WorldWideScience

Sample records for biorefinery the nrel biochemical

  1. Partnering with Industry to Advance Biofuels, NREL's Integrated Biorefinery Research Facility (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-10-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility and its availability to biofuels' industry partners who want to operate, test, and develop biorefining technology and equipment.

  2. Bio-Chemicals Derived from Waste: Building on the Concept of a Bio-Refinery

    International Nuclear Information System (INIS)

    Habib, M.; Habib, U.; Khan, A.U.; Rehman, Z.U.; Zeb, A.; Moeed, A.; Pasha, M.K.; Memon, A.R.

    2013-01-01

    The work presented here has looked into the thermal-conversion of wheat and barley spent grains (SG). Wheat fermentation was carried in the laboratory to get a mashed product while barley grain residues were sourced from a local brewing company. Pyrolysis carried at 460, 520 and 540 Degree C at ambient conditions of pressure in a bench scale fluidized bed reactor resulted in producing bio-oil, charcoal and non-condensable gases. These products were characterized by using the Gas Chromatography Mass Spectrometry (GC-MS), Differential Thermo-glavemetric Analysis (DTG), Elemental Analyzer (E.A) and a Bomb Calorimeter. The final pyrolysis product analysis revealed that the bio-oil production yields and Higher Heating Value (HHV) largely depended on the pyrolysis temperature and the sample type. In comparison with original raw grain samples, the analysis of thermally treated (pyrolysis) spent grains revealed the presence of high carbon and low oxygen contents. Results gathered in this work have shown that high bio-crude-oil production yields can be obtained at 520 Degree C (53 and 37wt percentage bio-oil from wheat and barley SG). Pyrolysis of wheat and barley SG resulted in giving a Higher Heating Value (HHV) of 21.80 and 21.86 MJ/kg at 540 and 460 Degree C, which is considerably more in comparison to their virgin counterparts. This suggested route thus has a potential for further up-gradation of waste bio-mass for use as an intermediate fuel or as a raw material source for producing other bio-chemicals. (author)

  3. Bio-Chemicals Derived from Waste: Building on the Concept of a Bio-Refinery

    Directory of Open Access Journals (Sweden)

    Muddasar Habib

    2013-12-01

    Full Text Available The work presented here has looked into the thermal-conversion of wheat and barley spent grains (SG. Wheat fermentation was carried in the laboratory to get a mashed product while barley grain residues were sourced from a local brewing company. Pyrolysis carried at 460, 520 and 540 oC at ambient conditions of pressure in a bench scale fluidized bed reactor resulted in producing bio-oil, charcoal and non-condensable gases. These products were characterized by using the Gas Chromatography Mass Spectrometry (GC-MS, Differential Thermo-glavemetric Analysis (DTG, Elemental Analyzer (E.A and a Bomb Calorimeter. The final pyrolysis product analysis revealed that the bio-oil production yields and Higher Heating Value (HHV largely depended on the pyrolysis temperature and the sample type. In comparison with original raw grain samples, the analysis of thermally treated (pyrolysis spent grains revealed the presence of high carbon and low oxygen contents. Results gathered in this work have shown that high bio-crude-oil production yields can be obtained at 520 oC (53 and 37wt% bio-oil from wheat and barley SG. Pyrolysis of wheat and barley SG resulted in giving a Higher Heating Value (HHV of 21.80 and 21.86 MJ/kg at 540 and 460oC, which is considerably more in comparison to their virgin counterparts. This suggested route thus has a potential for further up-gradation of waste bio-mass for use as an intermediate fuel or as a raw material source for producing other bio-chemicals.

  4. NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Tao, L.; Schell, D.; Davis, R.; Tan, E.; Elander, R.; Bratis, A.

    2014-04-01

    For the DOE Bioenergy Technologies Office, the annual State of Technology (SOT) assessment is an essential activity for quantifying the benefits of biochemical platform research. This assessment has historically allowed the impact of research progress achieved through targeted Bioenergy Technologies Office funding to be quantified in terms of economic improvements within the context of a fully integrated cellulosic ethanol production process. As such, progress toward the ultimate 2012 goal of demonstrating cost-competitive cellulosic ethanol technology can be tracked. With an assumed feedstock cost for corn stover of $58.50/ton this target has historically been set at $1.41/gal ethanol for conversion costs only (exclusive of feedstock) and $2.15/gal total production cost (inclusive of feedstock) or minimum ethanol selling price (MESP). This year, fully integrated cellulosic ethanol production data generated by National Renewable Energy Laboratory (NREL) researchers in their Integrated Biorefinery Research Facility (IBRF) successfully demonstrated performance commensurate with both the FY 2012 SOT MESP target of $2.15/gal (2007$, $58.50/ton feedstock cost) and the conversion target of $1.41/gal through core research and process improvements in pretreatment, enzymatic hydrolysis, and fermentation.

  5. Biorefinery opportunities for the forest products industries

    Science.gov (United States)

    Alan W. Rudie

    2013-01-01

    Wood residues offer biorefinery opportunities for new products in our industries including fuel and chemicals. But industry must have two capabilities to succeed with biorefineries. Most forest products companies already have the first capability: knowing where the resource is, how to get it, and how much it will cost. They will need to integrate the acquisition of...

  6. Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass

    NARCIS (Netherlands)

    Luque, L.; Westerhof, Roel Johannes Maria; van Rossum, G.; Oudenhoven, Stijn; Kersten, Sascha R.A.; Berruti, F.; Rehmann, L.

    2014-01-01

    This paper evaluates a novel biorefinery approach for the conversion of lignocellulosic biomass from pinewood. A combination of thermochemical and biochemical conversion was chosen with the main product being ethanol. Fast pyrolysis of lignocellulosic biomasss with fractional condensation of the

  7. Biofuels and the biorefinery concept

    International Nuclear Information System (INIS)

    Taylor, Gail

    2008-01-01

    Liquid fuels can be made by refining a range of biomass materials, including oil-rich and sugar-rich crops such as oil-seed rape and sugar beet, biomass that consists mainly of plant cell walls (second generation lignocellulosics), macro- and micro-alga, or material that would now be discarded as waste. This can include animal bi-products as well as waste wood and other resources. In the medium-term, plant cell (lignocellulosic) material is likely to be favoured as the feedstock for biorefineries because of its availability. The UK may make use of a number of these options because of its complex agricultural landscape. There are now a range of targets for biofuel use in the UK, although their environmental effects are disputed. The technology of refining these materials is well known. Possible outputs include biodiesel and bioethanol, both of which can be used as transport fuel. Other potential products include hydrogen, polymers and a wide range of value-added chemicals, making this technology important in a post-petrochemical world. Biorefineries could use cogeneration to produce electricity. The paper identifies a range of research and development priorities which must be met if this opportunity is to be exploited fully

  8. Forest biorefinery : the next century of innovation

    Science.gov (United States)

    Junyong Zhu

    2011-01-01

    The concept of producing cel¬lulosic biofuel, bioproducts, and chemicals using ligno¬celluloses in a biorefinery has been around for over a century. Renewed interest in the biorefinery concept has more recently arisen from concerns about climate change and the depletion of fossil fuels. Much research and progress has been made in the last three decades in the area of...

  9. Biorefineries – factories of the future

    Directory of Open Access Journals (Sweden)

    Kołtuniewicz Andrzej B.

    2016-03-01

    Full Text Available Efforts were made to demonstrate that in biorefineries it is possible to manufacture all the commodities required for maintaining human civilisation on the current level. Biorefineries are based on processing biomass resulting from photosynthesis. From sugars, oils and proteins, a variety of food, feed, nutrients, pharmaceuticals, polymers, chemicals and fuels can further be produced. Production in biorefineries must be based on a few rules to fulfil sustainable development: all raw materials are derived from biomass, all products are biodegradable and production methods are in accordance with the principles of Green Chemistry and Clean Technology. The paper presents a summary of state-of-the-art concerning biorefineries, production methods and product range of leading companies in the world that are already implemented. Potential risks caused by the development of biorefineries, such as: insecurities of food and feed production, uncontrolled changes in global production profiles, monocultures, eutrophication, etc., were also highlighted in this paper. It was stressed that the sustainable development is not only an alternative point of view but is our condition to survive.

  10. Modelling of the biorefinery scenarios - Bioscen

    Energy Technology Data Exchange (ETDEWEB)

    Pitkanen, J.-P. [VTT Technical Research Centre of Finland, Espoo (Finland)], email: juha-pekka.pitkanen@vtt.fi

    2012-07-01

    The purpose of the BioScen project was to develop quantitative modelling approaches for the future biomass based processes producing fuels and chemicals. The aim of the project was in developing methods to estimate the necessary material properties for phase and reaction equilibria, for the calculation of unit processes and their integration to biorefining production plant simulations. Additional focus was laid on model optimisation and product life cycle analysis. As the biorefining technologies possess an extensive range from thermal pyrolysis to biochemical processing at ambient temperatures, a most generic thermodynamically based approach was selected to enable usage of the methods to the wide variety of possible applications. The methods were then applied to a number of case studies including modelling of flash condensation of pyrolysis oil, hydrolysis of cellulosic biomass and its product recovery and the subsequent fermentation processes for bioethanol and biobutanol, for which also a comparative life cycle analysis was performed. Flowsheet process simulation was applied to a conceptual wood bark biorefinery. Metamodelling techniques were used for both model and parameter optimisation, including their sensitivity analysis.

  11. NREL Advancements in Methane Conversion Lead to Cleaner Air, Useful Products

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    Researchers at NREL leveraged the recent on-site development of gas fermentation capabilities and novel genetic tools to directly convert methane to lactic acid using an engineered methanotrophic bacterium. The results provide proof-of-concept data for a gas-to-liquids bioprocess that concurrently produces fuels and chemicals from methane. NREL researchers developed genetic tools to express heterologous genes in methanotrophic organisms, which have historically been difficult to genetically engineer. Using these tools, researchers demonstrated microbial conversion of methane to lactate, a high-volume biochemical precursor predominantly utilized for the production of bioplastics. Methane biocatalysis offers a means to concurrently liquefy and upgrade natural gas and renewable biogas, enabling their utilization in conventional transportation and industrial manufacturing infrastructure. Producing chemicals and fuels from methane expands the suite of products currently generated from biorefineries, municipalities, and agricultural operations, with the potential to increase revenue and significantly reduce greenhouse gas emissions.

  12. Biorefineries. Prerequisite for the realization of a future bioeconomy

    Energy Technology Data Exchange (ETDEWEB)

    Wagemann, K. [DECHEMA e.V., Frankfurt am Main (Germany)

    2012-07-01

    The current discussion on how to establish a bioeconomy aims in particular at a significant increase of the share of renewable raw materials in the feedstock pool for the production of chemicals and materials; this share currently is around 12%. Such products can be intermediate chemicals, presently already produced from petroleum. Other chemicals, which can be components of new value chains, are also being discussed. In addition materials like biopolymers are already used directly in consumer goods. These considerations imply a higher demand on renewable raw materials especially from plants. Biorefineries will play an important role in meeting this demand. The German Government has decided to draw up a roadmap being established by a group of independent experts from industry and academia. This roadmap describes in a systematic way status and perspectives of the different biorefinery concepts. It takes economic and ecological aspects into considerations and analyses the R and D demand. The following definition is taken as a basis for the analysis: 'A biorefinery is characterised by having a dedicated, integrative overall approach, using biomass as a versatile raw material source for the sustainable production of a spectrum of different intermediates and marketable products (chemicals, materials, bioenergy and food/feed co-products) by using the biomass components as complete as possible.' The analysis considers the following promising concepts: - Sugar biorefinery and Starch biorefinery; - Plant oil biorefinery including Algae lipid biorefinery; - Lignocellulose (Cellulose/Hemicellulose/Lignin) biorefinery including Green (green fibre/green juice) biorefinery; - Synthesis gas biorefinery; - Biogas biorefinery. The roadmap analyses the strengths, weaknesses, opportunities and threats of the different concepts. For several specific examples preliminary economical and ecological assessment were carried out. The lecture will also give examples how these

  13. Environmental Management Assessment of the National Renewable Energy Laboratory (NREL)

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report documents the results of the environmental management assessment performed at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. The onsite portion of the assessment was conducted from September 14 through September 27, 1993, by DOE`s Office of Environmental Audit (EH-24) located within the Office of the Assistant Secretary for Environment, Safety, and Health (EH-1). During this assessment, the activities conducted by the assessment team included reviews of internal documents and reports from previous audits and assessments; interviews with US Department of Energy (DOE) and NREL contractor personnel; and inspections and observations of selected facilities and operations. The environmental management assessment of NREL focused on the adequacy of environmental management systems and assessed the formality of programs employing an approach that recognizes the level of formality implementing environmental programs may vary commensurate with non-nuclear research and development operations. The Assessment Team evaluated environmental monitoring, waste management and National Environmental Policy Act (NEPA) activities at NREL, from a programmatic standpoint. The results of the evaluation of these areas are contained in the Environmental Protection Programs section of this report. The scope of the NREL Environmental Management Assessment was comprehensive and included all areas of environmental management. At the same time, environmental monitoring, waste management, and NEPA activities were evaluated to develop a programmatic understanding of these environmental disciplines, building upon the results of previous appraisals, audits, and reviews performed at the NREL.

  14. Effect of Market Price Uncertainties on the Design of Optimal Biorefinery Systems—A Systematic Approach

    DEFF Research Database (Denmark)

    Cheali, Peam; Quaglia, Alberto; Gernaey, Krist V.

    2014-01-01

    This paper presents the development of a computer-aided decision support tool for identifying optimal biorefinery concepts for production of biofuels at an early design stage. To this end, a framework that uses a superstructure-based process synthesis approach integrated with uncertainty analysis...... is used. We demonstrate the application of the tool for generating optimal biorefinery concepts for a lignocellulosic biorefinery. In particular, we highlight the management of various sources of data, the superstructure (integrated thermochemical and biochemical conversion routes) needed to represent...... the design space, generic but simple models describing the processing tasks, and the formulation and solution of an MINLP problem under deterministic and stochastic conditions to identify the optimal processing route for multiple raw materials and products. Furthermore, we evaluate the impact of market price...

  15. Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Zhu, Yunhua

    2009-04-01

    Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling

  16. Sugarcane-Biorefinery.

    Science.gov (United States)

    Vaz, Sílvio

    2017-03-17

    Concepts such as biorefinery and green chemistry focus on the usage of biomass, as with the oil value chain. However, it can cause less negative impact on the environment. A biorefinery based on sugarcane (Saccharum spp.) as feedstock is an example, because it can integrate into the same physical space, of processes for obtaining biofuels (ethanol), chemicals (from sugars or ethanol), electricity, and heat.The use of sugarcane as feedstock for biorefineries is dictated by its potential to supply sugars, ethanol, natural polymers or macromolecules, organic matter, and other compounds and materials. By means of conversion processes (chemical, biochemical, and thermochemical), sugarcane biomass can be transformed into high-value bioproducts to replace petrochemicals, as a bioeconomy model.

  17. To The Biorefinery: Delivered Forestland and Agricultural Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    It can be challenging and costly to transport biomass feedstock supplies from the roadside, or farmgate, to a biorefinery. Given the geographic dispersion and lowbulk density of cellulosic feedstocks, cost effective scaling of commercial biorefinery operations requires overcoming many challenges. The Biomass Research and Development Board’s Feedstock Logistics Interagency Working Group identified four primary barriers related to biorefinery commercialization: • Capacity and efficiency of harvest and collection equipment • High-moisture content leading to degradation of biomass • Variable biomass quality upon arrival at the biorefinery • Costly transportation options.1 Further, feedstock supply systems do not currently mitigate risks such as low crop yield, fire, or competition for resource use. Delivery and preprocessing improvements will allow for the development of a commercial-scale bioenergy industry that achieves national production and cost targets.

  18. The production of pigments and hydrogen through a Spirogyra sp. biorefinery

    International Nuclear Information System (INIS)

    Pacheco, R.; Ferreira, A.F.; Pinto, T.; Nobre, B.P.; Loureiro, D.; Moura, P.; Gouveia, L.; Silva, C.M.

    2015-01-01

    Highlights: • Sugar content of microalgae must increase to increase H 2 yield. • Electrocoagulation and solar dryer reduce 90% the harvesting-drying energy demand. • Paddle wheels contribute 5% to culture energy demand when using ideal 0.1 kW/m 2 . • Pigment extraction increases 2 times the biorefinery economic benefits. • Pigment energy demand account for 62% and must be reduced significantly. - Abstract: This paper discusses the overall energy consumption and greenhouse gas emissions when extracting pigments and producing hydrogen from Spirogyra sp. microalga biomass. The energy evaluation from the biomass leftovers was also included in this work. The influence of the functional unit and different allocation criteria on the biorefinery assessments is also shown. The study consists of laboratory tests showing Spirogyra sp. growth, harvesting, drying, pigment extraction and fermentation by Clostridium butyricum. Electrocoagulation and solar drying were tested and compared to conventional centrifugation and electrical dewatering in terms of their energy consumption for harvesting and dewatering, respectively. To discuss the biorefinery viability, the pigments and biohydrogen (bioH 2 ) retail costs are considered against operational costs according to electricity needs. The low yield of biochemical hydrogen and the high energy requirements for the pigment extraction were identified as main topics for further research. This research hopefully contributes to highlight the importance of energy and emission balances in order to decide on feasibility of the biorefinery

  19. The realm of cellulases in biorefinery development.

    Science.gov (United States)

    Chandel, Anuj K; Chandrasekhar, G; Silva, Messias Borges; Silvério da Silva, Silvio

    2012-09-01

    Geopolitical concerns (unstable supply of gasoline, environmental pollution, and regular price hikes), economic, and employment concerns have been prompting researchers, entrepreneurs, and policy makers to focus on harnessing the potential of lignocellulosic feedstock for fuel ethanol production and its commercialization. The carbohydrate skeleton of plant cell walls needs to be depolymerised into simpler sugars for their application in fermentation reactions as a chief carbon source of suitable ethnologic strains for ethanol production. The role of cellulolytic enzymes in the degradation of structural carbohydrates of the plant cell wall into ready-to-fermentable sugar stream is inevitable. Cellulase synergistically acts upon plant cell wall polysaccharides to release glucose into the liquid media. Cellulase predominantly dominates all the plant cell wall degrading enzymes due to their vast and diverse range of applications. Apart from the major applications of cellulases such as in detergent formulations, textile desizing, and development of monogastric feed for ruminants, their role in biorefinery is truly remarkable. This is a major area where new research tools based upon fermentation based formulations, biochemistry, and system biology to expedite the structure-function relationships of cellulases including cellulosomes and new designer enzymatic cocktails are required. In the last two decades, a considerable amount of research work has been performed on cellulases and their application in biomass saccharification. However, there are still technical and economic impediments to the development of an inexpensive commercial cellulase production process. Advancements in biotechnology such as screening of microorganisms, manipulation of novel cellulase encoding traits, site-specific mutagenesis, and modifications to the fermentation process could enhance the production of cellulases. Commercially, cheaper sources of carbohydrates and modified fermentation

  20. UNCERTAINTY IN THE PROCESS INTEGRATION FOR THE BIOREFINERIES DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Meilyn González Cortés

    2015-07-01

    Full Text Available This paper presents how the design approaches with high level of flexibility can reduce the additional costs of the strategies that apply overdesign factors to consider parameters with uncertainty that impact on the economic feasibility of a project. The elements with associate uncertainties and that are important in the configurations of the process integration under a biorefinery scheme are: raw material, raw material technologies of conversion, and variety of products that can be obtained. From the analysis it is obtained that in the raw materials and products with potentialities in a biorefinery scheme, there are external uncertainties such as availability, demands and prices in the market. Those external uncertainties can determine their impact on the biorefinery and also in the product prices we can find minimum and maximum limits that can be identified in intervals which should be considered for the project economic evaluation and the sensibility analysis due to varied conditions.

  1. Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass.

    Science.gov (United States)

    Luque, Luis; Westerhof, Roel; Van Rossum, Guus; Oudenhoven, Stijn; Kersten, Sascha; Berruti, Franco; Rehmann, Lars

    2014-06-01

    This paper evaluates a novel biorefinery approach for the conversion of lignocellulosic biomass from pinewood. A combination of thermochemical and biochemical conversion was chosen with the main product being ethanol. Fast pyrolysis of lignocellulosic biomasss with fractional condensation of the products was used as the thermochemical process to obtain a pyrolysis-oil rich in anhydro-sugars (levoglucosan) and low in inhibitors. After hydrolysis of these anhydro-sugars, glucose was obtained which was successfully fermented, after detoxification, to obtain bioethanol. Ethanol yields comparable to traditional biochemical processing were achieved (41.3% of theoretical yield based on cellulose fraction). Additional benefits of the proposed biorefinery concept comprise valuable by-products of the thermochemical conversion like bio-char, mono-phenols (production of BTX) and pyrolytic lignin as a source of aromatic rich fuel additive. The inhibitory effect of thermochemically derived fermentation substrates was quantified numerically to compare the effects of different process configurations and upgrading steps within the biorefinery approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Biorefineries: Current activities and future developments

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2009-01-01

    This paper reviews the current refuel valorization facilities as well as the future importance of biorefineries. A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. Biorefineries combine the necessary technologies of the biorenewable raw materials with those of chemical intermediates and final products. Char production by pyrolysis, bio-oil production by pyrolysis, gaseous fuels from biomass, Fischer-Tropsch liquids from biomass, hydrothermal liquefaction of biomass, supercritical liquefaction, and biochemical processes of biomass are studied and concluded in this review. Upgraded bio-oil from biomass pyrolysis can be used in vehicle engines as fuel.

  3. Biorefinery Analysis

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    Fact sheet summarizing NREL's techno-economic analysis and life-cycle assessment capabilities to connect research with future commercial process integration, a critical step in the scale-up of biomass conversion technologies.

  4. Identifying the point of departures for the detailed sustainability assessment of biomass feedstocks for biorefinery

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Knudsen, Marie Trydeman; Dalgaard, Tommy

    for biorefineries and potential impacts to the existing market. This study aims to assist in the sustainability assessment of straw conversion in the biochemical conversion routes to deliver bioethanol and other biobased products. For the comparison, conversion of straw to produce heat and electricity in a Combined...... Heat and Power (CHP) plant is analysed from a life cycle perspectives. We have found that straw conversion to heat and power in the CHP plant would lead to a Global Warming Potential (GWP) of −187 g CO2-eq, Acidification Potential (AP) 0.01 m2 UES (un-protected ecosystem), aquatic and terrestrial...

  5. Process Design of Wastewater Treatment for the NREL Cellulosic Ethanol Model

    Energy Technology Data Exchange (ETDEWEB)

    Steinwinder, T.; Gill, E.; Gerhardt, M.

    2011-09-01

    This report describes a preliminary process design for treating the wastewater from NREL's cellulosic ethanol production process to quality levels required for recycle. In this report Brown and Caldwell report on three main tasks: 1) characterization of the effluent from NREL's ammonia-conditioned hydrolyzate fermentation process; 2) development of the wastewater treatment process design; and 3) development of a capital and operational cost estimate for the treatment concept option. This wastewater treatment design was incorporated into NREL's cellulosic ethanol process design update published in May 2011 (NREL/TP-5100-47764).

  6. Green chemistry, biofuels, and biorefinery.

    Science.gov (United States)

    Clark, James H; Luque, Rafael; Matharu, Avtar S

    2012-01-01

    In the current climate of several interrelated impending global crises, namely, climate change, chemicals, energy, and oil, the impact of green chemistry with respect to chemicals and biofuels generated from within a holistic concept of a biorefinery is discussed. Green chemistry provides unique opportunities for innovation via product substitution, new feedstock generation, catalysis in aqueous media, utilization of microwaves, and scope for alternative or natural solvents. The potential of utilizing waste as a new resource and the development of integrated facilities producing multiple products from biomass is discussed under the guise of biorefineries. Biofuels are discussed in depth, as they not only provide fuel (energy) but are also a source of feedstock chemicals. In the future, the commercial success of biofuels commensurate with consumer demand will depend on the availability of new green (bio)chemical technologies capable of converting waste biomass to fuel in a context of a biorefinery.

  7. Cell disruption for microalgae biorefineries.

    Science.gov (United States)

    Günerken, E; D'Hondt, E; Eppink, M H M; Garcia-Gonzalez, L; Elst, K; Wijffels, R H

    2015-01-01

    Microalgae are a potential source for various valuable chemicals for commercial applications ranging from nutraceuticals to fuels. Objective in a biorefinery is to utilize biomass ingredients efficiently similarly to petroleum refineries in which oil is fractionated in fuels and a variety of products with higher value. Downstream processes in microalgae biorefineries consist of different steps whereof cell disruption is the most crucial part. To maintain the functionality of algae biochemicals during cell disruption while obtaining high disruption yields is an important challenge. Despite this need, studies on mild disruption of microalgae cells are limited. This review article focuses on the evaluation of conventional and emerging cell disruption technologies, and a comparison thereof with respect to their potential for the future microalgae biorefineries. The discussed techniques are bead milling, high pressure homogenization, high speed homogenization, ultrasonication, microwave treatment, pulsed electric field treatment, non-mechanical cell disruption and some emerging technologies. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Lessons Learned from the NREL Village Power Program

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.

    1998-07-01

    Renewable energy solutions for village power applications can be economical, functional, and sustainable. Pilot projects are an appropriate step in the development of a commercially viable market for rural renewable energy solutions. Moreover, there are a significant number of rural electrification projects under way that employ various technologies, delivery mechanisms, and financing arrangements. These projects, if properly evaluated, communicated, and their lessons incorporated in future projects and programs, can lead the way to a future that includes a robust opportunity for cost-effective, renewable-based village power systems. This paper summarizes some of NRELs recent experiences and lessons learned.

  9. Biorefineries: from concepts to reality?

    Energy Technology Data Exchange (ETDEWEB)

    Wagemann, K. [DECHEMA e.V., Frankfurt am Main (Germany)

    2007-07-01

    The concept of biorefineries addresses the conversion of plant biomass to fuels, materials and chemicals, waste streams being minimized and used for the production of electricity and heat. Four different types are presently discussed: - Sugar-based biorefineries - Whole-crop biorefineries - Green biorefineries - Lignocellulose biorefineries Besides the lack of existing technical solutions and limited land resources, competition with food production and, as a consequence, rising raw material prices considered. (orig.)

  10. Commercializing Biorefinery Technology: A Case for the Multi-Product Pathway to a Viable Biorefinery

    Directory of Open Access Journals (Sweden)

    Shijie Liu

    2011-11-01

    Full Text Available While there may be many reasons why very interesting science ideas never reach commercial practice, one of the more prevalent is that the reaction or process, which is scientifically possible, cannot be made efficient enough to achieve economic viability. One pathway to economic viability for many business sectors is the multi-product portfolio. Research, development, and deployment of viable biorefinery technology must meld sound science with engineering and business economics. It is virtually axiomatic that increased value can be generated by isolating relatively pure substances from heterogeneous raw materials. Woody biomass is a heterogeneous raw material consisting of the major structural components, cellulose, lignin, and hemicelluloses, as well as minor components, such as extractives and ash. Cellulose is a linear homopolymer of D-glucopyrano-units with β-D(1®4 connections and is the wood component most resistant to chemical and biological degradation. Lignin is a macromolecule of phenylpropanoid units, second to cellulose in bio-resistance, and is the key component that is sought for removal from woody biomass in chemical pulping. Hemicelluloses are a collection of heteropolysaccharides, comprised mainly of 5- and 6-carbon sugars. Extractives, some of which have high commercial value, are a collection of low molecular weight organic and inorganic woody materials that can be removed, to some extent, under mild conditions. Applied Biorefinery Sciences, LLC (a private, New York, USA based company is commercializing a value-optimization pathway (the ABS Process™ for generating a multi-product portfolio by isolating and recovering homogeneous substances from each of the above mentioned major and minor woody biomass components. The ABS Process™ incorporates the patent pending, core biorefinery technology, “hot water extraction”, as developed at the State University of New York College of Environmental Science and Forestry (SUNY

  11. TESTING AT NREL OF THE MINIPILOT SOLAR SYSTEM FOR HAZARDOUS WASTE THERMAL DESTRUCTION

    Science.gov (United States)

    A minipilot solar system (MSS) was built at MRI, transported to the National Renewable Energy Laboratory (NREL), and tested at NREL's high flux solar furnace. The MSS involved combustion of a liquid feed in a combustion reactor equipped with a quartz window at one end for solar i...

