containing hydrocarbons as substrates also declined with an increase in the lead content of soil samples. (author)

  17. Bioremediation of endosulfan contaminated soil and water-Optimization of operating conditions in laboratory scale reactors

    International Nuclear Information System (INIS)

    Kumar, Mathava; Philip, Ligy

    2006-01-01

    A mixed bacterial culture consisted of Staphylococcus sp., Bacillus circulans-I and -II has been enriched from contaminated soil collected from the vicinity of an endosulfan processing industry. The degradation of endosulfan by mixed bacterial culture was studied in aerobic and facultative anaerobic conditions via batch experiments with an initial endosulfan concentration of 50 mg/L. After 3 weeks of incubation, mixed bacterial culture was able to degrade 71.58 ± 0.2% and 75.88 ± 0.2% of endosulfan in aerobic and facultative anaerobic conditions, respectively. The addition of external carbon (dextrose) increased the endosulfan degradation in both the conditions. The optimal dextrose concentration and inoculum size was estimated as 1 g/L and 75 mg/L, respectively. The pH of the system has significant effect on endosulfan degradation. The degradation of alpha endosulfan was more compared to beta endosulfan in all the experiments. Endosulfan biodegradation in soil was evaluated by miniature and bench scale soil reactors. The soils used for the biodegradation experiments were identified as clayey soil (CL, lean clay with sand), red soil (GM, silty gravel with sand), sandy soil (SM, silty sand with gravel) and composted soil (PT, peat) as per ASTM (American society for testing and materials) standards. Endosulfan degradation efficiency in miniature soil reactors were in the order of sandy soil followed by red soil, composted soil and clayey soil in both aerobic and anaerobic conditions. In bench scale soil reactors, endosulfan degradation was observed more in the bottom layers. After 4 weeks, maximum endosulfan degradation efficiency of 95.48 ± 0.17% was observed in red soil reactor where as in composted soil-I (moisture 38 ± 1%) and composted soil-II (moisture 45 ± 1%) it was 96.03 ± 0.23% and 94.84 ± 0.19%, respectively. The high moisture content in compost soil reactor-II increased the endosulfan concentration in the leachate. Known intermediate metabolites of

  18. Mesocosm trials of bioremediation of contaminated soil of a petroleum refinery: comparison of natural attenuation, biostimulation and bioaugmentation.

    Science.gov (United States)

    Couto, M Nazaré P F S; Monteiro, Emanuela; Vasconcelos, M Teresa S D

    2010-08-01

    Contamination with petroleum hydrocarbons (PHC) is a global problem with environmental implications. Physico-chemical treatments can be used for soil cleanup, but they are expensive, and can have implications for soil structure and environment. Otherwise, biological remediation treatments are cost-effective and restore soil structure. Several remediation experiments have been carried out in the lab and in the field; however, there is the challenge to achieve as good or better results in the field as in the laboratory. In the ambit of a project aiming at investigating suitable biological remediation approaches for recovering a refinery contaminated soil, we present here results obtained in bioremediation trials. The approaches biostimulation and bioaugmentation were tested, in parallel, and compared with natural attenuation. For this purpose, mesocosm experiments were carried out inside the refinery area, which constitutes a real asset of this work. Soil contaminated with crude oil was excavated, re-contaminated with turbine oil, homogenised and used to fill several 0.5 m(3) high-density polyethylene containers. The efficiency of procedures as follows: (1) natural attenuation; (2) manual aeration; (3) biostimulation by adding (3.1) only nutrients; and (3.2) nutrients and a non-ionic surfactant; and (4) bioaugmentation in the presence of added (4.1) nutrients or (4.2) nutrients and a non-ionic surfactant were evaluated after a 9-month period of experiment. For bioaugmentation, a commercial bacterial product was used. In addition to physico-chemical characterization, initial and final soil contents in total petroleum hydrocarbons (TPH) (by Fourier transform infrared spectrophotometry) and the total number of bacteria (by total cell counts) were carried out. For TPH degradation evaluation the soil was divided in four fractions corresponding to different depths: 0-5; 5-10; 10-15; and 15-20 cm. Mean values of percentages of PHC degradation varied between 20 and 50% at

  19. J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY FOR TREATMENT OF TNT-CONTAMINATED SOILS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report summarizes the findings of the second evaluation of the J.R. Simplot Ex-situ Bioremediation Technology also known as the Simplot Anaerobic Bioremediation (SABRE™) process. This technology was developed by the J.R. Simplot Company to biologically degrade nitroaromatic...

  20. Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potential for bioremediation of pyrethroid-contaminated soils.

    Science.gov (United States)

    Chen, Shaohua; Chang, Changqing; Deng, Yinyue; An, Shuwen; Dong, Yi Hu; Zhou, Jianuan; Hu, Meiying; Zhong, Guohua; Zhang, Lian-Hui

    2014-03-12

    The widely used insecticide fenpropathrin in agriculture has become a public concern because of its heavy environmental contamination and toxic effects on mammals, yet little is known about the kinetic and metabolic behaviors of this pesticide. This study reports the degradation kinetics and metabolic pathway of fenpropathrin in Bacillus sp. DG-02, previously isolated from the pyrethroid-manufacturing wastewater treatment system. Up to 93.3% of 50 mg L(-1) fenpropathrin was degraded by Bacillus sp. DG-02 within 72 h, and the degradation rate parameters qmax, Ks, and Ki were determined to be 0.05 h(-1), 9.0 mg L(-1), and 694.8 mg L(-1), respectively. Analysis of the degradation products by gas chromatography-mass spectrometry led to identification of seven metabolites of fenpropathrin, which suggest that fenpropathrin could be degraded first by cleavage of its carboxylester linkage and diaryl bond, followed by degradation of the aromatic ring and subsequent metabolism. In addition to degradation of fenpropathrin, this strain was also found to be capable of degrading a wide range of synthetic pyrethroids including deltamethrin, λ-cyhalothrin, β-cypermethrin, β-cyfluthrin, bifenthrin, and permethrin, which are also widely used insecticides with environmental contamination problems with the degradation process following the first-order kinetic model. Bioaugmentation of fenpropathrin-contaminated soils with strain DG-02 significantly enhanced the disappearance rate of fenpropathrin, and its half-life was sharply reduced in the soils. Taken together, these results depict the biodegradation mechanisms of fenpropathrin and also highlight the promising potentials of Bacillus sp. DG-02 in bioremediation of pyrethroid-contaminated soils.

  1. BIOREMEDIATION PERSPECTIVES USING AUTOCHTHONOUS SPECIES OF Trichoderma sp. FOR DEGRADATION OF ATRAZINE IN AGRICULTURAL SOIL FROM THE TULANCINGO VALLEY, HIDALGO, MEXICO

    Directory of Open Access Journals (Sweden)

    Margarita Islas Pelcastre

    2013-08-01

    Full Text Available The objective of this study was to show an in vitro bioremediation methodology for atrazine-contaminated soils through the use of local strains of native fungi isolated from the Phaseolus vulgaris L rhizosphere present in cultivable soils as well as to evaluate its resistance and capacity for atrazine degradation. A Trichoderma sp. species was identified in three cultivable soils from the Tulancingo Hidalgo, México region (contaminated with and without atrazine, which resisted atrazine concentrations of 10,000 mg L-1.  Tests showed that the strain grows exponentially in atrazine-contaminated soil over a range of 105-106 CFU g-1 in 15 days using atrazine as the only carbon and nitrogen source, while the control and witress showed a decrease of 100-103 UFC g-1 in the same period of time. For the atrazine degradation experiments, a treatment of the application of Trichoderma (104 - 105 CFU mL-1 was applied to sterilized and non-sterilized soil contaminated with 500 mg Kg-1 of atrazine, evaluated at four time intervals (5, 10, 20 and 40 days. Statistical differences were found (α=0.050, Tukey among treatments with the fungi and the test days. The native Trichoderma strain degraded 89% of the atrazine in 40 days. It showed that it is viable and cultivable in soil bioremediation.

  2. Novel Technique to improve the pH of Acidic Barren Soil using Electrokinetic-bioremediation with the application of Vetiver Grass

    Science.gov (United States)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Zaidi, E.; Azim, M. A. M.; Zahin, A. M. F.

    2016-11-01

    Residual acidic slopes which are not covered by vegetation greatly increases the risk of soil erosion. In addition, low soil pH can bring numerous problems such as Al and Fe toxicity, land degradation issues and some problems related to vegetation. In this research, a series of electrokinetic bioremediation (EK-Bio) treatments using Bacillus sphaericus, Bacillus subtilis and Pseudomonas putida with a combination of Vetiver grass were performed in the laboratory. Investigations were conducted for 14 days and included the observation of changes in the soil pH and the mobilization of microorganism cells through an electrical gradient of 50 V/m under low pH. Based on the results obtained, this study has successfully proven that the pH of soil increases after going through electrokinetic bioremediation (EK-Bio). The treatment using Bacillus sphaericus increases the pH from 2.95 up to 4.80, followed by Bacillus subtilis with a value of 4.66. Based on the overall performance, Bacillus sphaericus show the highest number of bacterial cells in acidic soil with a value of 6.6 × 102 cfu/g, followed by Bacillus subtilis with a value of 5.7 × 102 cfu/g. In conclusion, Bacillus sphaericus and Bacillus subtilis show high survivability and is suitable to be used in the remediation of acidic soil.

  3. Bioremediation of Hydrocarbon-Contaminated Soils and Groundwater in Northern Climates

    National Research Council Canada - National Science Library

    Reynolds, Charles

    1998-01-01

    ...-landfarming, recirculating leachbeds, and infiltration galleries. Landfarming involves adding water and nutrients to contaminated soil to stimulate microbial activity and contaminant degradation...

  4. Remaining Sites Verification Package for the 600-243 Petroleum-Contaminated Soil Bioremediation Pad. Attachment to Waste Site Reclassification Form 2007-033

    International Nuclear Information System (INIS)

    Capron, J.M.

    2008-01-01

    The 600-243 waste site consisted of a bioremediation pad for petroleum-contaminated soils resulting from the 1100 Area Underground Storage Tank (UST) upgrades in 1994. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River

  5. APPLICATION STRATEGIES AND DESIGN CRITERIA FOR IN SITU BIOREMEDIATION OF SOIL AND GROUNDWATER IMPACTED BY PAHS

    Science.gov (United States)

    Biotreatability studies conducted in our laboratory used soils from two former wood-treatment facilities to evaluate the use of in situ bioventing and biosparging applications for their potential ability to remediate soil and groundwater containing creosote. The combination of ph...

  6. Removal of Pah from clay soil contaminated with diesel oil by bioremediation treatments

    International Nuclear Information System (INIS)

    Changas-spinelli, A. C. O.; Kato, M. T.; Lima, E. S.; Gavazza, S.

    2009-01-01

    Diesel oil is one of the most common soil organic pollutants, as a consequence of spilling of storage tank spills and accidental leaks. In Pernambuco State, Northeast part of Brazil, there are several evidences of soil contamination by petroleum derivates due to gas station leaking. (Author)

  7. In situ bio-remediation of contaminated soil in a uranium deposit

    International Nuclear Information System (INIS)

    Groudev, St.; Spasova, I.; Nicolova, M.; Georgiev, P.

    2005-01-01

    The uranium deposit Curilo, located in Western Bulgaria, for a long period of time was a site of intensive mining activities including both the open-pit and underground techniques as well as in situ leaching of uranium. The mining operations were ended in 1990 but until now both the surface and ground waters and soils within and near the deposit are heavily polluted with radionuclides (mainly uranium and radium) and heavy metals (mainly copper, zinc and cadmium). Laboratory experiments carried out with soil samples from the deposit revealed that an efficient removal of the above-mentioned contaminants was achieved by their solubilizing and washing the soil profile by means of acidified water solutions. The solubilization was connected with the activity of the indigenous soil microflora, mainly with the activity of some acidophilic chemo-litho-trophic bacteria. It was possible to enhance considerably this activity by suitable changes in the levels of some essential environmental factors such as pH and water, oxygen and nutrient contents in the soil. Such treatment was successfully applied also under real field conditions in the deposit. The effluents from the soil profile during the operation above-mentioned contained the pollutants as well as other heavy metals such as iron and manganese dissolved from the soil in concentrations usually higher than the relevant permissible levels for waters intended for use in the agriculture and/or industry. For that reason, these effluents were efficiently cleaned up by means of a natural wetland located near the treated soil. However, such treatment as any other method for treatment of polluted waters is connected with additional costs which increase the total costs for the soil cleanup. A possible way to avoid or at least largely to facilitate the cleanup of the soil effluents is to apply a biotechnological method in which the soil contaminants solubilized in the upper soil layers (mainly in the horizon A) are transferred into

  8. Bioremediation trial on aged PCB-polluted soils--a bench study in Iceland.

    Science.gov (United States)

    Lehtinen, Taru; Mikkonen, Anu; Sigfusson, Bergur; Ólafsdóttir, Kristín; Ragnarsdóttir, Kristín Vala; Guicharnaud, Rannveig

    2014-02-01

    Polychlorinated biphenyls (PCBs) pose a threat to the environment due to their high adsorption capacity to soil organic matter, stability and low reactivity, low water solubility, toxicity and ability to bioaccumulate. With Icelandic soils, research on contamination issues has been very limited and no data has been reported either on PCB degradation potential or rate. The goals of this research were to assess the bioavailability of aged PCBs in the soils of the old North Atlantic Treaty Organization facility in Keflavík, Iceland and to find the best biostimulation method to decrease the pollution. The effectiveness of different biostimulation additives (N fertiliser, white clover and pine needles) at different temperatures (10 and 30 °C) and oxygen levels (aerobic and anaerobic) were tested. PCB bioavailability to soil fauna was assessed with earthworms (Eisenia foetida). PCBs were bioavailable to earthworms (bioaccumulation factor 0.89 and 0.82 for earthworms in 12.5 ppm PCB soil and in 25 ppm PCB soil, respectively), with less chlorinated congeners showing higher bioaccumulation factors than highly chlorinated congeners. Biostimulation with pine needles at 10 °C under aerobic conditions resulted in nearly 38 % degradation of total PCBs after 2 months of incubation. Detection of the aerobic PCB degrading bphA gene supports the indigenous capability of the soils to aerobically degrade PCBs. Further research on field scale biostimulation trials with pine needles in cold environments is recommended in order to optimise the method for onsite remediation.

