WorldWideScience

Sample records for bioregenerative life-support systems

  1. Analysis of plant harvest indices for bioregenerative life support systems

    Science.gov (United States)

    Velayudhan, A.; Kohlmann, K. L.; Westgate, P. J.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    Harvest indices, which are measures of the ratio of edible to total plant weight, are redefined to include edible sugars derived from enzymatic hydrolysis of the cellulose content of inedible plant components. Compositional analysis and carbohydrate contents of rapeseed, rice, soybeans, cowpea, wheat, sweet potato, white potato, and lettuce were analyzed to develop such generalized harvest indices. Cellulose conversion is shown to extend considerably the food available from plants otherwise grown for their oil and protein content in a bioregenerative life support system.

  2. Bioregenerative life support system for a lunar base

    Science.gov (United States)

    Liu, H.; Wang, J.; Manukovsky, N. S.; Kovalev, V. S.; Gurevich, Yu. L.

    We have studied a modular approach to construction of bioregenerative life support system BLSS for a lunar base using soil-like substrate SLS for plant cultivation Calculations of massflow rates in BLSS were based mostly on a vegetarian diet and biological conversion of plant residues in SLS Plant candidate list for lunar BLSS includes the following basic species rice Oryza sativa soy Glycine max sweet potato Ipomoea batatas and wheat Triticum aestivum To reduce the time necessary for transition of the system to steady state we suggest that the first seeding and sprouting could be made on Earth

  3. Visual Simulation of Microalgae Growth in Bioregenerative Life Support System

    Science.gov (United States)

    Zhao, Ming

    Bioregenerative life support system is one of the key technologies for future human deep space exploration and long-term space missions. BLSS use biological system as its core unit in combination with other physical and chemical equipments, under the proper control and manipulation by crew to complete a specific task to support life. Food production, waste treatment, oxygen and water regeneration are all conducted by higher plants or microalgae in BLSS, which is the most import characteristic different from other kinds of life support systems. Microalgae is light autotrophic micro-organisms, light undoubtedly is the most import factor which limits its growth and reproduction. Increasing or decreasing the light intensity changes the growth rate of microalgae, and then regulates the concentration of oxygen and carbon dioxide in the system. In this paper, based on the mathematical model of microalgae which grew under the different light intensity, three-dimensional visualization model was built and realized through using 3ds max, Virtools and some other three dimensional software, in order to display its change and impacting on oxygen and carbon dioxide intuitively. We changed its model structure and parameters, such as establishing closed-loop control system, light intensity, temperature and Nutrient fluid’s velocity and so on, carried out computer virtual simulation, and observed dynamic change of system with the aim of providing visualization support for system research.

  4. Closed bioregenerative life support systems: Applicability to hot deserts

    Science.gov (United States)

    Polyakov, Yuriy S.; Musaev, Ibrahim; Polyakov, Sergey V.

    2010-09-01

    Water scarcity in hot deserts, which cover about one-fifth of the Earth's land area, along with rapid expansion of hot deserts into arable lands is one of the key global environmental problems. As hot deserts are extreme habitats characterized by the availability of solar energy with a nearly complete absence of organic life and water, space technology achievements in designing closed ecological systems may be applicable to the design of sustainable settlements in the deserts. This review discusses the key space technology findings for closed biogenerative life support systems (CBLSS), which can simultaneously produce food, water, nutrients, fertilizers, process wastes, and revitalize air, that can be applied to hot deserts. Among them are the closed cycle of water and the acceleration of the cycling times of carbon, biogenic compounds, and nutrients by adjusting the levels of light intensity, temperature, carbon dioxide, and air velocity over plant canopies. Enhanced growth of algae and duckweed at higher levels of carbon dioxide and light intensity can be important to provide complete water recycling and augment biomass production. The production of fertilizers and nutrients can be enhanced by applying the subsurface flow wetland technology and hyper-thermophilic aerobic bacteria for treating liquid and solid wastes. The mathematical models, optimization techniques, and non-invasive measuring techniques developed for CBLSS make it possible to monitor and optimize the performance of such closed ecological systems. The results of long-duration experiments performed in BIOS-3, Biosphere 2, Laboratory Biosphere, and other ground-based closed test facilities suggest that closed water cycle can be achieved in hot-desert bioregenerative systems using the pathways of evapotranspiration, condensation, and biological wastewater treatment technologies. We suggest that the state of the art in the CBLSS design along with the possibility of using direct sunlight for

  5. The perspective crops for the bioregenerative human life support systems

    Science.gov (United States)

    Polonskiy, Vadim; Polonskaya, Janna

    The perspective crops for the bioregenerative human life support systems V.I. Polonskiy, J.E. Polonskaya aKrasnoyarsk State Agrarian University, 660049, Krasnoyarsk, Russia In the nearest future the space missions will be too long. In this case it is necessary to provide the crew by vitamins, antioxidants, and water-soluble dietary fibers. These compounds will be produced by higher plants. There was not enough attention at present to increasing content of micronutrients in edible parts of crops candidates for CELSS. We suggested to add the new crops to this list. 1. Barley -is the best crop for including to food crops (wheat, rice, soybean). Many of the health effects of barley are connected to dietary fibers beta-glucan of barley grains. Bar-ley is the only seed from cereals including wheat with content of all eight tocopherols (vitamin E, important antioxidant). Barley grains contain much greater amounts of phenolic compounds (potential antioxidant activities) than other cereal grains. Considerable focus is on supplement-ing wheat-based breads with barley to introduce the inherent nutritional advantages of barley flour, currently only 20We have selected and tested during 5 generations two high productive barley lines -1-K-O and 25-K-O. Our investigations (special breeding program for improving grain quality of barley) are in progress. 2. Volatile crops. Young leaves and shoots of these crops are edible and have a piquant taste. A lot of organic volatile compounds, oils, vitamins, antioxidants are in their biomass. These micronutrients are useful for good appetite and health of the crew. We have investigated 11 species: basil (Ocimum basilicum), hyssop (Hyssopus officinalis), marjoram (Origanum majorana), sweet-Mary (Melissa officinalis), common thyme (Thymus vulgaris), creeping thyme (Thymus serpyllum), summer savory (Satureja hortensis), catnip (Nepeta cataria), rue (Ruta graveolens), coriander (Coriandrum Ativum), sulfurwort (Levisticum officinale). These

  6. Hydroponic cultivation of soybean for Bioregenerative Life Support Systems (BLSSs)

    Science.gov (United States)

    De Pascale, Stefania; De Micco, Veronica; Aronne, Giovanna; Paradiso, Roberta

    For long time our research group has been involved in experiments aiming to evaluate the possibility to cultivate plants in Space to regenerate resources and produce food. Apart from investigating the response of specific growth processes (at morpho-functional levels) to space factors (namely microgravity and ionising radiation), wide attention has been dedicated to agro-technologies applied to ecologically closed systems. Based on technical and human dietary requirements, soybean [Glycine max (L.) Merr.] is studied as one of the candidate species for hydroponic (soilless) cultivation in the research program MELiSSA (Micro-Ecological Life Support System Alternative) of the European Space Agency (ESA). Soybean seeds show high nutritional value, due to the relevant content of protein, lipids, dietary fiber and biologically active substances such as isoflavones. They can produce fresh sprouts or be transformed in several edible products (soymilk and okara or soy pulp). Soybean is traditionally grown in open field where specific interactions with soil microrganisms occur. Most available information on plant growth, seed productivity and nutrient composition relate to cultivated varieties (cultivars) selected for soil cultivation. However, in a space outpost, plant cultivation would rely on soilless systems. Given that plant growth, seed yield and quality strictly depend on the environmental conditions, to make successful the cultivation of soybean in space, it was necessary to screen all agronomic information according to space constraints. Indeed, selected cultivars have to comply with the space growth environment while providing a suitable nutritional quality to fulfill the astronauts needs. We proposed an objective criterion for the preliminary theoretical selection of the most suitable cultivars for seed production, which were subsequently evaluated in bench tests in hydroponics. Several Space-oriented experiments were carried out in a closed growth chamber to

  7. Modeling snail breeding in Bioregenerative Life Support System

    Science.gov (United States)

    Kovalev, Vladimir; Tikhomirov, Alexander A.; Nickolay Manukovsky, D..

    It is known that snail meat is a high quality food that is rich in protein. Hence, heliciculture or land snail farming spreads worldwide because it is a profitable business. The possibility to use the snails of Helix pomatia in Biological Life Support System (BLSS) was studied by Japanese Researches. In that study land snails were considered to be producers of animal protein. Also, snail breeding was an important part of waste processing, because snails were capable to eat the inedible plant biomass. As opposed to the agricultural snail farming, heliciculture in BLSS should be more carefully planned. The purpose of our work was to develop a model for snail breeding in BLSS that can predict mass flow rates in and out of snail facility. There are three linked parts in the model called “Stoichiometry”, “Population” and “Mass balance”, which are used in turn. Snail population is divided into 12 age groups from oviposition to one year. In the submodel “Stoichiometry” the individual snail growth and metabolism in each of 12 age groups are described with stoichiometry equations. Reactants are written on the left side of the equations, while products are written on the right side. Stoichiometry formulas of reactants and products consist of four chemical elements: C, H, O, N. The reactants are feed and oxygen, products are carbon dioxide, metabolic water, snail meat, shell, feces, slime and eggs. If formulas of substances in the stoichiometry equations are substituted with their molar masses, then stoichiometry equations are transformed to the equations of molar mass balance. To get the real mass balance of individual snail growth and metabolism one should multiply the value of each molar mass in the equations on the scale parameter, which is the ratio between mass of monthly consumed feed and molar mass of feed. Mass of monthly consumed feed and stoichiometry coefficients of formulas of meat, shell, feces, slime and eggs should be determined experimentally

  8. Bioregenerative Life Support System Research as part of the DLR EDEN Initiative

    Science.gov (United States)

    Bamsey, Matthew; Schubert, Daniel; Zabel, Paul; Poulet, Lucie; Zeidler, Conrad

    In 2011, the DLR Institute of Space Systems launched a research initiative called EDEN - Evolution and Design of Environmentally-closed Nutrition-Sources. The research initiative focuses on bioregenerative life support systems, especially greenhouse modules, and technologies for future crewed vehicles. The EDEN initiative comprises several projects with respect to space research, ground testing and spin-offs. In 2014, EDEN’s new laboratory officially opened. This new biological cleanroom laboratory comprises several plant growth chambers incorporating a number of novel controlled environment agriculture technologies. This laboratory will be the nucleus for a variety of plant cultivation experiments within closed environments. The utilized technologies are being advanced using the pull of space technology and include such items as stacked growth systems, PAR-specific LEDs, intracanopy lighting, aeroponic nutrient delivery systems and ion-selective nutrient sensors. The driver of maximizing biomass output per unit volume and energy has much application in future bioregenerative life support systems but can also provide benefit terrestrially. The EDEN laboratory also includes several specially constructed chambers for advancing models addressing the interaction between bioregenerative and physical-chemical life support systems. The EDEN team is presently developing designs for containerized greenhouse modules. One module is planned for deployment to the German Antarctic Station, Neumayer III. The shipping container based system will provide supplementation to the overwintering crew’s diet, provide psychological benefit while at the same time advancing the technology and operational readiness of harsh environment plant production systems. In addition to hardware development, the EDEN team has participated in several early phase designs such as for the ESA Greenhouse Module for Space System and for large-scale vertical farming. These studies often utilize the

  9. Dynamic research on preparation of soil like substrate in bioregenerative life support system

    Science.gov (United States)

    Hu, Enzhu; Bartsev, Sergey I.; Liu, Professor Hong

    Bioregenerative life support systems(BLSS) with higher plants emerge as a promising key technology for sustainable planetary explorations. Conversion of inedible plant biomass into soil like substrate would reduce logistics and increase system closure. A mathematic model was established to simulate the dynamic behavior of this biological process, which included growth of microorganisms, growth of earthworms, and decomposition of organic substance. Meanwhile, a series of experiments using grinding wheat straw, earthworms Eisenia foetida and native bacteria were conducted to testify the validity of the model. The numerical simulation was consistent with experimental results and rightly reflected the formation mechanism of soil like substrate. The numerical methods used in this study were Runge-Kutta-Fehlberg method, interior-reflective Newton method and nonlinear least-square method.

  10. Soybean cultivar selection for Bioregenerative Life Support Systems (BLSS) - Theoretical selection

    Science.gov (United States)

    De Micco, Veronica; Buonomo, Roberta; Paradiso, Roberta; De Pascale, Stefania; Aronne, Giovanna

    2012-05-01

    The development of plant-based Bioregenerative Life Support Systems (BLSS) is a requirement for the realization of long-duration exploratory-class manned missions in so far as they help fulfilling astronauts' needs including nutritional demands, air regeneration and psychological support. The program ESA - MELiSSA (European Space Agency - Micro-Ecological Life Support System Alternative) aims to conceive an artificial bioregenerative ecosystem based on both microorganisms and higher plants. Soybean is one of the four crops studied within this program as a candidate for cultivation in forthcoming BLSS. Within this project, the aim of this study was to develop a methodology for the selection of soybean candidate cultivars for BLSS. Our scope was to identify an objective and repeatable procedure to choose the best cultivar at each time, overcoming the variability of the market supply. This purpose was pursued with an approach based on a two-steps procedure: (a) the development of an objective criterion for the selection of the most suitable soybean cultivars (cultivated varieties) based on theoretical considerations and (b) the behaviour evaluation of the 4 best cultivars with a cultivation trial in a controlled environment. In this paper, we report the first phase of the selection procedure. We started with a literature survey to look for data about environmental needs, potential yields and nutritional traits of soybean cultivars already tested in cultivation trials (disregarding Gene Modified Organisms). Afterwards, a preliminary screening based on information about the main European companies and the most commercialized cultivars, as well as on the criteria suggested by ESA, allowed to select 93 cultivars among the 297 admitted in EU. Finally, an algorithm, based on the relevance of each considered characteristic, was created to attribute a score to each cultivar and to rank it for the identification of the best cultivars for subsequent cultivation trials.

  11. Blue light requirements for crop plants used in bioregenerative life support systems.

    Science.gov (United States)

    Yorio, N C; Wheeler, R M; Goins, G D; Sanwo-Lewandowski, M M; Mackowiak, C L; Brown, C S; Sager, J C; Stutte, G W

    1998-01-01

    As part of NASA's Advanced Life Support Program, the Breadboard Project at Kennedy Space Center is investigating the feasibility of using crop plants in bioregenerative life support systems (BLSS) for long-duration space missions. Several types of electric lamps have been tested to provide radiant energy for plants in a BLSS. These lamps vary greatly in terms of spectral quality resulting in differences in growth and morphology of the plants tested. Broad spectrum or "white" light sources (e.g., metal halide and fluorescent lamps) provide an adequate spectrum for normal growth and morphology; however, they are not as electrically efficient as are low-pressure sodium (LPS) or high-pressure sodium (HPS) lamps. Although LPS and HPS, as well as the newly tested red light-emitting diodes (LEDs), have good photosynthetically active radiation (PAR) efficiencies, they are deficient in blue light. Results with several of the crops tested for BLSS (wheat, potato, soybean, lettuce, and radish) have shown a minimum amount of blue light (approximately 30 micromoles m-2 s-1) is necessary for normal growth and development. For example, the lack of sufficient blue light in these lamps has resulted in increased stem elongation and significant reductions in photosynthesis and yield. To avoid problems with blue-deficient lamps and maximize yield, sufficient intensity of HPS or blue light supplementation with red LEDs or LPS lamps is required to meet spectral requirements of crops for BLSS.

  12. Conceptual design of a bioregenerative life support system containing crops and silkworms

    Science.gov (United States)

    Hu, Enzhu; Bartsev, Sergey I.; Liu, Hong

    2010-04-01

    This article summarizes a conceptual design of a bioregenerative life support system for permanent lunar base or planetary exploration. The system consists of seven compartments - higher plants cultivation, animal rearing, human habitation, water recovery, waste treatment, atmosphere management, and storages. Fifteen kinds of crops, such as wheat, rice, soybean, lettuce, and mulberry, were selected as main life support contributors to provide the crew with air, water, and vegetable food. Silkworms fed by crop leaves were designated to produce partial animal nutrition for the crew. Various physical-chemical and biological methods were combined to reclaim wastewater and solid waste. Condensate collected from atmosphere was recycled into potable water through granular activated carbon adsorption, iodine sterilization, and trace element supplementation. All grey water was also purified though multifiltration and ultraviolet sterilization. Plant residue, human excrement, silkworm feces, etc. were decomposed into inorganic substances which were finally absorbed by higher plants. Some meat, ingredients, as well as nitrogen fertilizer were prestored and resupplied periodically. Meanwhile, the same amount and chemical composition of organic waste was dumped to maintain the steady state of the system. A nutritional balanced diet was developed by means of the linear programming method. It could provide 2721 kcal of energy, 375.5 g of carbohydrate, 99.47 g of protein, and 91.19 g of fat per capita per day. Silkworm powder covered 12.54% of total animal protein intakes. The balance of material flows between compartments was described by the system of stoichiometric equations. Basic life support requirements for crews including oxygen, food, potable and hygiene water summed up to 29.68 kg per capita per day. The coefficient of system material closure reached 99.40%.

  13. Bioregenerative Life Support Systems Test Complex (Bio-Plex) Food Processing System: A Dual System

    Science.gov (United States)

    Perchonok, Michele; Vittadini, Elena; Peterson, Laurie J.; Swango, Beverly E.; Toerne, Mary E.; Russo, Dane M. (Technical Monitor)

    2001-01-01

    A Bioregenerative Life Support Test Complex, BIO-Plex, is currently being constructed at the Johnson Space Center (JSC) in Houston, TX. This facility will attempt to answer the questions involved in developing a lunar or planetary base. The Food Processing System (FPS) of the BIO-Plex is responsible for supplying food to the crew in coordination with the chosen mission scenario. Long duration space missions require development of both a Transit Food System and of a Lunar or Planetary Food System. These two systems are intrinsically different since the first one will be utilized in the transit vehicle in microgravity conditions with mostly resupplied foods, while the second will be used in conditions of partial gravity (hypogravity) to process foods from crops grown in the facility. The Transit Food System will consist of prepackaged food of extended shelf life. It will be supplemented with salad crops that will be consumed fresh. Microgravity imposes significant limitation on the ability to handle food and allows only for minimal processing. The challenge is to develop food systems similar to the International Space Station or Shuttle Food Systems but with a shelf life of 3 - 5 years. The Lunar or Planetary Food System will allow for food processing of crops due to the presence of some gravitational force (1/6 to 1/3 that of Earth). Crops such as wheat, soybean, rice, potato, peanut, and salad crops, will be processed to final products to provide a nutritious and acceptable diet for the crew. Not only are constraints imposed on the FPS from the crops (e.g., crop variation, availability, storage and shelf-life) but also significant requirements are present for the crew meals (e.g., RDA, high quality, safety, variety). The FPS becomes a fulcrum creating the right connection from crops to crew meals while dealing with issues of integration within a closed self-regenerative system (e.g., safe processing, waste production, volumes, air contaminations, water usage, etc

  14. How to Establish a Bioregenerative Life Support System for Long-Term Crewed Missions to the Moon or Mars.

    Science.gov (United States)

    Fu, Yuming; Li, Leyuan; Xie, Beizhen; Dong, Chen; Wang, Mingjuan; Jia, Boyang; Shao, Lingzhi; Dong, Yingying; Deng, Shengda; Liu, Hui; Liu, Guanghui; Liu, Bojie; Hu, Dawei; Liu, Hong

    2016-12-01

    To conduct crewed simulation experiments of bioregenerative life support systems on the ground is a critical step for human life support in deep-space exploration. An artificial closed ecosystem named Lunar Palace 1 was built through integrating efficient higher plant cultivation, animal protein production, urine nitrogen recycling, and bioconversion of solid waste. Subsequently, a 105-day, multicrew, closed integrative bioregenerative life support systems experiment in Lunar Palace 1 was carried out from February through May 2014. The results show that environmental conditions as well as the gas balance between O 2 and CO 2 in the system were well maintained during the 105-day experiment. A total of 21 plant species in this system kept a harmonious coexistent relationship, and 20.5% nitrogen recovery from urine, 41% solid waste degradation, and a small amount of insect in situ production were achieved. During the 105-day experiment, oxygen and water were recycled, and 55% of the food was regenerated. Key Words: Bioregenerative life support systems (BLSS)-Space agriculture-Space life support-Waste recycle-Water recycle. Astrobiology 16, 925-936.

  15. Aquatic food production modules in bioregenerative life support systems based on higher plants

    Science.gov (United States)

    Bluem, V.; Paris, F.

    Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity.

  16. Nitrogen cycling in Bioregenerative Life Support Systems: Challenges for waste refinery and food production processes

    Science.gov (United States)

    Clauwaert, Peter; Muys, Maarten; Alloul, Abbas; De Paepe, Jolien; Luther, Amanda; Sun, Xiaoyan; Ilgrande, Chiara; Christiaens, Marlies E. R.; Hu, Xiaona; Zhang, Dongdong; Lindeboom, Ralph E. F.; Sas, Benedikt; Rabaey, Korneel; Boon, Nico; Ronsse, Frederik; Geelen, Danny; Vlaeminck, Siegfried E.

    2017-05-01

    In order to sustain human life in an isolated environment, an efficient conversion of wasted nutrients to food might become mandatory. This is particularly the case for space missions where resupply from earth or in-situ resource utilization is not possible or desirable. A combination of different technologies is needed to allow full recycling of e.g. nitrogenous compounds in space. In this review, an overview is given of the different essential processes and technologies that enable closure of the nitrogen cycle in Bioregenerative Life Support Systems (BLSS). Firstly, a set of biological and physicochemical refinery stages ensures efficient conversion of waste products into the building blocks, followed by the production of food with a range of biological methods. For each technology, bottlenecks are identified. Furthermore, challenges and outlooks are presented at the integrated system level. Space adaptation and integration deserve key attention to enable the recovery of nitrogen for the production of nutritional food in space, but also in closed loop systems on earth.

  17. Material balance and diet in bioregenerative life support systems: Connection with coefficient of closure

    Science.gov (United States)

    Manukovsky, N. S.; Kovalev, V. S.; Somova, L. A.; Gurevich, Yu. L.; Sadovsky, M. G.

    Bioregenerative life support systems (BLSS) with different coefficients of closure are considered. The 66.2% coefficient of closure achieved in "BIOS-3" facility experiments has been taken as a base value. The increase in coefficient of closure up to 72.6-93.0% is planned due to use of soil-like substrate (SLS) and concentrating of urine. Food values were estimated both in a base variant ("BIOS-3"), and with increases in the coefficient of closure. It is shown that food requirements will be more fully satisfied by internal crop production with an increase in the coefficient of closure of the BLSS. Changes of massflow rates on an 'input-output' and inside BLSS are considered. Equations of synthesis and degradation of organic substances in BLSS were examined using a stoichiometric model. The paper shows that at incomplete closure of BLSS containing SLS there is a problem of nitrogen balancing. To compensate for the removal of nitrogen from the system in urine and feces, it is necessary to introduce food and a nitrogen-containing additive.

  18. BIOREGENERATIVE LIFE SUPPORT SYSTEMS IN THE SPACE (BLSS: THE EFFECTS OF RADIATION ON PLANTS

    Directory of Open Access Journals (Sweden)

    Carmen Arena

    2012-06-01

    Full Text Available The growth of plants in Space is a fundamental issue for Space exploration. Plants play an important role in the Bioregenerative Life Support Systems (BLSS to sustain human permanence in extraterrestrial environments. Under this perspective, plants are basic elements for oxygen and fresh food production as well as air regeneration and psychological support to the crew. The potentiality of plant survival and reproduction in space is limited by the same factors that act on the earth (e.g. light, temperature and relative humidity and by additional factors such as altered gravity and ionizing radiation. This paper analyzes plant responses to space radiation which is recognized as a powerful mutagen for photosynthetic organisms thus being responsible for morpho-structural, physiological and genetic alterations. Until now, many studies have evidenced how the response to ionizing radiation is influenced by several factors associated both to plant characteristics (e.g. cultivar, species, developmental stage, tissue structure and/or radiation features (e.g. dose, quality and exposure time. The photosynthetic machinery is particularly sensitive to ionizing radiation. The severity of the damages induced by ionizing radiation on plant cell and tissues may depend on the capability of plants to adopt protection mechanisms and/or repair strategies. In this paper a selection of results from studies on the effect of ionizing radiations on plants at anatomical and eco-physiological level is reported and some aspects related to radioresistance are explored.

  19. Some methods of human liquid and solid wastes utilization in bioregenerative life support systems

    Science.gov (United States)

    Tikhomirova, N. A.; Ushakova, S. Á.; Tikhomirov, A. Á.; Zolotukhin, I. G.; Gribovskaya, I. V.; Gros, J. B.

    The possibility of stepwise utilization of human liquid and solid wastes with the purpose of an increase of a closure degree of bioregenerative life support systems BLSS and sodium chloride inclusion in the organic matter turnover was investigated On the first stage urine and faeces were subjected to oxidation by Yu A Kudenko physicochemical method On the next stage the products of human liquid and solid wastes oxidation were used for roots nutrition of wheat grown by substrate culture method Soil-like substrate the technology of which was described earlier was used as a substrate After the wheat cultivation the irrigational solution and the solution obtained in the result of substrate washing containing mineral elements not absorbed by the plants were used for cultivation of salt-tolerant Salicornia europaea plants The above-ground biomass of these vegetables can be used as a food and roots washed from dissoluble mineral elements can be added to the soil-like substrate Four consecutive wheat and Salicornia europaea vegetations were cultivated In the result of this complex technology of wheat and Salicornia europaea cultivation the soil-like substrate salinization by NaCl introduced into the irrigational solution together with the products of urine oxidation has considerably decreased

  20. Testing soil-like substrate for growing plants in bioregenerative life support systems

    Science.gov (United States)

    Gros, J. B.; Lasseur, Ch.; Tikhomirov, A. A.; Manukovsky, N. S.; Kovalev, V. S.; Ushakova, S. A.; Zolotukhin, I. G.; Tirranen, L. S.; Karnachuk, R. A.; Dorofeev, V. Yu.

    We studied soil-like substrate (SLS) as a potential candidate for plant cultivation in bioregenerative life support systems (BLSS). The SLS was obtained by successive conversion of wheat straw by oyster mushrooms and worms. Mature SLS contained 9.5% humic acids and 4.9% fulvic acids. First, it was shown that wheat, bean and cucumber yields as well as radish yields when cultivated on mature SLS were comparable to yields obtained on a neutral substrate (expanded clay aggregate) under hydroponics. Second, the possibility of increasing wheat and radish yields on the SLS was assessed at three levels of light intensity: 690, 920 and 1150 μmol m -2 s -1 of photosynthetically active radiation (PAR). The highest wheat yield was obtained at 920 μmol m -2 s -1, while radish yield increased steadily with increasing light intensity. Third, long-term SLS fertility was tested in a BLSS model with mineral and organic matter recycling. Eight cycles of wheat and 13 cycles of radish cultivation were carried out on the SLS in the experimental system. Correlation coefficients between SLS nitrogen content and total wheat biomass and grain yield were 0.92 and 0.97, respectively, and correlation coefficients between nitrogen content and total radish biomass and edible root yield were 0.88 and 0.87, respectively. Changes in hormone content (auxins, gibberellins, cytokinins and abscisic acid) in the SLS during matter recycling did not reduce plant productivity. Quantitative and species compositions of the SLS and irrigation water microflora were also investigated. Microbial community analysis of the SLS showed bacteria from Bacillus, Pseudomonas, Proteus, Nocardia, Mycobacterium, Arthrobacter and Enterobacter genera, and fungi from Trichoderma, Penicillium, Fusarium, Aspergillus, Mucor, Botrytis, and Cladosporium genera.

  1. The Giant Snail Achatina fulica as a Candidate Species for Advanced Bioregenerative Life Support Systems

    Science.gov (United States)

    Verbitskaya, Olga; Manukovsky, Nickolay; Kovalev, Vladimir

    Maintenance of crew health is of paramount importance for long duration space missions. Weight loss, bone and calcium loss, increased exposure to radiation and oxidative stress are critical concerns that need to be alleviated. Rational nutrition is a resource for mitigating the influence of unfavorable conditions. The insufficiency of vegetarian diet has been examined by the Japanese, Chinese and U.S. developers of bioregenerative life support systems (BLSS). Hence, inclusion of animals such as silkworm in BLSS looks justified. The giant snail is currently under studying as a source of animal food and a species of reducing waste in BLSS. An experimental system to conduct cultivation of giant snail was developed. It was established that there are some reasons to use the giant snails in BLSS. It could be a source of delicious meat. A. fulica is capable of consuming a wide range of feedstuffs including plant residues. Cultivation of snail in the limited volume does not demand the big expenditures of labor. The production of crude edible biomass and protein of A. fulica was 60±15 g and 7±1.8 g respectively per 1 kg of consumed forage (fresh salad leaves, root and leafy tops of carrot). To satisfy daily animal protein needs (30-35 g) a crewman has to consume 260-300 g of snail meat. To produce such amount of snail protein it takes to use 4.3-5.0 kg of plant forage daily. The nutritional composition of A. fulica whole bodies (without shell) and a meal prepared in various ways was quantitatively determined. Protein, carbohydrate, fat acid and ash content percentages were different among samples prepared in various ways. The protein content was highest (68 %) in the dry sample washed with CH3 COOH solution. Taking into consideration the experimental results a conceptual configuration of BLSS with inclusion of giant snail was developed and mass flow rates between compartments were calculated. Keywords: animal food; protein; giant snail; BLSS; conceptual configuration.

  2. A possible NaCl pathway in the bioregenerative human life support system

    Science.gov (United States)

    Polonskiy, V. I.; Gribovskaya, I. V.

    One of the ways to involve NaCl in the mass exchange of the bioregenerative human life support system (BLSS) is to grow some vegetables and leafy greens that can accumulate sodium chloride at high concentrations in their edible biomass. Lettuce, celery cabbage, chard, dill and radish plants were grown hydroponically in Knop's nutrient solution. In the first series of experiments, at the end of the growth period the plants were grown on solutions containing 2-14 g/L of NaCl for 1-5 days. It was found that the amount of sodium in edible biomass of the plants increased with NaCl concentration in the solution and with the time plants were irrigated with that solution. The content of NaCl in the biomass of leaves and edible roots was considerable—up to 10% dry matter. At the same time, the amount of water in the leaves decreased and productivity of the treatment plants was 14-28% lower than that of the control ones, grown on Knop's solution. The treatment plants contained less than half of the amount of nitrates recorded in the control ones. Expert evaluation showed that the taste of the vegetables and leafy greens of the treatment group were not inferior to the taste of the control plants. In the second series of experiments, prior to being grown on the NaCl solution, the plants were irrigated with water for 2, 4 or 6 days. It was found that lower salt status of the plants was not favorable for increased salt accumulation in their biomass. If a human consumes 30 g salad vegetables and follows a low-sodium diet (3 g/d of table salt), it may be feasible to recycle NaCl in the BLSS using vegetables and leafy greens.

  3. The recycle of water and nitrogen from urine in bioregenerative life support system

    Science.gov (United States)

    Deng, Shengda; Xie, Beizhen; Liu, Hong

    2016-06-01

    The recycle of the wastewater is one of the main factors for realizing a higher closure degree of bioregenerative life support system (BLSS), among which the treatment and recovery of the crew's urine are the most difficult and critical issues. Researchers have paid a lot of attention on the desalination of urine in the previous studies, however, if the nitrogen could be recycled simultaneously while desalting the urine, the substance circulation and the closure of BLSS could be improved more significantly. In this study, two-step method was conducted to treat the urine and recycle the water and nitrogen. The urine was hydrolyzed firstly, and then the water vapor and ammonia gas were cooled and collected by using reduced pressure distillation in alkaline condition. High temperature acidification method (HTAM) and immobilized urease catalysis method (IUCM) were investigated in the hydrolysis pretreatment of urine. The treatment conditions of both methods were optimized and the hydrolysis efficiencies were compared. The results showed that the optimum treatment temperature and acidity for HTAM were 99 °C and [H+] =2 mol/L when the reaction time was 7 h, and the maximum nitrogen recycle efficiency was 39.7%. While, the optimum treatment conditions for IUCM were 60 °C, pH=7.0 and 40 min, and the maximum nitrogen recycle efficiency could reach 52.2%. Therefore, compared with HTAM, IUCM has higher hydrolysis efficiency with milder reaction temperature and pH and shorter reaction time which means it could adapt to the heavy urine treatment workload in BLSS. This investigation has provided a promising method to recycle the urine in BLSS, and all the results will contribute to the further BLSS experiments conducted in the stage II of the ;Lunar Palace 1;.

  4. Testing fungistatic properties of soil-like substrate for growing plants in bioregenerative life support systems

    Science.gov (United States)

    Enzhu, Hu; Nesterenko, Elena; Liu, Professor Hong; Manukovsky, N. S.; Kovalev, Vladimir; Gurevich, Yu.; Kozlov, Vladimir; Khizhnyak, Serge; Xing, Yidong; Hu, Enzhu; Enzhu, Hu

    There are two ways of getting vegetable food in BLSS: in hydroponic culture and on soil substrates. In any case there is a chance that the plants will be affected by plant pathogenic microorganisms. The subject of the research was a soil-like substrate (SLS) for growing plants in a Bioregenerative Life Support System (BLSS). We estimated the fungistatic properties of SLS using test cultures of Bipolaris and Alternaria plant pathogenic fungi. Experiments were made with the samples of SLS, natural soil and sand (as control). We tested 2 samples of SLS produced by way of bioconversion of wheat and rice straw. We measured the disease severity of wheat seedlings and the incidence of common root rot in natural (non-infectious) background and man-made (infectious) conditions. The severity of disease on the SLS was considerably smaller both in non-infectious and infectious background conditions (8 and 12%) than on the natural soil (18 and 32%) and sand. It was the soil-like substrate that had the minimal value among the variants being compared (20% in non-infectious and 40% in infectious background conditions). This index in respect of the soil was 55 and 78%, correspondingly, and in respect of the sand - 60%, regardless of the background. It was found that SLS significantly suppressed conidia germination of Bipolaris soroikiniana (p<0.001). In the presence of SLS germination of conidia decreased to 9.9 - 12.2% of the control value. No significant differences were found between SLS samples obtained from wheat and rice straw.

  5. Analysis of silkworm gut microflora in the Bioregenerative Life Support System

    Science.gov (United States)

    Liang, Xue; Liu, lh64. Hong

    2012-07-01

    Silkworm (Bombyx mori L) has advantages in the nutritional composition, growth characteristics and other factors, it is regarded as animal protein source for astronauts in the Bioregenerative Life Support System (BLSS).Due to the features of BLSS, silkworm breeding way is different from the conventional one (mulberry leaves throughout five instars): they were fed with mulberry and lettuce leaves during the 1st-3rd instars and 4th -5th instars, respectively. As the lettuce stem can be eaten by astronauts, the leaves not favored by humans can be insect's foodstuff. Therefore, it is necessary to investigate the gut microbial composition, the type of dominant bacteria of silkworm raised with this way and the differences from the conventional breeding method, so as to reduce the mortality rate caused by the foodstuff change and to provide more animal protein for astronauts. In this study, 16srDNA sequencing, phylogenetic analysis and denaturing gradient gel electrophoresis method were used to analyze the silkworm gut microbial flora under two breeding manners. The results show that conventional and BLSS breeding way have six dominant bacteria in common: Clostridium, Enterococcus, Bacteroides, Chryseobacterium, Parabacteroides, Paenibacillus. We also found Escherichia, Janthinobacterium, Sedimentibacter, Streptococcus, Bacillus, Arcobacter, Rothia, Polaribacter and Acinetobacter, Anaerofilum, Rummeliibacillus, Anaeroplasma, Serratia in the ground conventional and BLSS special breeding way, respectively. Changing the foodstuff of silkworm leads to the dynamic alteration of gut microbial. Dominant bacteria of the two breeding ways have diversities from each other. The ground conventional breeding way has more abundant bacteria than the BLSS one. Due to the lettuce leaves have replaced mulberry leaves at the beginning of the silkworm 4th instar, some silkworms can not survive without the bacteria that digest and absorb lettuce leaves. We suggest those dominant bacteria

  6. Effects of artificial lighting on the detection of plant stress with spectral reflectance remote sensing in bioregenerative life support systems

    Science.gov (United States)

    Schuerger, Andrew C.; Richards, Jeffrey T.

    2006-09-01

    Plant-based life support systems that utilize bioregenerative technologies have been proposed for long-term human missions to both the Moon and Mars. Bioregenerative life support systems will utilize higher plants to regenerate oxygen, water, and edible biomass for crews, and are likely to significantly lower the ‘equivalent system mass’ of crewed vehicles. As part of an ongoing effort to begin the development of an automatic remote sensing system to monitor plant health in bioregenerative life support modules, we tested the efficacy of seven artificial illumination sources on the remote detection of plant stresses. A cohort of pepper plants (Capsicum annuum L.) were grown 42 days at 25 °C, 70% relative humidity, and 300 μmol m-2 s-1 of photosynthetically active radiation (PAR; from 400 to 700 nm). Plants were grown under nutritional stresses induced by irrigating subsets of the plants with 100, 50, 25, or 10% of a standard nutrient solution. Reflectance spectra of the healthy and stressed plants were collected under seven artificial lamps including two tungsten halogen lamps, plus high pressure sodium, metal halide, fluorescent, microwave, and red/blue light emitting diode (LED) sources. Results indicated that several common algorithms used to estimate biomass and leaf chlorophyll content were effective in predicting plant stress under all seven illumination sources. However, the two types of tungsten halogen lamps and the microwave illumination source yielded linear models with the highest residuals and thus the highest predictive capabilities of all lamps tested. The illumination sources with the least predictive capabilities were the red/blue LEDs and fluorescent lamps. Although the red/blue LEDs yielded the lowest residuals for linear models derived from the remote sensing data, the LED arrays used in these experiments were optimized for plant productivity and not the collection of remote sensing data. Thus, we propose that if adjusted to optimize the

  7. Nutrient retention capabilities of Nile tilapia ( Oreochromis niloticus) fed bio-regenerative life support system (BLSS) waste residues

    Science.gov (United States)

    Gonzales, John M.; Brown, Paul B.

    Nile tilapia were evaluated as a bio-regenerative sub-process for reducing solid waste potentially encountered in bio-regenerative life support systems. Ten juvenile Nile tilapia (mean weight = 2.05 g) were stocked into triplicate aquaria and fed one of seven experimental diets consisting of vegetable, bacterial, or food waste for a period of seven weeks. Weight gain (g), specific growth rate (mg/d), and daily consumption (g) was significantly higher ( p diet (37.99 and 68.54, respectively) followed by fish fed the wheat bran/wheat germ diet (23.19 and 63.67, respectively). Nitrogen, sulfur, and crude protein retention was significantly higher ( p diet (23.68, 21.89, and 23.68, respectively). A general loss of minerals was observed among all groups. Strong associations were observed between crude lipid retention and sulfur retention ( r2 = 0.94), crude lipid retention and carbon retention ( r2 = 0.92), WG and fiber content of dietary treatments ( r2 = 0.92), WG and carbon retention and ( r2 = 0.88), WG and lysine content of waste residues ( r2 = 0.86), crude protein retention and carbon retention ( r2 = 0.84), sulfur retention and crude protein retention ( r2 = 0.84), and total sulfur amino acid (TSAA) content of residues and WG ( r2 = 0.81). Weaker associations existed between WG and crude lipid retention ( r2 = 0.77), crude fiber content and carbon retention ( r2 = 0.76), and WG and methionine content of waste residues ( r2 = 0.75). Additional research is needed to improve the nutritional quality of fibrous residues as a means to improve tilapia's ability to utilize these residues as a food source in bio-regenerative support systems.

  8. Soybean cultivation for Bioregenerative Life Support Systems (BLSSs): The effect of hydroponic system and nitrogen source

    Science.gov (United States)

    Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A.; Barbieri, Giancarlo; De Pascale, Stefania

    2014-02-01

    Soybean [Glycine max (L.) Merr.] is one of the plant species selected within the European Space Agency (ESA) Micro-Ecological Life Support System Alternative (MELiSSA) project for hydroponic cultivation in Biological Life Support Systems (BLSSs), because of the high nutritional value of seeds. Root symbiosis of soybean with Bradirhizobium japonicum contributes to plant nutrition in soil, providing ammonium through the bacterial fixation of atmospheric nitrogen. The aim of this study was to evaluate the effects of two hydroponic systems, Nutrient Film Technique (NFT) and cultivation on rockwool, and two nitrogen sources in the nutrient solution, nitrate (as Ca(NO3)2 and KNO3) and urea (CO(NH2)2), on root symbiosis, plant growth and seeds production of soybean. Plants of cultivar 'OT8914', inoculated with B. japonicum strain BUS-2, were grown in a growth chamber, under controlled environmental conditions. Cultivation on rockwool positively influenced root nodulation and plant growth and yield, without affecting the proximate composition of seeds, compared to NFT. Urea as the sole source of N drastically reduced the seed production and the harvest index of soybean plants, presumably because of ammonium toxicity, even though it enhanced root nodulation and increased the N content of seeds. In the view of large-scale cultivation for space colony on planetary surfaces, the possibility to use porous media, prepared using in situ resources, should be investigated. Urea can be included in the nutrient formulation for soybean in order to promote bacterial activity, however a proper ammonium/nitrate ratio should be maintained.

  9. Calcium bioavailability of vegetarian diets in rats: potential application in a bioregenerative life-support system

    Science.gov (United States)

    Nickel, K. P.; Nielsen, S. S.; Smart, D. J.; Mitchell, C. A.; Belury, M. A.

    1997-01-01

    Calcium bioavailability of vegetarian diets containing various proportions of candidate crops for a controlled ecological life-support system (CELSS) was determined by femur 45Ca uptake. Three vegetarian diets and a control diet were labeled extrinsically with 45Ca and fed to 5-wk old male rats. A fifth group of rats fed an unlabeled control diet received an intraperitoneal (IP) injection of 45Ca. There was no significant difference in mean calcium absorption of vegetarian diets (90.80 +/- 5.23%) and control diet (87.85 +/- 5.25%) when calculated as the percent of an IP dose. The amounts of phytate, oxalate, and dietary fiber in the diets did not affect calcium absorption.

  10. Selection and hydroponic growth of bread wheat cultivars for bioregenerative life support systems

    Science.gov (United States)

    Page, V.; Feller, U.

    2013-08-01

    As part of the ESA-funded MELiSSA program, the suitability, the growth and the development of four bread wheat cultivars were investigated in hydroponic culture with the aim to incorporate such a cultivation system in an Environmental Control and Life Support System (ECLSS). Wheat plants can fulfill three major functions in space: (a) fixation of CO2 and production of O2, (b) production of grains for human nutrition and (c) production of cleaned water after condensation of the water vapor released from the plants by transpiration. Four spring wheat cultivars (Aletsch, Fiorina, Greina and CH Rubli) were grown hydroponically and compared with respect to growth and grain maturation properties. The height of the plants, the culture duration from germination to harvest, the quantity of water used, the number of fertile and non-fertile tillers as well as the quantity and quality of the grains harvested were considered. Mature grains could be harvested after around 160 days depending on the varieties. It became evident that the nutrient supply is crucial in this context and strongly affects leaf senescence and grain maturation. After a first experiment, the culture conditions were improved for the second experiment (stepwise decrease of EC after flowering, pH adjusted twice a week, less plants per m2) leading to a more favorable harvest (higher grain yield and harvest index). Considerably less green tillers without mature grains were present at harvest time in experiment 2 than in experiment 1. The harvest index for dry matter (including roots) ranged from 0.13 to 0.35 in experiment 1 and from 0.23 to 0.41 in experiment 2 with modified culture conditions. The thousand-grain weight for the four varieties ranged from 30.4 to 36.7 g in experiment 1 and from 33.2 to 39.1 g in experiment 2, while market samples were in the range of 39.4-46.9 g. Calcium levels in grains of the hydroponically grown wheat were similar to those from field-grown wheat, while potassium, magnesium

  11. Selection and hydroponic growth of potato cultivars for bioregenerative life support systems

    Science.gov (United States)

    Molders, K.; Quinet, M.; Decat, J.; Secco, B.; Dulière, E.; Pieters, S.; van der Kooij, T.; Lutts, S.; Van Der Straeten, D.

    2012-07-01

    As part of the ESA-funded MELiSSA program, Ghent University and the Université catholique de Louvain investigated the suitability, growth and development of four potato cultivars in hydroponic culture under controlled conditions with the aim to incorporate such cultivation system in an Environmental Control and Life Support System (ECLSS). Potato plants can fulfill three major functions in an ECLSS in space missions: (a) fixation of CO2 and production of O2, (b) production of tubers for human nutrition and (c) production of clean water after condensation of the water vapor released from the plants by transpiration. Four cultivars (Annabelle, Bintje, Desiree and Innovator) were selected and grown hydroponically in nutrient film technique (NFT) gullies in a growth chamber under controlled conditions. The plant growth parameters, tuber harvest parameters and results of tuber nutritional analysis of the four cultivars were compared. The four potato cultivars grew well and all produced tubers. The growth period lasted 127 days for all cultivars except for Desiree which needed 145 days. Annabelle (1.45 kg/m2) and Bintje (1.355 kg/m2) were the best performing of the four cultivars. They also produced two times more tubers than Desiree and Innovator. Innovator produced the biggest tubers (20.95 g/tuber) and Desiree the smallest (7.67 g/tuber). The size of Annabelle and Bintje potatoes were intermediate. Bintje plants produced the highest total biomass in term of DW. The highest non-edible biomass was produced by Desiree, which showed both the highest shoot and root DW. The manual length and width measurements were also used to predict the total tuber mass. The energy values of the tubers remained in the range of the 2010 USDA and Souci-Fachmann-Kraut food composition databases. The amount of Ca determined was slightly reduced compared to the USDA value, but close to the Souci-Fachmann-Kraut value. The concentration of Cu, Zn and P were high compared to both databases

  12. Life History Responses and Feeding Behavior of Microcrustacea in Altered Gravity - Applicability in Bioregenerative Life Support Systems (BLSS)

    Science.gov (United States)

    Fischer, Jessica; Schoppmann, Kathrin; Laforsch, Christian

    2017-06-01

    Manned space missions, as for example to the planet Mars, are a current objective in space exploration. During such long-lasting missions, aquatic bioregenerative life support systems (BLSS) could facilitate independence of resupply from Earth by regenerating the atmosphere, purifying water, producing food and processing waste. In such BLSS, microcrustaceans could, according to their natural role in aquatic ecosystems, link oxygen liberating, autotrophic algae and higher trophic levels, such as fish. However, organisms employed in BLSS will be exposed to high acceleration (hyper- g) during launch of spacecrafts as well as to microgravity (μ g) during space travel. It is thus essential that these organisms survive, perform and reproduce under altered gravity conditions. In this study we present the first data in this regard for the microcrustaceas Daphnia magna and Heterocypris incongruens. We found that after hyper- g exposure (centrifugation) approximately one third of the D. magna population died within one week (generally indicating that possible belated effects have to be considered when conducting and interpreting experiments during which hyper- g occurs). However, suchlike and even higher losses could be countervailed by the surviving daphnids' unaltered high reproductive capacity. Furthermore, we can show that foraging and feeding behavior of D. magna (drop tower) and H. incongruens (parabolic flights) are rarely altered in μ g. Our results thus indicate that both species are suitable candidates for BLSS utilized in space.

  13. Evaluation of Aquaponics Techniques for Enhancing Productivity and Degree of Closure of Bioregenerative Life Support Systems (BLSS)

    Science.gov (United States)

    Nelson, Mark; Dempster, William; Highfield, Eric

    A number of researchers in space bioregenerative life support systems (BLSS) have advocated the inclusion of fish-rearing. Fish have relatively high feed to production ratios and can utilize some waste products from other system components. In recent years, there has been much advance in an approach to combining fish-culture with hydroponically-grown crops called “aquaponics”. Aquaponics systems vary but generally include: fish-rearing unit, settling basin, biofilter, hydroponic plant unit and sump where water is pumped back and the cycle continues. Aquaponics research and application has grown since these systems have the potential to increase overall productivity of both crops and fish. Since the fish waste is used as the growth medium of the food plants, there are environmental benefits in reduced discharge of nutrient-rich wastewater which has been one of the drawbacks of conventional aquaculture. In addition, since water use is reduced 95+% over field agriculture, since water from the hydroponic tanks is fed back to the fish tanks and water is recycled apart from evapotranspiration losses, conservation of water resources and applications in water-limited arid regions are other benefits fueling the spread of aquaponics around the world. These considerations also make utilization of aquaponic approaches desirable in BLSS for space application. This paper will examine some recent research results with aquaponics and explore how it might be utilized for food production and reduction of consumables in space life support. In addition, a review and comparison with other fish-culture options previously advanced will evaluate whether aquaponics can improve production efficiency, reduce inputs and better recycle critical resources. Finally, we will explore whether for the space environment, even more advanced aquaponics systems are possible where consumables such as fish-food can be partially or completely supplied from other subsystems of the BLSS and ET water

  14. A conceptual configuration of the lunar base bioregenerative life support system including soil-like substrate for growing plants

    Science.gov (United States)

    Liu, H.; Yu, C. Y.; Manukovsky, N. S.; Kovalev, V. S.; Gurevich, Yu L.; Wang, J.

    2008-09-01

    The paper presents a conceptual configuration of the lunar base bioregenerative life support system (LBLSS), including soil-like substrate (SLS) for growing plants. SLS makes it possible to combine the processes of plant growth and the utilization of plant waste. Plants are to be grown on SLS on the basis of 20 kg of dry SLS mass or 100 kg of wet SLS mass per square meter. The substrate is to be delivered to the base ready-made as part of the plant growth subsystem. Food for the crew was provided by prestored stock 24% and by plant growing system 76%. Total dry weight of the food is 631 g per day (2800 kcal/day) for one crew member (CM). The list of candidate plants to be grown under lunar BLSS conditions included 14 species: wheat, rice, soybean, peanuts, sweet pepper, carrots, tomatoes, coriander, cole, lettuce, radish, squash, onion and garlic. From the prestored stock the crew consumed canned fish, iodinated salt, sugar, beef sauce and seafood sauce. Our calculations show that to provide one CM with plant food requires the area of 47.5 m 2. The balance of substance is achieved by the removal dehydrated urine 59 g, feces 31 g, food waste 50 g, SLS 134 g, and also waters 86 g from system and introduction food 236 g, liquid potassium soap 4 g and mineral salts 120 g into system daily. To reduce system setup time the first plants could be sowed and germinated to a certain age on the Earth.

  15. Tolerance of chufa (Cyperus esculentus) as a vegetation unit's representative of bioregenerative life support systems to elevated temperatures

    Science.gov (United States)

    Shklavtsova, Ekaterina; Ushakova, Sofya; Shikhov, Valentin; Kudenko, Yurii

    Plants inclusion in the photosynthesizing unit of bioregenerative life support systems (BLSS) expects knowledge of both production characteristics of plants cultivated under optimal condi-tions and their tolerance to stress-factors' effect caused by contingency origination in a system. The work was aimed at investigation of chufa (Cyperus esculentus) tolerance to the effect of super optimal air temperature of 44 subject to PAR intensity and exposure duration. Chufa was grown in light culture conditions by hydroponics method on expanded clay aggregate. The Knop solution was used as nutrition medium. Up to 30 days the plants were cultivated at the intensity of 690 micromole*m-2*s*-1 and air temperature of 25. Heat shock was employed at the age of 30 days under the air temperature of 44 during 7, 20 and 44 hours at two different PAR intensities of 690 and 1150 micromole*m-2*s*-1. Chufa heat tolerance was estimated by intensity of external 2 gas exchange and by state of leaves' photosynthetic apparatus (PSA). Effect of disturbing temperature during 44 hours at PAR intensity of 690 micromole*m-2*s*-1 resulted in frozen-in damage of PSA-leaves' die-off. Chufa plants exposed to heat stress at PAR intensity of 690 micromole*m-2*s*-1 during both 7 and 20-hours demonstrated respiration dominance over photosynthesis; and 2 emission was observed by light. Functional activity of photosynthetic apparatus estimated with respect to parameters of pulse-amplitude-modulated chlorophyll fluorescence of photosystem 2 (PS 2) decreased on 40

  16. Testing anti-fungal activity of a soil-like substrate for growing plants in bioregenerative life support systems

    Science.gov (United States)

    Nesterenko, E. V.; Kozlov, V. A.; Khizhnyak, S. V.; Manukovsky, N. S.; Kovalev, V. S.; Gurevich, Yu. L.; Liu, Hong; Xing, Yidong; Hu, Enzhu

    2009-10-01

    The object of this research is to study a soil-like substrate (SLS) to grow plants in a Bioregenerative Life Support System (BLSS). Wheat and rice straw were used as raw materials to prepare SLS. Anti-fungal activity of SLS using test cultures of Bipolaris sorokiniana, a plant-pathogenic fungus which causes wheat root rot was studied. Experiments were conducted with SLS samples, using natural soil and sand as controls. Infecting the substrates, was performed at two levels: the first level was done with wheat seeds carrying B. sorokiniana and the second level with seeds and additional conidia of B. sorokiniana from an outside source. We measured wheat disease incidence and severity in two crop plantings. Lowest disease incidence values were obtained from the second planting, SLS: 26% and 41% at the first and the second infection levels, respectively. For soil the values were 60% and 82%, respectively, and for sand they were 67% and 74%, respectively. Wheat root rot in the second crop planting on SLS, at both infection levels was considerably less severe (9% and 13%, respectively) than on natural soil (20% and 33%) and sand (22% and 32%). SLS significantly suppressed the germination of B. sorokiniana conidia. Conidia germination was 5% in aqueous SLS suspension, and 18% in clean water. No significant differences were found regarding the impact on conidia germination between the SLS samples obtained from wheat and rice straw. The anti-fungal activity in SLS increased because of the presence of worms. SLS also contained bacteria stimulating and inhibiting B. sorokiniana growth.

  17. Soybean cultivar selection for Bioregenerative Life Support Systems (BLSSs) - Hydroponic cultivation

    Science.gov (United States)

    Paradiso, R.; Buonomo, R.; De Micco, V.; Aronne, G.; Palermo, M.; Barbieri, G.; De Pascale, S.

    2012-12-01

    Four soybean cultivars ('Atlantic', 'Cresir', 'Pr91m10' and 'Regir'), selected through a theoretical procedure as suitable for cultivation in BLSS, were evaluated in terms of growth and production. Germination percentage and Mean Germination Time (MGT) were measured. Plants were cultivated in a growth chamber equipped with a recirculating hydroponic system (Nutrient Film Technique). Cultivation was performed under controlled environmental conditions (12 h photoperiod, light intensity 350 μmol m-2 s-1, temperature regime 26/20 °C light/dark, relative humidity 65-75%). Fertigation was performed with a standard Hoagland solution, modified for soybean specific requirements, and EC and pH were kept at 2.0 dS m-1 and 5.5 respectively. The percentage of germination was high (from 86.9% in 'Cresir' to 96.8% in 'Regir')and the MGT was similar for all the cultivars (4.3 days). The growing cycle lasted from 114 in 'Cresir' to 133 days on average in the other cultivars. Differences in plant size were recorded, with 'Pr91m10' plants being the shortest (58 vs 106 cm). Cultivars did not differ significantly in seed yield (12 g plant-1) and in non edible biomass (waste), water consumption and biomass conversion efficiency (water, radiation and acid use indexes). 'Pr91m10' showed the highest protein content in the seeds (35.6% vs 33.3% on average in the other cultivars). Results from the cultivation experiment showed good performances of the four cultivars in hydroponics. The overall analysis suggests that 'Pr91m10' could be the best candidate for the cultivation in a BLSS, coupling the small plant size and the good yield with high resource use efficiency and good seed quality.

  18. NASA's Interests in Bioregenerative Life Support

    Science.gov (United States)

    Wheeler, Raymond M.

    2018-01-01

    NASA and other space agencies and around the world have had long-standing interest in using plants and biological approaches for regenerative life support. In particular, NASA's Kennedy Space Center, has conducted research in this area for over 30 years. One unique aspect to this testing was NASA's Biomass Production Chamber, which had four vertically stacked growing shelves inside a large, 113 cubic meter chamber. This was perhaps one of the first working examples of a vertical agriculture system in the world. A review of some of this research along with some of the more salient findings will be presented.

  19. Controlled Ecological Life Support System. Life Support Systems in Space Travel

    Science.gov (United States)

    Macelroy, R. D. (Editor); Smernoff, D. T. (Editor); Klein, H. P. (Editor)

    1985-01-01

    Life support systems in space travel, in closed ecological systems were studied. Topics discussed include: (1) problems of life support and the fundamental concepts of bioregeneration; (2) technology associated with physical/chemical regenerative life support; (3) projection of the break even points for various life support techniques; (4) problems of controlling a bioregenerative life support system; (5) data on the operation of an experimental algal/mouse life support system; (6) industrial concepts of bioregenerative life support; and (7) Japanese concepts of bioregenerative life support and associated biological experiments to be conducted in the space station.

  20. Novel aquatic modules for bioregenerative life-support systems based on the closed equilibrated biological aquatic system (c.e.b.a.s.)

    Science.gov (United States)

    Bluem, Volker; Paris, Frank

    2002-06-01

    The closed equilibrated biological aquatic system (C.E.B.A.S) is a man-made aquatic ecosystem which consists of four subcomponents: an aquatic animal habitat, an aquatic plant bioreactor, an ammonia oxidizing bacteria filter and a data acquisition/control unit. It is a precursor for different types of fish and aquatic plant production sites which are disposed for the integration into bioregenerative life-support systems. The results of two successful spaceflights of a miniaturized C.E.B.A.S version (the C.E.B.A.S. MINI MODULE) allow the optimization of aquatic food production systems which are already developed in the ground laboratory and open new aspects for their utilization as aquatic modules in space bioregenerative life support systems. The total disposition offers different stages of complexity of such aquatic modules starting with simple but efficient aquatic plant cultivators which can be implemented into water recycling systems and ending up in combined plant/fish aquaculture in connection with reproduction modules and hydroponics applications for higher land plants. In principle, aquaculture of fishes and/or other aquatic animals edible for humans offers optimal animal protein production under lowered gravity conditions without the tremendous waste management problems connected with tetrapod breeding and maintenance. The paper presents details of conducted experimental work and of future dispositions which demonstrate clearly that aquaculture is an additional possibility to combine efficient and simple food production in space with water recycling utilizing safe and performable biotechnologies. Moreover, it explains how these systems may contribute to more variable diets to fulfill the needs of multicultural crews.

  1. Aquatic modules for bioregenerative life support systems based on the C.E.B.A.S. biotechnology

    Science.gov (United States)

    Bluem, Volker; Paris, Frank

    2001-03-01

    Most concepts for bioregenerative life support systems are based on edible higher land plants which create some problems with growth and seed generation under space conditions. Animal protein production is mostly neglected because of the tremendous waste management problems with tetrapods under reduced weightlessness. Therefore, the "Closed Equilibrated Biological Aquatic System" (C.E.B.A.S.) was developed which represents an artificial aquatic ecosystem containing aquatic organisms which are adpated at all to "near weightlessness conditions" (fishes Xiphophorus helleri, water snails Biomphalaria glabrata, ammonia oxidizing bacteria and the rootless non-gravitropic edible water plant Ceratophyllum demersum). Basically the C.E.B.A.S. consists of 4 subsystems: a ZOOLOGICASL COMPONENT (animal aquarium), a BOTANICAL COMPONENT (aquatic plant bioreactor), a MICROBIAL COMPONENT (bacteria filter) and an ELECTRONICAL COMPONENT (data acquisition and control unit). Superficially, the function principle appears simple: the plants convert light energy into chemical energy via photosynthesis thus producing biomass and oxygen. The animals and microorganisms use the oxygen for respiration and produce the carbon dioxide which is essential for plant photosynthesis. The ammonia ions excreted by the animals are converted by the bacteria to nitrite and then to nitrate ions which serve as a nitrogen source for the plants. Other essential ions derive from biological degradation of animal waste products and dead organic matter. The C.E.B.A.S. exists in 2 basic versions: the original C.E.B.A.S. with a volume of 150 liters and a self-sustaining standing time of more than 13 month and the so-called C.E.B.A.S. MINI MODULE with a volume of about 8.5 liters. In the latter there is no closed food loop by reasons of available space so that animal food has to be provided via an automated feeder. This device was flown already successfully on the STS-89 and STS-90 spaceshuttle missions and the

  2. Feasibility of feeding yellow mealworm (Tenebrio molitor L.) in bioregenerative life support systems as a source of animal protein for humans

    Science.gov (United States)

    Li, LeYuan; Zhao, ZhiRuo; Liu, Hong

    2013-11-01

    In bioregenerative life support systems, using inedible plant biomass to feed animals can provide animal protein for astronauts, while at the same time treating with wastes so as to increase the degree of system closure. In this study, the potential of yellow mealworms (Tenebrio molitor L.) as an animal candidate in the system was analyzed. The feasibility of feeding T. molitor with inedible parts of wheat and vegetable was studied. To improve the feed quality of wheat straw, three methods of fermentation were tested. A feeding regime was designed to contain a proper proportion of bran, straw and old leaves. The results showed that T. molitor larvae fed on the plant waste diets grew healthily, their fresh and dry weight reached 56.15% and 46.76% of the larvae fed on a conventional diet (control), respectively. The economic coefficient of the larvae was 16.07%, which was 88.05% of the control. The protein and fat contents of the larvae were 76.14% and 6.44% on dry weigh basis, respectively. Through the processes of facultative anaerobic fermentation and larval consumption, the straw lost about 47.79% of the initial dry weight, and its lignocellulose had a degradation of about 45.74%. Wheat germination test indicated that the frass of T. molitor needs a certain treatment before the addition to the cultivation substrate.

  3. Responses of Microcrustaceans to Simulated Microgravity (2D-Clinorotation) - Preliminary Assessments for the Development of Bioregenerative Life Support Systems (BLSS)

    Science.gov (United States)

    Fischer, Jessica; Schoppmann, Kathrin; Knie, Miriam; Laforsch, Christian

    2016-06-01

    Bioregenerative Life Support Systems (BLSS) are an endeavor to create environments able to maintain human life e.g. on future long-duration space missions like flights to Mars. Based on cyclic biological processes, these systems will be independent from material resupply (such as food, water and oxygen). Due to their central role in limnic ecosystems, herbivorous microcrustaceans could act as key player in aquatic BLSS as they link oxygen liberating, autotrophic producers like algae to higher trophic levels, such as fish. However, before such BLSS can be utilized in space, organisms inhabiting these systems have to be studied thoroughly to disclose the gravitational impact on the biological processes. This is possible in real microgravity, but requires high financial resources, is opportunity-limited or periods of microgravity are very short. Yet, cost-effective and almost permanently accessible tools for gravitational research are ground-based facilities (GBFs), providing simulated microgravity. Among those GBFs is the so called 2D-clinostat. In the present study we demonstrate, that rotation of clinostat tubes does not generate acceleration in form of (predator resembling) small scale turbulence, which can be perceived by Daphnia cucullata. Additionally, embryonal development is not disturbed in subitaneous eggs of Daphnia magna and resting eggs of the ostracod Heterocypris incongruens (besides through restrictions in space within the narrow clinostat tubes), just as subsequent hatching from the respective eggs. Hence, our results indicate that clinorotation is a suitable method to simulate microgravity for microcrustaceans.