  12. Application of CAPEC Lipid Property Databases in the Synthesis and Design of Biorefinery Networks

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona; Cunico, Larissa; Gani, Rafiqul

    ]. The wide variety and complex nature of components in biorefineries poses a challenge with respect to the synthesis and design of these types of processes. Whereas physical and thermodynamic property data or models for petroleum-based processes are widely available, most data and models for biobased...... of biorefinery networks. The objective of this work is to show the application of databases of physical and thermodynamic properties of lipid components to the synthesis and design of biorefinery networks....

  13. Multi-product biorefineries from lignocelluloses: a pathway to revitalisation of the sugar industry?

    Science.gov (United States)

    Farzad, Somayeh; Mandegari, Mohsen Ali; Guo, Miao; Haigh, Kathleen F; Shah, Nilay; Görgens, Johann F

    2017-01-01

    Driven by a range of sustainability challenges, e.g. climate change, resource depletion and expanding populations, a circular bioeconomy is emerging and expected to evolve progressively in the coming decades. South Africa along with other BRICS countries (Brazil, Russia, India and China) represents the emerging bioeconomy and contributes significantly to global sugar market. In our research, South Africa is used as a case study to demonstrate the sustainable design for the future biorefineries annexed to existing sugar industry. Detailed techno-economic evaluation and Life Cycle Assessment (LCA) were applied to model alternative routes for converting sugarcane residues (bagasse and trash) to selected biofuel and/or biochemicals (ethanol, ethanol and lactic acid, ethanol and furfural, butanol, methanol and Fischer-Tropsch synthesis, with co-production of surplus electricity) in an energy self-sufficient biorefinery system. Economic assessment indicated that methanol synthesis with an internal rate of return (IRR) of 16.7% and ethanol-lactic acid co-production (20.5%) met the minimum investment criteria of 15%, while the latter had the lowest sensitivity to market price amongst all the scenarios. LCA results demonstrated that sugarcane cultivation was the most significant contributor to environmental impacts in all of the scenarios, other than the furfural production scenario in which a key step, a biphasic process with tetrahydrofuran solvent, had the most significant contribution. Overall, the thermochemical routes presented environmental advantages over biochemical pathways on most of the impact categories, except for acidification and eutrophication. Of the investigated scenarios, furfural production delivered the inferior environmental performance, while methanol production performed best due to its low reagent consumption. The combined techno-economic and environmental assessments identified the performance-limiting steps in the 2G biorefinery design for

  14. Biorefineries: Relocating Biomass Refineries to the Rural Area

    Directory of Open Access Journals (Sweden)

    Franka Papendiek

    2012-07-01

    Full Text Available The field for application of biomass is rising. The demand for food and feeding stuff rises while at the same time energy, chemicals and other materials also need to be produced from biomass because of decreasing fossil resources. However, the biorefinery ideas and concepts can help to use the limited renewable raw materials more efficiently than today. With biorefineries, valuable products, such as platform chemicals, can be produced from agricultural feedstock, which can subsequently be further processed into a variety of substances by the chemical industry. Due to the role they play as producers of biomass, rural areas will grow in importance in the decades to come. Parts of the biorefinery process can be relocated to the rural areas to bring a high added value to these regions. By refining biomass at the place of production, new economic opportunities may arise for agriculturists, and the industry gets high-grade pre-products. Additionally, an on-farm refining can increase the quality of the products because of the instant processing. To reduce competition with the food production and to find new possibilities of utilisation for these habitats, the focus for new agricultural biomass should be on grasslands. But also croplands can provide more renewable raw materials without endangering a sustainable agriculture, e.g. by implementing legumes in the crop rotation. To decide if a region can provide adequate amounts of raw material for a biorefinery, new raw material assessment procedures have to be developed. In doing so, involvement of farmers is inevitable to generate a reliable study of the biomass refinery potentials.

  15. Assessing the environmental sustainability of ethanol from integrated biorefineries.

    Science.gov (United States)

    Falano, Temitope; Jeswani, Harish K; Azapagic, Adisa

    2014-06-01

    This paper considers the life cycle environmental sustainability of ethanol produced in integrated biorefineries together with chemicals and energy. Four types of second-generation feedstocks are considered: wheat straw, forest residue, poplar, and miscanthus. Seven out of 11 environmental impacts from ethanol are negative, including greenhouse gas (GHG) emissions, when the system is credited for the co-products, indicating environmental savings. Ethanol from poplar is the best and straw the worst option for most impacts. Land use change from forest to miscanthus increases the GHG emissions several-fold. For poplar, the effect is opposite: converting grassland to forest reduces the emissions by three-fold. Compared to fossil and first-generation ethanol, ethanol from integrated biorefineries is more sustainable for most impacts, with the exception of wheat straw. Pure ethanol saves up to 87% of GHG emissions compared to petrol per MJ of fuel. However, for the current 5% ethanol-petrol blends, the savings are much smaller (ethanol from integrated biorefineries to the reduction of GHG emissions will be insignificant. Yet, higher ethanol blends would lead to an increase in some impacts, notably terrestrial and freshwater toxicity as well as eutrophication for some feedstocks. © 2014 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  16. Drivers and barriers for implementation of the biorefinery

    International Nuclear Information System (INIS)

    Janssen, M.; Stuart, P.

    2010-01-01

    This paper discussed the barriers and drivers for the implementation of biorefinery technology in the forestry industry. A multi-criteria decision making (MCDM) methodology was used by a panel of industry experts. The objective, drivers and barriers, and the decision structure and weighting procedure were established during a pre-panel phase. An analytic hierarchy process (AHP) was then applied to compare qualitative criteria. Pair-wise criteria were used to determine the importance of each driver and barrier. Drivers for the implementation of biorefineries included the opportunity to ensure short-term profitability; the provision of raw materials at competitive prices; potential financial incentives; and the opportunity to transform the forestry business model and increase its market value. Barriers included uncertainty in relation to government policies for biorefineries; high technology risks; the need for partnerships; and the fact that many industry members favour short-term decision-making. Results of the study showed that the most significant barrier was related to risk. 5 refs., 3 tabs., 3 figs.

  17. Drivers and barriers for implementation of the biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, M.; Stuart, P. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. of Chemical Engineering, Environmental Design Engineering Chair

    2010-05-15

    This paper discussed the barriers and drivers for the implementation of biorefinery technology in the forestry industry. A multi-criteria decision making (MCDM) methodology was used by a panel of industry experts. The objective, drivers and barriers, and the decision structure and weighting procedure were established during a pre-panel phase. An analytic hierarchy process (AHP) was then applied to compare qualitative criteria. Pair-wise criteria were used to determine the importance of each driver and barrier. Drivers for the implementation of biorefineries included the opportunity to ensure short-term profitability; the provision of raw materials at competitive prices; potential financial incentives; and the opportunity to transform the forestry business model and increase its market value. Barriers included uncertainty in relation to government policies for biorefineries; high technology risks; the need for partnerships; and the fact that many industry members favour short-term decision-making. Results of the study showed that the most significant barrier was related to risk. 5 refs., 3 tabs., 3 figs.

  18. Update from the NREL Alternative Fuel Transit Bus Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, K. (Battelle); Norton, P. (National Renewable Energy Laboratory); Clark, N. (West Virginia University)

    1999-05-01

    The object of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty urban transit buses operating on alternative fuels and diesel fuel. Final reports from this project were produced in 1996 from data collection and evaluation of 11 transit buses from eight transit sites. With the publication of these final reports, three issues were raised that needed further investigation: (1) the natural gas engines studied were older, open-loop control engines; (2) propane was not included in the original study; and (3) liquefied natural gas (LNG) was found to be in the early stages of deployment in transit applications. In response to these three issues, the project has continued by emissions testing newer natural gas engines and adding two new data collection sites to study the newer natural gas technology and specifically to measure new technology LNG buses.

  19. Optimizing Biorefinery Design and Operations via Linear Programming Models

    Energy Technology Data Exchange (ETDEWEB)

    Talmadge, Michael; Batan, Liaw; Lamers, Patrick; Hartley, Damon; Biddy, Mary; Tao, Ling; Tan, Eric

    2017-03-28

    The ability to assess and optimize economics of biomass resource utilization for the production of fuels, chemicals and power is essential for the ultimate success of a bioenergy industry. The team of authors, consisting of members from the National Renewable Energy Laboratory (NREL) and the Idaho National Laboratory (INL), has developed simple biorefinery linear programming (LP) models to enable the optimization of theoretical or existing biorefineries. The goal of this analysis is to demonstrate how such models can benefit the developing biorefining industry. It focuses on a theoretical multi-pathway, thermochemical biorefinery configuration and demonstrates how the biorefinery can use LP models for operations planning and optimization in comparable ways to the petroleum refining industry. Using LP modeling tools developed under U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) funded efforts, the authors investigate optimization challenges for the theoretical biorefineries such as (1) optimal feedstock slate based on available biomass and prices, (2) breakeven price analysis for available feedstocks, (3) impact analysis for changes in feedstock costs and product prices, (4) optimal biorefinery operations during unit shutdowns / turnarounds, and (5) incentives for increased processing capacity. These biorefinery examples are comparable to crude oil purchasing and operational optimization studies that petroleum refiners perform routinely using LPs and other optimization models. It is important to note that the analyses presented in this article are strictly theoretical and they are not based on current energy market prices. The pricing structure assigned for this demonstrative analysis is consistent with $4 per gallon gasoline, which clearly assumes an economic environment that would favor the construction and operation of biorefineries. The analysis approach and examples provide valuable insights into the usefulness of analysis tools for

  20. 76 FR 2096 - Record of Decision for the Environmental Impact Statement for the Proposed Abengoa Biorefinery...

    Science.gov (United States)

    2011-01-12

    ... municipal solid waste would be generated during the expected 30-year operating life of the biorefinery and... solid wastes generated during construction and operation of the biorefinery would be an irreversible and... DEPARTMENT OF ENERGY Record of Decision for the Environmental Impact Statement for the Proposed...

  1. Biorefinery of the brown seaweed Saccharina latissima for fuels and chemicals

    NARCIS (Netherlands)

    Lopez Contreras, A.M.; Harmsen, P.F.H.; Blaauw, R.; Houweling-Tan, G.B.N.; Wal, van der H.; Huijgen, W.J.J.; Hal, van J.W.

    2014-01-01

    Seaweeds (also called macroalgae) are considered a potential biomass feedstock for biorefineries for production of energy and chemicals. In this study, a biorefinery strategy for the brown seaweed Saccharina latissima is described. Fresh S. latissima harvested at the Irish coast contained glucose

  2. NREL PV working with industry, first quarter 2000; pulling out all the stops

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.; Poole, L.; Cook, G.

    2000-05-03

    NREL PV Working With Industry is a quarterly newsletter devoted to the research, development, and deployment performed by NREL staff in concert with their industry and university partners. The First Quarter, 2000, issue offers an in-depth look at the PV Program's Five Year Plan and the PV industry's progress in developing a 20-year roadmap. The editorialist is Roger Little, President and CEO of Spire Corporation and a member of the NCPV Advisory Board.

  3. Design and analysis of biorefineries based on raw glycerol: addressing the glycerol problem.

    Science.gov (United States)

    Posada, John A; Rincón, Luis E; Cardona, Carlos A

    2012-05-01

    Glycerol as a low-cost by-product of the biodiesel industry can be considered a renewable building block for biorefineries. In this work, the conversion of raw glycerol to nine added-value products obtained by chemical (syn-gas, acrolein, and 1,2-propanediol) or bio-chemical (ethanol, 1,3-propanediol, d-lactic acid, succinic acid, propionic acid, and poly-3-hydroxybutyrate) routes were considered. The technological schemes for these synthesis routes were designed, simulated, and economically assessed using Aspen Plus and Aspen Icarus Process Evaluator, respectively. The techno-economic potential of a glycerol-based biorefinery system for the production of fuels, chemicals, and plastics was analyzed using the commercial Commercial Sale Price/Production Cost ratio criteria, under different production scenarios. More income can be earned from 1,3-propanediol and 1,2-propanediol production, while less income would be obtained from hydrogen and succinic acid. This analysis may be useful mainly for biodiesel producers since several profitable alternatives are presented and discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Autotrophic biorefinery: dawn of the gaseous carbon feedstock.

    Science.gov (United States)

    Butti, Sai Kishore; Mohan, S Venkata

    2017-10-02

    CO2 is a resource yet to be effectively utilized in the autotrophic biotechnology, not only to mitigate and moderate the anthropogenic influence on our climate, but also to steer CO2 sequestration for sustainable development and carbon neutral status. The atmospheric CO2 concentration has seen an exponential increase with the turn of the new millennia causing numerous environmental issues and also in a way feedstock crisis. To progressively regulate the growing CO2 concentrations and to incorporate the integration strategies to our existing CO2 capturing tools, all the influencing factors need to be collectively considered. The review article puts forth the change in perception of CO2 from which was once considered a harmful pollutant having deleterious effects to a renewable carbon source bearing the potential to replace the fossils as the carbon source through an autotrophic biorefinery. Here, we review the current methods employed for CO2 storage and capture, the need to develop sustainable methods and the ways of improving the sequestration efficiencies by various novice technologies. The review also provides an autotrophic biorefinery model with the potential to operate and produces a multitude of biobased products analogous to the petroleum refinery to establish a circular bioeconomy. Furthermore, fundamental and applied research niches that merit further research are delineated. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Development of efficient, integrated cellulosic biorefineries : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Teh, Kwee-Yan; Hecht, Ethan S.; Shaddix, Christopher R.; Buffleben, George M.; Dibble, Dean C.; Lutz, Andrew E.

    2010-09-01

    Cellulosic ethanol, generated from lignocellulosic biomass sources such as grasses and trees, is a promising alternative to conventional starch- and sugar-based ethanol production in terms of potential production quantities, CO{sub 2} impact, and economic competitiveness. In addition, cellulosic ethanol can be generated (at least in principle) without competing with food production. However, approximately 1/3 of the lignocellulosic biomass material (including all of the lignin) cannot be converted to ethanol through biochemical means and must be extracted at some point in the biochemical process. In this project we gathered basic information on the prospects for utilizing this lignin residue material in thermochemical conversion processes to improve the overall energy efficiency or liquid fuel production capacity of cellulosic biorefineries. Two existing pretreatment approaches, soaking in aqueous ammonia (SAA) and the Arkenol (strong sulfuric acid) process, were implemented at Sandia and used to generated suitable quantities of residue material from corn stover and eucalyptus feedstocks for subsequent thermochemical research. A third, novel technique, using ionic liquids (IL) was investigated by Sandia researchers at the Joint Bioenergy Institute (JBEI), but was not successful in isolating sufficient lignin residue. Additional residue material for thermochemical research was supplied from the dilute-acid simultaneous saccharification/fermentation (SSF) pilot-scale process at the National Renewable Energy Laboratory (NREL). The high-temperature volatiles yields of the different residues were measured, as were the char combustion reactivities. The residue chars showed slightly lower reactivity than raw biomass char, except for the SSF residue, which had substantially lower reactivity. Exergy analysis was applied to the NREL standard process design model for thermochemical ethanol production and from a prototypical dedicated biochemical process, with process data

  6. Biorefinery, the bridge between agriculture and chemistry

    NARCIS (Netherlands)

    Sanders, J.P.M.; Scott, E.L.; Mooibroek, H.

    2005-01-01

    The depletion in fossil feedstocks, increasing oil prices and the ecological problems associated with CO2 emissions are forcing the development of alternative resources for energy (heat and electricity), transport fuels and chemicals: the replacement of fossil resources with CO2 neutral biomass.

  7. Valorization of Sargassum muticum Biomass According to the Biorefinery Concept

    Directory of Open Access Journals (Sweden)

    Elena M. Balboa

    2015-06-01

    Full Text Available The biorefinery concept integrates processes and technologies for an efficient biomass conversion using all components of a feedstock. Sargassum muticum is an invasive brown algae which could be regarded as a renewable resource susceptible of individual valorization of the constituent fractions into high added-value compounds. Microwave drying technology can be proposed before conventional ethanol extraction of algal biomass, and supercritical fluid extraction with CO2 was useful to extract fucoxanthin and for the fractionation of crude ethanol extracts. Hydrothermal processing is proposed to fractionate the algal biomass and to solubilize the fucoidan and phlorotannin fractions. Membrane technology was proposed to concentrate these fractions and obtain salt- and arsenic-free saccharidic fractions. Based on these technologies, this study presents a multipurpose process to obtain six different products with potential applications for nutraceutical, cosmetic and pharmaceutical industries.

  8. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept.

    Science.gov (United States)

    Hughes, Stephen R; López-Núñez, Juan Carlos; Jones, Marjorie A; Moser, Bryan R; Cox, Elby J; Lindquist, Mitch; Galindo-Leva, Luz Angela; Riaño-Herrera, Néstor M; Rodriguez-Valencia, Nelson; Gast, Fernando; Cedeño, David L; Tasaki, Ken; Brown, Robert C; Darzins, Al; Brunner, Lane

    2014-10-01

    The environmental impact of agricultural waste from the processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from the processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the economies of many countries because its cultivation, processing, trading, and marketing provide employment for millions of people. In coffee-producing countries, improved technology for treatment of the significant amounts of coffee waste is critical to prevent ecological damage. This mini-review discusses a multi-stage biorefinery concept with the potential to convert waste produced at crop processing operations, such as coffee pulping stations, to valuable biofuels and bioproducts using biochemical and thermochemical conversion technologies. The initial bioconversion stage uses a mutant Kluyveromyces marxianus yeast strain to produce bioethanol from sugars. The resulting sugar-depleted solids (mostly protein) can be used in a second stage by the oleaginous yeast Yarrowia lipolytica to produce bio-based ammonia for fertilizer and are further degraded by Y. lipolytica proteases to peptides and free amino acids for animal feed. The lignocellulosic fraction can be ground and treated to release sugars for fermentation in a third stage by a recombinant cellulosic Saccharomyces cerevisiae, which can also be engineered to express valuable peptide products. The residual protein and lignin solids can be jet cooked and passed to a fourth-stage fermenter where Rhodotorula glutinis converts methane into isoprenoid intermediates. The residues can be combined and transferred into pyrocracking and hydroformylation reactions to convert ammonia, protein, isoprenes, lignins, and oils into renewable gas. Any remaining waste can be thermoconverted to biochar as a humus soil enhancer. The integration of multiple technologies for treatment of coffee waste has the potential to

  9. Reimagining What's Possible: How NREL's Energy Analysis and Decision Support Capabilities are Guiding Energy Systems Transformation at Home and Around the World; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    This engaging brochure shows examples of how NREL enables energy system transformation through robust capabilities in energy analysis and decision support. By reimagining what's possible for renewable energy, NREL contributes to the Department of Energy mission to create energy systems that are cleaner, more reliable, and more secure.

  10. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; Sexton, D.; Dudgeon, D.

    2011-03-01

    This report describes one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and includes the latest research in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and our latest understanding of the ethanol plant's back end (wastewater and utilities). The conceptual design presented here reports ethanol production economics as determined by 2012 conversion targets and 'nth-plant' project costs and financing. For the biorefinery described here, processing 2,205 dry ton/day at 76% theoretical ethanol yield (79 gal/dry ton), the ethanol selling price is $2.15/gal in 2007$.

  11. A comprehensive review on the implementation of the biorefinery concept in biodiesel production plants

    Directory of Open Access Journals (Sweden)

    Christian David Botero Gutiérrez

    2017-09-01

    Full Text Available Biodiesel is a promising alternative to petroleum diesel and its production from various generations of feedstocks by using different technologies has been constantly growing globally. However, in spite of such large scale of production, serious considerations should be taken into account to ensure the long-term sustainability of biodiesel production. This issue becomes more of concern given the fact that some generations of feedstocks used for biodiesel production are in clear conflict with food security. The concept of biorefinery has been at the center of attention with an aim to address these challenges by promoting an integral use of biomass to allow the production of multiple products along with biodiesel. Such implementation has been extensively studied over the last years and is expected to lead to economic, environmental, and social advantages over individual processes. The current review first presented an overview on biodiesel, its different feedstocks, and production technologies. Subsequently, the biorefinery concept and its correct implementation was technically discussed. Biodiesel production under the biorefinery scheme was also presented. Finally, techno-economic analysis of biodiesel production under the biorefinery concept by considering palm oil-based biorefinery as case study was investigated.

  12. Sugarcane biorefineries: Case studies applied to the Brazilian sugar–alcohol industry

    International Nuclear Information System (INIS)

    Renó, Maria Luiza Grillo; Olmo, Oscar Almazán del; Palacio, José Carlos Escobar; Lora, Electo Eduardo Silva; Venturini, Osvaldo José

    2014-01-01

    Highlights: • Advanced system of co-generation improves the energy performance of biorefineries. • Sugarcane straw as additional source of fuel in the biorefinery resulted positive. • The farming and transport of sugarcane cause the main environmental impacts. - Abstract: The use of biomasses is becoming increasingly appealing alternative, to give an partial solution lack of energy, with an ecofriendly approach, having on sugarcane a solid fundament; that receives the new and valuable complement of the innovative concept of the biorefineries it is productive installations, that can be summarized as to reach the higher overall yield from the raw materials, with the lowest environmental impact, at minimum energy input and giving the maximum of the energy output. The biorefinery is the true valuable option of a wide diversification, with by-products like the single cell protein and biogas from the distillery vinasse, new oxidants like methanol, second generation biofuels, biobutanol, etc. In this context this paper presents a study of five different configurations of biorefineries. Each case study being a system based on an autonomous distillery or sugar mill with an annexed distillery and coproduction of methanol from bagasse. The paper includes the use of sugarcane harvest residues (mainly straw) and a BIG–GT plant (Biomass Integrated Gasification–Gas Turbine) as alternatives to fulfill the energy demands of the complex

  13. Identifying the point of departures for the detailed sustainability assessment of biomass feedstocks for biorefinery

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Knudsen, Marie Trydeman; Dalgaard, Tommy

    In the light of sustainable development in the energy sector, biomasses have gained increasing attention, which have exacerbated competition among them. Biorefineries are increasing its hold in developed economies, since it facilitates the delivery of multiple products including food, feed...... (e.g. soil quality), (ii) to lower the undesired emissions at farming system level and processing, and (iii) optimize the biomass supply by integrating catch crops and examine the overall environmental loadings e.g. in the biorefinery value chains. Nevertheless, clustering the types of biomasses...

  14. NREL Information Resources Catalogue 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-03

    This is the sixth annual catalogue listing documents produced by NREL during the last fiscal year. Each year the catalogue is mailed to state energy offices, DOE support offices, and to anyone looking to find out more information about NREL's activities and publications.

  15. Biomass Biorefinery for the production of Polymers and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Oliver P. Peoples

    2008-05-05

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  16. NREL + Southern California Gas

    Energy Technology Data Exchange (ETDEWEB)

    Berdahl, Sonja E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-09

    NREL and Southern California Gas Company are evaluating a new 'power-to-gas' approach - one that produces methane through a biological pathway and uses the expansive natural gas infrastructure to store it. This approach has the potential to change how the power industry approaches renewable generation and energy storage.

  17. Detached-eddy simulation of flow around the NREL phase VI blade

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Sørensen, Niels N.; Michelsen, J.A.

    2002-01-01

    The detached-eddy simulation model implemented in the computational fluid dynamics code EllipSys3D is used to calculate the flow around the non-rotating NREL Phase VI wind turbine blade. Results are presented for flow around a parked blade at fixed angle of attack and a blade pitching along...... the blade axis. Computed blade characteristics are compared with experimental data from the NREL/NASA Ames Phase VI unsteady experiment. The detached-eddy simulation model is a method for predicting turbulence in computational fluid dynamics computations, which combines a Reynolds-averaged Navier......-eddy simulation show considerably more three-dimensional flow structures compared to conventional two-equation Reynolds-averaged Navier–Stokes turbulence models, but no particular improvements are seen in the global blade characteristics. Copyright © 2002 John Wiley & Sons, Ltd....

  18. Biorefineries to integrate fuel, energy and chemical production processes

    Directory of Open Access Journals (Sweden)

    Enrica Bargiacchi

    2007-12-01

    Full Text Available The world of renewable energies is in fast evolution and arouses political and public interests, especially as an opportunity to boost environmental sustainability by mitigation of greenhouse gas emissions. This work aims at examining the possibilities related to the development of biorefineries, where biomass conversion processes to produce biofuels, electricity and biochemicals are integrated. Particular interest is given to the production processes of biodiesel, bioethanol and biogas, for which present world situation, problems, and perspectives are drawn. Potential areas for agronomic and biotech researches are also discussed. Producing biomass for biorefinery processing will eventually lead to maximize yields, in the non food agriculture.

  19. NREL Helps Greensburg Set the Model for Green Communities (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-10-01

    After a massive tornado destroyed or severely damaged 95% of Greensburg, Kansas on May 4, 2007, key leaders in Greensburg and Kansas made a crucial decision not just to rebuild, but to remake the town as a model sustainable rural community. To help achieve that goal, experts from the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) arrived in Greensburg in June 2007.

  20. Driving R&D for the Next Generation Work Truck; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Melendez, M.

    2015-03-04

    Improvements in medium- and heavy-duty work truck energy efficiency can dramatically reduce the use of petroleum-based fuels and the emissions of greenhouse gases. The National Renewable Energy Laboratory (NREL) is working with industry partners to develop fuel-saving, high-performance vehicle technologies, while examining fleet operational practices that can simulateneously improve fuel economy, decrease emissions, and support bottom-line goals.

  1. Biorefinery plant design, engineering and process optimisation

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Ehimen, Ehiazesebhor Augustine

    2014-01-01

    Before new biorefinery systems can be implemented, or the modification of existing single product biomass processing units into biorefineries can be carried out, proper planning of the intended biorefinery scheme must be performed initially. This chapter outlines design and synthesis approaches a...

  2. Assessment of the DOE/NREL Historically Black College and University Photovoltaic Research Associates Program

    Energy Technology Data Exchange (ETDEWEB)

    Posey-Eddy, F.; McConnell, R. D.

    2002-08-01

    This report details the DOE/NREL Historically Black College and University (HBCU) Photovoltaic Research Associates Program, a small but remarkable program that directly affected dozens of minority undergraduate students in ways that changed many of their lives. The progress and accomplishments of undergraduates within the nine participating universities were monitored and assessed through their presentations at an annual NREL-sponsored HBCU conference. Although the funding was small, typically $400,000 per year, the money made a significant impact. The best students sometimes went on to the nation's top graduate schools (e.g., MIT) or important management positions in large companies. Other students had opportunities to learn how renewable energy could positively affect their lives and their neighbors' lives. A few were lucky enough to install photovoltaic lighting and water-pumping systems in Africa, and to see and feel firsthand the technical and emotional benefits of this technology for families and villages. Two of the schools, Texas Southern University and Central State University, were particularly successful in leveraging their DOE/NREL funding to obtain additional funding for expanded programs.

  3. Impact of trucking network flow on preferred biorefinery locations in the southern United States

    Science.gov (United States)

    Timothy M. Young; Lee D. Han; James H. Perdue; Stephanie R. Hargrove; Frank M. Guess; Xia Huang; Chung-Hao Chen

    2017-01-01

    The impact of the trucking transportation network flow was modeled for the southern United States. The study addresses a gap in existing research by applying a Bayesian logistic regression and Geographic Information System (GIS) geospatial analysis to predict biorefinery site locations. A one-way trucking cost assuming a 128.8 km (80-mile) haul distance was estimated...

  4. The Chemistry and Technology of Furfural Production in Modern Lignocellulose-Feedstock Biorefineries

    NARCIS (Netherlands)

    Marcotullio, G.

    2011-01-01

    This dissertation deals with biorefinery technology development, i.e. with the development of sustainable industrial methods aimed at the production of chemicals, fuels, heat and power from lignocellulosic biomass. This work is particularly focused on the production of furfural from

  5. Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels

    NARCIS (Netherlands)

    Bikker, Paul; Krimpen, van Marinus M.; Wikselaar, van Piet; Houweling-Tan, Bwee; Scaccia, Nazareno; Hal, van Jaap W.; Huijgen, Wouter J.J.; Cone, John W.; López-Contreras, Ana M.