  9. Biostimulatory Effect Of Processed Sewage Sludge In Bioremediation Of Engine Oil Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Kamaluddeen

    2015-08-01

    Full Text Available A study was conducted to evaluate the influence of sewage sludge on biodegradation of engine oil in contaminated soil. Soil samples were collected from a mechanics workshop in Sokoto metropolis. The Soil samples were taken to the laboratory for isolation of engine oil degrading bacteria. About 1 g of soil sample was used to inoculate 9 ml of trypticase soy broth and incubated at 28oC for 24 h. The growth obtained was sub-cultured in mineral salt medium overlaid with crude oil and allowed to stand at 28oC for 72 h. The culture obtained was then maintained on tryticase soy agar plates at 28oC for 48 h. A combination of microscopy and biochemical tests was carried out to identify the colonies. The sewage sludge was obtained from sewage collection point located behind Jibril Aminu Hall of Usmanu Danfodiyo University Sokoto and processed i.e. dried grounded and sterilized. A portion of land obtained in a botanical garden was divided into small portions 30 X 30 cm and the soil was excavated in-situ and sterilized in the laboratory. A polythene bag was subsequently used to demarcate between the sterilized soil and the garden soil. The sterilized soil plots were artificially contaminated with equal amount of used engine oil to represent a typical farmland oil spill. The plots were amended with various amount of processed sewage sludge i.e. 200 g 300 g and 400 g respectively. A pure culture of the bacteria was maintained on trypticase soy broth and was introduced into the sterile amended soil. The plots were watered twice daily for ten days. The degree of biodegradation and heavy metal content were assessed using standard procedures and the results obtained indicate a remarkable reduction in poly aromatic hydrocarbons PAHs total petroleum hydrocarbon TPH and heavy metal content.

  10. Influence of pretreatment on efficiency of bioremediation of hydrocarbon contaminated soils

    International Nuclear Information System (INIS)

    Elektorowicz, M.; Hadjinicolaou, J.; Yong, R.N.; St-Cyr, M.

    1992-01-01

    Biodegradation has been selected as a technique to treat a Montreal site which was contaminated by oil pipeline spills. A 2500 m 3 volume of soil was excavated and stored in piles. Three large closed cells were then constructed for use in on-site biodegradation of the soil. Before proceeding with the on-site biodegradation, a feasibility study was conducted in the laboratory using 20 kg of soil placed in mini-reactors for 188 d of biodegradation at ambient temperature. Before biodegradation began, the soil in certain of the mini-reactors was pretreated by comminuting gravel pieces larger than 0.5 cm in diameter and by mixing the soil with sawdust and nutrients. At predetermined intervals, the soils were analyzed at various locations in the mini-reactors for such parameters as oil and grease concentrations, organic matter content, Kjeldahl nitrogen, humidity, phosphorus, and metals. Emissions of volatile organic compounds and CO 2 were also measured. The mean decrease in oil and grease concentration was found to be 89%. No decrease was noted in those soils that had not been pretreated with sawdust and nutrients. An increase in soil pH was noted up to the 50th day of biodegradation, after which the pH decreased gradually. The feasibility study shows the influence of the addition of sawdust on one of the most important environmental parameters during the course of biodegradation: the pH value. Increase in pH can decrease or stop the activity of soil microorganisms. 11 refs., 6 figs

  11. Bioremediation of experimental petroleum spills on mineral soils in the Vestfold Hills, Antarctica

    International Nuclear Information System (INIS)

    Kerry, E.

    1993-01-01

    The effect of nutrient and water enhancement on the biodegradation of petroleum was tested in Antarctic mineral soils. Nitrogen, phosphorus and potassium were applied in solution, with or without gum xanthan or plastic covers, to sites artificially contaminated with distillate. The effectiveness of these procedures was assessed by measuring changes in total petroleum hydrocarbons; heptadecane/pristane and octadecane/phytane ratios; in concentrations of major hydrocarbon components and in microbial numbers and activity. Significantly lower hydrocarbon concentration were recorded after one year in soils treated with fertilizer solutions, but only in the surface 3 cm. These soils also showed lowered heptadecane/pristane and octadecane/phytane ratios and had the highest levels of microbial activity relative to other plots. Soils treated with gum xanthan or covered with plastic had the highest residual hydrocarbon levels. Both treatments inhibited evaporative loss of hydrocarbon, and there were indications that gum xanthan was utilized by the microbiota as an alternative carbon source to distillate. Higher temperatures were recorded under the plastic but no stimulation of biodegradation was detected. Estimated numbers of metabolically active bacteria were in the range 10 7 to 10 8 g -1 dry weight of soil, with an estimated biomass of 0.03 to 0.26 mg g -1 soil. Estimated numbers of amoebae were in the range 10 6 10 7 g -1 soil (biomass of 2 to 4 mg g -1 ). The highest populations were recorded in fertilized, contaminated soils, the only soils where petroleum degradation was demonstrated. 23 refs., 1 fig., 4 tabs

  12. Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil.

    Science.gov (United States)

    Lu, Mingmei; Jiao, Shuo; Gao, Enting; Song, Xiuyong; Li, Zhefei; Hao, Xiuli; Rensing, Christopher; Wei, Gehong

    2017-10-15

    The symbiosis of the highly metal-resistant Sinorhizobium meliloti CCNWSX0020 and Medicago lupulina has been considered an efficient tool for bioremediation of heavy metal-polluted soils. However, the metal resistance mechanisms of S. meliloti CCNWSX00200 have not been elucidated in detail. Here we employed a comparative transcriptome approach to analyze the defense mechanisms of S. meliloti CCNWSX00200 against Cu or Zn exposure. Six highly upregulated transcripts involved in Cu and Zn resistance were identified through deletion mutagenesis, including genes encoding a multicopper oxidase (CueO), an outer membrane protein (Omp), sulfite oxidoreductases (YedYZ), and three hypothetical proteins (a CusA-like protein, a FixH-like protein, and an unknown protein), and the corresponding mutant strains showed various degrees of sensitivity to multiple metals. The Cu-sensitive mutant (Δ cueO ) and three mutants that were both Cu and Zn sensitive (Δ yedYZ , Δ cusA -like, and Δ fixH -like) were selected for further study of the effects of these metal resistance determinants on bioremediation. The results showed that inoculation with the Δ cueO mutant severely inhibited infection establishment and nodulation of M. lupulina under Cu stress, while inoculation with the Δ yedYZ and Δ fixH -like mutants decreased just the early infection frequency and nodulation under Cu and Zn stresses. In contrast, inoculation with the Δ cusA -like mutant almost led to loss of the symbiotic capacity of M. lupulina to even grow in uncontaminated soil. Moreover, the antioxidant enzyme activity and metal accumulation in roots of M. lupulina inoculated with all mutants were lower than those with the wild-type strain. These results suggest that heavy metal resistance determinants may promote bioremediation by directly or indirectly influencing formation of the rhizobium-legume symbiosis. IMPORTANCE Rhizobium-legume symbiosis has been promoted as an appropriate tool for bioremediation of heavy

  13. BIOREMEDIATION OF A PETROLEUM-HYDROCARBON

    African Journals Online (AJOL)

    ES OBE

    under field conditions in the bioremediation of a petroleum- hydrocarbon polluted ... an accelerated biodegradation of petroleum hydrocarbons in a polluted agricultural soil ..... 12) Jackson, M.L. Soil chemical analysis. ... biological assay. 3 rd.

  14. Bioremediation of soil contaminated by waste motor oil in 55000 and 65000 and phytoremediation by Sorghum bicolor inoculated with Burkholderia cepacia and Penicillium chrysogenum

    Directory of Open Access Journals (Sweden)

    Sánchez-Yáñez Juan Manuel

    2015-11-01

    Full Text Available In soil spill a high concentration of waste motor oil (WMO it´s causing lost soil fertility, which is solved by remediation, but is expensive and polluting, an ecological alternative is bioremediation (BR by biostimulation follow by phytoremediation (PY with Sorghum bicolor using Burkholderia cepacia and Penicillium chrysogenum, promoting growth plant microorganisms (PGPM at concentration value below to the maximum according to NOM-138 SEMARNAT/SS-2003 de 4400 ppm/Kg soil. The objectives of this research were a bioremediation of soil contaminated by high WMO concentrations by biostimulation with mineral solution and Vicia sativa as green manure (GM, and subsequent b phytoremediation by S. bicolor with B. cepacia and P. chrysogenum to reduce remaining WMO at concentration below to maximum according to NOM-138 SEMARNAT/SS-2003. The results showed that biostimulation with mineral solution and V. sativa reduced WMO from 55000 to 33400 ppm, and from 65000 to 24300 ppm. Follow by PY by S. bicolor with B. cepacia and P. chrysogenum decreased WMO from 33400 ppm to 210 ppm, and from 24300 ppm to 360 ppm, compared to soil as negative control in which WMO did not change by natural attenuation. This suggests that to integrate BR and PY is an ecological option instead to apply chemical technique expensive and causing environmental pollution.

  15. [Improving Agricultural Safety of Soils Contaminated with Polycyclic Aromatic Hydrocarbons by In Situ Bioremediation].

    Science.gov (United States)

    Jiao, Hai-huan; Pan, Jian-gang; Xu, Shena-jun; Bai, Zhi-hui; Wang, Dong; Huang, Zhan-bin

    2015-08-01

    In order to reduce the risk of enrichment of polycyclic aromatic hydrocarbons (PAHs) in crops, reduce the potential hazards of food-sourced PAHs to human and increase the agricultural safety of PAHs contaminated soils, the bio-augmented removal of polycyclic aromatic hydrocarbons (PAHs) was investigated through in situ remediation by introducing Rhodobacter sphaeroides (RS) into the agricultural soil contaminated by PAHs. The 50-times diluted RS was sprayed on leaf surface (in area B) or irrigated to roots (in area D). The treatment of spraying water of the equal amount was taken as the control (A) and the wheat field without any treatment as the blank (CK). Treatments were conducted since wheat seeding. Soil and wheat samples were collected in the mature period to analyze the changes of community structure of the soil microorganisms and the concentration of PAHs in soils and investigate the strengthening and restoration effects of RS on PAHs contaminated soils. Compared to the CK Area, the areas B and D revealed that the variation ratio of phospholipid fatty acids (PLFAs) that were the biomarker of soil microorganisms was 29.6%, and the ratio of total PAHs removed was increased 1.59 times and 1.68 times, respectively. The dry weight of wheat grain of 50 spikes was increased by 8.95% and 12.5%, respectively, and the enrichment factor of total PAHs was decreased by 58.9% and 62.2% respectively in the wheat grains. All the results suggested that RS reduced enrichment of PAHs in wheat grains and increased wheat yield, which had great exploitation and utilization potentiality in repairing and improving the agricultural safety of the soils contaminated with PHAs.

  16. Surfactant-enhanced bioremediation of PAH- and PCB-contaminated soils

    International Nuclear Information System (INIS)

    Ghosh, M.M.; Yeom, I.T.; Shi, Z.; Cox, C.D.; Robinson, K.G.

    1995-01-01

    The role of surfactants in the desorption of soil-bound polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) was investigated. The solubilization of individual PAHs in an extract of a weathered, coal tar-contaminated soil containing a mixture of PAHs and other petroleum derivatives was found to be significantly less than that for pure compounds. Batch soil washing with Triton X-100 (a commercial, nonionic alkyl phenol ethoxylate) was found to increase the effective diffusion rate of PAHs from the contaminated soil by four orders of magnitude compared to that obtained by gas purging when the results were analyzed using a radial diffusion model. At concentrations of up to 24 times its critical micelle concentration (CMC), Triton X-100 did not seem to enhance hydrocarbon degradation in the coal tar-contaminated soil; however, the biosurfactant rhamnolipid R1, at a concentration of 50x CMC, increased the rate of mineralization of 4,4'-chlorinated biphenyl mobilized from a laboratory-contaminated soil by more than 60 times

  17. Potential of grasses and rhizosphere bacteria for bioremediation of diesel-contaminated soils

    Directory of Open Access Journals (Sweden)

    Melissa Paola Mezzari

    2011-12-01

    Full Text Available The techniques available for the remediation of environmental accidents involving petroleum hydrocarbons are generally high-cost solutions. A cheaper, practical and ecologically relevant alternative is the association of plants with microorganisms that contribute to the degradation and removal of hydrocarbons from the soil. The growth of three tropical grass species (Brachiaria brizantha, Brachiaria decumbens and Paspalum notatum and the survival of root-associated bacterial communities was evaluated at different diesel oil concentrations. Seeds of three grass species were germinated in greenhouse and at different doses of diesel (0, 2.5, 5 and 10 g kg-1 soil. Plants were grown for 10 weeks with periodic assessment of germination, growth (fresh and dry weight, height, and number of bacteria in the soil (pots with or without plants. Growth and biomass of B. decumbens and P. notatum declined significantly when planted in diesel-oil contaminated soils. The presence of diesel fuel did not affect the growth of B. brizantha, which was highly tolerant to this pollutant. Bacterial growth was significant (p < 0.05 and the increase was directly proportional to the diesel dose. Bacteria growth in diesel-contaminated soils was stimulated up to 5-fold by the presence of grasses, demonstrating the positive interactions between rhizosphere and hydrocarbon-degrading bacteria in the remediation of diesel-contaminated soils.