  4. Exposure of Arabidopsis thaliana to hypobaric environments: implications for low-pressure bioregenerative life support systems for human exploration missions and terraforming on Mars.

    Science.gov (United States)

    Richards, Jeffrey T; Corey, Kenneth A; Paul, Anna-Lisa; Ferl, Robert J; Wheeler, Raymond M; Schuerger, Andrew C

    2006-12-01

    Understanding how hypobaria can affect net photosynthetic (P (net)) and net evapotranspiration rates of plants is important for the Mars Exploration Program because low-pressured environments may be used to reduce the equivalent system mass of near-term plant biology experiments on landers or future bioregenerative advanced life support systems. Furthermore, introductions of plants to the surface of a partially terraformed Mars will be constrained by the limits of sustainable growth and reproduction of plants to hypobaric conditions. To explore the effects of hypobaria on plant physiology, a low-pressure growth chamber (LPGC) was constructed that maintained hypobaric environments capable of supporting short-term plant physiological studies. Experiments were conducted on Arabidopsis thaliana maintained in the LPGC with total atmospheric pressures set at 101 (Earth sea-level control), 75, 50, 25 or 10 kPa. Plants were grown in a separate incubator at 101 kPa for 6 weeks, transferred to the LPGC, and acclimated to low-pressure atmospheres for either 1 or 16 h. After 1 or 16 h of acclimation, CO(2) levels were allowed to drawdown from 0.1 kPa to CO(2) compensation points to assess P (net) rates under different hypobaric conditions. Results showed that P (net) increased as the pressures decreased from 101 to 10 kPa when CO(2) partial pressure (pp) values were below 0.04 kPa (i.e., when ppCO2 was considered limiting). In contrast, when ppCO(2) was in the nonlimiting range from 0.10 to 0.07 kPa, the P (net) rates were insensitive to decreasing pressures. Thus, if CO(2 )concentrations can be kept elevated in hypobaric plant growth modules or on the surface of a partially terraformed Mars, P (net) rates may be relatively unaffected by hypobaria. Results support the conclusions that (i) hypobaric plant growth modules might be operated around 10 kPa without undue inhibition of photosynthesis and (ii) terraforming efforts on Mars might require a surface pressure of at least 10

  5. Modeling and simulation of an aquatic habitat for bioregenerative life support research

    Science.gov (United States)

    Drayer, Gregorio E.; Howard, Ayanna M.

    2014-01-01

    Long duration human spaceflight poses challenges for spacecraft autonomy and the regeneration of life support consumables, such as oxygen and water. Bioregenerative life support systems (BLSS), which make use of biological processes to transform biological byproducts back into consumables, have the ability to recycle organic byproducts and are the preferred option for food production. A limitation in BLSS research is in the non-availability of small-scale experimental capacities that may help to better understand the challenges in system closure, integration, and control. Ground-based aquatic habitats are an option for small-scale research relevant to bioregenerative life support systems (BLSS), given that they can operate as self-contained systems enclosing a habitat composed of various species in a single volume of water. The purpose of this paper is to present the modeling and simulation of a reconfigurable aquatic habitat for experiments in regenerative life support automation; it supports the use of aquatic habitats as a small-scale approach to experiments relevant to larger-scale regenerative life support systems. It presents ground-based aquatic habitats as an option for small-scale BLSS research focusing on the process of respiration, and elaborates on the description of biological processes by introducing models of ecophysiological phenomena for consumers and producers: higher plants of the species Bacopa monnieri produce O2 for snails of the genus Pomacea; the snails consume O2 and generate CO2, which is used by the plants in combination with radiant energy to generate O2 through the process of photosynthesis. Feedback controllers are designed to regulate the concentration of dissolved oxygen in the water. This paper expands the description of biological processes by introducing models of ecophysiological phenomena of the organisms involved. The model of the plants includes a description of the rate of CO2 assimilation as a function of irradiance

  6. Bioregenerative Life Support Experiment for 90-days in a Closed Integrative Experimental Facility LUNAR PALACE 1

    Science.gov (United States)

    Liu, Hong

    A 90-day bioregenerative life support experiment with three-member crew was carried out in the closed integrative experimental facility, LUNAR PALACE 1 regenerating basic living necessities and disposing wastes to provide life support for crew. It was composed of higher plant module, animal module, and waste treatment module. The higher plant module included wheat, chufa, pea, carrot and green leafy vegetables, with aim to satisfy requirement of 60% plant food and 100% O2 and water for crew. The yellow mealworm was selected as animal module to provide partial animal protein for crew, and reared on plant inedible biomass. The higher plant and yellow mealworm were both cultivated and harvested in the conveyor-type manner. The partial plant inedible biomass and human feces were mixed and co- fermented in the waste treatment module for preparation of soil-like substrate by bioconversion, maintaining gas balance and increasing closure degree. Meanwhile, in the waste treatment module, the water and partial nitrogen from human urine were recovered by physical-chemical means. Circulation of O2 and water as well as food supply from crops cultivated in the LUNAR PALACE 1 were investigated and calculated, and simultaneously gas exchange, mass flow among different components and system closure degree were also analyzed, respectively. Furthermore, the system robustness with respect to internal variation was tested and evaluated by sensitivity analysis of the aggregative index consisting of key performance indicators like crop yield, gaseous equilibrium concentration, microbial community composition, biogenic elements dynamics, etc., and comprehensively evaluating the operating state, to number change of crew from 2 to 4 during the 90-day closed experiment period.

  7. The effects of composting on the nutritional composition of fibrous bio-regenerative life support systems (BLSS) plant waste residues and its impact on the growth of Nile tilapia ( Oreochromis niloticus)

    Science.gov (United States)

    Gonzales, John M.; Lowry, Brett A.; Brown, Paul B.; Beyl, Caula A.; Nyochemberg, Leopold

    2009-04-01

    Utilization of bio-regenerative life support systems (BLSS) plant waste residues as a nutritional source by Nile tilapia ( Oreochromis niloticus) has proven problematic as a result of high concentrations of fibrous compounds in the plant waste residues. Nutritional improvement of plant waste residues by composting with the oyster mushroom ( Pleurotus ostreatus), and the effects on growth and nutrient utilization of Nile tilapia fed such residues were evaluated. Five Nile tilapia (mean weight = 70.9 ± 3.1 g) were stocked in triplicate aquaria and fed one of two experimental diets, cowpea (CP) and composted cowpea (CCP), twice daily for a period of 8 weeks. Composting of cowpea residue resulted in reduced concentrations of nitrogen-free extract, hemi-cellulose and trypsin inhibitor activity, though trypsin inhibitor activity remained high. Composting did not reduce crude fiber, lignin, or cellulose concentrations in the diet. No significant differences ( P tilapia fed CP and CCP. These results suggest that P. ostreatus is not a suitable candidate for culture in conjunction with the culture of Nile tilapia. Additional work is needed to determine what, if any, benefit can be obtained from incorporating composted residue as feed for Nile tilapia.

  8. The water treatment and recycling in 105-day bioregenerative life support experiment in the Lunar Palace 1

    Science.gov (United States)

    Xie, Beizhen; Zhu, Guorong; Liu, Bojie; Su, Qiang; Deng, Shengda; Yang, Lige; Liu, Guanghui; Dong, Chen; Wang, Minjuan; Liu, Hong

    2017-11-01

    In the bioregenerative life support system (BLSS), water recycling is one of the essential issues. The Lunar Palace 1, a ground-based bioregenerative life support system experimental facility, has been developed by our team and a 105-day closed bioregenerative life support experiment with multi-crew involved has been accomplished within this large-scale facility. During the 105-day experiment, activated carbon-absorption/ultra-filtration, membrane-biological activated carbon reactor and reduced pressure distillation technology have been used to purify the condensate water, sanitary & kitchen wastewater and urine, respectively. The results demonstrated that the combination of those technologies can achieve 100% regeneration of the water inside the Lunar Palace 1. The purified condensate water (the clean water) could meet the standards for drinking water quality in China (GB5749-2006). The treatment capacity of the membrane-biological activated carbon reactor for sanitary & kitchen wastewater could reach 150 kg/d. During the 105-d experiment, the average volume loading of the bioreactor was 0.441 kgCOD/(m3d), and the average COD removal efficiency was about 85.3%. The quality of the purified sanitary & kitchen wastewater (the greywater) could meet the standards for irrigation water quality (GB 5084-2005). In addition, during the 105-day experiment, the total excreted urine volume of three crew members was 346 L and the contained water was totally treated and recovered. The removal efficiency of ion from urine was about 88.12%. Moreover, partial nitrogen within the urine was recovered as well and the average recovery ratio was about 20.5%. The study laid a foundation for the water recycling technologies which could be used in BLSS for lunar or Mars bases.

  9. Aquatic modules for bioregenerative life support systems: Developmental aspects based on the space flight results of the C.E.B.A.S. mini-module

    Science.gov (United States)

    Blüm, V.

    The Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) is an artificial aquatic ecosystem which contains teleost fishes, water snails, ammonia oxidizing bacteria and edible non-gravitropic water plants. It serves as a model for aquatic food production modules which are not seriously affected by microgravity and other space conditions. Its space flight version, the so-called C.E.B.A.S. MINI-MODULE was already successfidly tested in the STS-89 and STS-90 (NEUROLAB) missions. It will be flown a third time in space with the STS-107 mission in January 2003. All results obtained so far in space indicate that the basic concept of the system is more than suitable to drive forward its development. The C.E.B.A.S. MINI-MODULE is located within a middeck locker with limited space for additional components. These technical limitations allow only some modifications which lead to a maximum experiment time span of 120 days which is not long enough for scientifically essential multi-generation-experiments. The first necessary step is the development of "harvesting devices" for the different organisms. In the limited space of the plant bioreactor a high biomass production leads to self-shadowing effects which results in an uncontrolled degradation and increased oxygen consumption by microorganisms which will endanger the fishes and snails. It was shown already that the latter reproduce excellently in space and that the reproductive functions of the fish species are not affected. Although the parent-offspring-cannibalism of the ovoviviparous fish species ( Xiphophorus helleri) serves as a regulating factor in population dynamics an uncontrolled snail reproduction will also induce an increased oxygen consumption per se and a high ammonia concentration in the water. If harvesting locks can be handled by astronauts in, e. g., 4-week intervals their construction is not very difficult and basic technical solutions are already developed. The second problem is the feeding of the

  10. Aquatic modules for bioregenerative life support systems: Developmental aspects based on the space flight results of the C.E.B.A. Mini Module

    Science.gov (United States)

    Bluem, S. V.

    The Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) is an artificial aquatic ecosystem which contains teleost fishes, water snails, ammonia oxidizing bacteria and edible non-gravitropic water plants. It serves as a model for aquatic food production modules which are not seriously affected by microgravity and other space conditions. Its space flight version, the so-called C.E.B.AS. MINI-MODULE was already successfully tested in the STS-89 and STS 90 (NEUROLAB) missions.- I will be flown a third time in space with the STS 107 mission in July 2002. All- results obtained so far in space indicate that the basic concept of the system is more than suitable to drive forward its development. The C.E.B.A.S. MINI-MODULE is located within a middeck locker whith limited the space for additional components. These technical limitations allow only some modifications which lead to a maximum experiment time span of 120 days which is not long enough for the demanded scientifically essential multi-generation-experiments. This first necessary step is the development of "harvesting devices" for the different organisms. In the limited space of the plant bioreactor a high biomass production leads to self- shadowing effects which results in an uncontrolled degradation and increased oxygen consum ption by microorganisms which will endanger the fishes and snails. It was shown already that the latter reproduce excellently in space and that the reproductive functions of the fishes are not affected. Although the parent - offspring- cannibalism of the used ovoviviparous fish species (Xiphophorus helleri) serves as a regulating factor in population dynamics an uncontrolled snail reproduction will also induce an increased ox gen consumption per se and a high ammonia concentrationy in the water. If harvesting locks can be handled by astronauts in, e. g., 4w e e k- intervals their construction is not very difficult and basic technical solutions are already developed. The second problem is

  11. Aquatic modules for bioregenerative life support systems: developmental aspects based on the space flight results of the C.E.B.A.S. MIN-MODULE.

    Science.gov (United States)

    Blum, V

    2003-01-01

    The Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) is an artificial aquatic ecosystem which contains teleost fishes, water snails, ammonia oxidizing bacteria and edible non-gravitropic water plants. It serves as a model for aquatic food production modules which are not seriously affected by microgravity and other space conditions. Its space flight version, the so-called C.E.B.A.S. MINI-MODULE was already successfully tested in the STS-89 and STS-90 (NEUROLAB) missions. It will be flown a third time in space with the STS-107 mission in January 2003. All results obtained so far in space indicate that the basic concept of the system is more than suitable to drive forward its development. The C.E.B.A.S. MINI-MODULE is located within a middeck locker with limited space for additional components. These technical limitations allow only some modifications which lead to a maximum experiment time span of 120 days which is not long enough for scientifically essential multi-generation-experiments. The first necessary step is the development of "harvesting devices" for the different organisms. In the limited space of the plant bioreactor a high biomass production leads to self-shadowing effects which results in an uncontrolled degradation and increased oxygen consumption by microorganisms which will endanger the fishes and snails. It was shown already that the latter reproduce excellently in space and that the reproductive functions of the fish species are not affected. Although the parent-offspring-cannibalism of the ovoviviparous fish species (Xiphophorus helleri) serves as a regulating factor in population dynamics an uncontrolled snail reproduction will also induce an increased oxygen consumption per se and a high ammonia concentration in the water. If harvesting locks can be handled by astronauts in, e. g., 4-week intervals their construction is not very difficult and basic technical solutions are already developed. The second problem is the feeding of the

  12. Investigation of Bio-Regenerative Life Support and Trash-to-Gas Experiment on a 4-Month Mars Simulation Mission

    Science.gov (United States)

    Caraccio, Anne; Poulet, Lucie; Hintze, Paul E.; Miles, John D.

    2014-01-01

    Future crewed missions to other planets or deep space locations will require regenerative Life Support Systems (LSS) as well as recycling processes for mission waste. Constant resupply of many commodity materials will not be a sustainable option for deep space missions, nor will stowing trash on board a vehicle or at a lunar or Martian outpost. The habitable volume will decline as the volume of waste increases. A complete regenerative environmentally controlled life support system (ECLSS) on an extra-terrestrial outpost will likely include physico-chemical and biological technologies, such as bioreactors and greenhouse modules. Physico-chemical LSS do not enable food production and bio-regenerative LSS are not stable enough to be used alone in space. Mission waste that cannot be recycled into the bio-regenerative ECLSS can include excess food, food packaging, clothing, tape, urine and fecal waste. This waste will be sent to a system for converting the trash into high value products. Two crew members on a 120 day Mars analog simulation, in collaboration with Kennedy Space Centers (KSC) Trash to Gas (TtG) project investigated a semi-closed loop system that treated non-edible biomass and other logistical waste for volume reduction and conversion into useful commodities. The purpose of this study is to show how plant growth affects the amount of resources required by the habitat and how spent plant material can be recycled. Real-time data was sent to the reactor at KSC in Florida for replicating the analog mission waste for laboratory operation. This paper discusses the 120 day mission plant growth activity, logistical and plant waste management, power and water consumption effects of the plant and logistical waste, and potential energy conversion techniques using KSCs TtG technology.

  13. Investigation of Bio-Regenerative Life Support and Trash-To-Gas Experiment on a 4 Month Mars Simulation Mission

    Science.gov (United States)

    Caraccio, Anne; Poulet, Lucie; Hintze, Paul E.; Miles, John D.

    2014-01-01

    Future crewed missions to other planets or deep space locations will require regenerative Life Support Systems (LSS) as well as recycling processes for mission waste. Constant resupply of many commodity materials will not be a sustainable option for deep space missions, nor will storing trash on board a vehicle or at a lunar or Martian outpost. The habitable volume will decline as the volume of waste increases. A complete regenerative environmentally controlled life support system (ECLSS) on an extra-terrestrial outpost will likely include physico-chemical and biological technologies, such as bioreactors and greenhouse modules. Physico-chemical LSS do not enable food production and bio-regenerative LSS are not stable enough to be used alone in space. Mission waste that cannot be recycled into the bio-regenerative ECLSS can include excess food, food packaging, clothing, tape, urine and fecal waste. This waste will be sent to a system for converting the trash into the high value products. Two crew members on a 120 day Mars analog simulation, in collaboration with Kennedy Space Centers (KSC) Trash to Gas (TtG) project investigated a semi-closed loop system that treated non-edible biomass and other logistical waste for volume reduction and conversion into useful commodities. The purposes of this study are to show the how plant growth affects the amount of resources required by the habitat and how spent plant material can be recycled. Real-time data was sent to the reactor at KSC in Florida for replicating the analog mission waste for laboratory operation. This paper discusses the 120 day mission plant growth activity, logistical and plant waste management, power and water consumption effects of the plant and logistical waste, and potential energy conversion techniques using KSCs TtG reactor technology.

  14. Dietary and Food Processing for a 90-day Bioregenerative Life Support Experiment in the Lunar Palace 1

    Science.gov (United States)

    Zhao, Zhiruo; Fu, Yuming; Dong, Chen; Liu, Guanghui

    A 4-day cycle dietary menu was developed to meet the requirements of balanced diet of the crew within the 90-day closed experiment of bioregenerative life support in the Lunar Palace 1. The menu consisted of items prepared from crops and insect grown inside the system, as well as prestored food. Dairy recipe was composed of breads, vegetables, meats and soups, which provided about 2900 kcal per crew member per day. During food processing, to maximize nutrient recovery and minimize waste production, the whole wheat grains and chufa nuts were milled. Further, the carrot leaves and yellow mealworms were used as salad materials and bread ingredients, respectively. The sensory acceptability of the dishes in the menu was evaluated by flavor, texture, and appearance. Our results show that all dishes in the 4-day cycle menu were highly acceptable, which satisfies nutritional requirement of the crew members in the closed habitation.

  15. Extended mission life support systems

    Science.gov (United States)

    Quattrone, P. D.

    1985-01-01

    Extended manned space missions which include interplanetary missions require regenerative life support systems. Manned mission life support considerations are placed in perspective and previous manned space life support system technology, activities and accomplishments in current supporting research and technology (SR&T) programs are reviewed. The life support subsystem/system technologies required for an enhanced duration orbiter (EDO) and a space operations center (SOC), regenerative life support functions and technology required for manned interplanetary flight vehicles, and future development requirements are outlined. The Space Shuttle Orbiters (space transportation system) is space cabin atmosphere is maintained at Earth ambient pressure of 14.7 psia (20% O2 and 80% N2). The early Shuttle flights will be seven-day flights, and the life support system flight hardware will still utilize expendables.

  16. Controlled Ecological Life Support Systems: Natural and Artificial Ecosystems

    Science.gov (United States)

    Macelroy, Robert D. (Editor); Thompson, Brad G. (Editor); Tibbitts, Theodore W. (Editor); Volk, Tyler (Editor)

    1989-01-01

    The scientists supported by the NASA sponsored Controlled Ecological Life Support Systems (CELSS) program have played a major role in creating a Committee on Space Research (COSPAR) section devoted to the development of bioregenerative life support for use in space. The series of 22 papers were sponsored by Subcommission F.4. The papers deal with many of the diverse aspects of life support, and with outgrowth technologies that may have commercial applications in fields such as biotechnology and bioengineering. Papers from researchers in France, Canada, Japan and the USSR are also presented.

  17. Life Support Systems: Environmental Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Life Support Systems project Environmental Monitoring (EM) systems task objectives are to develop and demonstrate onboard...

  18. Evaluation of light transmission and distribution materials for Lunar and Martian bioregenerative life support.

    Science.gov (United States)

    Cuello, J L; Sadler, P; Jack, D; Ono, E; Jordan, K A

    1998-01-01

    The materials that were selected and evaluated in this study in the context of bioregenerative advanced life support included polymer optical cables, for transmission of photosynthetic photon flux (PPF), and light pipe, woven optical pad and light-emitting fiber (LEF) for PPF distribution. All materials exhibited significant fidelity in transmitting the spectral characteristics of the artificial lluminator's Xenon-Metal Halide lamp. The PPF attenuation values for the polymer cables EL-200, EL-300, EL-400, and EL-500 were not significantly distinguishable from one another nor from that of the fused-silica cable of 0.34 dB/m. With the exception of EL-100 and EL-700, which had significantly lower PPF transmission efficiencies of 54.9%/m and 66.6%/m, respectively, all the other polymer cables had PPF transmission efficiencies of over 85%/m which, except for EL-300, were not significantly different from one another nor from that of the fused-silica cable of 93.2%/m. The highest PPF output efficiency achieved for the 7.1-cm light pipe 14.7%, for its maximum pipe length of 100 cm. At a constant pipe length of 50 cm, the PPF output efficiency of the 10-cm light pipe of 0.71% was significantly lower than that of the 7.1-cm light pipe of 10.54%. The PPF output for the woven optical pad was determined to be 36.3%. The PPF output efficiency for the LEF without the optic fastener was determined to be 27.1%, whereas that for the LEF with the optic fastener was 50.3%, that is, the maximum value of PPF output efficiency in the study. The polymer optical cables, light pipe, woven optical pad, and LEF exhibited significant regularity and symmetry in their PPF output spatial distributions.

  19. Introduction to Life Support Systems

    Science.gov (United States)

    Perry, Jay

    2017-01-01

    This course provides an introduction to the design and development of life support systems to sustain humankind in the harsh environment of space. The life support technologies necessary to provide a respirable atmosphere and clean drinking water are emphasized in the course. A historical perspective, beginning with open loop systems employed aboard the earliest crewed spacecraft through the state-of-the-art life support technology utilized aboard the International Space Station today, will provide a framework for students to consider applications to possible future exploration missions and destinations which may vary greatly in duration and scope. Development of future technologies as well as guiding requirements for designing life support systems for crewed exploration missions beyond low-Earth orbit are also considered in the course.

  20. Photobioreactors in Life Support Systems.

    Science.gov (United States)

    Wagner, Ines; Braun, Markus; Slenzka, Klaus; Posten, Clemens

    2016-01-01

    Life support systems for long-term space missions or extraterrestrial installations have to fulfill major functions such as purification of water and regeneration of atmosphere as well as the generation of food and energy. For almost 60 years ideas for biological life support systems have been collected and various concepts have been developed and tested. Microalgae as photosynthetic organisms have played a major role in most of these concepts. This review deals with the potentials of using eukaryotic microalgae for life support systems and highlights special requirements and frame conditions for designing space photobioreactors especially regarding illumination and aeration. Mono- and dichromatic illumination based on LEDs is a promising alternative for conventional systems and preliminary results yielded higher photoconversion efficiencies (PCE) for dichromatic red/blue illumination than white illumination. Aeration for microgravity conditions should be realized in a bubble-free manner, for example, via membranes. Finally, a novel photobioreactor concept for space application is introduced being parameterized and tested with the microalga Chlamydomonas reinhardtii. This system has already been tested during two parabolic flight campaigns.

  1. Anaerobic bioconversion of organic waste into biogas by hot water treatment at near-critical conditions: application in bioregenerative life support.

    Science.gov (United States)

    Lissens, Geert; Verstraete, Willy; Albrecht, Tobias; Brunner, Gerd; Lasseur, Christophe

    2003-01-01

    The feasibility of nearly-complete conversion of lignocellulosic waste (70% food crops, 20% faecal matter and 10% green algae) into biogas was investigated in the context of a Life Support Project. The treatment comprised a series of processes, i.e. a mesophilic laboratory scale CSTR (continuously stirred tank reactor), an upflow biofilm reactor and a hydrothermolysis system in near-critical water. By the one-stage CSTR, a biogas yield of 75% with a specific biogas production of 0.37 l biogas g(-1) VSS (volatile suspended solids) added at a HRT (hydraulic retention time) of 20 d was obtained. Biogas yields further increased with 10-15% at HRT > 20 d, indicating the hydrolysis of lignocellulose to be the rate-limiting conversion step. The solids present in the CSTR-effluent were subsequently treated by hot water treatment (T approximately 310-350 degrees C, p approximately 240 bar), resulting in effective carbon liquefaction (50-60% without and 83% with carbon dioxide saturation) and complete hygienisation of the residue. Subsequent anaerobic digestion of the hydrolysate allowed further conversion of 48-60% on COD (chemical oxygen demand) basis. Thus, the total process yielded biogas corresponding with a COD conversion up to 90% of the original organic matter. It appears that mesophilic digestion in conjunction with hydrothermolysis at near-critical conditions offers interesting features for (nearly) complete, non-toxic and hygienic carbon and energy recovery from human waste in a bioregenerative life support context.

  2. Investigation of bio-regenerative life support and Trash-to-gas experiment on a 4 month mars simulation mission

    OpenAIRE

    Caraccio, A.; Poulet, Lucie; Hintze, P.; Miles, J.D.

    2014-01-01

    Future crewed missions to other planets or deep space locations will require regenerative Life Support Systems (LSS) as well as recycling processes for mission waste. Constant resupply of many commodity materials will not be a sustainable option for deep space missions, nor will stowing trash on board a vehicle or at a lunar or Martian outpost. The habitable volume will decline as the volume of waste increases. A complete regenerative environmentally controlled life support system (ECLSS) on ...

  3. Developing Sustainable Life Support System Concepts

    Science.gov (United States)

    Thomas, Evan A.

    2010-01-01

    Sustainable spacecraft life support concepts may allow the development of more reliable technologies for long duration space missions. Currently, life support technologies at different levels of development are not well evaluated against each other, and evaluation methods do not account for long term reliability and sustainability of the hardware. This paper presents point-of-departure sustainability evaluation criteria for life support systems, that may allow more robust technology development, testing and comparison. An example sustainable water recovery system concept is presented.

  4. Life Support Systems: Carbon Dioxide Removal

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Life Support Systems project Carbon Dioxide Removal and Management task includes development of systems that remove CO2 from a...

  5. Crop Production for Advanced Life Support Systems - Observations From the Kennedy Space Center Breadboard Project

    Science.gov (United States)

    Wheeler, R. M.; Sager, J. C.; Prince, R. P.; Knott, W. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Peterson, B. V.; Goins, G. D.

    2003-01-01

    The use of plants for bioregenerative life support for space missions was first studied by the US Air Force in the 1950s and 1960s. Extensive testing was also conducted from the 1960s through the 1980s by Russian researchers located at the Institute of Biophysics in Krasnoyarsk, Siberia, and the Institute for Biomedical Problems in Moscow. NASA initiated bioregenerative research in the 1960s (e.g., Hydrogenomonas) but this research did not include testing with plants until about 1980, with the start of the Controlled Ecological Life Support System (CELSS) Program. The NASA CELSS research was carried out at universities, private corporations, and NASA field centers, including Kennedy Space Center (KSC). The project at KSC began in 1985 and was called the CELSS Breadboard Project to indicate the capability for plugging in and testing various life support technologies; this name has since been dropped but bioregenerative testing at KSC has continued to the present under the NASA s Advanced Life Support (ALS) Program. A primary objective of the KSC testing was to conduct pre-integration tests with plants (crops) in a large, atmospherically closed test chamber called the Biomass Production Chamber (BPC). Test protocols for the BPC were based on observations and growing procedures developed by university investigators, as well as procedures developed in plant growth chamber studies at KSC. Growth chamber studies to support BPC testing focused on plant responses to different carbon dioxide (CO2) concentrations, different spectral qualities from various electric lamps, and nutrient film hydroponic culture techniques.

  6. Life Support Systems: Oxygen Generation and Recovery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Life Support Systems project Oxygen Generation and Recovery technology development area encompasses several sub-tasks in an...

  7. Modeling snail breeding in a bioregenerative life support system

    Science.gov (United States)

    Kovalev, V. S.; Manukovsky, N. S.; Tikhomirov, A. A.; Kolmakova, A. A.

    2015-07-01

    The discrete-time model of snail breeding consists of two sequentially linked submodels: "Stoichiometry" and "Population". In both submodels, a snail population is split up into twelve age groups within one year of age. The first submodel is used to simulate the metabolism of a single snail in each age group via the stoichiometric equation; the second submodel is used to optimize the age structure and the size of the snail population. Daily intake of snail meat by crewmen is a guideline which specifies the population productivity. The mass exchange of the snail unit inhabited by land snails of Achatina fulica is given as an outcome of step-by-step modeling. All simulations are performed using Solver Add-In of Excel 2007.

  8. Modeling snail breeding in a bioregenerative life support system.

    Science.gov (United States)

    Kovalev, V S; Manukovsky, N S; Tikhomirov, A A; Kolmakova, A A

    2015-07-01

    The discrete-time model of snail breeding consists of two sequentially linked submodels: "Stoichiometry" and "Population". In both submodels, a snail population is split up into twelve age groups within one year of age. The first submodel is used to simulate the metabolism of a single snail in each age group via the stoichiometric equation; the second submodel is used to optimize the age structure and the size of the snail population. Daily intake of snail meat by crewmen is a guideline which specifies the population productivity. The mass exchange of the snail unit inhabited by land snails of Achatina fulica is given as an outcome of step-by-step modeling. All simulations are performed using Solver Add-In of Excel 2007. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  9. Life Support Systems Microbial Challenges

    Science.gov (United States)

    Roman, Monsi C.

    2010-01-01

    Many microbiological studies were performed during the development of the Space Station Water Recovery and Management System from1990-2009. Studies include assessments of: (1) bulk phase (planktonic) microbial population (2) biofilms, (3) microbially influenced corrosion (4) biofouling treatments. This slide presentation summarizes the studies performed to assess the bulk phase microbial community during the Space Station Water Recovery Tests (WRT) from 1990 to 1998. This report provides an overview of some of the microbiological analyses performed during the Space Station WRT program. These tests not only integrated several technologies with the goal of producing water that met NASA s potable water specifications, but also integrated humans, and therefore human flora into the protocols. At the time these tests were performed, not much was known (or published) about the microbial composition of these types of wastewater. It is important to note that design changes to the WRS have been implemented over the years and results discussed in this report might be directly related to test configurations that were not chosen for the final flight configuration. Results microbiological analyses performed Conclusion from the during the WRT showed that it was possible to recycle water from different sources, including urine, and produce water that can exceed the quality of municipally produced water.

  10. Mathematical Modeling Of Life-Support Systems

    Science.gov (United States)

    Seshan, Panchalam K.; Ganapathi, Balasubramanian; Jan, Darrell L.; Ferrall, Joseph F.; Rohatgi, Naresh K.

    1994-01-01

    Generic hierarchical model of life-support system developed to facilitate comparisons of options in design of system. Model represents combinations of interdependent subsystems supporting microbes, plants, fish, and land animals (including humans). Generic model enables rapid configuration of variety of specific life support component models for tradeoff studies culminating in single system design. Enables rapid evaluation of effects of substituting alternate technologies and even entire groups of technologies and subsystems. Used to synthesize and analyze life-support systems ranging from relatively simple, nonregenerative units like aquariums to complex closed-loop systems aboard submarines or spacecraft. Model, called Generic Modular Flow Schematic (GMFS), coded in such chemical-process-simulation languages as Aspen Plus and expressed as three-dimensional spreadsheet.

  11. Life Support Systems: Wastewater Processing and Water Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Exploration Systems (AES) Life Support Systems project Wastewater Processing and Water Management task: Within an integrated life support system, water...

  12. Axiomatic Design of Space Life Support Systems

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    Systems engineering is an organized way to design and develop systems, but the initial system design concepts are usually seen as the products of unexplained but highly creative intuition. Axiomatic design is a mathematical approach to produce and compare system architectures. The two axioms are:- Maintain the independence of the functional requirements.- Minimize the information content (or complexity) of the design. The first axiom generates good system design structures and the second axiom ranks them. The closed system human life support architecture now implemented in the International Space Station has been essentially unchanged for fifty years. In contrast, brief missions such as Apollo and Shuttle have used open loop life support. As mission length increases, greater system closure and increased recycling become more cost-effective.Closure can be gradually increased, first recycling humidity condensate, then hygiene wastewater, urine, carbon dioxide, and water recovery brine. A long term space station or planetary base could implement nearly full closure, including food production. Dynamic systems theory supports the axioms by showing that fewer requirements, fewer subsystems, and fewer interconnections all increase system stability. If systems are too complex and interconnected, reliability is reduced and operations and maintenance become more difficult. Using axiomatic design shows how the mission duration and other requirements determine the best life support system design including the degree of closure.

  13. Publications of the NASA Controlled Ecological Life Support System (CELSS) program 1989-1992

    Science.gov (United States)

    Powers, Janet V.

    1994-01-01

    Publications of research sponsored by the NASA Controlled Ecological Life Support System (CELSS) program are listed. The CELSS program encompasses research and technology with the goal of developing an autonomous bioregenerative life support system, which is based upon the integration of biological and physical/chemical processes, that will produce nutritious and palatable food, potable and hygienic water, and a breathable atmosphere by recycling metabolic and other wastes. This research and technology development is being performed in the areas of biomass production/food processing, waste management, and systems management and control. The bibliography follows these divisions. Principal investigators whose research tasks resulted in publication are identified by an asterisk. Publications are identified by a record number corresponding with their entry in the Life Sciences Bibliographic Database, maintained at the George Washington University.

  14. Creation of closed life support systems

    Science.gov (United States)

    Gitelson, I.

    The 40-year-long experience in devising ecological systems with a significantly closed material cycling (CES), which are intended for human life support outside the Earth's biosphere, allows us to state that this problem has been largely solved technically. To test the terrestrial prototypes of these systems: Bios in Krasnoyarsk, the Terrestrial Ecological System (TES) in Moscow, and Bioplex in Houston, crews of humans stayed inside them over long periods of time. In Bios-3 humans could be fully (100%) provided with regenerated air and water and with a vegetable part (80%) of their diet. One human requires 4.5 kW of light energy, which is equal to the light energy incident on an 8-m2 surface perpendicular to solar rays in the Earth's orbit. The regeneration of air and water can be alternatively performed by a 17-L2 microalgal cultivator with a light-receiving surface of 8 m at 2 kW of light energy or by a conveyer culture of agricultural plants. To regenerate the vegetable part of2 the diet to the full, the area must increase to 31.5 m per person. Similar values have been obtained in the TES and in Bioplex. It can be concluded that the system is ready to be implemented in the engineering-technical designs of specific versions: for orbital flights, for missions to Mars and other planets, and for stations on the Moon and Mars. To improve the CES further, a number of new key problems should be resolved. The first of them are: to robotize the technological processes and to establish an optimized system of the internal control of the CES by the crew working in it; to develop a hybrid physicochemical-biological technology for returning the dead-end products of biosynthesis into the system's cycling; to solve the fundamental problem of regenerating the human ration completely inside the CES by the autotrophic chemo - and photosynthesis. Once this problem is solved, the energy requirements for life support in space will be significantly reduced. This will also considerably

  15. Hybrid Life Support System Technology Demonstrations

    Science.gov (United States)

    Morrow, R. C.; Wetzel, J. P.; Richter, R. C.

    2018-02-01

    Demonstration of plant-based hybrid life support technologies in deep space will validate the function of these technologies for long duration missions, such as Mars transit, while providing dietary variety to improve habitability.

  16. Sustainable Systems for exploration, stays with increased duration in LEO and Earth application -an overview about life support activities

    Science.gov (United States)

    Slenzka, Klaus; Duenne, Matthias

    Solar system exploration with extended stays in totally closed habitats far away from Earth as well as longer stays in LEO requires intensive preparatory activities. Activities supporting life in a more or less close meaning are essential in this context -on a scientific as well as on a technical level. These needed activities are supporting life by e.g.: i) increasing knowledge about the impact of single and combined effects of different exploration related environmental conditions (e. g. microgravity, radiation, reduced pressure and temperature, lunar soil etc.) on biological systems. This is needed to enable safe life of humans itself as well as safe operating of required bioregenerative life support systems. Thus, different human cell types as well as representatives of bioregenerative life support system protagonists (algae, bacteria as well as higher organisms) needs to be addressed. ii) provision of required consumables (oxygen, food, energy equivalents etc.) on site, mainly via bioregenerative life support systems, Bio-ISRU-units etc. Preparation is needed on a scientific as well as technological level. iii) ensuring reduced negative effects on humans (and partially also equipment), which could be caused by living in a closed habitat in general (and thus being not space related per se): E. g. detection systems for the quality of water and air, antimicrobial and selfhealing as well as anti-icing materials without dangerous hazard substances, psychological health enhancing components etc. Referring payloads for above mentioned investigations (scientific evaluation and technology demonstration) must be developed. Extended stays and extended closure in habitats without the possibility of material transport into and out of the system are leading to the necessity of more autonomous technologies and sustainable processes. Latter one will rely mainly on biological processes and structures, which increases additionally the necessity of an intensive scientific and

  17. New research on bioregenerative air/water purification systems

    Science.gov (United States)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  18. Algae for controlled ecological life support system diet characterization of cyanobacteria 'spirulina' in batch cultures

    Science.gov (United States)

    Tadros, M. G.

    1990-01-01

    Spirulina sp. is a bioregenerative photosynthetic and edible alga for space craft crews in a Closed Ecological Life Support System (CLESS). It was characterized for growth rate and biomass yield in batch cultures, under various environmental conditions. The cell characteristics were identified for one strain of Spirulina: S. maxima. Fast growth rate and high yield were obtained. The partitioning of the assimulatory products (proteins, carbohydrates, lipids) were manipulated by varying the environmental conditions. Experiments with Spirulina demonstrated that under stress conditions carbohydrate increased at the expense of protein. In other experiments, where the growth media were sufficient in nutrients and incubated under optimum growth conditions, the total proteins were increased up to almost 70 percent of the organic weight. In other words, the nutritional quality of the alga could be manipulated by growth conditions. These results support the feasibility of considering Spirulina as a subsystem in CELSS because of the ease with which its nutrient content can be manipulated.

  19. Challenges for Life Support Systems in Space Environments, Including Food Production

    Science.gov (United States)

    Wheeler, Raymond M.

    2012-01-01

    Environmental Control and Life Support Systems (ECLSS) refer to the technologies needed to sustain human life in space environments. Histor ically these technologies have focused on providing a breathable atmo sphere, clean water, food, managing wastes, and the associated monitoring capabilities. Depending on the space agency or program, ELCSS has sometimes expanded to include other aspects of managing space enviro nments, such as thermal control, radiation protection, fire detection I suppression, and habitat design. Other times, testing and providing these latter technologies have been associated with the vehicle engi neering. The choice of ECLSS technologies is typically driven by the mission profile and their associated costs and reliabilities. These co sts are largely defined by the mass, volume, power, and crew time req uirements. For missions close to Earth, e.g., low-Earth orbit flights, stowage and resupply of food, some 0 2, and some water are often the most cost effective option. But as missions venture further into spa ce, e.g., transit missions to Mars or asteroids, or surface missions to Moon or Mars, the supply line economics change and the need to clos e the loop on life support consumables increases. These are often ref erred to as closed loop or regenerative life support systems. Regardless of the technologies, the systems must be capable of operating in a space environment, which could include micro to fractional g setting s, high radiation levels, and tightly closed atmospheres, including perhaps reduced cabin pressures. Food production using photosynthetic o rganisms such as plants by nature also provides atmospheric regenerat ion (e.g., CO2 removal and reduction, and 0 2 production), yet to date such "bioregenerative" technologies have not been used due largely t o the high power requirements for lighting. A likely first step in te sting bioregenerative capabilities will involve production of small a mounts of fresh foods to supplement to crew

  20. Life Support Systems: Trace Contaminant and Particulate Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Exploration Systems (AES) Life Support Systems project Trace Contaminant and Particulate Control task: Work in the area of trace contamination and...

  1. Novel Composite Membrane for Space Life Supporting System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space life-supporting systems require effective removal of metabolic CO2 from the cabin atmosphere with minimal loss of O2. Conventional techniques, using either...

  2. Novel Composite Membrane for Space Life Supporting System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space life-supporting systems require effective removal of metabolic CO2 from the cabin atmosphere with minimal loss of O2. Conventional techniques, using either...

  3. Overview of NASA's Environmental Control and Life Support Systems

    Science.gov (United States)

    Roman, Monserrate

    2009-01-01

    This viewgraph presentation reviews NASA's Environmental Control and Life Support Systems (ECLSS) on the International Space Station. A look inside of the International Space Station detailing ECLSS processes of controlling atmospheric pressure, conditioning the atmosphere, responding to emergency conditions, controlling internal carbon dioxide and contaminants and providing water are described. A detailed description of ISS Regenerative Environmental Control and Life Support System is also presented.

  4. Coupling plant growth and waste recycling systems in a controlled life support system (CELSS)

    Science.gov (United States)

    Garland, Jay L.

    1992-01-01

    The development of bioregenerative systems as part of the Controlled Ecological Life Support System (CELSS) program depends, in large part, on the ability to recycle inorganic nutrients, contained in waste material, into plant growth systems. One significant waste (resource) stream is inedible plant material. This research compared wheat growth in hydroponic solutions based on inorganic salts (modified Hoagland's) with solutions based on the soluble fraction of inedible wheat biomass (leachate). Recycled nutrients in leachate solutions provided the majority of mineral nutrients for plant growth, although additions of inorganic nutrients to leachate solutions were necessary. Results indicate that plant growth and waste recyling systems can be effectively coupled within CELSS based on equivalent wheat yield in leachate and Hoagland solutions, and the rapid mineralization of waste organic material in the hydroponic systems. Selective enrichment for microbial communities able to mineralize organic material within the leachate was necessary to prevent accumulation of dissolved organic matter in leachate-based solutions. Extensive analysis of microbial abundance, growth, and activity in the hydroponic systems indicated that addition of soluble organic material from plants does not cause excessive microbial growth or 'biofouling', and helped define the microbially-mediated flux of carbon in hydroponic solutions.

  5. Radioisotope heaters for spacecraft life support systems

    International Nuclear Information System (INIS)

    Shivers, R.W.; Murray, R.W.

    1974-01-01

    Future manned space flight requires the sanitary collection and disposal of biological wastes to minimize microbial contamination hazard. The recovery and reuse of water from such wastes are also necessary to reduce the weight of vehicles at launching and resupply logistics. The development and test of an engineering model, i.e. the completely integrated waste management-water system using radioisotopes for thermal energy, are described. This is capable of collecting and processing the wastes from four men during 180-day simulated space mission. The sub-systems include collection of feces, trash and urine, water reclamation, the storage, heating and dispensing of the water, and the disposal of feces, urine residue and other non-metallic waste material by incineration. (Mori, K.)

  6. Reliability Growth in Space Life Support Systems

    Science.gov (United States)

    Jones, Harry W.

    2014-01-01

    A hardware system's failure rate often increases over time due to wear and aging, but not always. Some systems instead show reliability growth, a decreasing failure rate with time, due to effective failure analysis and remedial hardware upgrades. Reliability grows when failure causes are removed by improved design. A mathematical reliability growth model allows the reliability growth rate to be computed from the failure data. The space shuttle was extensively maintained, refurbished, and upgraded after each flight and it experienced significant reliability growth during its operational life. In contrast, the International Space Station (ISS) is much more difficult to maintain and upgrade and its failure rate has been constant over time. The ISS Carbon Dioxide Removal Assembly (CDRA) reliability has slightly decreased. Failures on ISS and with the ISS CDRA continue to be a challenge.

  7. Controlled Ecological Life Support System (CELSS) modeling

    Science.gov (United States)

    Drysdale, Alan; Thomas, Mark; Fresa, Mark; Wheeler, Ray

    1992-01-01

    Attention is given to CELSS, a critical technology for the Space Exploration Initiative. OCAM (object-oriented CELSS analysis and modeling) models carbon, hydrogen, and oxygen recycling. Multiple crops and plant types can be simulated. Resource recovery options from inedible biomass include leaching, enzyme treatment, aerobic digestion, and mushroom and fish growth. The benefit of using many small crops overlapping in time, instead of a single large crop, is demonstrated. Unanticipated results include startup transients which reduce the benefit of multiple small crops. The relative contributions of mass, energy, and manpower to system cost are analyzed in order to determine appropriate research directions.

  8. Closure of Regenerative Life Support Systems: Results of the Lunar-Mars Life Support Test Project

    Science.gov (United States)

    Barta, Daniel; Henninger, D.; Edeen, M.; Lewis, J.; Smth, F.; Verostko, C.

    2006-01-01

    Future long duration human exploration missions away from Earth will require closed-loop regenerative life support systems to reduce launch mass, reduce dependency on resupply and increase the level of mission self sufficiency. Such systems may be based on the integration of biological and physiocochemical processes to produce potable water, breathable atmosphere and nutritious food from metabolic and other mission wastes. Over the period 1995 to 1998 a series of ground-based tests were conducted at the National Aeronautics and Space Administration, Johnson Space Center, to evaluate the performance of advanced closed-loop life support technologies with real human metabolic and hygiene loads. Named the Lunar-Mars Life Support Test Project (LMLSTP), four integrated human tests were conducted with increasing duration, complexity and closure. The first test, LMLSTP Phase I, was designed to demonstrate the ability of higher plants to revitalize cabin atmosphere. A single crew member spent 15 days within an atmospherically closed chamber containing 11.2 square meters of actively growing wheat. Atmospheric carbon dioxide and oxygen levels were maintained by control of the rate of photosynthesis through manipulation of light intensity or the availability of carbon dioxide and included integrated physicochemical systems. During the second and third tests, LMLSTP Phases II & IIa, four crew members spent 30 days and 60 days, respectively, in a larger sealed chamber. Advanced physicochemical life support hardware was used to regenerate the atmosphere and produce potable water from wastewater. Air revitalization was accomplished by using a molecular sieve and a Sabatier processor for carbon dioxide absorption and reduction, respectively, with oxygen generation performed by water hydrolysis. Production of potable water from wastewater included urine treatment (vapor compression distillation), primary treatment (ultrafiltration/reverse osmosis and multi-filtration) and post

  9. NASA Advanced Explorations Systems: Advancements in Life Support Systems

    Science.gov (United States)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies

  10. using explanatory models to derive simple tools for Avanced Life Support system studies - Crop Modelling

    Science.gov (United States)

    Cavazzoni, J.

    System-level analyses for Advanced Life Support (ALS) require mathematical models for various processes, such as biomass production and waste management, which would ideally be integrated into overall system models. Explanatory models (also referred to as mechanistic or process models) would provide the basis for a more robust system model, as these would be based on an understanding of processes specific to ALS studies. However, integrating such models may not always be practicable because of their complexity, especially for initial system-level analyses where simple sub-models may be satisfactory. One way to address this is to capture important features of explanatory models in simple models that may be readily integrated for system-level analyses. In this paper, explanatory crop models were used to generate parameters and multi-variable polynomial equations for basic models that are suitable for estimating the direction and magnitude of daily changes in canopy gas-exchange, harvest index, and production scheduling due to off- nominal conditions for ALS system studies. The simplest variant of these models consists of only a few equations, and has been integrated into a top-level SIMULINK model for the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex), a large-scale human-rated test facility under development at NASA Johnson Space Center. When included in systems studies, the simple crop models may help identify issues that need to be addressed using more detailed modeling studies and specific experiments. Similar modeling simplifications may also prove useful for other ALS sub-systems, as well as for Earth system applications.

  11. Considering Intermittent Dormancy in an Advanced Life Support Systems Architecture

    Science.gov (United States)

    Sargusingh, Miriam J.; Perry, Jay L.

    2017-01-01

    Many advanced human space exploration missions being considered by the National Aeronautics and Space Administration (NASA) include concepts in which in-space systems cycle between inhabited and uninhabited states. Managing the life support system (LSS) may be particularly challenged during these periods of intermittent dormancy. A study to identify LSS management challenges and considerations relating to dormancy is described. The study seeks to define concepts suitable for addressing intermittent dormancy states and to evaluate whether the reference LSS architectures being considered by the Advanced Exploration Systems (AES) Life Support Systems Project (LSSP) are sufficient to support this operational state. The primary focus of the study is the mission concept considered to be the most challenging-a crewed Mars mission with an extensive surface stay. Results from this study are presented and discussed.

  12. Development and research program for a soil-based bioregenerative agriculture system to feed a four person crew at a Mars base

    Science.gov (United States)

    Silverstone, S.; Nelson, M.; Alling, A.; Allen, J.

    For humans to survive during long-term missions on the Martian surface, bioregenerative life support systems including food production will decrease requirements for launch of Earth supplies, and increase mission safety. It is proposed that the development of ``modular biospheres''- closed system units that can be air-locked together and which contain soil-based bioregenerative agriculture, horticulture, with a wetland wastewater treatment system is an approach for Mars habitation scenarios. Based on previous work done in long-term life support at Biosphere 2 and other closed ecological systems, this consortium proposes a research and development program called Mars On Earth™ which will simulate a life support system designed for a four person crew. The structure will consist of /6 × 110 square meter modular agricultural units designed to produce a nutritionally adequate diet for 4 people, recycling all air, water and waste, while utilizing a soil created by the organic enrichment and modification of Mars simulant soils. Further research needs are discussed, such as determining optimal light levels for growth of the necessary range of crops, energy trade-offs for agriculture (e.g. light intensity vs. required area), capabilities of Martian soils and their need for enrichment and elimination of oxides, strategies for use of human waste products, and maintaining atmospheric balance between people, plants and soils.

  13. Production characteristics of the complex "SLS-vegetables" as the element of bioregenerative life support system

    Science.gov (United States)

    Velichko, Vladimir; Tikhomirov, Alexander A.; Ushakova, Sofya; Tirranen, Lyalya; Gros, Jean-Bernard; Lasseur, Christophe

    Previously we had shown possibility of long-term cultivation of wheat and radish uneven-aged conveyer on the soil-like substrate (SLS) with periodic introduction in the SLS of edible (in the form of a mineral solution after physicochemical burning) and inedible biomass of the plants grown on it. The given work was aimed at the study of production characteristics of the plants cultivated on the SLS with a periodic introduction of plant biomass, which consisted of harvested inedible biomass and wheat straw. The wheat straw was introduced in the SLS to compensate carrying out of mineral elements from the SLS with the edible biomass of the harvested plants. Also possibility of joint cultivation of the chosen vegetable plants under the given way of plant inedible biomass introduction in the SLS was estimated. Chufa (Cyperus esculentus L.), radish (Raphanus sativus L.) and lettuce (Lactuca sativa L.) were taken as the objects of research. Plants were grown in the regime of the three-species uneven-aged conveyer. Before each next planting of plants we introduced in the SLS all inedible biomass of earlier harvested plants and wheat straw. The amount of introduced wheat straw depended on nitrogen content in edible biomass of the harvested plants. Plants irrigation was performed by means of common nutrient solution containing mineral elements extracted from the SLS. 2 concentration in a vegetation chamber was maintained in limits from 0.1The work was carried out under support of SB RAS grant 132 and INTAS grant 05-1000008-8010

  14. Development of Life Support System Technologies for Human Lunar Missions

    Science.gov (United States)

    Barta, Daniel J.; Ewert, Michael K.

    2009-01-01

    With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration s (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project s goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA s Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing. This paper will provide an overview of the ELS Project, connectivity with its customers and an update to content within its technology development portfolio with focus on human lunar missions.

  15. Life Support Filtration System Trade Study for Deep Space Missions

    Science.gov (United States)

    Agui, Juan H.; Perry, Jay L.

    2017-01-01

    The National Aeronautics and Space Administrations (NASA) technical developments for highly reliable life support systems aim to maximize the viability of long duration deep space missions. Among the life support system functions, airborne particulate matter filtration is a significant driver of launch mass because of the large geometry required to provide adequate filtration performance and because of the number of replacement filters needed to a sustain a mission. A trade analysis incorporating various launch, operational and maintenance parameters was conducted to investigate the trade-offs between the various particulate matter filtration configurations. In addition to typical launch parameters such as mass, volume and power, the amount of crew time dedicated to system maintenance becomes an increasingly crucial factor for long duration missions. The trade analysis evaluated these parameters for conventional particulate matter filtration technologies and a new multi-stage particulate matter filtration system under development by NASAs Glenn Research Center. The multi-stage filtration system features modular components that allow for physical configuration flexibility. Specifically, the filtration system components can be configured in distributed, centralized, and hybrid physical layouts that can result in considerable mass savings compared to conventional particulate matter filtration technologies. The trade analysis results are presented and implications for future transit and surface missions are discussed.

  16. Functional Interface Considerations within an Exploration Life Support System Architecture

    Science.gov (United States)

    Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad

    2016-01-01

    As notional life support system (LSS) architectures are developed and evaluated, myriad options must be considered pertaining to process technologies, components, and equipment assemblies. Each option must be evaluated relative to its impact on key functional interfaces within the LSS architecture. A leading notional architecture has been developed to guide the path toward realizing future crewed space exploration goals. This architecture includes atmosphere revitalization, water recovery and management, and environmental monitoring subsystems. Guiding requirements for developing this architecture are summarized and important interfaces within the architecture are discussed. The role of environmental monitoring within the architecture is described.

  17. Planner-Based Control of Advanced Life Support Systems

    Science.gov (United States)

    Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott

    2005-01-01

    The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.

  18. Melissa: The European project of a closed life support system

    Science.gov (United States)

    Lasseur, Christophe

    The MELISSA (Micro-Ecological Life Support Alternative) project was initiated in 1989. It is intended as a tool to gain understanding of closed life support, as well as the development of the technology for a future life support system for long term manned space missions, e.g. a lunar base or a mission to Mars. The collaboration was established through a Memorandum of Understanding and is managed by ESA. It involves several independent organisations: Ghent University, EPAS, SCK, VITO (B), University of Clermont-Ferrand, SHERPA (F), University Autonoma of Barcelona (E), University of Guelph (CND). It is co-funded by ESA, the MELISSA partners, the Belgian, the Spanish and the Canadian authorities. The driving element of MELISSA is the production of food, water and oxygen from organic waste (inedible biomass, CO2, faeces, urea). Inspired by the principle of an "aquatic" ecosystem, MELISSA process comprises several sub-processes, called compartments, from the anoxygenic fermentor up to the photosynthetic units (i.e. algae and higher plants). The choice of this compartmentalised structure is required by the very high level of safety requirements and justified by the need of an engineering approach and to build deterministic control strategy. During the past 19 years of research and development, a very progressive approach has been developed to understand and control the MELISSA loop. This approach starts from the selection of processes, their characterisation and mathematical modelling, the validation of the control strategy, up to the demonstration on Earth, at pilot scale. The project is organised in 5 phases: Basic Research and Development, Preliminary flight experiment, Ground and space demonstration, Terrestrial transfer, Education and communication.

  19. Mass balances for a biological life support system simulation model

    Science.gov (United States)

    Volk, Tyler; Rummel, John D.

    1987-01-01

    Design decisions to aid the development of future space based biological life support systems (BLSS) can be made with simulation models. The biochemistry stoichiometry was developed for: (1) protein, carbohydrate, fat, fiber, and lignin production in the edible and inedible parts of plants; (2) food consumption and production of organic solids in urine, feces, and wash water by the humans; and (3) operation of the waste processor. Flux values for all components are derived for a steady state system with wheat as the sole food source. The large scale dynamics of a materially closed (BLSS) computer model is described in a companion paper. An extension of this methodology can explore multifood systems and more complex biochemical dynamics while maintaining whole system closure as a focus.

  20. Architecture and life support systems for a rotating space habitat

    Science.gov (United States)

    Misra, Gaurav

    Life Support Systems are critical to sustain human habitation of space over long time periods. As orbiting space habitats become operational in the future, support systems such as atmo-sphere, food, water etc. will play a very pivotal role in sustaining life. To design a long-duration space habitat, it's important to consider the full gamut of human experience of the environment. Long-term viability depends on much more than just the structural or life support efficiency. A space habitat isn't just a machine; it's a life experience. To be viable, it needs to keep the inhabitants satisfied with their condition. This paper provides conceptual research on several key factors that influence the growth and sustainability of humans in a space habitat. Apart from the main life support system parameters, the architecture (both interior and exterior) of the habitat will play a crucial role in influencing the liveability in the space habitat. In order to ensure the best possible liveability for the inhabitants, a truncated (half cut) torus is proposed as the shape of the habitat. This structure rotating at an optimum rpm will en-sure 1g pseudo gravity to the inhabitants. The truncated torus design has several advantages over other proposed shapes such as a cylinder or a sphere. The design provides minimal grav-ity variation (delta g) in the living area, since its flat outer pole ensures a constant gravity. The design is superior in economy of structural and atmospheric mass. Interior architecture of the habitat addresses the total built environment, drawing from diverse disciplines includ-ing physiology, psychology, and sociology. Furthermore, factors such as line of sight, natural sunlight and overhead clearance have been discussed in the interior architecture. Substantial radiation shielding is also required in order to prevent harmful cosmic radiations and solar flares from causing damage to inhabitants. Regolith shielding of 10 tons per meter square is proposed for the

  1. Control and modeling of a CELSS (Controlled Ecological Life Support System)

    Science.gov (United States)

    Auslander, D. M.; Spear, R. C.; Babcock, P. S.; Nadel, M.

    1983-01-01

    Research topics that arise from the conceptualization of control for closed life support systems which are life support systems in which all or most of the mass is recycled are discussed. Modeling and control of uncertain and poorly defined systems, resource allocation in closed life support systems, and control structures or systems with delay and closure are emphasized.

  2. Reproducible analyses of microbial food for advanced life support systems

    Science.gov (United States)

    Petersen, Gene R.

    1988-01-01

    The use of yeasts in controlled ecological life support systems (CELSS) for microbial food regeneration in space required the accurate and reproducible analysis of intracellular carbohydrate and protein levels. The reproducible analysis of glycogen was a key element in estimating overall content of edibles in candidate yeast strains. Typical analytical methods for estimating glycogen in Saccharomyces were not found to be entirely aplicable to other candidate strains. Rigorous cell lysis coupled with acid/base fractionation followed by specific enzymatic glycogen analyses were required to obtain accurate results in two strains of Candida. A profile of edible fractions of these strains was then determined. The suitability of yeasts as food sources in CELSS food production processes is discussed.

  3. Controlled ecological life support systems; Proceedings of Workshop II of the 26th COSPAR Plenary Meeting, Toulouse, France, June 30-July 11, 1986

    Science.gov (United States)

    Macelroy, R. D. (Editor); Smernoff, D. T. (Editor)

    1987-01-01

    The present conference on the development status of Controlled Ecological Life Support Systems (CELSSs) discusses food production and gas exchange with the Spirulina blue-green alga, biomass recycling for greater energy efficiency in algal culture CELSSs, algal proteins for food processing in a CELSS, a CELSS with photosynthetic N2-fixing cyanobacteria, the NASA CELSS program, and vapor compression ditillation and membrane technology for water revitalization. Also discussed are a fundamental study of CELSS gas monitoring, the application of catalytic wet oxidation to CELSS, a large-scale perspective on ecosystems, Japanese CELSS research activities, the use of potatoes in bioregenerative life-support, wheat production in controlled environments, and a trickle water and feeding system in plant culture.

  4. Controlled Ecological Life Support Systems (CELSS) conceptual design option study

    Science.gov (United States)

    Oleson, Melvin; Olson, Richard L.

    1986-01-01

    Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design.

  5. Compact Water Vapor Exchanger for Regenerative Life Support Systems

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Anderson, Molly; Hodgson, Edward

    2012-01-01

    Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Regenerative CO2 removal systems are attractive for these missions because they do not use consumable CO2 absorbers. However, these systems also absorb and vent water to space along with carbon dioxide. This paper describes an innovative device designed to minimize water lost from regenerative CO2 control systems. Design studies and proof-of-concept testing have shown the feasibility of a compact, efficient membrane water vapor exchanger (WVX) that will conserve water while meeting challenging requirements for operation on future spacecraft. Compared to conventional WVX designs, the innovative membrane WVX described here has the potential for high water recovery efficiency, compact size, and very low pressure losses. The key innovation is a method for maintaining highly uniform flow channels in a WVX core built from water-permeable membranes. The proof-of-concept WVX incorporates all the key design features of a prototypical unit, except that it is relatively small scale (1/23 relative to a unit sized for a crew of six) and some components were fabricated using non-prototypical methods. The proof-of-concept WVX achieved over 90% water recovery efficiency in a compact core in good agreement with analysis models. Furthermore the overall pressure drop is very small (less than 0.5 in. H2O, total for both flow streams) and meets requirements for service in environmental control and life support systems on future spacecraft. These results show that the WVX provides very uniform flow through flow channels for both the humid and dry streams. Measurements also show that CO2 diffusion through the water-permeable membranes will have negligible effect on the CO2 partial pressure in the spacecraft atmosphere.

  6. Reversible Ammonia Sorption for the Primary Life Support System (PLSS)

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Jennings, Mallory A.

    2012-01-01

    Results are presented on the development of regenerable trace-contaminant (TC) sorbent for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). Since ammonia is the most important TC to be captured, data presented in this paper are limited to ammonia sorption, with results relevant to other TCs to be reported at a later time. The currently available TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal. The sorbent is non-regenerable, and its use is associated with appreciable pressure drop, i.e. power consumption. The objective of this work is to demonstrate the feasibility of using vacuum-regenerable sorbents for PLSS application. In this study, several carbon sorbent monoliths were fabricated and tested. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, as well as carbon surface conditioning that enhances ammonia sorption without impairing sorbent regeneration. Depending on sorbent monolith geometry, the reduction in pressure drop with respect to granular sorbent was found to be between 50% and two orders of magnitude. Resistive heating of the carbon sorbent monolith was demonstrated by applying voltage to the opposite ends of the monolith.

  7. Robotics in a controlled, ecological life support system

    Science.gov (United States)

    Miles, Gaines E.; Krom, Kimberly J.

    1993-01-01

    Controlled, Ecological Life Support Systems (CELSS) that utilize plants to provide food, water and oxygen could consume considerable amounts of labor unless crop production, recovery and processing are automated. Robotic manipulators equipped with special end-effectors and programmed to perform the sensing and materials handling tasks would minimize the amount of astronaut labor required. The Human Rated Test Facility (HRTF) planned for Johnson Space Center could discover and demonstrate techniques of crop production which can be reliably integrated with machinery to minimize labor requirements. Before the physical components (shelves, lighting fixtures, etc.) can be selected, a systems analysis must be performed to determine which alternative processes should be followed and how the materials handling tasks should be automated. Given that the current procedures used to grow crops in a CELSS may not be the best methods to automate, then what are the alternatives? How may plants be grown, harvested, processed for food, and the inedible components recycled? What commercial technologies current exist? What research efforts are underway to develop new technologies which might satisfy the need for automation in a CELSS? The answers to these questions should prove enlightening and provide some of the information necessary to perform the systems analysis. The planting, culturing, gathering, threshing and separation, food processing, and recovery of inedible portions of wheat were studied. The basic biological and materials handling processes of each task are defined and discussed. Current practices at Johnson Space Center and other NASA centers are described and compared to common production practices in the plant production industry. Technologies currently being researched which might be applicable are identified and illustrated. Finally, based on this knowledge, several scenarios are proposed for automating the tasks for wheat.