    2016-01-01

    The growing world population demands an increase in animal protein production. Seaweed may be a valuable source of protein for animal feed. However, a biorefinery approach aimed at cascading valorisation of both protein and non-protein seaweed constituents is required to realise an economically

  6. Development of a biorefinery optimized biofuel supply curve for the western United States

    Science.gov (United States)

    Nathan Parker; Peter Tittmann; Quinn Hart; Richard Nelson; Ken Skog; Anneliese Schmidt; Edward Gray; Bryan Jenkins

    2010-01-01

    A resource assessment and biorefinery siting optimization model was developed and implemented to assess potential biofuel supply across the Western United States from agricultural, forest, urban, and energy crop biomass. Spatial information including feedstock resources, existing and potential refinery locations and a transportation network model is provided to a mixed...

  7. The Civilisation Biorefinery - A Future Approach for Material and Energy Recovery from Regional Organic Waste

    International Nuclear Information System (INIS)

    Koerner, I.

    2010-01-01

    The future shortage of energy and raw materials as well as the problems on climate protection are challenges for which a solution is imperative. For efficient utilizing organic liquid and solid wastes which are generated in a city, a city itself could become a civilisation biorefinery. The output will be various energetic and material products, which can be used in the city or in the surrounding of the city. Depending on the nature of the various urban input materials, they need to be fed in to biorefineries adapted to the substrate type. The separate substrate-specific biorefineries may be at central or decentralised locations within the city. Moreover, since the residues from one system can be used in others as input, mutual networking is of importance. To facilitate efficient valorification, bioresources and the type of biorefinery need to be optimally matched. That also means that at the collection stage already, the material properties of the bioresource must be taken into account and where appropriate, new collection systems introduced, or consideration should be given to technical processes for separation of mixtures of materials. Extremely differing cascades will be appropriate for the various regional situations. For this reason, the evaluation of alternative schemes will be seen as very significant. Additional important points are the suitability of new measures or processes for integration into existing regional structures, as well as the logistics aspects, including the question of whether bioconversion processes should be conducted centrally or in decentralised locations. In Germany, considerable amounts of biowaste are available today and in the future which, until now, were almost entirely composted. The possibilities of anaerobic fermentation are gaining more and more in importance. Aerobic and anaerobic treatments of biowaste are more and more combined within the scope of a win-win situation. These technologies will be important parts of a

  8. Biorefinery Sustainability Analysis

    DEFF Research Database (Denmark)

    J. S. M. Silva, Carla; Prunescu, Remus Mihail; Gernaey, Krist

    2017-01-01

    This chapter deals with sustainability analysis of biorefinery systems in terms of environmental and socio-economic indicators . Life cycle analysis has methodological issues related to the functional unit (FU), allocation , land use and biogenic carbon neutrality of the reference system and of t......This chapter deals with sustainability analysis of biorefinery systems in terms of environmental and socio-economic indicators . Life cycle analysis has methodological issues related to the functional unit (FU), allocation , land use and biogenic carbon neutrality of the reference system...... and of the biorefinery-based system. Socio-economic criteria and indicators used in sustainability frameworks assessment are presented and discussed. There is not one single methodology that can aptly cover the synergies of environmental, economic, social and governance issues required to assess the sustainable...

  9. Engineering Cellulases for Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [Royal DSM, San Francisco, CA (United States)

    2010-06-27

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  10. Product diversification in the sugarcane biorefinery through algae growth and supercritical CO 2 extraction: Thermal and economic analysis

    OpenAIRE

    Albarelli, Juliana Q.; Santos, Diego T.; Ensinas, Adriano V.; Marechal, François; Cocero, María J.; Meireles, M. Angela A.

    2017-01-01

    The sugarcane sector in Brazil has undergone a major modernization in the last thirty years. Embracing the biorefinery concept, this sector is investigating bioproduct diversification and mostly putting a lot of effort and investment on second generation ethanol production. In this context, the investigation of the integration of a third generation biofuel production using microalgae to the sugarcane biorefinery seems an important starting point. This study evaluates the integration of microa...

  11. A biorefinery approach for the production of xylitol, ethanol and polyhydroxybutyrate from brewer’s spent grain

    OpenAIRE

    Javier A. Dávila; Carlos A. Cardona; Moshe Rosenberg

    2016-01-01

    Brewer’s spent grain (BSG) is one of the most important byproducts of the brewing industry and its composition offers opportunities for developing value-added products. The objective of the research was to investigate the application of the biorefinery approach for production of xylitol, ethanol and polyhydroxybutyrate from BSG. The techno-economic and environmental aspects of two biorefinery scenarios, with and without heat integration, were studied. Results indicated that a standalone prod...

  12. Advancing Microgrid Research at NREL

    Energy Technology Data Exchange (ETDEWEB)

    2018-04-25

    NREL expanded its microgrid research capabilities at the Energy System Integration Facility (ESIF) with the purchase of a Schweitzer Engineering Laboratories (SEL) microgrid controller, resulting in a more comprehensive microgrid research platform. NREL's microgrid research platform allows manufacturers, utilities, and integrators to develop and evaluate their technology or configuration at full power before implementation - something only possible at a handful of facilities in the world.

  13. High-Speed Shaft Bearing Loads Testing and Modeling in the NREL Gearbox Reliability Collaborative: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    McNiff, B.; Guo, Y.; Keller, J.; Sethuraman, L.

    2014-12-01

    Bearing failures in the high speed output stage of the gearbox are plaguing the wind turbine industry. Accordingly, the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) has performed an experimental and theoretical investigation of loads within these bearings. The purpose of this paper is to describe the instrumentation, calibrations, data post-processing and initial results from this testing and modeling effort. Measured HSS torque, bending, and bearing loads are related to model predictions. Of additional interest is examining if the shaft measurements can be simply related to bearing load measurements, eliminating the need for invasive modifications of the bearing races for such instrumentation.

  14. Summary and Findings from the NREL/DOE Hydrogen Sensor Workshop (June 8, 2011)

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, W.; Burgess, R.; Post, M.; Rivkin, C.

    2012-07-01

    On June 8, 2011, DOE/NREL hosted a hydrogen sensor workshop attended by nearly forty participants from private organizations, government facilities, and academic institutions . The workshop participants represented a cross section of stakeholders in the hydrogen community, including sensor developers, end users, site safety officials, and code and standards developers. The goals of the workshop were to identify critical applications for the emerging hydrogen infrastructure that require or would benefit from hydrogen sensors, to assign performance specifications for sensor deployed in each application, and to identify shortcomings or deficiencies (i.e., technical gaps) in the ability of current sensor technology to meet the assigned performance requirements.

  15. Dynamic Modeling, Optimization, and Advanced Control for Large Scale Biorefineries

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail

    Second generation biorefineries transform agricultural wastes into biochemicals with higher added value, e.g. bioethanol, which is thought to become a primary component in liquid fuels [1]. Extensive endeavors have been conducted to make the production process feasible on a large scale, and recen......Second generation biorefineries transform agricultural wastes into biochemicals with higher added value, e.g. bioethanol, which is thought to become a primary component in liquid fuels [1]. Extensive endeavors have been conducted to make the production process feasible on a large scale......-time monitoring. The Inbicon biorefinery converts wheat straw into bioethanol utilizing steam, enzymes, and genetically modified yeast. The biomass is first pretreated in a steam pressurized and continuous thermal reactor where lignin is relocated, and hemicellulose partially hydrolyzed such that cellulose...... becomes more accessible to enzymes. The biorefinery is integrated with a nearby power plant following the Integrated Biomass Utilization System (IBUS) principle for reducing steam costs [4]. During the pretreatment, by-products are also created such as organic acids, furfural, and pseudo-lignin, which act...

  16. Process Simulation and Techno-Economic Evaluation of Alternative Biorefinery Scenarios

    Science.gov (United States)

    Aizpurua Gonzalez, Carlos Ernesto

    A biorefinery is a complex processing facility that uses sustainably produced biomass as feedstock to generate biofuels and chemical products using a wide variety of alternative conversion pathways. The alternative conversion pathways can be generally classified as either biochemical or thermochemical conversion. A biorefinery is commonly based on a core biomass conversion technology (pretreatment, hydrolysis, pyrolysis, etc.) followed by secondary processing stages that determine the specific product, and its recovery. In this study, techno-economic analysis of several different lignocellulosic biomass conversion pathways have been performed. First, a novel biochemical conversion, which used electron beam and steam explosion pretreatments for ethanol production was evaluated. This evaluation include both laboratory work and process modeling. Encouraging experimental results are obtained that showed the biomass had enhanced reactivity to the enzyme hydrolysis. The total sugar recovery for the hardwood species was 72% using 5 FPU/g enzyme dosage. The combination of electron beam and steam explosion provides an improvement in sugar conversion of more than 20% compared to steam explosion alone. This combination of pretreatments was modeled along with a novel ethanol dehydration process that is based on vapor permeation membranes. The economic feasibility of this novel pretreatment-dehydration technology was evaluated and compared with the dilute acid process proposed by NREL in 2011. Overall, the pretreatment-dehydration technology process produces the same ethanol yields (81 gal/bdton). However, the economics of this novel process does not look promising since the minimum ethanol selling price (MESP) to generate an internal rate of return of 10% is of 3.09 /gal, compared to 2.28 /gal for the base case. To enhance the economic potential of a biorefinery, the isolation of value-added co-products was incorporated into the base dilute acid biorefinery process. In this

  17. A short-term scheduling for the optimal operation of biorefineries

    International Nuclear Information System (INIS)

    Grisi, E.F.; Yusta, J.M.; Khodr, H.M.

    2011-01-01

    This work presents an analysis of the inherent potentialities and characteristics of the sugarcane industries that produce sugar, bioethanol, biogas and bioelectricity and that are being described as 'Biorefineries'. These Biorefineries are capable of producing bio-energy under diverse forms, intended for their own internal consumption and for external sales and marketing. A complex model and simulation are carried out of the processes of a sugarcane industry, with the data characteristic as well as the production costs, prices of products and considerations on the energy demand by basic processes. A Mixed-Integer Linear Programming (MILP) optimization problem formulation and an analysis of optimal solutions in short-term operation are described, taking into account the production cost functions of each commodity and the incomes obtained from selling electricity and other products. The objective is to maximize the hourly plant economic profit in the different scenarios considered in a real case study.

  18. A methodology to assess the contribution of biorefineries to a sustainable bio-based economy

    International Nuclear Information System (INIS)

    Maga, Daniel

    2015-01-01

    Within this thesis for the first time an integrative methodology to assess the sustainability of biorefineries and bio-based products has been developed which is based on a fundamental understanding of sustainability as presented in the Brundtland report. The applied integrative concept of sustainability as developed by the Institute for Technology Assessment and Systems Analysis (ITAS) overcomes the widespread thinking in three pillars of sustainability and opens up new perspectives. The methodology developed addresses innovative life cycle assessment evaluation methods on midpoint level as well as on the area of protection and adopts state-of-the-art assessment procedures e.g. to determine water deprivation. It goes far beyond the scope of conventional LCA studies and examines effects on human health, on the environment, on the development of knowledge and physical capital, and on regional development and acceptance. In order to validate the developed method it was applied to an algae biorefinery currently under development and construction in the south of Spain. For this assessment for the first time extensive process data was collected of a real algae biorefinery which uses municipal waste water as a culture medium for microalgae. The use of waste water allows to reduce the demand for fresh water and avoids additional fertilisation of microalgae. Moreover, the analysed algae biorefinery replaces conventional waste water treatment by a biological purification and produces biogas by an anaerobic pretreatment of waste water as well as by anaerobic digestion of algae. After several purification steps the biogas can be used as automotive fuel and thus contributes to further development and increased use of biofuels. On the one hand the sustainability assessment shows that this way of waste water treatment contributes to climate protection and to the conservation of fossil energy carrier. On the other hand approximately ten times more land is needed and twenty times

  19. A methodology to assess the contribution of biorefineries to a sustainable bio-based economy

    Energy Technology Data Exchange (ETDEWEB)

    Maga, Daniel

    2015-07-01

    Within this thesis for the first time an integrative methodology to assess the sustainability of biorefineries and bio-based products has been developed which is based on a fundamental understanding of sustainability as presented in the Brundtland report. The applied integrative concept of sustainability as developed by the Institute for Technology Assessment and Systems Analysis (ITAS) overcomes the widespread thinking in three pillars of sustainability and opens up new perspectives. The methodology developed addresses innovative life cycle assessment evaluation methods on midpoint level as well as on the area of protection and adopts state-of-the-art assessment procedures e.g. to determine water deprivation. It goes far beyond the scope of conventional LCA studies and examines effects on human health, on the environment, on the development of knowledge and physical capital, and on regional development and acceptance. In order to validate the developed method it was applied to an algae biorefinery currently under development and construction in the south of Spain. For this assessment for the first time extensive process data was collected of a real algae biorefinery which uses municipal waste water as a culture medium for microalgae. The use of waste water allows to reduce the demand for fresh water and avoids additional fertilisation of microalgae. Moreover, the analysed algae biorefinery replaces conventional waste water treatment by a biological purification and produces biogas by an anaerobic pretreatment of waste water as well as by anaerobic digestion of algae. After several purification steps the biogas can be used as automotive fuel and thus contributes to further development and increased use of biofuels. On the one hand the sustainability assessment shows that this way of waste water treatment contributes to climate protection and to the conservation of fossil energy carrier. On the other hand approximately ten times more land is needed and twenty times

  20. Proceedings of the 1993 DOE/NREL Hydrogen Program Review

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The US Department of Energy has conducted programs of research and development in hydrogen and related technologies since 1975. The current program is conducted in accordance with the DOE Hydrogen Program Plan FY 1993--FY 1997 which was published in June 1992. The plan establishes program priorities and guidance for the allocation of funding. The core program. currently under the Office of Energy Management, supports projects in the areas of hydrogen production, storage and systems research. A program review is held annually to evaluate each research project for technical quality, progress and programmatic benefit. The evaluation is conducted by a panel of technical experts. This proceedings of the Program Review conducted in May 1993 is a compilation of all research projects supported by the Hydrogen Program during FY 1993. It is produced in the anticipation that will serve as a useful technical reference for those interested in the status of hydrogen technologies. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  1. Proceedings of the 1992 DOE/NREL hydrogen program review

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Gao, Q.H.; Miller, E. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

    1992-07-01

    These proceedings contain 18 papers presented at the meeting. While the majority of the papers (11) had to do with specific hydrogen production methods, other papers were related to hydrogen storage systems, evaluations of and systems analysis for a hydrogen economy, and environmental transport of hydrogen from a pipeline leak.

  2. NREL Explains the Higher Cellulolytic Activity of a Vital Microorganism

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    The discovery of a new mode of action by C. thermocellum to convert biomass to biofuels is significant because the bacterium is already recognized as one of the most effective in the biosphere. Researchers found that, in addition to using common cellulase degradation mechanisms attached to cells, C. thermocellum also uses a new category of cell-free scaffolded enzymes. The new discovery will influence the strategies used to improve the cellulolytic activity of biomass degrading microbes going forward. Better understanding of this bacterium could lead to cheaper production of ethanol and drop-in fuels. Also, this discovery demonstrates that nature's biomass conversion behaviors are not fully understood and remain as opportunities for future microbial/enzyme engineering efforts.

  3. Path to Zero: Ultra-Efficient Architecture on the NREL Campus: S&TF and Master Planning (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, N.

    2012-05-01

    Describe the aspects of NREL's S and TF and Campus Master Planning in terms of how they have influenced ultra-efficient architecture on NREL's campus. Energy goals for the NREL campus are: (1) Understand how buildings uses energy, implement the cost-effective energy and water efficiency retrofits; (2) Use principals of energy efficiency and low energy design to reduce energy demand in all new construction; (3) Operate central plants efficiently; (4) Alternative transportation; (5) Use combined heat and power systems; (6) Use on-site renewables for demonstration and where it is cost-effective; and (7) Buy green power (over the next 25 years) so that 100% of our power will be from renewable sources.

  4. Simulating Pelletization Strategies to Reduce the Biomass Supply Risk at America’s Biorefineries

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Shane Carnohan; Andrew Ford; Allyson Beall

    2014-07-01

    Demand for cellulosic ethanol and other advanced biofuels has been on the rise, due in part to federal targets enacted in 2005 and extended in 2007. The industry faces major challenges in meeting these worthwhile and ambitious targets. The challenges are especially severe in the logistics of timely feedstock delivery to biorefineries. Logistical difficulties arise from seasonal production that forces the biomass to be stored in uncontrolled field-side environments. In this storage format physical difficulties arise; transportation is hindered by the low bulk density of baled biomass and the unprotected material can decay leading to unpredictable losses. Additionally, uncertain yields and contractual difficulties can exacerbate these challenges making biorefineries a high-risk venture. Investors’ risk could limit business entry and prevent America from reaching the targets. This paper explores pelletizer strategies to convert the lignocellulosic biomass into a denser form more suitable for storage. The densification of biomass would reduce supply risks, and the new system would outperform conventional biorefinery supply systems. Pelletizer strategies exhibit somewhat higher costs, but the reduction in risk is well worth the extra cost if America is to grow the advanced biofuels industry in a sustainable manner.

  5. First workshop on the possibilities of biorefinery concepts for the industry : held at hotel "De Wageningse Berg", Wageningen, the Netherlands (16 June 2006) : official minutes

    NARCIS (Netherlands)

    Annevelink, E.; Jong, de E.; Ree, van R.; Zwart, R.W.R.

    2006-01-01

    On June the 16th the first ¿workshop on the possibilities of biorefinery concepts for the industry¿ was held, bringing together different Dutch stakeholders, and addressing common as well as conflicting technical and market issues with regard to biorefinery opportunities. The first-of-akind workshop

  6. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery.

    Science.gov (United States)

    Chew, Thiam Leng; Bhatia, Subhash

    2008-11-01

    In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery.

  7. NREL Photovoltaic Program FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This report reviews the in-house and subcontracted research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) Program from October 1, 1992, through September 30, 1993 (fiscal year [FY] 1993). The NREL PV Program is part of the U.S. Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The FY 1993 budget authority (BA) for carrying out the NREL PV Program was $40.1 million in operating funds and $0.9 million in capital equipment funds. An additional $4.8 million in capital equipment funds were made available for the new Solar Energy Research Facility (SERF) that will house the in-house PV laboratories beginning in FY 1994. Subcontract activities represent a major part of the NREL PV Program, with more than $23.7 million (nearly 59%) of the FY 1993 operating funds going to 70 subcontractors. In FY 1993, DOE assigned certain other PV subcontracting efforts to the DOE Golden Field Office (DOE/GO), and assigned responsibility for their technical support to the NREL PV Program. An example is the PV:BONUS (Building Opportunities in the U.S. for Photovoltaics) Project. These DOE/GO efforts are also reported in this document.

  8. User's Guide for the NREL Force and Loads Analysis Program. [National Renewable Energy Laboratory (NREL)

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.D.

    1992-08-01

    The following report gives the reader an overview of and instructions on the proper use of the National Renewable Energy Laboratory Force and Loads Analysis Program (FLAP, version 2.2). It is intended as a tool for prediction of rotor and blade loads and response for two- or three-bladed rigid hub wind turbines. The effects of turbulence are accounted for. The objectives of the report are to give an overview of the code and also show the methods of data input and correct code execution steps in order to model an example two-bladed rigid hub turbine. A large portion of the discussion (Sections 6.0, 7.0, and 8.0) is devoted to the subject of inputting and running the code for wind turbulence effects. The ability to include turbulent wind effects is perhaps the biggest change in the code since the release of FLAP version 2.01 in 1988. This report is intended to be a user's guide. It does not contain a theoretical discussion on equations of motion, assumptions, underlying theory, etc. It is intended to be used in conjunction with Wright, Buhl, and Thresher (1988).

  9. Hydrothermal pretreatments of macroalgal biomass for biorefineries

    DEFF Research Database (Denmark)

    Ruiz, Héctor A.; Rodríguez-Jasso, Rosa M.; Aguedo, Mario

    2015-01-01

    ecently, macroalgal biomass is gaining wide attention as an alternative in the production of biofuels (as bioetanol and biogas) and compounds with high added value with specific properties (antioxidants, anticoagulants, anti–inflammatories) for applications in food, medical and energy industries...... in accordance with the integrated biorefineries. Furthermore, biorefinery concept requires processes that allow efficient utilization of all components of the biomass. The pretreatment step in a biorefinery is often based on hydrothermal principles of high temperatures in aqueous solution. Therefore...

  10. Modern microbial solid state fermentation technology for future biorefineries for the production of added-value products

    Directory of Open Access Journals (Sweden)

    Musaalbakri Abdul Manan

    2017-12-01

    Full Text Available The promise of industrial biotechnology has been around since Chaim Weizmann developed acetone–butanol–ethanol fermentation at the University of Manchester in 1917 and the prospects nowadays look brighter than ever. Today’s biorefinery technologies would be almost unthinkable without biotechnology. This is a growing trend and biorefineries have also increased in importance in agriculture and the food industry. Novel biorefinery processes using solid state fermentation (SSF technology have been developed as alternative to conventional processing routes, leading to the production of added-value products from agriculture and food industry raw materials. SSF involves the growth of microorganisms on moist solid substrate in the absence of free-flowing water. Future biorefineries based on SSF aim to exploit the vast complexity of the technology to modify biomass produced by agriculture and the food industry for valuable by-products through microbial bioconversion. In this review, a summary has been made of the attempts at using modern microbial SSF technology for future biorefineries for the production of many added-value products ranging from feedstock for the fermentation process and biodegradable plastics to fuels and chemicals.

  11. The DOE/NREL Next Generation Natural Gas Vehicle Program - An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Walkowicz; Denny Stephens; Kevin Stork

    2001-05-14

    This paper summarizes the Next Generation Natural Gas Vehicle (NG-NGV) Program that is led by the U.S. Department Of Energy's (DOE's) Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of this program is to develop and implement one Class 3-6 compressed natural gas (CNG) prototype vehicle and one Class 7-8 liquefied natural gas (LNG) prototype vehicle in the 2004 to 2007 timeframe. OHVT intends for these vehicles to have 0.5 g/bhp-hr or lower emissions of oxides of nitrogen (NOx) by 2004 and 0.2 g/bhp-hr or lower NOx by 2007. These vehicles will also have particulate matter (PM) emissions of 0.01 g/bhp-hr or lower by 2004. In addition to ambitious emissions goals, these vehicles will target life-cycle economics that are compatible with their conventionally fueled counterparts.

  12. Techno-environmental assessment of the green biorefinery concept: Combining process simulation and life cycle assessment at an early design stage

    DEFF Research Database (Denmark)

    Corona, Andrea; Ambye-Jensen, Morten; Vega, Giovanna Croxatto

    2018-01-01

    The Green biorefinery (GBR) is a biorefinery concept that converts fresh biomass into value-added products. The present study combines a Process Flowsheet Simulation (PFS) and Life Cycle Assessment (LCA) to evaluate the technical and environmental performance of different GBR configurations...

  13. Roadmap biorefineries within the scope of action plans of the Federal Government for the material and energetic utilization of renewable raw materials; Roadmap Bioraffinerien im Rahmen der Aktionsplaene der Bundesregierung zur stofflichen und energetischen Nutzung nachwachsender Rohstoffe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    In order to determine the current status and the further energy demand of different biorefinery concepts, the Federal Government has announced the development of a 'Roadmap biorefineries' under involvement of business and science. This comprehensive overview on different technologies and on possibilities of realization now is available and includes the following aspects: (1) Biorefineries in te context of utilizing biomass; (2) Definition and systematics of biorefineries, state of the art and initial situation; (3) Technological description and analysis; (4) Economic and ecologic classification; (5) Challenges of the establishment of biorefineries - SWOT analysis; (6) need for action.

  14. Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Dalgaard, Tommy; Jørgensen, Uffe

    2015-01-01

    The aim of the current paper is to discuss the sustainability aspect of biorefinery systems with focus on biomass supply chains, processing of biomass feedstocks in biorefinery platforms and sustainability assessment methodologies. From the stand point of sustainability, it is important to optimize...... comparisons of alternatives. Life Cycle Assessment is regarded as one of the most relevant tools to assess the environmental hotspots in the biomass supply chains, at processing stages and also to support in the prioritization of any specific biobased products and the alternatives delivered from biorefineries....... a year-round supply of biomass and about 40–60% of the total operating cost of a typical biorefinery is related to the feedstocks chosen, and thus highlights on the careful prioritization of feedstocks mainly based on their economic and environmental loadings. Regarding the processing in biorefinery...

  15. NREL Carbon Metabolism Modeling Intends to Make Biofuels Engineering Routine and Reliable (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-01

    National Renewable Energy Laboratory (NREL) scientists, supported by the Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) Program, have assembled and simulated a model of key eukaryotic carbon metabolism that intends to move biochemical simulations into new realms of chemical fidelity.

  16. Toward a common classification approach for biorefinery systems

    NARCIS (Netherlands)

    Cherubini, F.; Jungmeier, G.; Wellisch, M.; Wilke, T.; Skiadas, I.; Ree, van R.; Jong, de E.

    2009-01-01

    This paper deals with a biorefinery classification approach developed within International Energy Agency (IEA) Bioenergy Task 42. Since production of transportation biofuels is seen as the driving force for future biorefinery developments, a selection of the most interesting transportation biofuels

  17. Perspectives on the production of polyhydroxyalkanoates in biorefineries associated with the production of sugar and ethanol.

    Science.gov (United States)

    Silva, Luiziana Ferreira; Taciro, Marilda Keico; Raicher, Gil; Piccoli, Rosane Aparecida Moniz; Mendonça, Thatiane Teixeira; Lopes, Mateus Schreiner Garcez; Gomez, José Gregório Cabrera

    2014-11-01

    Polyhydroxyalkanoates (PHA) are biodegradable and biocompatible bacterial thermoplastic polymers that can be obtained from renewable resources. The high impact of the carbon source in the final cost of this polymer has been one of the major limiting factors for PHA production and agricultural residues, mainly lignocellulosic materials, have gained attention to overcome this problem. In Brazil, production of 2nd generation ethanol from the glucose fraction, derived from sugarcane bagasse hydrolysate has been studied. The huge amounts of remaining xylose will create an opportunity for the development of other bioprocesses, generating new products to be introduced into a biorefinery model. Although PHA production from sucrose integrated to a 1G ethanol and sugar mill has been proposed in the past, the integration of the process of 2G ethanol in the context of a biorefinery will provide enormous amounts of xylose, which could be applied to produce PHA, establishing a second-generation of PHA production process. Those aspects and perspectives are presented in this article. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Process design, supply chain, economic and environmental analysis for chemical production in a glycerol biorefinery: Towards the sustainable design of biorefineries

    DEFF Research Database (Denmark)

    Loureiro da Costa Lira Gargalo, Carina

    business divisions, such as planning, manufacturing, distribution and corresponding environmental consequences and concerns, it is therefore vital to model these activities and to develop comprehensive and systematic methods to capture the synergies and the trade-offs within this complex system. Therefore...... of external economic uncertainties on the environmental objective function are analyzed and the trade-offs identified. In summary, this thesis covers the development of methods and tools for the modeling and optimization at the strategic and tactical level, along with detailed economic and environmental......Drivers such as our deep dependence on fossil fuels availability and price volatility, global concern about climate change and social distress, are steering the economy to be more sustainable and based on a greater use of renewable resources. Therefore, the concept of integrated biorefineries has...

  19. NREL: A Year in Clean Energy Innovations; A Review of NREL's 2011 Feature Stories

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    This document is a compilation of articles featuring NREL research and development, deployment, commercialization, and outreach activities in 2011. The feature stories can be found online at http:www.nrel.gov/features/.

  20. Sustainable NREL, Biennial Report, FY 2010-2011

    Energy Technology Data Exchange (ETDEWEB)

    Slovensky, M.; Daw, J.

    2012-09-01

    This document reports on NREL's 'Campus of the Future,' which leverages partnerships and showcases sustainable energy on and near the NREL site. It is unique in that the report is based on GRI key performance indicators, that support NREL's sustainability goals.