  18. Ecotoxicological assessment of soils of former manufactured gas plant sites: Bioremediation potential and pollutant mobility

    International Nuclear Information System (INIS)

    Haeseler, F.; Blanchet, D.; Druelle, V.; Werner, P.; Vandecasteele, J.P.

    1999-01-01

    Analytically well-characterized soils from four different former manufactured gas plants (MGP) sites contaminated by coal tars were used in tests of extensive biodegradation of polycyclic aromatic hydrocarbons (PAHs) in stirred reactors. In all cases, the extent of biodegradation was limited to 80--100% for 2- and 3-ring PAHs, 40--70% for 4-ring PAHs, and below 20% for 5- and 6-ring PAHs. The capacities to transfer pollutants to water were compared for leachates from soils that had or had not undergone biological treatment. Leachate analysis involved determination of PAHs and bacterial tests of acute toxicity (Microtox) and genotoxicity (SOS Chromotest). For some untreated soils, PAH leaching was observed, and positive responses to the Microtox test were well correlated to the concentrations of naphthalene and phenanthrene. Biologically treated soils had lost all capacities for leaching as concluded from PAH determinations and responses to the Microtox test. All soil leachates were devoid of genotoxic effect, in accordance with the low concentrations observed of mutagenic PAHs. The results of this risk-based approach for assessment of MGP soils showed that pollutants remaining after biological treatment were unavailable for further biodegradation and that the extent of leaching had been reduced to the level that it did not represent a significant threat to groundwater

  19. Bioremediation of soil contaminated by dichlorodiphenyltrichloroethane with the use of aerobic strain Rhodococcus wratislaviensis Ch628

    Science.gov (United States)

    Egorova, D. O.; Farafonova, V. V.; Shestakova, E. A.; Andreyev, D. N.; Maksimov, A. S.; Vasyanin, A. N.; Buzmakov, S. A.; Plotnikova, E. G.

    2017-10-01

    The concentration of dichlorodiphenyltrichloroethane (DDT) was determined in a sandy soil of specially Protected Natural Area Osinskaya Lesnaya Dacha (Perm region) 45 years after the last application of the insecticide in this area. The concentration of DDT in the soil exceeded the maximum permissible concentration by 250 times and reached 25.05 mg/kg of soil. Under the conditions of model experiment, efficient decontamination of the soil was recorded in the system with the introduced strain Rhodococcus wratislaviensis Ch628; the DDT concentration decreased by 99.7% and equaled 0.07 mg/kg. The process of DDT degradation proceeded slower in the model soil system with autochthonous microbial complex. In this case, 58.2% DDT degraded in 70 days, and the final concentration was 10.47 mg/kg. The soil lost its toxicity for animal and plant test objects by the end of the experiment only in the model system containing the R. wratislaviensis Ch628 strain.

  20. Microbes safely, effectively bioremediate oil field pits

    International Nuclear Information System (INIS)

    Shaw, B.; Block, C.S.; Mills, C.H.

    1995-01-01

    Natural and augmented bioremediation provides a safe, environmental, fast, and effective solution for removing hydrocarbon stains from soil. In 1992, Amoco sponsored a study with six bioremediation companies, which evaluated 14 different techniques. From this study, Amoco continued using Environmental Protection Co.'s (EPC) microbes for bioremediating more than 145 sites near Farmington, NM. EPC's microbes proved effective on various types of hydrocarbon molecules found in petroleum stained soils from heavy crude and paraffin to volatiles such as BTEX (benzene, toluene, ethylbenzene, xylene) compounds. Controlled laboratory tests have shown that these microbes can digest the hydrocarbon molecules with or without free oxygen present. It is believed that this adaptation gives these microbes their resilience. The paper describes the bioremediation process, environmental advantages, in situ and ex situ bioremediation, goals of bioremediation, temperature effects, time, cost, and example sites that were treated

  1. Laboratory scale bioremediation of diesel hydrocarbon in soil by indigenous bacterial consortium.

    Science.gov (United States)

    Sharma, Anjana; Rehman, Meenal Budholia

    2009-09-01

    In vitro experiment was performed by taking petrol pump soils and diesel in flasks with the micronutrients and macronutrients supplements. Cemented bioreactors having sterilized soil and diesel was used for in vivo analysis of diesel hydrocarbon degradation. There were two sets of experiments, first having three bioreactors (1) inoculated by KI. pneumoniae subsp. aerogenes with soil and diesel; (2) with addition of NH4NO3; and (3) served as control. In second set, one bioreactor was inoculated by bacterial consortium containing Moraxella saccharolytica, Alteromonas putrefaciens, KI. pneumoniae subsp. aerogenes and Pseudomonas fragi along with soil and diesel. The remaining two bioreactors (having NH4NO3 and control) were similar to the first set. The experiments were incubated for 30 days. Ability of bacterial inoculum to degrade diesel was analyzed through GC-MS. Smaller chain compounds were obtained after experimental period of 30 days. Rate of diesel degradation was better with the present bacterial consortium than individual bacteria. Present bacterial consortium can be a better choice for faster and complete remediation of contaminated hydrocarbon soils.

  2. Evaluation of tolerance to soils contaminated with diesel oil in plant species with bioremediation potential

    International Nuclear Information System (INIS)

    Petenello, Maria Cristina; Feldman, Susana Raquel.

    2012-01-01

    Soils contaminated with hydrocarbons or their derivate can be remediated by different methods. Many of them use live organisms such as plants that are able to mineralize these compounds, turning them into more simple molecules, similar to natural molecules. When the use of plants is decided, it is important to employ native plants because they are already adapted to the particular ecological conditions of the site. The response of spartina argentinensis, paspalum atratum, paspalum guenoarun and melilotus albus to the presence of diesel oil was evaluated considering seed germination, plant emergence and biomass production of plants growing on soils experimentally contaminated with different concentrations of diesel oil (1 and 2 %). Although all the parameters evaluated showed the negative impact of the presence of diesel-oil, the plants continued growing; therefore they can be considered useful management options for soil phytoremediation.

  3. Effect of Bioremediation on Growth of Wheat Plant Cultivated In Contaminated Soil with Heavy Metals

    International Nuclear Information System (INIS)

    Abdel-Azis, O.A.; El-Ghandour, I.A.; Galal, Y.G.M.; El-Sheikh, H.H.

    2008-01-01

    Pot experiment was carried out under greenhouse conditions to evaluate the impact of BYFA (bacterial, fungal, yeast, and actinomycetes isolates), and bio fertilizers (mycorrhizas and N 2 fixers) in remedy the heavy metals -polluted soil and its effect on wheat growth. Basal recommended doses of P and N were applied; the treatments were arranged in completely randomized block design. The results showed a positive effect on growth and N uptake by wheat cultivated in polluted soil with (Zn, Cu, Pb, Co, Ni and Cd). The data cleared that, the lowest content of Pb in the soil was occurred with composite inoculants plus BFYA (274.57μ g/gm) as compared to the other treatments. Reduction in zinc content in soil was recorded with control + BFYA (272.0 μg/g) compared to other one. Similarly, inoculation with (Azo) + (BFYA) induced a reduction in Cu content in soil, Data of 15 N revealed that both the mechanisms of BNF have been occurred. In this respect, it is worthy to mention that, symbiotic bacteria has a considerable role with such cereal crop via BNF or enhancement of plant growth, The inoculation with Rh + AM resulted in the highest percentage of N uptake from fertilizer (29%), followed by AM, then Azo (23.9%, 22.7%, respectively) without BFYA. Another picture was noticed with BFYA whereas the best percentage was recorded with Azospirillum (19.3 %). This treatment is the only one that increased the portion of N derived from fertilizer over those recorded with the control (11.13%). BFYA have the ability to reduce the content of heavy metal in both the contaminated soil and wheat plant. Similar function was detected with bio fertilizers, besides to their effects on enhancement of plant growth via plant growth promotion substances and BNF mechanisms

  4. Bioremediation of diuron contaminated soils by a novel degrading microbial consortium.

    Science.gov (United States)

    Villaverde, J; Rubio-Bellido, M; Merchán, F; Morillo, E

    2017-03-01

    Diuron is a biologically active pollutant present in soil, water and sediments. It is persistent in soil, water and groundwater and slightly toxic to mammals and birds as well as moderately toxic to aquatic invertebrates. Its principal product of biodegradation, 3,4-dichloroaniline, exhibits a higher toxicity than diuron and is also persistent in the environment. On this basis, the objective of the study was to determine the potential capacity of a proposed novel diuron-degrading microbial consortium (DMC) for achieving not only diuron degradation, but its mineralisation both in solution as well as in soils with different properties. The consortium was tested in a soil solution where diuron was the only carbon source, and more than 98.8% of the diuron initially added was mineralised after only a few days. The consortium was composed of three diuron-degrading strains, Arthrobacter sulfonivorans, Variovorax soli and Advenella sp. JRO, the latter had been isolated in our laboratory from a highly contaminated industrial site. This work shows for the first time the potential capacity of a member of the genus Advenella to remediate pesticide-contaminated soils. However, neither of the three strains separately achieved mineralisation (ring- 14 C) of diuron in a mineral medium (MSM) with a trace nutrient solution (NS); combined in pairs, they mineralised 40% of diuron in solution, but the most relevant result was obtained in the presence of the three-member consortium, where complete diuron mineralisation was achieved after only a few days. In the presence of the investigated soils in suspension, the capacity of the consortium to mineralise diuron was evaluated, achieving mineralisation of a wide range of herbicides from 22.9 to 69.0%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhi-qiang [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); College of Agriculture, Hainan University, Renmin Road 58, Haikou 570228 (China); Yang, Xiao-e, E-mail: xyang@zju.edu.cn [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Wang, Kai; Huang, Hua-gang; Zhang, Xincheng [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Fang, Hua [Department of Plant Protection, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Li, Ting-qiang [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Alva, A.K. [U.S. Department of Agriculture-Agricultural Research Service, Prosser, WA (United States); He, Zhen-li [University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL 34945 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Planting of S. alfredii is an effective technique for phytoextraction of Cd and DDs. Black-Right-Pointing-Pointer Soil inoculation with Pseudomonas sp. DDT-1 increases root biomass of S. alfredii. Black-Right-Pointing-Pointer Soil inoculation with Pseudomonas sp. DDT-1 improves the removal efficiency of DDs. Black-Right-Pointing-Pointer The plant-microbe strategy is promising for remediation of Cd-DDT co-contaminated soil. - Abstract: The development of an integrated strategy for the remediation of soil co-contaminated by heavy metals and persistent organic pollutants is a major research priority for the decontamination of soil slated for use in agricultural production. The objective of this study was to develop a bioremediation strategy for fields co-contaminated with cadmium (Cd), dichlorodiphenyltrichloroethane (DDT), and its metabolites 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethylene (DDE) and 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethane (DDD) (DDT, DDE, and DDD are collectively called DDs) using an identified Cd-hyperaccumulator plant Sedum alfredii (SA) and DDT-degrading microbes (DDT-1). Initially, inoculation with DDT-1 was shown to increase SA root biomass in a pot experiment. When SA was applied together with DDT-1, the levels of Cd and DDs in the co-contaminated soil decreased by 32.1-40.3% and 33.9-37.6%, respectively, in a pot experiment over 18 months compared to 3.25% and 3.76% decreases in soil Cd and DDs, respectively, in unplanted, untreated controls. A subsequent field study (18-month duration) in which the levels of Cd and DDs decreased by 31.1% and 53.6%, respectively, confirmed the beneficial results of this approach. This study demonstrates that the integrated bioremediation strategy is effective for the remediation of Cd-DDs co-contaminated soils.