  8. Life Support and Environmental Monitoring International System Maturation Team Considerations

    Science.gov (United States)

    Anderson, Molly; Gatens, Robyn; Ikeda, Toshitami; Ito, Tsuyoshi; Hovland, Scott; Witt, Johannes

    2016-01-01

    Human exploration of the solar system is an ambitious goal. Future human missions to Mars or other planets will require the cooperation of many nations to be feasible. Exploration goals and concepts have been gathered by the International Space Exploration Coordination Group (ISECG) at a very high level, representing the overall goals and strategies of each participating space agency. The Global Exploration Roadmap published by ISECG states that international partnerships are part of what drives the mission scenarios. It states "Collaborations will be established at all levels (missions, capabilities, technologies), with various levels of interdependency among the partners." To make missions with interdependency successful, technologists and system experts need to share information early, before agencies have made concrete plans and binding agreements. This paper provides an overview of possible ways of integrating NASA, ESA, and JAXA work into a conceptual roadmap of life support and environmental monitoring capabilities for future exploration missions. Agencies may have immediate plans as well as long term goals or new ideas that are not part of official policy. But relationships between plans and capabilities may influence the strategies for the best ways to achieve partner goals. Without commitments and an organized program like the International Space Station, requirements for future missions are unclear. Experience from ISS has shown that standards and an early understanding of requirements are an important part of international partnerships. Attempting to integrate systems that were not designed together can create many problems. Several areas have been identified that could be important to discuss and understand early: units of measure, cabin CO2 levels, and the definition and description of fluids like high purity oxygen, potable water and residual biocide, and crew urine and urine pretreat. Each of the partners is exploring different kinds of technologies

  9. Assessment of internal contamination problems associated with bioregenerative air/water purification systems

    Science.gov (United States)

    Johnson, Anne H.; Bounds, B. Keith; Gardner, Warren

    1990-01-01

    The emphasis is to characterize the mechanisms of bioregenerative revitalization of air and water as well as to assess the possible risks associated with such a system in a closed environment. Marsh and aquatic plants are utilized for purposes of wastewater treatment as well as possible desalinization and demineralization. Foliage plants are also being screened for their ability to remove toxic organics from ambient air. Preliminary test results indicate that treated wastewater is typically of potable quality with numbers of pathogens such as Salmonella and Shigella significantly reduced by the artificial marsh system. Microbiological analyses of ambient air indicate the presence of bacilli as well as thermophilic actinomycetes.

  10. Closed ecological life-support systems and their applications

    Science.gov (United States)

    Gitelson, Josef I.

    The advent of man-made closed ecosystems (CES) is a solution of the fundamental problem-egress of humans beyond the Earth's biosphere, providing biological basis for exploitation of Space and celestial bodies. Yet, before proceeding to these ambitious project elements of closed life-support biotechnologies, there can be found diverse applications on Earth in human settlements providing for high quality of life under extreme environment conditions: high latitudes, deserts, mountains and industrially polluted areas. This presentation considers these variations of terrestrial applications of CELSS technologies. The version of CES under development is based on making direct use of the light energy in plant photosynthesis. In this case life support of one man on the Earth orbit requires solar light collected from 5-10m2. Among terrestrial applications of prime importance is the development of an ecohome designed to provide people with a high quality of life in Arctic and Antarctic territories. The developed technology of cascade employment of energy makes possible (expending 10-15 kw of installed power per a house-3-5 member family) to provide for: permanent supply of fresh vitamin-full vegetables, absorption and processing oaf excreta, purification of water and air in the living quarters, habitual colour and light conditions in the premises in winter making up to sensorial deprivation and, finally, psychological comfort of close contact with the plants during the long polar night. Ecohabitat based on the technology described in realistic today and depends only on the energy available and the resolution and readiness (sagacity) of the decision-makers to be committed with ecohome assigning. The ecological and economical significance of construction of ecohabitats for the northern territories of Canada, Alaska and Russia is apparent. This principle can be used (with considerable economy of energy and construction costs) to maintain normal partial pressure of oxygen inside

  11. Extravehicular Activity Suit/Portable Life Support System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to mature technologies and systems that will enable future Extravehicular Activity (EVA) systems. Advanced EVA systems have...

  12. Process control integration requirements for advanced life support systems applicable to manned space missions

    Science.gov (United States)

    Spurlock, Paul; Spurlock, Jack M.; Evanich, Peggy L.

    1991-01-01

    An overview of recent developments in process-control technology which might have applications in future advanced life support systems for long-duration space operations is presented. Consideration is given to design criteria related to control system selection and optimization, and process-control interfacing methodology. Attention is also given to current life support system process control strategies, innovative sensors, instrumentation and control, and innovations in process supervision.

  13. Regenerable Trace-Contaminant Sorbent for the Primary Life Support System (PLSS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA objective of expanding the human experience into the far reaches of space requires the development of regenerable life support systems. This proposal...

  14. Bio-Electrochemical Carbon Dioxide Removal for Air Revitalization in Exploration Life Support Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An important aspect of the ISS air revitalization system for life support is the removal of carbon dioxide from cabin air and retrieves oxygen from CO2. The current...

  15. Water Recovery for Regenerative Life Support Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources....

  16. Water Recovery for Regenerative Life Support Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources....

  17. Mutant strains of Spirulina (Arthrospira) platensis to increase the efficiency of micro-ecological life support systems

    Science.gov (United States)

    Brown, Igor

    The European Micro-Ecological Life Support System Alternative (MELiSSA) is an advanced idea for organizing a bioregenerative system for long term space flights and extraterrestrial settlements (Hendrickx, De Wever et al., 2005). Despite the hostility of both lunar and Martian environments to unprotected life, it seems possible to cultivate photosynthetic bacteria using closed bioreactors illuminated and heated by solar energy. Such reactors might be employed in critical processes, e.g. air revitalization, foodcaloric and protein source, as well as an immunomodulators production. The MELiSSA team suggested cyanobacterium Spirulina as most appropriate agent to revitalize air and produce a simple "fast" food. This is right suggestion because Spirulina was recently shown to be an oxygenic organism with the highest level of O2 production per unit mass (Ananyev et al., 2005). Chemical composition of Spirulina includes proteins (55Aiming to make Spirulina cultivation in life support systems like MELiSSA more efficient, we selected Spirulina mutant strains with increased fraction of methionine in the biomass of this cyanobacterium and compared the effect of parental wild strain of Spirulina and its mutants on the tendency of such experimental illnesses as radiationinduced lesions and hemolythic anemia. Results: It was found that mutant strains 198B and 27G contain higher quantities of total protein, essential amino acids, c-phycocyanin, allophycocyanin and chlorophyll a than parental wild strain of S. platensis. The strain 198B is also characterized with increased content of carotenoids. Revealed biochemical peculiarities of mutant strains suggest that these strains can serve as an additional source of essential amino acids as well as phycobiliproteins and carotenoids for the astronauts. Feeding animals suffering from radiation-induced lesions, c-phycocyanin, extracted from strain 27G, led to a correction in deficient dehydrogenase activity and energy-rich phosphate levels

  18. Metal oxide regenerable carbon dioxide removal system for an advanced portable life support system

    Science.gov (United States)

    Nacheff, Maurena S.; Chang, Craig H.; Colombo, Gerald V.; Cusick, Robert J.

    1989-01-01

    The development of a CO2 removal system for an astronaut portable life support system to meet the EVA requirements for the Space Station is discussed, focusing on the factors important in the selection of the metal oxide absorbent for CO2 removal. Results from laboratory tests on metal oxide absorbent materials are given, including characterization studies and dynamic CO2 uptake and regeneration measurements. The preliminary design of the breadboard system to perform both the absorption and regeneration functions is presented.

  19. Educational tool for modeling and simulation of a closed regenerative life support system

    Science.gov (United States)

    Arai, Tatsuya; Fanchiang, Christine; Aoki, Hirofumi; Newman, Dava J.

    For long term missions on the moon and Mars, regenerative life support systems emerge as a promising key technology for sustaining successful explorations with reduced re-supply logistics and cost. The purpose of this study was to create a simple model of a regenerative life support system which allows preliminary investigation of system responses. A simplified regenerative life support system was made with MATLAB Simulink ™. Mass flows in the system were simplified to carbon, water, oxygen and carbon dioxide. The subsystems included crew members, animals, a plant module, and a waste processor, which exchanged mass into and out of mass reservoirs. Preliminary numerical simulations were carried out to observe system responses. The simplified life support system model allowed preliminary investigation of the system response to perturbations such as increased or decreased number of crew members. The model is simple and flexible enough to add new components, and also possible to numerically predict non-linear subsystem functions and responses. Future work includes practical issues such as energy efficiency, air leakage, nutrition, and plant growth modeling. The model functions as an effective teaching tool about how a regenerative advanced life support system works.

  20. Trends in biomedical engineering: focus on Patient Specific Modeling and Life Support Systems.

    Science.gov (United States)

    Dubini, Gabriele; Ambrosi, Davide; Bagnoli, Paola; Boschetti, Federica; Caiani, Enrico G; Chiastra, Claudio; Conti, Carlo A; Corsini, Chiara; Costantino, Maria Laura; D'Angelo, Carlo; Formaggia, Luca; Fumero, Roberto; Gastaldi, Dario; Migliavacca, Francesco; Morlacchi, Stefano; Nobile, Fabio; Pennati, Giancarlo; Petrini, Lorenza; Quarteroni, Alfio; Redaelli, Alberto; Stevanella, Marco; Veneziani, Alessandro; Vergara, Christian; Votta, Emiliano; Wu, Wei; Zunino, Paolo

    2011-01-01

    Over the last twenty years major advancements have taken place in the design of medical devices and personalized therapies. They have paralleled the impressive evolution of three-dimensional, non invasive, medical imaging techniques and have been continuously fuelled by increasing computing power and the emergence of novel and sophisticated software tools. This paper aims to showcase a number of major contributions to the advancements of modeling of surgical and interventional procedures and to the design of life support systems. The selected examples will span from pediatric cardiac surgery procedures to valve and ventricle repair techniques, from stent design and endovascular procedures to life support systems and innovative ventilation techniques.

  1. Design and Analysis of a Flexible, Reliable Deep Space Life Support System

    Science.gov (United States)

    Jones, Harry W.

    2012-01-01

    This report describes a flexible, reliable, deep space life support system design approach that uses either storage or recycling or both together. The design goal is to provide the needed life support performance with the required ultra reliability for the minimum Equivalent System Mass (ESM). Recycling life support systems used with multiple redundancy can have sufficient reliability for deep space missions but they usually do not save mass compared to mixed storage and recycling systems. The best deep space life support system design uses water recycling with sufficient water storage to prevent loss of crew if recycling fails. Since the amount of water needed for crew survival is a small part of the total water requirement, the required amount of stored water is significantly less than the total to be consumed. Water recycling with water, oxygen, and carbon dioxide removal material storage can achieve the high reliability of full storage systems with only half the mass of full storage and with less mass than the highly redundant recycling systems needed to achieve acceptable reliability. Improved recycling systems with lower mass and higher reliability could perform better than systems using storage.

  2. Human life support during interplanetary travel and domicile. VI - Generic modular flow schematic for hybrid physical/chemical-biological life support systems

    Science.gov (United States)

    Ganapathi, Gani B.; Seshan, P. K.; Ferrall, Joseph; Rohatgi, Naresh

    1992-01-01

    An extension is proposed for the NASA Space Exploration Initiative's Generic Modular Flow Schematics for physical/chemical life support systems which involves the addition of biological processes. The new system architecture includes plant, microbial, and animal habitat, as well as the human habitat subsystem. Major Feedstock Production and Food Preparation and Packaging components have also been incorporated. Inedible plant, aquaculture, microbial, and animal solids are processed for recycling.

  3. Parametric Analysis of Life Support Systems for Future Space Exploration Missions

    Science.gov (United States)

    Swickrath, Michael J.; Anderson, Molly S.; Bagdigian, Bob M.

    2011-01-01

    The National Aeronautics and Space Administration is in a process of evaluating future targets for space exploration. In order to maintain the welfare of a crew during future missions, a suite of life support technology is responsible for oxygen and water generation, carbon dioxide control, the removal of trace concentrations of organic contaminants, processing and recovery of water, and the storage and reclamation of solid waste. For each particular life support subsystem, a variety competing technologies either exist or are under aggressive development efforts. Each individual technology has strengths and weaknesses with regard to launch mass, power and cooling requirements, volume of hardware and consumables, and crew time requirements for operation. However, from a system level perspective, the favorability of each life support architecture is better assessed when the sub-system technologies are analyzed in aggregate. In order to evaluate each specific life support system architecture, the measure of equivalent system mass (ESM) was employed to benchmark system favorability. Moreover, the results discussed herein will be from the context of loop-closure with respect to the air, water, and waste sub-systems. Specifically, closure relates to the amount of consumables mass that crosses the boundary of the vehicle over the lifetime of a mission. As will be demonstrated in this manuscript, the optimal level of loop closure is heavily dependent upon mission requirements such as duration and the level of extra-vehicular activity (EVA) performed. Sub-system level trades were also considered as a function of mission duration to assess when increased loop closure is practical. Although many additional factors will likely merit consideration in designing life support systems for future missions, the ESM results described herein provide a context for future architecture design decisions toward a flexible path program.

  4. 14 CFR 460.11 - Environmental control and life support systems.

    Science.gov (United States)

    2010-01-01

    ... Crew § 460.11 Environmental control and life support systems. (a) An operator must provide atmospheric... or flight crew must monitor and control the following atmospheric conditions in the inhabited areas... revitalization; (2) Pressure, temperature and humidity; (3) Contaminants that include particulates and any...

  5. Standardization of Experimental Design for Crop Cultivation in Life Support Systems for Space Exploration

    Science.gov (United States)

    Wolff, Silje Aase; Coelho, Liz Helena; Karoliussen, Irene; Kittang Jost, Ann-Iren

    Due to logistical challenges, long-term human space exploration missions require a life support system capable of regenerating all the essentials for survival. Higher plants can be utilized to provide a continuous supply of fresh food, fresh air, and clean water for humans. The extensive work performed have shown that higher plants are able to adapt to space conditions in low Earth orbit, at least from one generation from seed to seed. Since the hardware has turned out to be of great importance for the results in microgravity research, full environmental monitoring and control must be the standard for future experiments. Selecting a few model plants, including crop plants for life support, would further increase the comparability between studies. The European Space Agency (ESA) has developed the Micro-Ecological Life Support System Alternative (MELiSSA) program to develop a closed regenerative life support system, based on micro-organisms and higher plants, with continuous recycling of resources. In the present study, recommended standardization of the experimental design for future scientific work assessing the effects of graded gravity on plant metabolism will be presented. This includes the environmental conditions required for cultivation of the selected MEliSSA species (wheat, bread wheat, soybean and potato), as well as guidelines for sowing, plant handling and analysis. Keywords: microgravity; magnetic field; radiation; MELiSSA; Moon; Mars.

  6. The embodiment design of the heat rejection system for the portable life support system

    Science.gov (United States)

    Stuckwisch, Sue; Francois, Jason; Laughlin, Julia; Phillips, Lee; Carrion, Carlos A.

    1994-01-01

    The Portable Life Support System (PLSS) provides a suitable environment for the astronaut in the Extravehicular Mobility Unit (EMU), and the heat rejection system controls the thermal conditions in the space suit. The current PLSS sublimates water to the space environment; therefore, the system loses mass. Since additional supplies of fluid must be available on the Space Shuttle, NASA desires a closed heat rejecting system. This document presents the embodiment design for a radiative plate heat rejection system without mass transfer to the space environment. This project will transform the concept variant into a design complete with material selection, dimensions of the system, layouts of the heat rejection system, suggestions for manufacturing, and financial viability.

  7. Material Analysis and System Design for Exploration Life Support Systems 2017

    Science.gov (United States)

    Knox, Jim; Cmarik, Gregory E.

    2017-01-01

    Advanced Environmental Control and Life Support System (ECLSS) design is critical for manned space flight beyond Earth. Current systems enable extended missions in low-Earth orbit, but for deep-space missions, not only will astronauts be outside the reach of resupply operations from Earth but they will also need to handle malfunctions and compensate for the degradation of materials. These two daunting challenges must be overcome for long-term independent space flight. In order to solve the first, separation and recycling of onboard atmosphere is required. Current systems utilize space vacuum to fully regenerate CO2 sorbent beds, but this is not sustainable. The second challenge stems from material and performance degradation due to operational cycling and on-board contaminants. This report will review the recent work by the ECLSS team at Marshall Space Flight Center towards overcoming these challenges by characterizing materials via novel methods and by assessing new air revitalization systems.

  8. Life support and internal thermal control system design for the Space Station Freedom

    Science.gov (United States)

    Humphries, R.; Mitchell, K.; Reuter, J.; Carrasquillo, R.; Beverly, B.

    1991-01-01

    A Review of the Space Station Freedom Environmental Control and Life Support System (ECLSS) as well as the Internal Thermal Control System (ITCS) design, including recent changes resulting from an activity to restructure the program, is provided. The development state of the original Space Station Freedom ECLSS through the restructured configuration is considered and the selection of regenerative subsystems for oxygen and water reclamation is addressed. A survey of the present ground development and verification program is given.

  9. Nutrition and food technology for a Controlled Ecological Life Support System (CELSS)

    Science.gov (United States)

    Glaser, P. E.; Mabel, J. A.

    1981-01-01

    Food technology requirements and a nutritional strategy for a Controlled Ecological Life Support System (CELSS) to provide adequate food in an acceptable form in future space missions are discussed. The establishment of nutritional requirements, dietary goals, and a food service system to deliver acceptable foods in a safe and healthy form and the development of research goals and priorities were the main objectives of the study.

  10. Life support systems analysis and technical trades for a lunar outpost

    Science.gov (United States)

    Ferrall, J. F.; Ganapathi, G. B.; Rohatgi, N. K.; Seshan, P. K.

    1994-01-01

    The NASA/JPL life support systems analysis (LISSA) software tool was used to perform life support system analysis and technology trades for a Lunar Outpost. The life support system was modeled using a chemical process simulation program on a steady-state, one-person, daily basis. Inputs to the LiSSA model include metabolic balance load data, hygiene load data, technology selection, process operational assumptions and mission parameter assumptions. A baseline set of technologies has been used against which comparisons have been made by running twenty-two cases with technology substitutions. System, subsystem, and technology weights and powers are compared for a crew of 4 and missions of 90 and 600 days. By assigning a weight value to power, equivalent system weights are compared. Several less-developed technologies show potential advantages over the baseline. Solid waste treatment technologies show weight and power disadvantages but one could have benefits associated with the reduction of hazardous wastes and very long missions. Technology development towards reducing the weight of resupplies and lighter materials of construction was recommended. It was also recommended that as technologies are funded for development, contractors should be required to generate and report data useful for quantitative technology comparisons.

  11. Environmental control and life support - Partially closed system will save big money

    Science.gov (United States)

    Guy, W. W.

    1983-01-01

    Although the NASA space station has not yet been completely defined, realistic estimates may be made of the environmental control and life support system requirements entailed by a crew of eight, a resupply interval of 90 days, an initial launch which includes expendables for the first resupply interval, 7.86 lb/day of water per person, etc. An appraisal of these requirements is presented which strongly suggests the utility of a partially closed life support system. Such a scheme would give the crew high quality water to drink, and recycle nonpotable water from hand washing, bathing, clothes and dish washing, and urinal flushing. The excess recovery process water is electrolyzed to provide metabolic and leakage oxygen. The crew would drink electrolysis water and atmospheric humidity control moisture-derived water.

  12. Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    Science.gov (United States)

    Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad

    2016-01-01

    NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  13. Pythium invasion of plant-based life support systems: biological control and sources

    Science.gov (United States)

    Jenkins, D. G.; Cook, K. L.; Garland, J. L.; Board, K. F.; Sager, J. C. (Principal Investigator)

    2000-01-01

    Invasion of plant-based life support systems by plant pathogens could cause plant disease and disruption of life support capability. Root rot caused by the fungus, Pythium, was observed during tests of prototype plant growth systems containing wheat at the Kennedy Space Center (KSC). We conducted experiments to determine if the presence of complex microbial communities in the plant root zone (rhizosphere) resisted invasion by the Pythium species isolated from the wheat root. Rhizosphere inocula of different complexity (as assayed by community-level physiological profile: CLPP) were developed using a dilution/extinction approach, followed by growth in hydroponic rhizosphere. Pythium growth on wheat roots and concomitant decreases in plant growth were inversely related to the complexity of the inocula during 20-day experiments in static hydroponic systems. Pythium was found on the seeds of several different wheat cultivars used in controlled environmental studies, but it is unclear if the seed-borne fungal strain(s) were identical to the pathogenic strain recovered from the KSC studies. Attempts to control pathogens and their effects in hydroponic life support systems should include early inoculation with complex microbial communities, which is consistent with ecological theory.

  14. Evaluation of engineering foods for closed Ecological Life Support System (CELSS)

    Science.gov (United States)

    Karel, M.

    1982-01-01

    A nutritionally adequate and acceptable diet was evaluated and developed. A design for a multipurpose food plant is discussed. The types and amounts of foods needed to be regenerated in a partially closed ecological life support system (PCELSS) were proposed. All steps of food processes to be utilized in the multipurpose food plant of PCELSS were also considered. Equipment specifications, simplification of the proposed processes, and food waste treatment were analyzed.

  15. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  16. Algal culture studies related to a Closed Ecological Life Support System (CELSS)

    Science.gov (United States)

    Radmer, R.; Behrens, P.; Fernandez, E.; Ollinger, O.; Howell, C.; Venables, A.; Huggins, D.; Gladue, R.

    1984-01-01

    In many respects, algae would be the ideal plant component for a biologically based controlled life support system, since they are eminently suited to the closely coupled functions of atmosphere regeneration and food production. Scenedesmus obliquus and Spirulina platensis were grown in three continuous culture apparatuses. Culture vessels their operation and relative merits are described. Both light and nitrogen utilization efficiency are examined. Long term culture issues are detailed and a discussion of a plasmid search in Spirulina is included.

  17. Exergy Based Analysis for the Environmental Control and Life Support Systems of the International Space Station

    Science.gov (United States)

    Clem, Kirk A.; Nelson, George J.; Mesmer, Bryan L.; Watson, Michael D.; Perry, Jay L.

    2016-01-01

    When optimizing the performance of complex systems, a logical area for concern is improving the efficiency of useful energy. The energy available for a system to perform work is defined as a system's energy content. Interactions between a system's subsystems and the surrounding environment can be accounted for by understanding various subsystem energy efficiencies. Energy balance of reactants and products, and enthalpies and entropies, can be used to represent a chemical process. Heat transfer energy represents heat loads, and flow energy represents system flows and filters. These elements allow for a system level energy balance. The energy balance equations are developed for the subsystems of the Environmental Control and Life Support (ECLS) system aboard the International Space Station (ISS). The use of these equations with system information would allow for the calculation of the energy efficiency of the system, enabling comparisons of the ISS ECLS system to other systems as well as allows for an integrated systems analysis for system optimization.

  18. Continued Development of Compact Multi-gas Monitor for Life Support Systems Control in Space

    Science.gov (United States)

    Delgado-Alonso, Jesús; Phillips, Straun; Chullen, Cinda; Quinn, Gregory

    2016-01-01

    Miniature optic gas sensors (MOGS) based on luminescent materials have shown great potential as alternatives to Near-Infrared-based gas sensor systems for the advanced space suit portable life support system (PLSS). The unique capability of MOGS for carbon dioxide and oxygen monitoring under wet conditions has been reported, as has the fast recovery of MOGS humidity sensors after long periods of being wet. Lower volume and power requirements are also potential advantages of MOGS over both traditional and advanced Non-Dispersive Infrared (NDIR) gas sensors, which have shown so far longer life than luminescent sensors. This paper presents the most recent results in the development and analytical validation of a compact multi-gas sensor unit based on luminescent sensors for the PLSS. Results of extensive testing are presented, including studies conducted at Intelligent Optical Systems laboratories, a United Technology Corporation Aerospace Systems (UTAS) laboratory, and a Johnson Space Center laboratory. The potential of this sensor technology for gas monitoring in PLSSs and other life support systems and the advantages and limitations found through detailed sensor validation are discussed.

  19. Controlled Ecological Life Support Systems (CELSS) physiochemical waste management systems evaluation

    Science.gov (United States)

    Oleson, M.; Slavin, T.; Liening, F.; Olson, R. L.

    1986-01-01

    Parametric data for six waste management subsystems considered for use on the Space Station are compared, i.e.: (1) dry incineration; (2) wet oxidation; (3) supercritical water oxidation; (4) vapor compression distillation; (5) thermoelectric integrated membrane evaporation system; and (6) vapor phase catalytic ammonia removal. The parameters selected for comparison are on-orbit weight and volume, resupply and return to Earth logistics, power consumption, and heat rejection. Trades studies are performed on subsystem parameters derived from the most recent literature. The Boeing Engineering Trade Study (BETS), an environmental control and life support system (ECLSS) trade study computer program developed by Boeing Aerospace Company, is used to properly size the subsystems under study. The six waste treatment subsystems modeled in this program are sized to process the wastes for a 90-day Space Station mission with an 8-person crew, and an emergency supply period of 28 days. The resulting subsystem parameters are compared not only on an individual subsystem level but also as part of an integrated ECLSS.

  20. Implementation Of Conservation Policy Through The Protection Of Life Support System In The Karimunjawa National Park

    Science.gov (United States)

    Ariyani, Nur Anisa Eka; Kismartini

    2018-02-01

    The Karimunjawa National Park as the only one marine protected area in Central Java, managed by zonation system has decreased natural resources in the form of decreasing mangrove forest area, coral cover, sea biota population such as clams and sea cucumbers. Conservation has been done by Karimunjawa National Park Authority through protection of life support system activities in order to protect the area from degradation. The objective of the research is to know the implementation of protection and security activities of Karimunjawa National Park Authority for the period of 2012 - 2016. The research was conducted by qualitative method, processing secondary data from Karimunjawa National Park Authority and interview with key informants. The results showed that protection and security activities in The Karimunjawa National Park were held with three activities: pre-emptive activities, preventive activities and repressive activities. Implementation of conservation policy through protection of life support system is influenced by factors of policy characteristic, resource factor and environmental policy factor. Implementation of conservation policy need support from various parties, not only Karimunjawa National Park Authority as the manager of the area, but also need participation of Jepara Regency, Central Java Provinces, communities, NGOs, researchers, developers and tourism actors to maintain and preserve existing biodiversity. Improving the quality of implementors through education and training activities, the availability of the state budget annually and the support of stakeholders is essential for conservation.

  1. Implementation Of Conservation Policy Through The Protection Of Life Support System In The Karimunjawa National Park

    Directory of Open Access Journals (Sweden)

    Anisa Eka Ariyani Nur

    2018-01-01

    Full Text Available The Karimunjawa National Park as the only one marine protected area in Central Java, managed by zonation system has decreased natural resources in the form of decreasing mangrove forest area, coral cover, sea biota population such as clams and sea cucumbers. Conservation has been done by Karimunjawa National Park Authority through protection of life support system activities in order to protect the area from degradation. The objective of the research is to know the implementation of protection and security activities of Karimunjawa National Park Authority for the period of 2012 - 2016. The research was conducted by qualitative method, processing secondary data from Karimunjawa National Park Authority and interview with key informants. The results showed that protection and security activities in The Karimunjawa National Park were held with three activities: pre-emptive activities, preventive activities and repressive activities. Implementation of conservation policy through protection of life support system is influenced by factors of policy characteristic, resource factor and environmental policy factor. Implementation of conservation policy need support from various parties, not only Karimunjawa National Park Authority as the manager of the area, but also need participation of Jepara Regency, Central Java Provinces, communities, NGOs, researchers, developers and tourism actors to maintain and preserve existing biodiversity. Improving the quality of implementors through education and training activities, the availability of the state budget annually and the support of stakeholders is essential for conservation.

  2. Use of Martian resources in a Controlled Ecological Life Support System (CELSS).

    Science.gov (United States)

    Smernoff, D T; MacElroy, R D

    1989-01-01

    The exploration of Mars has long been considered as a major goal in the exploration of the Solar system. The Space Station Freedom will make such missions feasible because it will provide a site for the assembly and launch of the large vehicles required. Interest in manned visits to Mars often focus on the possibility of collecting information about the origin of that planet, & hence of the solar system, including the Earth. Interest also involves the history of the planet, its past record of geological and fluvial activity, atmospheric and thermal history and surface chemical activity. The latter is of particular interest to exobiologists who would like to seek evidence of pre-biological physical and chemical activity involving organic molecules. Finally, there is interest in the possibility of planetary ecosynthesis, i.e. specific intervention in the evolution of Mars that could result in the development of a second habitable planet in the solar system. The scenarios for visits and the establishment of bases on Mars are being developed now. The intent of this paper is to consider various possibilities for crew life support on Mars and particularly to explore the use of Martian resources as life support materials.

  3. Online fault adaptive control for efficient resource management in Advanced Life Support Systems

    Science.gov (United States)

    Abdelwahed, Sherif; Wu, Jian; Biswas, Gautam; Ramirez, John; Manders, Eric-J

    2005-01-01

    This article presents the design and implementation of a controller scheme for efficient resource management in Advanced Life Support Systems. In the proposed approach, a switching hybrid system model is used to represent the dynamics of the system components and their interactions. The operational specifications for the controller are represented by utility functions, and the corresponding resource management problem is formulated as a safety control problem. The controller is designed as a limited-horizon online supervisory controller that performs a limited forward search on the state-space of the system at each time step, and uses the utility functions to decide on the best action. The feasibility and accuracy of the online algorithm can be assessed at design time. We demonstrate the effectiveness of the scheme by running a set of experiments on the Reverse Osmosis (RO) subsystem of the Water Recovery System (WRS).

  4. A novel sequential vegetable production facility for life support system in space

    Science.gov (United States)

    Liu, Hui; Berkovich, Yuliy A.; Liu, Hong; Fu, Yuming; Shao, Lingzhi; Erokhin, A. N.; Wang, Minjuan

    2012-07-01

    Vegetable cultivation plays a crucial role for dietary supplements and psychosocial benefits of the crew during manned space flight. The idea of onboard vegetables cultivation was generally proposed as the first step of food regeneration in life support system of space. Here a novel sequential vegetable production facility was developed, which was able to simulate microgravity conditions and carry out modularized-cultivation of leaf-vegetables. Its growth chamber (GC) had conic form and volume of 0.12 m ^{3}. Its planting surface of 0.154 m ^{2} was comprised of six ring-shaped root modules with a fibrous ion-exchange resin substrate. Root modules were fastened to a central porous tube supplying water, and moved on along with plant growth. The total illuminated crop area of 0.567 m ^{2} was provided by a combination of both red and white light emitting diodes distributed on the GC cone internal surface. In tests with a 24-hr photoperiod, the productivity of the facility at 0.3 kW for lettuce achieved 254.3 g eatable biomass per week. Compared to lettuce from market, the quality of lettuce of the facility did not change significantly during long-term cultivation. Our results demonstrate that the facility is high efficiency in vegetable production, and basically meets the application requirements of space microgravity environment. Keywords:, vegetable; modularized-cultivation; sequential production; life support system

  5. Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management

    Science.gov (United States)

    Levri, Julie A.; Fisher, John W.; Alazraki, Michael P.; Hogan, John A.

    2002-01-01

    Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements, planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process. The intent of this paper is to address some of the difficulties in writing requirements for missions that are not completely defined. This paper discusses an approach and motivation for ALS SWM requirements development, the characteristics of effective requirements, and the presence of those characteristics in requirements that are developed for uncertain missions. Associated drivers for life support system technological capability are also presented. A general means of requirements forecasting is discussed, including successive modification of requirements and the need to consider requirements integration among subsystems.

  6. Nutritional models for a Controlled Ecological Life Support System (CELSS): Linear mathematical modeling

    Science.gov (United States)

    Wade, Rose C.

    1989-01-01

    The NASA Controlled Ecological Life Support System (CELSS) Program is involved in developing a biogenerative life support system that will supply food, air, and water to space crews on long-duration missions. An important part of this effort is in development of the knowledge and technological capability of producing and processing foods to provide optimal diets for space crews. This involves such interrelated factors as determination of the diet, based on knowledge of nutrient needs of humans and adjustments in those needs that may be required as a result of the conditions of long-duration space flight; determination of the optimal mixture of crops required to provide nutrients at levels that are sufficient but not excessive or toxic; and consideration of the critical issues of spacecraft space and power limitations, which impose a phytomass minimization requirement. The complex interactions among these factors are examined with the goal of supplying a diet that will satisfy human needs while minimizing the total phytomass requirement. The approach taken was to collect plant nutritional composition and phytomass production data, identify human nutritional needs and estimate the adjustments to the nutrient requirements likely to result from space flight, and then to generate mathematical models from these data.

  7. Modeling the growth dynamics of four candidate crops for Controlled Ecological Life Support Systems (CELSS)

    Science.gov (United States)

    Volk, Tyler

    1987-01-01

    The production of food for human life support for advanced space missions will require the management of many different crops. The research to design these food production capabilities along with the waste management to recycle human metabolic wastes and inedible plant components are parts of Controlled Ecological Life Support Systems (CELSS). Since complete operating CELSS were not yet built, a useful adjunct to the research developing the various pieces of a CELSS are system simulation models that can examine what is currently known about the possible assembly of subsystems into a full CELSS. The growth dynamics of four crops (wheat, soybeans, potatoes, and lettuce) are examined for their general similarities and differences within the context of their important effects upon the dynamics of the gases, liquids, and solids in the CELSS. Data for the four crops currently under active research in the CELSS program using high-production hydroponics are presented. Two differential equations are developed and applied to the general characteristics of each crop growth pattern. Model parameters are determined by closely approximating each crop's data.

  8. Suitability of different photosynthetic organisms for an extraterrestrial biological life support system.

    Science.gov (United States)

    Lehto, Kirsi M; Lehto, Harry J; Kanervo, Eira A

    2006-01-01

    In the present era of intensive space and planetary research, efficient life support systems (LSSs) are needed to maintain suitable living conditions when humans move into space, i.e. away from the Earth's atmosphere. Thus far, such suitable conditions on various space flights and on the space stations (Mir and the International Space Station) have been maintained solely via physical and chemical means (transport of O2, H2O and food from the Earth, cleaning and recycling of air and water). However, for long-duration missions to distant destinations, such as exploratory missions to Mars, biological life support systems (BLSSs) may be needed to convert local CO2 and H2O to O2, and to food. As on earth, this conversion process would need to be based on photosynthesis. Use of higher plants and microalgae as BLSS organisms has been intensively studied. Here we review the growth requirements of these two types of photosynthetic organisms, with particular attention to their suitability for use in harsh Martian conditions, i.e. low temperatures, low atmospheric pressure, high CO2 concentration, high UV radiation and dryness.

  9. Using Pyrolysis and its Bioproducts to Help Close the Loop in Sustainable Life Support Systems

    Science.gov (United States)

    McCoy, LaShelle E.

    2012-01-01

    The next step in human exploration of space is beyond low Earth orbit and possibly to sites such as the Moon and Mars. Resupply of critical life support components for missions such as these are difficult or impossible. Life support processes for closing the loop of water, oxygen and carbon have to be identified .. Currently, there are many technologies proposed for terrestrial missions for waste, water, air processing and the creation of consumables. There are a variety of different approaches, but few address all of these issues simultaneously. One candidate is pyrolysis; a method where waste streams can be heated in the absence of oxygen to undergo a thermochemical conversion producing a series of bioproducts. Bioproducts like biochar made from non-edible biomass and human solid waste can possibly provide valuable benefits such as waste reduction, regolith fertilization for increased food production, and become a consumable for water processing and air revitalization systems. Syngas containing hydrogen, carbon monoxide and cbon dioxide, can be converted to methane and dimethyl ether to create propellants. Bio-oils can be utilized as a heating fuel or fed to bioreactors that utilize oil-eating microbes. Issues such as carbon sequestration and subsequent carbon balance of the closed system and identifying ideal process methods to achieve the highest quality products, whilst being energy friendly, will also be addressed.

  10. Central nervous system complications during pediatric extracorporeal life support: incidence and risk factors.

    Science.gov (United States)

    Cengiz, Pelin; Seidel, Kristy; Rycus, Peter T; Brogan, Thomas V; Roberts, Joan S

    2005-12-01

    Identify the incidence and risk factors for development of acute, severe central nervous system (CNS) complications of pediatric extracorporeal life support (ECLS). Retrospective review of Extracorporeal Life Support Organization (ELSO) registry database. Pediatric intensive care units of 115 tertiary centers internationally. Pediatric patients, 1 month to 18 yrs of age, who had ECLS between the years 1981-2002. Data concerning 4,942 patients who underwent one run of ECLS were analyzed. Six hundred thirty-six patients (12.9%) developed acute, severe CNS complications. Patients who required ECLS during extracorporeal cardiopulmonary resuscitation (n = 161; 3.3%) were more likely to develop CNS complications (n = 42; 26.1%) than patients who did not have extracorporeal cardiopulmonary resuscitation (p 3.0 mg/dL, use of inotropes, presence of myocardial stun, and requirement of cardiopulmonary resuscitation during ECLS independently predicted development of CNS complications. Patients who have metabolic acidosis, a bicarbonate or inotrope/vasopressor requirement, cardiopulmonary resuscitation, or a left ventricular assist device before initiation of ECLS are at greater risk for development of CNS complications. After initiation of ECLS, patients who develop renal failure or metabolic acidosis or undergo venoarterial ECLS should be closely monitored for development of CNS complications.

  11. Recycling of Na in advanced life support: strategies based on crop production systems.

    Science.gov (United States)

    Guntur, S V; Mackowiak, C; Wheeler, R M

    1999-01-01

    Sodium is an essential dietary requirement in human nutrition, but seldom holds much importance as a nutritional element for crop plants. In Advanced Life Support (ALS) systems, recycling of gases, nutrients, and water loops is required to improve system closure. If plants are to play a significant role in recycling of human wastes, Na will need to accumulate in edible tissues for return to the crew diet. If crops fail to accumulate the incoming Na into edible tissues, Na could become a threat to the hydroponic food production system by increasing the nutrient solution salinity. Vegetable crops of Chenopodiaceae such as spinach, table beet, and chard may have a high potential to supply Na to the human diet, as Na can substitute for K to a large extent in metabolic processes of these crops. Various strategies are outlined that include both genetic and environmental management aspects to optimize the Na recovery from waste streams and their resupply through the human diet in ALS.

  12. Ventilation Transport Trade Study for Future Space Suit Life Support Systems

    Science.gov (United States)

    Kempf, Robert; Vogel, Matthew; Paul, Heather L.

    2008-01-01

    A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.

  13. Boeing Crew Exploration Vehicle Environmental Control and Life Support System Architecture Overview

    Science.gov (United States)

    Saiidi, Mo; Lewis, John F.

    2007-01-01

    The Boeing Company under the teaming agreement with the Northrop Grumman Systems Corporation and in compliance with the NASA Phase 1 contract, had the responsibilities for the CEV architecture development of the Environmental control and life support (ECLS) system under the NASA Phase 1 contract. The ECLS system was comprised of the various subsystems which provided for a shirt-sleeve habitable environment for crew to live and work in the crew module of the CEV. This architecture met the NASA requirements to ferry cargo and crew to ISS, and Lunar sortie missions, with extensibility to long duration missions to Moon and MARS. This paper provides a summary overview of the CEV ECLS subsystems which was proposed in compliance with the contract activities.

  14. Space Suit Portable Life Support System Test Bed (PLSS 1.0) Development and Testing

    Science.gov (United States)

    Watts, Carly; Campbell, Colin; Vogel, Matthew; Conger, Bruce

    2012-01-01

    A multi-year effort has been carried out at NASA-JSC to develop an advanced extra-vehicular activity Portable Life Support System (PLSS) design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station Extra-vehicular Mobility Unit PLSS, the advanced PLSS comprises three subsystems required to sustain the crew during extra-vehicular activity including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test bed that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, Ventilation Subsystem fan, Rapid Cycle Amine swingbed carbon dioxide and water vapor removal device, and Spacesuit Water Membrane Evaporator heat rejection device. The overall PLSS 1.0 test objective was to demonstrate the capability of the Advanced PLSS to provide key life support functions including suit pressure regulation, carbon dioxide and water vapor removal, thermal control and contingency purge operations. Supplying oxygen was not one of the specific life support functions because the PLSS 1.0 test was not oxygen rated. Nitrogen was used for the working gas. Additional test objectives were to confirm PLSS technology development components performance within an integrated test bed, identify unexpected system level interactions, and map the PLSS 1.0 performance with respect to key variables such as crewmember metabolic rate and suit pressure. Successful PLSS 1.0 testing completed 168 test points over 44 days of testing and produced a large database of test results that characterize system level

  15. Enviromnental Control and Life Support Systems for Mars Missions - Issues and Concerns for Planetary Protection

    Science.gov (United States)

    Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin

    2015-01-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future human planetary exploration missions. Ultimately, there will be an effect on mission costs, including the mission trade space when planetary protection requirements begin to drive vehicle deisgn in a concrete way. Planetary protection requirements need to be considered early in technology development and mission programs in order to estimate these impacts and push back on requirements or find efficient ways to perform necessary functions. It is expected that planetary protection will be a significant factor during technology selection and system architecture design for future missions.

  16. Micropollutants in closed life-support systems: the case of triclosan, a biocide excreted via urine

    Science.gov (United States)

    Mastroleo, Felice; Pycke, Benny; Boon, Nico; de Wever, Heleen; Hendrickx, Larissa; Mastroleo, Felice; Wattiez, Ruddy; Mergeay, Max; Verstraete, Willy

    OBJECTIVES: The impact of triclosan on the growth and physiology of the bacterium Rhodospirillum rubrum was studied in the frame of the regenerative life-support system, Micro- Ecological Life Support System Alternative (MELiSSA). A wide range of compounds, such as steroid hormones, pharmaceuticals and personal care products, might enter the life support system via the excrements that are to be treated and recycled. Triclosan was chosen as the first compound to be tested because MELiSSA is a closed system, which is consequently particularly sensitive to compounds inhibiting the microbial metabolism. Because triclosan is increasingly used as an antimicrobial biocide in hygienic formulations (such as toothpaste, mouthwash, deodorants, etc.) and due to its chemical stability, it is considered an emerging pollutant in terrestrial ecosystems. METHODS: In a first phase, the triclosan concentration expected in the life-support system was estimated, the Minimal Inhibitory Concentration (MIC) was determined via plating, and the effect on growth kinetics was assessed by comparing growth parameters in the Gompertz model. In a second phase, the secondary effects of triclosan on cell physiology and gene expression were studied through flow-cytometry and microarray analyses, respectively. RESULTS: Based on the pharmacokinetic data from literature, the predicted concentration range is estimated to be 6-25µg/L triclosan in the Rhodospirillum rubrum compartment of the MELiSSA. The minimal inhibitory concentration of triclosan was determined to be 71 µg/L after 7 days of exposure on Sistrom medium. Upon exposure to 50-200µg/L triclosan, triclosan-resistant mutants of Rhodospirillum rubrum arose spontaneously at high frequency (3.1 ∗ 10 - 4). Analysis of the growth kinetics of the wild-type revealed that triclosan causes an important elongation of the lag-phase and a decrease in growth rate. At concentrations higher than 75mg/L(LD = 500mg/L), triclosan is bactericidal to wild

  17. The study of residential life support environment system to initiate policy on sustainable simple housing

    Science.gov (United States)

    Siahaan, N. M.; Harahap, A. S.; Nababan, E.; Siahaan, E.

    2018-02-01

    This study aims to initiate sustainable simple housing system based on low CO2 emissions at Griya Martubung I Housing Medan, Indonesia. Since it was built in 1995, between 2007 until 2016 approximately 89 percent of houses have been doing various home renewal such as restoration, renovation, or reconstruction. Qualitative research conducted in order to obtain insights into the behavior of complex relationship between various components of residential life support environment that relates to CO2 emissions. Each component is studied by conducting in-depth interviews, observation of the 128 residents. The study used Likert Scale to measure residents’ perception about components. The study concludes with a synthesis describing principles for a sustainable simple housing standard that recognizes the whole characteristics of components. This study offers a means for initiating the practice of sustainable simple housing developments and efforts to manage growth and preserve the environment without violating social, economics, and ecology.

  18. Material balance and diets in biological life support systems: a relationship with a coefficient of closure

    Science.gov (United States)

    Manukovsky, N. S.; Kovalev, V. S.; Somova, L. A.

    Biological life support systems (BLSS) of various coefficients of closure were considered The basic coefficient of closure was accepted equal to 66%. With increase in coefficient of closure food requirements for the greater degree should be satisfied due to the manufacture of food inside the BLSS. In this connection food values were estimated both in the basic variant, and in those with increased coefficients of closure. Metabolic massflow rates were estimated at the input and output of the BLSS as well as inside it. Human massflow rates were submitted on the basis of characteristics of the 'reference man'. Stoichiometric synthesis - degradation equations of organic substances in the BLSS were obtained. A problem of nitrogen imbalance was shown to occur under an incomplete BLSS closure. To compensate losses of nitrogen with urine and feces, food and nitrogen-containing additives should be introduced into the BLSS.

  19. Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development

    Science.gov (United States)

    O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.

    1998-01-01

    A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.

  20. Life support systems and optimal isotope composition in cosmonaut habitats for long-term missions

    Science.gov (United States)

    Siniak, I. E.; Grigoriev, A. I.

    Differences in the isotope content of the biogenous chemicals of cosmonaut habitats are given a theoretical consideration. Rationale is given to the hypothesis according to which the biochemical and biophysical processes in plants, animals, and humans must be impacted by the isotopes of all the biogenous chemicals in cosmonaut habitats. Organisms were found to persistently make preference of lighter fractions of stable isotopes from the biogenous chemicals. In most of the compounds the light fraction of stable isotopes constitutes the greater portion by mass. However, the optimal isotope composition of biogenous chemicals is still unknown and necessitates biochemical, toxicological, biological and other kinds of research. The functions of a life support system should also include production and maintenance of an optimal isotope composition for habitats, i.e. water, oxygen, food stuffs in order to improve metabolism in and performance of cosmonauts.

  1. Sweet potato for closed ecological life support systems using the nutrient film technique

    Science.gov (United States)

    Loretan, P. A.; Hill, W. A.; Bonsi, C. K.; Morris, C. E.; Lu, J. Y.; Ogbuehi, C. R. A.; Mortley, D. G.

    1990-01-01

    Sweet potatoes were grown hydroponically using the nutrient film technique (NFT) in support of the Closed Ecological Life Support System (CELSS) program. Experiments in the greenhouse with the TI-155 sweet potato cultivar produced up to 1790 g/plant of fresh storage roots. Studies with both TI-155 and Georgia Jet cultivars resulted in an edible biomass index of approximately 60 percent, with edible biomass linear growth rates of 12.1 to 66.0 g m(exp -2)d(exp -1) in 0.05 to 0.13 sq meters in 105 to 130 days. Additional experimental results are given. All studies indicate good potential for sweet potatoes in CELSS.

  2. Consideration in selecting crops for the human-rated life support system: a linear programming model

    Science.gov (United States)

    Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.

    A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.

  3. Prospective technologies and equipment for sanitary hygienic measures for life support systems

    Science.gov (United States)

    Shumilina, I. V.

    Creation of optimal sanitary hygienic conditions is a prerequisite for good health and performance of crews on extended space missions. There is a rich assortment of associated means, methods and equipment developed and experimentally tested in orbital flights. However, over a one-year period a crew of three uses up about 800 kg of ground-supplied wet wipes and towels for personal needs. The degree of closure of life support systems for long-duration orbital flights should be maximized, particularly for interplanetary missions, which exclude any possibility of re-supply. Washing with regenerated water is the ultimate sanitary hygienic goal. That is why it is so important to design devices for crew bathing during long-term space missions. Investigations showed that regeneration of wash water (WW) using membrane processes (reverse osmosis, nanofiltration etc.), unlike sorption, would not require much additional expendables. A two-stage membrane recovery unit eliminated >85% of permeate from real WW with organic and inorganic selectivity of 82 95%. The two-stage WW recovery unit was tested with artificial and real WW containing detergents available for space crews. Investigations into the ways of doing laundry and drying along with which detergents will be the best fit for space flight are also planned. Testing of a technology for water extraction from used textiles using a conventional period of contact of 1 s or more, showed that the humidity of the outgoing air flow neared 100%. Issues related to designing the next generation of space life support systems should consider the benefits of integrating new sanitary hygienic technologies, equipment, and methods.

  4. Interaction between exercising humans and growing plants in a closed ecological life support system

    Science.gov (United States)

    Doerr, D. F.; Convertino, V. A.; Blue, J.; Wheeler, R. M.; Knott, W. M.

    The purpose of this study was to quantify the gas exchange between plants growing in a Closed Environmental Life Support System (CELSS) and the metabolism of human subjects undergoing various levels of physical exercise, and subsequently determine the buffer characteristics in relation to the carbon exchange established for plants in this closed loop life support system. Two men (ages 42 and 45 yr) exercised on a cycle ergometer at three different work intensities, each on a separate day. The CELSS, a 113 m 3 chamber, was sized to meet the needs of one human. The plants, consisting of 20 m 2 of potato, provided oxygen to the human during an artificially lighted photosynthesis phase and the human provided CO 2 to the plants. The average rates of exchange for the subjects were 0.88, 1.69, and 2.47 liters O 2/min and 0.77, 1.47, and 2.21 liters CO 2/min at approximately 25%, 50%, and 75% of their maximal aerobic capacity, respectively. The photosynthetic rate for the CELSS was 0.95 liters/ min. A balance between human CO 2 production and plant utilization was noted at approximately the 50% VO 2max level. The oxygen balance and changes were not within detectable limits of the CELSS instrumentation for the durations of these exercise exposures. If a CELSS environment is the methodology selected for long term spaceflight, it will be important to select plants that efficiently grow at the available light and nutrient levels while balancing the needs for the human crew at their levels of physical activity.

  5. Study on O2-supplying characteristics of Azolla in Controlled Ecological Life Support System

    Science.gov (United States)

    Chen, Min; Deng, Sufang; Yang, Youquang; Huang, Yibing; Liu, Zhongzhu

    Azolla has high growth and propagation rate, strong photosynthetic O2-releasing ability and rich nutrient value. It is able to be used as salad-type vegetable, and can also be cultured on wet bed in multi-layer condition. Hence, it possesses a potential functioning as providing O2, fresh vegetable and absorbing CO2 for Controlled Ecological Life Support System in space. In this study, we try to make clear the O2-providing characteristics of Azolla in controlled close chamber under manned condition in order to lay a foundation for Azolla as a biological component in the next ground simulated experiment and space application. A closed test cham-ber of Controlled Ecological Life Support System and Azolla wet-culturing devices were built to measure the changes of atmospheric O2-CO2 concentration inside chamber under "Azolla-fish -men" coexisting condition. The results showed that, the amount of O2 consumption is 80.49 83.07 ml/h per kilogram fish, the amount of CO2 emissions is 70.49 73.56 ml/(kg • h); O2 consumption of trial volunteers is 19.71 L/h, the volume of respiration release CO2 18.90 L/h .Artificial light intensity of Azolla wet culture under 70009000 Lx, people respiration and Azolla photosynthesis complemented each other, the atmospheric O2-CO2 concentration inside chamber maintained equilibration. Elevated atmospheric CO2 concentrations in close chamber have obvious effects on enhancing Azolla net photosynthesis efficiency. This shows that Azolla has strong photosynthetic O2-releasing ability, which equilibrates the O2-CO2 concentration inside chamber in favor of human survival, and then verifies the prospect of Azolla in space application.

  6. Efficacy of oxygen-supplying capacity of Azolla in a controlled life support system

    Science.gov (United States)

    Chen, Min; Deng, Sufang; Yang, Youquan; Huang, Yibing; Liu, Chongchu

    2012-02-01

    Azolla shows high growth and propagation rates, strong photosynthetic O2-releasing ability and high nutritional value. It is suitable as a salad vegetable and can be cultured on a multi-layered wet bed. Hence, it possesses potential as a fresh vegetable, and to release O2 and absorb CO2 in a Controlled Ecological Life Support System in space. In this study, we investigated the O2-providing characteristics of Azolla in a closed chamber under manned, controlled conditions to lay a foundation for use of Azolla as a biological component in ground simulation experiments for space applications. A closed test chamber, representing a Controlled Ecological Life Support System including an Azolla wet-culture device, was built to measure the changes in atmospheric O2 and CO2 concentrations inside the chamber in the presence of coexisting Azolla, fish and men. The amount of O2 consumed by fish was 0.0805-0.0831 L kg-1 h-1 and the level of CO2 emission was 0.0705-0.0736 L kg-1 h-1; O2 consumption by the two trial volunteers was 19.71 L h-1 and the volume of respiration-released CO2 was 18.90 L h-1. Under 7000-8000 Lx artificial light and Azolla wet-culture conditions, human and fish respiration and Azolla photosynthesis were complementary, thus the atmospheric O2 and CO2 concentrations inside chamber were maintained in equilibrium. The increase in atmospheric CO2 concentration in the closed chamber enhanced the net photosynthesis efficiency of the Azolla colony. This study showed that Azolla has strong photosynthetic O2-releasing ability, which equilibrates the O2 and CO2 concentrations inside the chamber in favor of human survival and verifies the potential of Azolla for space applications.

  7. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    Science.gov (United States)

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  8. Development of a Mars Environmental Control and Life Support System (ECLSS).

    Science.gov (United States)

    Henninger, Donald L.

    2016-01-01

    ECLS systems for very long-duration human missions to Mars will be designed to operate reliably for many years and will never be returned to Earth. The need for high reliability is driven by unsympathetic abort scenarios. Abort from a Mars mission could be as long as 450 days to return to Earth. Simply put, the goal of an ECLSS is to duplicate the functions the Earth provides in terms of human living and working on our home planet but without the benefit of the Earth's large buffers - the atmospheres, the oceans and land masses. With small buffers a space-based ECLSS must operate as a true dynamic system rather than independent processors taking things from tanks, processing them, and then returning them to product tanks. Key is a development process that allows for a logical sequence of validating successful development (maturation) in a stepwise manner with key performance parameters (KPPs) at each step; especially KPPs for technologies evaluated in a full systems context with human crews on Earth and on space platforms such as the ISS. This paper will explore the implications of such an approach to ECLSS development and the roles of ground and space-based testing necessary to develop a highly reliable life support system for long duration human exploration missions. Historical development and testing of ECLS systems from Mercury to the International Space Station (ISS) will be reviewed. Current work as well as recommendations for future work will be described.

  9. Incineration for resource recovery in a closed ecological life support system

    Science.gov (United States)

    Upadhye, R. S.; Wignarajah, K.; Wydeven, T.

    1993-01-01

    A functional schematic, including mass and energy balance, of a solid waste processing system for a controlled ecological life support system (CELSS) was developed using Aspen Plus, a commercial computer simulation program. The primary processor in this system is an incinerator for oxidizing organic wastes. The major products derived from the incinerator are carbon dioxide and water, which can be recycled to a crop growth chamber (CGC) for food production. The majority of soluble inorganics are extracted or leached from the inedible biomass before they reach the incinerator, so that they can be returned directly to the CGC and reused as nutrients. The heat derived from combustion of organic compounds in the incinerator was used for phase-change water purification. The waste streams treated by the incinerator system conceptualized in this work are inedible biomass from a CGC, human urine (including urinal flush water) and feces, humidity condensate, shower water, and trash. It is estimated that the theoretical minimum surface area required for the radiator to reject the unusable heat output from this system would be 0.72 sq m/person at 298 K.

  10. Power system for production, construction, life support and operations in space

    International Nuclear Information System (INIS)

    Sovie, R.J.

    1988-01-01

    As one looks to man's future in space it becomes obvious that unprecedented amounts of power are required for the exploration, colonization, and exploitation of space. Activities envisioned include interplanetary travel and LEO to GEO transport using electric propulsion, Earth and lunar observatories, advance space stations, free-flying manufacturing platforms, communications platforms, and eventually evolutionary lunar and Mars bases. These latter bases would start as camps with modest power requirements (kWes) and evolve to large bases as manufacturing, food production, and life support materials are developed from lunar raw materials. These latter activities require very robust power supplies (MWes). The advanced power system technologies being pursued by NASA to fulfill these future needs are described. Technologies discussed will include nuclear, photovoltaic, and solar dynamic space power systems, including energy storage, power conditioning, power transmission, and thermal management. The state-of-the-art and gains to be made by technology advancements will be discussed. Mission requirements for a variety of applications (LEO, GEO, lunar, and Martian) will be treated, and data for power systems ranging from a few kilowatts to megawatt power systems will be represented. In addition the space power technologies being initiated under NASA's new Civilian Space Technology Initiative (CSTI) and Space Leadership Planning Group Activities will be discussed

  11. Portable Life Support System 2.5 Fan Design and Development

    Science.gov (United States)

    Quinn, Gregory; Carra, Michael; Converse, David; Chullen, Cinda

    2016-01-01

    NASA is building a high-fidelity prototype of an advanced Portable Life Support System (PLSS) as part of the Advanced Exploration Systems Program. This new PLSS, designated as PLSS 2.5, will advance component technologies and systems knowledge to inform a future flight program. The oxygen ventilation loop of its predecessor, PLSS 2.0, was driven by a centrifugal fan developed using specifications from the Constellation Program. PLSS technology and system parameters have matured to the point where the existing fan will not perform adequately for the new prototype. In addition, areas of potential improvement were identified with the PLSS 2.0 fan that could be addressed in a new design. As a result, a new fan was designed and tested for the PLSS 2.5. The PLSS 2.5 fan is a derivative of the one used in PLSS 2.0, and it uses the same nonmetallic, canned motor, with a larger volute and impeller to meet the higher pressure drop requirements of the PLSS 2.5 ventilation loop. The larger impeller allows it to operate at rotational speeds that are matched to rolling element bearings, and which create reasonably low impeller tip speeds consistent with prior, oxygen-rated fans. Development of the fan also considered a shrouded impeller design that could allow larger clearances for greater oxygen safety, assembly tolerances and particle ingestion. This paper discusses the design, manufacturing and performance testing of the new fans.

  12. Space Evaporator Absorber Radiator for Life Support and Thermal Control Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal...

  13. Module Equipped with a Life-Support System for Space Experiments with Mongolian Gerbils (Meriones Unguiculatus)

    Science.gov (United States)

    Ilyin, E. A.; Smirnov, I. A.; Soldatov, P. E.; Guryeva, T. S.; Mednikova, E. I.

    2008-06-01

    A successful experiment with 12 Mongolian gerbils was performed during the 12-day flight of Russian automatic spacecraft Foton-M3 (September 14-26, 2007). Foton-M3 was not equipped with an air supply system. Due to this, a self-contained "CONTOUR" module equipped with its own Life-Support System, was developed. The cage for animals was equipped with yellow LEDs. The day/night cycle was 12:12 hours. In addition, the module was equipped with a digital video recorder located on the outside surface in front of a transparent window. In space flight, the animals were provided with food bars made of natural products and contained about 20% of water. This moisture met gerbils requirements in water; therefore, the module was not equipped with a water supply system. In the module, the environmental parameters were as follows: p02 = 143-156 (mean 150) mm Hg, pC02 - not more than 0.76 (mean 0.64) mm Hg, temperature = 23-28 (mean 26.7) °C, and RH = 29% at the beginning and 57% at the end of flight (mean 39%). Throughout the entire flight video recording of the animals was performed continuously during the daytime.

  14. Flexible Foam Protection Materials for Portable Life Support System Packaging Study

    Science.gov (United States)

    Tang,Henry H.; Dillon, Paul A.; Thomas, Gretchen A.

    2009-01-01

    This paper discusses the phase I effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be robust to consistently perform over several Extravehicular Activity (EVA) missions in the extreme lunar thermal vacuum environment. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating some commercial off-the-shelf (COTS) foam material candidates. It also presents the mechanical properties and impact drop tests results of the foam material candidates. The results of this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.

  15. Suggestions for crops grown in controlled ecological life-support systems, based on attractive vegetarian diets

    Science.gov (United States)

    Salisbury, F. B.; Clark, M. A. Z.

    Assuming that crops grown in controlled ecological life-support systems (CELSS) should provide a basis for meals that are both nutritious and attractive (to taste and vision), and that CELSS diets on the moon or Mars or in space-craft during long voyages will have to be mostly vegetarian, a workshop was convened at the Johnson Space Center, Houston, Texas, U.S.A. on 19 to 21 January, 1994. Participants consisted of trained nutritionists and others; many of the approximately 18 presenters who discussed possible diets were practicing vegetarians, some for more than two decades. Considering all the presentations, seven conclusions (or points for discussion) could be formulated: nutritious vegetarian diets are relatively easily to formulate, vegetarian diets are healthy, variety is essential in vegetarian diets, some experiences (e.g., Bios-3 and Biosphere 2) are relevant to planning of CELSS diets, physical constraints will limit the choice of crops, a preliminary list of recommended crops can be formulated, and this line of research has some potential practical spinoffs. The list of crops and the reasons for including specific crops might be of interest to professionals in the field of health and nutrition as well as to those who are designing closed ecological systems.

  16. Integrated Bio-ISRU and Life Support Systems at the Lunar Outpost: Concept and Preliminary Results

    Science.gov (United States)

    Brown, I. I.; Garrison, D. H.; Allen, C. C.; Pickering, K.; Sarkisova, S. A.; Galindo, C., Jr.; Pan, D.; Foraker, E.; Mckay, D. S.

    2009-01-01

    We continue the development of our concept of a biotechnological loop for in-situ resource extraction along with propellant and food production at a future lunar outpost, based on the cultivation of litholytic cyanobacteria (LCB) with lunar regolith (LR) in a geobioreactor energized by sunlight. Our preliminary studies have shown that phototropic cultivation of LCB with simulants of LR in a low-mineralized medium supplemented with CO2 leads to rock dissolution (bioweathering) with the resulting accumulation of Fe, Mg and Al in cyanobacterial cells and in the medium. LCB cultivated with LR simulants produces more O2 than the same organisms cultivated in a high-mineralized medium. The loss of rock mass after bioweathering with LCB suggests the release of O from regolith. Further studies of chemical pathways of released O are required. The bioweathering process is limited by the availability of CO2, N, and P. Since lunar regolith is mainly composed of O, Si, Ca, Al and Mg, we propose to use organic waste to supply a geobioreactor with C, N and P. The recycling of organic waste, including urine, through a geobioreactor will allow for efficient element extraction as well as oxygen and biomass production. The most critical conclusion is that a biological life support system tied to a geobioreactor might be more efficient for supporting an extraterrestrial outpost than a closed environmental system.

  17. Optimization of water balance within the martian crew life support system

    Science.gov (United States)

    Sychev, V.; Levinskikh, M.

    The present-day scenarios of the first exploration mission differ in the total length crew size period of the stay on Mars etc However no matter the scenario one of the common problems is optimization of water balance within the crew life support system Water balance optimization implies in addition to regeneration of atmospheric moisture and urine also dehydration of biowastes In this mission all wastes will be stored and for this reason safe storage is prerequisite Investigations of two-component laboratory BLSS in which the autotrophic component was composed of algae Spirulina platensis and the heterotrophic component was represented by Japanese quail Coturnix coturnix japonica dom showed that optimization of the autotrophic and heterotrophic gas exchange and water regeneration from quail biowastes could raise the system susbstance balance to 76 of the total balance during autonomic cultivation of algae and birds In these investigations dehydration of quail biowastes caused significant pollution of water and air by organics toxic for humans It was demonstrated that the sorption technologies applied on the Russian space station MIR and ISS cannot fully absorb organic contaminants released in the process of quail wastes drying Algal suspension as a hydrobiological filter was able to control the organic pollination of both air and water These results are in agreement with the data of ground-based simulation studies with participation of human subjects at IBMP According to the simulation data intensive

  18. Crop productivities and radiation use efficiencies for bioregenerative life support

    Science.gov (United States)

    Wheeler, R. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Sager, J. C.; Prince, R. P.; Knott, W. M.