  1. Clear-Sky Probability for the August 21, 2017, Total Solar Eclipse Using the NREL National Solar Radiation Database

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Roberts, Billy J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kutchenreiter, Mark C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wilcox, Steve [Solar Resource Solutions, LLC, Lakewood, CO (United States); Stoffel, Tom [Solar Resource Solutions, LLC, Lakewood, CO (United States)

    2017-07-21

    The National Renewable Energy Laboratory (NREL) and collaborators have created a clear-sky probability analysis to help guide viewers of the August 21, 2017, total solar eclipse, the first continent-spanning eclipse in nearly 100 years in the United States. Using cloud and solar data from NREL's National Solar Radiation Database (NSRDB), the analysis provides cloudless sky probabilities specific to the date and time of the eclipse. Although this paper is not intended to be an eclipse weather forecast, the detailed maps can help guide eclipse enthusiasts to likely optimal viewing locations. Additionally, high-resolution data are presented for the centerline of the path of totality, representing the likelihood for cloudless skies and atmospheric clarity. The NSRDB provides industry, academia, and other stakeholders with high-resolution solar irradiance data to support feasibility analyses for photovoltaic and concentrating solar power generation projects.

  2. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept

    DEFF Research Database (Denmark)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar Borisov

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery...... productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149 kg of EtOH and 115 kg of succinic acid can be obtained per 1 ton of dry hemp....... Results obtained in this study clearly document the potential of industrial hemp for a biorefinery....

  3. 2017 NREL Photovoltaic Reliability Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-15

    NREL's Photovoltaic (PV) Reliability Workshop (PVRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology -- both critical goals for moving PV technologies deeper into the electricity marketplace.

  4. Techno-economic analysis for brewer's spent grains use on a biorefinery concept: the Brazilian case.

    Science.gov (United States)

    Mussatto, Solange I; Moncada, Jonathan; Roberto, Inês C; Cardona, Carlos A

    2013-11-01

    A techno-economic analysis for use of brewer's spent grains (BSG) on a biorefinery concept for the Brazilian case is presented. Four scenarios based on different levels of heat and mass integration for the production of xylitol, lactic acid, activated carbon and phenolic acids are shown. A simulation procedure using the software Aspen Plus and experimental yields was used. Such procedure served as basis for the techno-economic and environmental assessment according to the Brazilian conditions. Full mass integration on water and full energy integration was the configuration with the best economic and environmental performance. For this case, the obtained economic margin was 62.25%, the potential environmental impact was 0.012 PEI/kg products, and the carbon footprint of the processing stage represented 0.96 kg CO2-e/kg of BSG. This result served as basis to draw recommendations on the technological, economic and environmental feasibility for implementation of such type of biorefinery in Brazil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Integrated Biorefineries: Biofuels, Biopower, and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-05-06

    This fact sheet describes integrated biorefineries and the Program's work with them. A crucial step in developing the U.S. bioindustry is to establish integrated biorefineries capable of efficiently converting a broad range of biomass feedstocks into affordable biofuels, biopower, and other bioproducts.

  6. Basic Energy Sciences at NREL

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.

    2000-12-04

    NREL's Center for Basic Sciences performs fundamental research for DOE's Office of Science. Our mission is to provide fundamental knowledge in the basic sciences and engineering that will underpin new and improved renewable energy technologies.

  7. Development of the Nordic Bioeconomy: NCM reporting: Test centers for green energy solutions - Biorefineries and business needs

    DEFF Research Database (Denmark)

    Lange, Lene; Björnsdóttir, Bryndís; Brandt, Asbjørn

    In 2014 the Nordic Council of Ministers initiated a new bioeconomy project: “Test centers for green energy solutions – Biorefineries and Busi-ness needs”. The purpose was to strengthen green growth in the area of the bioeconomy by analyzing and mapping the current status of the bio-economy...

  8. Steering Committee Progress Report on Hydrogen Sensor Performance Testing and Evaluation under the Memorandum of Agreement between NREL, U.S. DOE and JRC-IET, EC

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, W.; Post, M.; Burgess, R.; Rivkin, C.; Boon-Brett, L.; Palmisano, V.; Bonato, C.; Harskamp, F.

    2012-12-01

    This progress report is a programmatic summary of a formal MOA between NREL and the European Union Joint Research Center, Institute for Energy and Transport to be presented at the Steering Committee Meeting, December 3, 2012.

  9. A biorefinery approach for the production of xylitol, ethanol and polyhydroxybutyrate from brewer’s spent grain

    Directory of Open Access Journals (Sweden)

    Javier A. Dávila

    2016-01-01

    Full Text Available Brewer’s spent grain (BSG is one of the most important byproducts of the brewing industry and its composition offers opportunities for developing value-added products. The objective of the research was to investigate the application of the biorefinery approach for production of xylitol, ethanol and polyhydroxybutyrate from BSG. The techno-economic and environmental aspects of two biorefinery scenarios, with and without heat integration, were studied. Results indicated that a standalone production of fuel ethanol from BSG was not feasible, the production of polyhydroxybutyrate was feasible only with heat integration and that the production of xylitol was feasible either with or without heat integration. Results indicated a calculated total production cost of 0.35, 3.63 and 3.36 USD/kg for xylitol, ethanol and polyhydroxybutyrate, respectively. Results suggested that heat integration allowed reducing the energy consumption associated with manufacturing all of the products in the biorefinery by 43%. Results of the environmental assessment indicated that heat integration lowered the potential environmental impact of the BSG processing. Results of the study thus indicated the superiority of a biorefinery for BSG processing that includes heat integration, from both the techno-economic and environmental impact points of view.

  10. System visualization of integrated biofuels and high value chemicals developed within the MacroAlgaeBiorefinery (MAB3) project

    DEFF Research Database (Denmark)

    Seghetta, Michele; Hasler, Berit; Bastianoni, Simone

    growth in open seas absorbs considerable amount of nitrogen, phosphorus (limiting water eutrophication) and heavy metals. The modeled system aims to valorize all the biomass components produced in the biorefinery processes and internalize all positive and negative impacts of the services provided...

  11. Integration of Microbial Electrolysis Cells (MECs) in the Biorefinery for Production of Ethanol, H2 and Phenolics

    DEFF Research Database (Denmark)

    Thygesen, Anders; Thomsen, Anne Belinda; Possemiers, Sam

    2010-01-01

    procedure is proposed in which the ethanol biorefinery is coupled with a microbial electrolysis cell (MEC), with the aim to further process and valorize the waste stream of bioethanol production. A MEC is an electrochemical system capable of oxidizing reducing equivalents, which results in hydrogen...

  12. Utilization of sweet sorghum juice for the production of astaxanthin as a biorefinery co-product by phaffia rhodozyma

    Science.gov (United States)

    Co-product generation in a biorefinery process is crucial to allow ethanol production from agricultural feedstocks to be economically viable. One feedstock that has underutilized potential in the U.S. is sweet sorghum. The stalks of sweet sorghum can be crushed to produce a juice rich in soluble sug...

  13. Sustainable intensification and extensification of cropping system for biorefinery in Denmark-what does the nitrogen balance say?

    DEFF Research Database (Denmark)

    Manevski, Kiril; Lærke, Poul Erik; Jørgensen, Uffe

    Establishing an environment-friendly industrial biorefinery production requires resource efficient agroecosystems with low losses to the environment, especially of nitrogen (N). This work reports the first field-based N losses and balances for agro-ecosystems optimised for biomass production...

  14. Modeling Photovoltaic Module-Level Power Electronics in the System Advisor Model; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-07-01

    Module-level power electronics, such as DC power optimizers, microinverters, and those found in AC modules, are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software. This paper extends the work completed at NREL that provided recommendations to model the performance of distributed power electronics in NREL’s popular PVWatts calculator [1], to provide similar guidelines for modeling these technologies in NREL's more complex System Advisor Model (SAM). Module-level power electronics - such as DC power optimizers, microinverters, and those found in AC modules-- are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software.

  15. Opportunities and prospects of biorefinery-based valorisation of pulp and paper sludge.

    Science.gov (United States)

    Gottumukkala, Lalitha Devi; Haigh, Kate; Collard, François-Xavier; van Rensburg, Eugéne; Görgens, Johann

    2016-09-01

    The paper and pulp industry is one of the major industries that generate large amount of solid waste with high moisture content. Numerous opportunities exist for valorisation of waste paper sludge, although this review focuses on primary sludge with high cellulose content. The most mature options for paper sludge valorisation are fermentation, anaerobic digestion and pyrolysis. In this review, biochemical and thermal processes are considered individually and also as integrated biorefinery. The objective of integrated biorefinery is to reduce or avoid paper sludge disposal by landfilling, water reclamation and value addition. Assessment of selected processes for biorefinery varies from a detailed analysis of a single process to high level optimisation and integration of the processes, which allow the initial assessment and comparison of technologies. This data can be used to provide key stakeholders with a roadmap of technologies that can generate economic benefits, and reduce carbon wastage and pollution load. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Hydrothermal Treatment (HTT) of Microalgae: Evaluation of the Process As Conversion Method in an Algae Biorefinery Concept

    NARCIS (Netherlands)

    Garcia Alba, Laura; Torri, C.; Samori, C.; van der Spek, J.J.; Fabbri, D.; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik

    2012-01-01

    The hydrothermal treatment (HTT) technology is evaluated for its potential as a process to convert algae and algal debris into a liquid fuel, within a sustainable algae biorefinery concept in which, next to fuels (gaseous and liquid), high value products are coproduced, nutrients and water are

  17. ESTIMATING WATER FOOTPRINT AND MANAGING BIOREFINERY WASTEWATER IN THE PRODUCTION OF BIO-BASED RENEWABLE DIESEL BLENDSTOCK

    Energy Technology Data Exchange (ETDEWEB)

    Wu, May M. [Argonne National Lab. (ANL), Argonne, IL (United States); Sawyer, Bernard M [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    This analysis covers the entire biorefinery operation. The study focuses on net water consumed for the production of a unit of biofuel: blue, green, and grey water footprint. Blue water is defined as the water consumed in the biorefinery that is withdrawn from surface and ground water. Blue water footprint includes enzyme cultivation, pretreatment, hydrolysis, bioreactor, cooling system, boiler, fuel upgrading, combustor track, and on-site WWT. Grey water is defined as wastewater generated from the biorefinery and was evaluated based on the wastewater treatment plant design. Green water, defined as rainwater consumed for the production, is not required in the RDB process. Approximately 7–15 gal of water are required to produce a gallon of RDB when corn stover or non-irrigated perennial grasses, switchgrass and Miscanthus x giganteus (Miscanthus), serve as the feedstock in the contiguous United States. Bioelectricity generation from the biorefinery resulted in a net water credit, which reduced the water footprint. The life cycle grey water footprint for nitrogen is primarily from nitrogen in the feedstock production stage because no wastewater is discharged into the environment in the RDB process. Perennial grasses-based RDB production shows a promising grey water footprint, while corn stover-based RDB production has a relatively low green water footprint. Results from the study can help improve our understanding of the water sustainability of advanced biofuel technology under development. Make-up water for cooling and boiling remains a major demand in the biorefinery. The work revealed a key issue or trade-off between achieving zero liquid discharge to maximize water resource use and potentially increasing cost of fuel production. Solid waste disposal was identified as a management issue, and its inverse relationship with wastewater management could affect economic sustainability.

  18. IMPROVED BIOREFINERY FOR THE PRODUCTION OF ETHANOL, CHEMICALS, ANIMAL FEED AND BIOMATERIALS FROM SUGAR CANE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Donal F. Day

    2009-01-29

    The Audubon Sugar Institute (ASI) of Louisiana State University’s Agricultural Center (LSU AgCenter) and MBI International (MBI) sought to develop technologies that will lead to the development of a sugar-cane biorefinery, capable of supplying fuel ethanol from bagasse. Technology development focused on the conversion of bagasse, cane-leaf matter (CLM) and molasses into high value-added products that included ethanol, specialty chemicals, biomaterials and animal feed; i.e. a sugar cane-based biorefinery. The key to lignocellulosic biomass utilization is an economically feasible method (pretreatment) for separating the cellulose and the hemicellulose from the physical protection provided by lignin. An effective pretreatment disrupts physical barriers, cellulose crystallinity, and the association of lignin and hemicellulose with cellulose so that hydrolytic enzymes can access the biomass macrostructure (Teymouri et al. 2004, Laureano-Perez, 2005). We chose to focus on alkaline pretreatment methods for, and in particular, the Ammonia Fiber Expansion (AFEX) process owned by MBI. During the first two years of this program a laboratory process was established for the pretreatment of bagasse and CLM using the AFEX process. There was significant improvement of both rate and yield of glucose and xylose upon enzymatic hydrolysis of AFEX-treated bagasse and CLM compared with untreated material. Because of reactor size limitation, several other alkaline pretreatment methods were also co-investigated. They included, dilute ammonia, lime and hydroxy-hypochlorite treatments. Scale-up focused on using a dilute ammonia process as a substitute for AFEX, allowing development at a larger scale. The pretreatment of bagasse by an ammonia process, followed by saccharification and fermentation produced ethanol from bagasse. Simultaneous saccharification and fermentation (SSF) allowed two operations in the same vessel. The addition of sugarcane molasses to the hydrolysate

  19. Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction.

    Science.gov (United States)

    López Barreiro, Diego; Samorì, Chiara; Terranella, Giuseppe; Hornung, Ursel; Kruse, Andrea; Prins, Wolter

    2014-12-01

    The interest in third generation biofuels from microalgae has been rising during the past years. Meanwhile, it seems not economically feasible to grow algae just for biofuels. Co-products with a higher value should be produced by extracting a particular algae fraction to improve the economics of an algae biorefinery. The present study aims at analyzing the influence of two main microalgae components (lipids and proteins) on the composition and quantity of biocrude oil obtained via hydrothermal liquefaction of two strains (Nannochloropsis gaditana and Scenedesmus almeriensis). The algae were liquefied as raw biomass, after extracting lipids and after extracting proteins in microautoclave experiments at different temperatures (300-375°C) for 5 and 15min. The results indicate that extracting the proteins from the microalgae prior to HTL may be interesting to improve the economics of the process while at the same time reducing the nitrogen content of the biocrude oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Integrated torrefaction vs. external torrefaction - A thermodynamic analysis for the case of a thermochemical biorefinery

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard

    2014-01-01

    Integrated and external torrefaction is analyzed and compared via thermodynamic modeling. In this paper, integrated torrefaction is defined as torrefaction integrated with entrained flow gasification. External torrefaction is defined as the decentralized production of torrefied wood pellets...... and centralized conversion of the pellets by entrained flow gasification. First, the syngas production of the two methods was compared. Second, the two methods were compared by considering complete biorefineries with either integrated torrefaction or external torrefaction. The first part of the analysis showed...... that the biomass to syngas efficiency can be increased from 63% to 86% (LHV-dry) when switching from external torrefaction to integrated torrefaction. The second part of the analysis showed that the total energy efficiency (biomass to methanol + net electricity) could be increased from 53% to 63% when switching...

  1. Characterization of biomasses from the north and northeast regions of Brazil for processes in biorefineries

    Directory of Open Access Journals (Sweden)

    Magale Karine Diel RAMBO

    2015-01-01

    Full Text Available AbstractIn search for renewable energy sources, the Brazilian residual biomasses stand out due to their favorable physical and chemical properties, low cost, and their being less pollutant. Therefore, they are likely to be used in biorefineries in the production of chemical inputs to substitute fossil fuels. This substitution is possible due to the high contents of carbohydrates (>40%, low contents of extractives (<20%, ashes (<8% and moisture (<8% found in these residual biomasses. High calorific values of all residues also offer them the chance to be used in combustion. A principal components analysis (PCA was performed for better understanding of the samples and their hysic-chemical properties. Thus, this study aimed to characterize biomasses from the north (babassu residues, such as mesocarp and endocarp; pequi and Brazil nut and northeast (agave and coconut regions of Brazil, in order to contribute to the preservation of the environment and strengthen the economy of the region.

  2. Toward a Computer-Aided Synthesis and Design of Biorefinery Networks: Data Collection and Management Using a Generic Modeling Approach

    DEFF Research Database (Denmark)

    Cheali, Peam; Gernaey, Krist; Sin, Gürkan

    2014-01-01

    that are needed among others to support the superstructure-based optimization studies. To this end, we first formulate an integrated thermochemical and biochemical biorefinery superstructure and then use a generic modeling approach to represent each processing technology in the superstructure. The generic model...

  3. Biorefinery based on olive biomass. State of the art and future trends.

    Science.gov (United States)

    Romero-García, J M; Niño, L; Martínez-Patiño, C; Álvarez, C; Castro, E; Negro, M J

    2014-05-01

    With currently more than nine million hectares, olive tree cultivation has spread worldwide, table olives and olive oil as the main products. Moreover, a number of by-products and residues derived from both tree cultivation and the process of industrial olive oil production, most having no practical applications, are obtained yearly. This paper reviews the research regarding these by-products, namely biomass from olive tree pruning, olive stones, olive pomace and wastewaters obtained from the process of olive oil production. Furthermore, a wide range of compounds has been identified and can be produced using a broad definition of the term biorefinery based on olive tree biomass. As an example, this paper reviews ethanol production as one of the main proposed applications, as well as research on other value-added products. Finally, this paper also assesses recent technological advances, future perspectives and challenges in each stage of the process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Chapter 17: Adding Value to the Biorefinery with Lignin: An Engineer's Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-03

    There is a long-standing belief that 'you can make anything out of lignin...except money.' This chapter serves to highlight that opportunities for making money from biomass-derived lignin exist both with current technology in the production of steam and power to new emerging areas of R&D focused on value-added chemical and material coproducts from lignin. To understand and quantify the economic potential for lignin valorization, the techno-economic analysis methodology is first described in detail. As demonstrated in the provided case study, these types of economic evaluations serve not only to estimate the economic impacts that lignin conversion could have for an integrated biorefinery and outline drivers for further cost reduction but also identify data gaps and R&D needs for improving the design basis and reducing the risk for process scale-up.

  5. Sustainable NREL - Site Sustainability Plan FY 2015

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-01-01

    NREL's Site Sustainability Plan FY 2015 reports on sustainability plans for the lab for the year 2015 based on Executive Order Goals and provides the status on planned actions cited in the FY 2014 report.

  6. The approach of life cycle sustainability assessment of biorefineries

    NARCIS (Netherlands)

    Jungmeier, G.; Hingsamer, M.; Steiner, D.; Kaltenegger, I.; Kleinegris, D.; Ree, van R.; Jong, de E.

    2016-01-01

    A key driver for the necessary sustainable development is the implementation of the BioEconomy, which is based on renewable resources to satisfy its energy and material demand of our society. The broad spectrum of biomass resources offers great opportunities for a comprehensive product portfolio

  7. Sustainability of the Biorefinery Industry for Fuel Production

    Directory of Open Access Journals (Sweden)

    Paulo Cesar Barbosa

    2013-01-01

    Full Text Available Biofuels have been extensively explored and applied in the Brazilian market. In Brazil, ethanol and biodiesel are produced on an industrial scale. Ethanol is commercialized and used in engines in both the hydrated form (96% °GL and the anhydrous form, mixed with gasoline at a proportion of up to 25% by volume. In turn, biodiesel is blended with diesel in a proportion of 5% by volume. Thus, the goal of the use of biofuels is to contribute to the mitigation of greenhouse gases and other pollutants emitted into the atmosphere during burning. This article describes some recent developments in the characterization of the environmental and economic impacts of the production of these biofuels from different biomass sources. On this regard, this review presents results of life-cycle assessments (LCAs, life-cycle cost assessments (LCCAs and Structural Path Analysis (SPA, this last one depicting a sectorial perspective rather than LCA process level data approaches. The results showed that the inclusion of biofuels in transportation activities can lead to the mitigation of the environmental impacts of certain activities, such as emissions of greenhouse gases. However, greater attention must be paid to the improvement of agricultural management to decrease fuel, fertilizer and herbicide consumption.

  8. Microbial electrolysis cells for waste biorefinery: A state of the art review.

    Science.gov (United States)

    Lu, Lu; Ren, Zhiyong Jason

    2016-09-01

    Microbial electrolysis cells (MECs) is an emerging technology for energy and resource recovery during waste treatment. MECs can theoretically convert any biodegradable waste into H2, biofuels, and other value added products, but the system efficacy can vary significantly when using different substrates or are operated in different conditions. To understand the application niches of MECs in integrative waste biorefineries, this review provides a critical analysis of MEC system performance reported to date in terms of H2 production rate, H2 yield, and energy efficiency under a variety of substrates, applied voltages and other crucial factors. It further discusses the mutual benefits between MECs and dark fermentation and argues such integration can be a viable approach for efficient H2 production from renewable biomass. Other marketable products and system integrations that can be applied to MECs are also summarized, and the challenges and prospects of the technology are highlighted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms

    DEFF Research Database (Denmark)

    Rasmussen, Helena; Sørensen, Hanne R.; Meyer, Anne S.

    2014-01-01

    -(hydroxymethyl)-2-furaldehyde (HMF) and/or levulinic acid, formic acid and different phenolics at elevated temperatures. Correspondingly, xylose can follow different reaction mechanisms resulting in the formation of furan-2-carbaldehyde (furfural) and/or various C-1 and C-4 compounds. At least four routes......The degradation compounds formed during pretreatment when lignocellulosic biomass is processed to ethanol or other biorefinery products include furans, phenolics, organic acids, as well as mono- and oligomeric pentoses and hexoses. Depending on the reaction conditions glucose can be converted to 5......, several aldehydes and ketones and many different organic acids and aromatic compounds may be generated during hydrothermal treatment of lignocellulosic biomass. The reaction mechanisms are of interest because the very same compounds that are possible inhibitors for biomass processing enzymes...

  10. Technological Advances and Opportunities for the Development of Sustainable Biorefineries

    DEFF Research Database (Denmark)

    Mussatto, Solange I.

    Moving to a more sustainable economy, where renewable biomass is used to produce fuels, chemicals, energy and materials, is one of the main challenges faced by the society nowadays in order to ensure a sustainable low-carbon economy for the future. In addition, a bio-based economy has the potential...... to generate new jobs and new opportunities for entrepreneurship, with further benefits to the global economy and the society. Biomass can be used to replace fossil feedstocks for the production of different products, among of which, chemicals are particularly very attractive due to their high market value...... have been taken in recent years into the transition towards a bio-based economy, there are still significant technological challenges to overcome in order to develop more efficient, advanced and sustainable bio-based processes, able to compete with the optimized petrochemical production chains...

  11. Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels.

    Science.gov (United States)

    Bikker, Paul; van Krimpen, Marinus M; van Wikselaar, Piet; Houweling-Tan, Bwee; Scaccia, Nazareno; van Hal, Jaap W; Huijgen, Wouter J J; Cone, John W; López-Contreras, Ana M

    2016-01-01

    The growing world population demands an increase in animal protein production. Seaweed may be a valuable source of protein for animal feed. However, a biorefinery approach aimed at cascading valorisation of both protein and non-protein seaweed constituents is required to realise an economically feasible value chain. In this study, such a biorefinery approach is presented for the green seaweed Ulva lactuca containing 225 g protein ( N  × 4.6) kg -1 dry matter (DM). The sugars in the biomass were solubilised by hot water treatment followed by enzymatic hydrolysis and centrifugation resulting in a sugar-rich hydrolysate (38.8 g L -1 sugars) containing glucose, rhamnose and xylose, and a protein-enriched (343 g kg -1 in DM) extracted fraction. This extracted fraction was characterised for use in animal feed, as compared to U. lactuca biomass. Based on the content of essential amino acids and the in vitro N (85 %) and organic matter (90 %) digestibility, the extracted fraction seems a promising protein source in diets for monogastric animals with improved characteristics as compared to the intact U. lactuca . The gas production test indicated a moderate rumen fermentation of U. lactuca and the extracted fraction, about similar to that of alfalfa. Reduction of the high content of minerals and trace elements may be required to allow a high inclusion level of U. lactuca products in animal diets. The hydrolysate was used successfully for the production of acetone, butanol, ethanol and 1,2-propanediol by clostridial fermentation, and the rhamnose fermentation pattern was studied.

  12. NREL photovoltaic program FY 1997 annual report

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.D.; Hansen, A.; Smoller, S.

    1998-06-01

    This report summarizes the in-house and subcontracted research and development (R and D) activities under the NREL PV Program from October 1, 1996, through September 30, 1997 (FY 1997). The NREL PV Program is part of the US Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE National Photovoltaics Program Plan for 1996--2000. The FY 1997 budget authority for carrying out the NREL PV Program was $39.3 million in operating funds and $0.4 million in capital equipment funds. Subcontract activities represent a major part of the NREL PV Program, with $21.8 million (55% of PV funds) going to some 84 subcontractors. Cost sharing by industry added almost $8.8 million to the subcontract R and D activities with industry.

  13. Near-term deployment of carbon capture and sequestration from biorefineries in the United States.

    Science.gov (United States)

    Sanchez, Daniel L; Johnson, Nils; McCoy, Sean T; Turner, Peter A; Mach, Katharine J

    2018-04-23

    Capture and permanent geologic sequestration of biogenic CO 2 emissions may provide critical flexibility in ambitious climate change mitigation. However, most bioenergy with carbon capture and sequestration (BECCS) technologies are technically immature or commercially unavailable. Here, we evaluate low-cost, commercially ready CO 2 capture opportunities for existing ethanol biorefineries in the United States. The analysis combines process engineering, spatial optimization, and lifecycle assessment to consider the technical, economic, and institutional feasibility of near-term carbon capture and sequestration (CCS). Our modeling framework evaluates least cost source-sink relationships and aggregation opportunities for pipeline transport, which can cost-effectively transport small CO 2 volumes to suitable sequestration sites; 216 existing US biorefineries emit 45 Mt CO 2 annually from fermentation, of which 60% could be captured and compressed for pipeline transport for under $25/tCO 2 A sequestration credit, analogous to existing CCS tax credits, of $60/tCO 2 could incent 30 Mt of sequestration and 6,900 km of pipeline infrastructure across the United States. Similarly, a carbon abatement credit, analogous to existing tradeable CO 2 credits, of $90/tCO 2 can incent 38 Mt of abatement. Aggregation of CO 2 sources enables cost-effective long-distance pipeline transport to distant sequestration sites. Financial incentives under the low-carbon fuel standard in California and recent revisions to existing federal tax credits suggest a substantial near-term opportunity to permanently sequester biogenic CO 2 This financial opportunity could catalyze the growth of carbon capture, transport, and sequestration; improve the lifecycle impacts of conventional biofuels; support development of carbon-negative fuels; and help fulfill the mandates of low-carbon fuel policies across the United States. Copyright © 2018 the Author(s). Published by PNAS.

  14. Lessons learned -- NREL Village Power Program

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L.

    1998-07-01

    In 1993, a workshop was convened at the National Renewable Energy Laboratory (NREL) to discuss the issues of applying renewable energy in a sustainable manner to international rural development. One of the summary recommendations was that NREL could assist in the renewable energy for rural electrification effort by developing and supplying six related activities: resource assessment, comparative analysis and modeling, performance monitoring and analysis, pilot project development, internet-based project data, communications, and training. In response to this recommendation, NREL launched its Village Power Program consisting of these activities that cut across NREL technologies and disciplines. Currently NREL is active in 20 countries, with pilot projects in 12 of those countries. At this time the technologies include photovoltaics, wind, biomass, and hybrids. The rural applications include home lighting and communications, water pumping, schools and health posts, battery charging stations, ecotourism, and village systems. These pilot projects are central to the renewable energy village power development through the demonstration of three aspects critical to replication and implementation of the projects on a significant scale. The three aspects are technical functionality, economic competitiveness, and institutional sustainability. It is important to note that the pilot projects from which NREL's experience has been gained were funded and, in many cases, developed by other organizations and agencies. NREL's role has been one of technical assistance or project management or both. The purpose of this paper is to describe the lessons NREL staff has gleaned from their participation in the various pilot projects. The author hopes that these lessons will help the Renewable Energy-Based Rural Electrification (RERE) community in implementing sustainable projects that lead to replication.

  15. Energy Systems Integration Partnerships: NREL + CSIRO

    Energy Technology Data Exchange (ETDEWEB)

    2016-12-01

    This fact sheet highlights work done at the ESIF in partnership with CSIRO. The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia's science agency, has teamed up with NREL to evaluate advanced control solutions for integrating solar energy in hybrid distributed generation applications. NREL and CSIRO demonstrated a plug-and play microgrid controller at the ESIF and also tested other control techniques for integrating solar power with Australian and U.S. electrical distribution systems.