  6. Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes

    International Nuclear Information System (INIS)

    Zhu, Zhi-qiang; Yang, Xiao-e; Wang, Kai; Huang, Hua-gang; Zhang, Xincheng; Fang, Hua; Li, Ting-qiang; Alva, A.K.; He, Zhen-li

    2012-01-01

    Highlights: ► Planting of S. alfredii is an effective technique for phytoextraction of Cd and DDs. ► Soil inoculation with Pseudomonas sp. DDT-1 increases root biomass of S. alfredii. ► Soil inoculation with Pseudomonas sp. DDT-1 improves the removal efficiency of DDs. ► The plant-microbe strategy is promising for remediation of Cd-DDT co-contaminated soil. - Abstract: The development of an integrated strategy for the remediation of soil co-contaminated by heavy metals and persistent organic pollutants is a major research priority for the decontamination of soil slated for use in agricultural production. The objective of this study was to develop a bioremediation strategy for fields co-contaminated with cadmium (Cd), dichlorodiphenyltrichloroethane (DDT), and its metabolites 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethylene (DDE) and 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethane (DDD) (DDT, DDE, and DDD are collectively called DDs) using an identified Cd-hyperaccumulator plant Sedum alfredii (SA) and DDT-degrading microbes (DDT-1). Initially, inoculation with DDT-1 was shown to increase SA root biomass in a pot experiment. When SA was applied together with DDT-1, the levels of Cd and DDs in the co-contaminated soil decreased by 32.1–40.3% and 33.9–37.6%, respectively, in a pot experiment over 18 months compared to 3.25% and 3.76% decreases in soil Cd and DDs, respectively, in unplanted, untreated controls. A subsequent field study (18-month duration) in which the levels of Cd and DDs decreased by 31.1% and 53.6%, respectively, confirmed the beneficial results of this approach. This study demonstrates that the integrated bioremediation strategy is effective for the remediation of Cd-DDs co-contaminated soils.

  7. Bioremediation of oil contaminated soil from service stations. Evaluation of biological treatment

    International Nuclear Information System (INIS)

    Puustinen, J.; Jorgensen, K.S.; Strandberg, T.; Suortti, A.M.

    1995-01-01

    Biological treatment of contaminated soil has received much attention during the last decade. Microbes are known to be able to degrade many oil hydrocarbons. However, research is needed to ensure that new technologies are implemented in a safe and reliable way under Finnish climatic conditions. The main points of interest are the rate of the degradation as well as the survival and efficiency of microbial inoculants possibly introduced during the treatment. During 1993 the biotreatability of oil-contaminated soil from service stations was investigated in cooperation with the Finnish Petroleum Federation. The goal of this field-scale study was to test how fast lubrication oil can be composted during one Finnish summer season and to find out whether microbial inoculants would enhance the degradation rate. The soil was excavated from three different service stations in the Helsinki metropolitan area and was transported to a controlled composting area. The soil was sieved and compost piles, also called biopiles, were constructed on the site. Bark chips were used as the bulking agent and nutrients and lime were added to enhance the biological activity. Two different commercial bacterial inoculants were added to two of the piles. The piles were turned by a tractor-drawn screw-type mixer at two to four weeks interval. Between the mixings, the piles were covered with tarpaulins to prevent evaporation and potential excessive wetting. Several microbiological parameters were determined during the test period as well as the temperature and mineral oil content

  8. Comparison of landfarming amendments to improve bioremediation of petroleum hydrocarbons in Niger Delta soils

    NARCIS (Netherlands)

    Brown, David M; Okoro, Samson; van Gils, Juami; van Spanning, Rob; Bonte, Matthijs; Hutchings, Tony; Linden, Olof; Egbuche, Uzoamaka; Bruun, Kim Bye; Smith, Jonathan W N

    2017-01-01

    Large scale landfarming experiments, using an extensive range of treatments, were conducted in the Niger-Delta, Nigeria to study the degradation of oil in contaminated soils. In this work the effect of nutrient addition, biosurfactant, Eisenia fetida (earthworm) enzyme extract, bulking and sorption

  9. Bioremediation of oil-polluted soil by Lentinus subnudus , a Nigerian ...

    African Journals Online (AJOL)

    Inspite of the realization and studies on the use of microorganisms in degrading hydrocarbons there has been very little work on indigenous white-rot fungi in Nigeria, a leading oil – producing country. the ability of Lentinus subnudus to mineralize soil contaminated with various concentrations of crude oil was tested. Organic ...

  10. Spatial Modeling of Industrial Windfall on Soils to Detect Woody Species with Potential for Bioremediation

    Science.gov (United States)

    S. Salazar; M. Mendoza; A. M. Tejeda

    2006-01-01

    A spatial model is presented to explain the concentration of heavy metals (Fe, Cu, Zn, Ni, Cr, Co and Pb), in the soils around the industrial complex near the Port of Veracruz, Mexico. Unexpected low concentration sites where then tested to detect woody plant species that may have the capability to hiperacumulate these contaminants, hence having a potential for...

  11. Suitability of oil bioremediation in an Artic soil using surplus heating from an incineration facility

    DEFF Research Database (Denmark)

    Couto, Nazare; Fritt-Rasmussen, Janne; Jensen, Pernille Erland

    2014-01-01

    A 168-day period field study, carried out in Sisimiut, Greenland, assessed the potential to enhance soil remediation with the surplus heating from an incineration facility. This approach searches a feasible ex situ remediation process that could be extended throughout the year with low costs. Ind...

  12. Assessment of the physicochemical and microbiological status of western Niger Delta soil for crude oil pollution bioremediation potential.

    Science.gov (United States)

    Ejechi, Bernard O; Ozochi, Chizoba A

    2015-06-01

    The physical, chemical and microbiological characteristics of the soil across the western Niger Delta area of Nigeria were determined to assess its potential for natural remediation of crude oil pollution. The pH (oil-producing area, 6.1 ± 1.1; non-oil producing, 5.9 ± 0.9) and temperature (28-35 °C in both areas) were favourable to natural remediation, while the fluctuating moisture (7.7-45.6 %) and the dominant sandy soil textural classes (70 %) were limitations. The carbon nitrogen phosphorus (CNP) ratio markedly exceeded recommended 100:10:1, while the cation exchange capacity was below acceptable range. Counts of heterotrophic bacteria, fungi and hydrocarbon-utilising and nitrogen-fixing bacteria (mean range log10 3.8 ± 1.5-6.52 ± 0.9 cfu/g) were favourable having markedly exceeded the minimum counts required. Crude oil loss was highest in loam soil, but significantly (P = 0.00) increased in all soil textural classes including sandy soils after amendment with cow dung/poultry dropping and manual aeration in laboratory and 8-month field tests as indicated by two-way ANOVA. Thus, the overall assessment is that while CNP can be viewed as the major limiting factor to natural oil pollution remediation in the western Niger Delta soil, its influence can be minimised by the amendment indicated in the study.

  13. Bioremediation of soils co-contaminated with heavy metals and 2,4,5-trichlorophenol by fruiting body of Clitocybe maxima.

    Science.gov (United States)

    Liu, Hongying; Guo, Shanshan; Jiao, Kai; Hou, Junjun; Xie, Han; Xu, Heng

    2015-08-30

    Pot experiments were performed to investigate the single effect of 2,4,5-trichlorophenol (TCP) or heavy metals (Cu, Cd, Cu+Cd) and the combined effects of metals-TCP on the growth of Clitocybe maxima together with the accumulation of heavy metals as well as dissipation of TCP. Results showed a negative effect of contaminations on fruiting time and biomass of the mushroom. TCP decreased significantly in soils accounting for 70.66-96.24% of the initial extractable concentration in planted soil and 66.47-91.42% in unplanted soil, which showed that the dissipation of TCP was enhanced with mushroom planting. Higher biological activities (bacterial counts, soil respiration and laccase activity) were detected in planted soils relative to unplanted controls, and the enhanced dissipation of TCP in planted soils might be derived from the increased biological activities. The metals accumulation in mushroom increased with the augment of metal load, and the proportion of acetic acid (HOAc) extractable metal in soils with C. maxima was larger than that in unplanted soils, which may be an explanation of metal uptake by C. maxima. These results suggested that the presence of C. maxima was effective in promoting the bioremediation of soil contaminated with heavy metals and TCP. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments.

    Science.gov (United States)

    Xu, Yaohui; Lu, Mang

    2010-11-15

    Biostimulation with inorganic fertilizer and bioaugmentation with hydrocarbon utilizing indigenous bacteria were employed as remedial options for 12 weeks in a crude oil-contaminated soil. To promote oil removal, biocarrier for immobilization of indigenous hydrocarbon-degrading bacteria was developed using peanut hull powder. Biodegradation was enhanced with free-living bacterial culture and biocarrier with a total petroleum hydrocarbon removal ranging from 26% to 61% after a 12-week treatment. Oil removal was also enhanced when peanut hull powder was only used as a bulking agent, which accelerated the mass transfer rate of water, oxygen, nutrients and hydrocarbons, and provided nutrition for the microflora. Dehydrogenase activity in soil was remarkably enhanced by the application of carrier material. Metabolites of polycyclic aromatic hydrocarbons were identified by Fourier transform ion cyclotron resonance mass spectrometry. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Bioelectroventing: an electrochemical‐assisted bioremediation strategy for cleaning‐up atrazine‐polluted soils

    OpenAIRE

    Domínguez‐Garay, Ainara; Quejigo, Jose Rodrigo; Dörfler, Ulrike; Schroll, Reiner; Esteve‐Núñez, Abraham

    2017-01-01

    Summary The absence of suitable terminal electron acceptors (TEA) in soil might limit the oxidative metabolism of environmental microbial populations. Bioelectroventing is a bioelectrochemical strategy that aims to enhance the biodegradation of a pollutant in the environment by overcoming the electron acceptor limitation and maximizing metabolic oxidation. Microbial electroremediating cells (MERCs) are devices that can perform such a bioelectroventing. We also report an overall profile of the...

  16. Bioremediation of Soil Contaminated with Some Heavy Metals using Nuclear Techniques

    International Nuclear Information System (INIS)

    Abdel-Aziz, O.A.

    2004-01-01

    The present study dealt with different isolates of bacteria, fungi,yeasts and actinomycetes (BFYA) group that can detoxify the harmful effect of heavy metals in polluted soils. laboratory experiments were carried out with fungal cells isolated from al-gabal al-asfar farm to obtain the main tolerant group against heavy metals toxicity. identified as fusarium oxysporum and aspergillus parasiticus and are able to grow at high concentrations of cadmium 8000 ppm and nickel 10000 ppm, respectively. also, reduction of metals by different inoculums was occurred in soil solution . a great reduction was noticed by inoculation with fusarium oxysporum + aspergillus parasiticus + group of different isolates from nile down stream of delta barrage and pure water el-rhaway drain water especially in case of cobalt (80.8%). Pot experiments were carried out with faba bean and wheat plants cultivated in sandy loam soil collected from al-gabal al-asfar farm and irrigated with effluent for several years. the plant was inoculated with BFYA group (remediator tool), as well as different bio fertilizers including symbiotic, asymbiotic bacteria and arbuscular mycorrhizal fungi as enhancer or promoters for plant growth

  17. Bioremediation assessment of diesel-biodiesel-contaminated soil using an alternative bioaugmentation strategy.

    Science.gov (United States)

    Colla, Tatiana Simonetto; Andreazza, Robson; Bücker, Francielle; de Souza, Marcela Moreira; Tramontini, Letícia; Prado, Gerônimo Rodrigues; Frazzon, Ana Paula Guedes; Camargo, Flávio Anastácio de Oliveira; Bento, Fátima Menezes

    2014-02-01

    This study investigated the effectiveness of successive bioaugmentation, conventional bioaugmentation, and biostimulation of biodegradation of B10 in soil. In addition, the structure of the soil microbial community was assessed by polymerase chain reaction-denaturing gradient gel electrophoresis. The consortium was inoculated on the initial and the 11th day of incubation for successive bioaugmentation and only on the initial day for bioaugmentation and conventional bioaugmentation. The experiment was conducted for 32 days. The microbial consortium was identified based on sequencing of 16S rRNA gene and consisted as Pseudomonas aeruginosa, Achromobacter xylosoxidans, and Ochrobactrum intermedium. Nutrient introduction (biostimulation) promoted a positive effect on microbial populations. The results indicate that the edaphic community structure and dynamics were different according to the treatments employed. CO2 evolution demonstrated no significant difference in soil microbial activity between biostimulation and bioaugmentation treatments. The total petroleum hydrocarbon (TPH) analysis indicated a biodegradation level of 35.7 and 32.2 % for the biostimulation and successive bioaugmentation treatments, respectively. Successive bioaugmentation displayed positive effects on biodegradation, with a substantial reduction in TPH levels.

  18. Evaluation of the optimal strategy for ex situ bioremediation of diesel oil-contaminated soil.

    Science.gov (United States)

    Lin, Ta-Chen; Pan, Po-Tsen; Young, Chiu-Chung; Chang, Jo-Shu; Chang, Tsung-Chung; Cheng, Sheng-Shung

    2011-11-01

    Bioaugmentation and biostimulation have been widely applied in the remediation of oil contamination. However, ambiguous results have been reported. It is important to reveal the controlling factors on the field for optimal selection of remediation strategy. In this study, an integrated field landfarming technique was carried out to assess the relative effectiveness of five biological approaches on diesel degradation. The limiting factors during the degradation process were discussed. A total of five treatments were tested, including conventional landfarming, nutrient enhancement (NE), biosurfactant addition (BS), bioaugmentation (BA), and combination of bioaugmentation and biosurfactant addition (BAS). The consortium consisted of four diesel-degrading bacteria strains. Rhamnolipid was used as the biosurfactant. The diesel concentration, bacterial population, evolution of CO(2), and bacterial community in the soil were periodically measured. The best overall degradation efficiency was achieved by BAS treatment (90 ± 2%), followed by BA (86 ± 2%), NE (84 ± 3%), BS (78 ± 3%), and conventional landfarming (68 ± 3%). In the early stage, the total petroleum hydrocarbon was degraded 10 times faster than the degradation rates measured during the period from day 30 to 100. At the later stage, the degradation rates were similar among treatments. In the conventional landfarming, contaminated soil contained bacteria ready for diesel degradation. The availability of hydrocarbon was likely the limiting factor in the beginning of the degradation process. At the later stage, the degradation was likely limited by desorption and mass transfer of hydrocarbon in the soil matrix.