    NASA’s Biomass Production Chamber (BPC) at Kennedy Space Center was decommissioned in 1998, but several crop tests were conducted that have not been reported in the open literature. These include several monoculture studies with wheat, soybean, potato, lettuce, and tomato. For all of these studies, either 10 or 20 m2 of plants were grown in an atmospherically closed chamber (113 m3 vol.) using a hydroponic nutrient film technique along with elevated CO2 (1000 or 1200 μmol mol-1). Canopy light (PAR) levels ranged from 17 to 85 mol m-2 d-1 depending on the species and photoperiod. Total biomass (DM) productivities reached 39.6 g m-2 d-1 for wheat, 27.2 g m-2 d-1 for potato, 19.6 g m-2 d-1 for tomato, 15.7 g m-2 d-1 for soybean, and 7.7 g m-2 d-1 for lettuce. Edible biomass (DM) productivities reached 18.4 g m-2 d-1 for potato, 11.3 g m-2 d-1 for wheat, 9.8 g m-2 d-1 for tomato, 7.1 g m-2 d-1 for lettuce, and 6.0 g m-2 d-1 for soybean. The corresponding radiation (light) use efficiencies for total biomass were 0.64 g mol-1 PAR for potato, 0.59 g DM mol-1 for wheat, 0.51 g mol-1 for tomato, 0.46 g mol-1 for lettuce, and 0.43 g mol-1 for soybean. Radiation use efficiencies for edible biomass were 0.44 g mol-1 for potato, 0.42 g mol-1 for lettuce, 0.25 g mol-1 for tomato, 0.17 g DM mol-1 for wheat, and 0.16 g mol-1 for soybean. By initially growing seedlings at a dense spacing and then transplanting them to the final production area could have saved about 12 d in each production cycle, and hence improved edible biomass productivities and radiation use efficiencies by 66% for lettuce (to 11.8 g m-2 d-1 and 0.70 g mol-1), 16% for tomato (to 11.4 g m-2 d-1and 0.29 g mol-1), 13% for soybean (to 6.9 g m-2 d-1 and 0.19 g mol-1), and 13% for potato (to 20.8 g m-2 d-1 and 0.50 g mol-1). Since wheat was grown at higher densities, transplanting seedlings would not have improved yields. Tests with wheat resulted in a relatively low harvest index of 29%, which may have been caused by ethylene or other organic volatile compounds (VOCs) accumulating in the chamber. Assuming a higher harvest index of 40% could be achieved by scrubbing VOCs, productivity of wheat seed could have been improved nearly 40% to 15.8 g m-2 d-1 and edible biomass radiation use efficiency to 0.30 g mol-1.

  19. The Controlled Ecological Life Support System Antarctic Analog Project: Prototype Crop Production and Water Treatment System Performance

    Science.gov (United States)

    Bubenheim, David L.; Flynn, Michael T.; Bates, Maynard; Schlick, Greg; Kliss, Mark (Technical Monitor)

    1997-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP), is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the NASA. The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for sewage treatment, water recycle and crop production are being evaluated at Ames Research Center. The product water from sewage treatment using a Wiped-Film Rotating Disk is suitable for input to the crop production system. The crop production system has provided an enhanced level of performance compared with projected performance for plant-based life support: an approximate 50% increase in productivity per unit area, more than a 65% decrease in power for plant lighting, and more than a 75% decrease in the total power requirement to produce an equivalent mass of edible biomass.

  20. Gut microbes in correlation with mood: case study in a closed experimental human life support system.

    Science.gov (United States)

    Li, L; Su, Q; Xie, B; Duan, L; Zhao, W; Hu, D; Wu, R; Liu, H

    2016-08-01

    Gut microbial community, which may influence our mood, can be shaped by modulating the gut ecosystem through dietary strategies. Understanding the gut-brain correlationship in healthy people is important for maintenance of mental health and prevention of mental illnesses. A case study on the correlation between gut microbial alternation and mood swing of healthy adults was conducted in a closed human life support system during a 105-day experiment. Gut microbial community structures were analyzed using high-throughput sequencing every 2 weeks. A profile of mood states questionnaire was used to record the mood swings. Correlation between gut microbes and mood were identified with partial least squares discrimination analysis. Microbial community structures in the three healthy adults were strongly correlated with mood states. Bacterial genera Roseburia, Phascolarctobacterium, Lachnospira, and Prevotella had potential positive correlation with positive mood, while genera Faecalibacterium, Bifidobacterium, Bacteroides, Parabacteroides, and Anaerostipes were correlated with negative mood. Among which, Faecalibacterium spp. had the highest abundance, and showed a significant negative correlation with mood. Our results indicated that the composition of microbial community could play a role in emotional change in mentally physically healthy adults. © 2016 John Wiley & Sons Ltd.

  1. Advanced anaerobic bioconversion of lignocellulosic waste for the melissa life support system

    Science.gov (United States)

    Lissens, G.; Verstraete, W.; Albrecht, T.; Brunner, G.; Creuly, C.; Dussap, G.; Kube, J.; Maerkl, H.; Lasseur, C.

    The feasibility of nearly-complete conversion of lignocellulosic waste (70% food crops, 20% faecal matter and 10% green algae) into biogas was investigated in the context of the MELiSSA loop (Micro-Ecological Life Support System Alternative). The treatment comprised a series of processes, i.e. a mesophilic laboratory scale CSTR (continuously stirred tank reactor), an upflow biofilm reactor, a fiber liquefaction reactor employing the rumen bacterium Fibrobacter succinogenes and a hydrothermolysis system in near-critical water. By the one-stage CSTR, a biogas yield of 75% with a specific biogas production of 0.37 l biogas g-1 VSS (volatile suspended solids) added at a RT (hydraulic retention time) of 20-25 d was obtained. Biogas yields could not be increased considerably at higher RT, indicating the depletion of readily available substrate after 25 d. The solids present in the CSTR-effluent were subsequently treated in two ways. Hydrothermal treatment (T ˜ 310-350C, p ˜ 240 bar) resulted in effective carbon liquefaction (50-60% without and 83% with carbon dioxide saturation) and complete sanitation of the residue. Application of the cellulolytic Fibrobacter succinogenes converted remaining cellulose contained in the CSTR-effluent into acetate and propionate mainly. Subsequent anaerobic digestion of the hydrothermolysis and the Fibrobacter hydrolysates allowed conversion of 48-60% and 30%, respectively. Thus, the total process yielded biogas corresponding with conversions up to 90% of the original organic matter. It appears that particularly mesophilic digestion in conjunction with hydrothermolysis offers interesting features for (nearly) the MELiSSA system. The described additional technologies show that complete and hygienic carbon and energy recovery from human waste within MELiSSA is technically feasible, provided that the extra energy needed for the thermal treatment is guaranteed.

  2. NASA Engineering Design Challenges: Environmental Control and Life Support Systems. Water Filtration Challenge. EG-2008-09-134-MSFC

    Science.gov (United States)

    Schneider, Twila, Ed.

    2010-01-01

    This educator guide is organized into seven chapters: (1) Overview; (2) The Design Challenge; (3) Connections to National Curriculum Standards; (4) Preparing to Teach; (5) Classroom Sessions; (6) Opportunities for Extension; and (7) Teacher Resources. Chapter 1 provides information about Environmental Control and Life Support Systems used on NASA…

  3. Portable life support system regenerative carbon dioxide and water vapor removal by metal oxide absorbents preprototype hardware development and testing

    Science.gov (United States)

    Hart, Joan M.; Borghese, Joseph B.; Chang, Craig H.; Cusick, Robert J.

    1992-01-01

    NASA-Johnson has acquired a preprototype/full-scale metal oxide CO2 and humidity remover (MOCHR), together with its regeneration module. Tests conducted prior to delivery by the MOCHR's manufacturer have demonstrated the concurrent removal of H2O and CO2 at rates, and under conditions, that are applicable to EVA Portable Life Support Systems.

  4. Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing

    Science.gov (United States)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and

  5. Mechanical and Structural Behavior of Granular Material Packed Beds for Space Life Support System Applications

    Science.gov (United States)

    Malla, Ramesh B.; Anandakumar, Ganesh

    2005-01-01

    Long-term human mission to space, such as living in International Space Station (ISS), Lunar, and Martian bases, and travel to Mars, must m ake use of Advanced Life Support Systems (ALSS) to generate and recycle critical life supporting elements like oxygen and water. Oxygen Gen eration Assembly (OGA) and Water Processor Assembly (WPA), critical c omponents of ALSS, make use of series of granular material packed beds for generation and recycling of oxygen and water. Several granular m aterials can be used for generation, recycling, processing and recovery of oxygen and water. For example, they may include soft bed media, e.g. ion exchange resins for oxygen generation assembly and hard bed media such as, activated alumina, magchem (Magnesium oxide) and activa ted carbon to remove organic species like ethanol, methanol, and urea from wastewater in Water recovery/processing assembly. These beds are generally packed using a plate-spring mechanism to provide sufficien t compaction to the bed media throughout the course of operation. This paper presents results from an experimental study of a full-scale, 3 8.1 cm (15 inches) long and 3.7 cm (1.44 inches) diameter. activated alumina bed enclosed in a cylinder determining its force-displacement behavior, friction mobilizing force, and axial normal stress distribu tion under various axially applied loads and at different levels of packing. It is observed that force-displacement behavior is non-linear for low compaction level and becomes linear with increase in compaction of the bed media. Axial normal stress distribution along the length of the bed media decreased non-linearly with increase in depth from the loading end of the granular media. This paper also presents experimental results on the amount of particulates generated corresponding to various compaction levels. Particulates generated from each of the tests were measured using standard US sieves. It was found that the p articulates and the overall displacement of

  6. Optimization approach to LED crop illumination inside a controlled ecological life support system

    Science.gov (United States)

    Avercheva, Olga; Berkovich, Yuliy A.; Bassarskaya, Elizaveta; Zhigalova, Tatiana; Smolyanina, Svetlana O.; Kochetova, Galina; Konovalova, Irina

    Artificial lighting sources for growing plants can be efficiently used to control gas exchange and preserve the necessary closure of internal matter turnover in the atmosphere of a controlled ecological life support system (CELSS). However, the lighting sources contribute strongly to the equivalent mass of a CELSS. Thus, the choice of an optimal plant lighting regime largely determines the efficiency of the artificial ecosystem. Lighting systems based on light-emitting diodes (LEDs) are now considered the most promising for space applications (Massa et al., 2006). Many types of LEDs have been developed in recent years. Because of this, the problem of optimizing a lighting source for space vegetation chambers has become more difficult: we need to optimize more parameters (such as emission spectrum, light intensity, frequency of light pulses and the shape of the lighting field inside a vegetation chamber), and in a wider range of values. In this presentation we discuss approaches to optimizing the emission spectrum of a lighting source for the use in space applications, including CELSS. One of the benefits of LEDs is their narrow-band emission spectrum, which allows us to construct a lighting source with an optimal spectrum for plant growth and production. A number of experiments have shown that the reaction of plants to a narrow-band emission spectrum of LEDs is highly species-specific and affects many processes in plants. Adding a small amount of far red light to red and blue quanta increased biomass in radish and lettuce (Tamulaitis et al., 2005). Adding blue and near UV light of different wavelengths to red light decreased total sugar content in lettuce (Urbonavičiūtė et al., 2007) and Chinese cabbage (Avercheva et al., 2009). Supplemental green light improved the nutrition quality of some lettuce varieties: decreased nitrate content and increased ascorbic acid content (Samuoliene et al., 2012). It has also been shown that changes in lighting spectrum can lead

  7. Systems Engineering and Integration for Advanced Life Support System and HST

    Science.gov (United States)

    Kamarani, Ali K.

    2005-01-01

    Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.

  8. Effect of bacterial root symbiosis and urea as source of nitrogen on performance of soybean plants grown hydroponically for Bioregenerative Life Support Systems (BLSSs).

    Science.gov (United States)

    Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A; Barbieri, Giancarlo; De Pascale, Stefania

    2015-01-01

    Soybean is traditionally grown in soil, where root symbiosis with Bradyrhizobium japonicum can supply nitrogen (N), by means of bacterial fixation of atmospheric N2. Nitrogen fertilizers inhibit N-fixing bacteria. However, urea is profitably used in soybean cultivation in soil, where urease enzymes of telluric microbes catalyze the hydrolysis to ammonium, which has a lighter inhibitory effect compared to nitrate. Previous researches demonstrated that soybean can be grown hydroponically with recirculating complete nitrate-based nutrient solutions. In Space, urea derived from crew urine could be used as N source, with positive effects in resource procurement and waste recycling. However, whether the plants are able to use urea as the sole source of N and its effect on root symbiosis with B. japonicum is still unclear in hydroponics. We compared the effect of two N sources, nitrate and urea, on plant growth and physiology, and seed yield and quality of soybean grown in closed-loop Nutrient Film Technique (NFT) in growth chamber, with or without inoculation with B. japonicum. Urea limited plant growth and seed yield compared to nitrate by determining nutrient deficiency, due to its low utilization efficiency in the early developmental stages, and reduced nutrients uptake (K, Ca, and Mg) throughout the whole growing cycle. Root inoculation with B. japonicum did not improve plant performance, regardless of the N source. Specifically, nodulation increased under fertigation with urea compared to nitrate, but this effect did not result in higher leaf N content and better biomass and seed production. Urea was not suitable as sole N source for soybean in closed-loop NFT. However, the ability to use urea increased from young to adult plants, suggesting the possibility to apply it during reproductive phase or in combination with nitrate in earlier developmental stages. Root symbiosis did not contribute significantly to N nutrition and did not enhance the plant ability to use urea, possibly because of ineffective infection process and nodule functioning in hydroponics.

  9. International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Temperature and Humidity Control Subsystem

    Science.gov (United States)

    Williams, David E.

    2011-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.

  10. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    Science.gov (United States)

    Paul, Heather L.; Sompayrac, Robert; Conger, Bruce; Chamberlain, Mateo

    2009-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  11. Design and Testing of the Primary and Secondary Oxygen Regulators for the Flexible Portable Life Support System (FlexPLSS)

    Science.gov (United States)

    Campbell, Colin; Hepworth, Mark

    2010-01-01

    The next generation space suit requires additional capabilities for controlling and adjusting internal pressure compared to that of historical designs. Although the general configuration of the oxygen systems for the next generation space suit is similar or derived from the Apollo and Shuttle Extravehicular Mobility Unit (EMU) with Primary closed loop life support operation and Secondary sourced open loop life support operations, nearly everything else has evolved with new available technologies. For the case of the primary and secondary regulators, the design has gone away from purely mechanical systems actuated with pull-cords or "bicycle cables" to electro-mechanical hybrids that provide the best of both worlds with respect to power draw, reliability, and versatility. This paper discusses the development and testing of a Secondary Oxygen Regulator bench-top prototype along with comparisons of operation with the various prototypes for the Primary Oxygen Regulator.

  12. Guiding Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    Science.gov (United States)

    Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad

    2016-01-01

    The National Aeronautics and Space Administration's (NASA) technology development roadmaps provide guidance to focus technological development in areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-flight maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  13. Advanced Life Support Project: Crop Experiments at Kennedy Space Center

    Science.gov (United States)

    Sager, John C.; Stutte, Gary W.; Wheeler, Raymond M.; Yorio, Neil

    2004-01-01

    Crop production systems provide bioregenerative technologies to complement human crew life support requirements on long duration space missions. Kennedy Space Center has lead NASA's research on crop production systems that produce high value fresh foods, provide atmospheric regeneration, and perform water processing. As the emphasis on early missions to Mars has developed, our research focused on modular, scalable systems for transit missions, which can be developed into larger autonomous, bioregenerative systems for subsequent surface missions. Components of these scalable systems will include development of efficient light generating or collecting technologies, low mass plant growth chambers, and capability to operate in the high energy background radiation and reduced atmospheric pressures of space. These systems will be integrated with air, water, and thermal subsystems in an operational system. Extensive crop testing has been done for both staple and salad crops, but limited data is available on specific cultivar selection and breadboard testing to meet nominal Mars mission profiles of a 500-600 day surface mission. The recent research emphasis at Kennedy Space Center has shifted from staple crops, such as wheat, soybean and rice, toward short cycle salad crops such as lettuce, onion, radish, tomato, pepper, and strawberry. This paper will review the results of crop experiments to support the Exploration Initiative and the ongoing development of supporting technologies, and give an overview of capabilities of the newly opened Space Life Science (SLS) Lab at Kennedy Space Center. The 9662 square m (104,000 square ft) SLS Lab was built by the State of Florida and supports all NASA research that had been performed in Hanger-L. In addition to NASA research, the SLS Lab houses the Florida Space Research Institute (FSRI), responsible for co-managing the facility, and the University of Florida (UF) has established the Space Agriculture and Biotechnology Research and

  14. Carbon Dioxide Control System for a Mars Space Suit Life Support System

    Science.gov (United States)

    Alptekin, Gokhan; Jayaraman, Ambalavanan; Copeland, Robert; Parker, Amanda; Paul, Heather L.

    2011-01-01

    Carbon dioxide (CO2) control during Extravehicular Activities (EVAs) on Mars will be challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable metal oxide (MetOx) canisters weigh too much. Cycling bed systems and permeable membranes that are regenerable in space vacuum cannot vent on Mars due to the high partial pressure of CO2 in the atmosphere. Although sweep gas regeneration is under investigation, the feasibility, logistics penalties, and failure modes associated with this technique have not been fully determined. TDA Research, Inc. is developing a durable, high-capacity regenerable adsorbent that can remove CO2 from the space suit ventilation loop. The system design allows sorbent regeneration at or above 6 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the ventilation loop. Regeneration during EVA minimizes the amount of consumables to be brought from Earth and makes the mission more affordable, while providing great operational flexibility during EVA. The feasibility of the concept has been demonstrated in a series of bench-scale experiments and a preliminary system analysis. This paper presents the latest results from these sorbent and system development efforts.

  15. Carbon Dioxide Control System for a Mars Space Suit Life Support System

    Science.gov (United States)

    Alptekin, Gokhan; Jayaraman, Ambalavanan; Copeland, Robert; Parker, amanda; Paul, Heather L.

    2010-01-01

    Carbon dioxide (CO2) control during Extravehicular Activities (EVAs) on Mars will be challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable metal oxide (MetOx) canisters weigh too much. Cycling bed systems and permeable membranes that are regenerable in space vacuum cannot vent on Mars due to the high partial pressure of CO2 in the atmosphere. Although sweep gas regeneration is under investigation, the feasibility, logistics penalties, and failure modes associated with this technique have not been fully determined. TDA Research, Inc. is developing a durable, high-capacity regenerable adsorbent that can remove CO2 from the space suit ventilation loop. The system design allows sorbent regeneration at or above 6 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the ventilation loop. Regeneration during EVA eliminates the consumable requirement related to the use of LiOH canisters and the mission duration limitations imposed by MetOx system. The concept minimizes the amount of consumable to be brought from Earth and makes the mission more affordable, while providing great operational flexibility during EVA. The feasibility of the concept has been demonstrated in a series of bench-scale experiments and a preliminary system analysis. Results indicate that sorbent regeneration can be accomplished by applying a 14 C temperature swing, while regenerating at 13 torr (well above the Martian atmospheric pressure), withstanding over 1,000 adsorption/regeneration cycles. This paper presents the latest results from these sorbent and system development efforts.

  16. A Variable-Output Bio-Electrochemical System for Wastewater Treatment and Increased Loop Closure in Exploration Life Support Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this project IntAct Labs proposes to develop a novel system to increase loop closure for water treatment in regenerative life support using bio-electrochemical...

  17. [Redesign of the Spacesuit Long Life Battery and the Personal Life Support System Battery

    Science.gov (United States)

    Scharf, Stephanie

    2015-01-01

    This fall I was working on two different projects that culminated into a redesign of the spacesuit LLB (long life battery). I also did some work on the PLSS (personal life support system) battery with EC. My first project was redlining the work instruction for completing DPAs (destructive physical analysis) on battery cells in the department. The purpose of this document is to create a standard process and ensure that the data in the same way no matter who carries out the analysis. I observed three DPAs, conducted one with help, and conducted two on my own all while taking notes on the procedure. These notes were used to write the final work instruction that will become is the department standard. My second project continued the work of the summer co-op before me. I was testing aluminum heat sinks for their ability to provide good thermal conduction and structural support during a thermal runaway event. The heat sinks were designed by the summer intern but there was not much time for testing before he left. We ran tests with a heater on the bottom of a trigger cell to try to drive thermal runaway and ensure that it will not propagate to adjacent cells. We also ran heat-to-vent tests in an oven to see if the assembly provided structural support and prevented sidewall rupture during thermal runaway. These tests were carried out at ESTA (energy systems test area) and are providing very promising results that safe, high performing (greater than 180 Wh/kg) designs are possible. My main project was a redesign of the LLB battery. Another summer intern did some testing and concluded that there was no simple fix to mitigate thermal runaway propagation hazards in the current design. The only option was a clean sheet redesign of the battery. I was given a volume and ideal energy density and the rest of the design was up to me. First, I created new heat sink banks in Creo using the information gathered in the metal heat sink tests from the summer intern. After this, I made

  18. Comparison of metal oxide absorbents for regenerative carbon dioxide and water vapor removal for advanced portable life support systems

    Science.gov (United States)

    Stonesifer, Greg T.; Chang, Craig H.; Cusick, Robert J.; Hart, Joan M.

    1991-01-01

    Metal-oxide absorbents (MOAs) have a demonstrated capability for removal of both metabolic CO2 and H2O from breathing atmospheres, simplifying portable life support system (PLSS) design and affording reversible operation for regeneration. Attention is presently given to the comparative performance levels obtained by silver-oxide-based and silver/zinc-oxide-based systems, which also proved to be longer-lasting than the silver oxide-absorber system. The silver/zinc system is found to substantially simplify the ventilation loop of a prospective Space Station Freedom PLSS.

  19. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  20. Mass exchange in an experimental new-generation life support system model based on biological regeneration of environment

    Science.gov (United States)

    Tikhomirov, A. A.; Ushakova, S. A.; Manukovsky, N. S.; Lisovsky, G. M.; Kudenko, Yu. A.; Kovalev, V. S.; Gubanov, V. G.; Barkhatov, Yu. V.; Gribovskaya, I. V.; Zolotukhin, I. G.; Gros, J. B.; Lasseur, Ch.

    An experimental model of a biological life support system was used to evaluate qualitative and quantitative parameters of the internal mass exchange. The photosynthesizing unit included the higher plant component (wheat and radish), and the heterotrophic unit consisted of a soil-like substrate, California warms, mushrooms and microbial microflora. The gas mass exchange involved evolution of oxygen by the photosynthesizing component and its uptake by the heterotroph component along with the formation and maintaining of the SLS structure, growth of mushrooms and California worms, human respiration, and some other processes. Human presence in the system in the form of "virtual human" that at regular intervals took part in the respirative gas exchange during the experiment. Experimental data demonstrated good oxygen/carbon dioxide balance, and the closure of the cycles of these gases was almost complete. The water cycle was nearly 100% closed. The main components in the water mass exchange were transpiration water and the watering solution with mineral elements. Human consumption of the edible plant biomass (grains and roots) was simulated by processing these products by a unique physicochemical method of oxidizing them to inorganic mineral compounds, which were then returned into the system and fully assimilated by the plants. The oxidation was achieved by "wet combustion" of organic biomass, using hydrogen peroxide following a special procedure, which does not require high temperature and pressure. Hydrogen peroxide is produced from the water inside the system. The closure of the cycle was estimated for individual elements and compounds. Stoichiometric proportions are given for the main components included in the experimental model of the system. Approaches to the mathematical modeling of the cycling processes are discussed, using the data of the experimental model. Nitrogen, as a representative of biogmic elements, shows an almost 100% closure of the cycle inside

  1. Novel laboratory approaches to multi-purpose aquatic bioregenerative closed-loop food production systems.

    Science.gov (United States)

    Blum, V; Andriske, M; Kreuzberg, K; Paassen, U; Schreibman, M P; Voeste, D

    1998-01-01

    Based on the construction principle of the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) two novel combined animal-plant production systems were developed in laboratory scale the first of which is dedicated to mid-term operation in closed state up to two years. In principle both consist of the "classic" C.E.B.A.S. subcomponents: animal tank (Zoological Component), plant cultivators (Botanical Component), ammonia converting bacteria filter (Microbial Component) and data acquisition/control unit (Electronical Component). The innovative approach in the first system is the utilization of minimally three aquatic plant cultivators for different species. In this one the animal tank has a volume of about 160 liters and is constructed as an "endless-way system" surrounding a central unit containing the heat exchanger and the bacteria filter with volumes of about 1.5 liters each. A suspension plant cultivator (1 liter) for the edible duckweed Wolffia arrhiza is externally connected. The second plant cultivator is a meandric microalgal bioreactor for filamentous green algae. The third plant growth facility is a chamber with about 2.5 liters volume for cultivation of the "traditional" C.E.B.A.S. plant species, the rootless buoyant Ceratophyllum demersum. Both latter units are illuminated with 9 W fluorescent lamps. In the current experiment the animal tank contains the live-bearing teleost fish Xiphophorus helleri and the small pulmonate water snail Biomphalaria glabrata because their physiological adaptation to the closed system conditions is well known from many previous C.E.B.A.S. experiments. The water temperature is maintained at 25 degrees C and the oxygen level is regulated between 4 and 7 mg/l by switching on and off the plant cultivator illuminations according to a suitable pattern thus utilizing solely the oxygen produced by photosynthesis. The animals and the microorganisms of filter and biofilm provide the plants with a sufficient amount of carbon

  2. Novel laboratory approaches to multi-purpose aquatic bioregenerative closed-loop food production systems

    Science.gov (United States)

    Blüm, V.; Andriske, M.; Kreuzberg, K.; Paassen, U.; Schreibman, M. P.; Voeste, D.

    Based on the construction principle of the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) two novel combined animal-plant production systems were developed in laboratory scale the first of which is dedicated to mid-term operation in closed state up to two years. In principle both consist of the "classic" C.E.B.A.S. subcomponents: animal tank (Zoological Component), plant cultivators (Botanical Component), ammonia converting bacteria filter (Microbial Component) and data acquisition/control unit (Electronical Component). The innovative approach in the first system is the utilization of minimally three aquatic plant cultivators for different species. In this one the animal tank has a volume of about 160 liters and is constructed as an "endless-way system" surronding a central unit containing the heat exchanger and the bacteria filter with volumes of about 1.5 liters each. A suspension plant cultivator (1 liter) for the edible duckweed Wolffia arrhiza is externally connected. The second plant cultivator is a meandric microalgal bioreactor for filamentous green algae. The third plant growth facilitiy is a chamber with about 2.5 liters volume for cultivation of the "traditional" C.E.B.A.S. plant species, the rootless buoyant Ceratophyllum demersum. Both latter units are illuminated with 9 W fluorescent lamps. In the current experiment the animal tank contains the live-bearing teleost fish Xiphophorus helleri and the small pulmonate water snail Biomphalaria glabrata because their physiological adaptation to the closed system conditions is well known from many previous C.E.B.A.S. experiments. The water temperature is maintained at 25 °C and the oxygen level is regulated between 4 and 7 mg/1 by switching on and off the plant cultivator illuminations according to a suitable pattern thus utilizing solely the oxygen produced by photosynthesis. The animals and the micoorganisms of filter and bioflim provide the plants with a sufficient amount of carbon dioxide

  3. Mathematical Modeling of Food Supply for Long Term Space Missions Using Advanced Life Support

    Science.gov (United States)

    Cruthirds, John E.

    2003-01-01

    A habitat for long duration missions which utilizes Advanced Life Support (ALS), the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex), is currently being built at JSC. In this system all consumables will be recycled and reused. In support of this effort, a menu is being planned utilizing ALS crops that will meet nutritional and psychological requirements. The need exists in the food system to identify specific physical quantities that define life support systems from an analysis and modeling perspective. Once these quantities are defined, they need to be fed into a mathematical model that takes into consideration other systems in the BIO-Plex. This model, if successful, will be used to understand the impacts of changes in the food system on the other systems and vice versa. The Equivalent System Mass (ESM) metric has been used to describe systems and subsystems, including the food system options, in terms of the single parameter, mass. There is concern that this approach might not adequately address the important issues of food quality and psychological impact on crew morale of a supply of fiesh food items. In fact, the mass of food can also depend on the quality of the food. This summer faculty fellow project will involve creating an appropriate mathematical model for the food plan developed by the Food Processing System for BIO-Plex. The desired outcome of this work will be a quantitative model that can be applied to the various options of supplying food on long-term space missions.

  4. Life Support and Habitation Systems: Crew Support and Protection for Human Exploration Missions Beyond Low Earth Orbit

    Science.gov (United States)

    Barta, Daniel J.; McQuillan, Jeffrey

    2011-01-01

    The National Aeronautics and Space Administration (NASA) has recently expanded its mission set for possible future human exploration missions. With multiple options there is interest in identifying technology needs across these missions to focus technology investments. In addition to the Moon and other destinations in cis-lunar space, other destinations including Near Earth Objects and Mars have been added for consideration. Recently, technology programs and projects have been re-organizing to better meet the Agency s strategic goals and address needs across these potential future missions. Life Support and Habitation Systems (LSHS) is one of 10 Foundational Domains as part of the National Aeronautics and Space Administration s Exploration Technology Development Program. The chief goal of LSHS is to develop and mature advanced technologies to sustain human life on missions beyond Low Earth Orbit (LEO) to increase reliability, reduce dependency on resupply and increase vehicle self-sufficiency. For long duration exploration missions, further closure of life support systems is of interest. Focus includes key technologies for atmosphere revitalization, water recovery, waste management, thermal control and crew accommodations. Other areas of focus include technologies for radiation protection, environmental monitoring and fire protection. The aim is to recover additional consumable mass, reduce requirements for power, volume, heat rejection, crew involvement, and meet exploration vehicle requirements. This paper provides a brief description of the LSHS Foundational Domain as defined for fiscal year 2011.

  5. Compact Multi-Gas Monitor for Life Support Systems Control in Space: Evaluation Under Realistic Environmental Conditions

    Science.gov (United States)

    Alonso, Jesus Delgado; Phillips, Straun; Chullen, Cinda; Mendoza, Edgar

    2014-01-01

    Advanced space life support systems require lightweight, low-power, durable sensors for monitoring critical gas components. A luminescence-based optical flow-through cell to monitor carbon dioxide, oxygen, and humidity has been developed and was demonstrated using bench-top instrumentation under environmental conditions relevant to portable life support systems, including initially pure oxygen atmosphere, temperature range from 50 F to 150 F, and humidity from dry to 100% RH and under conditions of water condensation. This paper presents the most recent progress in the development of this sensor technology. Trace gas contaminants in a space suit, originating from hardware and material off-gassing and crew member metabolism, are from many chemical families. The result is a gas mix much more complex than the pure oxygen fed into the space suit, and this complexity may interfere with gas sensor readings. This paper presents an evaluation of optical sensor performance when exposed to the most significant trace gases reported to be found in space suits. A study of the calibration stability of the sensors is also presented. For that purpose, a profile of temperature, pressure, humidity, and gas composition for the duration of an EVA has been defined, and the performance of sensors operated repeatedly under those conditions has been studied. Finally, this paper presents the first compact readout unit for these optical sensors, designed for the volume, power, and weight restrictions of a PLSS.

  6. Main results of biological experiments on Russian orbital stations and its contribution in future life support system

    Science.gov (United States)

    Nechitailo, Galina S.

    Biological experiments in a field of space biology have been started before the first satellite flight. These experiments were devoted to an estimation of space radiation factors on living organisms and carried out in mountains. The systematic biological experiments in space have been started in 1971 with orbital station Salyut. In total more than 1000 experiments have been installed in space flights: fundamental investigations (panspermia theory, gravity biology, complex factors of space environment on biological objects) and applications focused on future biological life support systems. The investigations were directed to some tasks: influence of complex factors of space flight on living organisms at different stages of the evolution scale; investigations of proteins and DNA, cell, tissue, organism and assembled organisms under space flight factors with separation of individual factors, for example, microgravity and space radiation. The aim was to understand the organism reactions on different levels, to get complete ontogenesis cycle in space flight and to find adaption ability of organisms to extreme factors of the space flight. In course of investigations, the unique experimental equipment for orbital biological experiments has been designed; new methods for organism protection against the negative factors of space flight were found; developed new biotechnological products and processes; developed recommendations for space station interior with biological objects for psychological comfort of crew. The results showed a possibility and ways to include different organisms into biotechnological life support systems for future space stations and interplanet spaceships.

  7. A Review: Using Pyrolysis and its Bioproducts to Help Close the Loop in Sustainable Life Support Systems

    Science.gov (United States)

    McCoy, LaShelle E.

    2013-01-01

    The next step in human exploration of space is beyond low Earth orbit and possibly to sites such as the Moon and Mars. Resupply of critical life support components for missions such as these are difficult or impossible. Life support processes for closing the loop of water, oxygen and carbon have to be identified. Currently, there are many technologies proposed for terrestrial missions for waste, water, air processing. and the creation of consumables. There are a variety of different approaches, but few address all of these issues simultaneously. One candidate is pyrolysis; a method where waste streams can be heated in the absence of oxygen to undergo a thermochemical conversion producing a series of bioproducts. Bioproducts like biochar made from non-edible biomass and human solid waste can possibly provide valuable benefits such as waste reduction, regolith fertilization for increased food production, and become a consumable for water processing and air revitalization systems. Syngas containing hydrogen, carbon monoxide and carbon dioxide, can be converted to methane and dimethyl ether to create propellants. Bio-oils can be utilized as a heating fuel or fed to bioreactors that utilize oil-eating microbes.

  8. Environmental Controls and Life Support System (ECLSS) Design for a Multi-Mission Space Exploration Vehicle (MMSEV)

    Science.gov (United States)

    Stambaugh, Imelda; Baccus, Shelley; Buffington, Jessie; Hood, Andrew; Naids, Adam; Borrego, Melissa; Hanford, Anthony J.; Eckhardt, Brad; Allada, Rama Kumar; Yagoda, Evan

    2013-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.

  9. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing

  10. Regenerable Sorbent for Combined CO2, Water, and Trace-Contaminant Capture in the Primary Life Support System (PLSS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA objective of expanding the human experience into the far reaches of space requires the development of regenerable life support systems. This proposal...

  11. Regenerable Sorbent for Combined CO2, Water, and Trace-Contaminant Capture in the Primary Life Support System (PLSS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA objective of expanding the human experience into the far reaches of space requires the development of regenerable life support systems. This proposal...

  12. Overview of Microbiological Tests Performed During the Design of the International Space Station Environmental Control and Life Support Systems

    Science.gov (United States)

    Roman, Monsi C.; Mittelman, Marc W.

    2010-01-01

    The design and manufacturing of the main Environmental Control and Life Support Systems (ECLSS) for the United States segments of the International Space Station (ISS) was an involved process that started in the late 1980's, with the assessment and testing of competing technologies that could be used to clean the air and recycle water. It culminated in 2009 with the delivery and successful activation of the Water Recovery System (WRS) water processor (WP). The ECLSS required the work of a team of engineers and scientist working together to develop systems that could clean and/or recycle human metabolic loads to maintain a clean atmosphere and provide the crew clean water. One of the main goals of the ECLSS is to minimize the time spent by the crew worrying about vital resources not available in the vacuum of space, which allows them to spend most of their time learning to live in a microgravity environment many miles from the comforts of Earth and working on science experiments. Microorganisms are a significant part of the human body as well as part of the environment that we live in. Therefore, the ISS ECLSS design had to take into account the effect microorganisms have on the quality of stored water and wastewater, as well as that of the air systems. Hardware performance issues impacted by the accumulation of biofilm and/or microbiologically influenced corrosion were also studied during the ECLSS development stages. Many of the tests that were performed had to take into account the unique aspects of a microgravity environment as well as the challenge of understanding how to design systems that could not be sterilized or maintained in a sterile state. This paper will summarize the work of several studies that were performed to assess the impacts and/or to minimize the effects of microorganisms in the design of a closed loop life support system.

  13. New genome sequence data and molecular tools promote the use of photosynthetic and edible cyanobacteria in bioregenerative systems to support human space exploration.

    Science.gov (United States)

    Leys, Natalie; Morin, Nicolas; Janssen, Paul; Mergeay, Max

    Cyanobacteria are daily used as nutritional supplements (e.g. Spirulina) and are considered for promising applications beyond Earth, in space, where they can play a crucial role in closed miniaturised biological waste recycling systems that are currently developed to support future long-term space missions. Cyanobacteria can be cultured with artificial light in controllable photobioreactors, and used for the efficient removal of CO2 from and production of O2 in the at-mosphere of the confined spacecraft, for removal of nitrate from waste water that is recycled to potable water, and as complementary food source. In this context, the filamentous cyanobac-terium Arthrospira sp. PCC 8005 was selected as part of the bio-regenerative life-support system MELiSSA from the European Space Agency. For bioprocess control and optimisation, the access to its genetic information and the development of molecular tools is crucial. Here we report on our efforts to determine the full genome of the cyanobacterium Arthrospira sp. PCC 8005. The obtained sequence data were analysed in detail to gain a better insight in the photosynthetic, nutritive, or potential toxic potential of this strain. In addition, the sensitivity of PCC 8005 to ionizing radiation was investigated because prolonged exposure of PCC 8005 to cosmic radiation in space might have a deleterious effect on its metabolism and oxygenic properties. To our knowledge, of the 6 different research groups across the globe trying to sequence Arthrospira strains, none of them, including us, were yet able to obtain a complete genome sequence. For Arthrospira sp. strain PCC 8005, we obtained 119 contigs (assembled in 16 scaffolds), representing 6,3 Mb, with 5,856 predicted protein-coding sequences (CDSs) and 176 genes encoding RNA. The PCC 8005 genome displays an unusual high number of large repeated sequences, covering around 8% of the genome, which likely hampered the sequenc-ing. The PCC 8005 genome is also ridden by mobile

  14. Proposed minimum requirements for the operational characteristics and testing of closed circuit life support system control electronics.

    Science.gov (United States)

    Kirk, J C

    1998-01-01

    The popularization and transformation of scuba diving into a broadly practiced sport has served to ignite the interest of technically oriented divers into ever more demanding areas. This, along with the gradual release of military data, equipment, and techniques of closed circuit underwater breathing apparatus, has resulted in a virtual explosion of semiclosed and closed circuit systems for divers. Although many of these systems have been carefully thought out by capable designers, the impulse to rush to market with equipment that has not been fully developed and carefully tested is irresistible to marketers. In addition, the presence of systems developed by well-intentioned and otherwise competent designers who are, nonetheless, inexperienced in the field of life support can result in the sale of failure-prone equipment to divers who lack the knowledge and skills to identify deficiencies before disaster occurs. For this reason, a set of industry standards establishing minimum requirements and testing is needed to guide the designers of this equipment, and to protect the user community from incomplete or inadequate design. Many different technologies go into the development of closed circuit scuba. One key area is the design of electronics to monitor and maintain the critical gas mixtures of the closed circuit loop. Much of the system reliability and inherent danger is resident in the design of the circuitry and the software (if any) that runs it. This article will present a set of proposed minimum requirements, with the goal of establishing a dialog for the creation of guidelines for the classification, rating, design, and testing of embedded electronics for life support systems used in closed circuit applications. These guidelines will serve as the foundation for the later creation of a set of industry specifications.

  15. Energy performance and energy saving of life-support systems in ...

    African Journals Online (AJOL)

    The contemporary automation systems of buildings ensure the most efficient control automation for heating, ventilation, lighting, hot water supply systems. This leads to significant increase of operation efficiency and reduction of energy costs. The integrated energy saving processes and functions are optimized depending ...

  16. Training and certification program of the operating staff for a 90-day test of a regenerative life support system

    Science.gov (United States)

    1972-01-01

    Prior to beginning a 90-day test of a regenerative life support system, a need was identified for a training and certification program to qualify an operating staff for conducting the test. The staff was responsible for operating and maintaining the test facility, monitoring and ensuring crew safety, and implementing procedures to ensure effective mission performance with good data collection and analysis. The training program was designed to ensure that each operating staff member was capable of performing his assigned function and was sufficiently cross-trained to serve at certain other positions on a contingency basis. Complicating the training program were budget and schedule limitations, and the high level of sophistication of test systems.

  17. A Tale of Two Chambers: Iterative Approaches and Lessons Learned from Life Support Systems Testing in Altitude Chambers

    Science.gov (United States)

    Callini, Gianluca

    2016-01-01

    With a brand new fire set ablaze by a serendipitous convergence of events ranging from a science fiction novel and movie ("The Martian"), to ground-breaking recent discoveries of flowing water on its surface, the drive for the journey to Mars seems to be in a higher gear than ever before. We are developing new spacecraft and support systems to take humans to the Red Planet, while scientists on Earth continue using the International Space Station as a laboratory to evaluate the effects of long duration space flight on the human body. Written from the perspective of a facility test director rather than a researcher, and using past and current life support systems tests as examples, this paper seeks to provide an overview on how facility teams approach testing, the kind of information they need to ensure efficient collaborations and successful tests, and how, together with researchers and principal investigators, we can collectively apply what we learn to execute future tests.

  18. Plant growth and mineral recycle trade-offs in different scenarios for a CELSS. [Closed Ecological Life Support System

    Science.gov (United States)

    Ballou, E. V.; Wydeven, T.; Spitze, L. A.

    1982-01-01

    Data for hydroponic plant growth in a manned system test is combined with nutritional recommendations to suport trade-off calculations for closed and partially closed life support system scenarios. Published data are used as guidelines for the masses of mineral nutrients needed for higher plant production. The results of calculations based on various scenarios are presented for various combinations of plant growth chamber utilization and fraction of mineral recycle. Estimates are made of the masses of material needed to meet human nutritional requirements in the various scenarios. It appears that food production from a plant growth chamber with mineral recycle is favorable to reduction of the total launch weight in missions exceeding 3 years.

  19. Decision Support Systems for Research and Management in Advanced Life Support

    Science.gov (United States)

    Rodriquez, Luis F.

    2004-01-01

    Decision support systems have been implemented in many applications including strategic planning for battlefield scenarios, corporate decision making for business planning, production planning and control systems, and recommendation generators like those on Amazon.com(Registered TradeMark). Such tools are reviewed for developing a similar tool for NASA's ALS Program. DSS are considered concurrently with the development of the OPIS system, a database designed for chronicling of research and development in ALS. By utilizing the OPIS database, it is anticipated that decision support can be provided to increase the quality of decisions by ALS managers and researchers.

  20. Phase 1 engineering and technical data report for the thermal control extravehicular life support system

    Science.gov (United States)

    1975-01-01

    A shuttle EVLSS Thermal Control System (TCS) is defined. Thirteen heat rejection subsystems, thirteen water management subsystems, nine humidity control subsystems, three pressure control schemes and five temperature control schemes are evaluated. Sixteen integrated TCS systems are studied, and an optimum system is selected based on quantitative weighting of weight, volume, cost, complexity and other factors. The selected sybsystem contains a sublimator for heat rejection, a bubble expansion tank for water management, and a slurper and rotary separator for humidity control. Design of the selected subsystem prototype hardware is presented.

  1. Investigations of perspective technologies, equipment and sanitary - hygienic means for Life-Support System of new generation

    Science.gov (United States)

    Shumilina, I. V.

    Creation of optimal sanitary - hygienic conditions allows to keep health and capacity of the crewmembers work at increase of space flight duration. There is a wide application experience of means, methods and equipment for sanitary - hygienic supply, which were developed and experimentally tested for space flights. However, about 800 kg personal hygiene means (napkins and towels are made with water and delivered with the Earth) are necessary for 3 crewmembers per one year. For long orbital and interplanetary flights (without an opportunity of stocks updating) it is necessary to increase a degree of Life-Support System isolation and optimization of goods turnover. Washing combined with water regeneration system is most perspective for sanitary - hygienic procedures. Therefore, creation of space equipment for washing with sanitary - hygienic water (SHW) regeneration system is especially important. The researches have shown, that to processes, which can be applied for SHW regeneration in space conditions and require insignificant quantity of additional materials (as against sorption), concern membrane methods (reverse osmosis, nanofiltration etc.). Two-step membrane unit for SHW regeneration recovered no less than 85 % of permeate with the organic and inorganic selectivity of 82-95 %. The tests of two-step membrane unit for SHW regeneration carried out on mock up solutions and real SHW, containing detergents really used in space flight conditions. The researches on a substantiation of an opportunity of clothing washing, clothing drying and the estimation of an opportunity of application of various detergents for clothing washing are urgent. The tests of water extraction technology from textile materials are carried out. Is established, that at conditional time of contact 1s, humidity of a leaving air flow from clothing drying unit comes nearer to 100 %. It is necessary to solve the problem for creation of Life-Support System of new generation for long-term space

  2. A Tale of Two Chambers: Iterative Approaches and Lessons Learned from Life Support Systems Testing in Altitude Chambers

    Science.gov (United States)

    Callini, Gianluca

    2016-01-01

    The drive for the journey to Mars is in a higher gear than ever before. We are developing new spacecraft and life support systems to take humans to the Red Planet. The journey that development hardware takes before its final incarnation in a fully integrated spacecraft can take years, as is the case for the Orion environmental control and life support system (ECLSS). Through the Pressure Integrated Suit Test (PIST) series, NASA personnel at Johnson Space Center have been characterizing the behavior of a closed loop ECLSS in the event of cabin depressurization. This kind of testing - one of the most hazardous activities performed at JSC - requires an iterative approach, increasing in complexity and hazards). The PIST series, conducted in the Crew and Thermal Systems Division (CTSD) 11-ft Chamber, started with unmanned test precursors before moving to a human-in-the-loop phase, and continues to evolve with the eventual goal of a qualification test for the final system that will be installed on Orion. Meanwhile, the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) program is an effort to research and develop technologies that will work in concert to support habitation on Mars. September 2015 marked the first unmanned HESTIA test, with the goal of characterizing how ECLSS technologies work together in a closed environment. HESTIA will culminate in crewed testing, but it can benefit from the lessons learned from another test that is farther ahead in its development and life cycle. Discussing PIST and HESTIA, this paper illustrates how we approach testing, the kind of information that facility teams need to ensure efficient collaborations and successful testing, and how we can apply what we learn to execute future tests.

  3. The possibility of aromorphosis in further development of closed human life support systems using genetically modified organisms

    Science.gov (United States)

    Gitelson, Josef

    Creation of closed systems that would be able to support human life outside the biosphere for extended periods of time (CES) was started after humans went into outer space. The last fifty years have seen the construction of experimental variants of the CES in Russia, USA, and Japan. The "MELISSA" project of the European Space Agency is being prepared to be launched. Much success has been achieved in closing material loops in the CES. An obstacle to constructing a fully closed ecosystem is significant imbalance in material exchange between the producing components and the decomposing ones in the CES. The spectrum of metabolites released by humans does not fully correspond to the requirements of the main producer of the CES -plants. However, this imbalance can be corrected by rather simple physicochemical processes that can be used in the CES without unclosing the system. The major disagreement that prevents further improvement of human life support systems (LSS) is that the spectrum of products of photosynthesis in the CES does not correspond to human food requirements qual-itatively, quantitatively, or in terms of diversity. In the normal, physiologically sound, human diet, this discrepancy is resolved by adding animal products. However, there are technical, technological, and hygienic obstacles to including animals in the closed human life support systems, and if higher animals are considered, there are also ethical arguments. If between the photoautotrophic link, plants, and the heterotrophic link, the human, there were one more heterotrophic link, farm animals, the energy requirements of the system would be increased by nearly an order of magnitude, decreasing its efficiency and making it heavier and bulkier. Is there another way to close loops in human life support systems? In biology, such "findings" of evolution, which open up new perspectives and offer ample opportunities for possible adapta-tions, are termed aromorphoses (Schmalhausen, 1948). In further

  4. Evaluation of engineered foods for Closed Ecological Life Support System (CELSS)

    Science.gov (United States)

    Karel, M.

    1981-01-01

    A system of conversion of locally regenerated raw materials and of resupplied freeze-dried foods and ingredients into acceptable, safe and nutritious engineered foods is proposed. The first phase of the proposed research has the following objectives: (1) evaluation of feasibility of developing acceptable and reliable engineered foods from a limited selection of plants, supplemented by microbially produced nutrients and a minimum of dehydrated nutrient sources (especially those of animal origin); (2) evaluation of research tasks and specifications of research projects to adapt present technology and food science to expected space conditions (in particular, problems arising from unusual gravity conditions, problems of limited size and the isolation of the food production system, and the opportunities of space conditions are considered); (3) development of scenarios of agricultural production of plant and microbial systems, including the specifications of processing wastes to be recycled.

  5. Synthetic Biology and Microbial Fuel Cells: Towards Self-Sustaining Life Support Systems

    Science.gov (United States)

    Hogan, John Andrew

    2014-01-01

    NASA ARC and the J. Craig Venter Institute (JCVI) collaborated to investigate the development of advanced microbial fuels cells (MFCs) for biological wastewater treatment and electricity production (electrogenesis). Synthetic biology techniques and integrated hardware advances were investigated to increase system efficiency and robustness, with the intent of increasing power self-sufficiency and potential product formation from carbon dioxide. MFCs possess numerous advantages for space missions, including rapid processing, reduced biomass and effective removal of organics, nitrogen and phosphorus. Project efforts include developing space-based MFC concepts, integration analyses, increasing energy efficiency, and investigating novel bioelectrochemical system applications

  6. Would Current International Space Station (ISS) Recycling Life Support Systems Save Mass on a Mars Transit?

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    The oxygen and water are recycled on the International Space Station (ISS) to save the cost of launching their mass into orbit. Usually recycling systems are justified by showing that their launch mass would be much lower than the mass of the oxygen or water they produce. Short missions such as Apollo or space shuttle directly provide stored oxygen and water, since the needed total mass of oxygen and water is much less than that of there cycling equipment. Ten year or longer missions such as the ISS or a future moon base easily save mass by recycling while short missions of days or weeks do not. Mars transit and long Mars surface missions have an intermediate duration, typically one to one and a half years. Some of the current ISS recycling systems would save mass if used on a Mars transit but others would not.

  7. Design, Development, and Testing of a Water Vapor Exchanger for Spacecraft Life Support Systems

    Science.gov (United States)

    Izenson, Michael G.; Micka, Daniel J.; Chepko, Ariane B.; Rule, Kyle C.; Anderson, Molly S.

    2016-01-01

    Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Maximizing the use of regenerative systems and conserving water are critical considerations. This paper describes the design, development, and testing of an innovative water vapor exchanger (WVX) that can minimize the amount of water absorbed in, and vented from, regenerative CO2 removal systems. Key design requirements for the WVX are high air flow capacity (suitable for a crew of six), very high water recovery, and very low pressure losses. We developed fabrication and assembly methods that enable high-efficiency mass transfer in a uniform and stable array of Nafion tubes. We also developed analysis and design methods to compute mass transfer and pressure losses. We built and tested subscale units sized for flow rates of 2 and 5 cu ft/min (3.4–8.5 cu m/hr). Durability testing demonstrated that a stable core geometry was sustained over many humid/dry cycles. Pressure losses were very low (less than 0.5 in. H2O (125 Pa) total) and met requirements at prototypical flow rates. We measured water recovery efficiency across a range of flow rates and humidity levels that simulate the range of possible cabin conditions. We measured water recovery efficiencies in the range of 80 to 90%, with the best efficiency at lower flow rates and higher cabin humidity levels. We compared performance of the WVX with similar units built using an unstructured Nafion tube bundle. The WVX achieves higher water recovery efficiency with nearly an order of magnitude lower pressure drop than unstructured tube bundles. These results show that the WVX provides uniform flow through flow channels for both the humid and dry streams and can meet requirements for service on future exploration spacecraft. The WVX technology will be best suited for long-duration exploration vehicles that require regenerative CO2 removal systems while

  8. Evaluation of engineering foods for Controlled Ecological Life Support Systems (CELSS)

    Science.gov (United States)

    Karel, M.

    1982-01-01

    The feasibility of developing acceptable and reliable engineered foods for use in controlled ecological support systems (CELSS) was evaluated. Food resupply and regeneration are calculated, flow charts of food processes in a multipurpose food pilot plant are presented, and equipment for a multipurpose food pilot plant and potential simplification of processes are discussed. Food-waste treatment and water usage in food processing and preparation are also considered.

  9. Spacesuit Portable Life Support System Breadboard (PLSS 1.0) Development and Test Results

    Science.gov (United States)

    Vogel, Matt R.; Watts, Carly

    2011-01-01

    A multi-year effort has been carried out at NASA-JSC to develop an advanced Extravehicular Activity (EVA) PLSS design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station (ISS) Extravehicular Mobility Unit (EMU) PLSS, the advanced PLSS comprises of three subsystems required to sustain the crew during EVA including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test rig that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, ventilation loop fan, Rapid Cycle Amine (RCA) swingbed, and Spacesuit Water Membrane Evaporator (SWME). Testing accumulated 239 hours over 45 days, while executing 172 test points. Specific PLSS 1.0 test objectives assessed during this testing include: confirming key individual components perform in a system level test as they have performed during component level testing; identifying unexpected system-level interactions; operating PLSS 1.0 in nominal steady-state EVA modes to baseline subsystem performance with respect to metabolic rate, ventilation loop pressure and flow rate, and environmental conditions; simulating nominal transient EVA operational scenarios; simulating contingency EVA operational scenarios; and further evaluating individual technology development components. Successful testing of the PLSS 1.0 provided a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system

  10. Impact of Biofilms on the Design and Operation of ISS Life Support Systems

    Science.gov (United States)

    Carter, Donald Layne; Brown, Chris

    2017-01-01

    Biofilm growth has been an ongoing issue for US and Russian water systems on the International Space Station, and is a critical issue for exploration missions in which water systems must be designed to accommodate dormant periods of up to one year. On ISS, Russian condensate plumbing has previously clogged with biomass, requiring condensate plumbing to now be regularly replaced. In the US Segment, the release of biofilm from the Water Processor waste tank has clogged a solenoid valve downstream of the tank, resulting in the costly replacement of the inlet separator and process pump. Subsequent management of the biofilm in the waste tank involves restrictions on tank cycles to limit the release of biomass and an additional filter to protect downstream components. Engineering personnel are now evaluating concepts to better manage the biomass, including the use of microbial inhibitors and UV LEDs. Though current ISS operations could likely be sustained for the duration of ISS, a more effective method must be developed for managing the growth and release of biomass in future exploration vehicles. Biofilm management for future missions is complicated by the requirement to accommodate extended periods of dormancy during which time the water system will be stagnant. The current approach under consideration is to flush the waste water with product water to reduce the organic content followed by use of microbial inhibitors or UV. However, other concepts may also be developed based on ongoing research.

  11. The biological component of the life support system for a martian expedition

    Science.gov (United States)

    Sychev, V.; Levinskikh, M.; Shepelev, Y.

    Five ground-based experiments were performed at RF SRC-IBMP with the aim to scrutinize a human-unicell algae-mineralization model as a component of a life3 support system. The system was 15 m in volume. It contained 45 L of algal suspension with the dry substance density of 10-12 g per one liter. Water volume, including the algal suspension, was 59 L. More sophisticated subsystems including2 higher plants (crop area equal to 15m ) were tested in three experiments from 1.5 up to 2 months in duration. The experiments showed that LSS with inclusion of unicell algae coped well with the macrofunction (air and water regeneration) and, besides, carried many other functions (air revitalization, establishment of microbial cenosis etc.) providing an adequate human environment. This polyfunctionality of the biological regenerative processes is a weighty argument for their integration in space LSS. It is also important that functional reliability of the algal regenerative subsystem is secured by a huge number of cells able, in the event of death of a part of population, to recover in the shortest possible time the size of population and, hence, functionality of the LSS autotrophic component. Inclusion of the autotrophic component (higher plants) improved LSS parameters and increased closure of the material cycle (26 % of humans dietary needs were met owing to production of plant biomass). The experiments were successful in achieving a full balance of atmospheric oxygen and carbon dioxide, as the assimilation coefficient of the autotrophic component was similar to the human breathing coefficient. For a long period of time a Martian crew will be detached from Earth's biosphere and for this reason LSS of their vehicle must be highly reliable, robust and redundant. One of the approaches to LSS re dundancy is installation of two systems with different but equally efficient regeneration technologies, i.e. physical-chemical and biological. At best, these two systems should operate in

  12. [Optimization of the storage of housefly pupae as a utilizer of organic wastes in a human biological life support system].

    Science.gov (United States)

    Golubeva, E G; Nosov, V V

    1983-01-01

    The method of experimental orthogonal planning was used to study the combined effect of three factors (ambient temperature, humidity, and storage time) on the yield characteristics of the storage of Musca domestica L. pupae as utilizers of organic wastes in the biological life support system. The application of the type 2(3-1) fractional factorial experiment with the generating ratio x3 = x2x1 and analysis of the resultant regression equation showed that the pupal viability tended to grow as the temperature increased and the time storage and humidity decreased. Step-by-step optimization according to Box-Wilson gave the following optimal conditions for pupal storage (without viability losses); ambient temperature +16 degrees C, relative humidity 37-39%, and storage time 15 days.

  13. International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System Keep Out Zone On-Orbit Problems

    Science.gov (United States)

    Williams, David E.

    2004-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system performance can be impacted by operations on ISS. This is especially important for the Temperature and Humidity Control (THC) and for the Fire Detection and Suppression (FDS) subsystems. It is also more important for Node 1 since it has become a convenient area for many crew tasks and for stowing hardware prior to Shuttle arrival. This paper will discuss the current requirements for ECLS keep out zones in Node 1; the issues with stowage in Node 1 during Increment 7 and how they impacted the keep out zone requirements; and the solution during Increment 7 and 8 for maintaining the keep out zones in Node 1.

  14. Characterization of metal oxide absorbents for regenerative carbon dioxide and water vapor removal for advanced portable life support systems

    Science.gov (United States)

    Kast, Timothy P.; Nacheff-Benedict, Maurena S.; Chang, Craig H.; Cusick, Robert J.

    1990-01-01

    Characterization of the performance of a silver-oxide-based absorbent in terms of its ability to remove both gaseous CO2 and water vapor in an astronaut portable life support systems (PLSS) is discussed. Attention is focused on regeneration of the absorbent from the carbonite state of the oxide state, preconditioning of the absorbent using a humidified gas stream, and absorption breakthrough testing. Based on the results of bench-scale experiments, a test plan is carried out to further characterize the silver-oxide-based absorbent on a larger scale; it calls for examination of the absorbent in both an adiabatic packed bed and a near-isothermal cooled bed configuration. It is demonstrated that the tested absorbent can be utilized in a way that removes substantial amounts of CO2 and water vapor during an 8-hour extravehicular activity mission, and that applying the absorbent to PLSS applications can simplify the ventilation loop.

  15. Metal oxide absorbents for regenerative carbon dioxide and water vapor removal for advanced portable life support systems

    Science.gov (United States)

    Hart, Joan M.; Borghese, Joseph B.; Chang, Craig H.; Stonesifer, Greg T.

    1991-01-01

    Recent studies of Allied Signal metal oxide based absorbents demonstrated that these absorbents offer a unique capability to regeneratively remove both metabolic carbon dioxide and water vapor from breathing air; previously, metal oxides were considered only for the removal of CO2. The concurrent removal of CO2 and H2O vapor can simplify the astronaut Portable Life Support System (PLSS) by combining the CO2 and humidity control functions into one regenerative component. The use of metal oxide absorbents for removal of both CO2 ad H2O vapor in the PLSS is the focus of an ongoing program. The full scale Metal Oxide Carbon dioxide and Humidity Remover (MOCHR) and regeneration unit is described.

  16. Biological airfilter for air quality control of life support systems in closed environments

    Science.gov (United States)

    van der Waarde, J. J.; Team

    Environmental quality assurance and recycling of raw materials are essential elements in manned space craft missions. Indoor air quality plays an important role, since the limited amount of air in the space craft is continuously recycled. Both astronaut activities and materials and equipment onboard the space craft are sources of air contamination. A wide range of volatile organic contaminants has been observed in these closed environments, including aliphatic hydrocarbons, alcohols, aldehydes, aromatic hydrocarbons and chlorinated aliphatic components. Most of these components are biodegradable but the concentrations are usually low (mg/m^3). A biological system to remove these components needs to meet several criteria: active at low concentrations; combined removal of a wide range of organic contaminants; removal to levels below the space maximum allowable concentration (SMAC); stable activity over long periods (months); small volume and low weight; no contact between bacteria and astronauts.

  17. Anaerobic degradation of inedible crop residues produced in a Controlled Ecological Life Support System

    Science.gov (United States)

    Schwingel, W. R.; Sager, J. C.

    1996-01-01

    An anaerobic reactor seeded with organisms from an anaerobic lagoon was used to study the degradation of inedible crop residues from potato and wheat crops grown in a closed environment. Conversion of this biomass into other products was also evaluated. Degradation of wheat volatile solids was about 25% where that of potato was about 50%. The main product of the anaerobic fermentation of both crops was acetic acid with smaller quantities of propionate and butyrate produced. Nitrate, known to be high in concentration in inedible potato and wheat biomass grown hydroponically, was converted to ammonia in the anaerobic reactor. Both volatile fatty acid and ammonia production may have implications in a crop production system.

  18. Natural microbial populations in a water-based biowaste management system for space life support.

    Science.gov (United States)

    Bornemann, Gerhild; Waßer, Kai; Tonat, Tim; Moeller, Ralf; Bohmeier, Maria; Hauslage, Jens

    2015-11-01

    The reutilization of wastewater is a key issue with regard to long-term space missions and planetary habitation. This study reports the design, test runs and microbiological analyses of a fixed bed biofiltration system which applies pumice grain (16-25 mm grain size, 90 m(2)/m(3) active surface) as matrix and calcium carbonate as buffer. For activation, the pumice was inoculated with garden soil known to contain a diverse community of microorganisms, thus enabling the filtration system to potentially degrade all kinds of organic matter. Current experiments over 194 days with diluted synthetic urine (7% and 20%) showed that the 7% filter units produced nitrate slowly but steadily (max. 2191 mg NO3-N/day). In the 20% units nitrate production was slower and less stable (max. 1411 mg NO3-N/day). 84% and 76% of the contained nitrogen was converted into nitrate. The low conversion rate is assumed to be due to the high flow rate, which keeps the biofilm on the pumice thin. At the same time the thin biofilm seems to prevent the activity of denitrifiers implicating the existence of a trade off between rate and the amount of nitrogen loss. Microbiological analyses identified a comparatively low number of species (26 in the filter material, 12 in the filtrate) indicating that urine serves as a strongly selective medium and filter units for the degradation of mixed feedstock have to be pre-conditioned on the intended substrates from the beginning. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  19. A New Miniaturized Inkjet Printed Solid State Electrolyte Sensor for Applications in Life Support Systems - First Results

    Science.gov (United States)

    Hill, Christine; Stefanos Fasoulas, -; Eberhart, Martin; Berndt, Felix

    New generations of integrated closed loop systems will combine life support systems (incl. biological components) and energy systems such as fuel cell and electrolysis systems. Those systems and their test beds also contain complex safety sensor monitoring systems. Especially in fuel cells and electrolysis systems, the hydrogen and oxygen flows and exchange into other areas due to diffusion processes or leaks need to be monitored. Knowledge of predominant gas concentrations at all times is essential to avoid explosive gas mixtures. Solid state electrolyte sensors are promising for use as safety sensors. They have already been developed and produced at various institutes, but the power consumption for heating an existing solid state electrolyte sensor element still lies between 1 to 1.5 W and the operational readiness still takes about 20 to 30 s. This is partially due to the current manufacturing process for the solid state electrolyte sensor elements that is based on screen printing technology. However this technology has strong limitations in flexibility of the layout and re-designs. It is therefore suitable for mass production, but not for a flexible development and the production of specific individual sensors, e.g. for space applications. Moreover a disadvantage is the relatively high material consumption, especially in combination with the sensors need of expensive noble metal and ceramic pastes, which leads to a high sensor unit price. The Inkjet technology however opens up completely new possibilities in terms of dimensions, geometries, structures, morphologies and materials of sensors. This new approach is capable of printing finer high-resolution layers without the necessity of meshes or masks for patterning. Using the Inkjet technology a design change is possible at any time on the CAD screen. Moreover the ink is only deposited where it is needed. Custom made sensors, as they are currently demanded in space sensor applications, are thus realized simply

  20. Case Studies in Crewed Spacecraft Environmental Control and Life Support System Process Compatibility and Cabin Environmental Impact

    Science.gov (United States)

    Perry, J. L.