  16. Crop residues as raw materials for biorefinery systems - A LCA case study

    International Nuclear Information System (INIS)

    Cherubini, Francesco; Ulgiati, Sergio

    2010-01-01

    Our strong dependence on fossil fuels results from the intensive use and consumption of petroleum derivatives which, combined with diminishing oil resources, causes environmental and political concerns. The utilization of agricultural residues as raw materials in a biorefinery is a promising alternative to fossil resources for production of energy carriers and chemicals, thus mitigating climate change and enhancing energy security. This paper focuses on a biorefinery concept which produces bioethanol, bioenergy and biochemicals from two types of agricultural residues, corn stover and wheat straw. These biorefinery systems are investigated using a Life Cycle Assessment (LCA) approach, which takes into account all the input and output flows occurring along the production chain. This approach can be applied to almost all the other patterns that convert lignocellulosic residues into bioenergy and biochemicals. The analysis elaborates on land use change aspects, i.e. the effects of crop residue removal (like decrease in grain yields, change in soil N 2 O emissions and decrease of soil organic carbon). The biorefinery systems are compared with the respective fossil reference systems producing the same amount of products/services from fossils instead of biomass. Since climate change mitigation and energy security are the two most important driving forces for biorefinery development, the assessment focuses on greenhouse gas (GHG) emissions and cumulative primary energy demand, but other environmental categories are evaluated as well. Results show that the use of crop residues in a biorefinery saves GHG emissions and reduces fossil energy demand. For instance, GHG emissions are reduced by about 50% and more than 80% of non-renewable energy is saved. Land use change effects have a strong influence in the final GHG balance (about 50%), and their uncertainty is discussed in a sensitivity analysis. Concerning the investigation of the other impact categories, biorefinery systems

  17. Design of an Optimal Biorefinery

    DEFF Research Database (Denmark)

    Nawaz, Muhammad; Zondervan, Edwin; Woodley, John

    2011-01-01

    In this paper we propose a biorefinery optimization model that can be used to find the optimal processing route for the production of ethanol, butanol, succinic acid and blends of these chemicals with fossil fuel based gasoline. The approach unites transshipment models with a superstructure...

  18. Novel renewable products for biorefineries

    Science.gov (United States)

    A biorefinery integrates unit operations to convert biomass into a variety of biobased products, including fuels, chemicals, energy, and feed. Government policy initiatives over the last 1-2 decades have emphasized the production of biobased fuels, and consequently the number of dry-grind ethanol bi...

  19. Design of an Optimal Biorefinery

    DEFF Research Database (Denmark)

    Nawaz, Muhammad; Zondervan, Edwin; Woodley, John

    In this paper we propose a biorefinery optimization model that can be used to find the optimal processing route for the production of ethanol, butanol, succinic acid and blends of these chemicals with fossil fuel based gasoline. The approach unites transshipment models with a superstructure...

  20. Sustainable NREL: From Integration to Innovation

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    NREL's sustainability practices are integrated throughout the laboratory and are essential to our mission to develop clean energy and energy efficiency technologies and practices, advance related science and engineering, and provide knowledge and innovations to integrate energy systems at all scales. Sustainability initiatives are integrated through our campus, our staff, and our environment allowing NREL to provide leadership in modeling a sustainability energy future for companies, organizations, governments, and communities.

  1. Energy Innovations: Science & Technology at NREL, Fall 2009

    Energy Technology Data Exchange (ETDEWEB)

    2009-09-01

    The Energy Innovations newsletter serves as a key outreach tool for NREL to tout the lab's accomplishments, progress, and activities to key stakeholders who can impact the lab's level of funding and potential resources. Audiences include VIP visitors to NREL, current and potential partners in our work, and key decision makers who want to know about NREL's R&D directions and the quality and significance of our results.

  2. Energy Innovations: Science & Technology at NREL, Summer 2010 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    The Energy Innovations newsletter serves as a key outreach tool for NREL to tout the lab's accomplishments, progress, and activities to key stakeholders who can impact the lab's level of funding and potential resources. Audiences include VIP visitors to NREL, current and potential partners in our work, and key decision makers who want to know about NREL's R&D directions and the quality and significance of our results.

  3. Energy Innovations: Science & Technology at NREL, Winter 2011 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-01

    The Energy Innovations newsletter serves as a key outreach tool for NREL to tout the lab's accomplishments, progress, and activities to key stakeholders who can impact the lab's level of funding and potential resources. Audiences include VIP visitors to NREL, current and potential partners in our work, and key decision makers who want to know about NREL's R&D directions and the quality and significance of our results.

  4. Power Converter Control Algorithm Design and Simulation for the NREL Next-Generation Drivetrain: July 8, 2013 - January 7, 2016

    Energy Technology Data Exchange (ETDEWEB)

    Blodgett, Douglas [DNV KEMA Renewables, Inc., San Ramon, CA (United States); Behnke, Michael [DNV KEMA Renewables, Inc., San Ramon, CA (United States); Erdman, William [DNV KEMA Renewables, Inc., San Ramon, CA (United States)

    2016-08-01

    The National Renewable Energy Laboratory (NREL) and NREL Next-Generation Drivetrain Partners are developing a next-generation drivetrain (NGD) design as part of a Funding Opportunity Announcement award from the U.S. Department of Energy. The proposed NGD includes comprehensive innovations to the gearbox, generator, and power converter that increase the gearbox reliability and drivetrain capacity, while lowering deployment and operation and maintenance costs. A key task within this development effort is the power converter fault control algorithm design and associated computer simulations using an integrated electromechanical model of the drivetrain. The results of this task will be used in generating the embedded control software to be utilized in the power converter during testing of the NGD in the National Wind Technology Center 2.5-MW dynamometer. A list of issues to be addressed with these algorithms was developed by review of the grid interconnection requirements of various North American transmission system operators, and those requirements that presented the greatest impact to the wind turbine drivetrain design were then selected for mitigation via power converter control algorithms.

  5. NREL Energy Storage Projects: FY2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.; Ban, C.; Brooker, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Long, D.; Neubauer, J.; Santhanagopalan, S.; Smith, K.; Tenent, R.; Wood, E.; Han, T.; Hartridge, S.; Shaffer, C. E.

    2014-07-01

    In FY13, DOE funded NREL to make technical contributions to various R&D activities. This report summarizes NREL's R&D projects in FY13 in support of the USABC; Battery Testing, Analysis, and Design; ABR; and BATT program elements. The FY13 projects under NREL's Energy Storage R&D program are discussed in depth in this report.

  6. Vegetable Oil-Biorefinery.

    Science.gov (United States)

    Pudel, Frank; Wiesen, Sebastian

    2017-03-07

    Conventional vegetable oil mills are complex plants, processing oil, fruits, or seeds to vegetable fats and oils of high quality and predefined properties. Nearly all by-products are used. However, most of the high valuable plant substances occurring in oil fruits or seeds besides the oil are used only in low price applications (proteins as animal feeding material) or not at all (e.g., phenolics). This chapter describes the state-of-the-art of extraction and use of oilseed/oil fruit proteins and phyto-nutrients in order to move from a conventional vegetable oil processing plant to a proper vegetable oil-biorefinery producing a wide range of different high value bio-based products.

  7. Recovery and Utilization of Lignin Monomers as Part of the Biorefinery Approach

    Directory of Open Access Journals (Sweden)

    Kirsten M. Davis

    2016-10-01

    Full Text Available Lignin is a substantial component of lignocellulosic biomass but is under-utilized relative to the cellulose and hemicellulose components. Historically, lignin has been burned as a source of process heat, but this heat is usually in excess of the process energy demands. Current models indicate that development of an economically competitive biorefinery system requires adding value to lignin beyond process heat. This addition of value, also known as lignin valorization, requires economically viable processes for separating the lignin from the other biomass components, depolymerizing the lignin into monomeric subunits, and then upgrading these monomers to a value-added product. The fact that lignin’s biological role is to provide biomass with structural integrity means that this heteropolymer can be difficult to depolymerize. However, there are chemical and biological routes to upgrade lignin from its native form to compounds of industrial value. Here we review the historical background and current technology of (thermo chemical depolymerization of lignin; the natural ability of microbial enzymes and pathways to utilize lignin, the current prospecting work to find novel microbial routes to lignin degradation, and some applications of these microbial enzymes and pathways; and the current chemical and biological technologies to upgrade lignin-derived monomers.

  8. A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites.

    Science.gov (United States)

    Karmee, Sanjib Kumar

    2018-02-01

    Spent coffee grounds are composed of lipid, carbohydrates, carbonaceous, and nitrogen containing compounds among others. Using n-hexane and n-hexane/isopropanol mixture highest oil yield was achived during soxhlet extraction of oil from spent coffee grounds. Alternatively, supercritical carbon dioxide can be employed as a green solvent for the extraction of oil. Using advanced chemical and biotechnological methods, spent coffee grounds are converted to various biofuels such as, biodiesel, renewable diesel, bioethanol, bioethers, bio-oil, biochar, and biogas. The in-situ transesterification of spent coffee grounds was carried out in a large scale (4 kg), which led to 80-83% biodiesel yield. In addition, a large number of value added and diversified products viz. polyhydroxyalkanoates, biosorbent, activated carbon, polyol, polyurethane foam, carotenoid, phenolic antioxidants, and green composite are obtained from spent coffee grounds. The principles of circular economy are applied to develop a sustanaible biorefinery based on valorisation of spent coffee grounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A biorefinery concept using the green macroalgae Chaetomorpha linum for the coproduction of bioethanol and biogas

    International Nuclear Information System (INIS)

    Ben Yahmed, Nesrine; Jmel, Mohamed Amine; Ben Alaya, Monia; Bouallagui, Hassib; Marzouki, M. Nejib; Smaali, Issam

    2016-01-01

    Highlights: • Chaetomorpha linum was used as sustainable feedstock for co-production of bioethanol and biomethane. • An eco-friendly process was developed, only generating 0.3 ± 0.01 g/g of waste. • Ethanol yield obtained was 0.41 g/g reducing sugar. • Methane yield obtained was 0.26 ± 0.045 L/gVS. - Abstract: An innovative integrated biorefinery approach using the green macroalgae Chaetomorpha linum was investigated in the present study for the co-production of bioethanol and biogas. Among three pretreatments of C. linum biomass, consisting of acidic, neutral and alkali ones, 3% NaOH pretreatment gave the best result in terms of thallus disintegration, biomass recovery and enzymatic digestibility as demonstrated by scanning electron microscopy and saccharification tests. The hydrolysis of C. linum feedstock with a crude specific enzyme preparation, locally produced from fermentation of Aspergillus awamori, at 45 °C, pH 5 for 30 h gave the maximum yield of fermentable sugar of 0.22 ± 0.02 g/g dry substrate. An ethanol yield of 0.41 g/g reducing sugar corresponding to about 0.093 g/g pretreated algae was obtained after alcoholic fermentation by Saccharomyces cerevisiae. In the integrated proposed process, mycelium issued from the fungal fermentation, liquid issued from alkali pretreatment, residual from the non-hydrolysable biomass and all effluents and co-products represent a heterogeneous substrate that feed an anaerobic digester for biogas production. GC-analysis of this later showed that the biomethane yield reached 0.26 ± 0.045 L/gVS. This study presents therefore an eco-friendly biorefining process, which efficiently coproduce bioethanol and biomethane and generate only a single waste (0.3 ± 0.01 g/g) allowing an almost complete conversion of the algal biomass.

  10. Physical pretreatment – woody biomass size reduction – for forest biorefinery

    Science.gov (United States)

    J.Y. Zhu

    2011-01-01

    Physical pretreatment of woody biomass or wood size reduction is a prerequisite step for further chemical or biochemical processing in forest biorefinery. However, wood size reduction is very energy intensive which differentiates woody biomass from herbaceous biomass for biorefinery. This chapter discusses several critical issues related to wood size reduction: (1)...

  11. Biorefineries in the context of a future bioeconomy; Bioraffinerien im Kontext der Ueberlegungen zu einer zukuenftigen Biooekonomie

    Energy Technology Data Exchange (ETDEWEB)

    Wagemann, K. [Dechema e.V., Frankfurt am Main (Germany)

    2012-10-15

    The storage compounds of plants - vegetable oils, starch and sugar - account for by far the largest share of renewable raw materials for the chemical industry. In addition, attention is focusing on lignocelluloses: wood straw and other (largely) non-edible plant waste, composed of cellulose, hemicellulose and lignin. Of these, cellulose, one of the major structural components of plants, is used by the chemical industry. To date, hemicellulose and lignin have not played a significant role. The current discussion on how to establish a bioeconomy is primarily oriented towards significantly increasing the share of renewable resources in the feedstock pool for the production of chemicals and materials; this share is presently around 12 %. Such products include intermediate chemicals, which are already produced from petroleum. Other chemicals, which could be the components of new value chains, are also under discussion. Additionally materials, such as biopolymers, are already used directly in consumer goods. These considerations imply a higher demand on renewable raw materials, especially those from plants. Biorefineries will play a crucial part in meeting this demand. The German Government has invited a group of independent experts from industry and academia to drawup a roadmap. The rationale for this document is to provide a systematic description of the status and perspectives of the different biorefinery concepts, taking into account economic and ecological aspects and analysing the R and D demand. The following definition is the basis for the analysis: 'A biorefinery is an integrative, holistic processing facility, using biomass as a versatile raw material source for the sustainable production of a spectrum of different intermediates and marketable products (chemicals, materials, bioenergy and food/ feed co-products) and utilising the biomass components as fully as possible.' The analysis considers the following promising concepts. (orig.)

  12. NREL Spectrum of Clean Energy Innovation: Issue 3 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2012-11-01

    This quarterly magazine is dedicated to stepping beyond the technical journals to reveal NREL's vital work in a real-world context for our stakeholders. Continuum provides insights into the latest and most impactful clean energy innovations, while spotlighting those talented researchers and unique facilities that make it all happen. This edition focuses on the NREL Spectrum of Clean Energy Innovation.

  13. Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept.

    Science.gov (United States)

    Hull, Claire M; Loveridge, E Joel; Donnison, Iain S; Kelly, Diane E; Kelly, Steven L

    2014-01-01

    Microbial biotechnology and biotransformations promise to diversify the scope of the biorefinery approach for the production of high-value products and biofuels from industrial, rural and municipal waste feedstocks. In addition to bio-based chemicals and metabolites, microbial biomass itself constitutes an obvious but overlooked by-product of existing biofermentation systems which warrants fuller attention. The probiotic yeast Saccharomyces boulardii is used to treat gastrointestinal disorders and marketed as a human health supplement. Despite its relatedness to S. cerevisiae that is employed widely in biotechnology, food and biofuel industries, the alternative applications of S. boulardii are not well studied. Using a biorefinery approach, we compared the bioethanol and biomass yields attainable from agriculturally-sourced grass juice using probiotic S. boulardii (strain MYA-769) and a commercial S. cerevisiae brewing strain (Turbo yeast). Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL(-1) and 4.96 [±0.15] g dry weight L(-1)) compared closely to those of Turbo (37.43 [±1.99] mg mL(-1) and 4.78 [±0.10] g L(-1), respectively). Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries. Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4.

  14. Transport Energy Impact Analysis; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.

    2015-05-13

    Presented at the Sustainable Transportation Energy Pathways Spring 2015 Symposium on May 13, 2015, this presentation by Jeff Gonder of the National Renewable Energy Laboratory (NREL) provides information about NREL's transportation energy impact analysis of connected and automated vehicles.

  15. Overview of NREL Distribution Grid Integration Cost Projects

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ding, Fei [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mather, Barry A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Palmintier, Bryan S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Denholm, Paul L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-12

    This presentation was given at the 2017 NREL Workshop 'Benchmarking Distribution Grid Integration Costs Under High Distributed PV Penetrations.' It provides a brief overview of recent and ongoing NREL work on distribution system grid integration costs, as well as challenges and needs from the community.

  16. Recovery Act. Demonstration of a Pilot Integrated Biorefinery for the Efficient, Direct Conversion of Biomass to Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Schuetzle, Dennis [Renewable Energy Institute International, Sacramentao, CA (United States); Tamblyn, Greg [Renewable Energy Institute International, Sacramentao, CA (United States); Caldwell, Matt [Renewable Energy Institute International, Sacramentao, CA (United States); Hanbury, Orion [Renewable Energy Institute International, Sacramentao, CA (United States); Schuetzle, Robert [Greyrock Energy, Sacramento, CA (United States); Rodriguez, Ramer [Greyrock Energy, Sacramento, CA (United States); Johnson, Alex [Red Lion Bio-Energy, Toledo, OH (United States); Deichert, Fred [Red Lion Bio-Energy, Toledo, OH (United States); Jorgensen, Roger [Red Lion Bio-Energy, Toledo, OH (United States); Struble, Doug [Red Lion Bio-Energy, Toledo, OH (United States)

    2015-05-12

    The Renewable Energy Institute International, in collaboration with Greyrock Energy and Red Lion Bio-Energy (RLB) has successfully demonstrated operation of a 25 ton per day (tpd) nameplate capacity, pilot, pre-commercial-scale integrated biorefinery (IBR) plant for the direct production of premium, “drop-in”, synthetic fuels from agriculture and forest waste feedstocks using next-generation thermochemical and catalytic conversion technologies. The IBR plant was built and tested at the Energy Center, which is located in the University of Toledo Medical Campus in Toledo, Ohio.

  17. NREL Partnership Survey - FY 2016 Results

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-01

    The National Renewable Energy Laboratory (NREL) conducts an annual partnership satisfaction survey in which we ask our clients to rate NREL in a number of areas. As a national laboratory, the principal areas we focus on include value, timeliness, quality, price, and capabilities. This fact sheet shows the results of a survey with 300 customers responding to 11 questions using ratings that vary from 'strongly agree' to 'strongly disagree.' In FY 16, 100% of the scores improved or were equal to FY 15 numbers.

  18. PV Cell and Module Calibrations at NREL

    Energy Technology Data Exchange (ETDEWEB)

    Emery, Keith

    2012-10-22

    NREL has equipment to measure any conceivable cell or module technology. The lack of standards for low concentration modules complicates matters. Spectrally adjustable simulators are critical for more than three junctions. NREL's 10-channel fiber optic simulator has shown that the light can be set for each junction within 1% of what it would be under the reference spectrum for up to a five-junction cell. Uncertainty in module simulators dominated by spatial nonuniformity for calibration labs. Manufacturers can mitigate this error by using matched reference modules instead of cells.

  19. Field to fuel: developing sustainable biorefineries.

    Science.gov (United States)

    Jenkins, Robin; Alles, Carina

    2011-06-01

    Life-cycle assessment (LCA) can be used as a scientific decision support technique to quantify the environmental implications of various biorefinery process, feedstock, and integration options. The goal of DuPont's integrated corn biorefinery (ICBR) project, a cost-share project with the United States Department of Energy, was to demonstrate the feasibility of a cellulosic ethanol biorefinery concept. DuPont used LCA to guide research and development to the most sustainable cellulosic ethanol biorefinery design in its ICBR project and will continue to apply LCA in support of its ongoing effort with joint venture partners. Cellulosic ethanol is a biofuel which has the potential to provide a sustainable solution to the nation's growing concerns around energy supply and climate change. A successful biorefinery begins with sustainable removal of biomass from the field. Michigan State University (MSU) used LCA to estimate the environmental performance of corn grain, corn stover, and the corn cob portion of the stover, grown under various farming practices for several corn growing locations in the United States Corn Belt. In order to benchmark the future technology options for producing cellulosic ethanol with existing technologies, LCA results for fossil energy consumption and greenhouse gas (GHG) emissions are compared to alternative ethanol processes and conventional gasoline. Preliminary results show that the DuPont ICBR outperforms gasoline and other ethanol technologies in the life-cycle impact categories considered here.

  20. Downstream processing of Isochrysis galbana: a step towards microalgal biorefinery

    NARCIS (Netherlands)

    Gilbert-López, B.; Mendiola, J.A.; Fontecha, J.; Broek, van den L.A.M.; Sijtsma, L.; Cifuentes, A.; Herrero, M.; Ibáñez, E.

    2015-01-01

    An algae-based biorefinery relies on the efficient use of algae biomass through its fractionation of several valuable/bioactive compounds that can be used in industry. If this biorefinery includes green platforms as downstream processing technologies able to fulfill the requirements of green

  1. Waste Biorefinery: A New Paradigm for a Sustainable Bioelectro Economy.

    Science.gov (United States)

    Mohan, S Venkata; Butti, Sai Kishore; Amulya, K; Dahiya, Shikha; Modestra, J Annie

    2016-11-01

    A waste biorefinery is a means to valorize waste as a renewable feedstock to recover biobased materials and energy through sustainable biotechnology. This approach holistically integrates remediation and resource recovery. Here we discuss the various technologies employable to construct a waste biorefinery platform and its place in a biobased economy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Biomass supply chain optimisation for Organosolv-based biorefineries.

    Science.gov (United States)

    Giarola, Sara; Patel, Mayank; Shah, Nilay

    2014-05-01

    This work aims at providing a Mixed Integer Linear Programming modelling framework to help define planning strategies for the development of sustainable biorefineries. The up-scaling of an Organosolv biorefinery was addressed via optimisation of the whole system economics. Three real world case studies were addressed to show the high-level flexibility and wide applicability of the tool to model different biomass typologies (i.e. forest fellings, cereal residues and energy crops) and supply strategies. Model outcomes have revealed how supply chain optimisation techniques could help shed light on the development of sustainable biorefineries. Feedstock quality, quantity, temporal and geographical availability are crucial to determine biorefinery location and the cost-efficient way to supply the feedstock to the plant. Storage costs are relevant for biorefineries based on cereal stubble, while wood supply chains present dominant pretreatment operations costs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Algal Biomass for Bioenergy and Bioproducts Production in Biorefinery Concepts

    DEFF Research Database (Denmark)

    D'Este, Martina

    is becoming impellent. Macro- and microalgae have the ability to transform nutrients into valuable biomass. Being a good source of vitamins, minerals, lipids, proteins and pigments, they represent a promising source of various products. However these biomasses are still very little explored as biorefinery...... that can be obtained. In this thesis, micro- and macroalage were investigated as biorefinery feedstocks. The main aim of this work was developing different biorefinery strategies for the production of high value products, such as proteins or pigments, to be employed in the pharmaceutical or nutraceutical...... feedstocks. Biorefinery represents an important tool towards the development of a sustainable economy. Within the biorefinery framework several bioproducts, such as food, feed and biofuels, can be produced from biomass. The specific composition of the biomass feedstock determines the potential final product...

  4. 2015 NREL Photovoltaic Module Reliability Workshops

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-14

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  5. 2016 NREL Photovoltaic Module Reliability Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-07

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology - both critical goals for moving PV technologies deeper into the electricity marketplace.

  6. Waste biorefineries: Enabling circular economies in developing countries.

    Science.gov (United States)

    Nizami, A S; Rehan, M; Waqas, M; Naqvi, M; Ouda, O K M; Shahzad, K; Miandad, R; Khan, M Z; Syamsiro, M; Ismail, I M I; Pant, Deepak

    2017-10-01

    This paper aims to examine the potential of waste biorefineries in developing countries as a solution to current waste disposal problems and as facilities to produce fuels, power, heat, and value-added products. The waste in developing countries represents a significant source of biomass, recycled materials, chemicals, energy, and revenue if wisely managed and used as a potential feedstock in various biorefinery technologies such as fermentation, anaerobic digestion (AD), pyrolysis, incineration, and gasification. However, the selection or integration of biorefinery technologies in any developing country should be based on its waste characterization. Waste biorefineries if developed in developing countries could provide energy generation, land savings, new businesses and consequent job creation, savings of landfills costs, GHG emissions reduction, and savings of natural resources of land, soil, and groundwater. The challenges in route to successful implementation of biorefinery concept in the developing countries are also presented using life cycle assessment (LCA) studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Energy Systems Integration Partnerships: NREL + Panasonic

    Energy Technology Data Exchange (ETDEWEB)

    Berdahl, Sonja E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-09

    In collaboration with Panasonic Enterprise Solutions Company, Xcel Energy, land developer L.C. Fulenwider, and the City and County of Denver, NREL is developing a zero-energy transit-oriented campus at the Denver International Airport's Pena Station.

  8. Energy Systems Integration Partnerships: NREL + Giner

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-22

    This fact sheet highlights work done at the ESIF in partnership with Giner. Giner, a developer of proton-exchange membrane (PEM) technologies, has contracted with NREL to validate the performance of its large-scale PEM electrolyzer stacks. PEM electrolyzers work much like fuel cells run in reverse.

  9. Liquefaction of Biorefinery Lignin for Fuel Production

    DEFF Research Database (Denmark)

    Jensen, Anders

    Lignocellulosic biorefineries can be an important piece of the puzzle in fighting climate change. Present, biorefineries that produce ethanol from lignocellulose are challenged in working on market terms as the two product streams ethanol and lignin are low value products. The aim of this project...... has been to increase the value of the lignin stream. Recent regulations on shipping exhaust gasses in coastal waters dictate lower sulfur emissions which require ships to use low sulfur fuels for propulsion. This opens or expands a very large market for low sulfur fuels because a shift from...... traditional sulfur containing bunker fuel is needed. The lignin stream from lignocellulosic biorefineries could provide a source for the production of sulfur free fuels and this is what has been explored and demonstrated in this PhD project. The chemical reactions taking place in lignin during hydrothermal...

  10. IEA Bioenergy Task 42 - Countries report. IEA Bioenergy Task 42 on biorefineries: Co-production of fuels, chemicals, power and materials from biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cherubini, F.; Jungmeier, G.; Mandl, M. (Joanneum Research, Graz (Austria)) (and others)

    2010-07-01

    This report has been developed by the members of IEA Bioenergy Task 42 on Biorefinery: Co-production of Fuels, Chemicals, Power and Materials from Biomass (www.biorefinery.nl/ieabioenergy-task42). IEA Bioenergy is a collaborative network under the auspices of the International Energy Agency (IEA) to improve international cooperation and information exchange between national bioenergy RD and D programs. IEA Bioenergy Task 42 on Biorefinery covers a new and very broad biomass-related field, with a very large application potential, and deals with a variety of market sectors with many interested stakeholders, a large number of biomass conversion technologies, and integrated concepts of both biochemical and thermochemical processes. This report contains an overview of the biomass, bioenergy and biorefinery situation, and activities, in the Task 42 member countries: Austria, Canada, Denmark, France, Germany, Ireland, and the Netherlands. The overview includes: national bioenergy production, non-energetic biomass use, bioenergy related policy goals, national oil refineries, biofuels capacity for transport purposes, existing biorefinery industries, pilot and demo plants, and other activities of research and development (such as main national projects and stakeholders). Data are provided by National Task Leaders (NTLs), whose contact details are listed at the end of the report. (author)

  11. Knowledge management in a waste based biorefinery in the QbD paradigm.

    Science.gov (United States)

    Rathore, Anurag S; Chopda, Viki R; Gomes, James

    2016-09-01

    Shifting resource base from fossil feedstock to renewable raw materials for production of chemical products has opened up an area of novel applications of industrial biotechnology-based process tools. This review aims to provide a concise and focused discussion on recent advances in knowledge management to facilitate efficient and optimal operation of a biorefinery. Application of quality by design (QbD) and process analytical technology (PAT) as tools for knowledge creation and management at different levels has been highlighted. Role of process integration, government policies, knowledge exchange through collaboration, and use of databases and computational tools have also been touched upon. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Water-based woody biorefinery.