  19. Bioremediation of petroleum contaminated soil using vegetation--A technology transfer project

    International Nuclear Information System (INIS)

    Banks, M.K.; Schwab, A.P.; Govindaraju, R.S.; Chen, Z.

    1994-01-01

    A common environmental problem associated with the pumping and refining of crude oil is the disposal of petroleum sludge. Unfortunately, the biodegradation fate of more recalcitrant and potentially toxic contaminants, such as the polynuclear aromatic hydrocarbons (PNAs), is rapid at first but declines quickly. Biodegradation of these compounds is limited by their strong adsorption potential and low solubility. Recent research has suggested that vegetation may play an important role in the biodegradation of toxic organic chemicals, such as PNAs, in soil. The establishment of vegetation on hazardous waste sites may be an economic, effective, low maintenance approach to waste remediation and stabilization. Completed greenhouse studies have indicated that vegetative remediation is a feasible method for clean-up of surface soil contaminated with petroleum products. However, a field demonstration is needed to exhibit this new technology to the industrial community. In this project, several petroleum contaminated field sites will be chosen in collaboration with three industrial partners. These sites will be thoroughly characterized for chemical properties, physical properties, and initial PNA concentrations. A variety of plant species will be established on the sites, including warm and cool season grasses and alfalfa. Soil analyses for the target compounds over time will allow them to assess the efficiency and applicability of this remediation method

  20. Evolution of bacterial community during bioremediation of PAHs in a coal tar contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Lors, C.; Ryngaert, A.; Perie, F.; Diels, L.; Damidot, D. [University of Lille, Lille (France)

    2010-11-15

    The monitoring of a windrow treatment applied to soil contaminated by mostly 2, 3- and 4-ring PAHs produced by coal tar distillation was performed by following the evolution of both PAH concentration and the bacterial community. Total and PAH-degrading bacterial community structures were followed by 165 rRNA PCR-DGGE in parallel with quantification by bacterial counts and 16 PAH measurements. Six months of biological treatment led to a strong decrease in 2-, 3- and 4-ring PAH concentrations (98, 97 and 82%, respectively). This result was associated with the activity of bacterial PAH-degraders belonging mainly to the Gamma proteobacteria, in particular the Enterobacteria and Pseudomonas genera which were detected over the course of the treatment. This group was considered to be a good bioindicator to determine the potential PAH biodegradation of contaminated soil. Conversely other species like the Beta proteobacteria were detected after 3 months when 2-, 3- and 4-ring PAHs were almost completely degraded. Thus presence of the Beta proteobacteria group could be considered a good candidate indicator to estimate the endpoint of biotreatment of this type of PAH contaminated soil.

  1. Cometabolic bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-15

    Cometabolic bioremediation is probably the most under appreciated bioremediation strategy currently available. Cometabolism strategies stimulate only indigenous microbes with the ability to degrade the contaminant and cosubstrate e.g. methane, propane, toluene and others. This highly targeted stimulation insures that only those microbes that can degrade the contaminant are targeted, thus reducing amendment costs, well and formation plugging, etc. Cometabolic bioremediation has been used on some of the most recalcitrant contaminants, e.g. PCE, TCE, MTBE, TNT, dioxane, atrazine, etc. Methanotrophs have been demonstrated to produce methane monooxygense, an oxidase that can degrade over 300 compounds. Cometabolic bioremediation also has the advantage of being able to degrade contaminants to trace concentrations, since the biodegrader is not dependent on the contaminant for carbon or energy. Increasingly we are finding that in order to protect human health and the environment that we must remediate to lower and lower concentrations, especially for compounds like endocrine disrupters, thus cometabolism may be the best and maybe the only possibility that we have to bioremediate some contaminants.

  2. Comparative analysis of on site bioremediation: Alternatives for petroleum contaminated soils

    International Nuclear Information System (INIS)

    Bell, P.E.; Tremaine, S.C.

    1994-01-01

    Environmental Protection Systems, Inc. has developed a low maintenance, highly effective method to remediate petroleum and hazardous waste contamination of soils. This method combines the use of a slow release chemical oxygen source, along with nutrient amendments for the degradation of contaminants that require oxygen as a terminal electron acceptor. This method has been used successfully in bench and field experiments on creosote. The authors have performed laboratory experiments on diesel fuel. This paper describes rapid (site closure in 2.5 months in cold weather) field degradation of relatively freshly spilled diesel fuel using native bacteria and tailored nutrient amendments

  3. Description of bioremediation of soils using the model of a multistep system of microorganisms

    Science.gov (United States)

    Lubysheva, A. I.; Potashev, K. A.; Sofinskaya, O. A.

    2018-01-01

    The paper deals with the development of a mathematical model describing the interaction of a multi-step system of microorganisms in soil polluted with oil products. Each step in this system uses products of vital activity of the previous step to feed. Six different models of the multi-step system are considered. The equipping of the models with coefficients was carried out from the condition of minimizing the residual of the calculated and experimental data using an original algorithm based on the Levenberg-Marquardt method in combination with the Monte Carlo method for the initial approximation finding.

  4. Heavy metal accumulation and ecosystem engineering by two common mine site-nesting ant species: implications for pollution-level assessment and bioremediation of coal mine soil.

    Science.gov (United States)

    Khan, Shbbir R; Singh, Satish K; Rastogi, Neelkamal

    2017-04-01

    The present study focuses on the abundance, heavy metal content, and the impact of ecosystem engineering activities of two coal mine site-inhabiting ant species, Cataglyphis longipedem and Camponotus compressus. The abundance of Ct. longipedem increased while that of C. compressus decreased, with increasing soil pollution. Correspondence analysis reveals a close association between soil heavy metal concentrations and Ct. longipedem abundance, but this association is lacking in the case of C. compressus. Cataglyphis ants which occupy stress-characterized niches appear to be pre-adapted to tolerate heavy metal pollution. Higher concentrations of Zn and Mn in Ct. longipedem may contribute to the strengthening of the cuticular structures, necessary for nest excavation in the hard, arid soil and for single load carrying. C. compressus ants appear to be pollution sensitive. Their higher Fe content may be related to metal uptake via plant-derived liquids and species-specific regulatory mechanisms. The metal pollution index and biota-to-soil accumulation factors, calculated by using the ant body metal content of the two species, indicate an overall decrease of soil heavy metal concentrations with increase of the site age, which reflects the degree of pollution related to the mine site age. The concentrations of total and available heavy metals (Fe, Zn, Mn, Pb, and Cu) were significantly lower in the ant nest debris soil as compared to the reference soil. The results of the present study highlight the role of ants as bioindicators and in bioremediation of contaminated soil.

  5. Arctic bioremediation

    International Nuclear Information System (INIS)

    Lidell, B.V.; Smallbeck, D.R.; Ramert, P.C.

    1991-01-01

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. Enhancing the biological degradation of hydrocarbon (bioremediation) by adding nutrients to the spill area has been demonstrated to be an effective cleanup tool in more temperate locations. However, this technique has never been considered for restoration in the Arctic because the process of microbial degradation of hydrocarbon in this area is very slow. The short growing season and apparent lack of nutrients in the gravel pads were thought to be detrimental to using bioremediation to cleanup Arctic oil spills. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes

  6. Ecotoxicological assessment of bioremediation of a petroleum hydrocarbon-contaminated soil

    International Nuclear Information System (INIS)

    Renoux, A.Y.; Tyagi, R.D.; Samson, R.

    1995-01-01

    A battery of bioassays [barley seed germination, barley plant growth, lettuce seed germination, worm mortality, Microtox reg-sign, lettuce root elongation, algae Selenastrum capricornutum growth, Daphnia magna mortality, and SOS Chromotest (±S9)] was used to assess an above-ground heap pile treatment of a soil contaminated with aliphatic petroleum hydrocarbons (12 to 24 carbons). Despite an initial oil and grease concentration of 2,000 mg/kg, no significant (geno)toxicity was apparent in the soil sample before treatment. During the treatment, which decreased oil and grease concentrations to 800 mg/kg, slight toxicity was revealed by three bioassays (barley seed germination, worm mortality, Daphnia magna mortality), and a significant increase in genotoxicity was measured with the SOS Chromotest (± S9). It appears that ecotoxicological evaluation revealed harmful condition(s) that were not detected by chemical assessment. This suggests that the remediation had ceased before complete detoxification occurred. This phenomenon must be further investigated, however, to furnish solid conclusions on the toxicological effectiveness of the biotreatment

  7. Bioremediation of diesel fuel contaminated soil: effect of non ionic surfactants and selected bacteria addition.

    Science.gov (United States)

    Collina, Elena; Lasagni, Marina; Pitea, Demetrio; Franzetti, Andrea; Di Gennaro, Patrizia; Bestetti, Giuseppina

    2007-09-01

    Aim of this work was to evaluate influence of two commercial surfactants and inoculum of selected bacteria on biodegradation of diesel fuel in different systems. Among alkyl polyethossilates (Brij family) and sorbitan derivates (Tween family) a first selection of surfactants was performed by estimation of Koc and Dafnia magna EC50 with molecular descriptor and QSAR model. Further experiments were conducted to evaluate soil sorption, biodegradability and toxicity. In the second part of the research, the effect of Brij 56, Tween 80 and selected bacteria addition on biodegradation of diesel fuel was studied in liquid cultures and in slurry and solid phase systems. The latter experiments were performed with diesel contaminated soil in bench scale slurry phase bioreactor and solid phase columns. Tween 80 addition increased the biodegradation rate of hydrocarbons both in liquid and in slurry phase systems. Regarding the effect of inoculum, no enhancement of biodegradation rate was observed neither in surfactant added nor in experiments without addition. On the contrary, in solid phase experiments, inoculum addition resulted in enhanced biodegradation compared to surfactant addition.

  8. Bioremediation of Diesel Fuel Contaminated Soil: Effect of Non Ionic Surfactants and Selected Bacteria Addition

    International Nuclear Information System (INIS)

    Collina, E.; Lasagni, M.; Pitea, D.; Franzetti, A.; Di Gennaro, P.; Bestetti, G.

    2007-01-01

    Aim of this work was to evaluate influence of two commercial surfactants and inoculum of selected bacteria on biodegradation of diesel fuel in different systems. Among alkyl polyethossilates (Brij family) and sorbitan derivates (Tween family) a first selection of surfactants was performed by estimation of Koc and Dafnia magna EC 50 with molecular descriptor and QSAR model. Further experiments were conducted to evaluate soil sorption, biodegradability and toxicity. In the second part of the research, the effect of Brij 56, Tween 80 and selected bacteria addition on biodegradation of diesel fuel was studied in liquid cultures and in slurry and solid phase systems. The latter experiments were performed with diesel contaminated soil in bench scale slurry phase bioreactor and solid phase columns. Tween 80 addition increased the biodegradation rate of hydrocarbons both in liquid and in slurry phase systems. Regarding the effect of inoculum, no enhancement of biodegradation rate was observed neither in surfactant added nor in experiments without addition. On the contrary, in solid phase experiments, inoculum addition resulted in enhanced biodegradation compared to surfactant addition

  9. Effect of red clay on diesel bioremediation and soil bacterial community.

    Science.gov (United States)

    Jung, Jaejoon; Choi, Sungjong; Hong, Hyerim; Sung, Jung-Suk; Park, Woojun

    2014-08-01

    Red clay is a type of soil, the red color of which results from the presence of iron oxide. It is considered an eco-friendly material, with many industrial, cosmetic, and architectural uses. A patented method was applied to red clay in order to change its chemical composition and mineral bioavailability. The resulting product was designated processed red clay. This study evaluates the novel use of red clay and processed red clay as biostimulation agents in diesel-contaminated soils. Diesel biodegradation was enhanced in the presence of red clay and processed red clay by 4.9- and 6.7-fold, respectively, and the number of culturable bacterial cells was correlated with the amount of diesel biodegradation. The growth of Acinetobacter oleivorans DR1, Pseudomonas putida KT2440, and Cupriavidus necator was promoted by both types of red clays. Culture-independent community analysis determined via barcoded pyrosequencing indicated that Nocardioidaceae, Xanthomonadaceae, Pseudomonadaceae, and Caulobacteraceae were enriched by diesel contamination. Bacterial strain isolation from naphthalene- and liquid paraffin-amended media was affiliated with enriched taxa based on 16S rRNA gene sequence identity. We suggest that the biostimulating mechanism of red clay and processed red clay is able to support bacterial growth without apparent selection for specific bacterial species.