    2017-01-01

    Contamination of a crewed spacecraft's cabin environment leading to environmental control and life support system (ECLSS) functional capability and operational margin degradation or loss can have an adverse effect on NASA's space exploration mission figures of merit-safety, mission success, effectiveness, and affordability. The role of evaluating the ECLSS's compatibility and cabin environmental impact as a key component of pass trace contaminant control is presented and the technical approach is described in the context of implementing NASA's safety and mission success objectives. Assessment examples are presented for a variety of chemicals used in vehicle systems and experiment hardware for the International Space Station program. The ECLSS compatibility and cabin environmental impact assessment approach, which can be applied to any crewed spacecraft development and operational effort, can provide guidance to crewed spacecraft system and payload developers relative to design criteria assigned ECLSS compatibility and cabin environmental impact ratings can be used by payload and system developers as criteria for ensuring adequate physical and operational containment. In additional to serving as an aid for guiding containment design, the assessments can guide flight rule and procedure development toward protecting the ECLSS as well as approaches for contamination event remediation.

  1. Engineering stategies and implications of using higher plants for throttling gas and water exchange in a controlled ecological life support system

    Science.gov (United States)

    Chamberland, Dennis; Wheeler, Raymond M.; Corey, Kenneth A.

    1993-01-01

    Engineering stategies for advanced life support systems to be used on Lunar and Mars bases involve a wide spectrum of approaches. These range from purely physical-chemical life support strategies to purely biological approaches. Within the context of biological based systems, a bioengineered system can be devised that would utilize the metabolic mechanisms of plants to control the rates of CO2 uptake and O2 evolution (photosynthesis) and water production (transpiration). Such a mechanism of external engineering control has become known as throttling. Research conducted at the John F. Kennedy Space Center's Controlled Ecological Life Support System Breadboard Project has demonstrated the potential of throttling these fluxes by changing environmental parameters affecting the plant processes. Among the more effective environmental throttles are: light and CO2 concentration for controllingthe rate of photsynthesis and humidity and CO2 concentration for controlling transpiration. Such a bioengineered strategy implies control mechanisms that in the past have not been widely attributed to life support systems involving biological components and suggests a broad range of applications in advanced life support system design.

  2. Prospects for using a full-scale installation for wet combustion of organic wastes in closed life support systems.

    Science.gov (United States)

    Trifonov, Sergey V; Kudenko, Yurii A; Tikhomirov, Alexander A

    2015-11-01

    The issue of recycling organic wastes in closed life support systems (CLSS) includes both fundamental aspects of environmental safety of the recycled products and their effective involvement in material cycles and technical aspects related to the structure of the system and the crew's demands. This study estimates the effectiveness of wet combustion of different amounts of organic wastes in hydrogen peroxide under application of an alternating current electric field. The study also addresses the possibility of controlling the process automatically. The results show that processing of greater amounts of wastes reduces specific power consumption and shortens the duration of the process, without significantly affecting the level of oxidation of the products. An automatic control system for a semi-commercial installation has been constructed and tested experimentally. The solution of mineralized human wastes prepared in the automatically controlled process in this installation was successfully used to grow radish plants, with the main production parameters being similar to those of the control. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  3. OCAM - A CELSS modeling tool: Description and results. [Object-oriented Controlled Ecological Life Support System Analysis and Modeling

    Science.gov (United States)

    Drysdale, Alan; Thomas, Mark; Fresa, Mark; Wheeler, Ray

    1992-01-01

    Controlled Ecological Life Support System (CELSS) technology is critical to the Space Exploration Initiative. NASA's Kennedy Space Center has been performing CELSS research for several years, developing data related to CELSS design. We have developed OCAM (Object-oriented CELSS Analysis and Modeling), a CELSS modeling tool, and have used this tool to evaluate CELSS concepts, using this data. In using OCAM, a CELSS is broken down into components, and each component is modeled as a combination of containers, converters, and gates which store, process, and exchange carbon, hydrogen, and oxygen on a daily basis. Multiple crops and plant types can be simulated. Resource recovery options modeled include combustion, leaching, enzyme treatment, aerobic or anaerobic digestion, and mushroom and fish growth. Results include printouts and time-history graphs of total system mass, biomass, carbon dioxide, and oxygen quantities; energy consumption; and manpower requirements. The contributions of mass, energy, and manpower to system cost have been analyzed to compare configurations and determine appropriate research directions.

  4. The controlled ecological life support system Antarctic analog project: Analysis of wastewater from the South Pole Station, Antarctica, volume 1

    Science.gov (United States)

    Flynn, Michael T.; Bubenheim, David L.; Straight, Christian L.; Belisle, Warren

    1994-01-01

    The Controlled Ecological Life Support system (CELSS) Antarctic Analog Project (CAAP) is a joint National Science Foundation (NSF) and NASA project for the development, deployment and operation of CELSS technologies at the Amundsen-Scott South Pole Station. NASA goals are operational testing of CELSS technologies and the conduct of scientific studies to facilitate technology selection and system design. The NSF goals are that the food production, water purification, and waste treatment capabilities which will be provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, and minimize environmental impacts associated with human presence on the polar plateau. This report presents an analysis of wastewater samples taken from the Amundsen-Scott South Pole Station, Antarctica. The purpose of the work is to develop a quantitative understanding of the characteristics of domestic sewage streams at the South Pole Station. This information will contribute to the design of a proposed plant growth/waste treatment system which is part of the CELSS Antarctic Analog Project (CAAP).

  5. Inclusion of products of physicochemical oxidation of organic wastes in matter recycling of biological-technical life support systems.

    Science.gov (United States)

    Tikhomirov, Alexander A.; Kudenko, Yurii; Trifonov, Sergei; Ushakova, Sofya

    Inclusion of products of human and plant wastes' `wet' incineration in 22 medium using alter-nating current into matter recycling of biological-technical life support system (BTLSS) has been considered. Fluid and gaseous components have been shown to be the products of such processing. In particular, the final product contained all necessary for plant cultivation nitrogen forms: NO2, NO3, NH4+. As the base solution included urine than NH4+ form dominated. At human solid wastes' mineralization NO2 NH4+ were registered in approximately equal amount. Comparative analysis of mineral composition of oxidized human wastes' and standard Knop solutions has been carried out. On the grounds of that analysis the dilution methods of solutions prepared with addition of oxidized human wastes for their further use for plant irrigation have been suggested. Reasonable levels of wheat productivity cultivated at use of given solutions have been obtained. CO2, N2 and O2 have been determined to be the main gas components of the gas admixture emitted within the given process. These gases easily integrate in matter recycling process of closed ecosystem. The data of plants' cultivation feasibility in the atmosphere obtained after closing of gas loop including physicochemical facility and vegetation chamber with plants-representatives of LSS phototrophic unit has been received. Conclusion of advance research on creation of matter recycling process in the integrated physical-chemical-biological model system has been drawn.

  6. Integration of Biological, Physical/Chemical and Energy Efficient Systems in the CELSS Antarctic Analog: Performance of Prototype Systems and Issues for Life Support

    Science.gov (United States)

    Bubenheim, David L.; Flynn, Michael T.; Lamparter, Richard; Bates, Maynard; Kliss, Mark (Technical Monitor)

    1998-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP), and the National Aeronautics and Space Administration (NASA). The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle, and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety, and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions, such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for waste treatment, water recycle, resource recovery and crop production are being evaluated in a testbed at Ames Research Center. The combined performance of these biological and physical/chemical systems as an integrated function in support of the human habitat will be discussed. Overall system performance will be emphasized. The effectiveness and efficiency of component technologies will be discussed in the context of energy and mass flow within the system and contribution to achieving a mass and energy conservative system. Critical to the discussion are interfaces with habitat functions outside of the closed-loop life support: the ability of the system to satisfy the life support requirements of the habitat and the ability to define input requirements. The significance of analog functions in relation to future Mars habitats will be discussed.

  7. Carbon-Based Regenerable Sorbents for the Combined Carbon Dioxide and Ammonia Removal for the Primary Life Support System (PLSS)

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Manthina, Venkata; Singh, Prabhakar; Chullen, Cinda

    2014-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs). Since ammonia is the most important TC to be captured, data on TC sorption presented in this paper are limited to ammonia, with results relevant to other TCs to be reported at a later time. The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. The objective of this study was to demonstrate the feasibility of using carbon sorbents for the reversible, concurrent sorption of carbon dioxide and ammonia. Several carbon sorbents were fabricated and tested, and multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also a carbon surface conditioning technique that enhances the combined carbon dioxide and ammonia sorption without impairing sorbent regeneration.

  8. Effectiveness of beneficial plant-microbe interactions under hypobaric and hypoxic conditions in an advanced life support system

    Science.gov (United States)

    MacIntyre, Olathe; Stasiak, Michael; Cottenie, Karl; Trevors, Jack; Dixon, Mike

    An assembled microbial community in the hydroponics solution of an advanced life support system may improve plant performance and productivity in three ways: (1) exclusion of plant pathogens from the initial community, (2) resistance to infection, and (3) plant-growth promotion. However, the plant production area is likely to have a hypobaric (low pressure) and hypoxic (low oxygen) atmosphere to reduce structural mass and atmosphere leakage, and these conditions may alter plant-microbe interactions. Plant performance and productivity of radish (Raphanus sativus L. cv. Cherry Bomb II) grown under hypobaric and hypoxic conditions were investigated at the University of Guelph's Controlled Environment Systems Research Facility. Changes in the microbial communities that routinely colonized the re-circulated nutrient solution, roots, and leaves of radishes in these experiments were quantified in terms of similarity in community composition, abundance of bacteria, and community diversity before and after exposure to hypobaric and hypoxic conditions relative to communities maintained at ambient growth conditions. The microbial succession was affected by extreme hypoxia (2 kPa oxygen partial pressure) while hypobaria as low as 10 kPa total pressure had little effect on microbial ecology. There were no correlations found between the physiological profile of these unintentional microbial communities and radish growth. The effects of hypobaric and hypoxic conditions on specific plant-microbe interactions need to be determined before beneficial gnotobiotic communities can be developed for use in space. The bacterial strains Tal 629 of Bradyrhizobium japonicum and WCS417 of Pseudomonas fluorescens, and the plant pathogen Fusarium oxysporum f. sp. raphani will be used in future experiments. B. japonicum Tal 629 promotes radish growth in hydroponics systems and P. fluorescens WCS417 induces systemic resistance to fusarium wilt (F. oxysporum f. sp. raphani) in radish under ambient

  9. Environmental Control and Life Support Systems for Mars Exploration: Issues and Concerns for Planetary Protection and the Protection of Science

    Science.gov (United States)

    Barta, Daniel J.; Lange, Kevin; Anderson, Molly; Vonau, Walter

    2016-07-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Forward contamination concerns will affect release of gases and discharge of liquids and solids, including what may be left behind after planetary vehicles are abandoned upon return to Earth. A crew of four using a state of the art ECLSS could generate as much as 4.3 metric tons of gaseous, liquid and solid wastes and trash during a 500-day surface stay. These may present issues and concerns for both planetary protection and planetary science. Certainly, further closure of ECLSS systems will be of benefit by greater reuse of consumable products and reduced generation of waste products. It can be presumed that planetary protection will affect technology development by constraining how technologies can operate: limiting or prohibiting certain kinds of operations or processes (e.g. venting); necessitating that other kinds of operations be performed (e.g. sterilization; filtration of vent lines); prohibiting what can be brought on a mission (e.g. extremophiles); creating needs for new capabilities/ technologies (e.g. containment). Although any planned venting could include filtration to eliminate micro-organisms from inadvertently exiting the spacecraft, it may be impossible to eliminate or filter habitat structural leakage. Filtration will add pressure drops impacting size of lines and ducts, affect fan size and energy requirements, and add consumable mass. Technologies that may be employed to remove biomarkers and microbial contamination from liquid and solid wastes prior to storage or release may include mineralization technologies such as incineration, super critical wet oxidation and pyrolysis. These technologies, however, come with significant penalties for mass, power and consumables. This paper will estimate the nature and amounts of materials generated during Mars

  10. Vegetable Production as a Part of a Closed Life Support System in a Russian Martian Space Flight Scenario

    Science.gov (United States)

    Berkovich, Yu.; Smolyanina, S.; Krivobok, N.; Erokhin, A.; Agureev, A.

    begin table htbp begin center begin tabular p 442pt hline Projects 1172 and 2120 supported by the International Science Technology Center in Moscow will be involved in the Russian Mars Mission scenario that will be a simulation of the Mars mission using the Clipper spacecraft This vehicle will have a crew of 4 to 6 with a volume of 240 m 3 and with a diameter of 4 1 m A vegetable production facility with a power consumption of 10 kW is being considered as a component of the life support system The proposed Mars mission concept will be comprised of 4-modules which will include a conveyer-type Plant Growth Facility PGF in each of the modules Each PGF has a cylindrical planting surface and an LED lighting system that has been designed to provide a higher specific productivity relative to utilized onboard resources Each module will have a growth chamber that will be 1 8 m in length will have a volume of 0 75 m 3 and a crop illuminated area of 2 8 m 2 Several crops have been selected and one will be used per module Leafy type crops Brassica lettuce spinach chard etc have been selected for module 1 primarily because of the high specific productivity per consumed resources a carrot crop advised by the dietitians will be grown in module 2 pepper in module 3 and tomato in module 4 From the experimental crop productivity data concerning Vitacycle and Phytocycle SD studies water and power consumption that will be utilized by each cylindrical conveyer plant facilities will be based on those calculations The

  11. Co-Adsorption of Ammonia and Formaldehyde on Regenerable Carbon Sorbents for the Primary Life Support System (PLSS)

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique S.

    2016-01-01

    Results are presented on the development of a reversible carbon sorbent for trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is deemed non-regenerable, while the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. Data on concurrent sorption and desorption of ammonia and formaldehyde, which are major TCs of concern, are presented in this paper. A carbon sorbent was fabricated by dry impregnation of a reticulated carbon-foam support with polyvinylidene chloride, followed by carbonization and thermal oxidation in air. Sorbent performance was tested for ammonia and formaldehyde sorption and vacuum regeneration, with and without water present in the gas stream. It was found that humidity in the gas phase enhanced ammonia-sorption capacity by a factor larger than two. Co-adsorption of ammonia and formaldehyde in the presence of water resulted in strong formaldehyde sorption (to the point that it was difficult to saturate the sorbent on the time scales used in this study). In the absence of humidity, adsorption of formaldehyde on the carbon surface was found to impair ammonia sorption in subsequent runs; in the presence of water, however, both ammonia and formaldehyde could be efficiently removed from the gas phase by the sorbent. The efficiency of vacuum regeneration could be enhanced by gentle heating to temperatures below 60 deg.

  12. Feasible way of Human Solid and Liquid Wastes' Inclusion Into Intersystem Mass Exchange of Biological-Technical Life Support Systems

    Science.gov (United States)

    Ushakova, Sofya; Tikhomirov, Alexander A.; Tikhomirova, Natalia; Kudenko, Yurii; Griboskaya, Illiada; Gros, Jean-Bernard; Lasseur, Christophe

    The basic objective arising at use of mineralized human solid and liquid wastes serving as the source of mineral elements for plants cultivation in biological-technical life support systems appears to be NaCl presence in them. The given work is aimed at feasibility study of mineralized human metabolites' utilization for nutrient solutions' preparation for their further employment at a long-term cultivation of uneven-aged wheat and Salicornia europaea L. cenosis in a conveyer regime. Human solid and liquid wastes were mineralized by the "wet incineration" method developed by Yu. Kudenko. On their base the solutions were prepared which were used for cultivation of 5-aged wheat conveyer with the time step-interval of 14 days. Wheat was cultivated by hydroponics method on expanded clay aggregate. For partial demineralization of nutrient solution every two weeks after regular wheat harvesting 12 L of solution was withdrawn from the wheat irrigation tank and used for Salicornia europaea cultivation by the water culture method in a conveyer regime. The Salicornia europaea conveyer was represented by 2 ages with the time step-interval of 14 days. Resulting from repeating withdrawal of the solution used for wheat cultivation, sodium concentration in the wheat irrigation solution did not exceed 400 mg/l, and mineral elements contained in the taken solution were used for Salicornia europaea cultivation. The experiment lasted 7 months. Total wheat biomass productivity averaged 30.1 g*m-2*day-1 at harvest index equal to 36.8The work was carried out under support of SB RAS grant 132 and INTAS 05-1000008-8010

  13. Amino acids as possible alternative nitrogen source for growth of Euglena gracilis Z in life support systems

    Science.gov (United States)

    Richter, P. R.; Liu, Y.; An, Y.; Li, X.; Nasir, A.; Strauch, S. M.; Becker, I.; Krüger, J.; Schuster, M.; Ntefidou, M.; Daiker, V.; Haag, F. W. M.; Aiach, A.; Lebert, M.

    2015-01-01

    In recent times Euglena gracilis Z was employed as primary producer in closed environmental life-support system (CELSS), e.g. in space research. The photosynthetic unicellular flagellate is not capable of utilizing nitrate, nitrite, and urea as nitrogen source. Therefore, ammonium is supplied as an N-source in the lab (provided as diammonium-dihydrogenphosphate, (NH4)2HPO4) to E. gracilis cultures. While nitrate exerts low toxicity to organisms, ammonium is harmful for many aquatic organisms especially, at high pH-values, which causes the ionic NH+4 (low toxicity) to be partially transformed into the highly toxic ammonia, NH3. In earlier reports, Euglena gracilis was described to grow with various amino acids as sole N-source. Our aim was to investigate alternatives for (NH4)2HPO4 as N-source with lower toxicity for organisms co-cultivated with Euglena in a CELSS. The growth kinetics of Euglena gracilis cultures was determined in the presence of different amino acids (glycine, glutamine, glutamic acid, leucine, and threonine). In addition, uptake of those amino acids by the cells was measured. Cell growth in the presence of glycine and glutamine was quite comparable to the growth in (NH4)2HPO4 containing cultures while a delay in growth was observed in the presence of leucine and threonine. Unlike, aforementioned amino acids glutamate consumption was very poor. Cell density and glutamate concentration were almost unaltered throughout the experiment and the culture reached the stationary phase within 8 days. The data are compared with earlier studies in which utilization of amino acids in Euglena gracilis was investigated. All tested amino acids (glutamate with limitations) were found to have the potential of being an alternative N-source for Euglena gracilis. Hence, these amino acids can be used as a non-toxic surrogate for (NH4)2HPO4.

  14. A dynamic human water and electrolyte balance model for verification and optimization of life support systems in space flight applications

    Science.gov (United States)

    Hager, P.; Czupalla, M.; Walter, U.

    2010-11-01

    In this paper we report on the development of a dynamic MATLAB SIMULINK® model for the water and electrolyte balance inside the human body. This model is part of an environmentally sensitive dynamic human model for the optimization and verification of environmental control and life support systems (ECLSS) in space flight applications. An ECLSS provides all vital supplies for supporting human life on board a spacecraft. As human space flight today focuses on medium- to long-term missions, the strategy in ECLSS is shifting to closed loop systems. For these systems the dynamic stability and function over long duration are essential. However, the only evaluation and rating methods for ECLSS up to now are either expensive trial and error breadboarding strategies or static and semi-dynamic simulations. In order to overcome this mismatch the Exploration Group at Technische Universität München (TUM) is developing a dynamic environmental simulation, the "Virtual Habitat" (V-HAB). The central element of this simulation is the dynamic and environmentally sensitive human model. The water subsystem simulation of the human model discussed in this paper is of vital importance for the efficiency of possible ECLSS optimizations, as an over- or under-scaled water subsystem would have an adverse effect on the overall mass budget. On the other hand water has a pivotal role in the human organism. Water accounts for about 60% of the total body mass and is educt and product of numerous metabolic reactions. It is a transport medium for solutes and, due to its high evaporation enthalpy, provides the most potent medium for heat load dissipation. In a system engineering approach the human water balance was worked out by simulating the human body's subsystems and their interactions. The body fluids were assumed to reside in three compartments: blood plasma, interstitial fluid and intracellular fluid. In addition, the active and passive transport of water and solutes between those

  15. Vegetable production facility as a part of a closed life support system in a Russian Martian space flight scenario

    Science.gov (United States)

    Berkovich, Yu. A.; Smolyanina, S. O.; Krivobok, N. M.; Erokhin, A. N.; Agureev, A. N.; Shanturin, N. A.

    2009-07-01

    A Manned Mars Mission scenario had been developed in frame of the Project 1172 supported International Science & Technology Center in Moscow. The Mars transit vehicle (MTV) supposed to have a crew of 4-6 with Pilot Laboratory compartment volume of 185 m 3 and with inner diameter of 4.1 m. A vegetable production facility with power consumption up to 10 kW is being considered as a component of the life support system to supply crew members by fresh vegetables during the mission. Proposed design of conveyor-type plant growth facility (PGF) comprised of 4-modules. Each module has a cylindrical planting surface and spiral cylindrical LED assembly to provide a high specific productivity relative to utilized onboard resources. Each module has a growth chamber that will be from 0.7 m to 1.5 m in length, and a crop illuminated area from 1.7 m 2 to 4.0 m 2. Leafy crops (cabbage, lettuce, spinach, chard, etc.) have been selected for module 1, primarily because of the highest specific productivity per consumed resources. Dietitians have recommended also carrot crop for module 2, pepper for module 3 and tomato for module 4. The maximal total PGF light energy estimated as 1.16 kW and total power consumption as about 7 kW. The module 1 characteristics have been calculated using own experimental data, information from the best on ground plant growth experiments with artificial light were used to predict crop productivity and biomass composition in the another modules. 4-module PGF could produce nearly 0.32 kg per crew member per day of fresh edible biomass, which would be about 50% of recommended daily vegetable supplement. An average crop harvest index is estimated as 0.75. The MTV food system could be entirely closed in terms of vitamins C and A with help of the PGF. In addition the system could provide 10-25% of essential minerals and vitamins of group B, and about 20% of food fibers. The present state of plant growth technology allows formulating of requirements specification

  16. Amino acids as possible alternative nitrogen source for growth of Euglena gracilis Z in life support systems.

    Science.gov (United States)

    Richter, P R; Liu, Y; An, Y; Li, X; Nasir, A; Strauch, S M; Becker, I; Krüger, J; Schuster, M; Ntefidou, M; Daiker, V; Haag, F W M; Aiach, A; Lebert, M

    2015-01-01

    In recent times Euglena gracilis Z was employed as primary producer in closed environmental life-support system (CELSS), e.g. in space research. The photosynthetic unicellular flagellate is not capable of utilizing nitrate, nitrite, and urea as nitrogen source. Therefore, ammonium is supplied as an N-source in the lab (provided as diammonium-dihydrogenphosphate, (NH4)2HPO4) to E. gracilis cultures. While nitrate exerts low toxicity to organisms, ammonium is harmful for many aquatic organisms especially, at high pH-values, which causes the ionic NH4+ (low toxicity) to be partially transformed into the highly toxic ammonia, NH3. In earlier reports, Euglena gracilis was described to grow with various amino acids as sole N-source. Our aim was to investigate alternatives for (NH4)2HPO4 as N-source with lower toxicity for organisms co-cultivated with Euglena in a CELSS. The growth kinetics of Euglena gracilis cultures was determined in the presence of different amino acids (glycine, glutamine, glutamic acid, leucine, and threonine). In addition, uptake of those amino acids by the cells was measured. Cell growth in the presence of glycine and glutamine was quite comparable to the growth in (NH4)2HPO4 containing cultures while a delay in growth was observed in the presence of leucine and threonine. Unlike, aforementioned amino acids glutamate consumption was very poor. Cell density and glutamate concentration were almost unaltered throughout the experiment and the culture reached the stationary phase within 8 days. The data are compared with earlier studies in which utilization of amino acids in Euglena gracilis was investigated. All tested amino acids (glutamate with limitations) were found to have the potential of being an alternative N-source for Euglena gracilis. Hence, these amino acids can be used as a non-toxic surrogate for (NH4)2HPO4. Copyright © 2014 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  17. Can nitrification bring us to Mars? The role of microbial interactions on nitrogen recovery in life support systems

    Science.gov (United States)

    Christiaens, Marlies E. R.; Lasseur, Christophe; Clauwaert, Peter; Boon, Nico; Ilgrande, Chiara; Vlaeminck, Siegfried

    2016-07-01

    Human habitation in space requires artificial environment recirculating fundamental elements to enable the highest degree of autonomy . The European Space Agency, supported by a large consortoium of European organisationsdevelop the Micro-Ecological Life Support System (MELiSSA) to transform the mission wastes waste (a.o. organic fibers, CO2, and urine) into water, oxygen, and food (Lasseur et al., 2010). Among these wastes, astronauts' urine has a high potential to provide nitrogen as a fertilizer for food production. As higher plant growth in space is typically proposed to be performed in hydroponics, liquid fertilizer containing nitrates is preferred. An Additional Unit for Water Treatment is developed for urine nitrification by means of a synthetic microbial community. The key players in this consortium are ureolytic bacteria to hydrolyse the main nitrogen source in urine, urea, to ammonium and carbon dioxide as well as oxidation of organic compounds present in urine, ammonium oxidizing bacteria (AOB) to convert ammonium to nitrite (nitritation), and the nitrate oxidizing bacteria (NOB) to produce nitrate (nitratation). Pure AOB strains Nitrosomonas ureae Nm10 and Nitrosomonas europaea ATCC 19718, pure NOB strains Nitrobacter winogradskyi Nb-255 and Nitrobacter vulgaris Z, and interactions within synthetic consortia of one AOB and one NOB or all together were tested. As the initial salinity of fresh urine can be as high as 30 mS/cm, the functionality of selected pure strains and synthetic consortia was evaluated by means of the nitritation and nitratation activity at varying NaCl salinities (5, 10, and 30 mS/cm). The nitritation activity of pure AOB strains was compared with the synthetic consortia. Both N. ureae and Ns. europaea benefit from the presence of Nb. winogradskyi as the ammonium oxidation rates of 1.7 ± 0.7 and 6.4 ± 0.6 mg N/L.d at 5 mS/cm, respectively, doubled. These results are in line with the findings of Perez et al (2015) observing a lower

  18. Life Support Baseline Values and Assumptions Document

    Science.gov (United States)

    Anderson, Molly S.; Ewert, Michael K.; Keener, John F.

    2018-01-01

    The Baseline Values and Assumptions Document (BVAD) provides analysts, modelers, and other life support researchers with a common set of values and assumptions which can be used as a baseline in their studies. This baseline, in turn, provides a common point of origin from which many studies in the community may depart, making research results easier to compare and providing researchers with reasonable values to assume for areas outside their experience. This document identifies many specific physical quantities that define life support systems, serving as a general reference for spacecraft life support system technology developers.

  19. NextSTEP Hybrid Life Support

    Data.gov (United States)

    National Aeronautics and Space Administration — NextSTEP Phase I Hybrid Life Support Systems (HLSS) effort assessed options, performance, and reliability for various mission scenarios using contractor-developed...

  20. Reduced Volume Prototype Spacesuit Water Membrane Evaporator; A Next-Generation Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2013-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the reduced volume prototype (RVP) spacesuit water membrane evaporator (SWME). The RVP SWME is the third generation of hollow fiber SWME hardware. Like its predecessors, RVP SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and a more flight-like backpressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.

  1. Comparison of basic life support (BLS video self-instructional system and traditional BLS training in first year nursing students

    Directory of Open Access Journals (Sweden)

    R Nikandish

    2009-03-01

    Full Text Available Background: For several years, educators have criticized the lecture-based  approach  to teaching and learning. Experts have rightly stressed on acquisition  of a number of critical  skills rather than focusing on lectures. Purpose. To compare students'  pe1jormance after self-education  with VCD and manikin,  with thei performance after standard BLS training.Methods: In this randomized controlled study, twenty first-year nursing students were divided into two groups randomly, and were provided with basic life support (BLS instruction either in the traditional format of lecturing or with VCD and manikin without tutor. The students’ Performance was evaluated on a manikin with a checklist including all steps in BLS.Results: With traditional  instruction,  students'  mean score was 42.2±3.91, while it was 46.3±3.86 with self-education,  showing no significant  difference.Conclusion: In nursing students with no previous BLS training, access to VCD and manikin facilitates immediate achievement of educational objectives similar to those  of a standard  BLS course.  Self­ learning BLS with VCD should be enhanced with a short period of hands-on practice.Keywords: cardiopulmonary resuscitation (CPR, nursing students, cpr skills, education

  2. Life Support for Deep Space and Mars

    Science.gov (United States)

    Jones, Harry W.; Hodgson, Edward W.; Kliss, Mark H.

    2014-01-01

    How should life support for deep space be developed? The International Space Station (ISS) life support system is the operational result of many decades of research and development. Long duration deep space missions such as Mars have been expected to use matured and upgraded versions of ISS life support. Deep space life support must use the knowledge base incorporated in ISS but it must also meet much more difficult requirements. The primary new requirement is that life support in deep space must be considerably more reliable than on ISS or anywhere in the Earth-Moon system, where emergency resupply and a quick return are possible. Due to the great distance from Earth and the long duration of deep space missions, if life support systems fail, the traditional approaches for emergency supply of oxygen and water, emergency supply of parts, and crew return to Earth or escape to a safe haven are likely infeasible. The Orbital Replacement Unit (ORU) maintenance approach used by ISS is unsuitable for deep space with ORU's as large and complex as those originally provided in ISS designs because it minimizes opportunities for commonality of spares, requires replacement of many functional parts with each failure, and results in substantial launch mass and volume penalties. It has become impractical even for ISS after the shuttle era, resulting in the need for ad hoc repair activity at lower assembly levels with consequent crew time penalties and extended repair timelines. Less complex, more robust technical approaches may be needed to meet the difficult deep space requirements for reliability, maintainability, and reparability. Developing an entirely new life support system would neglect what has been achieved. The suggested approach is use the ISS life support technologies as a platform to build on and to continue to improve ISS subsystems while also developing new subsystems where needed to meet deep space requirements.

  3. C.E.B.A.S., a closed equilibrated biological aquatic system as a possible precursor for a long-term life support system?

    Science.gov (United States)

    Blüm, V.

    C.E.B.A.S.-AQUARACK is a long-term multi-generation experimental device for aquatic organisms which is disposed for utlizitation in a space station. It results from the basic idea of a space aquarium for maintaining aquatic animals for longer periods integrated in a AQUARACK which consists of a modular animal holding tank, a semi-biological/physical water recycling system and an electronical control unit. The basic idea to replace a part of the water recycling system by a continuous culture of unicellular algae primarily leads to a second system for experiments with algae, a botanical AQUARACK consisting of an algal reactor, a water recycling and the electronical control unit. The combination of the zoological part, and the botanical part with a common control system in the AQUARACK, however, results in a ``Closed Equilibrated Biological Aquatic System'' (C.E.B.A.S.) representing an closed artificial ecosystem. Although this is disposed primarily as an experimental device for basic zoological, botanical and interdisciplinary research it opens the theoretical possibility to adapt it for combined production of animal and plant biomass on ground or in space. The paper explains the basic conception of the hardware construction of the zoological part of the system, the corresponding scientific frame program including the choice of the experimental animals and gives some selected examples of the hardware-related resrearch. It furtheron discusses the practical and economical relevance of the system in the development of a controlled aquatical life support system in general.

  4. Gathering Edible as a Survival Strategy and Life Support System of the Siberian Rearward Village in Wartime Daily Living 1941–1945 on the Oral Historical Sources

    Directory of Open Access Journals (Sweden)

    Tatiana K. Shcheglova

    2015-03-01

    Full Text Available This paper explores the life support system of disabled population of Siberian rearward village in the Great Patriotic War 1941–1945 by means (techniques and sources of oral history and Russian [version of] ethnology. The analysis of field data 1990–2014 demonstrates, that there was older generation being once de-peasantified in 1920s-30s, which developed in rural areas a set of behavioral actions and occupations, contributory to survival strategies of peasant family, based on resources of feeding environment and traditional culture of life support. Gathering of edible became one of the main means of child survival – this paper discusses its variations and patterns, as well edible plants, berries and mushrooms. According to research done, gathering edible was group-organized under supervision and with participation of grannies or individual expenditure - a kind of subsistence food that lies under the feet. An effort is taken to identify patterns and variations of gathering edible. It’s proven that together with direct eating plants, family economy included preservation of natural edible in store for a long Siberian winter. The paper covers blank grass as impurities in the flour to bake bread, as well а base for porridge, features restrictions and punishments not only for gathering crumbled wheat spikelets on collective farm fields, but also suppression cases in the vicinity of the villages.

  5. [Use of the ion-exchange substrate to optimize mineral nutrition of plants within a bio-engineering life support system with a high level of closure].

    Science.gov (United States)

    Tikhomirova, N A; Ushakova, S A; Kudenko, Yu A; Anishchenko, O V; Tikhomirov, A A

    2014-01-01

    Purpose of the work was to test manageability of nutrient solutions containing mineralized human exometabolites by using an ion-exchange substrate (IES) for cultivating wheat in a bio-engineering life support system with a high level of closure. Object of the investigation was wheat Triticum aestivum L. (Lysovsky cv. l. 232). Crops were raised on clayite in a growth chamber of a hydroponic conveyor system under continuous light. Correction of nutrient solution was to lift the limits of crop supply with minerals. The experimental crop grew in nutrient solution with immersed IES "BIONA-312"; nutrient solution for the control crop was corrected by adding mineral salts. Solution correction did not have a noteworthy effect on the yield, CO2-gas exchange or mineral composition of wheat plants. IES makes simple the technology of plant cultivation on solutions enriched with human exometabolites.

  6. Characterizing Biological Closed-Loop Life Support Systems for Thermal Control and Revitalization of Spacecraft Cabin Environments

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental Control and Support Systems (ECLSS) are required for all manned spaceflight missions to provide the most fundamental physiological needs. One of these...

  7. Application of Life Support Cost, Provisioning, and Repair/Discard Models to Weapon System Procurement Decisions by Small Countries.

    Science.gov (United States)

    1981-12-01

    state of conflict. d) Limited control of sales of co-produced systems to a third party. In addition, a small customer normally buys small quantities of...to minimize this cost element. For example, suppose that the choise is among the following repair policies: (a) all modules are repaired at... buy spares for one year if the item is discarded at failure. To obtain a high probability that a spare is available when a demand occurs, a more expen

  8. Characteristics of mineral nutrition of plants in the bio-technical life support system with human wastes included in mass exchange

    Science.gov (United States)

    Tikhomirova, Natalia; Ushakova, Sofya; Kalacheva, Galina; Tikhomirov, Alexander

    2016-09-01

    The study addresses the effectiveness of using ion exchange substrates (IES) to optimize mineral nutrition of plants grown in the nutrient solutions containing oxidized human wastes for application in bio-technical life support systems. The study shows that the addition of IES to the root-inhabited substrate is favorable for the growth of wheat vegetative organs but causes a decrease in the grain yield. By contrast, the addition of IES to the nutrient solution does not influence the growth of vegetative organs but favors normal development of wheat reproductive organs. Thus, to choose the proper method of adjusting the solution with IES, one should take into account specific parameters of plant growth and development and the possibility of multiple recycling of IES based on the liquid products of mineralization of human wastes.

  9. Biospheric Life Support - integrating biological regeneration into protection of humans in space.

    Science.gov (United States)

    Rocha, Mauricio; Iha, Koshun

    2016-07-01

    A biosphere stands for a set of biomes (regional biological communities) interacting in a materially closed (though energetically open) ecological system (CES). Earth's biosphere, the thin layer of life on the planet's surface, can be seen as a natural CES- where life "consumables" are regenerated/restored via biological, geological and chemical processes. In Life Sciences, artificial CESs- local ecosystems extracts with varying scales and degrees of closure, are considered convenient/representatives objects of study. For outer space, these concepts have been applied to the issue of life support- a significant consideration as long as distance from Earth increases. In the nineties, growing on the Russian expertise on biological life support, backed by a multidisciplinary science team, the famous Biosphere 2 appeared. That private project innovated, by assembling a set of Earth biomes samples- plus an organic ag one, inside a closed Mars base-like structure, next to 1.5 ha under glass, in Arizona, US. The crew of 8 inside completed their two years contract, though facing setbacks- the system failed, e.g., to produce enough food/air supplies. But their "failures"- if this word can be fairly applied to science endeavors, were as meaningful as their achievements for the future of life support systems (LSS) research. By this period, the Russians had accumulated experience in extended orbital stays, achieving biological outcomes inside their stations- e.g. complete wheat cycles. After reaching the Moon, the US administration decided to change national priorities, putting the space program as part of a "détente" policy, to relieve international tensions. Alongside the US space shuttle program, the Russians were invited to join the new International Space Station (ISS), bringing to that pragmatic project, also their physical/chemical LSS- top air/water regenerative technology at the time. Present US policy keeps the ISS operational, extending its service past its planned

  10. Developing a vitamin greenhouse for the life support system of the international space station and for future interplanetary missions

    Science.gov (United States)

    Berkovich, Y. A.; Krivobok, N. M.; Sinyak, Yu. Ye.; Smolyanina, S. O.; Grigoriev, Yu. I.; Romanov, S. Yu.; Guissenberg, A. S.

    2004-01-01

    In order to evaluate the effects of gravity on growing plants, we conducted ground based long-term experiments with dwarf wheat, cultivar Apogee and Chinese cabbage, cultivar Khibinskaya. The test crops had been grown in overhead position with HPS lamp below root module so gravity and light intensity gradients had been in opposite direction. Plants of the control crop grew in normal position under the same lamp. Both crops were grown on porous metallic membranes with stable -1 kPa matric potential on their surface. Results from these and other studies allowed us to examine the differences in growth and development of the plants as well as the root systems in relation to the value of the gravity force influence. Dry weight of the roots from test group was decreased in 2.5 times for wheat and in 6 times - at the Chinese cabbage, but shoot dry biomass was practically same for both test and control versions. A harvest index of the test plants increased substantially. The data shows, that development of the plants was essentially changed in microgravity. The experiments in the space greenhouse Svet aboard the Mir space station proved that it is possible to compensate the effects of weightlessness on higher plants by manipulating gradients of environmental parameters (i.e. photon flux, matric potential in the root zone, etc.). However, the average productivity of Svet concerning salad crops even in ground studies did not provide more than 14 g fresh biomass per day. This does not provide a sufficient level of supplemental nutrients to the crew of the ISS. A cylindrical design of a space plant growth chamber (SPGC) allows for maximal productivity in presence of very tight energy and volume limitations onboard the ISS and provides a number of operational advantages. Productivity from this type of SPGF with a 0.5 kW energy utilization when salad growing would provide approximately 100 g of edible biomass per day, which would almost satisfy requirements for a crew of two in

  11. [Basic life support in pediatrics].

    Science.gov (United States)

    Calvo Macías, A; Manrique Martínez, I; Rodríguez Núñez, A; López-Herce Cid, J

    2006-09-01

    Basic life support (BLS) is the combination of maneuvers that identifies the child in cardiopulmonary arrest and initiates the substitution of respiratory and circulatory function, without the use of technical adjuncts, until the child can receive more advanced treatment. BLS includes a sequence of steps or maneuvers that should be performed sequentially: ensuring the safety of rescuer and child, assessing unconsciousness, calling for help, positioning the victim, opening the airway, assessing breathing, ventilating, assessing signs of circulation and/or central arterial pulse, performing chest compressions, activating the emergency medical service system, and checking the results of resuscitation. The most important changes in the new guidelines are the compression: ventilation ratio and the algorithm for relieving foreign body airway obstruction. A compression/ ventilation ratio of 30:2 will be recommended for lay rescuers of infants, children and adults. Health professionals will use a compression: ventilation ratio of 15:2 for infants and children. If the health professional is alone, he/she may also use a ratio of 30:2 to avoid fatigue. In the algorithm for relieving foreign body airway obstruction, when the child becomes unconscious, the maneuvers will be similar to the BLS sequence with chest compressions (functioning as a deobstruction procedure) and ventilation, with reassessment of the mouth every 2 min to check for a foreign body, and evaluation of breathing and the presence of vital signs. BLS maneuvers are easy to learn and can be performed by anyone with adequate training. Therefore, BLS should be taught to all citizens.

  12. Microbiological Tests Performed During the Design of the International Space Station Environmental Control and Life Support Systems. Part 1, Bulk Phase. Part 1; Bulk Phase

    Science.gov (United States)

    Roman, Monsi C.; Mittelman, Marc W.

    2010-01-01

    The design and manufacturing of the main Environmental Control and Life Support Systems (ECLSS) for the United States segments of the International Space Station (ISS) was an involved process that started in the mid 1980s, with the assessment and testing of competing technologies that could be used to clean the air and recycle water. It culminated in 2009 with the delivery and successful activation of the Water Recovery System (WRS) water processor (WP). The ECLSS required the work of a team of engineers and scientist working together to develop systems that could clean and/or recycle human metabolic loads to maintain a clean atmosphere and provide the crew clean water. One of the main goals of the ECLSS is to minimize the time spent by the crew worrying about vital resources not available in the vacuum of space, which allows them to spend most of their time learning to live in a microgravity environment many miles from the comforts of Earth and working on science experiments. Microorganisms are a significant part of the human body as well as part of the environment that we live in. Therefore, the ISS ECLSS design had to take into account the effect microorganisms have on the quality of stored water and wastewater, as well as that of the air systems. Hardware performance issues impacted by the accumulation of biofilm and/or microbiologically influenced corrosion were also studied during the ECLSS development stages. Many of the tests that were performed had to take into account the unique aspects of a microgravity environment as well as the challenge of understanding how to design systems that could not be sterilized or maintained in a sterile state. This paper will summarize the work of several studies that were performed to assess the impacts and/or to minimize the effects of microorganisms in open, semi-closed and closed loop life support system. The biofilm and biodeterioration studies that were performed during the design and test periods will be presented in

  13. Space Life Support Technology Applications to Terrestrial Environmental Problems

    Science.gov (United States)

    Schwartzkopf, Steven H.; Sleeper, Howard L.

    1993-01-01

    Many of the problems now facing the human race on Earth are, in fact, life support issues. Decline of air Quality as a result of industrial and automotive emissions, pollution of ground water by organic pesticides or solvents, and the disposal of solid wastes are all examples of environmental problems that we must solve to sustain human life. The technologies currently under development to solve the problems of supporting human life for advanced space missions are extraordinarily synergistic with these environmental problems. The development of these technologies (including both physicochemical and bioregenerative types) is increasingly focused on closing the life support loop by removing and recycling contaminants and wastes to produce the materials necessary to sustain human life. By so doing, this technology development effort also focuses automatically on reducing resupply logistics requirements and increasing crew safety through increased self-sufficiency. This paper describes several technologies that have been developed to support human life in space and illustrates the applicability of the technologies to environmental problems including environmental remediation and pollution prevention.

  14. Spacecraft cabin environment effects on the growth and behavior of Chlorella vulgaris for life support applications

    Science.gov (United States)

    Niederwieser, Tobias; Kociolek, Patrick; Klaus, David

    2018-02-01

    An Environmental Control and Life Support System (ECLSS) is necessary for humans to survive in the hostile environment of space. As future missions move beyond Earth orbit for extended durations, reclaiming human metabolic waste streams for recycled use becomes increasingly important. Historically, these functions have been accomplished using a variety of physical and chemical processes with limited recycling capabilities. In contrast, biological systems can also be incorporated into a spacecraft to essentially mimic the balance of photosynthesis and respiration that occurs in Earth's ecosystem, along with increasing the reuse of biomass throughout the food chain. In particular, algal photobioreactors that use Chlorella vulgaris have been identified as potential multifunctional components for use as part of such a bioregenerative life support system (BLSS). However, a connection between the biological research examining C. vulgaris behavior and the engineered spacecraft cabin environmental conditions has not yet been thoroughly established. This review article characterizes the ranges of prior and expected cabin parameters (e.g. temperature, lighting, carbon dioxide, pH, oxygen, pressure, growth media, contamination, gravity, and radiation) and reviews algal metabolic response (e.g. growth rate, composition, carbon dioxide fixation rates, and oxygen evolution rates) to changes in those parameters that have been reported in prior space research and from related Earth-based experimental observations. Based on our findings, it appears that C. vulgaris offers many promising advantages for use in a BLSS. Typical atmospheric conditions found in spacecraft such as elevated carbon dioxide levels are, in fact, beneficial for algal cultivation. Other spacecraft cabin parameters, however, introduce unique environmental factors, such as reduced total pressure with elevated oxygen concentration, increased radiation, and altered gravity, whose effects on the biological responses

  15. Space Life-Support Engineering Program

    Science.gov (United States)

    Seagrave, Richard C. (Principal Investigator)

    1995-01-01

    This report covers the seventeen months of work performed under an extended one year NASA University Grant awarded to Iowa State University to perform research on topics relating to the development of closed-loop long-term life support systems with the initial principal focus on space water management. In the first phase of the program, investigators from chemistry and chemical engineering with demonstrated expertise in systems analysis, thermodynamics, analytical chemistry and instrumentation, performed research and development in two major related areas; the development of low-cost, accurate, and durable sensors for trace chemical and biological species, and the development of unsteady-state simulation packages for use in the development and optimization of control systems for life support systems. In the second year of the program, emphasis was redirected towards concentrating on the development of dynamic simulation techniques and software and on performing a thermodynamic systems analysis, centered on availability or energy analysis, in an effort to begin optimizing the systems needed for water purification. The third year of the program, the subject of this report, was devoted to the analysis of the water balance for the interaction between humans and the life support system during space flight and exercise, to analysis of the cardiopulmonary systems of humans during space flight, and to analysis of entropy production during operation of the air recovery system during space flight.

  16. Estimating CO2 gas exchange in mixed age vegetable plant communities grown on soil-like substrates for life support systems

    Science.gov (United States)

    Velichko, V. V.; Tikhomirov, A. A.; Ushakova, S. A.

    2018-02-01

    If soil-like substrate (SLS) is to be used in human life support systems with a high degree of mass closure, the rate of its gas exchange as a compartment for mineralization of plant biomass should be understood. The purpose of this study was to compare variations in CO2 gas exchange of vegetable plant communities grown on the soil-like substrate using a number of plant age groups, which determined the so-called conveyor interval. Two experimental plant communities were grown as plant conveyors with different conveyor intervals. The first plant community consisted of conveyors with intervals of 7 days for carrot and beet and 14 days for chufa sedge. The conveyor intervals in the second plant community were 14 days for carrot and beet and 28 days for chufa sedge. This study showed that increasing the number of age groups in the conveyor and, thus, increasing the frequency of adding plant waste to the SLS, decreased the range of variations in CO2 concentration in the "plant-soil-like substrate" system. However, the resultant CO2 gas exchange was shifted towards CO2 release to the atmosphere of the plant community with short conveyor intervals. The duration of the conveyor interval did not significantly affect productivity and mineral composition of plants grown on the SLS.

  17. Developing Reliable Life Support for Mars

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    A human mission to Mars will require highly reliable life support systems. Mars life support systems may recycle water and oxygen using systems similar to those on the International Space Station (ISS). However, achieving sufficient reliability is less difficult for ISS than it will be for Mars. If an ISS system has a serious failure, it is possible to provide spare parts, or directly supply water or oxygen, or if necessary bring the crew back to Earth. Life support for Mars must be designed, tested, and improved as needed to achieve high demonstrated reliability. A quantitative reliability goal should be established and used to guide development t. The designers should select reliable components and minimize interface and integration problems. In theory a system can achieve the component-limited reliability, but testing often reveal unexpected failures due to design mistakes or flawed components. Testing should extend long enough to detect any unexpected failure modes and to verify the expected reliability. Iterated redesign and retest may be required to achieve the reliability goal. If the reliability is less than required, it may be improved by providing spare components or redundant systems. The number of spares required to achieve a given reliability goal depends on the component failure rate. If the failure rate is under estimated, the number of spares will be insufficient and the system may fail. If the design is likely to have undiscovered design or component problems, it is advisable to use dissimilar redundancy, even though this multiplies the design and development cost. In the ideal case, a human tended closed system operational test should be conducted to gain confidence in operations, maintenance, and repair. The difficulty in achieving high reliability in unproven complex systems may require the use of simpler, more mature, intrinsically higher reliability systems. The limitations of budget, schedule, and technology may suggest accepting lower and

  18. Development and validation of an experimental life support system for assessing the effects of global climate change and environmental contamination on estuarine and coastal marine benthic communities.

    Science.gov (United States)

    Coelho, Francisco J R C; Rocha, Rui J M; Pires, Ana C C; Ladeiro, Bruno; Castanheira, José M; Costa, Rodrigo; Almeida, Adelaide; Cunha, Angela; Lillebø, Ana Isabel; Ribeiro, Rui; Pereira, Ruth; Lopes, Isabel; Marques, Catarina; Moreira-Santos, Matilde; Calado, Ricardo; Cleary, Daniel F R; Gomes, Newton C M

    2013-08-01

    An experimental life support system (ELSS) was constructed to study the interactive effects of multiple stressors on coastal and estuarine benthic communities, specifically perturbations driven by global climate change and anthropogenic environmental contamination. The ELSS allows researchers to control salinity, pH, temperature, ultraviolet radiation (UVR), tidal rhythms and exposure to selected contaminants. Unlike most microcosms previously described, our system enables true independent replication (including randomization). In addition to this, it can be assembled using commercially available materials and equipment, thereby facilitating the replication of identical experimental setups in different geographical locations. Here, we validate the reproducibility and environmental quality of the system by comparing chemical and biological parameters recorded in our ELSS with those prevalent in the natural environment. Water, sediment microbial community and ragworm (the polychaete Hediste diversicolor) samples were obtained from four microcosms after 57 days of operation. In general, average concentrations of dissolved inorganic nutrients (NO3 (-) ; NH4 (+) and PO4 (-3) ) in the water column of the ELSS experimental control units were within the range of concentrations recorded in the natural environment. While some shifts in bacterial community composition were observed between in situ and ELSS sediment samples, the relative abundance of most metabolically active bacterial taxa appeared to be stable. In addition, ELSS operation did not significantly affect survival, oxidative stress and neurological biomarkers of the model organism Hediste diversicolor. The validation data indicate that this system can be used to assess independent or interactive effects of climate change and environmental contamination on benthic communities. Researchers will be able to simulate the effects of these stressors on processes driven by microbial communities, sediment and seawater

  19. Temperature affects long-term productivity and quality attributes of day-neutral strawberry for a space life-support system

    Science.gov (United States)

    Massa, Gioia D.; Chase, Elaine; Santini, Judith B.; Mitchell, Cary A.

    2015-04-01

    Strawberry (Fragaria x ananassa L.) is a promising candidate crop for space life-support systems with desirable sensory quality and health attributes. Day-neutral cultivars such as 'Seascape' are adaptable to a range of photoperiods, including short days that would save considerable energy for crop lighting without reductions in productivity or yield. Since photoperiod and temperature interact to affect strawberry growth and development, several diurnal temperature regimes were tested under a short photoperiod of 10 h per day for effects on yield and quality attributes of 'Seascape' strawberry during production cycles longer than 270 days. The coolest day/night temperature regime, 16°/8 °C, tended to produce smaller numbers of larger fruit than did the intermediate temperature range of 18°/10 °C or the warmest regime, 20°/12 °C, both of which produced similar larger numbers of smaller fruit. The intermediate temperature regime produced the highest total fresh mass of berries over an entire production cycle. Independent experiments examined either organoleptic or physicochemical quality attributes. Organoleptic evaluation indicated that fruit grown under the coolest temperature regime tended to score the highest for both hedonic preference and descriptive evaluation of sensory attributes related to sweetness, texture, aftertaste, and overall approval. The physicochemical quality attributes Brix, pH, and sugar/acid ratio were highest for fruits harvested from the coolest temperature regime and lower for those from the warmer temperature regimes. The cool-regime fruits also were lowest in titratable acidity. The yield parameters fruit number and size oscillated over the course of a production cycle, with a gradual decline in fruit size under all three temperature regimes. Brix and titratable acidity both decreased over time for all three temperature treatments, but sugar/acid ratio remained highest for the cool temperature regime over the entire production

  20. Water Walls: Highly Reliable and Massively Redundant Life Support Architecture

    Data.gov (United States)

    National Aeronautics and Space Administration — WATER WALLS (WW) takes an approach to providing a life support system, Forward Osmosis (FO), that is biologically and chemically passive, using mechanical systems...

  1. Study of space shuttle environmental control and life support problems

    Science.gov (United States)

    Dibble, K. P.; Riley, F. E.

    1971-01-01

    Four problem areas were treated: (1) cargo module environmental control and life support systems; (2) space shuttle/space station interfaces; (3) thermal control considerations for payloads; and (4) feasibility of improving system reusability.

  2. Ion-Specific Nutrient Management in Closed Systems: The Necessity for Ion-Selective Sensors in Terrestrial and Space-Based Agriculture and Water Management Systems

    OpenAIRE

    Alain Berinstain; Alan Scott; Matthew Bamsey; Michael Dixon; Cody Thompson; Thomas Graham

    2012-01-01

    The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenh...

  3. Temperature affects long-term productivity and quality attributes of day-neutral strawberry for a space life-support system.

    Science.gov (United States)

    Massa, Gioia D; Chase, Elaine; Santini, Judith B; Mitchell, Cary A

    2015-04-01

    Strawberry (Fragaria x ananassa L.) is a promising candidate crop for space life-support systems with desirable sensory quality and health attributes. Day-neutral cultivars such as 'Seascape' are adaptable to a range of photoperiods, including short days that would save considerable energy for crop lighting without reductions in productivity or yield. Since photoperiod and temperature interact to affect strawberry growth and development, several diurnal temperature regimes were tested under a short photoperiod of 10 h per day for effects on yield and quality attributes of 'Seascape' strawberry during production cycles longer than 270 days. The coolest day/night temperature regime, 16°/8 °C, tended to produce smaller numbers of larger fruit than did the intermediate temperature range of 18°/10 °C or the warmest regime, 20°/12 °C, both of which produced similar larger numbers of smaller fruit. The intermediate temperature regime produced the highest total fresh mass of berries over an entire production cycle. Independent experiments examined either organoleptic or physicochemical quality attributes. Organoleptic evaluation indicated that fruit grown under the coolest temperature regime tended to score the highest for both hedonic preference and descriptive evaluation of sensory attributes related to sweetness, texture, aftertaste, and overall approval. The physicochemical quality attributes Brix, pH, and sugar/acid ratio were highest for fruits harvested from the coolest temperature regime and lower for those from the warmer temperature regimes. The cool-regime fruits also were lowest in titratable acidity. The yield parameters fruit number and size oscillated over the course of a production cycle, with a gradual decline in fruit size under all three temperature regimes. Brix and titratable acidity both decreased over time for all three temperature treatments, but sugar/acid ratio remained highest for the cool temperature regime over the entire production

  4. A biological method of including mineralized human liquid and solid wastes into the mass exchange of bio-technical life support systems

    Science.gov (United States)

    Ushakova, S. A.; Tikhomirov, A. A.; Tikhomirova, N. A.; Kudenko, Yu. A.; Litovka, Yu. A.; Anishchenko, O. V.

    2012-10-01

    The main obstacle to using mineralized human solid and liquid wastes as a source of mineral elements for plants cultivated in bio-technical life support systems (BLSS) is that they contain NaCl. The purpose of this study is to determine whether mineralized human wastes can be used to prepare the nutrient solution for long-duration conveyor cultivation of uneven-aged wheat and Salicornia europaea L. plant community. Human solid and liquid wastes were mineralized by the method of "wet incineration" developed by Yu. Kudenko. They served as a basis for preparing the solutions that were used for conveyor-type cultivation of wheat community represented by 5 age groups, planted with a time interval of 14 days. Wheat was cultivated hydroponically on expanded clay particles. To reduce salt content of the nutrient solution, every two weeks, after wheat was harvested, 12 L of solution was removed from the wheat irrigation tank and used for Salicornia europaea cultivation in water culture in a conveyor mode. The Salicornia community was represented by 2 age groups, planted with a time interval of 14 days. As some portion of the nutrient solution used for wheat cultivation was regularly removed, sodium concentration in the wheat irrigation solution did not exceed 400 mg/L, and mineral elements contained in the removed portion were used for Salicornia cultivation. The experiment lasted 4 months. The total wheat biomass productivity averaged 30.1 g · m-2 · day-1, and the harvest index amounted to 36.8%. The average productivity of Salicornia edible biomass on a dry weight basis was 39.3 g · m-2 · day-1, and its aboveground mass contained at least 20% of NaCl. Thus, the proposed technology of cultivation of wheat and halophyte plant community enables using mineralized human wastes as a basis for preparing nutrient solutions and including NaCl in the mass exchange of the BLSS; moreover, humans are supplied with additional amounts of leafy vegetables.

  5. Exploration Life Support Critical Questions for Future Human Space Missions

    Science.gov (United States)

    Kwert, Michael K.; Barta, Daniel J.; McQuillan, Jeff

    2010-01-01

    Exploration Life Support (ELS) is a current project under NASA's Exploration Systems Mission Directorate. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for long duration missions, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and how progress in the development of ELS technologies can help answer them. The ELS Project includes the following Elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems, Habitation Engineering, Systems Integration, Modeling and Analysis, and Validation and Testing, which includes the Sub-Elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize overall mission architectures by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements. Systems analysis will be validated through the data gathered from integrated testing, which will demonstrate the interfaces of a closed loop life support system. By applying a systematic process for defining, sorting and answering critical life support questions, the ELS project is preparing for a variety of future human space missions

  6. Results of the Workshop on Two-Phase Flow, Fluid Stability and Dynamics: Issues in Power, Propulsion, and Advanced Life Support Systems

    Science.gov (United States)

    McQuillen, John; Rame, Enrique; Kassemi, Mohammad; Singh, Bhim; Motil, Brian

    2003-01-01

    The Two-phase Flow, Fluid Stability and Dynamics Workshop was held on May 15, 2003 in Cleveland, Ohio to define a coherent scientific research plan and roadmap that addresses the multiphase fluid problems associated with NASA s technology development program. The workshop participants, from academia, industry and government, prioritized various multiphase issues and generated a research plan and roadmap to resolve them. This report presents a prioritization of the various multiphase flow and fluid stability phenomena related primarily to power, propulsion, fluid and thermal management and advanced life support; and a plan to address these issues in a logical and timely fashion using analysis, ground-based and space-flight experiments.

  7. Study of basic-life-support training for college students.

    Science.gov (United States)

    Srivilaithon, Winchana; Amnaumpatanapon, Kumpon; Limjindaporn, Chitlada; Imsuwan, Intanon; Daorattanachai, Kiattichai

    2015-03-01

    To study about attitude and knowledge regarding basic-life-support among college students outside medical system. The cross-sectional study in the emergency department of Thammasat Hospital. The authors included college students at least aged 18 years old and volunteers to be study subjects. The authors collected data about attitudes and knowledge in performing basic-life-support by using set of questionnaires. 250 college students participated in the two hours trainingprogram. Most ofparticipants (42.4%) were second-year college students, of which 50 of 250 participants (20%) had trained in basic-life-support program. Twenty-seven of 250 participants (10.8%) had experience in basic-life-support outside the hospital. Most of participants had good attitude for doing basic-life-support. Participants had a significant improved score following training (mean score 8.66 and 12.34, respectively, pbasic-life-support to cardiac arrest patient. The training program in basic-life-support has significant impact on knowledge after training.

  8. Emergency Neurologic Life Support: Meningitis and Encephalitis.

    Science.gov (United States)

    Gaieski, David F; Nathan, Barnett R; O'Brien, Nicole F

    2015-12-01

    Bacterial meningitis and viral encephalitis, particularly herpes simplex encephalitis, are severe neurological infections that, if not treated promptly and effectively, lead to poor neurological outcome or death. Because treatment is more effective if given early, the topic of meningitis and encephalitis was chosen as an Emergency Neurological Life Support protocol. This protocol provides a practical approach to recognition and urgent treatment of bacterial meningitis and encephalitis. Appropriate imaging, spinal fluid analysis, and early empiric treatment is discussed. Though uncommon in its full form, the typical clinical triad of headache, fever, and neck stiffness should alert the clinical practitioner to the possibility of a central nervous system infection. Early attention to the airway and maintaining normotension is crucial in treatment of these patients, as is rapid treatment with anti-infectives and, in some cases, corticosteroids.

  9. Hospital Costs Of Extracorporeal Life Support Therapy

    NARCIS (Netherlands)

    Oude Lansink-Hartgring, Annemieke; van den Hengel, Berber; van der Bij, Wim; Erasmus, Michiel E.; Mariani, Massimo A.; Rienstra, Michiel; Cernak, Vladimir; Vermeulen, Karin M.; van den Bergh, Walter M.

    Objectives: To conduct an exploration of the hospital costs of extracorporeal life support therapy. Extracorporeal life support seems an efficient therapy for acute, potentially reversible cardiac or respiratory failure, when conventional therapy has been inadequate, or as bridge to transplant, but

  10. Reliability Impacts in Life Support Architecture and Technology Selection

    Science.gov (United States)

    Lange Kevin E.; Anderson, Molly S.

    2012-01-01

    Quantitative assessments of system reliability and equivalent system mass (ESM) were made for different life support architectures based primarily on International Space Station technologies. The analysis was applied to a one-year deep-space mission. System reliability was increased by adding redundancy and spares, which added to the ESM. Results were thus obtained allowing a comparison of the ESM for each architecture at equivalent levels of reliability. Although the analysis contains numerous simplifications and uncertainties, the results suggest that achieving necessary reliabilities for deep-space missions will add substantially to the life support ESM and could influence the optimal degree of life support closure. Approaches for reducing reliability impacts were investigated and are discussed.

  11. Canadian advanced life support capacities and future directions

    Science.gov (United States)

    Bamsey, M.; Graham, T.; Stasiak, M.; Berinstain, A.; Scott, A.; Vuk, T. Rondeau; Dixon, M.

    2009-07-01

    Canada began research on space-relevant biological life support systems in the early 1990s. Since that time Canadian capabilities have grown tremendously, placing Canada among the emerging leaders in biological life support systems. The rapid growth of Canadian expertise has been the result of several factors including a large and technically sophisticated greenhouse sector which successfully operates under challenging climatic conditions, well planned technology transfer strategies between the academic and industrial sectors, and a strong emphasis on international research collaborations. Recent activities such as Canada's contribution of the Higher Plant Compartment of the European Space Agency's MELiSSA Pilot Plant and the remote operation of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic continue to demonstrate Canadian capabilities with direct applicability to advanced life support systems. There is also a significant latent potential within Canadian institutions and organizations with respect to directly applicable advanced life support technologies. These directly applicable research interests include such areas as horticultural management strategies (for candidate crops), growth media, food processing, water management, atmosphere management, energy management, waste management, imaging, environment sensors, thermal control, lighting systems, robotics, command and data handling, communications systems, structures, in-situ resource utilization, space analogues and mission operations. With this background and in collaboration with the Canadian aerospace industry sector, a roadmap for future life support contributions is presented here. This roadmap targets an objective of at least 50% food closure by 2050 (providing greater closure in oxygen, water recycling and carbon dioxide uptake). The Canadian advanced life support community has chosen to focus on lunar surface infrastructure and not low Earth orbit or transit systems (i.e. microgravity

  12. Exploration Life Support Critical Questions for Future Human Space Missions

    Science.gov (United States)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeff

    2009-01-01

    Exploration Life Support (ELS) is a project under NASA s Exploration Technology Development Program. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for a lunar outpost, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and discusses how progress in the development of ELS technologies can help answer them. The ELS Project includes Atmosphere Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing, which includes the sub-elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize the overall mission architecture by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements.