    Science.gov (United States)

    Amidon, Thomas E; Liu, Shijie

    2009-01-01

    The conversion of biomass into chemicals and energy is essential in order to sustain our present way of life. Fossil fuels are currently the predominant energy source, but fossil deposits are limited and not renewable. Biomass is a reliable potential source of materials, chemicals and energy that can be replenished to keep pace with our needs. A biorefinery is a concept for the collection of processes used to convert biomass into materials, chemicals and energy. The biorefinery is a "catch and release" method for using carbon that is beneficial to both the environment and the economy. In this study, we discuss three elements of a wood-based biorefinery, as proposed by the SUNY College of Environmental Science and Forestry (ESF): hot-water extraction, hydrolysis, and membrane separation/concentration. Hemicelluloses are the most easily separable main component of woody biomass and thus form the bulk of the extracts obtained by hot-water extraction of woody biomass. Hot-water extraction is an important step in the processes of woody biomass and product generation, replacing alternative costly pre-treatment methods. The hydrolysis of hemicelluloses produces 5-carbon sugars (mainly xylose), 6-carbon sugars (mainly glucose and mannose), and acetic acid. The use of nano-filtration membranes is an efficient technology that can be employed to fractionate hot-water extracts and wood hydrolysate. The residual solid mass after hot-water extraction has a higher energy content and contains fewer easily degradable components. This allows for more efficient subsequent processing to convert cellulose and lignin into conventional products.

  13. Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery

    Directory of Open Access Journals (Sweden)

    Rahul Vijay Kapoore

    2018-02-01

    Full Text Available The commercial reality of bioactive compounds and oil production from microalgal species is constrained by the high cost of production. Downstream processing, which includes harvesting and extraction, can account for 70–80% of the total cost of production. Consequently, from an economic perspective extraction technologies need to be improved. Microalgal cells are difficult to disrupt due to polymers within their cell wall such as algaenan and sporopollenin. Consequently, solvents and disruption devices are required to obtain products of interest from within the cells. Conventional techniques used for cell disruption and extraction are expensive and are often hindered by low efficiencies. Microwave-assisted extraction offers a possibility for extraction of biochemical components including lipids, pigments, carbohydrates, vitamins and proteins, individually and as part of a biorefinery. Microwave technology has advanced since its use in the 1970s. It can cut down working times and result in higher yields and purity of products. In this review, the ability and challenges in using microwave technology are discussed for the extraction of bioactive products individually and as part of a biorefinery approach.

  14. Numerical simulation of flow around the NREL S826 airfoil at moderate Reynolds number using delayed detached Eddy simulation (DDES)

    Science.gov (United States)

    Prytz, Erik R.; Huuse, Øyvind; Müller, Bernhard; Bartl, Jan; Sætran, Lars Roar

    2017-07-01

    Turbulent flow at Reynolds numbers 5 . 104 to 106 around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with the wind tunnel walls considered as slip walls. The subgrid turbulent kinetic energy is used to model the sub-grid scale in the large eddy simulation (LES) part of DDES. Different Reynoldsaveraged Navier-Stokes (RANS) models are tested in ANSYS Fluent. The realizable k - ∈ model as the RANS model in DDES is found to yield the best agreement of simulated pressure distributions with the experimental data both from NTNU and the Technical University of Denmark (DTU), the latter for a shorter spanwise domain. The present DDES results are in excellent agreement with LES results from DTU. Since DDES requires much fewer cells in the RANS region near the wing surface than LES, DDES is computationally much more efficient than LES. Whereas DDES is able to predict lift and drag in close agreement with experiment up to stall, pure 2D RANS simulations fail near stall. After testing different numerical settings, time step sizes and grids for DDES, a Reynolds number study is conducted. Near stall, separated flow structures, so-called stall cells, are observed in the DDES results.

  15. Numerical Predictions of Wind Turbine Power and Aerodynamic Loads for the NREL Phase II and IV Combined Experiment Rotor

    Science.gov (United States)

    Duque, Earl P. N.; Johnson, Wayne; vanDam, C. P.; Chao, David D.; Cortes, Regina; Yee, Karen

    1999-01-01

    Accurate, reliable and robust numerical predictions of wind turbine rotor power remain a challenge to the wind energy industry. The literature reports various methods that compare predictions to experiments. The methods vary from Blade Element Momentum Theory (BEM), Vortex Lattice (VL), to variants of Reynolds-averaged Navier-Stokes (RaNS). The BEM and VL methods consistently show discrepancies in predicting rotor power at higher wind speeds mainly due to inadequacies with inboard stall and stall delay models. The RaNS methodologies show promise in predicting blade stall. However, inaccurate rotor vortex wake convection, boundary layer turbulence modeling and grid resolution has limited their accuracy. In addition, the inherently unsteady stalled flow conditions become computationally expensive for even the best endowed research labs. Although numerical power predictions have been compared to experiment. The availability of good wind turbine data sufficient for code validation experimental data that has been extracted from the IEA Annex XIV download site for the NREL Combined Experiment phase II and phase IV rotor. In addition, the comparisons will show data that has been further reduced into steady wind and zero yaw conditions suitable for comparisons to "steady wind" rotor power predictions. In summary, the paper will present and discuss the capabilities and limitations of the three numerical methods and make available a database of experimental data suitable to help other numerical methods practitioners validate their own work.

  16. Sustainable NREL Biennial Report, FY 2012 - 2013 (Management Report)

    Energy Technology Data Exchange (ETDEWEB)

    Slovensky, Michelle [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-03-01

    NREL's Sustainability Program plays a vital role bridging research and operations - integrating energy efficiency, water and material resource conservation and cultural change - adding depth in the fulfillment of NREL's mission. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called "The Voice of NREL" gives an inside perspective of how to become more sustainable while at the same time addressing climate change.

  17. NREL Leads Energy Systems Integration, Continuum Magazine: Issue 4 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2013-04-01

    Continuum Magazine showcases NREL's latest and most impactful clean energy innovations. This issue, 'NREL Leads Energy Systems Integration' explores the discipline of energy systems integration, in particular the role of the laboratory's new, one-of-a-kind Energy System Integration Facility. NREL scientists, engineers, and analysts deeply understand the fundamental science and technologies underpinning major energy producing and consuming systems, as well as the transmission infrastructure and communications and data networks required to integrate energy systems at all scales.

  18. Recent trends on techno-economic assessment (TEA of sugarcane biorefineries

    Directory of Open Access Journals (Sweden)

    Mohsen Ali Mandegari

    2017-09-01

    Full Text Available Sustainability challenges, e.g., climate change, resource depletion, and expanding populations, have triggered a swift move towards a circular bio-economy which is expected to evolve progressively in the coming decades. However, the transition from a fossil fuel-based economy to a bio-based economy requires the exploitation of scientific innovations and step changes in the infrastructure of chemical industry. Biorefineries have been extensively investigated for biofuel production from first and second generation feedstocks, whereas some research activities have been conducted on production of biochemical and biopolymers from renewable resources. Techno-economic evaluation of diverse technologies for production of biofuels and biochemical is a crucial step for decision making in the development of bio-economy. This contribution focuses on the economic studies carried out on biorefineries converting sugarcane bagasse, due to its availability and importance in the South African context, into value-added products. Recent studies on biofuel production via biochemical pathway, e.g., ethanol, butanol, or thermochemical pathway, e.g., methanol and bio jet fuel as well as production of biochemicals with high market demands and diverse applications such as lactic acid, succinic acid, and xylitol have been briefly reviewed. In addition, an overview on the production of biopolymers such as polyl-lactic acid and bio-based monomers, i.e., butanediol, from sugarcane bagasse is reported.

  19. Top chemical opportunities from carbohydrate biomass: a chemist's view of the Biorefinery.

    Science.gov (United States)

    Dusselier, Michiel; Mascal, Mark; Sels, Bert F

    2014-01-01

    Cheap fossil oil resources are becoming depleted and crude oil prices are rising. In this context, alternatives to fossil fuel-derived carbon are examined in an effort to improve the security of carbon resources through the development of novel technologies for the production of chemicals, fuels, and materials from renewable feedstocks such as biomass. The general concept unifying the conversion processes for raw biomass is that of the biorefinery, which integrates biofuels with a selection of pivot points towards value-added chemical end products via so-called "platform chemicals". While the concept of biorefining is not new, now more than ever there is the motivation to investigate its true potential for the production of carbon-based products. A variety of renewable chemicals have been proposed by many research groups, many of them being categorized as drop-ins, while others are novel chemicals with the potential to displace petrochemicals across several markets. To be competitive with petrochemicals, carbohydrate-derived products should have advantageous chemical properties that can be profitably exploited, and/or their production should offer cost-effective benefits. The production of drop-ins will likely proceed in short term since the markets are familiar, while the commercial introduction of novel chemicals takes longer and demands more technological and marketing effort.Rather than describing elaborate catalytic routes and giving exhaustive lists of reactions, a large part of this review is devoted to creating a guideline for the selection of the most promising (platform) chemicals derived via chemical-catalytic reaction routes from lignocellulosic biomass. The major rationale behind our recommendations is a maximum conservation of functionality, alongside a high atom economy. Nature provides us with complex molecules like cellulose and hemicellulose, and it should be possible to transform them into chemical products while maintaining aspects of their

  20. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review

    DEFF Research Database (Denmark)

    Jensen, Erik Steen; Peoples, Mark B.; Boddey, Robert M.

    2012-01-01

    it is the high fossil energy use in the synthesis, transport, and application of N fertilizers that often negates much of the net C benefits of many other bioenergy sources. The use of legume biomass for biorefineries needs careful thought as there will be significant trade-offs with the current role of legumes...... of climate change by reducing fossil fuel use or by providing feedstock for the emerging biobased economies where fossil sources of energy and industrial raw materials are replaced in part by sustainable and renewable biomass resources. The aim of this review was to collate the current knowledge regarding...... for energy in the face of dwindling reserves of fossil energy and uncertainties about future reliability of supply. Legumes deliver several important services to societies. They provide important sources of oil, fiber, and protein-rich food and feed while supplying nitrogen (N) to agro-ecosystems via...

  1. Development of hemicelluloses biorefineries for integration into kraft pulp mills

    Science.gov (United States)

    Ajao, Olumoye Abiodun

    The development and wide spread acceptance of production facilities for biofuels, biochemicals and biomaterials is an important condition for reducing reliance on limited fossil resources and transitioning towards a global biobased economy. Pulp and paper mills in North America are confronted with high energy prices, high production costs and intense competition from emerging economies and low demand for traditional products. Integrated forest biorefineries (IFBR) have been proposed as a mean to diversify their product streams, increase their revenue and become more sustainable. This is feasible because they have access to forest biomass, an established feedstock supply chain and wood processing experience. In addition, the integration of a biorefinery process that can share existing infrastructure and utilities on the site of pulp mill would significantly lower investment cost and associated risks. Kraft pulping mills are promising receptor processes for a biorefinery because they either possess a prehydrolysis step for extracting hemicelluloses sugars prior to wood pulping or it can be added by retrofit. The extracted hemicelluloses could be subsequently transformed into a wide range of value added products for the receptor mill. To successfully implement hemicelluloses biorefinery, novel processes that are technically and economically feasible are required. It is necessary to identify products that would be profitable, develop processes that are energy efficient and the receptor mill should be able to supply the energy, chemicals and material demands of the biorefinery unit. The objective of this thesis is to develop energy efficient and economically viable hemicelluloses biorefineries for integration into a Kraft pulping process. A dissolving pulp mill was the reference case study. The transformation of hemicellulosic sugars via a chemical and biochemical conversion pathway, with furfural and ethanol as representative products for each pathway was studied. In

  2. Investigation of uncertainties associated with the production of n-butanol through ethanol catalysis in sugarcane biorefineries.

    Science.gov (United States)

    Pereira, Lucas G; Dias, Marina O S; MacLean, Heather L; Bonomi, Antonio

    2015-08-01

    This study evaluated the viability of n-butanol production integrated within a first and second generation sugarcane biorefinery. The evaluation included a deterministic analysis as well as a stochastic approach, the latter using Monte Carlo simulation. Results were promising for n-butanol production in terms of revenues per tonne of processed sugarcane, but discouraging with respect to internal rate of return (IRR). The uncertainty analysis determined there was high risk involved in producing n-butanol and co-products from ethanol catalysis. It is unlikely that these products and associated production route will be financially attractive in the short term without lower investment costs, supportive public policies and tax incentives coupled with biofuels' production strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Biorefinery of proteins from rubber plantation residues

    NARCIS (Netherlands)

    Widyarani, R.

    2016-01-01

    Biorefinery of rubber tree side streams could add economic value and income for farmers, who already grow the trees for latex production. The objective of this research was to design a process for the recovery of proteinaceous fractions from rubber tree. The aimed applications were expected to be

  4. 76 FR 8403 - Biorefinery Assistance Guaranteed Loans

    Science.gov (United States)

    2011-02-14

    ... Agency will evaluate the lender's eligibility on a case- by-case basis given the risk of loss posed by... program requirements are not conducive to lenders, particularly in light of the inherent risks associated... identified potential benefits and costs of the Biorefinery Assistance Guaranteed Loan Program to lenders...

  5. Biorefinery and Hydrogen Fuel Cell Research

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Das; Thomas T. Adams; Mark A. Eiteman; John Stickney; Joy Doran Peterson; James R. Kastner; Sudhagar Mani; Ryan Adolphson

    2012-06-12

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [1] establishment of pyrolysis processing systems and characterization of the product oils for fuel applications, including engine testing of a preferred product and its pro forma economic analysis; [2] extraction of sugars through a novel hotwater extaction process, and the development of levoglucosan (a pyrolysis BioOil intermediate); [3] identification and testing of the use of biochar, the coproduct from pyrolysis, for soil applications; [4] developments in methods of atomic layer epitaxy (for efficient development of coatings as in fuel cells); [5] advancement in fermentation of lignocellulosics, [6] development of algal biomass as a potential substrate for the biorefinery, and [7] development of catalysts from coproducts. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the pyrolysis biooil based diesel fuel supplement, sugar extraction from lignocelluose, use of biochar, production of algal biomass in wastewaters, and the development of catalysts. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The various coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

  6. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using combined biochemical and thermochemical processes in a multi-stage biorefinery concept

    Science.gov (United States)

    The environmental impact of agricultural waste from processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the...

  7. Microalgae biorefinery: High value products perspectives.

    Science.gov (United States)

    Chew, Kit Wayne; Yap, Jing Ying; Show, Pau Loke; Suan, Ng Hui; Juan, Joon Ching; Ling, Tau Chuan; Lee, Duu-Jong; Chang, Jo-Shu

    2017-04-01

    Microalgae have received much interest as a biofuel feedstock in response to the uprising energy crisis, climate change and depletion of natural sources. Development of microalgal biofuels from microalgae does not satisfy the economic feasibility of overwhelming capital investments and operations. Hence, high-value co-products have been produced through the extraction of a fraction of algae to improve the economics of a microalgae biorefinery. Examples of these high-value products are pigments, proteins, lipids, carbohydrates, vitamins and anti-oxidants, with applications in cosmetics, nutritional and pharmaceuticals industries. To promote the sustainability of this process, an innovative microalgae biorefinery structure is implemented through the production of multiple products in the form of high value products and biofuel. This review presents the current challenges in the extraction of high value products from microalgae and its integration in the biorefinery. The economic potential assessment of microalgae biorefinery was evaluated to highlight the feasibility of the process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Biorefinery: from biomass to chemicals and fuels

    National Research Council Canada - National Science Library

    Aresta, M; Dibenedetto, Angela; Dumeignil, Franck

    2012-01-01

    ... to end-user requirements) of advanced biorefineries. This concept attempts to integrate the different scientific and industrial communities with the expectation to achieve a breakthrough beyond the "business as usual" scenario. DG Research has been frequently requested to work in closer coordination between its different Themes in order to better answer ...

  9. 2009 Integrated Biorefinery Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s Integrated Biorefinery (IBR) platform review meeting, held on February 18–19, 2009, at the Westin National Harbor, National Harbor, Maryland.

  10. Location-dependent optimal biorefinery synthesis

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona; Woodley, John M.; Gani, Rafiqul

    2017-01-01

    In this paper, we present an extended framework for synthesis of biorefinery networks. The extension of the framework responds to the needs of: automatically generating problem-specific superstructures from an in-house database in an efficient and reliable way, as well as obtaining and analysing...

  11. Biorefinery and Carbon Cycling Research Project

    Energy Technology Data Exchange (ETDEWEB)

    Das, K. C., Adams; Thomas, T; Eiteman, Mark A; Kastner, James R; Mani, Sudhagar; Adolphson, Ryan

    2012-06-08

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [ 1] pretreatment of biomass to enhance quality of products from thermochemical conversion; [2] characterization of and development of coproduct uses; [3] advancement in fermentation of lignocellulosics and particularly C5 and C6 sugars simultaneously, and [ 4] development of algal biomass as a potential substrate for the biorefinery. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the thermochemical product quality in the form of lower tar production, simultaneous of use of multiple sugars in fermentation, use ofbiochar in environmental (ammonia adsorption) and agricultural applications, and production of algal biomass in wastewaters. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

  12. Grid Integration Science, NREL Power Systems Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-25

    This report highlights journal articles published in 2016 by researchers in the Power Systems Engineering Center. NREL's Power Systems Engineering Center published 47 journal and magazine articles in the past year, highlighting recent research in grid modernization.

  13. Annual Sustainability Report FY 2014. Incorporates NREL Site Sustainability Plan

    Energy Technology Data Exchange (ETDEWEB)

    Rukavina, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-07-01

    NREL's Sustainability Program is responsible for upholding all executive orders, federal regulations, U.S. Department of Energy (DOE) orders, and goals related to sustainable and resilient facility operations. But NREL continues to expand sustainable practices above and beyond the laboratory's regulations and requirements to ensure that the laboratory fulfills its mission into the future, leaves the smallest possible legacy footprint, and models sustainable operations and behaviors on national, regional, and local levels. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called 'Sustaining NREL's Future Through Integration' provides insight into how NREL is successfully expanding the adoption of renewable energy technologies through integration.

  14. NREL PV Working With Industry Newsletter: 4th Quarter 1999

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.; Poole, L.

    2000-03-03

    NREL PV Working With Industry is a quarterly newsletter devoted to the research, development, and deployment performed by NREL staff in concert with their industry and university partners. The Fourth Quarter, 1999 issue, titled ''Knowledge is PV Power'' focuses on the contribution of the university-based subcontractors to the PV Program. The editorialist is Robert Birkmire, Director of the Institute of Energy Conversion, which is affiliated with the University of Delaware.

  15. Recovery Act : Heterogeneous Feed Biorefinery Project

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, Richard [Enerkem Mississippi Biofuels LLC, Pontotoc, MS (United States)

    2015-03-15

    To overcome the hurdles associated with introducing a new technology, Enerkem applied to the US DOE for grant assistance with its Pontotoc, Mississippi, biorefinery under the DOE’s Demonstration of Integrated Biorefinery Operations FOA. Consistent with Enerkem’s strategic approach, the project proposed uses post sorted municipal solid waste blended with other forest residue. The proposed biorefinery is to be located within the boundaries of a working landfill, thus simplifying many aspects of environmental permitting while also reducing feedstock acquisition and transportation costs. An economic impact analysis was conducted using an adaptation of the US Department of Energy’s JEDI (Jobs and Economic Development Impact) model for an ethanol-producing biorefinery. The JEDI model, which does not have a thermochemical processing option, had to be configured to reflect a biomass feedstock and was thus adapted by Enerkem to account for the unique feedstock requirements and operations of the Project. According to this model, development, construction, and 2 years of operation of the biorefinery require an investment of approximately $140 million. Also, a construction period of 18 months will create significant direct and indirect employment. Indirect employment includes steel manufacturers, construction materials manufacturers, material shipping, equipment manufacturers and fabrication, etc. During the construction phase of the Project, 210 total jobs are expected to be created, including 145 direct jobs and 72 indirect or induced jobs. During the operating period, 131 jobs would be created, 95 of which are direct. It is anticipated that the project will create at least 10 new jobs (included in the above figures and in addition to the JEDI data) in the sorting and recycling sector, since the project will require operations in sorting MSW since valuable ferrous, nonferrous and recyclable plastic materials will be sorted from MSW as part of the process that isolates

  16. Chemistry in forest biorefineries II - BIORAFF II

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M. (Aabo Akademi, Turku (Finland). Process Chemistry Centre), Email: mhupa@abo.fi; Auer, M. (Aabo Akademi, Turku (Finland). Process Chemistry Centre), Email: mauer@abo.fi

    2010-10-15

    The biorefinery concept may be compared to an oil refinery and petrochemical plant, where fuels and numerous intermediates are produced for further processing into high-value and speciality materials. In biorefineries, the raw material instead of mineral oil is biobased material. Biorefinery development at the US and European level mostly covers the use of annual crops and other bio-based materials. However, in this project focus is on non-food materials primarily in industrial pulp and paper processes and this project is limited to forest-based biorefineries. The aim of the project is also to preserve the molecular structures created by the nature as much as possible, to explore new separation and purification methods and look at new applications in the areas such as: functional food, nutritional additives, functional additives in paper making, antioxidants, new biobased materials and biobased energy. As the area, in spite of efforts to limit it, is very large, we have selected to focus on a limited number of concretised projects, which to our knowledge are complementary with other efforts for promoting biorefinery concepts. As highlights about promising results are studies on extraction of wood and derivatisations of hemicelluloses. The goals here are twofold; we are looking for the additional functionalities for hemicelluloses and searching for new applications. Hemicelluloses in many applications would benefit from the modification of the structure, especially to improve compatibility and solubility in some applications. Research on metals in trees and fuels, release of elements in combustion, pyrolysis and sorption studies have produced new knowledge. (orig.)

  17. Chemistry in forest biorefineries II - BIORAFF II

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Auer, M. (Aabo Akademi University, Turku (Finland), Process Chemistry Centre), e-mail: mhupa@abo.fi, e-mail: mauer@abo.fi

    2011-11-15

    The biorefinery concept may be compared to an oil refinery and petrochemical plant, where fuels and numerous intermediates are produced for further processing into high-value and speciality materials. In biorefineries, the raw material instead of mineral oil is bio-based material. Biorefinery development at the US and European level mostly covers the use of annual crops and other bio-based materials. However, in this project focus is on non-food materials primarily in industrial pulp and paper processes and this project is limited to forest-based biorefineries. The aim of the project is also to preserve the molecular structures created by the nature as much as possible, to explore new separation and purification methods and look at new applications in the areas such as: functional food, nutritional additives, functional additives in paper making, antioxidants, new biobased materials and biobased energy. As the area, in spite of efforts to limit it, is very large, we have selected to focus on a limited number of concretised projects, which to our knowledge are complementary with other efforts for promoting biorefinery concepts. As highlights about promising results are studies on extraction of wood and derivatisations of hemicelluloses. The goals here are twofold; we are looking for the additional functionalities for hemicelluloses and search of new applications. Hemicelluloses in many applications would benefit from the modification of the structure, especially to improve compatibility and solubility in some applications. Research on metals in trees and fuels, release of elements in combustion, pyrolysis and sorption studies have produced new knowledge. (orig.)

  18. Energy Systems Integration Partnerships: NREL + Hawaiian Electric

    Energy Technology Data Exchange (ETDEWEB)

    2017-05-23

    NREL and the Hawaiian Electric Companies are collaborating with the solar and inverter industries to implement advanced inverters, allowing greater solar photovoltaic (PV) penetrations that will support the State of Hawaii's goal to achieve 100% renewable energy by 2045. Advanced inverters will help maintain stable grid operations by riding through grid disturbances when the PV output is needed, operating autonomously to smooth voltage fluctuations, and coordinating the start-up and reconnection of PV systems and other distributed energy resources.

  19. Research and development needs for desiccant cooling technology 1992--1997. (Supplement to the NREL report, Desiccant Cooling: State-of-the-Art Assessment)

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A A

    1992-12-01

    This report is a supplement to Desiccant Cooling: State-of-the-Art Assessment (NREL/TP-254-4147, DE93000013). In this supplement document we have described a detailed program assuming sufficient funding to implement the R&D activities needed. Desiccant dehumidification is a mature technology for industrial applications, and in recent years the technology has been used for air conditioning a number of institutional and commercial buildings. Our proposal is based on argumentative discussions at various national meetings with leaders of the technology. The goal is the penetration of the broad air conditioning market. This work is funded by the Buildings technology Office of the US Department of Energy.

  20. FY2011 Annual Report for NREL Energy Storage Projects

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.; Ban, C.; Dillon, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Lee, K. J.; Long, D.; Neubauer, J.; Santhangopalan, S.; Smith, K.

    2012-04-01

    This report describes the work of NREL's Energy Storage group for FY2011. The National Renewable Energy Laboratory (NREL) supports energy storage R&D under the Vehicle Technologies Program at the U.S. Department of Energy (DOE). The DOE Energy Storage program's charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are: (1) Advanced Battery Development [through the United States Advanced Battery Consortium (USABC)]; (2) Testing, Design and Analysis (TDA); (3) Applied Battery Research (ABR); and (4) Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT). In FY11, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL's R&D projects in FY11 in support of the USABC, TDA, ABR, and BATT program elements. In addition, we continued the enhancement of NREL's battery testing facilities funded through the American Reinvestment and Recovery Act (ARRA) of 2009. The FY11 projects under NREL's Energy Storage R&D program are briefly described below. Each of these is discussed in depth in the main sections of this report.

  1. Energy Systems Integration Collaborations: NREL + EPRI

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-03

    This fact sheet highlights work done at the ESIF in collaboration with EPRI. NREL is collaborating with the Electric Power Research Institute (EPRI) to validate the performance of a Spirae-developed advanced microgrid controller capable of managing 1-10 megawatts of aggregated generation capacity. The aim is to develop a commercially viable and flexible microgrid controller, easily adapted to different end-user applications and to a range of electric grid characteristics.

  2. NREL Photovoltaic Program FY 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    1997-08-01

    This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

  3. Options Impacting the Electric System of the Future (ESF); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Cory, Karlynn

    2015-08-10

    As utilities are faced with adapting to new technologies, technology and policy due diligence are necessary to ensure the development of a future grid that brings greater value to utilities and their consumers. This presentation explores the different kinds of future directions the power industry could consider to create, discussing key components necessary for success. It will also discuss the practical application and possible strategies for utilities and innovators to implement smart technologies that will enable an ultimate ‘intelligent’ grid capable of two-way communication, interoperability, and greater efficiency and system resiliency.

  4. NREL Benchmarks the Installed Cost of Residential Solar Photovoltaics with Energy Storage for the First Time

    Energy Technology Data Exchange (ETDEWEB)

    2017-06-13

    Fact sheet summarizing technical report TP-7A40-67474. New National Renewable Energy Laboratory research fills a gap in the existing knowledge about barriers to PV-plus-storage systems by providing detailed component- and system-level installed cost benchmarks for systems in the first quarter of 2016. The report is meant to help technology manufacturers, installers, and other stakeholders identify cost-reduction opportunities and inform decision makers about regulatory, policy, and market characteristics that impede PV-plus-storage deployment.

  5. Techno-economic assessment of a wood-based biorefinery concept for the production of polymer-grade ethylene, organosolv lignin and fuel.

    Science.gov (United States)

    Nitzsche, Roy; Budzinski, Maik; Gröngröft, Arne

    2016-01-01

    Lignocellulose biorefineries are distinguished by an explicitly integrative, multi-functional concept that transforms biomass into multiple products, using a variety of conversion and separation processes. This study focuses on the technical design and economic evaluation of a lignocellulose biorefinery, that converts 400,000tDM/a (≙250MW) of beech wood into chemicals and fuel. A model was simulated with Aspen Plus® including the process steps pre-treatment, enzymatic hydrolysis, alcoholic fermentation, dehydration and biogas generation and upgrading. Mass and energy balances showed that 61,600t/a polymer-grade ethylene, 58,520tDM/a organosolv lignin, 38,400t/a biomethane and 90,800tDM/a hydrolysis lignin can be produced with a total energy efficiency of 87.1%. A discounted cash flow analysis indicated that the heat integrated biorefinery concept is not yet profitable. However, the economic results are greatly sensitive regarding various assumptions, in particular in terms of the prices for beech wood, ethylene and organosolv lignin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Kinetic and Modeling Investigation to Provide Design Guidelines for the NREL Dilute-Acid Process Aimed at Total Hydrolysis/Fractionation of Lignocellulosic Biomass: July 1998

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. Y.; Iyer, P.; Xiang, Q.; Hayes, J.