  10. Production of CO2 in crude oil bioremediation in clay soil

    Directory of Open Access Journals (Sweden)

    Sandro José Baptista

    2005-06-01

    Full Text Available The aim of the present work was to evaluate the biodegradation of petroleum hydrocarbons in clay soil a 45-days experiment. The experiment was conducted using an aerobic fixed bed reactor, containing 300g of contaminated soil at room temperature with an air rate of 6 L/h. The growth medium was supplemented with 2.5% (w/w (NH42SO4 and 0.035% (w/w KH2PO4. Biodegradation of the crude oil in the contaminated clay soil was monitored by measuring CO2 production and removal of organic matter (OM, oil and grease (OandG, and total petroleum hydrocarbons (TPH, measured before and after the 45-days experiment, together with total heterotrophic and hydrocarbon-degrading bacterial count. The best removals of OM (50%, OandG (37% and TPH (45% were obtained in the bioreactors in which the highest CO2 production was achieved.O objetivo do trabalho foi avaliar a biodegradação de petróleo em solo argiloso durante 45 dias de ensaios. Os ensaios de biodegradação foram conduzidos em biorreatores aeróbios de leito fixo, com 300 g de solo contaminado, à temperatura ambiente e com uma vazão de ar de 6 L/h. As deficiências nutricionais foram corrigidas com 2,5% (p/p (NH42SO4 e com 0,035% (p/p KH2PO4. O monitoramento foi realizado em função da produção de CO2, da remoção de matéria orgânica (OM, de óleos e graxas (OandG e de hidrocarbonetos totais de petróleo (TPH, além bactérias heterotróficas totais (BHT e hidrocarbonoclásticas (BHc, no início e após 45 dias. Nos biorreatores onde houve maior crescimento de bactérias hidrocarbonoclásticas e maior produção de CO2, obteve-se os melhores percentuais de remoções de MO (50%, OandG (37% e TPH (45%.

  11. Arctic bioremediation

    International Nuclear Information System (INIS)

    Liddell, B.V.; Smallbeck, D.R.; Ramert, P.C.

    1991-01-01

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes. Discussed are the results of a laboratory bioremediation study which simulated microbial degradation of hydrocarbon under arctic conditions

  12. Desorption of polycyclic aromatic hydrocarbons from field-contaminated soil to a two-dimensional hydrophobic surface before and after bioremediation.

    Science.gov (United States)

    Hu, Jing; Aitken, Michael D

    2012-10-01

    Dermal exposure can represent a significant health risk in settings involving potential contact with soil contaminated with polycyclic aromatic hydrocarbons (PAHs). However, there is limited work on the ability of PAHs in contaminated soil to reach the skin surface via desorption from the soil. We evaluated PAH desorption from a field-contaminated soil to a two-dimensional hydrophobic surface (C18 extraction disk) as a measure of potential dermal exposure as a function of soil loading (5-100 mg dry soil cm(-2)), temperature (20-40°C), and soil moisture content (2-40%) over periods up to 16d. The efficacy of bioremediation in removing the most readily desorbable PAH fractions was also evaluated. Desorption kinetics were described well by an empirical two-compartment kinetic model. PAH mass desorbed to the C18 disk kept increasing at soil loadings well above the estimated monolayer coverage, suggesting mechanisms for PAH transport to the surface other than by direct contact. Such mechanisms were reinforced by observations that desorption occurred even with dry or moist glass microfiber filters placed between the C18 disk and the soil. Desorption of all PAHs was substantially reduced at a soil moisture content corresponding to field capacity, suggesting that transport through pore air contributed to PAH transport to the C18 disk. The lower molecular weight PAHs had greater potential to desorb from soil than higher molecular weight PAHs. Biological treatment of the soil in a slurry-phase bioreactor completely eliminated PAH desorption to the C18 disks. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Desorption of polycyclic aromatic hydrocarbons from field-contaminated soil to a two-dimensional hydrophobic surface before and after bioremediation

    Science.gov (United States)

    Hu, Jing; Aitken, Michael D.

    2012-01-01

    Dermal exposure can represent a significant health risk in settings involving potential contact with soil contaminated with polycyclic aromatic hydrocarbons (PAHs). However, there is limited work on the ability of PAHs in contaminated soil to reach the skin surface via desorption from the soil. We evaluated PAH desorption from a field-contaminated soil to a two-dimensional hydrophobic surface (C18 extraction disk) as a measure of potential dermal exposure as a function of soil loading (5 to 100 mg dry soil/cm2), temperature (20 °C to 40 °C), and soil moisture content (2% to 40%) over periods up to 16 d. The efficacy of bioremediation in removing the most readily desorbable PAH fractions was also evaluated. Desorption kinetics were described well by an empirical two-compartment kinetic model. PAH mass desorbed to the C18 disk kept increasing at soil loadings well above the estimated monolayer coverage, suggesting mechanisms for PAH transport to the surface other than by direct contact. Such mechanisms were reinforced by observations that desorption occurred even with dry or moist glass microfiber filters placed between the C18 disk and the soil. Desorption of all PAHs was substantially reduced at a soil moisture content corresponding to field capacity, suggesting that transport through pore air contributed to PAH transport to the C18 disk. The lower molecular weight PAHs had greater potential to desorb from soil than higher molecular weight PAHs. Biological treatment of the soil in a slurry-phase bioreactor completely eliminated PAH desorption to the C18 disks. PMID:22704210

  14. Use of sugarcane filter cake and nitrogen, phosphorus and potassium fertilization in the process of bioremediation of soil contaminated with diesel.

    Science.gov (United States)

    Tellechea, Fernando Reynel Fundora; Martins, Marco Antônio; da Silva, Alexsandro Araujo; da Gama-Rodrigues, Emanuela Forestieri; Martins, Meire Lelis Leal

    2016-09-01

    This study evaluated the use of sugarcane filter cake and nitrogen, phosphorus and potassium (NPK) fertilization in the bioremediation of a soil contaminated with diesel fuel using a completely randomized design. Five treatments (uncontaminated soil, T1; soil contaminated with diesel, T2; soil contaminated with diesel and treated with 15 % (wt) filter cake, T3; soil contaminated with diesel and treated with NPK fertilizer, T4; and soil contaminated with diesel and treated with 15 % (wt) filter cake and NPK fertilizer, T5) and four evaluation periods (1, 60, 120, and 180 days after the beginning of the experiment) were used according to a 4 × 5 factorial design to analyze CO2 release. The variables total organic carbon (TOC) and total petroleum hydrocarbons (TPH) remaining in the soil were analyzed using a 5 × 2 factorial design, with the same treatments described above and two evaluation periods (1 and 180 days after the beginning of the experiment). In T3 and T5, CO2 release was significantly higher, compared with the other treatments. Significant TPH removal was observed on day 180, when percent removal values were 61.9, 70.1, 68.2, and 75.9 in treatments T2, T3, T4, and T5, respectively, compared with the initial value (T1).

  15. Comparative plant uptake and microbial degradation of trichloroethylene in the rhizospheres of five plant species-- implications for bioremediation of contaminated surface soils

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T. A. [Tennessee Univ., Knoxville, TN (United States); Walton, B. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1992-01-01

    The objective of this study was to collect data that would provide a foundation for the concept of using vegetation to enhance in situ bioremediation of contaminated surface soils. Soil and vegetation (Lespedeza cuneata, Paspalum notatum, Pinus taeda, and Solidago sp.) samples from the Miscellaneous Chemicals Basin (MCB) at the Savannah River Site were used in tests to identify critical plant and microbiological variables affecting the fate of trichloroethylene (TCE) in the root zone. Microbiological assays including phospholipid acid analyses, and 14C-acetate incorporation were conducted to elucidate differences in rhizosphere and nonvegetated soil microbial communities from the MCB. The microbial activity, biomass, and degradation of TCE in rhizosphere soils were significantly greater than corresponding nonvegetated soils. Vegetation had a positive effect on microbial degradation of 14C-TCE in whole-plant experiments. Soils from the MCB containing Lespedeza cuneata, Pinus taeda, and Glycine max mineralized greater than 25% of the 14C- TCE added compared with less than 20% in nonvegetated soils. Collectively, these results provide evidence for the positive role of vegetation in enhancing biodegradation.

  16. Comparative plant uptake and microbial degradation of trichloroethylene in the rhizospheres of five plant species-- implications for bioremediation of contaminated surface soils

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.A. (Tennessee Univ., Knoxville, TN (United States)); Walton, B.T. (Oak Ridge National Lab., TN (United States))

    1992-01-01

    The objective of this study was to collect data that would provide a foundation for the concept of using vegetation to enhance in situ bioremediation of contaminated surface soils. Soil and vegetation (Lespedeza cuneata, Paspalum notatum, Pinus taeda, and Solidago sp.) samples from the Miscellaneous Chemicals Basin (MCB) at the Savannah River Site were used in tests to identify critical plant and microbiological variables affecting the fate of trichloroethylene (TCE) in the root zone. Microbiological assays including phospholipid acid analyses, and {sup 14}C-acetate incorporation were conducted to elucidate differences in rhizosphere and nonvegetated soil microbial communities from the MCB. The microbial activity, biomass, and degradation of TCE in rhizosphere soils were significantly greater than corresponding nonvegetated soils. Vegetation had a positive effect on microbial degradation of {sup 14}C-TCE in whole-plant experiments. Soils from the MCB containing Lespedeza cuneata, Pinus taeda, and Glycine max mineralized greater than 25% of the {sup 14}C- TCE added compared with less than 20% in nonvegetated soils. Collectively, these results provide evidence for the positive role of vegetation in enhancing biodegradation.

  17. Bioremediation using Novosphingobium strain DY4 for 2,4-dichlorophenoxyacetic acid-contaminated soil and impact on microbial community structure.

    Science.gov (United States)

    Dai, Yu; Li, Ningning; Zhao, Qun; Xie, Shuguang

    2015-04-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is commonly used for weed control. The ubiquity of 2,4-D has gained increasing environmental concerns. Biodegradation is an attractive way to clean up 2,4-D in contaminated soil. However, information on the bioaugmentation trial for remediating contaminated soil is still very limited. The impact of bioaugmentation using 2,4-D-degraders on soil microbial community remains unknown. The present study investigated the bioremediation potential of a novel degrader (strain DY4) for heavily 2,4-D-polluted soil and its bioaugmentation impact on microbial community structure. The strain DY4 was classified as a Novosphingobium species within class Alphaproteobacteria and harbored 2,4-D-degrading TfdAα gene. More than 50 and 95 % of the herbicide could be dissipated in bioaugmented soil (amended with 200 mg/kg 2,4-D) respectively in 3-4 and 5-7 days after inoculation of Novosphingobium strain DY4. A significant growth of the strain DY4 was observed in bioaugmented soil with the biodegradation of 2,4-D. Moreover, herbicide application significantly altered soil bacterial community structure but bioaumentation using the strain DY4 showed a relatively weak impact.

  18. Characterization of cell-free extracts from fenpropathrin-degrading strain Bacillus cereus ZH-3 and its potential for bioremediation of pyrethroid-contaminated soils.

    Science.gov (United States)

    Liu, Jie; Huang, Wenwen; Han, Haitao; She, Changchun; Zhong, Guohua

    2015-08-01

    Synthetic pyrethroid fenpropathrin has received increasing attention because of its environmental contamination and toxic effects on non-target organisms including human beings. Here we report the degradation characteristics of cell-free extracts from fenpropathrin-degrading strain Bacillus cereus ZH-3 and its potential for pyrethroid bioremediation in soils. 50mg·L(-1) of fenpropathrin was decreased to 20.6mg·L(-1) by the enzymatic extracts (869.4mg·L(-1)) within 30min. Kinetic constants Km and Vm were determined to be 1006.7nmol·L(-1) and 56.8nmol·min(-1), respectively. Degradation products were identified as 3-phenoxybenzaldehyde, α-hydroxy-3-phenoxy-benzeneacetonitrile and phenol by gas chromatography-mass spectrometry (GC-MS). In addition to degradation of fenpropathrin, the cell-free extracts could degrade other pyrethroids including beta-cypermethrin, cyfluthrin, deltamethrin and cypermethrin. Additionally, the reaction conditions were optimized. In the sterile and non-sterile soils, 50mg·kg(-1) of fenpropathrin was reduced to 15.3 and 13.9mg·L(-1) in 1d, respectively. Sprayed 100 and 300mg·kg(-1) of fenpropathrin emulsifiable concentrate (EC), up to 84.6% and 92.1% of soil fenpropathrin were removed from soils within 7d, respectively. Taken together, our results depict the biodegradation characteristics of cell-free extracts from B. cereus ZH-3, highlight its promising potential in bioremediation of pyrethroid-contaminated soils and also provide new insights into the utilization of degrading microbes. Copyright © 2015. Published by Elsevier B.V.

  19. Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia.

    Science.gov (United States)

    Silva, Isis Serrano; Santos, Eder da Costa dos; Menezes, Cristiano Ragagnin de; Faria, Andréia Fonseca de; Franciscon, Elisangela; Grossman, Matthew; Durrant, Lucia Regina

    2009-10-01

    Biodegradation of a mixture of PAHs was assessed in forest soil microcosms performed either without or with bioaugmentation using individual fungi and bacterial and a fungal consortia. Respiratory activity, metabolic intermediates and extent of PAH degradation were determined. In all microcosms the low molecular weight PAH's naphthalene, phenanthrene and anthracene, showed a rapid initial rate of removal. However, bioaugmentation did not significantly affect the biodegradation efficiency for these compounds. Significantly slower degradation rates were demonstrated for the high molecular weight PAH's pyrene, benz[a]anthracene and benz[a]pyrene. Bioaugmentation did not improve the rate or extent of PAH degradation, except in the case of Aspergillus sp. Respiratory activity was determined by CO(2) evolution and correlated roughly with the rate and timing of PAH removal. This indicated that the PAHs were being used as an energy source. The native microbiota responded rapidly to the addition of the PAHs and demonstrated the ability to degrade all of the PAHs added to the soil, indicating their ability to remediate PAH-contaminated soils.