  13. Trade study for water and waste management concepts. Task 7: Support special analysis. [cost analysis of life support systems for waste utilization during space missions

    Science.gov (United States)

    1975-01-01

    Cost analyses and tradeoff studies are given for waste management in the Space Station, Lunar Surface Bases, and interplanetary space missions. Crew drinking water requirements are discussed and various systems to recycle water are examined. The systems were evaluated for efficiency and weight savings. The systems considered effective for urine water recovery were vapor compression, flash evaporation, and air evaporation with electrolytic pretreatment. For wash water recovery, the system of multifiltration was selected. A wet oxidation system, which can process many kinds of wastes, is also considered.

  14. Exploration Life Support Technology Development for Lunar Missions

    Science.gov (United States)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey

    2009-01-01

    Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.

  15. Design of a surface-based factory for the production of life support and technology support products. Phase 2: Integrated water system for a space colony

    Science.gov (United States)

    1989-01-01

    Phase 2 of a conceptual design of an integrated water treatment system to support a space colony is presented. This includes a breathable air manufacturing system, a means of drilling for underground water, and storage of water for future use. The system is to supply quality water for biological consumption, farming, residential and industrial use and the water source is assumed to be artesian or subsurface and on Mars. Design criteria and major assumptions are itemized. A general block diagram of the expected treatment system is provided. The design capacity of the system is discussed, including a summary of potential users and the level of treatment required; and, finally, various treatment technologies are described.

  16. Using Technology Readiness Level (TRL), Life Cycle Cost (LCC), and Other Metrics to Supplement Equivalent System Mass (ESM) in Advanced Life Support (ALS)

    Science.gov (United States)

    Jones, Harry

    2003-01-01

    The ALS project plan goals are reducing cost, improving performance, and achieving flight readiness. ALS selects projects to advance the mission readiness of low cost, high performance technologies. The role of metrics is to help select good projects and report progress. The Equivalent Mass (EM) of a system is the sum of the estimated mass of the hardware, of its required materials and spares, and of the pressurized volume, power supply, and cooling system needed to support the hardware in space. EM is the total payload launch mass needed to provide and support a system. EM is directly proportional to the launch cost.

  17. Strategies for Stabilizing Nitrogenous Compounds in ECLSS Wastewater: Top-Down System Design and Unit Operation Selection with Focus on Bio-Regenerative Processes for Short and Long Term Scenarios

    Science.gov (United States)

    Lunn, Griffin M.

    2011-01-01

    Water recycling and eventual nutrient recovery is crucial for surviving in or past low earth orbit. New approaches and syste.m architecture considerations need to be addressed to meet current and future system requirements. This paper proposes a flexible system architecture that breaks down pretreatment , steps into discrete areas where multiple unit operations can be considered. An overview focusing on the urea and ammonia conversion steps allows an analysis on each process's strengths and weaknesses and synergy with upstream and downstream processing. Process technologies to be covered include chemical pretreatment, biological urea hydrolysis, chemical urea hydrolysis, combined nitrification-denitrification, nitrate nitrification, anammox denitrification, and regenerative ammonia absorption through struvite formation. Biological processes are considered mainly for their ability to both maximize water recovery and to produce nutrients for future plant systems. Unit operations can be considered for traditional equivalent system mass requirements in the near term or what they can provide downstream in the form of usable chemicals or nutrients for the long term closed-loop ecological control and life support system. Optimally this would allow a system to meet the former but to support the latter without major modification.

  18. A controlled aquatic ecological life support system (CAELSS) for combined production of fish and higher plant biomass suitable for integration into a lunar or planetary base.

    Science.gov (United States)

    Blum, V; Andriske, M; Eichhorn, H; Kreuzberg, K; Schreibman, M P

    1995-10-01

    Based on the construction principle of the already operative Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) the concept of an aquaculture system for combined production of animal and plant biomass was developed. It consists of a tank for intensive fish culture which is equipped with a feeding lock representing also a trap for biomass removal followed by a water recycling system. This is an optimized version of the original C.E.B.A.S. filters adapted to higher water pollutions. It operates in a fully biological mode and is able to convert the high ammonia ion concentrations excreted by the fish gills into nitrite ions. The second biomass production site is a higher plant cultivator with an internal fiber optics light distributor which may utilize of solar energy. The selected water plant is a tropical rootless duckweed of the genus Wolffia which possesses a high capacity in nitrate elimination and is terrestrially cultured as a vegetable for human nutrition in Southeast Asia. It is produced in an improved suspension culture which allows the removal of excess biomass by tangential centrifugation. The plant cultivator is able to supply the whole system with oxygen for respiration and eliminates vice versa the carbon dioxide exhaled by the fish via photosynthesis. A gas exchanger may be used for emergency purposes or to deliver excess oxygen into the environment and may be implemented into the air regeneration system of a closed environment of higher order. The plant biomass is fed into a biomass processor which delivers condensed fresh and dried biomass as pellets. The recovered water is fed back into the aquaculture loop. The fresh plants can be used for human nutrition immediately or can be stored after sterilization in an adequate packing. The dried Wolffia pellets are collected and brought into the fish tank by an automated feeder. In parallel the water from the plant cultivator is driven back to the animal tank by a pump. The special feature of the

  19. Can basic life support personnel safely determine that advanced life support is not needed?

    Science.gov (United States)

    Cone, D C; Wydro, G C

    2001-01-01

    To determine whether firefighter/emergency medical technicians-basic (FF/EMT-Bs) staffing basic life support (BLS) ambulances in a two-tiered emergency medical services (EMS) system can safely determine when advanced life support (ALS) is not needed. This was a prospective, observational study conducted in two academic emergency departments (EDs) receiving patients from a large urban fire-based EMS system. Runs were studied to which ALS and BLS ambulances were simultaneously dispatched, with the patient transported by the BLS unit. Prospectively established criteria for potential need for ALS were used to determine whether the FF/EMT-B's decision to cancel the ALS unit was safe, and simple outcomes (admission rate, length of stay, mortality) were examined. In the system studied, BLS crews may cancel responding ALS units at their discretion; there are no protocols or medical criteria for cancellation. A convenience sample of 69 cases was collected. In 52 cases (75%), the BLS providers indicated that they cancelled the responding ALS unit because they did not feel ALS was needed. Of these, 40 (77%) met study criteria for ALS: 39 had potentially serious chief complaints, nine had abnormal vital signs, and ten had physical exam findings that warranted ALS. Forty-five (87%) received an intervention immediately upon ED arrival that could have been provided in the field by an ALS unit, and 16 (31%) were admitted, with a median length of stay of 3.3 days (range 1.1-73.4 days). One patient died. Firefighter/EMT-Bs, working without protocols or medical criteria, cannot always safely determine which patients may require ALS intervention.

  20. Monitoring and life-support devices

    International Nuclear Information System (INIS)

    Noback, C.R.; Murphy, C.H.

    1987-01-01

    The radiographic and physical principles involved in interpreting films, and some of the altered anatomy and pathology that may be seen on such films, are discussed. This chapter considers the radiographic appearances of monitoring and life-support devices. Appropriate positioning and function are shown, as are some of the complications associated with their placement and/or function

  1. IT for advanced Life Support in English

    DEFF Research Database (Denmark)

    Sejerø Pedersen, Birgitte; Jeberg, Kirsten Ann; Koerner, Christian

    2009-01-01

    In this study we analyzed how IT support can be established for the treatment and documentation of advanced life support (ALS) in a hospital. In close collaboration with clinical researchers, a running prototype of an IT solution to support the clinical decisions in ALS was developed and tried out...

  2. Electrochemical Dehumidification and Life Support System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sustainable Innovations has developed an innovative concept for highly efficient, reliable, potable water production based on technology from a commercial line of...

  3. Rapid Deterioration of Basic Life Support Skills in Dentists With Basic Life Support Healthcare Provider.

    Science.gov (United States)

    Nogami, Kentaro; Taniguchi, Shogo; Ichiyama, Tomoko

    2016-01-01

    The aim of this study was to investigate the correlation between basic life support skills in dentists who had completed the American Heart Association's Basic Life Support (BLS) Healthcare Provider qualification and time since course completion. Thirty-six dentists who had completed the 2005 BLS Healthcare Provider course participated in the study. We asked participants to perform 2 cycles of cardiopulmonary resuscitation on a mannequin and evaluated basic life support skills. Dentists who had previously completed the BLS Healthcare Provider course displayed both prolonged reaction times, and the quality of their basic life support skills deteriorated rapidly. There were no correlations between basic life support skills and time since course completion. Our results suggest that basic life support skills deteriorate rapidly for dentists who have completed the BLS Healthcare Provider. Newer guidelines stressing chest compressions over ventilation may help improve performance over time, allowing better cardiopulmonary resuscitation in dental office emergencies. Moreover, it may be effective to provide a more specialized version of the life support course to train the dentists, stressing issues that may be more likely to occur in the dental office.

  4. Emergency Neurological Life Support: Intracerebral Hemorrhage.

    Science.gov (United States)

    Jauch, Edward C; Pineda, Jose A; Hemphill, J Claude

    2015-12-01

    Intracerebral hemorrhage (ICH) is a subset of stroke due to bleeding within the parenchyma of the brain. It is potentially lethal, and survival depends on ensuring an adequate airway, reversal of coagulopathy, and proper diagnosis. ICH was chosen as an Emergency Neurological Life Support protocol because intervention within the first critical hour may improve outcome, and it is critical to have site-specific protocols to drive care quickly and efficiently.

  5. Scaling Impacts in Life Support Architecture and Technology Selection

    Science.gov (United States)

    Lange, Kevin

    2016-01-01

    For long-duration space missions outside of Earth orbit, reliability considerations will drive higher levels of redundancy and/or on-board spares for life support equipment. Component scaling will be a critical element in minimizing overall launch mass while maintaining an acceptable level of system reliability. Building on an earlier reliability study (AIAA 2012-3491), this paper considers the impact of alternative scaling approaches, including the design of technology assemblies and their individual components to maximum, nominal, survival, or other fractional requirements. The optimal level of life support system closure is evaluated for deep-space missions of varying duration using equivalent system mass (ESM) as the comparative basis. Reliability impacts are included in ESM by estimating the number of component spares required to meet a target system reliability. Common cause failures are included in the analysis. ISS and ISS-derived life support technologies are considered along with selected alternatives. This study focusses on minimizing launch mass, which may be enabling for deep-space missions.

  6. Technical assessment of Mir-1 life support hardware for the international space station

    Science.gov (United States)

    Mitchell, K. L.; Bagdigian, R. M.; Carrasquillo, R. L.; Carter, D. L.; Franks, G. D.; Holder, D. W., Jr.; Hutchens, C. F.; Ogle, K. Y.; Perry, J. L.; Ray, C. D.

    1994-01-01

    NASA has been progressively learning the design and performance of the Russian life support systems utilized in their Mir space station. In 1992, a plan was implemented to assess the benefits of the Mir-1 life support systems to the Freedom program. Three primary tasks focused on: evaluating the operational Mir-1 support technologies and understanding if specific Russian systems could be directly utilized on the American space station and if Russian technology design information could prove useful in improving the current design of the planned American life support equipment; evaluating the ongoing Russian life support technology development activities to determine areas of potential long-term application to the U.S. space station; and utilizing the expertise of their space station life support systems to evaluate the benefits to the current U.S. space station program which included the integration of the Russian Mir-1 designs with the U.S. designs to support a crew of six.

  7. Pediatric advanced life support and sedation of pediatric dental patients

    OpenAIRE

    Kim, Jongbin

    2016-01-01

    Programs provided by the Korea Association of Cardiopulmonary Resuscitation include Basic Life Support (BLS), Advanced Cardiac Life Support (ACLS), Pediatric Advanced Life Support (PALS), and Korean Advanced Life Support (KALS). However, programs pertinent to dental care are lacking. Since 2015, related organizations have been attempting to develop a Dental Advanced Life Support (DALS) program, which can meet the needs of the dental environment. Generally, for initial management of emergency ...

  8. Ultra Reliable Closed Loop Life Support for Long Space Missions

    Science.gov (United States)

    Jones, Harry W.; Ewert, Michael K.

    2010-01-01

    Spacecraft human life support systems can achieve ultra reliability by providing sufficient spares to replace all failed components. The additional mass of spares for ultra reliability is approximately equal to the original system mass, provided that the original system reliability is not too low. Acceptable reliability can be achieved for the Space Shuttle and Space Station by preventive maintenance and by replacing failed units. However, on-demand maintenance and repair requires a logistics supply chain in place to provide the needed spares. In contrast, a Mars or other long space mission must take along all the needed spares, since resupply is not possible. Long missions must achieve ultra reliability, a very low failure rate per hour, since they will take years rather than weeks and cannot be cut short if a failure occurs. Also, distant missions have a much higher mass launch cost per kilogram than near-Earth missions. Achieving ultra reliable spacecraft life support systems with acceptable mass will require a well-planned and extensive development effort. Analysis must determine the reliability requirement and allocate it to subsystems and components. Ultra reliability requires reducing the intrinsic failure causes, providing spares to replace failed components and having "graceful" failure modes. Technologies, components, and materials must be selected and designed for high reliability. Long duration testing is needed to confirm very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The system must be designed, developed, integrated, and tested with system reliability in mind. Maintenance and reparability of failed units must not add to the probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass should start soon since it must be a long term effort.

  9. Studies of the productive efficiency of a cylindrical salad growth facility with a light-emitting diodes lighting unit as a component of the biological life support system for space crews

    Science.gov (United States)

    Erokhin, A. N.; Berkovich, Y. A.; Smolianina, S. O.; Krivobok, N. M.; Agureev, A. N.; Kalandarov, S. K.

    Efficiency of the green salad production under light-emitting diodes within space life support system was tested with a prototype of a 10-step cylindrical "Phytocycle-SD". The system has a plant chamber in the form of a spiral cylinder; a planting unit inside the plant chamber is built of 10 root modules which make a planting circular cylinder co-axial with and revolving relative to the leaf chamber. Twelve panels of the lighting unit on the internal surfaces of the spiral cylinder carry 438 red (660 nm) and 88 blue (470 nm) light-emitting diodes producing average PPF equal 360 mmol/(m^2\\cdots) 4 cm below the light source, and 3 panels producing PPF equal 190 mmol/(^2\\cdots) at the initial steps of the plant conveyer. The system demands 0.44 kW, the plant chamber is 0.2 m^3 large, and the total illuminated crop area is 0.8 m^2. Productive efficiency of the greenhouse was studied in a series of laboratory experiments with celery cabbage Brassica pekinensis (Lour) Rupr. grown in the conveyer with a one step period of 3 days. The crop grew in a fiber ion-exchange mineral-rich soil (FS) BIONA V-3 under the 24-hr light. Maximal productivity of the ripe (30-d old) plants reached 700 g of the fresh edible biomass from one root module; in this case, FS productivity amounted to 5.6 kg of the fresh biomass per one kg of dry FS. Biomass contents of ascorbic acid, carotinoids and cellulose gathered from one root module made up 70 mg, 13 mg and 50 g, respectively. Hence, celery cabbage crop raised in "Phytocycle-SD" can satisfy up to 8% of the daily dietary vitamin C, 24% of vitamin A and 22% of food fibers of 3 crew members. Vitamin production can be increased by planting multi-species salad crops.

  10. Developing Ultra Reliable Life Support for the Moon and Mars

    Science.gov (United States)

    Jones, Harry W.

    2009-01-01

    Recycling life support systems can achieve ultra reliability by using spares to replace failed components. The added mass for spares is approximately equal to the original system mass, provided the original system reliability is not very low. Acceptable reliability can be achieved for the space shuttle and space station by preventive maintenance and by replacing failed units, However, this maintenance and repair depends on a logistics supply chain that provides the needed spares. The Mars mission must take all the needed spares at launch. The Mars mission also must achieve ultra reliability, a very low failure rate per hour, since it requires years rather than weeks and cannot be cut short if a failure occurs. Also, the Mars mission has a much higher mass launch cost per kilogram than shuttle or station. Achieving ultra reliable space life support with acceptable mass will require a well-planned and extensive development effort. Analysis must define the reliability requirement and allocate it to subsystems and components. Technologies, components, and materials must be designed and selected for high reliability. Extensive testing is needed to ascertain very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The systems must be designed, produced, integrated, and tested without impairing system reliability. Maintenance and failed unit replacement should not introduce any additional probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass must start soon if it is to produce timely results for the moon and Mars.

  11. Water Walls: Highly Reliable and Massively Redundant Life Support Architecture Project

    Data.gov (United States)

    National Aeronautics and Space Administration — WATER WALLS (WW) takes an approach to providing a life support system that is biologically and chemically passive, using mechanical systems only for plumbing to...

  12. [Extracorporeal life support in calcium antagonist intoxication].

    Science.gov (United States)

    Groot, M W; Grewal, S; Meeder, H J; van Thiel, R J; den Uil, C A

    2017-01-01

    Intoxication with calcium antagonists is associated with poor outcome. Even mild calcium antagonist overdose may be fatal. A 51-year-old woman and a 51-year-old man came to the Accident and Emergency Department in severe shock after they had taken a calcium antagonist overdose. After extensive medicinal therapy had failed, they both needed extracorporeal life support (ECLS) as a bridge to recovery. In severe calcium antagonist overdose, the combination of vasoplegia and cardiac failure leads to refractory shock. ECLS temporarily supports the circulation and maintains organ perfusion. In this way ECLS functions as a bridge to recovery and may possibly save lives. Timely consultation with and referral to an ECLS centre is recommended in patients with calcium antagonist overdose.

  13. Extracorporeal life support in pediatric cardiac patients

    Directory of Open Access Journals (Sweden)

    Matteo Di NARDO

    2016-10-01

    Full Text Available Extracorporeal Life Support (ECLS is a valuable tool in the management of neonates and older children with severe cardiac or respiratory failure. In this review, we focus on ECLS when used for neonatal and pediatric cardiac disease. Strict selection of patients and timely deployment are necessary to optimize outcomes. Although every attempt should be made to deploy ECLS urgently rather than emergently, extracorporeal cardiopulmonary resuscitation (ECPR is being increasingly used and reasonable survival rates have been achieved after initiation of ECLS during active compressions of the chest following in-hospital cardiac arrest. Contraindications to ECLS are falling over time, although lethal chromosomal abnormalities, severe irreversible brain injury, and extremely low gestational age and weight (<32 weeks gestation or <1.5 kg remain firm contraindications.

  14. Methodological Challenges in Studies Comparing Prehospital Advanced Life Support with Basic Life Support.

    Science.gov (United States)

    Li, Timmy; Jones, Courtney M C; Shah, Manish N; Cushman, Jeremy T; Jusko, Todd A

    2017-08-01

    Determining the most appropriate level of care for patients in the prehospital setting during medical emergencies is essential. A large body of literature suggests that, compared with Basic Life Support (BLS) care, Advanced Life Support (ALS) care is not associated with increased patient survival or decreased mortality. The purpose of this special report is to synthesize the literature to identify common study design and analytic challenges in research studies that examine the effect of ALS, compared to BLS, on patient outcomes. The challenges discussed in this report include: (1) choice of outcome measure; (2) logistic regression modeling of common outcomes; (3) baseline differences between study groups (confounding); (4) inappropriate statistical adjustment; and (5) inclusion of patients who are no longer at risk for the outcome. These challenges may affect the results of studies, and thus, conclusions of studies regarding the effect of level of prehospital care on patient outcomes should require cautious interpretation. Specific alternatives for avoiding these challenges are presented. Li T , Jones CMC , Shah MN , Cushman JT , Jusko TA . Methodological challenges in studies comparing prehospital Advanced Life Support with Basic Life Support. Prehosp Disaster Med. 2017;32(4):444-450.

  15. Next Generation Life Support (NGLS): Continuous Electrochemical Gas Separator (CEGS) Element

    Data.gov (United States)

    National Aeronautics and Space Administration — Life support systems on human spacecraft are designed to provide a safe, habitable environment for the astronauts, and one of the most significant challenges is...

  16. [Knowledge about basic life support in European students].

    Science.gov (United States)

    Marton, József; Pandúr, Attila; Pék, Emese; Deutsch, Krisztina; Bánfai, Bálint; Radnai, Balázs; Betlehem, József

    2014-05-25

    Better knowledge and skills of basic life support can save millions of lives each year in Europe. The aim of this study was to measure the knowledge about basic life support in European students. From 13 European countries 1527 volunteer participated in the survey. The questionnaire consisted of socio-demographic questions and knowledge regarding basic life support. The maximum possible score was 18. Those participants who had basic life support training earned 11.91 points, while those who had not participated in lifesaving education had 9.6 points (pbasic life support between students from different European countries. Western European youth, and those who were trained had better performance.

  17. [Extracorporeal life support for treating cardiac arrest].

    Science.gov (United States)

    Lehot, Jean-Jacques; Long-Him-Nam, Nelly; Bastien, Olivier

    2011-12-01

    Percutaneous extracorporeal life support (ECLS) is now widespread for treating acute cardiac failure. ECLS has been used for treating in-hospital and out of hospital cardiac arrests. A systematic review of literature was performed in order to assess the results. Nine studies of in-hospital cardiac arrests were published between 2003 and January 31, 2011. They included 724 patients, 208 of which survived without significant neurological sequelae (28.7 %). In the other patients, the initial disease and the consequences of low flow brought multiorgan failure, or ECLS resulted in haemorrhage and ischaemia. Low flow lasted between 42 and 105 min (mean 54min). ECLS was used after out of hospital cardiac arrests in 3 studies published between 2008 and January 31, 2011. They included 110 patients of which only 6 survived (4.4 %) despite strict inclusion criteria. Low flow lasted between 60 and 120 min (mean 98 min.) According to these results the use of ECLS should be encouraged after in-hospital cardiac arrest and training in cardiorespiratory resuscitation should be improved in global population and health professionals.

  18. Review and analysis of over 40 years of space plant growth systems.

    Science.gov (United States)

    Zabel, P; Bamsey, M; Schubert, D; Tajmar, M

    2016-08-01

    The cultivation of higher plants occupies an essential role within bio-regenerative life support systems. It contributes to all major functional aspects by closing the different loops in a habitat like food production, CO2 reduction, O2 production, waste recycling and water management. Fresh crops are also expected to have a positive impact on crew psychological health. Plant material was first launched into orbit on unmanned vehicles as early as the 1960s. Since then, more than a dozen different plant cultivation experiments have been flown on crewed vehicles beginning with the launch of Oasis 1, in 1971. Continuous subsystem improvements and increasing knowledge of plant response to the spaceflight environment has led to the design of Veggie and the Advanced Plant Habitat, the latest in the series of plant growth systems. The paper reviews the different designs and technological solutions implemented in higher plant flight experiments. Using these analyses a comprehensive comparison is compiled to illustrate the development trends of controlled environment agriculture technologies in bio-regenerative life support systems, enabling future human long-duration missions into the solar system. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  19. Improving basic life support training for medical students

    OpenAIRE

    Lami M; Nair P; Gadhvi K

    2016-01-01

    Mariam Lami, Pooja Nair, Karishma GadhviFaculty of Medicine, Imperial College, London, London, UKAbstract: Questions have been raised about basic life support (BLS) training in medical education. This article addresses the research evidence behind why BLS training is inadequate and suggests recommendations for improving BLS training for medical students.Keywords: medical education, basic life support

  20. Space agriculture: the effect of micro- and hypo-gravity on soil hydraulics and biogeochemistry in a bioregenerative soil-based cropping unit

    Science.gov (United States)

    Maggi, F.; Pallud, C. E.

    2010-12-01

    Abstract Increasing interest has developed towards growing plants in soil-based cropping modules as a long-term bioregenerative life support system in space and planetary explorations. Contrary to hydroponics, zeoponics and aeroponics, soil-based cropping would offer an effective approach to sustain food and oxygen production, decompose organic wastes, sequester carbon dioxide, and filter water for the crew. The hydraulic and biogeochemical functioning are highly complex in soil-based systems but such systems provide a self-sustainable microcosm that potentially offers compactness, low energy demand, near-ambient reactor temperatures and pressure, reliability, forgiveness of operational errors or neglect, and a rich biodiversity of microorganisms, all features which are fundamental for the sustainability and reliability of long-term manned space missions. However, the hydraulics and biogeochemical functioning of soil systems exposed to gravities lower than the Earth’s are still unknown. Since gravity is crucial in driving water flow, hypogravity will affect nutrient and oxygen transport in the liquid and gaseous phases, and could lead to suffocation of microorganisms and roots, and emissions of toxic gases. A highly mechanistic model coupling soil hydraulics and nutrient biogeochemistry previously tested on soils on Earth (g = 9.806 m s-2) is used to highlight the effects of gravity on the functioning of cropping units on Mars (0.38g), the Moon (0.16g), and in the international space station (ISS, nearly 0g). For each scenario, we have compared the net leaching of water, the leaching of NH3, NH4+, NO2- and NO3- solutes, the emissions of NH3, CO2, N2O, NO and N2 gases, the concentrations profiles of O2, CO2 and dissolved organic carbon (DOC) in soil, the pH, and the dynamics of various microbial functional groups within the root zone against the same control variables in the soil under terrestrial gravity. The tested hypo- and micro-gravity resulted in 90

  1. Potential Habitats for Exotic Life Within the Life Supporting Zone

    Science.gov (United States)

    Leitner, Johannes J.; Firneis, Maria G.; Hitzenberger, Regina

    2010-05-01

    Questions like "Are we alone in the universe?", "How unique is Earth as a planet?" or "How unique is water-based life in the universe?" still are nowhere near of being answered. In recent years, discussions on these topics are more and more influenced by questions whether water is really the only possible solvent, or which conditions are necessary for life to evolve in planetary habitats. A change in our present geocentric mindset on the existence of life is required, in order to address these new questions [see also 1]. In May 2009 a new research platform at the University of Vienna was initiated in order to contribute to the solution of these questions. One task is to find essential biomarkers relevant to the problem of the detection of exotic life. In this context exotic life means: life, which is not necessarily based on a double bond between carbon and oxygen (C=O) and not on water as the only possible solvent. At present little is known about metabolistic systems, which are not based on C=O or on metabolisms which are operative in alternative solvents and a high effort of future laboratory work is necessary to open this window for looking for exotic life. To address the whole spectrum of life the concept of a general life supporting zone is introduced in order to extend the classical habitable zone (which is based on liquid water on a planetary surface, [2]). The life supporting zone of a planetary system is composed of different single "habitable zones" for the liquid phases of specific solvents and composites between water and other solvents. Besides exoplanetary systems which seem to be the most promising place for exotic life in our present understanding, some potential places could also exist within our Solar System and habitats like the subsurface of Enceladus, liquid ethane/methane lakes on Titan or habitable niches in the Venus atmosphere will also be taken into account. A preliminary list of appropriate solvents and their abundances in the Solar

  2. Much Lower Launch Costs Make Resupply Cheaper than Recycling for Space Life Support

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    The development of commercial launch vehicles by SpaceX has greatly reduced the cost of launching mass to Low Earth Orbit (LEO). Reusable launch vehicles may further reduce the launch cost per kilogram. The new low launch cost makes open loop life support much cheaper than before. Open loop systems resupply water and oxygen in tanks for crew use and provide disposable lithium hydroxide (LiOH) in canisters to remove carbon dioxide. Short human space missions such as Apollo and shuttle have used open loop life support, but the long duration International Space Station (ISS) recycles water and oxygen and removes carbon dioxide with a regenerative molecular sieve. These ISS regenerative and recycling life support systems have significantly reduced the total launch mass needed for life support. But, since the development cost of recycling systems is much higher than the cost of tanks and canisters, the relative cost savings have been much less than the launch mass savings. The Life Cycle Cost (LCC) includes development, launch, and operations. If another space station was built in LEO, resupply life support would be much cheaper than the current recycling systems. The mission most favorable to recycling would be a long term lunar base, since the resupply mass would be large, the proximity to Earth would reduce the need for recycling reliability and spares, and the launch cost would be much higher than for LEO due to the need for lunar transit and descent propulsion systems. For a ten-year lunar base, the new low launch costs make resupply cheaper than recycling systems similar to ISS life support.

  3. Ionic Liquids Enabling Revolutionary Closed-Loop Life Support

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is to utilize ionic liquids with the Bosch process to achieve closed-loop life support. Specific tasks are to: 1) Advance the technology readiness of...

  4. Improving basic life support training for medical students.

    Science.gov (United States)

    Lami, Mariam; Nair, Pooja; Gadhvi, Karishma

    2016-01-01

    Questions have been raised about basic life support (BLS) training in medical education. This article addresses the research evidence behind why BLS training is inadequate and suggests recommendations for improving BLS training for medical students.

  5. How Do Lessons Learned on the International Space Station (ISS) Help Plan Life Support for Mars?

    Science.gov (United States)

    Jones, Harry W.; Hodgson, Edward W.; Gentry, Gregory J.; Kliss, Mark H.

    2016-01-01

    How can our experience in developing and operating the International Space Station (ISS) guide the design, development, and operation of life support for the journey to Mars? The Mars deep space Environmental Control and Life Support System (ECLSS) must incorporate the knowledge and experience gained in developing ECLSS for low Earth orbit, but it must also meet the challenging new requirements of operation in deep space where there is no possibility of emergency resupply or quick crew return. The understanding gained by developing ISS flight hardware and successfully supporting a crew in orbit for many years is uniquely instructive. Different requirements for Mars life support suggest that different decisions may be made in design, testing, and operations planning, but the lessons learned developing the ECLSS for ISS provide valuable guidance.

  6. The CELSS Antarctic Analog Project: An Advanced Life Support Testbed at the Amundsen-Scott South Pole Station, Antarctica

    Science.gov (United States)

    Straight, Christian L.; Bubenheim, David L.; Bates, Maynard E.; Flynn, Michael T.

    1994-01-01

    CELSS Antarctic Analog Project (CAAP) represents a logical solution to the multiple objectives of both the NASA and the National Science Foundation (NSF). CAAP will result in direct transfer of proven technologies and systems, proven under the most rigorous of conditions, to the NSF and to society at large. This project goes beyond, as it must, the generally accepted scope of CELSS and life support systems including the issues of power generation, human dynamics, community systems, and training. CAAP provides a vivid and starkly realistic testbed of Controlled Ecological Life Support System (CELSS) and life support systems and methods. CAAP will also be critical in the development and validation of performance parameters for future advanced life support systems.

  7. Root transcriptome remodeling of Arabidopsis in response to high levels of magnesium sulfate

    Data.gov (United States)

    National Aeronautics and Space Administration — Martian regolith (unconsolidated surface material) is a potential medium for plant growth in bioregenerative life support systems during manned missions on Mars....

  8. The influence of simulated microgravity on the proteome of Daphnia magna

    Data.gov (United States)

    National Aeronautics and Space Administration — Background/Objectives: The waterflea Daphnia is an interesting candidate for bioregenerative life support systems (BLSS). These animals are particularly promising...

  9. Plants for Human Life Support and Space Exploration

    Science.gov (United States)

    Wheeler, Raymond M.

    2017-01-01

    The concept of using plants and algae for human life support in space goes back to testing in the 1950s and 1960. The basis for this is harnessing photosynthesis to generate oxygen, remove and fix carbon dioxide, and produce food. For several decades, NASA conducted studies with crops in controlled environments to assess their requirements for optimum growth. This includes tests with wheat, soybeans, potatoes, lettuce, tomatoes, and other crops. In many ways, these studies have paralleled growing interests in controlled environment agriculture on Earth. For example, NASA operated perhaps the first working example of a vertical agriculture facility in the late 1980s. The facility used recirculating hydroponic systems to conserve water and nutrients, with multiple growing shelves and light banks. NASA also pioneered the use LED lighting for growing plants. Findings from these tests suggest that an area of 20-25 sq m of crops could provide all the O2 for one human, and about 40-50 sq m could provide all the O2 and food. But this is dependent on the amount of light provided. Most of these studies targeted surface settings like habitats on Mars or the Moon. Growing plants in weightless settings, like the International Space Station (ISS) requires different approaches to contain and deliver water to plants, but lettuce, mizuna, pea, and other crops have been grown in small chambers aboard the ISS to provide supplemental fresh food for the astronauts.

  10. Sustainable life support on Mars - the potential roles of cyanobacteria

    Science.gov (United States)

    Verseux, Cyprien; Baqué, Mickael; Lehto, Kirsi; de Vera, Jean-Pierre P.; Rothschild, Lynn J.; Billi, Daniela

    2016-01-01

    Even though technological advances could allow humans to reach Mars in the coming decades, launch costs prohibit the establishment of permanent manned outposts for which most consumables would be sent from Earth. This issue can be addressed by in situ resource utilization: producing part or all of these consumables on Mars, from local resources. Biological components are needed, among other reasons because various resources could be efficiently produced only by the use of biological systems. But most plants and microorganisms are unable to exploit Martian resources, and sending substrates from Earth to support their metabolism would strongly limit the cost-effectiveness and sustainability of their cultivation. However, resources needed to grow specific cyanobacteria are available on Mars due to their photosynthetic abilities, nitrogen-fixing activities and lithotrophic lifestyles. They could be used directly for various applications, including the production of food, fuel and oxygen, but also indirectly: products from their culture could support the growth of other organisms, opening the way to a wide range of life-support biological processes based on Martian resources. Here we give insights into how and why cyanobacteria could play a role in the development of self-sustainable manned outposts on Mars.

  11. Optimization of controlled environments for hydroponic production of leaf lettuce for human life support in CELSS

    Science.gov (United States)

    Mitchell, C. A.; Knight, S. L.; Ford, T. L.

    1986-01-01

    A research project in the food production group of the Closed Ecological Life Support System (CELSS) program sought to define optimum conditions for photosynthetic productivity of a higher plant food crop. The effects of radiation and various atmospheric compositions were studied.

  12. Exploring Life Support Architectures for Evolution of Deep Space Human Exploration

    Science.gov (United States)

    Anderson, Molly S.; Stambaugh, Imelda C.

    2015-01-01

    Life support system architectures for long duration space missions are often explored analytically in the human spaceflight community to find optimum solutions for mass, performance, and reliability. But in reality, many other constraints can guide the design when the life support system is examined within the context of an overall vehicle, as well as specific programmatic goals and needs. Between the end of the Constellation program and the development of the "Evolvable Mars Campaign", NASA explored a broad range of mission possibilities. Most of these missions will never be implemented but the lessons learned during these concept development phases may color and guide future analytical studies and eventual life support system architectures. This paper discusses several iterations of design studies from the life support system perspective to examine which requirements and assumptions, programmatic needs, or interfaces drive design. When doing early concept studies, many assumptions have to be made about technology and operations. Data can be pulled from a variety of sources depending on the study needs, including parametric models, historical data, new technologies, and even predictive analysis. In the end, assumptions must be made in the face of uncertainty. Some of these may introduce more risk as to whether the solution for the conceptual design study will still work when designs mature and data becomes available.

  13. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    Science.gov (United States)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2006-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30, 60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized

  14. Severe Neonatal Legionella Pneumonia: Full Recovery After Extracorporeal Life Support.

    Science.gov (United States)

    Moscatelli, Andrea; Buratti, Silvia; Castagnola, Elio; Mesini, Alessio; Tuo, Pietro

    2015-10-01

    Legionella pneumophila is responsible for hospital or community-acquired pneumonia. Neonatal legionellosis is associated with rapidly severe clinical course and high mortality rates. We describe a case of hospital-acquired Legionella pneumonia in a newborn with undiagnosed tracheoesophageal fistula and acute respiratory failure requiring venovenous extracorporeal membrane oxygenation support before fistula repair. Standardized multiplex polymerase chain reaction assay allowed early diagnosis. Extracorporeal life support associated with appropriate antibiotic therapy, surfactant, and steroid therapy was effective in achieving complete recovery. This is the first report of successful neonatal extracorporeal life support for respiratory failure secondary to L pneumophila. Copyright © 2015 by the American Academy of Pediatrics.

  15. Abstract: Training of Advanced Cardiac Life Support Skills to ...

    African Journals Online (AJOL)

    Objectives: The purpose of this innovation was threefold, to: 1.Improve outcomes of patients requiring resuscitation through the education of nurses; 2. Meet the hospital accreditation standards in critical areas. 3. Build a sustainable program by educating instructors about local BLS and Advanced Cardiac Life Support ...

  16. Water cycles in closed ecological systems: effects of atmospheric pressure

    Science.gov (United States)

    Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  17. Application of NASA's Advanced Life Support Technologies in Polar Regions

    Science.gov (United States)

    Bubenheim, David L.

    1997-01-01

    The problems of obtaining adequate pure drinking water and disposing of liquid and solid waste in the U.S Arctic, a region where virtually all water is frozen solid for much of the year, has led to unsanitary solutions. Sanitation and a safe water supply are particularly problems in rural villages. These villages are without running water and use plastic buckets for toilets. The outbreak of diseases is believed to be partially attributable to exposure to human waste and lack of sanitation. Villages with the most frequent outbreaks of disease are those in which running water is difficult to obtain. Waste is emptied into open lagoons, rivers, or onto the sea coast. It does not degrade rapidly and in addition to affecting human health, can be harmful to the fragile ecology of the Arctic and the indigenous wildlife and fish populations. Current practices for waste management and sanitation pose serious human hazards as well as threaten the environment. NASA's unique knowledge of water/wastewater treatment systems for extreme environments, identified in the Congressional Office of Technology Assessment report entitled An Alaskan Challenge: Native Villagt Sanitation, may offer practical solutions addressing the issues of safe drinking water and effective sanitation practices in rural villages. NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving the NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, Ilisagvik College in Barrow and the National Science Foundation (NSF). The focus is a major issue in the State of Alaska and other areas of the Circumpolar North; the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the

  18. Improving Habitability, Mood & Diet through Bioregenerative Food Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — During spaceflight, mealtime plays a primary role in psychological well-being of the crew by contributing to stress reduction, boredom relief and group unity. During...

  19. ADULT BASIC LIFE SUPPORT ON NEAR DROWNING AT THE SCENE

    Directory of Open Access Journals (Sweden)

    Gd. Harry Kurnia Prawedana

    2013-04-01

    Full Text Available Indonesia is a popular tourist destination which has potential for drowning cases. Therefore, required knowledge of adult basic life support to be able to deal with such cases in the field. Basic life support in an act to maintain airway and assist breathing and circulation without the use of tools other than simple breathing aids. The most important factor that determines the outcome of drowning event is the duration and severity of hypoxia induced. The management of near drowning at the scene include the rescue of victim from the water, rescue breathing, chest compression, cleaning the vomit substances which allowing blockage of the airway, prevent loss of body heat, and transport the victim to nearest emergency department for evaluation and monitoring.

  20. Extracorporeal life support in preoperative and postoperative heart transplant management

    OpenAIRE

    Bermudez, Christian A.; McMullan, D. Michael

    2017-01-01

    Increased experience with extracorporeal life support (ECLS) as a mode of cardiac support has expanded its use to diverse patient populations including patients requiring a bridge to heart transplantation and patients requiring posttransplant support for primary graft dysfunction (PGD). The use of ECLS is associated with acceptable outcomes in well-selected patients. While outcomes with the use of extracorporeal membrane oxygenation (ECMO) as a bridge to heart transplant have been variable, s...

  1. Epidemiology of Pediatric Prehospital Basic Life Support Care in the United States.

    Science.gov (United States)

    Diggs, Leigh Ann; Sheth-Chandra, Manasi; De Leo, Gianluca

    2016-01-01

    Children have unique medical needs compared to adults. Emergency medical services personnel need proper equipment and training to care for children. The purpose of this study is to characterize emergency medical services pediatric basic life support to help better understand the needs of children transported by ambulance. Pediatric basic life support patients were identified in this retrospective descriptive study. Descriptive statistics were used to examine incident location, possible injury, cardiac arrest, resuscitation attempted, chief complaint, primary symptom, provider's primary impression, cause of injury, and procedures performed during pediatric basic life support calls using the largest aggregate of emergency medical services data available, the 2013 National Emergency Medical Services Information System (NEMSIS) Public Release Research Data Set. Pediatric calls represented 7.4% of emergency medical services activations. Most pediatric patients were male (49.8%), White (40.0%), and of non-Hispanic origin (56.5%). Most incidents occurred in the home. Injury, cardiac arrest, and resuscitation attempts were highest in the 15 to 19 year old age group. Global complaints (37.1%) predominated by anatomic location and musculoskeletal complaints (26.9%) by organ system. The most common primary symptom was pain (30.3%) followed by mental/psychiatric (13.4%). Provider's top primary impression was traumatic injury (35.7%). The most common cause of injury was motor vehicle accident (32.3%). The most common procedure performed was patient assessment (27.4%). Median EMS system response time was 7 minutes (IQR: 5-12). Median EMS scene time was 12 minutes (IQR: 8-19). Median transport time was 14 minutes (IQR: 8-24). Median EMS total call time was 51 minutes (IQR: 33-77). The epidemiology of pediatric basic life support can help to guide efforts in both emergency medical services operations and training.

  2. Nanostructured Humidity Sensor for Spacecraft Life Support Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Humidity is a critical variable for monitoring and control on extended duration missions because it can affect the operation and efficiency of closed loop life...

  3. Electrochemical Dehumidification and Life Support System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Sustainable Innovations has developed an innovative concept for highly efficient, reliable, potable water production based on technology from a commercial line of...

  4. Phase Change Permeation Technology for Environmental Control & Life Support Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is evaluating Dutyion™, a phase change permeation membrane technology developed by Design Technology and Irrigation (DTI), for use in future advanced life...

  5. Submarine Advanced Integrated Life Support System (SAILS) Program

    Science.gov (United States)

    1991-10-01

    catalyst with an ionomer fluid such as liquid NafionO, as shown in Figure 16. This technique has been successfully applied in fuel cells to extend the...active interface area with the catalyst and fluids. Other activities will concentrate on fully exploring the cell operating envelope to enhance... IONOMER /FLUID INTERFACE EXTENSION i Nafon is a Registered Trademark of E.I. DuPont DeNemoirs I 6-2 ILJW E S BD-92-02 6.3 CELL UFE TESTING IThe

  6. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    Science.gov (United States)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  7. Advanced Hazmat Life Support (AHLS): A Feasibility Assessment

    International Nuclear Information System (INIS)

    Borron, S. W.; Walter, F. G.

    2007-01-01

    A prospective, descriptive, feasibility study aimed to determine whether an interdisciplinary group of health care experts could design and successfully deliver an international, life support, continuing education program that teaches the medical management of hazardous materials (hazmat) patients. The American Academy of Clinical Toxicology and the University of Arizona College of Medicine, Arizona Emergency Medicine Research Center partnered on July 1, 1998 to develop a two-day Advanced Hazmat Life Support (AHLS) Provider Course. Interdisciplinary expert clinicians designed and then delivered the first AHLS Provider Course in 1999. Prior to this, other courses focused on the management of hazmat incidents and almost exclusively on the prehospital care of hazmat victims by firefighters, hazardous materials technicians, and emergency medical technicians (EMTs), not on the medical management of patients from these incidents. Therefore, AHLS was developed for a broader interdisciplinary group of health care professionals, including both prehospital health care professionals and hospital-based, poison center-based, clinic-based, public health care-based, and other health care professionals. From 1999 through 2006, the AHLS Provider Course has trained 7,142 health care professionals from 48 countries. Of the 7,142 health care professionals worldwide, 43% are paramedics, 24% are physicians, 21% are nurses, 2% are pharmacists, 1% are physician assistants, and 9% are other professionals. Of the professionals trained, 88% are from the United States, 5% from Hong Kong, 2% from Canada, 2% from Australia, 1% from Mexico, and the remainder come from 43 other countries. The Advanced Hazmat Life Support Program is feasible and meets the continuing education needs of health care professionals around the world.(author)

  8. Evolution of the Pediatric Advanced Life Support course: enhanced learning with a new debriefing tool and Web-based module for Pediatric Advanced Life Support instructors.

    Science.gov (United States)

    Cheng, Adam; Rodgers, David L; van der Jagt, Élise; Eppich, Walter; O'Donnell, John

    2012-09-01

    To describe the history of the Pediatric Advanced Life Support course and outline the new developments in instructor training that will impact the way debriefing is conducted during Pediatric Advanced Life Support courses. The Pediatric Advanced Life Support course, first released by the American Heart Association in 1988, has seen substantial growth and change over the past few decades. Over that time, Pediatric Advanced Life Support has become the standard for resuscitation training for pediatric healthcare providers in North America. The incorporation of high-fidelity simulation-based learning into the most recent version of Pediatric Advanced Life Support has helped to enhance the realism of scenarios and cases, but has also placed more emphasis on the importance of post scenario debriefing. We developed two new resources: an online debriefing module designed to introduce a new model of debriefing and a debriefing tool for real-time use during Pediatric Advanced Life Support courses, to enhance and standardize the quality of debriefing by Pediatric Advanced Life Support instructors. In this article, we review the history of Pediatric Advanced Life Support and Pediatric Advanced Life Support instructor training and discuss the development and implementation of the new debriefing module and debriefing tool for Pediatric Advanced Life Support instructors. The incorporation of the debriefing module and debriefing tool into the 2011 Pediatric Advanced Life Support instructor materials will help both new and existing Pediatric Advanced Life Support instructors develop and enhance their debriefing skills with the intention of improving the acquisition of knowledge and skills for Pediatric Advanced Life Support students.

  9. Students′ satisfaction to hybrid problem-based learning format for basic life support/advanced cardiac life support teaching

    Directory of Open Access Journals (Sweden)

    Geetanjali Chilkoti

    2016-01-01

    Full Text Available Background and Aims: Students are exposed to basic life support (BLS and advanced cardiac life support (ACLS training in the first semester in some medical colleges. The aim of this study was to compare students′ satisfaction between lecture-based traditional method and hybrid problem-based learning (PBL in BLS/ACLS teaching to undergraduate medical students. Methods: We conducted a questionnaire-based, cross-sectional survey among 118 1 st -year medical students from a university medical college in the city of New Delhi, India. We aimed to assess the students′ satisfaction between lecture-based and hybrid-PBL method in BLS/ACLS teaching. Likert 5-point scale was used to assess students′ satisfaction levels between the two teaching methods. Data were collected and scores regarding the students′ satisfaction levels between these two teaching methods were analysed using a two-sided paired t-test. Results: Most students preferred hybrid-PBL format over traditional lecture-based method in the following four aspects; learning and understanding, interest and motivation, training of personal abilities and being confident and satisfied with the teaching method (P < 0.05. Conclusion: Implementation of hybrid-PBL format along with the lecture-based method in BLS/ACLS teaching provided high satisfaction among undergraduate medical students.

  10. Students' satisfaction to hybrid problem-based learning format for basic life support/advanced cardiac life support teaching.

    Science.gov (United States)

    Chilkoti, Geetanjali; Mohta, Medha; Wadhwa, Rachna; Saxena, Ashok Kumar; Sharma, Chhavi Sarabpreet; Shankar, Neelima

    2016-11-01

    Students are exposed to basic life support (BLS) and advanced cardiac life support (ACLS) training in the first semester in some medical colleges. The aim of this study was to compare students' satisfaction between lecture-based traditional method and hybrid problem-based learning (PBL) in BLS/ACLS teaching to undergraduate medical students. We conducted a questionnaire-based, cross-sectional survey among 118 1 st -year medical students from a university medical college in the city of New Delhi, India. We aimed to assess the students' satisfaction between lecture-based and hybrid-PBL method in BLS/ACLS teaching. Likert 5-point scale was used to assess students' satisfaction levels between the two teaching methods. Data were collected and scores regarding the students' satisfaction levels between these two teaching methods were analysed using a two-sided paired t -test. Most students preferred hybrid-PBL format over traditional lecture-based method in the following four aspects; learning and understanding, interest and motivation, training of personal abilities and being confident and satisfied with the teaching method ( P < 0.05). Implementation of hybrid-PBL format along with the lecture-based method in BLS/ACLS teaching provided high satisfaction among undergraduate medical students.

  11. Extracorporeal life support for adults with severe acute respiratory failure.

    Science.gov (United States)

    Del Sorbo, Lorenzo; Cypel, Marcelo; Fan, Eddy

    2014-02-01

    Extracorporeal life support (ECLS) is an artificial means of maintaining adequate oxygenation and carbon dioxide elimination to enable injured lungs to recover from underlying disease. Technological advances have made ECLS devices smaller, less invasive, and easier to use. ECLS might, therefore, represent an important step towards improved management and outcomes of patients with acute respiratory distress syndrome. Nevertheless, rigorous evidence of the ability of ECLS to improve short-term and long-term outcomes is needed before it can be widely implemented. Moreover, how to select patients and the timing and indications for ECLS in severe acute respiratory distress syndrome remain unclear. We describe the physiological principles, the putative risks and benefits, and the clinical evidence supporting the use of ECLS in patients with acute respiratory distress syndrome. Additionally, we discuss controversies and future directions, such as novel technologies and indications, mechanical ventilation of the native lung during ECLS, and ethics considerations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effect of ionizing radiation on advanced life support medications

    International Nuclear Information System (INIS)

    Sullivan, D.J.; Hubbard, L.B.; Broadbent, M.V.; Stewart, P.; Jaeger, M.

    1987-01-01

    Advanced life support medications stored in emergency department stretcher areas, diagnostic radiology rooms, and radiotherapy suites are exposed to ionizing radiation. We hypothesized that radiation may decrease the potency and thus the shelf life of medications stored in these areas. Atropine, dopamine, epinephrine, and isoproterenol were exposed to a wide range of ionizing radiation. The potency of the four drugs was unaffected by levels of radiation found in ED stretcher areas and high-volume diagnostic radiograph rooms (eg, chest radiograph, computed tomography, fluoroscopy). The potency of atropine may be reduced by gamma radiation in high-use radiotherapy suites. However, dopamine, epinephrine, and isoproterenol were unaffected by high doses of gamma radiation. Atropine, dopamine, epinephrine, and isoproterenol may be safely kept in ED stretcher areas and diagnostic radiology rooms without loss of potency over the shelf life of the drugs

  13. Effectiveness of Basic Life Support Training for Middle School Students.

    Science.gov (United States)

    Aloush, Sami; Tubaishat, Ahmad; ALBashtawy, Mohammed; Suliman, Mohammad; Alrimawi, Intima; Al Sabah, Ashraf; Banikhaled, Yousef

    2018-01-01

    Bystander cardiopulmonary resuscitation improves survival after out-of-hospital cardiac arrest. This study aimed to assess the effectiveness of a basic life support (BLS) educational course given to 110 middle school children, using a pretest posttest design. In the pretest, students were asked to demonstrate BLS on a manikin to simulate a real-life scenario. After the pretest, a BLS training course of two sessions was provided, followed by posttest on the same manikin. Students were assessed using an observational sheet based on the American Heart Association's BLS guidelines. In the pretest, students showed significant weakness in the majority of guidelines. In the posttest, they demonstrated significant improvement in their BLS skills. BLS training in the middle school was effective, considering the lack of previous skills. It is recommended that BLS education be compulsory in the school setting.

  14. Certified Basic Life Support Instructors Assess Cardiopulmonary Resuscitation Skills Poorly

    DEFF Research Database (Denmark)

    Hansen, Camilla; Rasmussen, Stinne E; Kristensen, Mette Amalie

    2016-01-01

    quality poorly. Currently no studies have evaluated CPR assessment among certified BLS instructors. The aim of this study was to investigate certified BLS instructors’ assessment of chest compressions and rescue breathing.Methods: Data were collected at BLS courses for medical students at Aarhus...... University, Denmark. In pairs, BLS instructors, certified by the European Resuscitation Council, evaluated each learner in an end-of-course cardiac arrest test. Instructors’ assessments were compared with CPR quality data collected from the resuscitation manikin. Correct chest compressions were defined as ≥2......Introduction: High-quality cardiopulmonary resuscitation (CPR) improves survival from cardiac arrest. During basic life support (BLS) training, instructors assess CPR skills to enhance learning outcome. Emergency department staff and senior residents have been shown to assess chest compression...

  15. The use of extracorporeal life support in adolescent amlodipine overdose

    Science.gov (United States)

    Persad, Elizabeth A.; Raman, Lakshmi; Thompson, Marita T.; Sheeran, Paul W.

    2012-01-01

    Calcium channel blocker (CCB) toxicity is associated with refractory hypotension and can be fatal. A 13 year old young woman presented to the emergency department(ED) six hours after an intentional overdose of amlodipine, barbiturates, and alcohol. She remained extremely hypotensive despite the administration of normal saline and calcium chloride and despite infusions of norepinephrine, epinephrine, insulin, and dextrose. Due to increasing evidence of end organ dysfunction, Extracorporeal Life Support (ECLS) was initiated 9 hours after presentation to the ED. The patient's blood pressure and end organ function immediately improved after cannulation. She was successfully decannulated after 57 hours of ECLS and was neurologically intact. Patients with calcium channel blocker overdose who are resistant to medical interventions may respond favorably to early ECLS. PMID:23559727

  16. [Advanced life support: care provided to motor vehicle crash victims].

    Science.gov (United States)

    Malvestio, Marisa Aparecida Amaro; de Sousa, Regina Márcia Cardoso

    2002-10-01

    To analyze the performance of Advanced Life Support care mode (ALS) applied to car crash victims using indicators by means of the Revised Trauma Score (RTS) in prehospital phase. It were analyzed 643 reports of car crash victims cared by public ALS services that occurred in highways of the city of São Paulo, from April 1999 to April 2000. Time intervals assessed were: response time, on-scene time, transport time, and total time. Correct screening decision analysis considered RTStransport time were higher in RTS transported to tertiary hospitals. Screening decision misjudgments were identified. Maintenance or improvement of RTS values occurred in 98.8% of the cases. Respiratory rate was the parameter that showed better improvement followed by systolic blood pressure.

  17. Comparison of Online and Traditional Basic Life Support Renewal Training Methods for Registered Professional Nurses.

    Science.gov (United States)

    Serwetnyk, Tara M; Filmore, Kristi; VonBacho, Stephanie; Cole, Robert; Miterko, Cindy; Smith, Caitlin; Smith, Charlene M

    2015-01-01

    Basic Life Support certification for nursing staff is achieved through various training methods. This study compared three American Heart Association training methods for nurses seeking Basic Life Support renewal: a traditional classroom approach and two online options. Findings indicate that online methods for Basic Life Support renewal deliver cost and time savings, while maintaining positive learning outcomes, satisfaction, and confidence level of participants.

  18. 21 CFR 860.93 - Classification of implants, life-supporting or life-sustaining devices.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Classification of implants, life-supporting or... Classification § 860.93 Classification of implants, life-supporting or life-sustaining devices. (a) The classification panel will recommend classification into class III of any implant or life-supporting or life...

  19. The Effect of Providing Life Support on Nurses' Decision Making Regarding Life Support for Themselves and Family Members in Japan.

    Science.gov (United States)

    Shaku, Fumio; Tsutsumi, Madoka

    2016-12-01

    Decision making in terminal illness has recently received increased attention. In Japan, patients and their families typically make decisions without understanding either the severity of illness or the efficacy of life-supporting treatments at the end of life. Japanese culture traditionally directs the family to make decisions for the patient. This descriptive study examined the influence of the experiences of 391 Japanese nurses caring for dying patients and family members and how that experience changed their decision making for themselves and their family members. The results were mixed but generally supported the idea that the more experience nurses have in caring for the dying, the less likely they would choose to institute lifesupport measures for themselves and family members. The results have implications for discussions on end-of-life care. © The Author(s) 2016.

  20. Prehospital interventions for penetrating trauma victims: a prospective comparison between Advanced Life Support and Basic Life Support.

    Science.gov (United States)

    Seamon, Mark J; Doane, Stephen M; Gaughan, John P; Kulp, Heather; D'Andrea, Anthony P; Pathak, Abhijit S; Santora, Thomas A; Goldberg, Amy J; Wydro, Gerald C

    2013-05-01

    Advanced Life Support (ALS) providers may perform more invasive prehospital procedures, while Basic Life Support (BLS) providers offer stabilisation care and often "scoop and run". We hypothesised that prehospital interventions by urban ALS providers prolong prehospital time and decrease survival in penetrating trauma victims. We prospectively analysed 236 consecutive ambulance-transported, penetrating trauma patients an our urban Level-1 trauma centre (6/2008-12/2009). Inclusion criteria included ICU admission, length of stay >/=2 days, or in-hospital death. Demographics, clinical characteristics, and outcomes were compared between ALS and BLS patients. Single and multiple variable logistic regression analysis determined predictors of hospital survival. Of 236 patients, 71% were transported by ALS and 29% by BLS. When ALS and BLS patients were compared, no differences in age, penetrating mechanism, scene GCS score, Injury Severity Score, or need for emergency surgery were detected (p>0.05). Patients transported by ALS units more often underwent prehospital interventions (97% vs. 17%; p<0.01), including endotracheal intubation, needle thoracostomy, cervical collar, IV placement, and crystalloid resuscitation. While ALS ambulance on-scene time was significantly longer than that of BLS (p<0.01), total prehospital time was not (p=0.98) despite these prehospital interventions (1.8 ± 1.0 per ALS patient vs. 0.2 ± 0.5 per BLS patient; p<0.01). Overall, 69.5% ALS patients and 88.4% of BLS patients (p<0.01) survived to hospital discharge. Prehospital resuscitative interventions by ALS units performed on penetrating trauma patients may lengthen on-scene time but do not significantly increase total prehospital time. Regardless, these interventions did not appear to benefit our rapidly transported, urban penetrating trauma patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Use of Intranasal Naloxone by Basic Life Support Providers.

    Science.gov (United States)

    Weiner, Scott G; Mitchell, Patricia M; Temin, Elizabeth S; Langlois, Breanne K; Dyer, K Sophia

    2017-01-01

    Intranasal delivery of naloxone to reverse the effects of opioid overdose by Advanced Life Support (ALS) providers has been studied in several prehospital settings. In 2006, in response to the increase in opioid-related overdoses, a special waiver from the state allowed administration of intranasal naloxone by Basic Life Support (BLS) providers in our city. This study aimed to determine: 1) if patients who received a 2-mg dose of nasal naloxone administered by BLS required repeat dosing while in the emergency department (ED), and 2) the disposition of these patients. This was a retrospective review of patients transported by an inner-city municipal ambulance service to one of three academic medical centers. We included patients aged 18 and older that were transported by ambulance between 1/1/2006 and 12/12/2012 and who received intranasal naloxone by BLS providers as per a state approved protocol. Site investigators matched EMS run data to patients from each hospital's EMR and performed a chart review to confirm that the patient was correctly identified and to record the outcomes of interest. Descriptive statistics were then generated. A total of 793 patients received nasal naloxone by BLS and were transported to three hospitals. ALS intervened and transported 116 (14.6%) patients, and 11 (1.4%) were intubated in the field. There were 724 (91.3%) patients successfully matched to an ED chart. Hospital A received 336 (46.4%) patients, Hospital B received 210 (29.0%) patients, and Hospital C received 178 (24.6%) patients. Mean age was 36.2 (SD 10.5) years and 522 (72.1%) were male; 702 (97.1%) were reported to have abused heroin while 21 (2.9%) used other opioids. Nasal naloxone had an effect per the prehospital record in 689 (95.2%) patients. An additional naloxone dose was given in the ED to 64 (8.8%) patients. ED dispositions were: 507 (70.0%) discharged, 105 (14.5%) admitted, and 112 (15.5%) other (e.g., left against medical advice, left without being seen, or

  2. The impact of mechanical ventilation time before initiation of extracorporeal life support on survival in pediatric respiratory failure: a review of the Extracorporeal Life Support Registry.

    Science.gov (United States)

    Domico, Michele B; Ridout, Deborah A; Bronicki, Ronald; Anas, Nick G; Cleary, John Patrick; Cappon, James; Goldman, Allan P; Brown, Katherine L

    2012-01-01

    To evaluate the relationship between duration of mechanical ventilation before the initiation of extracorporeal life support and the survival rate in children with respiratory failure. Extracorporeal life support has been used as a rescue therapy for >30 yrs in children with severe respiratory failure. Previous studies suggest patients who received >7-10 days of mechanical ventilation were not acceptable extracorporeal life support candidates as a result of irreversible lung damage. A retrospective review encompassing the past 10 yrs of the International Extracorporeal Life Support Organization Registry (January 1, 1999, to December 31, 2008). Extracorporeal Life Support Organization Registry database. A total of 1325 children (≥ 30 days and ≤ 18 yrs) met inclusion criteria. None. The following pre-extracorporeal life support variables were identified as independently and significantly related to the chance of survival: 1) >14 days of ventilation vs. 0-7 days was adverse (odds ratio, 0.32; p 7-10 or >10-14 days of pre-extracorporeal life support ventilation did not have a statistically significant decrease in survival as compared with patients who received 0-7 days. There was a clear relationship between the number of mechanical ventilation days before the initiation of extracorporeal life support and survival. However; there was no statistically significant decrease in survival until >14 days of pre-extracorporeal life support ventilation was reached regardless of underlying diagnosis. We found no evidence to suggest that prolonged mechanical ventilation should be considered as a contraindication to extracorporeal life support in children with respiratory failure before 14 days.

  3. Extracorporeal life support in preoperative and postoperative heart transplant management.

    Science.gov (United States)

    Bermudez, Christian A; McMullan, D Michael

    2017-10-01

    Increased experience with extracorporeal life support (ECLS) as a mode of cardiac support has expanded its use to diverse patient populations including patients requiring a bridge to heart transplantation and patients requiring posttransplant support for primary graft dysfunction (PGD). The use of ECLS is associated with acceptable outcomes in well-selected patients. While outcomes with the use of extracorporeal membrane oxygenation (ECMO) as a bridge to heart transplant have been variable, several series have confirmed the safe use of ECLS to stabilize patients prior to left ventricular assist device (LVAD) implantation. These patients are then considered later, when in stable condition, for heart transplant. When ECLS is used prior to heart transplant, mortality is greatest during the first 6 months posttransplant. Patients who are alive 6 months after transplant appear to have similar survival rates as patients who were not supported with ECLS prior to transplant. ECLS support is a reliable therapeutic option for severe PGD and early graft failure after heart transplantation. In patients who require support for severe PGD, venoarterial-ECMO appears to result in better clinical outcomes than LVAD support. ECLS use for PGD after heart transplant continues to be the first line of support. Further studies are necessary to understand the optimal role of ECLS in heart transplantation.

  4. Advanced Space Suit Portable Life Support Subsystem Packaging Design

    Science.gov (United States)

    Howe, Robert; Diep, Chuong; Barnett, Bob; Thomas, Gretchen; Rouen, Michael; Kobus, Jack

    2006-01-01

    This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA s in-house 1998 study, which resulted in the "Flex PLSS" concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1. Bring the advanced space suit integrated Flex PLSS concept from its current state of development to a preliminary design level and build a proof of concept mockup of the proposed design, and; 2. "Design" a Design Process, which accommodates both the initial Flex PLSS design and the package modifications, required to accommodate new technology.