    2004-08-01

    Following up on previous work, subcontractor investigated three aspects of using NREL ''pretreatment'' technology for total hydrolysis (cellulose as well as hemicellulose) of biomass. Whereas historic hydrolysis of biomass used either dilute acid or concentrated acid technology for hydrolysis of both hemicellulose and cellulose, NREL has been pursuing very dilute acid hydrolysis of hemicellulose followed by enzymatic hydrolysis of cellulose. NREL's countercurrent shrinking-bed reactor design for hemicellulose hydrolysis (pretreatment) has, however, shown promise for total hydrolysis. For the first task, subcontractor developed a mathematical model of the countercurrent shrinking bed reactor operation and, using yellow poplar sawdust as a feedstock, analyzed the effect of: initial solid feeding rate, temperature, acid concentration, acid flow rate, Peclet number (a measure of backmixing in liquid flow), and bed shrinking. For the second task, subcontractor used laboratory trials, with yellow poplar sawdust and 0.07 wt% sulfuric acid at various temperatures, to verify the hydrolysis of cellulose to glucose (desired) and decomposition of glucose (undesired) and determine appropriate parameters for use in kinetic models. Unlike cellulose and hemicellulose, lignins, the third major component of biomass, are not carbohydrates that can be broken down into component sugars. They are, however, aromatic complex amorphous phenolic polymers that can likely be converted into low-molecular weight compounds suitable for production of fuels and chemicals. Oxidative degradation is one pathway for such conversion and hydrogen peroxide would be an attractive reagent for this, as it would leave no residuals. For the third task, subcontractor reacted lignin with hydrogen peroxide under various conditions and analyzed the resulting product mix.

  7. Enzyme and biochemical producing fungi

    DEFF Research Database (Denmark)

    Lübeck, Peter Stephensen; Lübeck, Mette; Nilsson, Lena

    2010-01-01

    We are developing a biorefinery concept for biological production of chemicals, drugs, feed and fuels using plant biomass as raw material in well-defined cell-factories. Among the important goals is the discovery of new biocatalysts for production of enzymes, biochemicals and fuels and already our...... screening of a large collection of fungal strains isolated from natural habitats have resulted in identification of strains with high production of hydrolytic enzymes and excretion of organic acids. Our research focuses on creating a fungal platform based on synthetic biology for developing new cell...

  8. NREL Helps Apply Renewable Energy and Energy Efficiency Technologies Worldwide (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-04-01

    The National Renewable Energy Laboratory (NREL) applies its technical expertise and capabilities to promote the use of renewable energy (RE) and energy efficiency (EE) technologies throughout the world. NREL's international work spans our full range of capabilities, which include three primary areas of expertise: 1. Analysis - NREL provides technology-neutral information, global and regional assessments and decision tools, and expert advice. 2. Research and Development - NREL conducts collaborative research and development (R&D) and shares methods and results with leading research institutions throughout the world. 3. Deployment/Commercialization - NREL teams with private industry, other countries, and international institutions to invest in RE and EE technologies. This fact sheet highlights NREL's international multilateral partnerships, bilateral partnerships, climate and environmental initiatives, and energy assessments and resources.

  9. Serum Biochemical Phenotypes in the Domestic Dog.

    Directory of Open Access Journals (Sweden)

    Yu-Mei Chang

    Full Text Available The serum or plasma biochemical profile is essential in the diagnosis and monitoring of systemic disease in veterinary medicine, but current reference intervals typically take no account of breed-specific differences. Breed-specific hematological phenotypes have been documented in the domestic dog, but little has been published on serum biochemical phenotypes in this species. Serum biochemical profiles of dogs in which all measurements fell within the existing reference intervals were retrieved from a large veterinary database. Serum biochemical profiles from 3045 dogs were retrieved, of which 1495 had an accompanying normal glucose concentration. Sixty pure breeds plus a mixed breed control group were represented by at least 10 individuals. All analytes, except for sodium, chloride and glucose, showed variation with age. Total protein, globulin, potassium, chloride, creatinine, cholesterol, total bilirubin, ALT, CK, amylase, and lipase varied between sexes. Neutering status significantly impacted all analytes except albumin, sodium, calcium, urea, and glucose. Principal component analysis of serum biochemical data revealed 36 pure breeds with distinctive phenotypes. Furthermore, comparative analysis identified 23 breeds with significant differences from the mixed breed group in all biochemical analytes except urea and glucose. Eighteen breeds were identified by both principal component and comparative analysis. Tentative reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis and represented by at least 120 individuals. This is the first large-scale analysis of breed-specific serum biochemical phenotypes in the domestic dog and highlights potential genetic components of biochemical traits in this species.

  10. Investigation of the NREL NASA/Ames Wind Turbine Aerodynamics Database

    Energy Technology Data Exchange (ETDEWEB)

    Aahlund, Karin [Swedish Defence Research Agency, Stockholm (Sweden)

    2006-06-15

    The original purpose of the project was to compare two-dimensional and three-dimensional behaviour of aerodynamic coefficients on wind turbines. Because of missing information in the database, the angle of attack distribution (AD) must first be calculated. The probes that were attached to the leading edge on one of the two blades were expected to lead to the AD. This was shown to be a difficult task. Three different attempts were made to calculate the AD. Since low angles of attack follow two-dimensional patterns, the AD could be calculated. The interesting area at high angles of attack, where the three-dimensional effects are strong, could not be evaluated. For all similar experiments, the velocity of the air that passes through the turbine must be measured. Then the AD along a blade can easily be calculated.

  11. Overview of the Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Bush, Brian; Penev, Michael

    2015-05-12

    This presentation provides an introduction to the Hydrogen Financial Analysis Scenario Tool (H2FAST) and includes an overview of each of the three versions of H2FAST: the Web tool, the Excel spreadsheet version, and the beta version of the H2FAST Business Case Scenario tool.

  12. NedWind 25 Blade Testing at NREL for the European Standards Measurement and Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Larwood, S.; Musial, W.; Freebury, G.; Beattie, A.G.

    2001-04-19

    In the mid-90s the European community initiated the Standards, Measurements, and Testing (SMT) program to harmonize testing and measurement procedures in several industries. Within the program, a project was carried out called the European Wind Turbine Testing Procedure Development. The second part of that project, called Blade Test Methods and Techniques, included the United States and was devised to help blade-testing laboratories harmonize their testing methods. This report provides the results of those tests conducted by the National Renewable Energy Laboratory.

  13. User`s Guide for the NREL Force and Loads Analysis Program. Version 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A D

    1992-08-01

    The following report gives the reader an overview of and instructions on the proper use of the National Renewable Energy Laboratory Force and Loads Analysis Program (FLAP, version 2.2). It is intended as a tool for prediction of rotor and blade loads and response for two- or three-bladed rigid hub wind turbines. The effects of turbulence are accounted for. The objectives of the report are to give an overview of the code and also show the methods of data input and correct code execution steps in order to model an example two-bladed rigid hub turbine. A large portion of the discussion (Sections 6.0, 7.0, and 8.0) is devoted to the subject of inputting and running the code for wind turbulence effects. The ability to include turbulent wind effects is perhaps the biggest change in the code since the release of FLAP version 2.01 in 1988. This report is intended to be a user`s guide. It does not contain a theoretical discussion on equations of motion, assumptions, underlying theory, etc. It is intended to be used in conjunction with Wright, Buhl, and Thresher (1988).

  14. NREL preprints for the photovoltaic specialists conference of IEEE twenty-five

    Energy Technology Data Exchange (ETDEWEB)

    Gwinner, D. [ed.

    1996-05-01

    This volume contains 40 papers prepared for presentation at the conference. Topics include: material properties, fabrication of solar cells, thermophotovoltaics, performance efficiency of photovoltaic cells, gettering procedures, market development, and photovoltaic power supplies for remote areas. Materials for solar cells include: Si, CuInSe{sub 2}, CuInGaSe{sub 2}, GaInP, GaAs, CdTe, and CdS. Papers have been processed separately for inclusion on the data base.

  15. Characterisation of Authentic Lignin Biorefinery Samples by Fourier Transform Infrared Spectroscopy and Determination of the Chemical Formula for Lignin

    DEFF Research Database (Denmark)

    Le, Duy Michael; Damgaard Nielsen, Anders; Sørensen, Hanne

    2017-01-01

    samples in situ with no prior purification and minimal sample preparation. Lignin chemical formulas and lignin Fourier transform infrared (FTIR) spectra were extracted from mixed spectra by filtering out signals from residual carbohydrates and minerals. From estimations of C, H and O and adjustment...... for cellulose and hemicelluloses contents, the average chemical formula of lignin was found to be C9H10.2O3.4 with slight variations depending on the biomass feedstock and processing conditions (between C9H9.5O2.8 and C9H11.1O3.6). Extracted FTIR lignin spectra showed many of the same characteristic peaks...... as organosolv and kraft lignin used as benchmark samples. Some variations in the lignin spectra of biorefinery lignin residue samples were found depending on biomass feedstock (wheat straw, corn stover or poplar) and on pretreatment severity, especially in the absorbance of bands at 1267 and 1032 cm−1 relative...

  16. Critical analysis of emerging forest biorefinery (FBR) technologies for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J.; Janssen, M.; Chambost, V.; Stuart, P. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Chimique. Design Engineering Chair in Process Integration

    2010-05-15

    This article provided a literature review of emerging technologies for ethanol production in Canada. A multi-criteria decision making (MCDM) panel was used to weigh critical metrics for evaluating the potential of emerging forest biorefinery technologies for bio-ethanol production. The 3-step methodology identified key factors for evaluating technology pathways. Key factors were applied to a group of selected technologies in order to collect data. All previous criteria were weighted through the MCDM panel in order to rank the technologies, which included biochemical pathway and thermochemical pathway production processes. Criteria included return on investment; feedstock flexibility; technology risk; energy and integration; products and revenue diversification; potential for additional products; and potential environmental impact. The study showed that techno-economic criteria are the most important barriers to the implementation of ethanol biorefineries. While thermochemical processes are economically feasible and provide greater flexibility, biochemical refining processes may provide for the development of other value-added products. 21 refs., 3 tabs., 7 figs.

  17. From tiny microalgae to huge biorefineries

    OpenAIRE

    Gouveia, L.

    2014-01-01

    Microalgae are an emerging research field due to their high potential as a source of several biofuels in addition to the fact that they have a high-nutritional value and contain compounds that have health benefits. They are also highly used for water stream bioremediation and carbon dioxide mitigation. Therefore, the tiny microalgae could lead to a huge source of compounds and products, giving a good example of a real biorefinery approach. This work shows and presents examples of experimental...

  18. Techno-economic analysis for incorporating a liquid-liquid extraction system to remove acetic acid into a proposed commercial scale biorefinery.

    Science.gov (United States)

    Aghazadeh, Mahdieh; Engelberth, Abigail S

    2016-07-08

    Mitigating the effect of fermentation inhibitors in bioethanol plants can have a great positive impact on the economy of this industry. Liquid-liquid extraction (LLE) using ethyl acetate is able to remove fermentation inhibitors-chiefly, acetic acid-from an aqueous solution used to produce bioethanol. The fermentation broth resulting from LLE has higher performance for ethanol yield and its production rate. Previous techno-economic analyses focused on second-generation biofuel production did not address the impact of removing the fermentation inhibitors on the economic performance of the biorefinery. A comprehensive analysis of applying a separation system to mitigate the fermentation inhibition effect and to provide an analysis on the economic impact of removal of acetic acid from corn stover hydrolysate on the overall revenue of the biorefinery is necessary. This study examines the pros and cons associated with implementing LLE column along with the solvent recovery system into a commercial scale bioethanol plant. Using details from the NREL-developed model of corn stover biorefinery, the capital costs associated with the equipment and the operating cost for the use of solvent were estimated and the results were compared with the profit gain due to higher ethanol production. Results indicate that the additional capital will add 1% to the total capital and manufacturing cost will increase by 5.9%. The benefit arises from the higher ethanol production rate and yield as a consequence of inhibitor extraction and results in a $0.35 per gallon reduction in the minimum ethanol selling price (MESP). © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:971-977, 2016. © 2016 American Institute of Chemical Engineers.

  19. Biorefinery approach for cassava-based industrial wastes: Current status and opportunities.

    Science.gov (United States)

    Zhang, Ming; Xie, Li; Yin, Zhixuan; Khanal, Samir Kumar; Zhou, Qi

    2016-09-01

    Cassava, an important food crop, has been extensively employed as raw materials for various agri-industries to produce starch, bioethanol and other biobased products/chemicals. These cassava-based industries also generate large quantities of wastes/residues, rich in organic matter and suspended solids, and pose significant environmental issues. Their complex biochemical composition with high organic content endows them with a great potential for bioconversion into value-added products via biorefinery thereby providing economic and environmental sustainability to cassava industries. This state-of-the-art review covers the source, composition and characteristics of cassava industrial wastes and residues, and their bioconversion into value-added products, mainly biofuels (ethanol and butanol), biogas, biosurfactant, organic acids and other valuable biochemicals among others. This paper also outlines future perspectives with respect to developing more effective and efficient bioconversion processes for converting the cassava wastes and residues into high-value products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Environmental impacts of producing bioethanol and biobased lactic acid from standalone and integrated biorefineries using a consequential and an attributional life cycle assessment approach.

    Science.gov (United States)

    Parajuli, Ranjan; Knudsen, Marie Trydeman; Birkved, Morten; Djomo, Sylvestre Njakou; Corona, Andrea; Dalgaard, Tommy

    2017-11-15

    This study evaluates the environmental impacts of biorefinery products using consequential (CLCA) and attributional (ALCA) life cycle assessment (LCA) approaches. Within ALCA, economic allocation method was used to distribute impacts among the main products and the coproducts, whereas within the CLCA system expansion was adopted to avoid allocation. The study seeks to answer the questions (i) what is the environmental impacts of process integration?, and (ii) do CLCA and ALCA lead to different conclusions when applied to biorefinery?. Three biorefinery systems were evaluated and compared: a standalone system producing bioethanol from winter wheat-straw (system A), a standalone system producing biobased lactic acid from alfalfa (system B), and an integrated biorefinery system (system C) combining the two standalone systems and producing both bioethanol and lactic acid. The synergy of the integration was the exchange of useful energy necessary for biomass processing in the two standalone systems. The systems were compared against a common reference flow: "1MJ EtOH +1kg LA ", which was set on the basis of products delivered by the system C. Function of the reference flow was to provide service of both fuel (bioethanol) at 99.9% concentration (wt. basis) and biochemical (biobased lactic acid) in food industries at 90% purity; both products delivered at biorefinery gate. The environmental impacts of interest were global warming potential (GWP 100 ), eutrophication potential (EP), non-renewable energy (NRE) use and the agricultural land occupation (ALO). Regardless of the LCA approach adopted, system C performed better in most of the impact categories than both standalone systems. The process wise contribution to the obtained environmental impacts also showed similar impact pattern in both approaches. The study also highlighted that the recirculation of intermediate materials, e.g. C 5 sugar to boost bioethanol yield and that the use of residual streams in the energy

  1. Sustainability Report: National Renewable Energy Laboratory (NREL) 2003 -- 2004

    Energy Technology Data Exchange (ETDEWEB)

    2004-09-01

    The National Renewable Energy Laboratory's (NREL) Sustainability Report for 2003-2004 highlights the Laboratory's comprehensive sustainability activities. These efforts demonstrate NREL's progress toward achieving overall sustainability goals. Sustainability is an inherent centerpiece of the Laboratory's work. NREL's mission--to develop renewable energy and energy efficiency technologies and practices and transfer knowledge and innovations to address the nation's energy and environmental goals--is synergistic with sustainability. The Laboratory formalized its sustainability activities in 2000, building on earlier ideas--this report summarizes the status of activities in water use, energy use, new construction, green power, transportation, recycling, environmentally preferable purchasing, greenhouse gas emissions, and environmental management.

  2. Factors affecting public support for forest-based biorefineries: A comparison of mill towns and the general public in Maine, USA

    International Nuclear Information System (INIS)

    Marciano, James A.; Lilieholm, Robert J.; Teisl, Mario F.; Leahy, Jessica E.; Neupane, Binod

    2014-01-01

    Community views toward the risks and benefits of emerging renewable energy technologies are important factors in facility siting decisions and their eventual success. While the actual socioeconomic and biophysical impacts of proposed industrial developments are fraught with uncertainty, understanding public perceptions is critical in managing costs and benefits to local citizens. Here, we explore the social acceptability of forest-based biorefineries in Maine using random utility modeling to identify how project attributes and citizen characteristics interact to affect level of support. Using a statewide sample (Statewide) and a subsample of mill towns (Mill Towns), we found that: (1) in both samples, individual characteristics had similar coefficients and significance levels except for pro-environment attitudes; (2) the coefficients related to the industry’s negative attributes were notably different between the two samples, while positive attributes were not; (3) in both samples, positive industry attributes such as “producing products from a sustainable resource” and “increased economic development” were the most influential variables in determining the level of support for a new biorefinery in an individual’s community; and (4) in general, Mill Town respondents were more accepting of potential negative attributes such as increased levels of truck traffic, odor, noise, and air and water pollution. - Highlights: • We examined social views of bioproducts processing in mill towns and statewide. • Environmental sustainability was a major concern expressed by both samples. • Views were affected by proximity to processing, and by respondent characteristics. • Public concerns should be considered along the entire supply chain. • Views toward biorefineries may be influenced by views of related industries

  3. Advances in CdTe R&D at NREL

    Energy Technology Data Exchange (ETDEWEB)

    Wu, X.; Zhou, J.; Keane, J. C.; Dhere, R. G.; Albin, D. S.; Gessert, T. A.; DeHart, C.; Duda, A.; Ward, J. J.; Yan, Y.; Teeter, G.; Levi, D. H.; Asher, S.; Perkins, C.; Moutinho, H. R.; To, B.

    2005-11-01

    This paper summarizes the following R&D accomplishments at National Renewable Energy Laboratory (NREL): (1) Developed several novel materials and world-record high-efficiency CdTe solar cell, (2) Developed "one heat-up step" manufacturing processes, and (3) Demonstrated 13.9% transparent CdTe cell and 15.3% CdTe/CIS polycrystalline tandem solar cell. Cadmium telluride has been well recognized as a promising photovoltaic material for thin-film solar cells because of its near-optimum bandgap of ~1.5 eV and its high absorption coefficient. Impressive results have been achieved in the past few years for polycrystalline CdTe thin-film solar cells at NREL. In this paper, we summarize some recent R&D activities at NREL.

  4. NREL PV Working With Industry, v. 27, Third Quarter 2000

    Energy Technology Data Exchange (ETDEWEB)

    Poole, L.; Nahan, R.

    2000-09-12

    NREL PV Working With Industry is a quarterly newsletter devoted to the research, development, and deployment performed by NREL staff in concert with their industry and university partners. The third quarter, contains articles on several important PV-related conferences held in the prior three months: the REAP/HBCU Conference and the IPS-2000 Photochemistry Conference. The issue also contains a preview article of the PV Specialists conference held in Alaska in September. The editorialist is John Benner, PV Specialist Conference Program Chairman.

  5. NREL PV Working With Industry, Fourth Quarter 2000

    Energy Technology Data Exchange (ETDEWEB)

    Poole, L.

    2000-12-26

    NREL PV Working With Industry is a quarterly newsletter devoted to the research, development, and deployment performed by NREL staff in concert with their industry and university partners. The fourth quarter contains an article that is a followup to the IEEE PVSC conference held in Alaska in September 2000, an article about two new R and D initiatives, and an article on cooperative research efforts between the NCPV and the Solar Buildings and Concentrating Solar Power programs. The editorialist is Jim Rannels, Director of the Office of Power Technologies.

  6. Sustainability assessment of sugarcane biorefinery and molasses ethanol production in Thailand using eco-efficiency indicator

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.; Pongpat, Patcharaporn

    2015-01-01

    Highlights: • Sugarcane biorefinery in Thailand is evaluated using the eco-efficiency concept. • Green cane along with cane trash use for electricity yields highest eco-efficiency. • Proposed biorefinery system increases eco-efficiency by 20–70%. - Abstract: The study aims to evaluate the sugarcane biorefinery and molasses ethanol production in Thailand using the combined environmental and economic sustainability indicator, so called “Eco-efficiency”. Four sugarcane biorefinery scenarios in Thailand are evaluated. The total output values (US$) and the life cycle greenhouse gas (GHG) emissions (kg CO 2 eq) are selected as the indicators for characterizing economic and environmental performance, respectively. The results show that the biorefinery system of mechanized farming along with cane trash utilization for power generation yields the highest eco-efficiency. The benefits come from the increased value added of the biorefinery together with the decreased GHG emissions of the biorefinery system. As compared to the base case scenario, the new systems proposed result in the eco-efficiency improvement by around 20–70%. The biorefinery concept induces reduction of GHG emissions attributed to molasses ethanol. Green cane production and harvesting results in further lowering of the GHG emissions. Integration of sugarcane biomass utilization across the entire sugarcane complex would enhance the sustainability of the sugarcane production system.

  7. Realizing a Clean Energy Future: Highlights of NREL Analysis (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2013-12-01

    Profound energy system transformation is underway. In Hawaiian mythology, Maui set out to lasso the sun in order to capture its energy. He succeeded. That may have been the most dramatic leap forward in clean energy systems that the world has known. Until now. Today, another profound transformation is underway. A combination of forces is taking us from a carbon-centric, inefficient energy system to one that draws from diverse energy sources - including the sun. NREL analysis is helping guide energy systems policy and investment decisions through this transformation. This brochure highlights NREL analysis accomplishments in the context of four thematic storylines.

  8. Sustainability Assessment of a Biorefinery Complex in Thailand

    Directory of Open Access Journals (Sweden)

    Pariyapat Nilsalab

    2011-03-01

    Full Text Available In this paper, a biorefinery complex in Thailand was assessed vis-à-vis sustainability. The complex studied includes plantations of sugarcane and a biorefinery system composed of several units including, a sugar mill, power plant, ethanol factory and fertilizer plant. The assessment aimed at evaluating the environmental and socio-economic implications relating to molasses-based ethanol production and use, and maximized utilization of the biomass materials produced as part of the biorefinery complex. Global warming potential, human development index and total value added are the three indicators that were selected to perform the assessment. The results obtained revealed that the maximization of biomass utilization at the level of the biorefinery complex provide greenhouse gases emissions reduction benefits, enhanced living conditions for sugarcane farmers and employees of the biorefinery, and economic benefits, particularly with regard to profit and income generation. These results could serve as a first step to further improve and design indicators for sustainability assessment of biomass utilization.

  9. Jobs and Economic Development Impact (JEDI) User Reference Guide: Fast Pyrolysis Biorefinery Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yimin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Goldberg, Marshall [MRG and Associates, Nevada City, CA (United States)

    2015-02-01

    This guide -- the JEDI Fast Pyrolysis Biorefinery Model User Reference Guide -- was developed to assist users in operating and understanding the JEDI Fast Pyrolysis Biorefinery Model. The guide provides information on the model's underlying methodology, as well as the parameters and data sources used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the JEDI Fast Pyrolysis Biorefinery Model estimates local (e.g., county- or state-level) job creation, earnings, and output from total economic activity for a given fast pyrolysis biorefinery. These estimates include the direct, indirect and induced economic impacts to the local economy associated with the construction and operation phases of biorefinery projects.Local revenue and supply chain impacts as well as induced impacts are estimated using economic multipliers derived from the IMPLAN software program. By determining the local economic impacts and job creation for a proposed biorefinery, the JEDI Fast Pyrolysis Biorefinery Model can be used to field questions about the added value biorefineries might bring to a local community.

  10. Integrating separation and conversion - Conversion of biorefinery process streams to biobased chemicals and fuels

    Science.gov (United States)

    Joseph J. Bozell; Berenger Biannic; Diana Cedeno; Thomas Elder; Omid Hosseinaei; Lukas Delbeck; Jae-Woo Kim; C.J. O' Lenick; Timothy Young

    2014-01-01

    Abstract The concept of the integrated biorefinery is critical to developing a robust biorefining industry in the USA.Within this model, the biorefinery will produce fuel as a highvolume output addressing domestic energy needs and biobased chemical products (high-value organics) as an output providing necessary economic support for fuel production. This paper will...

  11. FY 2009 National Renewable Energy Laboratory (NREL) Annual Report: A Year of Energy Transformation

    Energy Technology Data Exchange (ETDEWEB)

    2010-01-01

    This FY2009 Annual Report surveys the National Renewable Energy Laboratory's (NREL) accomplishments in renewable energy and energy efficiency research and development, commercialization and deployment of technologies, and strategic energy analysis. It offers NREL's vision and progress in building a clean, sustainable research campus and reports on community involvement.

  12. Development and Piloting of Sustainability Assessment Metrics for Arctic Process Industry in Finland—The Biorefinery Investment and Slag Processing Service Cases

    Directory of Open Access Journals (Sweden)

    Roope Husgafvel

    2017-09-01

    Full Text Available Regionally, there has been a lot of focus on the advancement of sustainable arctic industry and circular economy activities within process industry in the Finnish Lapland. In this study, collaboration between university and industry was established facilitated by regional development actors to develop and pilot test a sustainability assessment approach taking into account previous work in this field. The industry partners in this study were a biorefinery investment in the first case and a slag processing service in the second case. As a result of the joint efforts, novel sets of environmental and economic sustainability assessment indicators and associated sub-indicators were developed and the existing set of social indicators was updated. Moreover, environmental and social sustainability assessments were implemented in the biorefinery case accompanied by a separate evaluation of regional economic impacts. In the slag processing case, environmental, economic and social sustainability were assessed. The results of the sustainability assessments indicated very good level of overall performance in both cases. However, specific elements that contributed to lower level of performance included lack of specific sustainability management and reporting approaches and need for better performance in supply chain sustainability, monitoring of greenhouse gas emissions, life cycle thinking and circular economy training. The expected effects of the planned investment on the regional economy were very positive based on the results of the evaluation.

  13. Energy and environmental analysis of a rapeseed biorefinery conversion process

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Balzan, Alberto; Astrup, Thomas Fruergaard

    2013-01-01

    positive effects on the greenhouse gases (GHG) footprint of the biorefinery system, with improvements in the range of 9 % to 29 %, depending on the considered alternative. The mass and energy balances showed the potential for improvement of straw treatment processes (hydrothermal pre-treatment and dark......The need for biofuels is steadily increasing as a result of political strategies and the need for energy security. Biorefineries have the potential to improve the sustainability of biofuels through further recovery of valuable bioproducts and bioenergy. A life cycle assessment (LCA......)-based environmental assessment of a Danish biorefinery system was carried out to thoroughly analyze and optimize the concept and address future research. The LCA study was based on case-specific mass and energy balances and inventory data, and was conducted using consequential LCA approach to take into account market...

  14. eQuilibrator—the biochemical thermodynamics calculator

    Science.gov (United States)

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like ‘how much Gibbs energy is released by ATP hydrolysis at pH 5?’ are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use. PMID:22064852

  15. From Current Algae Products to Future Biorefinery Practices: A Review.

    Science.gov (United States)

    Eppink, Michel H M; Olivieri, Giuseppe; Reith, Hans; van den Berg, Corjan; Barbosa, Maria J; Wijffels, Rene H

    2017-03-07

    Microalgae are considered to be one of the most promising next generation bio-based/food feedstocks with a unique lipid composition, high protein content, and an almost unlimited amount of other bio-active molecules. High-value components such as the soluble proteins, (poly) unsaturated fatty acids, pigments, and carbohydrates can be used as an important ingredient for several markets, such as the food/feed/chemical/cosmetics and health industries. Although cultivation costs have decreased significantly in the last few decades, large microalgae production processes become economically viable if all complex compounds are optimally valorized in their functional state. To isolate these functional compounds from the biomass, cost-effective, mild, and energy-efficient biorefinery techniques need to be developed and applied. In this review we describe current microalgae biorefinery strategies and the derived products, followed by new technological developments and an outlook toward future products and the biorefinery philosophy.

  16. Early stage design and analysis of biorefinery networks

    DEFF Research Database (Denmark)

    Sin, Gürkan

    2013-01-01

    Recent work regarding biorefineries resulted in many competing concepts and technologies for conversion of renewable bio-based feedstock into many promising products including fuels, chemicals, materials, etc. The design of a biorefinery process requires, at its earlier stages, the selection...... of the process configuration which exhibits the best performances, for a given set of economical, technical and environmental criteria. To this end, we formulate a computer-aided framework as an enabling technology for early stage design and analysis of biorefineries. The tool represents different raw materials......, and the formulation and solution of an MINLP problem to identify the optimal processing route for multiple raw materials and products. Finally, economic, sustainability and LCA analysis are performed....