  20. Biophysical controls on soil respiration in the dominant patch types of an old-growth, mixed-conifer forest

    Science.gov (United States)

    Siyan Ma; Jiquan Chen; John R. Butnor; Malcolm North; Eugénie S. Euskirchen; Brian Oakley

    2005-01-01

    Little is known about biophysical controls on soil respiration in California's Sierra Nevada old-growth, mixed-conifer forests. Using portable and automated soil respiration sampling units, we measured soil respiration rate (SRR) in three dominant patch types: closed canopy (CC), ceanothus-dominated patches (CECO), and open canopy (OC). SRR varied significantly...

  1. Bioremediation of bunker C

    International Nuclear Information System (INIS)

    Emery, D.D.

    1992-01-01

    Bioremediation works extremely well for most common hydrocarbons including aviation fuel, heating oil and diesel oil. Bunker C, a high boiling point distillate, is the most recalcitrant hydrocarbon for treatment and is the topic of this paper. Bioremediation, Inc. has had an opportunity to perform two projects involving soil contaminated with bunker C. One was at a bulk terminal site which involved predominantly diesel, but also had bunker C contamination; the other was a paper-mill site which had exclusively bunker C contamination. This paper will address the authors' experiences at the paper-mill site. Bunker C lives up to its reputation of being a very recalcitrant hydrocarbon to biodegrade. They have demonstrated, however, that the soil matrix standards at industrial sites in Washington and Oregon can be achieved using new bioremediation techniques. These techniques are necessary over those typically used to biodegrade jet fuel, heating oil and diesel oil. These extra steps, as discussed later, have been developed for their own use in their treatability laboratory

  2. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns.

    Science.gov (United States)

    Harkness, Mark; Fisher, Angela

    2013-08-01

    The interaction between emulsified vegetable oil (EVO) and trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) was observed using two soil columns and subsequent reductive dechlorination of TCE was monitored over a three year period. Dyed TCE DNAPL (~75 g) was emplaced in one column (DNAPL column), while the second was DNAPL-free (plume column). EVO was added to both columns and partitioning of the EVO into the TCE DNAPL was measured and quantified. TCE (1.9 mM) was added to the influent of the plume column to simulate conditions down gradient of a DNAPL source area and the columns were operated independently for more than one year, after which they were connected in series. Initially limited dechlorination of TCE to cDCE was observed in the DNAPL column, while the plume column supported complete reductive dechlorination of TCE to ethene. Upon connection and reamendment of the plume column with EVO, near saturation levels of TCE from the effluent of the DNAPL column were rapidly dechlorinated to c-DCE and VC in the plume column; however, this high rate dechlorination produced hydrochloric acid which overwhelmed the buffering capacity of the system and caused the pH to drop below 6.0. Dechlorination efficiency in the columns subsequently deteriorated, as measured by the chloride production and Dehalococcoides counts, but was restored by adding sodium bicarbonate buffer to the influent groundwater. Robust dechlorination was eventually observed in the DNAPL column, such that the TCE DNAPL was largely removed by the end of the study. Partitioning of the EVO into the DNAPL provided significant operational benefits to the remediation system both in terms of electron donor placement and longevity. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. U.S. bioremediation market: Yesterday, today, and tomorrow

    International Nuclear Information System (INIS)

    Devine, K.

    1995-01-01

    The use of bioremediation for full-scale cleanup has increased dramatically throughout the past 10 years. This growth in activity is expected to continue through the year 2000. It is estimated that fewer than 10 companies offered field-level bioremedial services prior to 1985. Although the market today still is dominated by a small number of companies, the total number of firms claiming to offer services and/or products for bioremediation purposes has grown to over 1,000. It is estimated that aggregate bioremediation revenues for 1994 through 2000 will equal $2 to $3 billion (1994 dollars). This revenue will be generated in the initial part of this 7-year period primarily from underground storage cleanup, with revenues from hazardous waste sites becoming an increasingly important factor by accounting for the majority of revenues in the latter years. Market opportunities exist in technology development and implementation including biosparging, centralized treatment facilities for petroleum-contaminated soils, biofilters, and improvements in the cost-effectiveness of the technology

  4. Bioremediation of chlorpyrifos contaminated soil by two phase bioslurry reactor: Processes evaluation and optimization by Taguchi's design of experimental (DOE) methodology.

    Science.gov (United States)

    Pant, Apourv; Rai, J P N

    2018-04-15

    Two phase bioreactor was constructed, designed and developed to evaluate the chlorpyrifos remediation. Six biotic and abiotic factors (substrate-loading rate, slurry phase pH, slurry phase dissolved oxygen (DO), soil water ratio, temperature and soil micro flora load) were evaluated by design of experimental (DOE) methodology employing Taguchi's orthogonal array (OA). The selected six factors were considered at two levels L-8 array (2^7, 15 experiments) in the experimental design. The optimum operating conditions obtained from the methodology showed enhanced chlorpyrifos degradation from 283.86µg/g to 955.364µg/g by overall 70.34% of enhancement. In the present study, with the help of few well defined experimental parameters a mathematical model was constructed to understand the complex bioremediation process and optimize the approximate parameters upto great accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY FOR TREATMENT OF DINOSEB-CONTAMINATED SOILS - INNOVATIVE TECHNOLOGY REPORT

    Science.gov (United States)

    This report summarizes the findings of an evaluation of the J.R. Simplot Ex-Situ Bioremediation Technology on the degradation of dinoseb (2-set-butyl-4,6-dinitrophenol) an agricultural herbicide. This technology was developed by the J.R. Simplot Company (Simplot) to biologically ...

  6. Effect of saline soil parameters on endo mycorrhizal colonisation of dominant halophytes in four Hungarian sites

    Energy Technology Data Exchange (ETDEWEB)

    Fuzy, A.; Biro, B.; Toth, T.

    2010-07-01

    Soil and root samples were collected from the rhizosphere of dominant halophytes (Artemisia santonicum, Aster tripolium, Festuca pseudovina, Lepidium crassifolium, Plantago maritima and Puccinellia limosa) at four locations with saline soils in Hungary. The correlations- between arbuscular mycorrhiza (AM) fungal colonisation parameters (% colonisation, % arbuscules) and soil physical, chemical and biological parameters were determined Endomycorrhiza colonisation was found to be negatively correlated with the electric conductivity of the soil paste, the salt-specific ion concentrations and the cation exchange capacity, showing the sensitivity of AM fungi at increasing salt concentrations, independently of the types of salt-specific anions. A positive correlation was detected between the mycorrhiza colonisation and the abundance of oligotroph bacteria known to be the less variable and more stable (k-strategist) group. This fact and the negative correlation found with the humus content underlines the importance of nutrient availability and the limitations of the symbiotic interactions in stressed saline or sodic soils. (Author) 29 refs.

  7. Impact of chemical oxidation on indigenous bacteria and mobilization of nutrients and subsequent bioremediation of crude oil-contaminated soil.

    Science.gov (United States)

    Xu, Jinlan; Deng, Xin; Cui, Yiwei; Kong, Fanxing

    2016-12-15

    Fenton pre-oxidation provides nutrients to promote bioremediation. However, the effects of the indigenous bacteria that remain following Fenton oxidation on nutrient mobilization and subsequent bioremediation remain unclear. Experiments were performed with inoculation with native bacteria and foreign bacteria or without inoculation after four regimens of stepwise pre-oxidations. The effects of the indigenous bacteria remaining after stepwise oxidation on nutrient mobilization and subsequent bioremediation over 80 days were investigated. After stepwise Fenton pre-oxidation at a low H 2 O 2 concentration (225×4), the remaining indigenous bacterial populations reached their peak (4.8±0.17×10 6 CFU/g), the nutrients were mobilized rapidly, and the subsequent bioremediation of crude oil was improved (biodegradation efficiency of 35%). However, after stepwise Fenton pre-oxidation at a high H 2 O 2 concentration (450×4), only 3.6±0.16×10 3 CFU/g of indigenous bacteria remained, and the indigenous bacteria that degrade C 15 -C 30 alkanes were inhibited. The nutrient mobilization was then highly limited, and only 19% of total petroleum hydrocarbon was degraded. Furthermore, the recovery period after the low H 2 O 2 concentration stepwise Fenton pre-oxidation (225×4) was less than 20 days, which was 20-30 days shorter than with the other pre-oxidation treatments. Therefore, stepwise Fenton pre-oxidation at a low H 2 O 2 concentration protects indigenous bacterial populations and improves the nutrient mobilization and subsequent bioremediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. TREATABILITY STUDY REPORT OF GREEN MOUNTAIN LABORATORIES, INC.'S BIOREMEDIATION PROCESS, TREATMENT OF PCB CONTAMINATED SOILS, AT BEEDE WASTE OIL/CASH ENERGY SUPERFUND SITE, PLAISTOW, NEW HAMPSHIRE

    Science.gov (United States)

    In 1998, Green Mountain Laboratories, Inc. (GML) and the USEPA agreed to carry out a Superfund Innovative Technology Evaluation (SITE) project to evaluate the effectiveness of GML's Bioremediation Process for the treatment of PCB contaminated soils at the Beede Waste Oil/Cash Ene...

  9. Temperate forest development during secondary succession: effects of soil, dominant species and management

    NARCIS (Netherlands)

    Bose, A.K.; Schelhaas, M.; Mazerolle, M.J.; Bongers, F.

    2014-01-01

    With the increase in abandoned agricultural lands in Western Europe, knowledge on the successional pathways of newly developing forests becomes urgent. We evaluated the effect of time, soil type and dominant species type (shade tolerant or intolerant) on the development during succession of three

  10. Patterns of intrinsic bioremediation at two U.S. Air Force bases

    International Nuclear Information System (INIS)

    Wiedemeier, T.H.; Swanson, M.A.; Wilson, J.T.; Kampbell, D.H.

    1995-01-01

    Intrinsic bioremediation of benzene, toluene, ethylbenzene, and xylenes (BTEX) occurs when indigenous microorganisms work to reduce the total mass of contamination in the subsurface without the addition of nutrients. A conservative tracer, such as trimethylbenzene, found commingled with the contaminant plume can be used to distinguish between attenuation caused by dispersion, dilution from recharge, volatilization, and sorption and attenuation caused by biodegradation. Patterns of intrinsic bioremediation can vary markedly from site to site depending on governing physical, biological, and chemical processes. Intrinsic bioremediation causes measurable changes in groundwater chemistry. Specifically, concentrations of contaminants, dissolved oxygen, nitrate, ferrous iron, sulfate, and methane in groundwater change both temporally and spatially as biodegradation proceeds Operations at Hill Air Force Base (AFB) and Patrick AFB resulted in fuel-hydrocarbon contamination of soil and groundwater. In both cases, trimethylbenzene data confirm that dissolved BTEX is biodegrading. Geochemical evidence from the Hill AFB site suggests that aerobic respiration, denitrification, iron reduction, sulfate reduction, and methanogenesis all are contributing to intrinsic bioremediation of dissolved BTEX. Sulfate reduction is the dominant biodegradation mechanism at this site. Geochemical evidence from Patrick AFB suggests that aerobic respiration, iron reduction, and methanogenesis are contributing to intrinsic bioremediation of dissolved BTEX. Methanogenesis is the dominant biodegradation mechanism at this site

  11. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, Daniel P., E-mail: daniel.cassidy@wmich.edu [Department of Geosciences, Western Michigan University, Kalamazoo, MI 49008 (United States); Srivastava, Vipul J., E-mail: vipul.srivastava@ch2m.com [CH2M HILL, 125S Wacker, Ste 3000, Chicago, IL 60606 (United States); Dombrowski, Frank J., E-mail: frank.dombrowski@we-energies.com [We Energies, 333W Everett St., A231, Milwaukee, WI 53203 (United States); Lingle, James W., E-mail: jlingle@epri.com [Electric Power Research Institute (EPRI), 4927W Willow Road, Brown Deer, WI 53223 (United States)

    2015-10-30

    Highlights: • Portland cement and lime activated persulfate by increasing pH and temperature. • Chemical oxidation achieved BTEX and PAH removal ranging from 55% to 75%. • Activating persulfate with ISS amendments reduced leachability more than NaOH. • Native sulfate-reducing bacteria degraded PAHs within weeks after ISCO finished. • ISCO, ISS, and anaerobic bioremediation were combined in a single application. - Abstract: Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks.

  12. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil

    International Nuclear Information System (INIS)

    Cassidy, Daniel P.; Srivastava, Vipul J.; Dombrowski, Frank J.; Lingle, James W.

    2015-01-01

    Highlights: • Portland cement and lime activated persulfate by increasing pH and temperature. • Chemical oxidation achieved BTEX and PAH removal ranging from 55% to 75%. • Activating persulfate with ISS amendments reduced leachability more than NaOH. • Native sulfate-reducing bacteria degraded PAHs within weeks after ISCO finished. • ISCO, ISS, and anaerobic bioremediation were combined in a single application. - Abstract: Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks

  13. Biodegradation and bioremediation

    DEFF Research Database (Denmark)

    Albrechtsen, H.-J.

    1996-01-01

    Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994......Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994...

  14. Case study: Bioremediation in the Aleutian Islands

    International Nuclear Information System (INIS)

    Steward, K.J.; Laford, H.D.