  5. Awareness of basic life support among dental practitioners.

    Science.gov (United States)

    Baduni, Neha; Prakash, Prem; Srivastava, Dhirendra; Sanwal, Manoj Kumar; Singh, Bijender Pal

    2014-01-01

    It is important that every member of our community should be trained in effective BLS technique to save lives. At least doctors including dental practitioners, and medical and paramedical staff should be trained in high quality CPR, as it is a basic medical skill which can save many lives if implemented timely. Our aim was to study the awareness of Basic Life Support (BLS) among dental students and practitioners in New Delhi. This cross sectional study was conducted by assessing responses to 20 selected questions pertaining to BLS among dental students, resident doctors/tutors, faculty members and private practitioners in New Delhi. All participants were given a printed questionnaire where they had to mention their qualifications and clinical experience, apart from answering 20 questions. Data was collected and evaluated using commercially available statistical package for social sciences (SPSS version 12). One hundred and four responders were included. Sadly, none of our responders had complete knowledge about BLS. The maximum mean score (9.19 ± 1.23) was obtained by dentists with clinical experience between 1-5 years. To ensure better and safer healthcare, it is essential for all dental practitioners to be well versed with BLS.

  6. Hydroponics Database and Handbook for the Advanced Life Support Test Bed

    Science.gov (United States)

    Nash, Allen J.

    1999-01-01

    During the summer 1998, I did student assistance to Dr. Daniel J. Barta, chief plant growth expert at Johnson Space Center - NASA. We established the preliminary stages of a hydroponic crop growth database for the Advanced Life Support Systems Integration Test Bed, otherwise referred to as BIO-Plex (Biological Planetary Life Support Systems Test Complex). The database summarizes information from published technical papers by plant growth experts, and it includes bibliographical, environmental and harvest information based on plant growth under varying environmental conditions. I collected 84 lettuce entries, 14 soybean, 49 sweet potato, 16 wheat, 237 white potato, and 26 mix crop entries. The list will grow with the publication of new research. This database will be integrated with a search and systems analysis computer program that will cross-reference multiple parameters to determine optimum edible yield under varying parameters. Also, we have made preliminary effort to put together a crop handbook for BIO-Plex plant growth management. It will be a collection of information obtained from experts who provided recommendations on a particular crop's growing conditions. It includes bibliographic, environmental, nutrient solution, potential yield, harvest nutritional, and propagation procedure information. This handbook will stand as the baseline growth conditions for the first set of experiments in the BIO-Plex facility.

  7. Effect of chest compressions only during experimental basic life support on alveolar collapse and recruitment.

    Science.gov (United States)

    Markstaller, Klaus; Rudolph, Annette; Karmrodt, Jens; Gervais, Hendrik W; Goetz, Rolf; Becher, Anja; David, Matthias; Kempski, Oliver S; Kauczor, Hans-Ulrich; Dick, Wolfgang F; Eberle, Balthasar

    2008-10-01

    The importance of ventilatory support during cardiac arrest and basic life support is controversial. This experimental study used dynamic computed tomography (CT) to assess the effects of chest compressions only during cardiopulmonary resuscitation (CCO-CPR) on alveolar recruitment and haemodynamic parameters in porcine model of ventricular fibrillation. Twelve anaesthetized pigs (26+/-1 kg) were randomly assigned to one of the following groups: (1) intermittent positive pressure ventilation (IPPV) both during basic life support and advanced cardiac life support, or (2) CCO during basic life support and IPPV during advanced cardiac life support. Measurements were acquired at baseline prior to cardiac arrest, during basic life support, during advanced life support, and after return of spontaneous circulation (ROSC), as follows: dynamic CT series, arterial and central venous pressures, blood gases, and regional organ blood flow. The ventilated and atelectatic lung area was quantified from dynamic CT images. Differences between groups were analyzed using the Kruskal-Wallis test, and a pbasic life support in the CCO-CPR group remained clinically relevant throughout the subsequent advanced cardiac life support period and following ROSC, and was associated with prolonged impaired haemodynamics. No inter-group differences in myocardial and cerebral blood flow were observed. A lack of ventilation during basic life support is associated with excessive atelectasis, arterial hypoxaemia and compromised CPR haemodynamics. Moreover, these detrimental effects remain evident even after restoration of IPPV.

  8. Teaching school children basic life support improves teaching and basic life support skills of medical students: A randomised, controlled trial.

    Science.gov (United States)

    Beck, Stefanie; Meier-Klages, Vivian; Michaelis, Maria; Sehner, Susanne; Harendza, Sigrid; Zöllner, Christian; Kubitz, Jens Christian

    2016-11-01

    The "kids save lives" joint-statement highlights the effectiveness of training all school children worldwide in cardiopulmonary resuscitation (CPR) to improve survival after cardiac arrest. The personnel requirement to implement this statement is high. Until now, no randomised controlled trial investigated if medical students benefit from their engagement in the BLS-education of school children regarding their later roles as physicians. The objective of the present study is to evaluate if medical students improve their teaching behaviour and CPR-skills by teaching school children in basic life support. The study is a randomised, single blind, controlled trial carried out with medical students during their final year. In total, 80 participants were allocated alternately to either the intervention or the control group. The intervention group participated in a CPR-instructor-course consisting of a 4h-preparatory seminar and a teaching-session in BLS for school children. The primary endpoints were effectiveness of teaching in an objective teaching examination and pass-rates in a simulated BLS-scenario. The 28 students who completed the CPR-instructor-course had significantly higher scores for effective teaching in five of eight dimensions and passed the BLS-assessment significantly more often than the 25 students of the control group (Odds Ratio (OR): 10.0; 95%-CI: 1.9-54.0; p=0.007). Active teaching of BLS improves teaching behaviour and resuscitation skills of students. Teaching school children in BLS may prepare medical students for their future role as a clinical teacher and support the implementation of the "kids save lives" statement on training all school children worldwide in BLS at the same time. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Is Vitamin E Life Supporter for Gamma Irradiated Galleria Mollenella?

    International Nuclear Information System (INIS)

    Mohamed, H.F.

    2012-01-01

    This study conducted to determine the effect of vitamin E separate or combined with gamma ray in semi artificial diets on some biological aspects of the Greater wax moth, Galleria mellonella L. (Pyralidae : Lepidoptera). The increase in the average number of eggs per mated female for more than 70 % of the control in both treated male and female. Also, through the F1 generation (descendant of P1 progeny fed on artificial diet plus vitamin E) in either irradiated male or female at 100 and 300 Gy dose levels. The life supporter of vitamin E clearly demonstrates throughout F1 whose offspring fed on artificial diet plus Vitamin E, also more pronounced during the first generation treated with gamma irradiation (100 and 300 Gray) which descendant from the offspring were fed on the artificial diet containing Vitamin E (0.02%) than that treatments which treated with gamma irradiation only. The average weight of larvae and pupae significantly increase by using petroleum ether only or this may be abnormal. The average weight of larvae and pupae at the concentration 0.02% was 105.07 and 121.87 % from the control treatment, respectively then decreased to 67.86 and 75.12%, respectively from the control treatment at the concentration 0.04% and then increase at the two concentrations 0.06 and 0.08 %. The increase in weight gain in the case combined ( 100 Gy or 300 Gy with Vitamin E) more than in case using a single dose of gamma irradiation , the increase in case 300 Gy only or combined with Vitamin E more than the control treatment. The best result in case of Vitamin (E) only then when treated the pest with gamma radiation after Vitamin (E) and the effect at 100 Gy better than in case 300 Gy. The combined effect of sub sterilizing dose (300 Gy) and sterilizing doses (400 and 500 Gy) of gamma radiation and vitamin E on the mating competitiveness of F1 males G. Mellenella shows that the competitiveness values more than 1.0 at the combined VE and the two dose levels 400 and 500 Gy

  10. Orion Multi Purpose Crew Vehicle Environmental Control and Life Support Development Status

    Science.gov (United States)

    Lewis, John F.; Barido, Richard A.; Cross, Cynthia D.; Carrasquillo, Robyn; Rains, George Edward

    2012-01-01

    The Orion Multi Purpose Crew Vehicle (MPCV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. Orion is currently being developed to transport the crew safely from the Earth beyond Earth orbit. This year, the vehicle focused on building the Exploration Flight Test 1 (EFT1) vehicle to be launched in 2014. The development of the Orion Environmental Control and Life Support (ECLS) System, focused on the components which are on EFT1 which includes pressure control and active thermal control systems, is progressing through the design stage into manufacturing. Additional development work was done to keep the remaining component progressing towards implementation for a flight tests in 2017 and in 2020. This paper covers the Orion ECLS development from April 2011 to April 2012.

  11. MELiSSA celebrates 25 years of research into life support

    International Nuclear Information System (INIS)

    2015-01-01

    MELiSSA (Micro-Ecological Life Support System Alternative) is a collaborative project with the European Space Agency ESA and various other scientific partners. The objective of MELiSSA is to develop a system that is able to provide manned space missions with food, drinking water and oxygen autonomously in space. Drinkable water and oxygen are currently being made in the international space station ISS by filtering waste water and by electrolysing water. However, such physiochemical technologies do not offer a solution for food. The MELiSSA project intends to reuse waste products, which include CO2, water, stools and urine from the astronauts, and even the perspiration moisture in the cabin and to transfer these into food through the use of micro-organisms.

  12. Human life support during interplanetary travel and domicile. V - Mars expedition technology trade study for solid waste management

    Science.gov (United States)

    Ferrall, Joe; Rohatgi, Naresh K.; Seshan, P. K.

    1992-01-01

    A model has been developed for NASA to quantitatively compare and select life support systems and technology options. The model consists of a modular, top-down hierarchical breakdown of the life support system into subsystems, and further breakdown of subsystems into functional elements representing individual processing technologies. This paper includes the technology trades for a Mars mission, using solid waste treatment technologies to recover water from selected liquid and solid waste streams. Technologies include freeze drying, thermal drying, wet oxidation, combustion, and supercritical-water oxidation. The use of these technologies does not have any significant advantages with respect to weight; however, significant power penalties are incurred. A benefit is the ability to convert hazardous waste into a useful resource, namely water.

  13. Ion-Specific Nutrient Management in Closed Systems: The Necessity for Ion-Selective Sensors in Terrestrial and Space-Based Agriculture and Water Management Systems

    Directory of Open Access Journals (Sweden)

    Alain Berinstain

    2012-10-01

    Full Text Available The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenhouse sector has invested in research examining the potential of a number of these technologies to meet the industry’s demanding requirements, and although no ideal solution yet exists for on-line measurement, growers do utilize technologies such as high-performance liquid chromatography to provide off-line measurements. An analogous situation exists on the International Space Station where, technological solutions are sought, but currently on-orbit water quality monitoring is considerably restricted. This paper examines the specific advantages that on-line ion-selective sensors could provide to plant production systems both terrestrially and when utilized in space-based biological life support systems and how similar technologies could be applied to nominal on-orbit water quality monitoring. A historical development and technical review of the various ion-selective monitoring technologies is provided.

  14. Ion-specific nutrient management in closed systems: the necessity for ion-selective sensors in terrestrial and space-based agriculture and water management systems.

    Science.gov (United States)

    Bamsey, Matthew; Graham, Thomas; Thompson, Cody; Berinstain, Alain; Scott, Alan; Dixon, Michael

    2012-10-01

    The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenhouse sector has invested in research examining the potential of a number of these technologies to meet the industry's demanding requirements, and although no ideal solution yet exists for on-line measurement, growers do utilize technologies such as high-performance liquid chromatography to provide off-line measurements. An analogous situation exists on the International Space Station where, technological solutions are sought, but currently on-orbit water quality monitoring is considerably restricted. This paper examines the specific advantages that on-line ion-selective sensors could provide to plant production systems both terrestrially and when utilized in space-based biological life support systems and how similar technologies could be applied to nominal on-orbit water quality monitoring. A historical development and technical review of the various ion-selective monitoring technologies is provided.

  15. Multi Purpose Crew Vehicle Active Thermal Control and Environmental Control and Life Support Development Status

    Science.gov (United States)

    Lewis, John F.; Barido, Richard A.; Boehm, Paul; Cross, Cynthia D.; Rains, George Edward

    2014-01-01

    The Orion Multi Purpose Crew Vehicle (MPCV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. Orion is currently being developed to transport the crew safely beyond Earth orbit. This year, the vehicle focused on building the Exploration Flight Test 1 (EFT1) vehicle to be launched in September of 2014. The development of the Orion Active Thermal Control (ATCS) and Environmental Control and Life Support (ECLS) System, focused on the integrating the components into the EFT1 vehicle and preparing them for launch. Work also has started on preliminary design reviews for the manned vehicle. Additional development work is underway to keep the remaining component progressing towards implementation on the flight tests of EM1 in 2017 and of EM2 in 2020. This paper covers the Orion ECLS development from April 2013 to April 2014

  16. Multi Purpose Crew Vehicle Environmental Control and Life Support Development Status

    Science.gov (United States)

    Lewis, John F.; Barido, Richard A.; Cross, Cynthia D.; Rains, George Edward

    2012-01-01

    The Orion Multi Purpose Crew Vehicle (MPCV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. Orion is currently being developed to transport the crew safely beyond Earth orbit. This year, the vehicle focused on building the Exploration Flight Test 1 (EFT1) vehicle to be launched in 2014. The development of the Orion Environmental Control and Life Support (ECLS) System, focused on the completing the components which are on EFT1. Additional development work has been done to keep the remaining component progressing towards implementation for a flight tests in of EM1 in 2017 and in and EM2 in 2020. This paper covers the Orion ECLS development from April 2012 to April 2013.

  17. Solid Waste Management Requirements Definition for Advanced Life Support Missions: Results

    Science.gov (United States)

    Alazraki, Michael P.; Hogan, John; Levri, Julie; Fisher, John; Drysdale, Alan

    2002-01-01

    Prior to determining what Solid Waste Management (SWM) technologies should be researched and developed by the Advanced Life Support (ALS) Project for future missions, there is a need to define SWM requirements. Because future waste streams will be highly mission-dependent, missions need to be defined prior to developing SWM requirements. The SWM Working Group has used the mission architecture outlined in the System Integration, Modeling and Analysis (SIMA) Element Reference Missions Document (RMD) as a starting point in the requirement development process. The missions examined include the International Space Station (ISS), a Mars Dual Lander mission, and a Mars Base. The SWM Element has also identified common SWM functionalities needed for future missions. These functionalities include: acceptance, transport, processing, storage, monitoring and control, and disposal. Requirements in each of these six areas are currently being developed for the selected missions. This paper reviews the results of this ongoing effort and identifies mission-dependent resource recovery requirements.

  18. Training of Advanced Cardiac Life Support Skills to Nursing Staff in ...

    African Journals Online (AJOL)

    Training of Advanced Cardiac Life Support Skills to Nursing Staff in Critical. Areas of Care. Joseph Mpambara1, Jean Claude Musengimana1, Vianney Ruhumuliza1, Katie Carlson1. 1King Faisal Hospital, Rwanda. Background. This advanced cardiac life support skills (ACLS) program was free of charge and the program ...

  19. Influences on Employee Perceptions of Organizational Work-Life Support: Signals and Resources

    Science.gov (United States)

    Valcour, Monique; Ollier-Malaterre, Ariane; Matz-Costa, Christina; Pitt-Catsouphes, Marcie; Brown, Melissa

    2011-01-01

    This study examined predictors of employee perceptions of organizational work-life support. Using organizational support theory and conservation of resources theory, we reasoned that workplace demands and resources shape employees' perceptions of work-life support through two mechanisms: signaling that the organization cares about their work-life…

  20. [The level of first aid and basic life support for the next generation of physicians

    NARCIS (Netherlands)

    Severien, I.; Tan, E.C.T.H.; Metz, J.C.; Biert, J.; Berden, H.J.J.M.

    2005-01-01

    According to Dutch medical-education guidelines junior doctors are expected to be able to carry out first aid and basic life support. We determined the level of first aid and basic life support of junior doctors at the Radboud University Nijmegen Medical Centre, The Netherlands. Of the 300 junior

  1. First aid and basic life support of junior doctors: A prospective study in Nijmegen, the Netherlands.

    NARCIS (Netherlands)

    Tan, E.C.T.H.; Severien, I.; Metz, J.C.; Berden, H.J.J.M.; Biert, J.

    2006-01-01

    According to the Dutch medical education guidelines junior doctors are expected to be able to perform first aid and basic life support. A prospective study was undertaken to assess the level of first aid and basic life support (BLS) competence of junior doctors at the Radboud University Nijmegen

  2. Future directions for resuscitation research. V. Ultra-advanced life support.

    Science.gov (United States)

    Tisherman, S A; Vandevelde, K; Safar, P; Morioka, T; Obrist, W; Corne, L; Buckman, R F; Rubertsson, S; Stephenson, H E; Grenvik, A; White, R J

    1997-06-01

    Standard external cardiopulmonary resuscitation (SECPR) frequently produces very low perfusion pressures, which are inadequate to achieve restoration of spontaneous circulation (ROSC) and intact survival, particularly when the heart is diseased. Ultra-advanced life support (UALS) techniques may allow support of vital organ systems until either the heart recovers or cardiac repair or replacement is performed. Closed-chest emergency cardiopulmonary bypass (CPB) provides control of blood flow, pressure, composition and temperature, but has so far been applied relatively late. This additional low-flow time may preclude conscious survival. An easy, quick method for vessel access and a small preprimed system that could be taken into the field are needed. Open-chest CPR (OCCPR) is physiologically superior to SECPR, but has also been initiated too late in prior studies. Its application in the field has recently proven feasible. Variations of OCCPR, which deserve clinical trials inside and outside hospitals, include 'minimally invasive direct cardiac massage' (MIDCM), using a pocket-size plunger-like device inserted via a small incision and 'direct mechanical ventricular actuation' (DMVA), using a machine that pneumatically drives a cup placed around the heart. Other novel UALS approaches for further research include the use of an aortic balloon catheter to improve coronary and cerebral blood flow during SECPR, aortic flush techniques and a double-balloon aortic catheter that could allow separate perfusion (and cooling) of the heart, brain and viscera for optimal resuscitation of each. Decision-making, initiation of UALS methods and diagnostic evaluations must be rapid to maximize the potential for ROSC and facilitate decision-making regarding long-term circulatory support versus withdrawal of life support for hopeless cases. Research and development of UALS techniques needs to be coordinated with cerebral resuscitation research.

  3. A plant culture system for producing food and recycling materials with sweetpotato in space

    Science.gov (United States)

    Kitaya, Yoshiaki; Yano, Sachiko; Hirai, Hiroaki

    2016-07-01

    The long term human life support in space is greatly dependent on the amounts of food, atmospheric O2 and clean water produced by plants. Therefore, the bio-regenerative life support system such as space farming with scheduling of crop production, obtaining high yields with a rapid turnover rate, converting atmospheric CO2 to O2 and purifying water should be established with employing suitable plant species and varieties and precisely controlling environmental variables around plants grown at a high density in a limited space. We are developing a sweetpotato culture system for producing tuberous roots as a high-calorie food and fresh edible leaves and stems as a nutritive functional vegetable food in space. In this study, we investigated the ability of food production, CO2 to O2 conversion through photosynthesis, and clean water production through transpiration in the sweetpotato production system. The biomass of edible parts in the whole plant was almost 100%. The proportion of the top (leaves and stems) and tuberous roots was strongly affected by environmental variables even when the total biomass production was mostly the same. The production of biomass and clean water was controllable especially by light, atmospheric CO2 and moisture and gas regimes in the root zone. It was confirmed that sweetpotato can be utilized for the vegetable crop as well as the root crop allowing a little waste and is a promising functional crop for supporting long-duration human activity in space.

  4. e-Learning in Advanced Life Support-What factors influence assessment outcome?

    Science.gov (United States)

    Thorne, C J; Lockey, A S; Kimani, P K; Bullock, I; Hampshire, S; Begum-Ali, S; Perkins, G D

    2017-05-01

    To establish variables which are associated with favourable Advanced Life Support (ALS) course assessment outcomes, maximising learning effect. Between 1 January 2013 and 30 June 2014, 8218 individuals participated in a Resuscitation Council (UK) e-learning Advanced Life Support (e-ALS) course. Participants completed 5-8h of online e-learning prior to attending a one day face-to-face course. e-Learning access data were collected through the Learning Management System (LMS). All participants were assessed by a multiple choice questionnaire (MCQ) before and after the face-to-face aspect alongside a practical cardiac arrest simulation (CAS-Test). Participant demographics and assessment outcomes were analysed. The mean post e-learning MCQ score was 83.7 (SD 7.3) and the mean post-course MCQ score was 87.7 (SD 7.9). The first attempt CAS-Test pass rate was 84.6% and overall pass rate 96.6%. Participants with previous ALS experience, ILS experience, or who were a core member of the resuscitation team performed better in the post-course MCQ, CAS-Test and overall assessment. Median time spent on the e-learning was 5.2h (IQR 3.7-7.1). There was a large range in the degree of access to e-learning content. Increased time spent accessing e-learning had no effect on the overall result (OR 0.98, P=0.367) on simulated learning outcome. Clinical experience through membership of cardiac arrest teams and previous ILS or ALS training were independent predictors of performance on the ALS course whilst time spent accessing e-learning materials did not affect course outcomes. This supports the blended approach to e-ALS which allows participants to tailor their e-learning experience to their specific needs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Next Generation Life Support (NGLS): Continuous Electrochemical Gas Separator

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this technology development task is to develop a new air purification system based on a liquid membrane, capable of purifying carbon dioxide from air...

  6. Hybrid Modeling for Testing Intelligent Software for Lunar-Mars Closed Life Support

    Science.gov (United States)

    Malin, Jane T.; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    Intelligent software is being developed for closed life support systems with biological components, for human exploration of the Moon and Mars. The intelligent software functions include planning/scheduling, reactive discrete control and sequencing, management of continuous control, and fault detection, diagnosis, and management of failures and errors. Four types of modeling information have been essential to system modeling and simulation to develop and test the software and to provide operational model-based what-if analyses: discrete component operational and failure modes; continuous dynamic performance within component modes, modeled qualitatively or quantitatively; configuration of flows and power among components in the system; and operations activities and scenarios. CONFIG, a multi-purpose discrete event simulation tool that integrates all four types of models for use throughout the engineering and operations life cycle, has been used to model components and systems involved in the production and transfer of oxygen and carbon dioxide in a plant-growth chamber and between that chamber and a habitation chamber with physicochemical systems for gas processing.

  7. Flexible Packaging Concept for a Space Suit Portable Life Support Subsystem

    Science.gov (United States)

    Thomas, Gretchen; Dillon, Paul; Oliver, Joe; Zapata, Felipe

    2009-01-01

    Neither the Shuttle Extravehicular Mobility Unit (EMU), the space suit currently used for space shuttle and International Space Station (ISS) missions, nor the Apollo EMU, the space suit successfully used on previous lunar missions, will satisfy the requirements for the next generation Constellation Program (CxP) lunar suit. The CxP system or Constellation Space Suit Element (CSSE) must be able to tolerate more severe environmental and use conditions than any previous system. These conditions include missions to the severely cold lunar poles and up to 100 Extravehicular Activity (EVA) excursions without ground maintenance. Much effort is focused on decreasing the mass and volume of the Portable Life Support Subsystem (PLSS) over previous suit designs in order to accommodate the required increase in functionality. This paper documents the progress of a conceptual packaging effort of a flexible backpack for the CSSE PLSS. The flexible backpack concept relies on a foam protection system to absorb, distribute, and dissipate the energy from falls on the lunar surface. Testing and analysis of the foam protection system concept that was conducted during this effort indicates that this method of system packaging is a viable solution.

  8. The Life Cycle Cost (LCC) of Life Support Recycling and Resupply

    Science.gov (United States)

    Jones, Harry W.

    2015-01-01

    Brief human space missions supply all the crew's water and oxygen from Earth. The multiyear International Space Station (ISS) program instead uses physicochemical life support systems to recycle water and oxygen. This paper compares the Life Cycle Cost (LCC) of recycling to the LCC of resupply for potential future long duration human space missions. Recycling systems have high initial development costs but relatively low durationdependent support costs. This means that recycling is more cost effective for longer missions. Resupplying all the water and oxygen requires little initial development cost but has a much higher launch mass and launch cost. The cost of resupply increases as the mission duration increases. Resupply is therefore more cost effective than recycling for shorter missions. A recycling system pays for itself when the resupply LCC grows greater over time than the recycling LCC. The time when this occurs is called the recycling breakeven date. Recycling will cost very much less than resupply for long duration missions within the Earth-Moon system, such as a future space station or Moon base. But recycling would cost about the same as resupply for long duration deep space missions, such as a Mars trip. Because it is not possible to provide emergency supplies or quick return options on the way to Mars, more expensive redundant recycling systems will be needed.

  9. Developing Biological ISRU: Implications for Life Support and Space Exploration

    Science.gov (United States)

    Brown, I. I.; Allen, C. C.; Garrison, D. H.; Sarkisova, S. A.; Galindo, C.; Mckay, David S.

    2010-01-01

    Main findings: 1) supplementing very dilute media for cultivation of CB with analogs of lunar or Martian regolith effectively supported the proliferation of CB; 2) O2 evolution by siderophilic cyanobacteria cultivated in diluted media but supplemented with iron-rich rocks was higher than O2 evolution by same strain in undiluted medium; 3) preliminary data suggest that organic acids produced by CB are involved in iron-rich mineral dissolution; 4) the CB studied can accumulate iron on and in their cells; 4) sequencing of the cyanobacterium JSC-1 genome revealed that this strain possesses molecular features which make it applicable for the cultivation in special photoreactors on Moon and Mars. Conclusion: As a result of pilot studies, we propose, to develop a concept for semi-closed integrated system that uses CB to extract useful elements to revitalize air and produce valuable biomolecules. Such a system could be the foundation of a self-sustaining extraterrestrial outpost (Hendrickx, De Wever et al., 2005; Handford, 2006). A potential advantage of a cyanobacterial photoreactor placed between LSS and ISRU loops is the possibility of supplying these systems with extracted elements and compounds from the regolith. In addition, waste regolith may be transformed into additional products such as methane, biomass, and organic and inorganic soil enrichment for the cultivation of higher plants.

  10. The Incorporation of Basic Life-Support Training in the Pharmacy Curriculum

    Science.gov (United States)

    Masoud, Asaad N.

    1976-01-01

    Pharmacists have a unique role to play in providing basic life-support since they are the health professionals who are most available and who enjoy the greatest contact with the public. Training procedures are described. (LBH)

  11. National Institute of Occupational Safety and Health (NIOSH) Partnered Development of Cryogenic Life Support Technologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic life support technology, used by NASA to protect crews working around hazardous gases soon could be called on for a number of life-saving applications as...

  12. Basic life support: evaluation of learning using simulation and immediate feedback devices

    OpenAIRE

    Tobase, Lucia; Peres, Heloisa Helena Ciqueto; Tomazini, Edenir Aparecida Sartorelli; Teodoro, Simone Valentim; Ramos, Meire Bruna; Polastri, Thatiane Facholi

    2017-01-01

    ABSTRACT Objective: to evaluate students’ learning in an online course on basic life support with immediate feedback devices, during a simulation of care during cardiorespiratory arrest. Method: a quasi-experimental study, using a before-and-after design. An online course on basic life support was developed and administered to participants, as an educational intervention. Theoretical learning was evaluated by means of a pre- and post-test and, to verify the practice, simulation with immedia...

  13. [Current recommendations for basic/advanced life support : Addressing unanswered questions and future prospects].

    Science.gov (United States)

    Fink, K; Schmid, B; Busch, H-J

    2016-11-01

    The revised guidelines for cardiopulmonary resuscitation were implemented by the European Resuscitation Council (ERC) in October 2015. There were few changes concerning basic and advanced life support; however, some issues were clarified compared to the ERC recommendations from 2010. The present paper summarizes the procedures of basic and advanced life support according to the current guidelines and highlights the updates of 2015. Furthermore, the article depicts future prospects of cardiopulmonary resuscitation that may improve outcome of patients after cardiac arrest in the future.

  14. Report on Advanced Life Support Activities at Kennedy Space Center

    Science.gov (United States)

    Wheeler, Raymond M.

    2004-01-01

    Plant studies at Kennedy Space Center last year focused on selecting cultivars of lettuce, tomato, and pepper for further testing as crops for near-term space flight applications. Other testing continued with lettuce, onion, and radish plants grown at different combinations of light (PPF), temperature, and CO2 concentration. In addition, comparisons of mixed versus mono culture approaches for vegetable production were studied. Water processing testing focused on the development and testing of a rotating membrane bioreactor to increase oxygen diffusion levels for reducing total organic carbon levels and promoting nitrification. Other testing continued to study composting testing for food wastes (NRA grant) and the use of supplemental green light with red/blue LED lighting systems for plant production (NRC fellowship).

  15. Next Generation Life Support: High Performance EVA Glove

    Science.gov (United States)

    Walsh, Sarah K.

    2015-01-01

    The objectives of the High Performance EVA Glove task are to develop advanced EVA gloves for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. New technologies and manufacturing techniques will be incorporated into the new gloves to address finger and hand mobility, injury reduction and durability in nonpristine environments. Three prototypes will be developed, each focusing on different technological advances. A robotic assist glove will integrate a powered grasping system into the current EVA glove design to reduce astronaut hand fatigue and hand injuries. A mechanical counter pressure (MCP) glove will be developed to further explore the potential of MCP technology and assess its capability for countering the effects of vacuum or low pressure environments on the body by using compression fabrics or materials to apply the necessary pressure. A gas pressurized glove, incorporating new technologies, will be the most flight-like of the three prototypes. Advancements include the development and integration of aerogel insulation, damage sensing components, dust-repellant coatings, and dust tolerant bearings.

  16. Pediatric Basic Life Support Self-training is Comparable to Instructor-led Training: A randomized manikin study

    DEFF Research Database (Denmark)

    Vestergaard, L. D.; Løfgren, Bo; Jessen, C.

    2011-01-01

    Pediatric Basic Life Support Self-training is comparable to Instructor-led Training: A randomized manikin study.......Pediatric Basic Life Support Self-training is comparable to Instructor-led Training: A randomized manikin study....

  17. Flexible Foam Protection Materials for Constellation Space Suit Element Portable Life Support Subsystem Packaging Study

    Science.gov (United States)

    Tang, Henry H.; Orndoff, Evelyne S.; Thomas, Gretchen A.

    2009-01-01

    This paper discusses the effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be very robust and function in the extreme lunar thermal vacuum environment for up to one hundred Extravehicular Activity (EVA) missions. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating commercial off-the-shelf (COTS) foam protection materials. It also presents the materials properties test results and impact drop test results of the various foam materials evaluated in the study. The findings from this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam properties or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.

  18. Modern wireless telecommunication technologies and their electromagnetic compatibility with life-supporting equipment.

    Science.gov (United States)

    Wallin, Mats K E B; Marve, Therese; Hakansson, Peter K

    2005-11-01

    Hospitals rely on pagers and ordinary telephones to reach staff members in emergency situations. New telecommunication technologies such as General Packet Radio Service (GPRS), the third generation mobile phone system Universal Mobile Telecommunications System (UMTS), and Wireless Local Area Network (WLAN) might be able to replace hospital pagers if they are electromagnetically compatible with medical devices. In this study, we sought to determine if GPRS, UMTS (Wideband Code Division Multiple Access-Frequency Division Duplex [WCDMA FDD]), and WLAN (IEEE 802.11b) transmitted signals interfere with life-supporting equipment in the intensive care and operating room environment. According to United States standard, ANSI C63.18-1997, laboratory tests were performed on 76 medical devices. In addition, clinical tests during 11 operations and 100 h of intensive care were performed. UMTS and WLAN signals caused little interference. Devices using these technologies can be used safely in critical care areas and during operations, but direct contact between medical devices and wireless communication devices ought to be avoided. In the case of GPRS, at a distance of 50 cm, it caused an older infusion pump to alarm and stop infusing; the pump had to be reset. Also, 10 cases of interference with device displays occurred. GPRS can be used safely at a distance of 1 m. Terminals/cellular phones using these technologies should be allowed without restriction in public areas because the risk of interference is minimal.

  19. Thai nursing students' experiences when attending real life situations involving cardiac life support: A Phenomenological study.

    Science.gov (United States)

    Matchim, Yaowarat; Kongsuwan, Waraporn

    2015-12-01

    During the last few years, manikin simulations have been used for cardiac life support training procedures in medical and nursing education. However, some nursing students have experienced attending real events involving cardiac life support during their clinical practice. This study aims to describe the meaning of experience of Thai nursing students when attending real situations of cardiac life support. A hermeneutic phenomenological study was used. Third and fourth year bachelor of nursing students at a university in the southern region of Thailand who had the experience of attending real situation of cardiac life support were purposely selected as the informants. The data were generated from individual in-depth interviews with eighteen nursing students. Van Manen's approach was used to analyze the data. Trustworthiness was established using the criteria set out by Lincoln and Guba. Essential themes situated in the context of the four existential grounds of body, time, space, and relation emerged. These were: being worried and fearful while desiring to participate in cardiac life support procedures; enhancing self value; knowing each moment is meaningful for one's life; having time to understand the reality of life; being in a small corner; appreciating such opportunities and the encouragement given by nurses and the healthcare team; and feeling empathy. Besides learning in classrooms and practicing in labs, experiencing real situations is beneficial for nursing students in learning cardiac life support. This study provides information that can be used for clinical teaching management in the topics relating to cardiac life support. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Comprehensive cardiopulmonary life support (CCLS for cardiopulmonary resuscitation by trained paramedics and medics inside the hospital

    Directory of Open Access Journals (Sweden)

    Rakesh Garg

    2017-01-01

    Full Text Available The cardiopulmonary resuscitation (CPR guideline of comprehensive cardiopulmonary life support (CCLS for management of the patient with cardiopulmonary arrest in adults provides an algorithmic step-wise approach for optimal outcome of the patient inside the hospital by trained medics and paramedics. This guideline has been developed considering the infrastructure of healthcare delivery system in India. This is based on evidence in the international and national literature. In the absence of data from the Indian population, the extrapolation has been made from international data, discussed with Indian experts and modified accordingly to ensure their applicability in India. The CCLS guideline emphasise the need to recognise patients at risk for cardiac arrest and their timely management before a cardiac arrest occurs. The basic components of CPR include chest compressions for blood circulation; airway maintenance to ensure airway patency; lung ventilation to enable oxygenation and defibrillation to convert a pathologic 'shockable' cardiac rhythm to one capable to maintaining effective blood circulation. CCLS emphasises incorporation of airway management, drugs, and identification of the cause of arrest and its correction, while chest compression and ventilation are ongoing. It also emphasises the value of organised team approach and optimal post-resuscitation care.

  1. Life support technology investment strategies for flight programs: An application of decision analysis

    Science.gov (United States)

    Schlater, Nelson J.; Simonds, Charles H.; Ballin, Mark G.

    1993-01-01

    Applied research and technology development (R&TD) is often characterized by uncertainty, risk, and significant delays before tangible returns are obtained. Given the increased awareness of limitations in resources, effective R&TD today needs a method for up-front assessment of competing technologies to help guide technology investment decisions. Such an assessment approach must account for uncertainties in system performance parameters, mission requirements and architectures, and internal and external events influencing a development program. The methodology known as decision analysis has the potential to address these issues. It was evaluated by performing a case study assessment of alternative carbon dioxide removal technologies for NASA's proposed First Lunar Outpost program. An approach was developed that accounts for the uncertainties in each technology's cost and performance parameters as well as programmatic uncertainties such as mission architecture. Life cycle cost savings relative to a baseline, adjusted for the cost of money, was used as a figure of merit to evaluate each of the alternative carbon dioxide removal technology candidates. The methodology was found to provide a consistent decision-making strategy for development of new life support technology. The case study results provided insight that was not possible from more traditional analysis approaches.

  2. Development of a model to compute the extension of life supporting zones for Earth-like exoplanets.

    Science.gov (United States)

    Neubauer, David; Vrtala, Aron; Leitner, Johannes J; Firneis, Maria G; Hitzenberger, Regina

    2011-12-01

    A radiative convective model to calculate the width and the location of the life supporting zone (LSZ) for different, alternative solvents (i.e. other than water) is presented. This model can be applied to the atmospheres of the terrestrial planets in the solar system as well as (hypothetical, Earth-like) terrestrial exoplanets. Cloud droplet formation and growth are investigated using a cloud parcel model. Clouds can be incorporated into the radiative transfer calculations. Test runs for Earth, Mars and Titan show a good agreement of model results with observations.

  3. Basic life support and children with profound and multiple learning disabilities.

    Science.gov (United States)

    Cash, Stefan; Shinnick-Page, Andrea

    2008-10-01

    Nurses and other carers of people with learning disabilities must be able to manage choking events and perform basic life support effectively. UK guidelines for assessment of airway obstruction and for resuscitation do not take account of the specific needs of people with profound multiple learning disability. For example, they fail to account for inhibited gag and coughing reflexes, limited body movements or chest deformity. There are no national guidelines to assist in clinical decisions and training for nurses and carers. Basic life support training for students of learning disability nursing at Birmingham City University is supplemented to address these issues. The authors ask whether such training should be provided for all nurses including those caring for children and young people. They also invite comment and discussion on questions related to chest compression and training in basic life support for a person in a seated position.

  4. Bioelectrochemical degradation of urea at platinized boron doped diamond electrodes for bioregenerative applications

    Science.gov (United States)

    Nicolau, Eduardo; Gonzalez, Ileana; Nicolau, Eduardo; Cabrera, Carlos R.

    The recovery of potable water from space mission wastewater is critical for the life support and environmental health of crew members in long-term missions. NASA estimates reveal that at manned space missions 0.06 kg/person·day of urine is produced, with urea and various salts as its main components. Current spacecraft water reclamation strategies include the utilization of not only multifiltration systems (MF) and reverse osmosis (RO), but also biological components to deal with crew urine streams. In this research we explore the utilization of urease (EC 3.5.1.5) to convert urea directly to nitrogen by the in-situ utilization of the reaction products, to increase the amount of clean water in future space expeditions. First of all, platinum was electrodeposited on boron doped diamond electrodes by cycling the potential between -0.2 V and 1.0 V in metal/0.5 M H2SO4 solution. SEM images of the electrodes showed a distribution of platinum nanoparticles ranging between 50 nm and 300 nm. The biochemical reaction of urease in nature produces ammonia and carbon dioxide from urea. Based on this, Cyclic Voltammetry experiments of an ammonium acetate solution at pH 10 were performed showing an anodic peak at -0.3 V vs. Ag/AgCl due to the ammonia oxidation. Then, a urease solution (Jack Bean) was poured into the electrochemical cell and subsequent additions of urea were performed with the potential held at -0.3 V in order to promote ammonia oxidation. Chronoamperometry data shows that with more than five urea additions the enzyme still responding by producing ammonia, which is being subsequently oxidized at the electrode surface and producing molecular nitrogen. This research has tremendous applications for future long-term space missions since the reaction byproducts could be used for a biomass subsystem (in-situ resource recovery), while generating electricity from the same process.

  5. A Discussion of Oxygen Recovery Definitions and Key Performance Parameters for Closed-Loop Atmosphere Revitalization Life Support Technology Development

    Science.gov (United States)

    Abney, Morgan B.; Perry, Jay L.

    2016-01-01

    Over the last 55 years, NASA has evolved life support for crewed space exploration vehicles from simple resupply during Project Mercury to the complex and highly integrated system of systems aboard the International Space Station. As NASA targets exploration destinations farther from low Earth orbit and mission durations of 500 to 1000 days, life support systems must evolve to meet new requirements. In addition to having more robust, reliable, and maintainable hardware, limiting resupply becomes critical for managing mission logistics and cost. Supplying a crew with the basics of food, water, and oxygen become more challenging as the destination ventures further from Earth. Aboard ISS the Atmosphere Revitalization Subsystem (ARS) supplies the crew's oxygen demand by electrolyzing water. This approach makes water a primary logistics commodity that must be managed carefully. Chemical reduction of metabolic carbon dioxide (CO2) provides a method of recycling oxygen thereby reducing the net ARS water demand and therefore minimizing logistics needs. Multiple methods have been proposed to achieve this recovery and have been reported in the literature. However, depending on the architecture and the technology approach, "oxygen recovery" can be defined in various ways. This discontinuity makes it difficult to compare technologies directly. In an effort to clarify community discussions of Oxygen Recovery, we propose specific definitions and describe the methodology used to arrive at those definitions. Additionally, we discuss key performance parameters for Oxygen Recovery technology development including challenges with comparisons to state-of-the-art.

  6. Evaluation of a novel basic life support method in simulated microgravity.

    Science.gov (United States)

    Rehnberg, Lucas; Russomano, Thaws; Falcão, Felipe; Campos, Fabio; Everts, Simon N

    2011-02-01

    If a cardiac arrest occurs in microgravity, current emergency protocols aim to treat patients via a medical restraint system within 2-4 min. It is vital that crewmembers have the ability to perform single-person cardiopulmonary resuscitation (CPR) during this period, allowing time for advanced life support to be deployed. The efficacy of the Evetts-Russomano (ER) method has been tested in 22 s of microgravity in a parabolic flight and has shown that external chest compressions (ECC) and mouth-to-mouth ventilation are possible. There were 21 male subjects who performed both the ER method in simulated microgravity via full body suspension and at +1 Gz. The CPR mannequin was modified to provide accurate readings for ECC depth and a metronome to set the rate at 100 bpm. Heart rate, rate of perceived exertion, and angle of arm flexion were measured with an ECG, elbow electrogoniometers, and Borg scale, respectively. The mean (+/- SD) depth of ECC in simulated microgravity was lower in each of the 3 min compared to +1 G2. The ECC depth (45.7 +/- 2.7 mm, 42.3 +/- 5.5 mm, and 41.4 +/- 5.9 mm) and rate (104.5 +/- 5.2, 105.2 +/- 4.5, and 102.4 +/- 6.6 compressions/min), however, remained within CPR guidelines during simulated microgravity over the 3-min period. Heart rate, perceived exertion, and elbow flexion of both arms increased using the ER method. The ER method can provide adequate depth and rate of ECC in simulated microgravity for 3 min to allow time to deploy a medical restraint system. There is, however, a physiological cost associated with it and a need to use the flexion of the arms to compensate for the lack of weight.

  7. Fire fighters as basic life support responders: A study of successful implementation

    Directory of Open Access Journals (Sweden)

    Christensen Erika

    2009-04-01

    Full Text Available Abstract Background First responders are recommended as a supplement to the Emergency Medical Services (EMS in order to achieve early defibrillation. Practical and organisational aspects are essential when trying to implement new parts in the "Chain of Survival"; areas to address include minimizing dispatch time, ensuring efficient and quick communication, and choosing areas with appropriate driving distances. The aim of this study was to implement a system using Basic Life Support (BLS responders equipped with an automatic external defibrillator in an area with relatively short emergency medical services' response times. Success criteria for implementation was defined as arrival of the BLS responders before the EMS, attachment (and use of the AED, and successful defibrillation. Methods This was a prospective observational study from September 1, 2005 to December 31, 2007 (28 months in the city of Aarhus, Denmark. The BLS responder system was implemented in an area up to three kilometres (driving distance from the central fire station, encompassing approximately 81,500 inhabitants. The team trained on each shift and response times were reduced by choice of area and by sending the alarm directly to the fire brigade dispatcher. Results The BLS responders had 1076 patient contacts. The median response time was 3.5 minutes (25th percentile 2.75, 75th percentile 4.25. The BLS responders arrived before EMS in 789 of the 1076 patient contacts (73%. Cardiac arrest was diagnosed in 53 cases, the AED was attached in 29 cases, and a shockable rhythm was detected in nine cases. Eight were defibrillated using an AED. Seven of the eight obtained return of spontaneous circulation (ROSC. Six of the seven obtaining ROSC survived more than 30 days. Conclusion In this study, the implementation of BLS responders may have resulted in successful resuscitations. On basis of the close corporation between all participants in the chain of survival this project

  8. Physiological Disorders in Closed Environment-Grown Crops for Space Life Support

    Science.gov (United States)

    Wheeler, Raymond; Morrow, Robert

    Crop production for life support systems in space will require controlled environments where temperature, humidity, CO2, and light might differ from natural environments where plants evolved. Physiological disorders, i.e., abnormal plant growth and development, can occur under these controlled environments. Among the most common of these disorders are Ca deficiency injuries such as leaf tipburn (e.g., lettuce), blossom-end-rot in fruits (e.g., tomato and pepper), and internal tissue necrosis in fruits or tubers (e.g., cucumber and potato). Increased Ca nutrition to the plants typically has little effect on these disorders, but slowing overall growth or providing better air circulation to increase transpiration can be effective. A second common disorder is oedema or intumescence, which appears as callus-like growth or galls on leaves (e.g., sweetpotato, potato, pepper, and tomato). This disorder can be reduced by increasing the near UV radiation ( 300-400 nm) to the plants. Leaf injury and necrosis can occur under long photoperiods (e.g., tomato, potato, and pepper) and at super-elevated (i.e., ¿ than 4000 mol mol-1) CO2 concentrations (e.g., soybean, potato, and radish), and these can be managed by reducing the photoperiod and CO2 concentration, respectively. Lack of blue light in the spectrum (e.g., under red LEDs or LPS lamps) can result in leggy growth and/or leaves lacking in chlorophyll (e.g., wheat, bean, and radish). Volatile organic compounds (VOCs), most commonly ethylene, can accumulate in tightly closed systems and result in a variety of negative responses. Most of these disorders can be mitigated by altering the environmental set-points or by using more resistant cultivars.

  9. Fire fighters as basic life support responders: a study of successful implementation.

    Science.gov (United States)

    Høyer, Christian Bjerre; Christensen, Erika Frischknecht

    2009-04-02

    First responders are recommended as a supplement to the Emergency Medical Services (EMS) in order to achieve early defibrillation. Practical and organisational aspects are essential when trying to implement new parts in the "Chain of Survival"; areas to address include minimizing dispatch time, ensuring efficient and quick communication, and choosing areas with appropriate driving distances. The aim of this study was to implement a system using Basic Life Support (BLS) responders equipped with an automatic external defibrillator in an area with relatively short emergency medical services' response times. Success criteria for implementation was defined as arrival of the BLS responders before the EMS, attachment (and use) of the AED, and successful defibrillation. This was a prospective observational study from September 1, 2005 to December 31, 2007 (28 months) in the city of Aarhus, Denmark. The BLS responder system was implemented in an area up to three kilometres (driving distance) from the central fire station, encompassing approximately 81,500 inhabitants. The team trained on each shift and response times were reduced by choice of area and by sending the alarm directly to the fire brigade dispatcher. The BLS responders had 1076 patient contacts. The median response time was 3.5 minutes (25th percentile 2.75, 75th percentile 4.25). The BLS responders arrived before EMS in 789 of the 1076 patient contacts (73%). Cardiac arrest was diagnosed in 53 cases, the AED was attached in 29 cases, and a shockable rhythm was detected in nine cases. Eight were defibrillated using an AED. Seven of the eight obtained return of spontaneous circulation (ROSC). Six of the seven obtaining ROSC survived more than 30 days. In this study, the implementation of BLS responders may have resulted in successful resuscitations. On basis of the close corporation between all participants in the chain of survival this project contributed to the first link: short response time and trained

  10. [The Moodle platform: A useful tool for training in life support. Analysis of satisfaction questionnaires from students and instructors of the semFYC advanced life support courses].

    Science.gov (United States)

    Cordero Torres, Juan Antonio; Caballero Oliver, Antonio

    2015-01-01

    The aim of this study is to assess the validity and use of a mixed method of training in life support. The use of Moodle to implement an online pre-sessional phase prior to a "classic" classroom phase of teaching in this type of course is the main novelty. Analysis of satisfaction questionnaires of students and instructors of a mixed course in the advanced life support program of SemFYC (ESVAP). Moodle platform. semFYC Virtual Classroom. Students and instructors participating in the semFYC advanced life support program, ESVAP. Qualitative analysis. The majority of students rate as very useful (50%) or useful (45.37%) the existence of an online pre-sessional phase, and consider that it has helped them very much (42.20%) or quite a lot (48.62%) to make the most of the face-to-face sessions. For instructors, they considered that the existence of an online pre-sessional phase was very useful (89%) or useful (11%) for the development of the face-to-face sessions. The analysis of the results concluded that: 1) the students considered a prior non-face to face phase as very useful, and it helped them much/very much in the face to face phase, and 2) the instructors believe that the non-face to face phase had helped them a lot in the presentations and efficiency of the workshops in the face-to-face phase. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  11. Long-term intended and unintended experiences after Advanced Life Support training

    DEFF Research Database (Denmark)

    Rasmussen, M.B.; Dieckmann, Peter; Issenberg, Berry

    2012-01-01

    Highly structured simulation-based training (SBT) on managing emergency situations can have a significant effect on immediate satisfaction and learning. However, there are some indications of problems when applying learned skills to practice. The aim of this study was to identify long-term intended...... and unintended learner reactions, experiences and reflections after attending a simulation based Advanced Life Support (ALS) course....

  12. Evaluation of the effects of the Advanced Paediatric Life-Support course

    NARCIS (Netherlands)

    Turner, N.M.

    2008-01-01

    Doctors are generally unacceptably poor at resuscitation and this has been shown to lead to unnecessary mortality. This problem has led to the development of structured resuscitation training in the form of life-support courses, which have become very popular and are widely advocated, but which are

  13. First aid and basic life support: a questionnaire survey of medical schools in the Netherlands.

    NARCIS (Netherlands)

    Tan, E.C.T.H.; Hekkert, K.D.; Vugt, A.B. van; Biert, J.

    2010-01-01

    PURPOSE: Adequate education in first aid and basic life support (BLS) should be considered as an essential aspect of the medical curriculum. The objective of this study was to investigate the current medical training in first aid and BLS at all 8 medical schools in the Netherlands. SUMMARY: An

  14. Comparison of Two Modes of Delivery of First Aid Training Including Basic Life Support

    Science.gov (United States)

    Lippmann, John; Livingston, Patricia; Craike, Melinda J.

    2011-01-01

    Aims: Flexible-learning first aid courses are increasingly common due to reduced classroom contact time. This study compared retention of first aid knowledge and basic life support (BLS) skills three months after a two-day, classroom-based first aid course (STD) to one utilizing on-line theory learning at home followed by one day of classroom…

  15. Retention of first aid and basic life support skills in undergraduate medical students

    NARCIS (Netherlands)

    Ruijter, P.A. de; Biersteker, H.A.; Biert, J.; Goor, H. van; Tan, E.C.T.H.

    2014-01-01

    BACKGROUND: Undergraduate medical students follow a compulsory first aid (FA) and basic life support (BLS) course. Retention of BLS seems poor and only little information is provided on the retention of FA skills. This study aims at evaluating 1- and 2-year retention of FA and BLS training in

  16. Advanced Life Support in Obstetrics (ALSO) and postpartum hemorrhage: A prospective intervention study in Tanzania

    DEFF Research Database (Denmark)

    Sorensen, Bjarke Lund; Rasch, Vibeke; Massawe, Siriel

    2011-01-01

    Objective. To evaluate the impact of Advanced Life Support in Obstetrics (ALSO) training on staff performance and the incidences of postpartum hemorrhage (PPH) at a regional hospital in Tanzania. Design. Prospective intervention study. Setting. A regional, referral hospital. Population. A total...

  17. Distributing personal resuscitation manikins in an untrained population: how well are basic life support skills acquired?

    DEFF Research Database (Denmark)

    Nielsen, Anne Møller; Isbye, Dan Lou; Lippert, Freddy

    2012-01-01

    Background Self-instruction with a DVD and a simple personal manikin is an effective alternative to traditional basic life support (BLS) courses. Objective To evaluate the effect of distributing DVD training kits to untrained laypersons. BLS skills were compared according to 2005 guidelines...

  18. Design of an Instructional Module on Basic Life Support for Homeschooled Children

    Science.gov (United States)

    Awang, Sakinah; Ahmad, Shamsuria; Alias, Norlidah; DeWitt, Dorothy

    2016-01-01

    Basic Life Support (BLS) can increase a victim's chances of survival when administered promptly and correctly. Cardiac and respiratory arrests occur more frequently when the victim is at home far from clinical support. Hence, prompt action by family members trained in BLS can save the victim's life. In this study, the requirements for the design…

  19. Effects of Game Design Patterns on Basic Life Support Training Content

    Science.gov (United States)

    Kelle, Sebastian; Klemke, Roland; Specht, Marcus

    2013-01-01

    Based on a previous analysis of game design patterns and related effects in an educational scenario, the following paper presents an experimental study. In the study a course for Basic Life Support training has been evaluated and two game design patterns have been applied to the course. The hypotheses evaluated in this paper relate to game design…

  20. An arterio-venous bridge for gradual weaning from adult veno-arterial extracorporeal life support

    NARCIS (Netherlands)

    Babar, Z.U.D.; Sharma, A.S.; Ganushchak, Y.M.; Delnoij, T.S.R.; Donker, D.W.|info:eu-repo/dai/nl/413646386; Maessen, Jos G.; Weerwind, P.W.

    2015-01-01

    Purpose: Weaning from extracorporeal life support (ELS) is particularly challenging when cardiac recovery is slow, largely incomplete and hard to predict. Therefore, we describe an individualized gradual weaning strategy using an arterio-venous (AV) bridge incorporated into the circuit to facilitate

  1. Advanced Trauma Life Support. ABCDE from a radiological point of view.

    NARCIS (Netherlands)

    Kool, D.R.; Blickman, J.G.

    2007-01-01

    Accidents are the primary cause of death in patients aged 45 years or younger. In many countries, Advanced Trauma Life Support(R) (ATLS) is the foundation on which trauma care is based. We will summarize the principles and the radiological aspects of the ATLS, and we will discuss discrepancies with

  2. Validation of a pediatric bedside tool to predict time to death after withdrawal of life support.

    Science.gov (United States)

    Das, Ashima; Anderson, Ingrid M; Speicher, David G; Speicher, Richard H; Shein, Steven L; Rotta, Alexandre T

    2016-02-08

    To evaluate the accuracy of a tool developed to predict timing of death following withdrawal of life support in children. Pertinent variables for all pediatric deaths (age ≤ 21 years) from 1/2009 to 6/2014 in our pediatric intensive care unit (PICU) were extracted through a detailed review of the medical records. As originally described, a recently developed tool that predicts timing of death in children following withdrawal of life support (dallas predictor tool [DPT]) was used to calculate individual scores for each patient. Individual scores were calculated for prediction of death within 30 min (DPT30) and within 60 min (DPT60). For various resulting DPT30 and DPT60 scores, sensitivity, specificity and area under the receiver operating characteristic curve were calculated. There were 8829 PICU admissions resulting in 132 (1.5%) deaths. Death followed withdrawal of life support in 70 patients (53%). After excluding subjects with insufficient data to calculate DPT scores, 62 subjects were analyzed. Average age of patients was 5.3 years (SD: 6.9), median time to death after withdrawal of life support was 25 min (range; 7 min to 16 h 54 min). Respiratory failure, shock and sepsis were the most common diagnoses. Thirty-seven patients (59.6%) died within 30 min of withdrawal of life support and 52 (83.8%) died within 60 min. DPT30 scores ranged from -17 to 16. A DPT30 score ≥ -3 was most predictive of death within that time period, with sensitivity = 0.76, specificity = 0.52, AUC = 0.69 and an overall classification accuracy = 66.1%. DPT60 scores ranged from -21 to 28. A DPT60 score ≥ -9 was most predictive of death within that time period, with sensitivity = 0.75, specificity = 0.80, AUC = 0.85 and an overall classification accuracy = 75.8%. In this external cohort, the DPT is clinically relevant in predicting time from withdrawal of life support to death. In our patients, the DPT is more useful in predicting death within 60 min of withdrawal of life support

  3. An arterio-venous bridge for gradual weaning from adult veno-arterial extracorporeal life support.

    Science.gov (United States)

    Babar, Z U D; Sharma, A S; Ganushchak, Y M; Delnoij, T S R; Donker, D W; Maessen, J G; Weerwind, P W

    2015-11-01

    Weaning from extracorporeal life support (ELS) is particularly challenging when cardiac recovery is slow, largely incomplete and hard to predict. Therefore, we describe an individualized gradual weaning strategy using an arterio-venous (AV) bridge incorporated into the circuit to facilitate weaning. Thirty adult patients weaned from veno-arterial ELS using an AV bridge were retrospectively analyzed. Serial echocardiography and hemodynamic monitoring were used to assess cardiac recovery and load responsiveness. Upon early signs of myocardial recovery, an AV bridge with an Hoffman clamp was added to the circuit and weaning was initiated. Support flow was reduced stepwise by 10-15% every 2 to 8 hours while the circuit flow was maintained at 3.5-4.5 L/min. The AV bridge facilitated gradual weaning in all 30 patients (median age: 66 [53-71] years; 21 males) over a median period of 25 [8-32] hours, with a median support duration of 96 [31-181] hours. During weaning, the median left ventricular ejection fraction was 25% [15-32] and the median velocity time integral of the aortic valve was 16 cm [10-23]. Through the weaning period, the mean arterial blood pressure was maintained at 70 mmHg and the activated partial thromboplastin time was 60 ± 10 seconds without additional systemic heparinization. Neither macroscopic thrombus formation in the ELS circuit during and after weaning nor clinically relevant thromboembolism was observed. Incorporation of an AV bridge for weaning from veno-arterial ELS is safe and feasible to gradually wean patients with functional cardiac recovery without compromising the circuit integrity. © The Author(s) 2015.

  4. Limitation to Advanced Life Support in patients admitted to intensive care unit with integrated palliative care

    Science.gov (United States)

    Mazutti, Sandra Regina Gonzaga; Nascimento, Andréia de Fátima; Fumis, Renata Rego Lins

    2016-01-01

    Objective To estimate the incidence of limitations to Advanced Life Support in critically ill patients admitted to an intensive care unit with integrated palliative care. Methods This retrospective cohort study included patients in the palliative care program of the intensive care unit of Hospital Paulistano over 18 years of age from May 1, 2011, to January 31, 2014. The limitations to Advanced Life Support that were analyzed included do-not-resuscitate orders, mechanical ventilation, dialysis and vasoactive drugs. Central tendency measures were calculated for quantitative variables. The chi-squared test was used to compare the characteristics of patients with or without limits to Advanced Life Support, and the Wilcoxon test was used to compare length of stay after Advanced Life Support. Confidence intervals reflecting p ≤ 0.05 were considered for statistical significance. Results A total of 3,487 patients were admitted to the intensive care unit, of whom 342 were included in the palliative care program. It was observed that after entering the palliative care program, it took a median of 2 (1 - 4) days for death to occur in the intensive care unit and 4 (2 - 11) days for hospital death to occur. Many of the limitations to Advanced Life Support (42.7%) took place on the first day of hospitalization. Cardiopulmonary resuscitation (96.8%) and ventilatory support (73.6%) were the most adopted limitations. Conclusion The contribution of palliative care integrated into the intensive care unit was important for the practice of orthothanasia, i.e., the non-extension of the life of a critically ill patient by artificial means. PMID:27626949

  5. Cyanobacteria to Link Closed Ecological Systems and In-Situ Resources Utilization Processes

    Science.gov (United States)

    Brown, Igor

    Introduction: A major goal for the Vision of Space Exploration is to extend human presence across the solar sys-tem. With current technology, however, all required consumables for these missions (propellant, air, food, water) as well as habitable volume and shielding to support human explorers will need to be brought from Earth. In-situ pro-duction of consumables (In-Situ Resource Utilization-ISRU) will significantly facilitate current plans for human ex-ploration and colonization of the solar system, especially by reducing the logistical overhead such as recurring launch mass. The production of oxygen from lunar materials is generally recognized as the highest priority process for lunar ISRU, for both human metabolic and fuel oxidation needs. The most challenging technology developments for future lunar settlements may lie in the extraction of elements (O, Fe, Mn, Ti, Si, etc) from local rocks and soils for life support, industrial feedstock and the production of propellants. With few exceptions (e.g., Johannson, 1992), nearly all technology development to date has employed an ap-proach based on inorganic chemistry (e.g. Allen et al., 1996). None of these technologies include concepts for inte-grating the ISRU system with a bioregenerative life support system and a food production systems. Bioregenerative life support efforts have recently been added to the Constellation ISRU development program (Sanders et al, 2007). Methods and Concerns: The European Micro-Ecological Life Support System Alternative (MELiSSA) is an ad-vanced concept for organizing a bioregenerative system for long term space flights and extraterrestrial settlements (Hendrickx, De Wever et al., 2005). However the MELiSSA system is a net consumer of ISRU products without a net return to in-situ technologies, e.g.. to extract elements as a result of complete closure of MELiSSA. On the other hand, the physical-chemical processes for ISRU are typically massive (relative to the rate of oxygen

  6. MAXILLOFACIAL TRAUMA MANAGEMENT IN POLYTRAUMATIZED PATIENTS – THE USE OF ADVANCED TRAUMA LIFE SUPPORT (ATLS PRINCIPLES.

    Directory of Open Access Journals (Sweden)

    Elitsa G. Deliverska

    2013-03-01

    Full Text Available Management of the multiply injured patient requires a co-ordinated multi-disciplinary approach in order to optimise patients’ outcome. A working knowledge of the sort of problems these patients encounter is therefore vital to ensure that life-threatening injuries are recognised and treated in a timely pattern and that more minor associated injuries are not omitted. This article outlines the management of polytraumatized patients using the Advanced Trauma Life Support (ATLS principles and highlights the areas of specific involvement of the engaged medical team. Advanced Trauma Life Support is generally regarded as the gold standard and is founded on a number of well known principles, but strict adherence to protocols may have its drawbacks when facial trauma co-exists. These can arise in the presence of either major or minor facial injuries, and oral and maxillofacial surgeons need to be aware of the potential problems.

  7. Extracorporeal life support for a 5-week-old infant with idiopathic pulmonary hemosiderosis.

    Science.gov (United States)

    Gutierrez, Sherrill; Shaw, Susanna; Huseni, Shehlanoor; Sachdeva, Shagun; Costello, John P; Basu, Sonali; Nath, Dilip S; Klugman, Darren

    2014-12-01

    Idiopathic pulmonary hemosiderosis is a rare disease defined by the triad of iron deficiency anemia, hemoptysis, and diffuse pulmonary infiltrates on chest radiograph. Idiopathic pulmonary hemosiderosis is known to cause dyspnea and, in some cases, acute onset of massive pulmonary hemorrhage which is traditionally treated with conventional mechanical ventilation or high-frequency oscillation in conjunction with immunosuppressive therapy. In this case report, we describe a 5-week-old infant presenting with hemoptysis, massive pulmonary hemorrhage, and significant hypercapnic respiratory failure. The patient failed conventional ventilation but responded well to extracorporeal life support that was initiated early in his course. Idiopathic pulmonary hemosiderosis was suspected in light of his response to high-dose steroids and was confirmed by subsequent lung biopsies. Patients with severe pulmonary hemorrhage secondary to idiopathic pulmonary hemosiderosis can be safely supported with extracorporeal life support when conventional therapies have been exhausted.

  8. Retention of Knowledge following training of students in Basic Trauma Life Support.

    Science.gov (United States)

    Lim, K G; Lum, S K; Burud, I A S

    2016-12-01

    In the course of their undergraduate training at the International Medical University, students receive a Basic Trauma Life Support course. We wanted to test the long-term retention of knowledge (after 16 months) of third year medical students who had received training in Basic Trauma Life Support Method: To assess the retention of knowledge one cohort of students who received the training course were tested again 16 months later using the same 30 question One Best Answer quiz. Seventy-three students who underwent the course sat for the Retention test. The number of students who passed the Retention test was not significantly different from the test taken immediately after the course. The mean scores, 62.5% and 59.5% respectively, were however significantly different. Our study involves a relatively long interval between the course and retention of knowledge test shows encouraging results.