    1995-01-01

    This case study describes the design, construction, and operation of a bioremediation pile on Adak Island, which is located in the Aleutian Island chain. Approximately 1,900 m 3 of petroleum-contaminated soil were placed in the bioremediation pile. The natural bioremediation process was enhanced by an oxygen and nutrient addition system to stimulate microbial activity. Despite the harsh weather on the island, after the first 6 months of operation, laboratory analyses of soil samples indicated a significant (80%) reduction in diesel concentrations

  15. Postremediation bioremediation

    International Nuclear Information System (INIS)

    Brown, R.A.; Hicks, P.M.; Hicks, R.J.; Leahy, M.C.

    1995-01-01

    In applying remediation technology, an important question is when to stop operations. Conventional wisdom states that each site has a limit of treatability. Beyond a point, the site conditions limit access to residual contaminants and, therefore, treatment effectiveness. In the treatment of petroleum hydrocarbons, the issue in ceasing remedial operations is not what is the limit of treatment, but what should be the limit of effort. Because hydrocarbons are inherently biodegradable, there is a point in remediation where natural or intrinsic bioremediation is adequate to complete the remedial process. This point is reached when the rate of residual carbon release is the limiting factor, not the rate of oxygen or nutrient supply. At such a point, the rate and degree of remediation is the same whether an active system is being applied or whether nothing is being actively done. This paper presents data from several bioremediation projects where active remediation was terminated above the desired closure levels. These site data illustrate that intrinsic bioremediation is as effective in site closure as continued active remediation

  16. A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil.

    Science.gov (United States)

    García-Sánchez, Mercedes; Košnář, Zdeněk; Mercl, Filip; Aranda, Elisabet; Tlustoš, Pavel

    2018-01-01

    Biological treatments are considered an environmentally option to clean-up polluted soil with polycyclic aromatic hydrocarbons (PAHs). A pot experiment was conducted to comparatively evaluate four different strategies, including natural attenuation (NA), mycoaugmentation (M) by using Crucibulum leave, phytoremediation (P) using maize plants, and microbial-assisted phytoremediation (MAP) for the bioremediation of an aged PAH-polluted soil at 180 days. The P treatment had higher affinity degrading 2-3 and 4 ring compounds than NA and M treatments, respectively. However, M and P treatments were more efficient in regards to naphthalene, indeno[l,2,3-c,d]pyrene and benzo[g,h,i]perylene degradation respect to NA. However, 4, 5-6 rings undergo a strong decline during the microbe-assisted phytoremediation, being the treatment which determined the highest rates of PAHs degradation. Sixteen PAH compounds, except fluorene and dibenzo[a,h]anthracene, were found in maize roots, whereas the naphthalene, phenanthrene, anthracene, fluoranthene, and pyrene were accumulated in the shoots, in both P and MAP treatments. However, higher PAH content in maize biomass was achieved during the MAP treatment respect to P treatment. The bioconversion and translocation factors were less than 1, indicating that phystabilization/phytodegradation processes occurred rather than phytoextraction. The microbial biomass, activity and ergosterol content were significantly boosted in the MAP treatment respect to the other treatments at 180 days. Ours results demonstrated that maize-C. laeve association was the most profitable technique for the treatment of an aged PAH-polluted soil when compared to other bioremediation approaches. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Bioremediation of Bunker C

    International Nuclear Information System (INIS)

    Emery, D.D.

    1992-01-01

    In the states of Washington and Oregon, the highest priority for waste management is now given to recycling, reuse and permanent solutions as opposed to landfill disposal. Bioremediation is recognized as a treatment of choice over other technologies that do not provide permanent solutions. From a business point of view, it is usually the most cost-effective. Bioremediation works extremely well for most common hydrocarbons including aviation fuel, heating oil and diesel oil. Bunker C, a high boiling point distillate, is the most recalcitrant hydrocarbon for treatment and is the topic of this paper. Bunker C lives up to its reputation of being a very recalcitrant hydrocarbon to biodegrade. The authors have demonstrated, however, that the soil matrix standards at industrial sites in Washington and Oregon can be achieved using new bioremediation techniques. These techniques are necessary over those typically used to biodegrade jet fuel, heating oil and diesel oil. These extra steps have been developed for our own use in our treatability laboratory

  18. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil.

    Science.gov (United States)

    Cassidy, Daniel P; Srivastava, Vipul J; Dombrowski, Frank J; Lingle, James W

    2015-10-30

    Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama Region (Chile)

    International Nuclear Information System (INIS)

    Godoy-Faundez, Alex; Antizar-Ladislao, Blanca; Reyes-Bozo, Lorenzo; Camano, Andres; Saez-Navarrete, Cesar

    2008-01-01

    Since early 1900s, with the beginning of mining operations and especially in the last decade, small, although repetitive spills of fuel oil had occurred frequently in the Chilean mining desert industry during reparation and maintenance of machinery, as well as casual accidents. Normally, soils and sawdust had been used as cheap readily available sorbent materials of spills of fuel oil, consisting of complex mixtures of aliphatic and aromatic hydrocarbons. Chilean legislation considers these fuel oil contaminated mixtures of soil and sawdust as hazardous wastes, and thus they must be contained. It remains unknown whether it would be feasible to clean-up Chilean desert soils with high salinity and metal content, historically polluted with different commercial fuel oil, and contained during years. Thus, this study evaluated the feasibility of aerated in-vessel composting at a laboratory scale as a bioremediation technology to clean-up contaminated desert mining soils (fuel concentration > 50,000 mg kg -1 ) and sawdust (fuel concentration > 225,000 mg kg -1 ) in the Atacama Region. The composting reactors were operated using five soil to sawdust ratios (S:SD, 1:0, 3:1, 1:1, 1:3, 0:1, on a dry weight basis) under mesophilic temperatures (30-40 deg. C), constant moisture content (MC, 50%) and continuous aeration (16 l min -1 ) during 56 days. Fuel oil concentration and physico-chemical changes in the composting reactors were monitored following standard procedures. The highest (59%) and the lowest (35%) contaminant removals were observed in the contaminated sawdust and contaminated soil reactors after 56 days of treatment, respectively. The S:SD ratio, time of treatment and interaction between both factors had a significant effect (p < 0.050) on the contaminant removal. The results of this research indicate that bioremediation of an aged contaminated mixture of desert mining soil and sawdust with fuel oil is feasible. This study recommends a S:SD ratio 1:3 and a correct

  20. Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama Region (Chile).

    Science.gov (United States)

    Godoy-Faúndez, Alex; Antizar-Ladislao, Blanca; Reyes-Bozo, Lorenzo; Camaño, Andrés; Sáez-Navarrete, César

    2008-03-01

    Since early 1900s, with the beginning of mining operations and especially in the last decade, small, although repetitive spills of fuel oil had occurred frequently in the Chilean mining desert industry during reparation and maintenance of machinery, as well as casual accidents. Normally, soils and sawdust had been used as cheap readily available sorbent materials of spills of fuel oil, consisting of complex mixtures of aliphatic and aromatic hydrocarbons. Chilean legislation considers these fuel oil contaminated mixtures of soil and sawdust as hazardous wastes, and thus they must be contained. It remains unknown whether it would be feasible to clean-up Chilean desert soils with high salinity and metal content, historically polluted with different commercial fuel oil, and contained during years. Thus, this study evaluated the feasibility of aerated in-vessel composting at a laboratory scale as a bioremediation technology to clean-up contaminated desert mining soils (fuel concentration>50,000 mg kg(-1)) and sawdust (fuel concentration>225,000 mg kg(-1)) in the Atacama Region. The composting reactors were operated using five soil to sawdust ratios (S:SD, 1:0, 3:1, 1:1, 1:3, 0:1, on a dry weight basis) under mesophilic temperatures (30-40 degrees C), constant moisture content (MC, 50%) and continuous aeration (16 l min(-1)) during 56 days. Fuel oil concentration and physico-chemical changes in the composting reactors were monitored following standard procedures. The highest (59%) and the lowest (35%) contaminant removals were observed in the contaminated sawdust and contaminated soil reactors after 56 days of treatment, respectively. The S:SD ratio, time of treatment and interaction between both factors had a significant effect (pcontaminant removal. The results of this research indicate that bioremediation of an aged contaminated mixture of desert mining soil and sawdust with fuel oil is feasible. This study recommends a S:SD ratio 1:3 and a correct nutrient balance

  1. Phenotypic and molecular characterization of bacterial populations isolated from diesel-contaminated soil and treated by two bioremediation technologies

    International Nuclear Information System (INIS)

    Arrieta R, Olga M; Rivera R, Angela P; Rojano, Benjamin; Ruiz, Orlando; Correa, Margarita M; Cienfuegos Gallet, Astrid V; Arias, Lida; Cardona G, Santiago A

    2012-01-01

    In this study bioremediation is presented as an alternative for the recovery of contaminated ecosystems. In this work an experimental diesel spill on pasture land was remediated using two bioremediation technologies: natural attenuation, which is the natural capability of indigenous microorganisms to degrade a xenobiotic component in a determined time, and biostimulation, which consist in the acceleration of the degradation process through the stimulation of the metabolism of indigenous microorganisms by the addition of nutrients (P and N) to the media. Results of respirometry assays indicated that both treatments produced significant levels of hydrocarbon removal but the biostimulation treatment stranded out with 98.17% degradation. Seven bacterial isolates were obtained from these treatments which according to their molecular characterization and phylogenetic analysis belong to the genus: Enterobacter, Bacillus, Arthrobacter, Sanguibacter, Staphylococcus and Flavobacterium. All isolates were able to metabolize diesel as a carbon and energy source; for this reason and taking into account that for some of these microorganisms their role in bioremediation have not been extensively studied, it is recommended to continue with their evaluation to know their real potential for the solution of environmental problems.

  2. Genetically engineered Pseudomonas putida X3 strain and its potential ability to bioremediate soil microcosms contaminated with methyl parathion and cadmium.

    Science.gov (United States)

    Zhang, Rong; Xu, Xingjian; Chen, Wenli; Huang, Qiaoyun

    2016-02-01

    A multifunctional Pseudomonas putida X3 strain was successfully engineered by introducing methyl parathion (MP)-degrading gene and enhanced green fluorescent protein (EGFP) gene in P. putida X4 (CCTCC: 209319). In liquid cultures, the engineered X3 strain utilized MP as sole carbon source for growth and degraded 100 mg L(-1) of MP within 24 h; however, this strain did not further metabolize p-nitrophenol (PNP), an intermediate metabolite of MP. No discrepancy in minimum inhibitory concentrations (MICs) to cadmium (Cd), copper (Cu), zinc (Zn), and cobalt (Co) was observed between the engineered X3 strain and its host strain. The inoculated X3 strain accelerated MP degradation in different polluted soil microcosms with 100 mg MP kg(-1) dry soil and/or 5 mg Cd kg(-1) dry soil; MP was completely eliminated within 40 h. However, the presence of Cd in the early stage of remediation slightly delayed MP degradation. The application of X3 strain in Cd-contaminated soil strongly affected the distribution of Cd fractions and immobilized Cd by reducing bioavailable Cd concentrations with lower soluble/exchangeable Cd and organic-bound Cd. The inoculated X3 strain also colonized and proliferated in various contaminated microcosms. Our results suggested that the engineered X3 strain is a potential bioremediation agent showing competitive advantage in complex contaminated environments.

  3. Natural carriers in bioremediation: A review

    Directory of Open Access Journals (Sweden)

    Anna Dzionek

    2016-09-01

    Full Text Available Bioremediation of contaminated groundwater or soil is currently the cheapest and the least harmful method of removing xenobiotics from the environment. Immobilization of microorganisms capable of degrading specific contaminants significantly promotes bioremediation processes, reduces their costs, and also allows for the multiple use of biocatalysts. Among the developed methods of immobilization, adsorption on the surface is the most common method in bioremediation, due to the simplicity of the procedure and its non-toxicity. The choice of carrier is an essential element for successful bioremediation. It is also important to consider the type of process (in situ or ex situ, type of pollution, and properties of immobilized microorganisms. For these reasons, the article summarizes recent scientific reports about the use of natural carriers in bioremediation, including efficiency, the impact of the carrier on microorganisms and contamination, and the nature of the conducted research.

  4. Biorremediação de solos contaminados com hidrocarbonetos aromáticos policíclicos Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    Rodrigo Josemar Seminoti Jacques

    2007-08-01

    capacity to degrade them, which results in its accumulation in the atmosphere and contamination of the ecosystems. A strategy for PAHs elimination from the soil is through the bioremediation, where microorganisms having capacity to metabolize these compounds will transform them in inert substances, CO2 and water. However, this biotechnology can be limited by the lack of specific HAP microbial-degraders in soil, by unfavorable environmental conditions to these microorganisms or by the low bioavailability of those contaminants to the microorganisms. To overcome these limitations and to promote an efficient removal of the pollutants to the atmosphere, several bioremediation techniques were developed as passive bioremediation, bioaugmentation, biostimulation, phytoremediation, landfarming, composting and bioreactors. This revision aims at discussing microbial metabolism of PAHs, present the main chemical and physical factors that influence the survival and the activity of these microorganisms and to show the bioremediation techniques that are being used now for the PAHs removal in soil.

  5. Impact of downslope soil transport on carbon storage and fate in permafrost dominated landscapes

    Science.gov (United States)