  9. Retention of first aid and basic life support skills in undergraduate medical students

    OpenAIRE

    Ruijter, P.A. de; Biersteker, H.A.; Biert, J.; Goor, H. van; Tan, E.C.T.H.

    2014-01-01

    Background: Undergraduate medical students follow a compulsory first aid (FA) and basic life support (BLS) course. Retention of BLS seems poor and only little information is provided on the retention of FA skills. This study aims at evaluating 1- and 2-year retention of FA and BLS training in undergraduate medical students.Methods: One hundred and twenty students were randomly selected from first year (n=349) medical students who successfully followed a compulsory FA and BLS course. From thes...

  10. Knowledge of the Portuguese population on Basic Life Support and availability to attend training

    OpenAIRE

    Dixe, Maria dos Anjos Coelho Rodrigues; Gomes, José Carlos Rodrigues

    2015-01-01

    OBJECTIVETo evaluate the level of knowledge and the availability of the Portuguese population to attend training in Basic Life Support (BLS) and identify factors related to their level of knowledge about BLS.METHODObservational study including 1,700 people who responded to a questionnaire containing data on demography, profession, training, interest in training and knowledge about BLS.RESULTSAmong 754 men and 943 women, only 17.8% (303) attended a course on BLS, but 95.6% expressed willingnes...

  11. A unique challenge: Emergency egress and life support equipment at KSC

    Science.gov (United States)

    Waddell, H. M., Jr.

    1975-01-01

    As a result of the investigation following the January 1967 fire, which took the lives of three astronauts, materials were developed, flight hardware was modified, and test procedures were rewritten in order to establish the framework within which a more effective rescue concept could be developed. Topics discussed include breathing units, improved life support equipment, miniresuscitators, and hazardous tasks during space shuttle launch and landing operations.

  12. Advanced trauma life support, 8th edition, the evidence for change.

    Science.gov (United States)

    Kortbeek, John B; Al Turki, Saud A; Ali, Jameel; Antoine, Jill A; Bouillon, Bertil; Brasel, Karen; Brenneman, Fred; Brink, Peter R; Brohi, Karim; Burris, David; Burton, Reginald A; Chapleau, Will; Cioffi, Wiliam; Collet e Silva, Francisco De Salles; Cooper, Art; Cortes, Jaime A; Eskesen, Vagn; Fildes, John; Gautam, Subash; Gruen, Russell L; Gross, Ron; Hansen, K S; Henny, Walter; Hollands, Michael J; Hunt, Richard C; Jover Navalon, Jose M; Kaufmann, Christoph R; Knudson, Peggy; Koestner, Amy; Kosir, Roman; Larsen, Claus Falck; Livaudais, West; Luchette, Fred; Mao, Patrizio; McVicker, John H; Meredith, Jay Wayne; Mock, Charles; Mori, Newton Djin; Morrow, Charles; Parks, Steven N; Pereira, Pedro Moniz; Pogetti, Renato Sergio; Ravn, Jesper; Rhee, Peter; Salomone, Jeffrey P; Schipper, Inger B; Schoettker, Patrick; Schreiber, Martin A; Smith, R Stephen; Svendsen, Lars Bo; Taha, Wa'el; van Wijngaarden-Stephens, Mary; Varga, Endre; Voiglio, Eric J; Williams, Daryl; Winchell, Robert J; Winter, Robert

    2008-06-01

    The American College of Surgeons Committee on Trauma's Advanced Trauma Life Support Course is currently taught in 50 countries. The 8th edition has been revised following broad input by the International ATLS subcommittee. Graded levels of evidence were used to evaluate and approve changes to the course content. New materials related to principles of disaster management have been added. ATLS is a common language teaching one safe way of initial trauma assessment and management.

  13. Low Earth orbit journey and ground simulations studies point out metabolic changes in the ESA life support organism Rhodospirillum rubrum

    Science.gov (United States)

    Mastroleo, Felice; Leys, Natalie; Benotmane, Rafi; Vanhavere, Filip; Janssen, Ann; Hendrickx, Larissa; Wattiez, Ruddy; Mergeay, Max

    MELiSSA (Micro-Ecological Life Support System Alternative) is a project of closed regenerative life support system for future space flights developed by the European Space Agency. It consists of interconnected processes (i.e. bioreactors, higher plant compartments, filtration units,..) targeting the total recycling of organic waste into oxygen, water and food. Within the MELiSSA loop, the purple non-sulfur alpha-proteobacterium R. rubrum ATCC25903 is used to convert fatty acids released from the upstream raw waste digesting reactor to CO2 and biomass, and to complete the mineralization of aminoacids into NH4+ that will be forwarded to the nitrifying compartment. Among the numerous challenges of the project, the functional stability of the bioreactors in long term and under space flight conditions is of paramount importance for the efficiency of the life support system and consequently the crew safety. Therefore, the physiological and metabolic changes induced by space flight were investigated for R. rubrum. The bacterium grown on solid medium during 2 different 10-day space flights to the ISS (MES- SAGE2, BASE-A experiments) were compared to cells grown on Earth 1 g gravity or modeled microgravity and normal Earth radiation or simulated space flight radiation conditions in order to relate each single stress to its respective cellular response. For simulating the radiation environment, pure gamma and neutron sources were combined, while simulation of changes in gravity where performed using the Random Positioning Machine technology. Transcriptome analysis using R. rubrum total genome DNA-chip showed up-regulation of genes involved in oxidative stress response after a 10-day mission inside the ISS, without loss of viability. As an example, alkyl hydroperoxide reductase, thioredoxin reductase and bacterioferritin genes are least 2 fold induced although the radiation dose experienced by the bacterium (4 mSv) is very low compared to its radiotolerance (D10 = 100 Sv

  14. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Integrated Roadmap Development

    Science.gov (United States)

    Metcalf, Jordan; Peterson, Laurie; Carrasquillo, Robyn; Bagdigian, Robert

    2012-01-01

    Although NASA is currently considering a number of future human space exploration mission concepts, detailed mission requirements and vehicle architectures remain mostly undefined, making technology investment strategies difficult to develop and sustain without a top-level roadmap to serve as a guide. This paper documents the process and results of an effort to define a roadmap for Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) as well as enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro-gravity mission; 2) a long duration microgravity mission; and 3) a long duration partial gravity (surface) exploration mission. To organize the effort, a functional decomposition of ECLSS was completed starting with the three primary functions: atmosphere, water, and solid waste management. Each was further decomposed into sub-functions to the point that current state-of-the-art (SOA) technologies could be tied to the sub-function. Each technology was then assessed by NASA subject matter experts as to its ability to meet the functional needs of each of the three mission types. When SOA capabilities were deemed to fall short of meeting the needs of one or more mission types, those gaps were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The result was a list of enabling and enhancing capability needs that can be used to guide future ECLSS development, as well as a list of existing hardware that is ready to go for exploration-class missions. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies intended to meet exploration needs

  15. Assessing basic life support skills without an instructor: is it possible?

    Directory of Open Access Journals (Sweden)

    Mpotos Nicolas

    2012-07-01

    Full Text Available Abstract Background Current methods to assess Basic Life Support skills (BLS; chest compressions and ventilations require the presence of an instructor. This is time-consuming and comports instructor bias. Since BLS skills testing is a routine activity, it is potentially suitable for automation. We developed a fully automated BLS testing station without instructor by using innovative software linked to a training manikin. The goal of our study was to investigate the feasibility of adequate testing (effectiveness within the shortest period of time (efficiency. Methods As part of a randomised controlled trial investigating different compression depth training strategies, 184 medicine students received an individual appointment for a retention test six months after training. An interactive FlashTM (Adobe Systems Inc., USA user interface was developed, to guide the students through the testing procedure after login, while Skills StationTM software (Laerdal Medical, Norway automatically recorded compressions and ventilations and their duration (“time on task”. In a subgroup of 29 students the room entrance and exit time was registered to assess efficiency. To obtain a qualitative insight of the effectiveness, student’s perceptions about the instructional organisation and about the usability of the fully automated testing station were surveyed. Results During testing there was incomplete data registration in two students and one student performed compressions only. The average time on task for the remaining 181 students was three minutes (SD 0.5. In the subgroup, the average overall time spent in the testing station was 7.5 minutes (SD 1.4. Mean scores were 5.3/6 (SD 0.5, range 4.0-6.0 for instructional organisation and 5.0/6 (SD 0.61, range 3.1-6.0 for usability. Students highly appreciated the automated testing procedure. Conclusions Our automated testing station was an effective and efficient method to assess BLS skills in medicine students

  16. Orion Multi-Purpose Crew Vehicle Active Thermal Control and Environmental Control and Life Support Development Status

    Science.gov (United States)

    Lewis, John F.; Barido, Richard A.; Boehm, Paul; Cross, Cynthia D.; Rains, George Edward

    2014-01-01

    The Orion Multi Purpose Crew Vehicle (MPCV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. Orion is currently being developed to transport the crew safely beyond Earth orbit. This year, the vehicle focused on building the Exploration Flight Test 1 (EFT1) vehicle to be launched in September of 2014. The development of the Orion Active Thermal Control (ATCS) and Environmental Control and Life Support (ECLS) System, focused on the integrating the components into the EFT1 vehicle and preparing them for launch. Work also has started on preliminary design reviews for the manned vehicle. Additional development work is underway to keep the remaining component progressing towards implementation on the flight tests of EM1 in 2017 and of EM2 in 2020. This paper covers the Orion ECLS development from April 2013 to April 2014.

  17. A comparison of pediatric basic life support self-led and instructor-led training among nurses

    DEFF Research Database (Denmark)

    Vestergaard, Lone D; Løfgren, Bo; Jessen, Casper L

    2017-01-01

    OBJECTIVE: Pediatric cardiac arrest carries a poor prognosis. Basic life support improves survival. Studies on pediatric basic life support (PBLS) training are sparse. The aim of our study was to investigate the effect of self-training in PBLS. PARTICIPANTS AND METHODS: We conducted a prospective...

  18. Basic life support: evaluation of learning using simulation and immediate feedback devices

    Directory of Open Access Journals (Sweden)

    Lucia Tobase

    2017-10-01

    Full Text Available ABSTRACT Objective: to evaluate students’ learning in an online course on basic life support with immediate feedback devices, during a simulation of care during cardiorespiratory arrest. Method: a quasi-experimental study, using a before-and-after design. An online course on basic life support was developed and administered to participants, as an educational intervention. Theoretical learning was evaluated by means of a pre- and post-test and, to verify the practice, simulation with immediate feedback devices was used. Results: there were 62 participants, 87% female, 90% in the first and second year of college, with a mean age of 21.47 (standard deviation 2.39. With a 95% confidence level, the mean scores in the pre-test were 6.4 (standard deviation 1.61, and 9.3 in the post-test (standard deviation 0.82, p <0.001; in practice, 9.1 (standard deviation 0.95 with performance equivalent to basic cardiopulmonary resuscitation, according to the feedback device; 43.7 (standard deviation 26.86 mean duration of the compression cycle by second of 20.5 (standard deviation 9.47; number of compressions 167.2 (standard deviation 57.06; depth of compressions of 48.1 millimeter (standard deviation 10.49; volume of ventilation 742.7 (standard deviation 301.12; flow fraction percentage of 40.3 (standard deviation 10.03. Conclusion: the online course contributed to learning of basic life support. In view of the need for technological innovations in teaching and systematization of cardiopulmonary resuscitation, simulation and feedback devices are resources that favor learning and performance awareness in performing the maneuvers.

  19. Quality of Basic Life Support - A Comparison between Medical Students and Paramedics.

    Science.gov (United States)

    Körber, Maria Isabel; Köhler, Thomas; Weiss, Verena; Pfister, Roman; Michels, Guido

    2016-07-01

    Poor survival rates after cardiac arrest can partly be explained by poor basic life support skills in medical professionals. This study aimed to assess quality of basic life support in medical students and paramedics. We conducted a prospective observational study with 100 early medical students (group A), 100 late medical students (group B) and 100 paramedics (group C), performing a 20-minute basic life support simulation in teams of two. Average frequency and absolute number of chest compressions per minute (mean (±SD)), chest decompression (millimetres of compression remaining, mean (±SD)), hands-off-time (seconds/minute, mean (±SD)), frequency of switching positions between ventilation and chest compression (per 20 minutes) and rate of sufficient compressions (depth ≥50mm) were assessed as quality parameters of CPR. In groups A, B and C the rates of sufficiently deep chest compressions were 56%, 42% and 52%, respectively, without significant differences. Male gender and real-life CPR experience were significantly associated with deeper chest compression. Frequency and number of chest compressions were within recommended goals in at least 96% of all groups. Remaining chest compressions were 6 mm (±2), 6 mm (±2) and 5 mm (±2) with a significant difference between group A and C (p=0.017). Hands-off times were 6s/min (±1), 5s/min (±1) and 4s/min (±1), which was significantly different across all three groups. Overall, paramedics tended to show better quality of CPR compared to medical students. Though, chest compression depth as an important quality characteristic of CPR was insufficient in almost 50% of participants, even in well trained paramedics. Therefore, we suggest that an effort should be made to find better ways to educate health care professionals in BLS.

  20. Perceptions of basic, advanced, and pediatric life support training in a United States medical school.

    Science.gov (United States)

    Pillow, Malford Tyson; Stader, Donald; Nguyen, Matthew; Cao, Dazhe; McArthur, Robert; Hoxhaj, Shkelzen

    2014-05-01

    Basic Life Support (BLS), Advanced Cardiac Life Support (ACLS), and Pediatric Advanced Life Support (PALS) are integral parts of emergency resuscitative care. Although this training is usually reserved for residents, introducing the training in the medical student curriculum may enhance acquisition and retention of these skills. We developed a survey to characterize the perceptions and needs of graduating medical students regarding BLS, ACLS, and PALS training. This was a study of graduating 4th-year medical students at a U.S. medical school. The students were surveyed prior to participating in an ACLS course in March of their final year. Of 152 students, 109 (71.7%) completed the survey; 48.6% of students entered medical school without any prior training and 47.7% started clinics without training; 83.4% of students reported witnessing an average of 3.0 in-hospital cardiac arrests during training (range of 0-20). Overall, students rated their preparedness 2.0 (SD 1.0) for adult resuscitations and 1.7 (SD 0.9) for pediatric resuscitations on a 1-5 Likert scale, with 1 being unprepared. A total of 36.8% of students avoided participating in resuscitations due to lack of training; 98.2%, 91.7%, and 64.2% of students believe that BLS, ACLS, and PALS, respectively, should be included in the medical student curriculum. As per previous studies that have examined this topic, students feel unprepared to respond to cardiac arrests and resuscitations. They feel that training is needed in their curriculum and would possibly enhance perceived comfort levels and willingness to participate in resuscitations. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Outcomes after out-of-hospital cardiac arrest treated by basic vs advanced life support.

    Science.gov (United States)

    Sanghavi, Prachi; Jena, Anupam B; Newhouse, Joseph P; Zaslavsky, Alan M

    2015-02-01

    Most out-of-hospital cardiac arrests receiving emergency medical services in the United States are treated by ambulance service providers trained in advanced life support (ALS), but supporting evidence for the use of ALS over basic life support (BLS) is limited. To compare the effects of BLS and ALS on outcomes after out-of-hospital cardiac arrest. Observational cohort study of a nationally representative sample of traditional Medicare beneficiaries from nonrural counties who experienced out-of-hospital cardiac arrest between January 1, 2009, and October 2, 2011, and for whom ALS or BLS ambulance services were billed to Medicare (31,292 ALS cases and 1643 BLS cases). Propensity score methods were used to compare the effects of ALS and BLS on patient survival, neurological performance, and medical spending after cardiac arrest. Survival to hospital discharge, to 30 days, and to 90 days; neurological performance; and incremental medical spending per additional survivor to 1 year. Survival to hospital discharge was greater among patients receiving BLS (13.1% vs 9.2% for ALS; 4.0 [95% CI, 2.3-5.7] percentage point difference), as was survival to 90 days (8.0% vs 5.4% for ALS; 2.6 [95% CI, 1.2-4.0] percentage point difference). Basic life support was associated with better neurological functioning among hospitalized patients (21.8% vs 44.8% with poor neurological functioning for ALS; 23.0 [95% CI, 18.6-27.4] percentage point difference). Incremental medical spending per additional survivor to 1 year for BLS relative to ALS was $154,333. Patients with out-of-hospital cardiac arrest who received BLS had higher survival at hospital discharge and at 90 days compared with those who received ALS and were less likely to experience poor neurological functioning.

  2. Outcomes of Basic Versus Advanced Life Support for Out-of-Hospital Medical Emergencies.

    Science.gov (United States)

    Sanghavi, Prachi; Jena, Anupam B; Newhouse, Joseph P; Zaslavsky, Alan M

    2015-11-03

    Most Medicare patients seeking emergency medical transport are treated by ambulance providers trained in advanced life support (ALS). Evidence supporting the superiority of ALS over basic life support (BLS) is limited, but some studies suggest ALS may harm patients. To compare outcomes after ALS and BLS in out-of-hospital medical emergencies. Observational study with adjustment for propensity score weights and instrumental variable analyses based on county-level variations in ALS use. Traditional Medicare. 20% random sample of Medicare beneficiaries from nonrural counties between 2006 and 2011 with major trauma, stroke, acute myocardial infarction (AMI), or respiratory failure. Neurologic functioning and survival to 30 days, 90 days, 1 year, and 2 years. Except in cases of AMI, patients showed superior unadjusted outcomes with BLS despite being older and having more comorbidities. In propensity score analyses, survival to 90 days among patients with trauma, stroke, and respiratory failure was higher with BLS than ALS (6.1 percentage points [95% CI, 5.4 to 6.8 percentage points] for trauma; 7.0 percentage points [CI, 6.2 to 7.7 percentage points] for stroke; and 3.7 percentage points [CI, 2.5 to 4.8 percentage points] for respiratory failure). Patients with AMI did not exhibit differences in survival at 30 days but had better survival at 90 days with ALS (1.0 percentage point [CI, 0.1 to 1.9 percentage points]). Neurologic functioning favored BLS for all diagnoses. Results from instrumental variable analyses were broadly consistent with propensity score analyses for trauma and stroke, showed no survival differences between BLS and ALS for respiratory failure, and showed better survival at all time points with BLS than ALS for patients with AMI. Only Medicare beneficiaries from nonrural counties were studied. Advanced life support is associated with substantially higher mortality for several acute medical emergencies than BLS. National Science Foundation, Agency for

  3. Basic life support: evaluation of learning using simulation and immediate feedback devices1.

    Science.gov (United States)

    Tobase, Lucia; Peres, Heloisa Helena Ciqueto; Tomazini, Edenir Aparecida Sartorelli; Teodoro, Simone Valentim; Ramos, Meire Bruna; Polastri, Thatiane Facholi

    2017-10-30

    to evaluate students' learning in an online course on basic life support with immediate feedback devices, during a simulation of care during cardiorespiratory arrest. a quasi-experimental study, using a before-and-after design. An online course on basic life support was developed and administered to participants, as an educational intervention. Theoretical learning was evaluated by means of a pre- and post-test and, to verify the practice, simulation with immediate feedback devices was used. there were 62 participants, 87% female, 90% in the first and second year of college, with a mean age of 21.47 (standard deviation 2.39). With a 95% confidence level, the mean scores in the pre-test were 6.4 (standard deviation 1.61), and 9.3 in the post-test (standard deviation 0.82, p feedback device; 43.7 (standard deviation 26.86) mean duration of the compression cycle by second of 20.5 (standard deviation 9.47); number of compressions 167.2 (standard deviation 57.06); depth of compressions of 48.1 millimeter (standard deviation 10.49); volume of ventilation 742.7 (standard deviation 301.12); flow fraction percentage of 40.3 (standard deviation 10.03). the online course contributed to learning of basic life support. In view of the need for technological innovations in teaching and systematization of cardiopulmonary resuscitation, simulation and feedback devices are resources that favor learning and performance awareness in performing the maneuvers.

  4. Basics in advanced life support: a role for download audit and metronomes.

    Science.gov (United States)

    Fletcher, David; Galloway, Robert; Chamberlain, Douglas; Pateman, Jane; Bryant, Geoffrey; Newcombe, Robert G

    2008-08-01

    An intention in 2003 to undertake a multicentre trial in the United Kingdom of compressions before and after defibrillation could not be realized because of concerns at the time in relation to informed consent. Instead, the new protocol was introduced in one ambulance service, ahead of the 2005 Guidelines, with greater emphasis on compressions. The results were monitored by analysis of electronic ECG downloads. Deficiencies in the standard of basic life support were identified but were not unique to our service. The introduction of metronomes and the provision of feedback to crews led to major improvements in performance. Our experience has implications for the emergency pre-hospital care of cardiac arrest.

  5. Advanced Trauma Life Support®. ABCDE from a radiological point of view

    Science.gov (United States)

    Blickman, Johan G.

    2007-01-01

    Accidents are the primary cause of death in patients aged 45 years or younger. In many countries, Advanced Trauma Life Support® (ATLS®) is the foundation on which trauma care is based. We will summarize the principles and the radiological aspects of the ATLS®, and we will discuss discrepancies with day to day practice and the radiological literature. Because the ATLS® is neither thorough nor up-to-date concerning several parts of radiology in trauma, it should not be adopted without serious attention to defining the indications and limitations pertaining to diagnostic imaging. PMID:17564732

  6. Advanced Trauma Life Support. ABCDE from a radiological point of view.

    Science.gov (United States)

    Kool, Digna R; Blickman, Johan G

    2007-07-01

    Accidents are the primary cause of death in patients aged 45 years or younger. In many countries, Advanced Trauma Life Support(R) (ATLS) is the foundation on which trauma care is based. We will summarize the principles and the radiological aspects of the ATLS, and we will discuss discrepancies with day to day practice and the radiological literature. Because the ATLS is neither thorough nor up-to-date concerning several parts of radiology in trauma, it should not be adopted without serious attention to defining the indications and limitations pertaining to diagnostic imaging.

  7. Effects of obligatory training and prior training experience on attitudes towards performing basic life support: a questionnaire survey.

    Science.gov (United States)

    Matsubara, Hiroki; Enami, Miki; Hirose, Keiko; Kamikura, Takahisa; Nishi, Taiki; Takei, Yutaka; Inaba, Hideo

    2015-04-01

    To determine the effect of Japanese obligatory basic life support training for new driver's license applicants on their willingness to carry out basic life support. We distributed a questionnaire to 9,807 participants of basic life support courses in authorized driving schools from May 2007 to April 2008 after the release of the 2006 Japanese guidelines. The questionnaire explored the participants' willingness to perform basic life support in four hypothetical scenarios: cardiopulmonary resuscitation on one's own initiative; compression-only cardiopulmonary resuscitation following telephone cardiopulmonary resuscitation; early emergency call; and use of an automated external defibrillator. The questionnaire was given at the beginning of the basic life support course in the first 6-month term and at the end in the second 6-month term. The 9,011 fully completed answer sheets were analyzed. The training significantly increased the proportion of respondents willing to use an automated external defibrillator and to perform cardiopulmonary resuscitation on their own initiative in those with and without prior basic life support training experience. It significantly increased the proportion of respondents willing to carry out favorable actions in all four scenarios. In multiple logistic regression analysis, basic life support training and prior training experiences within 3 years were associated with the attitude. The analysis of reasons for unwillingness suggested that the training reduced the lack of confidence in their skill but did not attenuate the lack of confidence in detection of arrest or clinical judgment to initiate a basic life support action. Obligatory basic life support training should be carried out periodically and modified to ensure that participants gain confidence in judging and detecting cardiac arrest.

  8. Analysis of the YouTube videos on basic life support and cardiopulmonary resuscitation.

    Science.gov (United States)

    Tourinho, Francis Solange Vieira; de Medeiros, Kleyton Santos; Salvador, Pétala Tuani Candido De Oliveira; Castro, Grayce Loyse Tinoco; Santos, Viviane Euzébia Pereira

    2012-01-01

    To analyze the videos on the YouTube video sharing site, noting which points addressed in the videos related to CPR and BLS, based on the 2010 Guidelines for the American Heart Association (AHA). This was an exploratory, quantitative and qualitative research performed in the YouTube sharing site, using as keywords the expressions in Portuguese equivalent to the Medical Subject Headings (MeSH) "Cardiopulmonary Resuscitation" and "Basic Life Support" for videos that focused on the basic life support. The research totaled 260 videos over the two searches. Following the exclusion criteria, 61 videos remained. These mostly are posted by individuals and belong to the category Education. Moreover, most of the videos, despite being added to the site after the publication of the 2010 AHA Guidelines, were under the older 2005 guidelines. Although the video-sharing site YouTube is widely used today, it lacks videos about CPR and BLS that comply to the most recent AHA recommendations, which may negatively influence the population that uses it.

  9. Instructional design in the development of an online course on Basic Life Support.

    Science.gov (United States)

    Tobase, Lucia; Peres, Heloisa Helena Ciqueto; Almeida, Denise Maria de; Tomazini, Edenir Aparecida Sartorelli; Ramos, Meire Bruna; Polastri, Thatiane Facholi

    2018-03-26

    To develop and evaluate an online course on Basic Life Support. Technological production research of online course guided by the ADDIE (Analysis, Design, Development, Implementation, Evaluation) instructional design model based on Andragogy and the Meaningful Learning Theory. The online course was constructed in the platform Moodle, previously assessed by a group of experts, and then presented to the students of the Nursing School of the University of São Paulo, who assessed it at the end of the course. The course was evaluated by the experts and obtained a mean score of 0.92 (SD 0.15), considered as good quality (between 0.90-0.94), and by the students, with a mean score of 0.95 (SD 0.03), considered as high quality (0.95-1.00). The instructional design used was found to be appropriate to the development of the online course. As an active educational strategy, it contributed to the learning on Basic Life Support during cardiac arrest-related procedures in adults. In view of the need for technological innovations in education and systematization of care in cardiopulmonary resuscitation, the online course allows the establishment of continuous improvement processes in the quality of resuscitation in the care provided by students and professionals.

  10. Awareness of basic life support among medical, dental, nursing students and doctors

    Directory of Open Access Journals (Sweden)

    Shanta Chandrasekaran

    2010-01-01

    Full Text Available To study the awareness of Basic Life Support (BLS among students, doctors and nurses of medical, dental, homeopathy and nursing colleges. A cross-sectional study was conducted by assessing responses to 20 selected basic questions regarding BLS among students, doctors and nurses of medical, dental, homeopathy and nursing colleges. After excluding the incomplete response forms the data was analysed on 1,054 responders. The results were analysed using an answer key prepared with the use of the Advanced Cardiac Life Support manual. Out of 1,054 responders 345 were medical students, 75 were medical interns, 19 were dental students, 59 were dental interns, 105 were homeopathy interns, 319 were nursing students, 72 were doctors, 29 were dentists, 25 were nursing faculty and six were homeopathy doctors. No one among them had complete knowledge of BLS. Only two out of 1054 (0.19% had secured 80 - 89% marks, 10 out of 1054 (0.95% had secured 70 - 79% marks, 40 of 1054 (4.08% had secured 60 - 69% marks and 105 of 1054 (9.96% had secured 50 - 59% marks. A majority of them, that is, 894 (84.82% had secured less than 50% marks. Awareness of BLS among students, doctors and nurses of medical, dental, homeopathy and nursing colleges is very poor.

  11. Improving advanced cardiovascular life support skills in medical students: simulation-based education approach

    Directory of Open Access Journals (Sweden)

    Hamidreza Reihani

    2015-01-01

    Full Text Available Objective: In this trial, we intend to assess the effect of simulation-based education approach on advanced cardiovascular life support skills among medical students. Methods: Through convenient sampling method, 40 interns of Mashhad University of Medical Sciences in their emergency medicine rotation (from September to December 2012 participated in this study. Advanced Cardiovascular Life Support (ACLS workshops with pretest and post-test exams were performed. Workshops and checklists for pretest and post-test exams were designed according to the latest American Heart Association (AHA guidelines. Results: The total score of the students increased significantly after workshops (24.6 out of 100 to 78.6 out of 100. This demonstrates 53.9% improvement in the skills after the simulation-based education (P< 0.001. Also the mean score of each station had a significant improvement (P< 0.001. Conclusion: Pretests showed that interns had poor performance in practical clinical matters while their scientific knowledge, such as ECG interpretation was acceptable. The overall results of the study highlights that Simulation based-education approach is highly effective in Improving ACLS skills among medical students.

  12. Engineering strategies for the design of plant nutrient delivery systems for use in space: approaches to countering microbiological contamination

    Science.gov (United States)

    Gonzales, A. A.; Schuerger, A. C.; Barford, C.; Mitchell, R.

    Microbiological contamination of crops within space-based plant growth research chambers has been postulated as a potentially significant problem. Microbial infestations; fouling of Nutrient Delivery System (NDS) fluid loops; and the formation of biofilms have been suggested as the most obvious and important manifestations of the problem. Strict sanitation and quarantine procedures will reduce, but not eliminate, microbial species introduced into plant growth systems in space habitats. Microorganisms transported into space most likely will occur as surface contaminants on spacecraft components, equipment, the crew, and plant-propagative materials. Illustrations of the potential magnitude of the microbiological contamination issue will be drawn from the literature and from documentation of laboratory and commercial field experience. Engineering strategies for limiting contamination and for the development of countermeasures will be described. Microbiological control technologies and NDS hardware will be discussed. Configurations appropriate for microgravity research facilities, as well as anticipated bio-regenerative life support system implementations, will be explored. An efficiently designed NDS, capable of adequately meeting the environmental needs of crop plants in space, is considered to be critical in both the research and operational domains. Recommended experiments, tests, and technology developments, structured to allow the development of prudent engineering solutions also will be presented.

  13. Phase Change Permeation Technology for Environmental Control & Life Support Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will explore a recent advancement in Phase Change Permeation™ technology to enable improved (1) water recovery from urine/brine for Environmental...

  14. Development of Space Life Supporting System Using Radiation Technology (Top Brand Project)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Woon; Kim, Jae Hun; Song, Beom Seok; Choi, Jong Il; Yoon, Yo Han; Park, Jin Kyu; Park, Jae Nam; Han, In Jun; Lee, Yoon Jong [KAERI, Daejeon (Korea, Republic of)

    2010-08-15

    To simulate the space environment of microgravity and expose to space radiation, Hindlimb Suspension Model was established in Gamma Phytotron. Hindlimb suspended group exposed to irradiation, non-suspended group not exposed to irradiation, and non-suspended group exposed to irradiation were experimented for 2 weeks at the dose rate of 3.2 mSV/day. The results showed that muscle weight was decreased by suspension. To develop the countermeasure to physiological changes in space environment, the peptides from soy beam was selected to evaluate the effect with the space environment simulation model. Suing the microscopic and fluorescent images, the growth of microorganisms were detected. The species were identified based on primer-targeted gene sequence analysis. Also, the radiation resistance of species was defined. To research on sustainable nutritional supply and improvement of human physiology in space environment, four kinds of new Korean space foods (Bulgogi, Bibimbap, Seaweed soup, and Mulberry beverage) were developed using the irradiation technology and certified as space foods by the Russian Institute of Biomedical Problems. The contract on joint research of MARS-500 between KAERI and IBMP was made. In the experiment, crews for expedition to Mars will eat Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground. The developed technology and know-how could be spun out to the various fields, such as aircraft, automobile, military, information and communication, bio technologies. Moreover, the results obtained from this research can be used for the further development for military use or special food area such as foods for patient

  15. Biosphere of the earth as a life-support system (LSS) for mankind

    Science.gov (United States)

    Pechurkin, Nickolay

    As a component of biosphere the mankind became the most powerful and active link recently. Exponential growth of human population number and of some technological indicators of its development becomes menacing for steady (stationary or close-to-stationary) functioning of biosphere as single whole. Anyway, we should be able to estimate quantitatively limits of pos-sible anthropogenic impact on functional parameters of biosphere. Considering biosphere as a natural LSS, we can receive the helpful information for working out and creation of artificial LSS of various types. Big biotic cycle induced with flows of a solar energy, is a basis of func-tioning of biosphere and its basic cells -ecosystems. In comparison with the majority natural ecosystems, the biosphere has very high factor of closure of substance circulation, especially limiting biogenic elements: nitrogen and phosphorus. Voluntarily or not, the mankind interferes in big biotic cycle and modifies it. For example, extracting mineral fertilizers for cultivation of agricultural crops, we return in circulation lost before substances, type nitric, potassic, phos-phoric salts. Burning fossils of organic carbon (oil, gas, coal), we raise concentration of carbon dioxide in atmosphere. The melting of a permafrost connected with activity of mankind, is capable to lead to excretion of other greenhouse gases, in particular, methane. It's possible to summarize briefly the main functional properties of the biosphere: Integrity, Closure, Substance cycling, Steady state, Energy dependence. These properties of the biosphere, as a LSS, ensure potentially everlasting life under the conditions of a limited quantity of substrate suitable for the life on the planet. But the selfish mankind is able to destroy harmonic adjustment of this unique natural mechanism

  16. Development of Space Life Supporting System Using Radiation Technology (Top Brand Project)

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Kim, Jae Hun; Song, Beom Seok; Choi, Jong Il; Yoon, Yo Han; Park, Jin Kyu; Park, Jae Nam; Han, In Jun; Lee, Yoon Jong

    2010-08-01

    To simulate the space environment of microgravity and expose to space radiation, Hindlimb Suspension Model was established in Gamma Phytotron. Hindlimb suspended group exposed to irradiation, non-suspended group not exposed to irradiation, and non-suspended group exposed to irradiation were experimented for 2 weeks at the dose rate of 3.2 mSV/day. The results showed that muscle weight was decreased by suspension. To develop the countermeasure to physiological changes in space environment, the peptides from soy beam was selected to evaluate the effect with the space environment simulation model. Suing the microscopic and fluorescent images, the growth of microorganisms were detected. The species were identified based on primer-targeted gene sequence analysis. Also, the radiation resistance of species was defined. To research on sustainable nutritional supply and improvement of human physiology in space environment, four kinds of new Korean space foods (Bulgogi, Bibimbap, Seaweed soup, and Mulberry beverage) were developed using the irradiation technology and certified as space foods by the Russian Institute of Biomedical Problems. The contract on joint research of MARS-500 between KAERI and IBMP was made. In the experiment, crews for expedition to Mars will eat Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground. The developed technology and know-how could be spun out to the various fields, such as aircraft, automobile, military, information and communication, bio technologies. Moreover, the results obtained from this research can be used for the further development for military use or special food area such as foods for patient

  17. Process and Tool Support for Ontology-Aware Life Support System Development and Integration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent advances in ontology development support a rich description of entities that are modeled within a domain and how these entities relate to each other. However,...

  18. Fermentation as a first step in carbon and nutrient recovery in regenerative life support systems

    Science.gov (United States)

    Luther, Amanda; Lasseur, Christophe; Rebeyre, Pierre; Clauwaert, Peter; Rabaey, Korneel; Ronsse, Frederik; Zhang, Dong Dong; López Barreiro, Diego; Prins, Wolter

    2016-07-01

    Long term manned space missions, such as the establishment of a base on Mars, will require a regenerative means of supplying the basic resources (i.e., food, water, oxygen) necessary to support human life. The MELiSSA-loop is a closed loop compartmentalized artificial aquatic ecosystem designed to recover water, carbon, and nutrients from solid organic wastes (e.g., inedible food waste and feces) for the regeneration of food and oxygen for humans. The first step in this loop is a strictly anaerobic fermentation unit operated as a membrane bioreactor. In this step the aim is to maximize the hydrolysis of complex organic compounds into simple molecules (CO2, ammonia, volatile fatty acids, …) which can be consumed by plants and bacteria downstream to produce food again. Optimal steady state fermentation of a standardized homogeneous mixture of beets, lettuce, wheat straw, toilet paper, feces, and water was demonstrated to recover approximately 50% of the influent carbon as soluble organics in the effluent through anaerobic fermentation. Approximately 10% of the influent COD was converted to CO2, with the remaining ~40% retained as a mixture of undigested solids and biomass. Approximately 50% of the influent nitrogen was recovered in the effluent, 97% of which was in the form of ammonia. Similar results have been obtained at both lab and pilot scale. With only 10% of the carbon driven to CO2 through this fermentation, a major challenge at this moment for the MELiSSA-loop is closing the carbon cycle, by completely oxidizing the carbon in the organic waste and non-edible parts of the plant into CO2 for higher plants and algae to fix again for food production. To further improve the overall degradation we are investigating the integration of a high temperature and pressure, sub- or near critical water conditions to improve the degradation of fibrous material with the addition of an oxidant (hydrogen peroxide, H2O2) under sub- or near critical conditions to further enhanced the oxidation to CO2. The conversion of the soluble organic compounds (mainly volatile fatty acids) into CO2 is being investigated with bio-anodic oxidation in a microbial electrolysis cell. In this way, the energy present in the organic compounds is recovered without excessive biological sludge production.

  19. Process and Tool Support for Ontology-Aware Life Support System Development and Integration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent advances in ontology development support a rich description of entities that are modeled within a domain and how these entities relate to each other. However,...

  20. A Multipurpose Fruit and Vegetable Processing System for Advanced Life Support

    Data.gov (United States)

    National Aeronautics and Space Administration — During the one-year no-cost extension, we completed the fabrication of the multipurpose fruit and vegetable food processor (MFVP) and the remaining trials with its...

  1. The nutritional adequacy of a limited vegan diet for a controlled ecological life-support system

    Science.gov (United States)

    Saha, P. R.; Trumbo, P. R.

    Purdue University, as well as the Johnson and Kennedy Space Centers and NASA Ames Research Center, are investigating approximately 5-10 plants that will be grown hydroponically to provide not only the energy and nutrients, but also the oxygen for humans habitating in Mars and lunar bases. The growth and nutritional status of rats fed either a control diet (adequate in all macro- and micronutrients) or a strict vegetarian diet consisting of 5 (vegan-5) or 10 (vegan-10) candidate crop species were investigated. In addition, vegan-10 diets were supplemented with mineral and/or vitamin mix at a level similar to the control diets to assess the effect of supplementation on nutrient status. The assessment of inedible plant material as an alternative food source was also investigated. Results of this study demonstrated that consumption of the vegan-10 diet significantly improved weight gain of rats compared to that for rats fed the vegan-5 diet. Mineral supplementation, at a level present in the control diet, to the vegan-10 diet improved growth and nutrient status, but growth was significantly lower compared to the control-fed rats. Inclusion of inedible plant material, high in ash content, improved some indices of nutrient status, without improving growth.

  2. Synthetic Biology and Microbial Fuel Cells: Towards Self-Sustaining Life Support Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA ARC and the J. Craig Venter Institute (JCVI) collaborated to investigate the development of advanced microbial fuels cells (MFCs) for biological wastewater...

  3. The nutritional adequacy of a limited vegan diet for a Controlled Ecological Life-Support System

    Science.gov (United States)

    Saha, P. R.; Trumbo, P. R.; Mitchell, C. A. (Principal Investigator)

    1996-01-01

    Purdue University, as well as the Johnson and Kennedy Space Centers and NASA Ames Research Center, are investigating approximately 5-10 plants that will be grown hydroponically to provide not only the energy and nutrients, but also the oxygen for humans habitating in Mars and lunar bases. The growth and nutritional status of rats fed either a control diet (adequate in all macro- and micronutrients) or a strict vegetarian diet consisting of 5 (vegan-5) or 10 (vegan-10) candidate crop species were investigated. In addition, vegan-10 diets were supplemented with mineral and/or vitamin mix at a level similar to the control diets to assess the effect of supplementation on nutrient status. The assessment of inedible plant material as an alternative food source was also investigated. Results of this study demonstrated that consumption of the vegan-10 diet significantly improved weight gain of rats compared to that for rats fed the vegan-5 diet. Mineral supplementation, at a level present in the control diet, to the vegan-10 diet improved growth and nutrient status, but growth was significantly lower compared to the control-fed rats. Inclusion of inedible plant material, high in ash content, improved some indices of nutrient status, without improving growth.

  4. Removal of contaminant gases from an electrolytic urine pretreatment process. [in spacecraft life support systems

    Science.gov (United States)

    Colombo, G. V.; Putnam, D. F.

    1977-01-01

    The effluent gas stream from an electrolytic urine pretreatment process was analyzed by gas chromatography-mass spectroscopy and wet chemical methods to determine its composition. The major constituents were identified as: hydrogen, carbon dioxide, oxygen, nitrogen, water vapor, and chlorine. The trace impurities were chlorinated light hydrocarbons, and a number of other organic impurities in the low ppm range. Several methods of removing all of the undesirable gases to levels acceptable for return to a space cabin atmosphere were investigated experimentally. A subsystem concept comprised of the following sequential unit processes and operations was successfully demonstrated: (1) raw urine scrubbing, (2) silica gel sorption, (3) dilution with cabin air, and (4) catalytic oxidation.

  5. Major Differences in Advanced Life Support Training Strategies Among Danish Hospitals - A Nationwide Study

    DEFF Research Database (Denmark)

    Glerup Lauridsen, Kasper; Mygind-Klausen, Troels; Stærk, Mathilde

    2017-01-01

    %), but only 56% evaluated non-technical skills during or after team training. Overall, 2% reported to practice specific team leadership skills.Conclusion: There are major differences in duration, retraining interval, and methods for ALS training in Danish hospitals. These differences call for research......Introduction: Advanced life support (ALS) training may increase survival from in-hospital cardiac arrest. Efficient ALS training includes practice of both technical and non-technical skills in a realistic setting with frequent retraining to avoid decay in ALS skills. ALS training strategies among...... inquired information on: A) Course duration and retraining interval, B) Training methods and setting, C) Scenario training and practicing non-technical skills.Results: In total, 44 hospitals replied (response rate: 96%). ALS training was conducted in 43 hospitals (98%). Median (range) ALS course duration...

  6. Advanced Life Support Providers Have Poor Knowledge of When to Administer Resuscitation Drugs

    DEFF Research Database (Denmark)

    Johnsen, Josephine; Glerup Lauridsen, Kasper; Løfgren, Bo

    2017-01-01

    of resuscitation drugs i.e. when to administer adrenaline and/or amiodarone.Results: In total, 168 ALS providers responded (89 nurses and 79 physicians). Response rate was 97%. Nurses were female (90%) with a median (Q1;Q3) age of 35 (30;49) years. Physicians were female (54%) with a median age of 29 (28;35) years......Background: Advanced life support (ALS) including resuscitation drugs improves return of spontaneous circulation after cardiac arrest. Resuscitation drugs are recommended to be administered at predefined time-points depending on whether the cardiac rhythm is shockable or non-shockable. Timing...... of resuscitation drugs may cause confusion, especially during transition between shockable and non-shockable rhythms.Aim: To investigate ALS providers’ knowledge of when to administer adrenaline and amiodarone during resuscitation.Methods: Questionnaires were distributed to ALS providers prior to attending ALS...

  7. Evidences About The Skills Of Nursing Professionals Regarding The Protocol In Basic Life Support

    Directory of Open Access Journals (Sweden)

    Rebeca Chaves da Cruz

    2017-05-01

    Full Text Available Objective: To analyze the available scientific evidence about the skills of nursing professionals regarding the protocols of care in Basic Life Support. Method: An integrative review performed in the databases LILACS, PUBMED, COCHRANE LIBRARY and other sources of literature, in March and April 2016, using the controlled descriptors "Emergency Nursing", "Knowledge", "Cardiac Arrest", "Cardiopulmonary Resuscitation". There were selected 27 articles based on the inclusion criteria. Results: The main researches identified about the main challenges and knowledge experienced by nursing in the urgency and the emergency services facing cardiorespiratory arrest. It was noticed that the years 2010, 2012 and 2013 corresponded to the period with the greatest number of scientific articles published about the subject researched, being 2012 as the major year in publications. Conclusion: Nursing qualification programs for care are a way to approach their practical reality, standardizing care.

  8. Community gardens as sites of solace and end-of-life support: a literature review.

    Science.gov (United States)

    Marsh, Pauline; Spinaze, Anna

    2016-05-01

    In a pilot project, members of a community garden explored how they might provide better end-of-life support for their regional community. As part of the project, a literature review was undertaken to investigate the nexus between community gardens and end-of-life experiences (including grief and bereavement) in academic research. This article documents the findings of that review. The authors discovered there is little academic material that focuses specifically on community gardens and end-of-life experiences, but nonetheless the two subjects were seen to intersect. The authors found three points of commonality: both share a need and capacity for a) social/informal support, b) therapeutic space, and c) opportunities for solace.

  9. The 2015 Resuscitation Council of Asia (RCA) guidelines on adult basic life support for lay rescuers.

    Science.gov (United States)

    Chung, Sung Phil; Sakamoto, Tetsuya; Lim, Swee Han; Ma, Mathew Huei-Ming; Wang, Tzong-Luen; Lavapie, Francis; Krisanarungson, Sopon; Nonogi, Hiroshi; Hwang, Sung Oh

    2016-08-01

    This paper introduces adult basic life support (BLS) guidelines for lay rescuers of the resuscitation council of Asia (RCA) developed for the first time. The RCA BLS guidelines for lay rescuers have been established by expert consensus among BLS Guidelines Taskforce of the RCA on the basis of the 2015 International Consensus on Cardiopulmonary Resuscitation (CPR) and Emergency Cardiovascular Care Science with Treatment Recommendations. The RCA recommends compression-only CPR for lay rescuers and emphasizes high-quality CPR with chest compression depth of approximately 5cm and chest compression rate of 100-120min(-1). Role of emergency medical dispatchers in helping lay rescuers recognize cardiac arrest and perform CPR is also emphasized. The RCA guidelines will contribute to help Asian countries establish and implement their own CPR guidelines in the context of their domestic circumstances. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. What should be included in the assessment of laypersons' paediatric basic life support skills?

    DEFF Research Database (Denmark)

    Hasselager, Asbjørn Børch; Lauritsen, Torsten; Kristensen, Tim

    2018-01-01

    body airway obstruction management (FBAOM) skills. We aimed to establish international consensus on how to assess laypersons' PBLS and FBAOM skills. METHODS: A Delphi consensus survey was conducted. Out of a total of 84 invited experts, 28 agreed to participate. During the first Delphi round experts...... resulted in nine and eight essential assessment items for PBLS and FBAOM skills, respectively. The PBLS items included: "Responsiveness"," Call for help", "Open airway"," Check breathing", "Rescue breaths", "Compressions", "Ventilations", "Time factor" and "Use of AED". The FBAOM items included: "Identify......' paediatric basic life support and foreign body airway obstruction management skills was established. The assessment of these skills may help to determine when laypersons have acquired competencies. TRIAL REGISTRATION: Not relevant....

  11. Availability of Life Support Equipment and its Utilization by Ambulance Drivers.

    Science.gov (United States)

    Acharya, Rija; Badhu, Angur; Shah, Tara; Shrestha, Sharmila

    2017-09-08

    An effective ambulance is a vital requirement for providing an emergency medical service. Well-equipped ambulances with trained paramedics can save many lives during the golden hours of trauma care. The objective was to document the availability and utilization of basic life support equipment in the ambulances and to assess knowledge on first aid among the drivers. Descriptive design was used. Total of 109 ambulances linked to B.P. Koirala Institute of Health Sciences were enrolled using purposive sampling method. Self- constructed observation checklist and semi structured interview schedule was used for data collection. More than half of the respondents had less than five years of experience and were not trained in first aid. About two-third of the respondents had adequate knowledge on first aid. About 90% of the ambulance had oxygen cylinder and adult oxygen mask which was 'usually' used equipment. More than half of ambulance had equipment less than 23% as compared to that of national guidelines. There was significant association of knowledge with the experience (p = 0.004) and training (p = 0.001). Availability of equipment was associated with training received (p = 0.007),organization (p= 0.032)and district (p = 0.023) in which the ambulance is registered. The study concludes that maximum ambulance linked to BPKIHS, Nepal did not have even one fourth of the equipment for basic life support. Equipment usually used was oxygen cylinder and oxygen mask. Majority of driver had adequate knowledge on first aid and it was associated with training and experience.

  12. Are YouTube videos accurate and reliable on basic life support and cardiopulmonary resuscitation?

    Science.gov (United States)

    Yaylaci, Serpil; Serinken, Mustafa; Eken, Cenker; Karcioglu, Ozgur; Yilmaz, Atakan; Elicabuk, Hayri; Dal, Onur

    2014-10-01

    The objective of this study is to investigate reliability and accuracy of the information on YouTube videos related to CPR and BLS in accord with 2010 CPR guidelines. YouTube was queried using four search terms 'CPR', 'cardiopulmonary resuscitation', 'BLS' and 'basic life support' between 2011 and 2013. Sources that uploaded the videos, the record time, the number of viewers in the study period, inclusion of human or manikins were recorded. The videos were rated if they displayed the correct order of resuscitative efforts in full accord with 2010 CPR guidelines or not. Two hundred and nine videos meeting the inclusion criteria after the search in YouTube with four search terms ('CPR', 'cardiopulmonary resuscitation', 'BLS' and 'basic life support') comprised the study sample subjected to the analysis. Median score of the videos is 5 (IQR: 3.5-6). Only 11.5% (n = 24) of the videos were found to be compatible with 2010 CPR guidelines with regard to sequence of interventions. Videos uploaded by 'Guideline bodies' had significantly higher rates of download when compared with the videos uploaded by other sources. Sources of the videos and date of upload (year) were not shown to have any significant effect on the scores received (P = 0.615 and 0.513, respectively). The videos' number of downloads did not differ according to the videos compatible with the guidelines (P = 0.832). The videos downloaded more than 10,000 times had a higher score than the others (P = 0.001). The majority of You-Tube video clips purporting to be about CPR are not relevant educational material. Of those that are focused on teaching CPR, only a small minority optimally meet the 2010 Resucitation Guidelines. © 2014 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  13. Basic life support: knowledge and attitude of medical/paramedical professionals.

    Science.gov (United States)

    Roshana, Shrestha; Kh, Batajoo; Rm, Piryani; Mw, Sharma

    2012-01-01

    Basic life support (BLS), a key component of the chain of survival decreases the arrest - cardiopulmonary resuscitation interval and increases the rate of hospital discharge. The study aimed to explore the knowledge of and attitude towards basic life support (BLS) among medical/paramedical professionals. An observational study was conducted by assessing response to self prepared questionnaire consisting of the demographic information of the medical/paramedical staff, their personnel experience/attitude and knowledge of BLS based on the 2005 BLS Guidelines of European Resuscitation Council. After excluding incomplete questionnaires, the data from 121 responders (27 clinical faculty members, 21 dental and basic sciences faculty members, 29 house officers and 44 nurses and health assistants) were analyzed. Only 9 (7.4%) of the 121 responders answered ≥11, 53 (43%) answered 7-10, and 58 (48%) answered basic sciences faculty members attained a least mean score of 4.52 ±2.13 (P<0.001). Those who had received cardiopulmonary resuscitation (CPR) training within 5 years obtained a highest mean score of 8.62±2.49, whereas those who had the training more than 5 years back or no training obtained a mean score of 5.54±2.38 and 6.1±2.29 respectively (P=0.001). Those who were involved in resuscitation frequently had a higher median score of 8 in comparison to those who were seldom involved or not involved at all (P<0.001). The average health personnel in our hospital lack adequate knowledge in CPR/BLS. Training and experience can enhance knowledge of CPR of these personnel. Thus standard of CPR/BLS training and assessment are recommended at our hospital.

  14. Basic life support knowledge of first-year university students from Brazil.

    Science.gov (United States)

    Santos, S V; Margarido, M R R A; Caires, I S; Santos, R A N; Souza, S G; Souza, J M A; Martimiano, R R; Dutra, C S K; Palha, P; Zanetti, A C G; Pazin-Filho, A

    2015-12-01

    We aimed to evaluate knowledge of first aid among new undergraduates and whether it is affected by their chosen course. A questionnaire was developed to assess knowledge of how to activate the Mobile Emergency Attendance Service - MEAS (Serviço de Atendimento Móvel de Urgência; SAMU), recognize a pre-hospital emergency situation and the first aid required for cardiac arrest. The students were also asked about enrolling in a first aid course. Responses were received from 1038 of 1365 (76.04%) new undergraduates. The questionnaires were completed in a 2-week period 1 month after the beginning of classes. Of the 1038 respondents (59.5% studying biological sciences, 11.6% physical sciences, and 28.6% humanities), 58.5% knew how to activate the MEAS/SAMU (54.3% non-biological vs 61.4% biological, P=0.02), with an odds ratio (OR)=1.39 (95%CI=1.07-1.81) regardless of age, sex, origin, having a previous degree or having a relative with cardiac disease. The majority could distinguish emergency from non-emergency situations. When faced with a possible cardiac arrest, 17.7% of the students would perform chest compressions (15.5% non-biological vs 19.1% biological first-year university students, P=0.16) and 65.2% would enroll in a first aid course (51.1% non-biological vs 74.7% biological, Pbasic life support skills to help with cardiac arrest. A significant proportion would not enroll in a first aid course. Biological first-year university students were more prone to enroll in a basic life support course.

  15. Basic life support knowledge of secondary school students in cardiopulmonary resuscitation training using a song.

    Science.gov (United States)

    Fonseca Del Pozo, Francisco Javier; Valle Alonso, Joaquin; Canales Velis, Nancy Beatriz; Andrade Barahona, Mario Miguel; Siggers, Aidan; Lopera, Elisa

    2016-07-20

    To examine the effectiveness of a "cardiopulmonary resuscitation song" in improving the basic life support skills of secondary school students. This pre-test/post-test control design study enrolled secondary school students from two middle schools randomly chosen in Córdoba, Andalucia, Spain. The study included 608 teenagers. A random sample of 87 students in the intervention group and 35 in the control group, aged 12-14 years were selected. The intervention included a cardiopulmonary resuscitation song and video. A questionnaire was conducted at three-time points: pre-intervention, one month and eight months post-intervention. On global knowledge of cardiopulmonary resuscitation, there were no significant differences between the intervention group and the control group in the trial pre-intervention and at the month post-intervention. However, at 8 months there were significant differences with a p-value = 0.000 (intervention group, 95% CI: 6.39 to 7.13 vs. control group, 95% CI: 4.75 to 5.92), F(1,120)=16.644, p=0.000). In addition, significant differences about students' basic life support knowledge about chest compressions at eight months post-intervention (F(1,120)=15.561, p=0.000) were found. Our study showed that incorporating the song component in the cardiopulmonary resuscitation teaching increased its effectiveness and the ability to remember the cardiopulmonary resuscitation algorithm. Our study highlights the need for different methods in the cardiopulmonary resuscitation teaching to facilitate knowledge retention and increase the number of positive outcomes after sudden cardiac arrest.

  16. The Reliability of Turkish "Basic Life Support" and "Cardiac Massage" Videos Uploaded to Websites.

    Science.gov (United States)

    Elicabuk, Hayri; Yaylacı, Serpil; Yilmaz, Atakan; Hatipoglu, Celile; Kaya, F Gokhan; Serinken, Mustafa

    2016-02-01

    In this study, the reliability of Turkish cardiac massage and Basic Life Support (BLS) videos, which have already been downloaded from three website such as YouTube, Google, Yahoo following the publication of 2010 cardiopulmonary resuscitation (CPR) guideline and their suitability to the same guideline were researched. The videos uploaded to the three web-site to search videos on internet were queried by using the keywords "cardiac massage" and "basic life support". Videos that had been uploaded between January 2011 and July 2014 were analyzed and scored by two experienced emergency specialists. A total of 1126 videos were obtained. 1029 of the videos (91.4%) were excluded by researchers. 97 videos were detected to accord with study criteria. Despite most of the videos were found on Google website by keywords, the enormous part of videos proper to criteria were sourced from YouTube website (n=65, 67.0%). One fourth of the videos (24.7%) were observed to not be suitable for 2010 CPR guideline. AED usage was mentioned slightly in the videos (14.4%). Median score of the videos is 5 (IQR: 4-6). The rate and scores of the videos uploaded by official institution or association were significantly higher than others (p=0.007 and 0.006, respectively). Moreover, scores of the videos compatible with guidelines uploaded by official institution or association and medical personal were also found higher (p=0.001). Eventually, all the data obtained in this study support that Turkish videos were not reliable on the subject of BLS and cardiac massage. It is promising that videos with high follow-up rates also have been scored higher.

  17. Interhospital air transport of a blind patient on extracorporeal life support with consecutive and successful left ventricular assist device implantation.

    Science.gov (United States)

    Bauer, Adrian; Schaarschmidt, Jan; Grosse, F Oliver; Al Alam, Nidal; Hausmann, Harald; Krämer, Klaus; Strüber, Martin; Mohr, Friedrich W

    2014-06-01

    The use of extracorporeal life support systems (ECLS) in patients with postcardiotomy low cardiac output syndrome (LCO) as a bridge to recovery and bridge to implantation of ventricular assist device (VAD) is common nowadays. A 59-year-old patient with acute myocardial infarction received a percutaneous transluminal angioplasty and stenting of the circumflex artery. During catheterization of the left coronary artery (LAD), the patient showed ventricular fibrillation and required defibrillation and cardiopulmonary resuscitation. After implantation of an intra-aortic balloon pump, the patient immediately was transmitted to the operating room. He received emergency coronary artery bypass grafting in a beating heart technique using pump-assisted minimal extracorporeal circulation circuit (MECC). Two bypass grafts were performed to the LAD and the right posterior descending artery. Despite initial successful weaning off cardiopulmonary bypass with high-dose inotropic support, the patient presented postcardiotomy LCO and an ECLS was implanted. The primary setup of the heparin-coated MECC system was modified and used postoperatively. As a result of the absence of an in-house VAD program, the patient was switched to a transportable ECLS the next day and was transferred by helicopter to the nearest VAD center where the patient received a successful insertion of a left VAD 3 days later.

  18. Basic life support training into cardiac rehabilitation programs: A chance to give back. A community intervention controlled manikin study.

    Science.gov (United States)

    González-Salvado, Violeta; Abelairas-Gómez, Cristian; Peña-Gil, Carlos; Neiro-Rey, Carmen; Barcala-Furelos, Roberto; González-Juanatey, José Ramón; Rodríguez-Núñez, Antonio

    2018-03-12

    Early basic life support is crucial to enhance survival from out-of-hospital cardiac arrest but rates remain low, especially in households. High-risk groups' training has been advocated, but the optimal method is unclear. The CArdiac REhabilitation and BAsic life Support (CAREBAS) project aims to compare the effectiveness of two basic life support educational strategies implemented in a cardiac rehabilitation program. A community intervention study including consecutive patients enrolled on an exercise-based cardiac rehabilitation program after acute coronary syndrome or revascularization was conducted. A standard basic life support training (G-Stan) and a novel approach integrating cardiopulmonary resuscitation hands-on rolling refreshers (G-CPR) were randomly assigned to each group and compared. Basic life support performance was assessed by means of simulation at baseline, following brief instruction and after the 2-month program. 114 participants were included and 108 completed the final evaluation (G-Stan:58, G-CPR:50). Basic life support performance was equally poor at baseline and significantly improved following a brief instruction. A better skill retention was found after the 2-month program in G-CPR, significantly superior for safety and sending for an automated external defibrillator. Confidence and self-perceived preparation were also significantly greater in G-CPR after the program. Integrating cardiopulmonary resuscitation hands-on rolling refreshers in the training of an exercise-based cardiac rehabilitation program is feasible and improves patients' skill retention and confidence to perform a basic life support sequence, compared to conventional training. Exporting this formula to other programs may result in increased numbers of trained citizens, enhanced social awareness and bystander resuscitation. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Game Changing Development Program - Next Generation Life Support Project: Oxygen Recovery From Carbon Dioxide Using Ion Exchange Membrane Electrolysis Technology

    Science.gov (United States)

    Burke, Kenneth A.; Jiao, Feng

    2016-01-01

    This report summarizes the Phase I research and development work performed during the March 13, 2015 to July 13, 2016 period. The proposal for this work was submitted in response to NASA Research Announcement NNH14ZOA001N, "Space Technology Research, Development, Demonstration, and Infusion 2014 (SpaceTech-REDDI-2014)," Appendix 14GCD-C2 "Game Changing Development Program, Advanced Oxygen Recovery for Spacecraft Life Support Systems Appendix" The Task Agreement for this Phase I work is Document Control Number: GCDP-02-TA-15015. The objective of the Phase I project was to demonstrate in laboratories two Engineering Development Units (EDU) that perform critical functions of the low temperature carbon dioxide electrolysis and the catalytic conversion of carbon monoxide into carbon and carbon dioxide. The low temperature carbon dioxide electrolysis EDU was built by the University of Delaware with Dr. Feng Jiao as the principal investigator in charge of this EDU development (under NASA Contract NNC15CA04C). The carbon monoxide catalytic conversion EDU was built by the NASA Glenn Research Center with Kenneth Burke as the principal investigator and overall project leader for the development of both EDUs. Both EDUs were successfully developed and demonstrated the critical functions for each process. The carbon dioxide electrolysis EDU was delivered to the NASA Johnson Space Center and the carbon monoxide catalytic conversion EDU was delivered to the NASA Marshall Spaceflight Center.

  20. Application of NASA's Advanced Life Support Technologies for Waste Treatment, Water Purification and Recycle, and Food Production in Polar Regions

    Science.gov (United States)

    Bubenheim, David L.; Lewis, Carol E.; Covington, M. Alan (Technical Monitor)

    1995-01-01

    NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, and the National Science Foundation (NSF). The focus is a major issue in the state of Alaska and other areas of the Circumpolar North, the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the environment. The project primarily provides treatment and reduction of waste, purification and recycling of water. and production of food. A testbed is being established to demonstrate the technologies which will enable safe, healthy, and autonomous function of remote communities and to establish the base for commercial development of the resulting technology into new industries. The challenge is to implement the technological capabilities in a manner compatible with the social and economic structures of the native communities, the state, and the commercial sector. Additional information is contained in the original extended abstract.

  1. Retention of basic life support knowledge, self-efficacy and chest compression performance in Thai undergraduate nursing students.

    Science.gov (United States)

    Partiprajak, Suphamas; Thongpo, Pichaya

    2016-01-01

    This study explored the retention of basic life support knowledge, self-efficacy, and chest compression performance among Thai nursing students at a university in Thailand. A one-group, pre-test and post-test design time series was used. Participants were 30 nursing students undertaking basic life support training as a care provider. Repeated measure analysis of variance was used to test the retention of knowledge and self-efficacy between pre-test, immediate post-test, and re-test after 3 months. A Wilcoxon signed-rank test was used to compare the difference in chest compression performance two times. Basic life support knowledge was measured using the Basic Life Support Standard Test for Cognitive Knowledge. Self-efficacy was measured using the Basic Life Support Self-Efficacy Questionnaire. Chest compression performance was evaluated using a data printout from Resusci Anne and Laerdal skillmeter within two cycles. The training had an immediate significant effect on the knowledge, self-efficacy, and skill of chest compression; however, the knowledge and self-efficacy significantly declined after post-training for 3 months. Chest compression performance after training for 3 months was positively retaining compared to the first post-test but was not significant. Therefore, a retraining program to maintain knowledge and self-efficacy for a longer period of time should be established after post-training for 3 months. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. [Teaching basic life support to the general population. Alumni intervention analysis].

    Science.gov (United States)

    Díaz-Castellanos, M A; Fernández-Carmona, A; Díaz-Redondo, A; Cárdenas-Cruz, A; García-del Moral, R; Martín-Lopez, J; Díaz-Redondo, T

    2014-12-01

    The aim of this study was to investigate the rate at which the alumni of basic life support courses witnessed and intervened in out-of-hospital emergency situations, and to identify the variables characterizing those alumni associated with a greater number of witnessing events and interventions. An analysis of the efficiency of the courses