  17. Cell disruption for microalgae biorefineries

    NARCIS (Netherlands)

    Günerken, E.; Hondt, d' E.; Eppink, M.H.M.; Garcia-Gonzalez, L.; Elst, K.; Wijffels, R.H.

    2015-01-01

    Microalgae are a potential source for various valuable chemicals for commercial applications ranging from nutraceuticals to fuels. Objective in a biorefinery is to utilize biomass ingredients efficiently similarly to petroleum refineries in which oil is fractionated in fuels and a variety of

  18. NREL Pyrheliometer Comparisons: 22 September - 3 October 2008

    Energy Technology Data Exchange (ETDEWEB)

    Stoffel, T.; Reda, I.

    2009-02-01

    NREL Pyrheliometer Comparisons (NPCs) are held annually at the Solar Radiation Research Laboratory (SRRL) in Golden, Colorado. Open to all pyrheliometer owner/operators, the NPC provides an opportunity to determine the unique WRR transfer factor for each participating pyrheliometer. This paper reports on the results of NPC-2008, which was scheduled from September 22 to October 3, 2008.

  19. Study of the stall delay phenomenon and of wind turbine blade dynamics using numerical approaches and NREL's wind tunnel tests

    Energy Technology Data Exchange (ETDEWEB)

    Breton, Simon-Philippe

    2008-06-15

    The production of electricity from wind has experienced an enormous growth worldwide in the last 20 years. It is now widely seen as a serious alternative to more conventional energy production methods. Improvements are however still possible to make it more cost-effective. This can be done through a better understanding of the fundamental phenomena involved in the interaction of the wind with the wind turbine rotor. This growth in the production of energy from wind is expected to continue at a similar rate in the years to come, helped by the installation of wind turbines at sea, that is becoming a hot topic in the wind energy field today. The phenomenon of stall delay affecting rotating wind turbine blades is an example of an aerodynamic phenomenon that is not yet fully understood. Several models exist to correct for this effect. Five such models were first tested within a vortex wake simulation code based on the modelling of a prescribed wake behind the rotor of the turbine. Comparison was made with wind tunnel test data acquired in head-on flow on a two-bladed 10.1 diameter wind turbine at the National Renewable Energy Laboratories (NREL) in 2000. It revealed a general overprediction of the stall delay effects, at the same time as great disparity was obtained between the different models. Conclusions from this work served as a starting point for a much more thorough investigation on this subject, where several models were tested in terms of different quantities using the same simulation code, and where the application of some of the models was improved. Overprediction of the loads was once again obtained when comparison was made to the NREL results in head-on flow, and none of the models was found to correctly represent the flow physics involved. The premises on which each of the models relies were discussed as a means of better understanding and modelling this phenomenon. The important issue of tip loss was also covered, and guidelines were suggested to improve

  20. Valorization of lignin from biorefineries for fuels and chemicals

    DEFF Research Database (Denmark)

    Nielsen, Joachim Bachmann

    substitute fossil fuel.In this Ph.D. study the direct liquefaction of a biorefinery lignin (hydrothermallypretreated enzymatic hydrolysis lignin) is explored. The goal is to provide a bio-crude which can substitute marine diesel as the engines found aboard large ships are adapted to more crude fuels. A novel...... process, which easily integrates with existing biorefinery infrastructure, is presented. The process yields a lignin-diesel oil (LDO) by noncatalyticsolvolysis in ethanol without hydrogen addition. The LDO is superior topyrolysis oil as it is non-acidic, stable and readily blends with fossil diesel...

  1. NREL Photovoltaic Research -- Extensive Capabilities and Experience Under One Roof

    Energy Technology Data Exchange (ETDEWEB)

    2016-08-01

    NREL's high-impact photovoltaic successes in fundamental research, advanced materials and devices, and technology development contribute to: 1) boosting solar cell conversion efficiencies, 2) Lowering the cost of solar cells, modules, and systems, and 3) improving the reliability of photovoltaic (PV) components and systems.

  2. Benchmarking of OEM Hybrid Electric Vehicles at NREL: Milestone Report

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K. J.; Rajagopalan, A.

    2001-10-26

    A milestone report that describes the NREL's progress and activities related to the DOE FY2001 Annual Operating Plan milestone entitled ''Benchmark 2 new production or pre-production hybrids with ADVISOR.''

  3. NREL Suite of Tools for PV and Storage Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Elgqvist, Emma M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Salasovich, James A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-03

    Many different factors such as the solar resource, technology costs and incentives, utility cost and consumption, space available, and financial parameters impact the technical and economic potential of a PV project. NREL has developed techno-economic modeling tools that can be used to evaluate PV projects at a site.

  4. Biochemical Applications in the Analytical Chemistry Lab

    Science.gov (United States)

    Strong, Cynthia; Ruttencutter, Jeffrey

    2004-01-01

    An HPLC and a UV-visible spectrophotometer are identified as instruments that helps to incorporate more biologically-relevant experiments into the course, in order to increase the students understanding of selected biochemistry topics and enhances their ability to apply an analytical approach to biochemical problems. The experiment teaches…

  5. Energy Systems Integration Partnerships: NREL + Sandia + Johnson Controls

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-05

    NREL and Sandia National Laboratories partnered with Johnson Controls to deploy the company's BlueStream Hybrid Cooling System at ESIF's high-performance computing data center to reduce water consumption seen in evaporative cooling towers.

  6. Plans for Testing the NREL Unsteady Aerodynamics Experiment 10m Diameter HAWT in the NASA Ames Wind Tunnel: Minutes, Conclusions, and Revised Text Matrix from the 1st Science Panel Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Simms, D.; Schreck, S.; Hand, M.; Fingersh, L.; Cotrell, J.; Pierce, K.; Robinson, M.

    2000-08-28

    Currently, the NREL Unsteady Aerodynamics Experiment (UAE) research turbine is scheduled to enter the NASA Ames 80-ft x 120-ft wind tunnel in early 2000. To prepare for this 3-week test, a Science Panel meeting was convened at the National Wind Technology Center (NWTC) in October 1998. During this meeting, the Science Panel and representatives from the wind energy community provided numerous detailed recommendations regarding test activities and priorities. The Unsteady Aerodynamics team of the NWTC condensed this guidance and drafted a detailed test plan. This test plan represents an attempt to balance diverse recommendations received from the Science Panel meeting, while taking into account multiple constraints imposed by the UAE research turbine, the NASA Ames 80-ft x 120-ft wind tunnel, and other sources. The NREL-NASA Ames wind tunnel tests will primarily be focused on obtaining rotating blade pressure data. NREL has been making these types of measurements since 1987 and has considerable experience in doing so. The purpose of this wind tunnel test is to acquire accurate quantitative aerodynamic and structural measurements, on a wind turbine that is geometrically and dynamically representative of full-scale machines, in an environment free from pronounced inflow anomalies. These data will be exploited to develop and validate enhanced engineering models for designing and analyzing advanced wind energy machines.

  7. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept.

    Science.gov (United States)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar; Angelidaki, Irini

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery (>95%) as well as significant hemicelluloses solubilization (49-59%) after acid-based method and lignin solubilization (35-41%) after alkaline H2O2 method were registered. Alkaline pretreatment showed to be superior over the acid-based method with respect to the rate of enzymatic hydrolysis and ethanol productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149kg of EtOH and 115kg of succinic acid can be obtained per 1ton of dry hemp. Results obtained in this study clearly document the potential of industrial hemp for a biorefinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. THE CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb; Jacqueline G. Broder

    2001-07-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysis production was completed to produce lignin for co-fire testing. During this quarter, TVA completed the washing and dewatering of the lignin material produced from the MSW hydrolysis. Seven drums of lignin material were washed to recover the acid and sugar from the lignin and provide an improved fuel for steam generation. Samples of both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation. After sample evaluation, EERC approved sending the material and all of the necessary fuel for testing was shipped to EERC. EERC has requested and will receive coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio based fuels is scheduled to begin in August of 2001. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed

  9. Quantifying Supply Risk at a Cellulosic Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Jason K [Idaho National Laboratory; Jacobson, Jacob Jordan [Idaho National Laboratory; Cafferty, Kara Grace [Idaho National Laboratory; Lamers, Patrick [Idaho National Laboratory; Roni, MD S [Idaho National Laboratory

    2015-03-01

    In order to increase the sustainability and security of the nation’s energy supply, the U.S. Department of Energy through its Bioenergy Technology Office has set a vision for one billion tons of biomass to be processed for renewable energy and bioproducts annually by the year 2030. The Renewable Fuels Standard limits the amount of corn grain that can be used in ethanol conversion sold in the U.S, which is already at its maximum. Therefore making the DOE’s vision a reality requires significant growth in the advanced biofuels industry where currently three cellulosic biorefineries convert cellulosic biomass to ethanol. Risk mitigation is central to growing the industry beyond its infancy to a level necessary to achieve the DOE vision. This paper focuses on reducing the supply risk that faces a firm that owns a cellulosic biorefinery. It uses risk theory and simulation modeling to build a risk assessment model based on causal relationships of underlying, uncertain, supply driving variables. Using the model the paper quantifies supply risk reduction achieved by converting the supply chain from a conventional supply system (bales and trucks) to an advanced supply system (depots, pellets, and trains). Results imply that the advanced supply system reduces supply system risk, defined as the probability of a unit cost overrun, from 83% in the conventional system to 4% in the advanced system. Reducing cost risk in this nascent industry improves the odds of realizing desired growth.

  10. Quantifying Supply Risk at a Cellulosic Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Jason K.; Jacobson, Jacob J.; Cafferty, Kara G.; Lamers, Patrick; Roni, Mohammad S.

    2015-07-01

    In order to increase the sustainability and security of the nation’s energy supply, the U.S. Department of Energy through its Bioenergy Technology Office has set a vision for one billion tons of biomass to be processed for renewable energy and bioproducts annually by the year 2030. The Renewable Fuels Standard limits the amount of corn grain that can be used in ethanol conversion sold in the U.S, which is already at its maximum. Therefore making the DOE’s vision a reality requires significant growth in the advanced biofuels industry where currently three cellulosic biorefineries convert cellulosic biomass to ethanol. Risk mitigation is central to growing the industry beyond its infancy to a level necessary to achieve the DOE vision. This paper focuses on reducing the supply risk that faces a firm that owns a cellulosic biorefinery. It uses risk theory and simulation modeling to build a risk assessment model based on causal relationships of underlying, uncertain, supply driving variables. Using the model the paper quantifies supply risk reduction achieved by converting the supply chain from a conventional supply system (bales and trucks) to an advanced supply system (depots, pellets, and trains). Results imply that the advanced supply system reduces supply system risk, defined as the probability of a unit cost overrun, from 83% in the conventional system to 4% in the advanced system. Reducing cost risk in this nascent industry improves the odds of realizing desired growth.

  11. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  12. Sugar beet leaves: from biorefinery to techno-functionality

    NARCIS (Netherlands)

    Kiskini, Alexandra

    2017-01-01

    Sugar beet leaves (SBL), which are a side stream of the sugar beets cultivation, are currently left unexploited after sugar beets have been harvested. The general aim of this thesis was to study the biorefinery of SBL, with a special focus on the isolation of proteins. To reach this aim the

  13. Integration of Biorefineries and Nuclear Cogeneration Power Plants - A Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Sherrell R [ORNL; Flanagan, George F [ORNL; Borole, Abhijeet P [ORNL

    2009-03-01

    Biomass-based ethanol and nuclear power are two viable elements in the path to U.S. energy independence. Numerous studies suggest nuclear power could provide a practical carbon-free heat source alternative for the production of biomass-based ethanol. In order for this coupling to occur, it is necessary to examine the interfacial requirements of both nuclear power plants and bioethanol refineries. This report describes the proposed characteristics of a small cogeneration nuclear power plant, a biochemical process-based cellulosic bioethanol refinery, and a thermochemical process-based cellulosic biorefinery. Systemic and interfacial issues relating to the co-location of either type of bioethanol facility with a nuclear power plant are presented and discussed. Results indicate future co-location efforts will require a new optimized energy strategy focused on overcoming the interfacial challenges identified in the report.

  14. Analytical Approaches to Understanding the Role of Non-carbohydrate Components in Wood Biorefinery

    Science.gov (United States)

    Leskinen, Timo Ensio

    This dissertation describes the production and analysis of wood subjected to a novel electron beam-steam explosion pretreatment (EB-SE) pretreatment with the aim to evaluate its suitability for the production of bioethanol. The goal of these studies was to: 1) develop analytical methods for the investigation of depolymerization of wood components under pretreatments, 2) analyze the effects of EB-SE pretreatment on the pretreated biomass, 3) define how lignin and extractive components affect the action of enzymes on cellulosic substrates, and 4) examine how changes in lignin structure impact its isolation and potential conversion into value added chemicals. The first section of the work describes the development of a size-exclusion chromatography (SEC) methodology for molecular weight analysis for native and pretreated wood. The selective analysis of carbohydrates and lignin from native wood was made possible by the combination of two selective derivatization methods, ionic liquid assisted benzoylation of the carbohydrate fraction and acetobromination of the lignin in acetic acid media. This method was then used to examine changes in softwood samples after the EB-SE pretreatment. The methodology was shown to be effective for monitoring changes in the molecular weight profiles of the pretreated wood. The second section of the work investigates synergistic effects of the EB-SE pretreatment on the molecular level structures of wood components and the significance of these alterations in terms of enzymatic digestibility. The two pretreatment steps depolymerized cell wall components in different fashion, while showing synergistic effects. Hardwood and softwood species responded differently to similar treatment conditions, which was attributed to the well-known differences in the structure of their lignin and hemicellulose fractions. The relatively crosslinked lignin in softwood appeared to limit swelling and subsequent depolymerization in comparison to hardwood

  15. Biorefinery Demonstration Project Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, David [University of Georgia Research Foundation, Inc., Athens, GA (United States)

    2015-10-20

    In this project we focused on various aspects of biorefinery technology development including algal-biorefinery technology, thermochemical conversion of biomass to bio-oils and biochar; we tested characteristics and applications of biochars and evaluated nutrient cycling with wastewater treatment by the coupling of algal culture systems and anaerobic digestion. Key results include a method for reducing water content of bio-oil through atomized alcohol addition. The effect included increasing the pH and reducing the viscosity and cloud point of the bio-oil. Low input biochar production systems were evaluated via literature reviews and direct experimental work. Additionally, emissions were evaluated and three biochar systems were compared via a life cycle analysis. Attached growth systems for both algal cultivation and algal harvesting were found to be superior to suspended growth cultures. Nutrient requirements for algal cultivation could be obtained by the recycling of anaerobic digester effluents, thus experimentally showing that these two systems could be directly coupled. Twenty-two journal articles and six intellectual property applications resulted from the cumulative work that this project contributed to programmatically.

  16. Environmental implications of the use of agro-industrial residues for biorefineries: application of a deterministic model for indirect land-use changes

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, Lorie; Astrup, Thomas Fruergaard

    2016-01-01

    .1 t CO2-eq.ha-1demanded y-1 corresponding to 1.2-1.5 t CO2 t-1 dry biomass used for energy. Only bioenergy from straw and wild grass was shown to perform better than the alternative use, as no competition with the feed sector was involved. Biogas for heat-and-power production was the best performing......Biorefining agro-industrial biomass residues for bioenergy production represents an opportunity for both sustainable energy supply and greenhouse gas (GHG) emissions mitigation. Yet, is bioenergy the most sustainable use for these residues? To assess the importance of the alternative use...... of these residues, a consequential life-cycle assessment (LCA) of 32 energy-focused biorefinery scenarios was performed based on eight selected agro-industrial residues and four conversion pathways (two involving bioethanol and two biogas). To specifically address indirect land-use changes (iLUC) induced...

  17. Biomass Program 2007 Peer Review - Integrated Biorefinery Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Integrated Biorefinery Platform Review held on August 13-15, 2007 in Golden, Colorado.

  18. Integrating uncertainties to the combined environmental and economic assessment of algal biorefineries: A Monte Carlo approach.

    Science.gov (United States)

    Pérez-López, Paula; Montazeri, Mahdokht; Feijoo, Gumersindo; Moreira, María Teresa; Eckelman, Matthew J

    2018-06-01

    The economic and environmental performance of microalgal processes has been widely analyzed in recent years. However, few studies propose an integrated process-based approach to evaluate economic and environmental indicators simultaneously. Biodiesel is usually the single product and the effect of environmental benefits of co-products obtained in the process is rarely discussed. In addition, there is wide variation of the results due to inherent variability of some parameters as well as different assumptions in the models and limited knowledge about the processes. In this study, two standardized models were combined to provide an integrated simulation tool allowing the simultaneous estimation of economic and environmental indicators from a unique set of input parameters. First, a harmonized scenario was assessed to validate the joint environmental and techno-economic model. The findings were consistent with previous assessments. In a second stage, a Monte Carlo simulation was applied to evaluate the influence of variable and uncertain parameters in the model output, as well as the correlations between the different outputs. The simulation showed a high probability of achieving favorable environmental performance for the evaluated categories and a minimum selling price ranging from $11gal -1 to $106gal -1 . Greenhouse gas emissions and minimum selling price were found to have the strongest positive linear relationship, whereas eutrophication showed weak correlations with the other indicators (namely greenhouse gas emissions, cumulative energy demand and minimum selling price). Process parameters (especially biomass productivity and lipid content) were the main source of variation, whereas uncertainties linked to the characterization methods and economic parameters had limited effect on the results. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Opportunities for small-scale biorefinery for production of sugar and ethanol in the Netherlands

    NARCIS (Netherlands)

    Kolfschoten, R.C.; Bruins, M.E.; Sanders, J.P.M.

    2014-01-01

    Developments such as the Common Agricultural Policy reform, growth of the bio-based economy, increasing energy prices, increasing sustainability demands, and expected growth of global sugar demand change the environment in which the sugar producing industry operates. In order to remain competitive

  20. Advanced biorefinery in lower termite-effect of combined pretreatment during the chewing process

    Directory of Open Access Journals (Sweden)

    Ke Jing

    2012-03-01

    Full Text Available Abstract Background Currently the major barrier in biomass utilization is the lack of an effective pretreatment of plant cell wall so that the carbohydrates can subsequently be hydrolyzed into sugars for fermentation into fuel or chemical molecules. Termites are highly effective in degrading lignocellulosics and thus can be used as model biological systems for studying plant cell wall degradation. Results We discovered a combination of specific structural and compositional modification of the lignin framework and partial degradation of carbohydrates that occurs in softwood with physical chewing by the termite, Coptotermes formosanus, which are critical for efficient cell wall digestion. Comparative studies on the termite-chewed and native (control softwood tissues at the same size were conducted with the aid of advanced analytical techniques such as pyrolysis gas chromatography mass spectrometry, attenuated total reflectance Fourier transform infrared spectroscopy and thermogravimetry. The results strongly suggest a significant increase in the softwood cellulose enzymatic digestibility after termite chewing, accompanied with utilization of holocellulosic counterparts and an increase in the hydrolysable capacity of lignin collectively. In other words, the termite mechanical chewing process combines with specific biological pretreatment on the lignin counterpart in the plant cell wall, resulting in increased enzymatic cellulose digestibility in vitro. The specific lignin unlocking mechanism at this chewing stage comprises mainly of the cleavage of specific bonds from the lignin network and the modification and redistribution of functional groups in the resulting chewed plant tissue, which better expose the carbohydrate within the plant cell wall. Moreover, cleavage of the bond between the holocellulosic network and lignin molecule during the chewing process results in much better exposure of the biomass carbohydrate. Conclusion Collectively, these

  1. CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb; Jacqueline G. Broder

    2001-01-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter. Initial pilot facility shakedown was completed during the fourth quarter. During pilot plant shakedown operations, several production batch test runs were performed. These pilot tests were coupled with laboratory testing to confirm pilot results. In initial batches of operations, cellulose to glucose conversions of 62.5% and 64.8% were observed in laboratory hydrolysis. As part of this testing, lignin dewatering was tested using laboratory and vendor-supplied filtration equipment. Dewatering tests reported moisture contents in the lignin of between 50% and 60%. Dewatering parameters and options will continue to be investigated during lignin production. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. Shredding of the feed material was completed and final drying of the feed is expected to be completed by late January. Once feed drying is completed, pilot facility production will begin to produce lignin for co-fire testing. Facility modifications are expected to continue to improve facility operations and performance during the first quarter of 2001. The TVA-Colbert facility continues to make progress in evaluating the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed

  2. 76 FR 13351 - Notice of Funds Availability (NOFA) Inviting Applications for the Biorefinery Assistance Program

    Science.gov (United States)

    2011-03-11

    ... 4279, subpart C and in 7 CFR Part 4287, subpart D. C. Definition of Terms. The definitions applicable... activities on the basis of race, color, national origin, age, disability, and, where applicable, sex, marital...

  3. Solving the multifunctionality dilemma in biorefineries with a novel hybrid mass–energy allocation method

    DEFF Research Database (Denmark)

    Djomo, Sylvestre Njakou; Knudsen, Marie Trydeman; Parajuli, Ranjan

    2017-01-01

    , bioethanol reduced GHG by 72–98% relative to gasoline. The GHG savings were 196% under the substitution method, but no GHG savings occurred for sugar beet bioethanol under the surplus method. Bioethanol from cellulosic crops had lower energy use and GHG emissions than from sugar beet, regardless...

  4. Impact of intermodal facilities to the design of supply chains for biorefineries.

    Science.gov (United States)

    2009-08-15

    This paper analyzes the impact that an intermodal facility has on location and transportation decisions for biofuel production plants. Location decisions impact the management of the in-bound and out-bound logistics of a plant. We model this supply c...

  5. Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydroccarbon Biorefineries

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2008-03-01

    This roadmap to “Next Generation Hydrocarbon Biorefineries” outlines a number of novel process pathways for biofuels production based on sound scientific and engineering proofs of concept demonstrated in laboratories around the world. This report was based on the workshop of the same name held June 25-26, 2007 in Washington, DC.

  6. Optimal design of a multi-product biorefinery system

    DEFF Research Database (Denmark)

    Zondervan, E.; Nawaz, Mehboob; de Haan, André B.

    2011-01-01

    In this paper we propose a biorefinery optimization model that can be used to find the optimal processing route for the production of ethanol, butanol, succinic acid and blends of these chemicals with fossil fuel based gasoline. The approach unites transshipment models with a superstructure...

  7. Environmental implications of the use of agro-industrial residues for biorefineries: application of a deterministic model for indirect land-use changes

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, Lorie; Astrup, Thomas Fruergaard

    2016-01-01

    of these residues, a consequential life-cycle assessment (LCA) of 32 energy-focused biorefinery scenarios was performed based on eight selected agro-industrial residues and four conversion pathways (two involving bioethanol and two biogas). To specifically address indirect land-use changes (iLUC) induced.......1 t CO2-eq.ha-1demanded y-1 corresponding to 1.2-1.5 t CO2 t-1 dry biomass used for energy. Only bioenergy from straw and wild grass was shown to perform better than the alternative use, as no competition with the feed sector was involved. Biogas for heat-and-power production was the best performing...... pathway, in a short-term context. Focusing on transport fuels, bioethanol was generally preferable to biomethane considering conventional biogas upgrading technologies. Based on the results, agro-industrial residues cannot be considered burden-free simply because they are a residual biomass and careful...

  8. 78 FR 60822 - Notice of Funding Availability for the Biorefinery Assistance Program

    Science.gov (United States)

    2013-10-02

    ... contained in 7 CFR Part 4279, subpart C and in 7 CFR Part 4287, subpart D. C. Definition of Terms. The definitions applicable to this Notice are published at 7 CFR 4279.202(a) and 7 CFR 4287.302. For the purposes..., national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political...

  9. Bio-oil based biorefinery strategy for the production of succinic acid

    DEFF Research Database (Denmark)

    Wang, Caixia; Thygesen, Anders; Liu, Yilan

    2013-01-01

    Background: Succinic acid is one of the key platform chemicals which can be produced via biotechnology process instead of petrochemical process. Biomass derived bio-oil have been investigated intensively as an alternative of diesel and gasoline fuels. Bio-oil could be fractionized into organic...... was investigated. Results: The transgenic E. coli strain could grow in modified M9 medium containing 20 v/v% AP-bio-oil with an increase in OD from 0.25 to 1.09. And 0.38 g/L succinic acid was produced. With the presence of 4 g/L glucose in the medium, succinic acid concentration increased from 1.4 to 2.4 g....../L by addition of 20 v/v% AP-bio-oil. When enzymatic hydrolysate of corn stover was used as carbon source, 10.3 g/L succinic acid was produced. The obtained succinic acid concentration increased to 11.5 g/L when 12.5 v/v% AP-bio-oil was added. However, it decreased to 8 g/L when 50 v/v% AP-bio-oil was added. GC...

  10. Anaerobic digestion for closing the loop of a biorefinery for organic farming

    DEFF Research Database (Denmark)

    Fernandez, Maria Santamaria; Karkov Ytting, Nanna; Lübeck, Mette

    2016-01-01

    and brown juice in a continuous stirred tank reactor (CSTR) and of the brown juice alone in an up-flow anaerobic sludge blanket (UASB) reactor. Both reactor processes showed stable performance without signs of inhibition or nutrient deficiency. In mesophilic co-digestion (50:50 ratio based on VS) of press...

  11. 77 FR 4276 - Notice of Funds Availability (NOFA) for the Biorefinery Assistance Program

    Science.gov (United States)

    2012-01-27

    .... Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of... status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal... TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination write to USDA...

  12. Optimal Design of Algae Biorefinery Processing Networks for the production of Protein, Ethanol and Biodiesel

    DEFF Research Database (Denmark)

    Cheali, Peam; Vivion, Anthony; Gernaey, Krist V.

    2015-01-01

    analysis such as microalgae production cost, composition of microalgae (e.g. oil content) and biodiesel/bioethanol market prices is considered. New optimal processing paths are found with potential of producing higher amount of biodiesel. Last, the methodology is intended as decision support tool for early...

  13. Membranes in the biobased economy : electrodialysis of amino acids for the production of biochemicals

    NARCIS (Netherlands)

    Kattan Readi, O.M.

    2013-01-01

    The depletion of fossil fuels, increasing oil prices and CO2 emissions, rise the need for green alternatives for the production of energy, fuels and chemicals. Emerging sustainable technologies based on renewable resources promote the shift of conventional refineries toward biorefinery concepts.

  14. Catalysis for biorefineries-performance criteria for industrial operation

    NARCIS (Netherlands)

    Lange, Jean Paul

    2016-01-01

    Past analyses of industrial processes for fuel and chemical manufacturing led to a few performance criteria that are critical for viable industrial operation. The present paper reviews these factors and provides a target window for each of them. It then illustrates their relevance for biorefineries

  15. Dactylifera L) on the biochemical indicators of lead poisoning in ...

    African Journals Online (AJOL)

    ... in the biochemical parameters. Thus, the treatment by the pectin of dates reduced the high concentration of these parameters. Our results show that the pectins of dates may have a corrective effect on the biochemical disturbances induced by the lead. Keywords: Phoenix Dactylifera, Pectin, Lead, Biochemical parameters ...

  16. Sapphire Energy - Integrated Algal Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    White, Rebecca L. [Sapphire Energy, Inc., Columbus, NM (United States). Columbus Algal Biomass Farm; Tyler, Mike [Sapphire Energy, Inc., San Diego, CA (United States)

    2015-07-22

    Sapphire Energy, Inc. (SEI) is a leader in large-scale photosynthetic algal biomass production, with a strongly cohesive research, development, and operations program. SEI takes a multidiscipline approach to integrate lab-based strain selection, cultivation and harvest and production scale, and extraction for the production of Green Crude oil, a drop in replacement for traditional crude oil.. SEI’s technical accomplishments since 2007 have produced a multifunctional platform that can address needs for fuel, feed, and other higher value products. Figure 1 outlines SEI’s commercialization process, including Green Crude production and refinement to drop in fuel replacements. The large scale algal biomass production facility, the SEI Integrated Algal Biorefinery (IABR), was built in Luna County near Columbus, New Mexico (see fig 2). The extraction unit was located at the existing SEI facility in Las Cruces, New Mexico, approximately 95 miles from the IABR. The IABR facility was constructed on time and on budget, and the extraction unit expansion to accommodate the biomass output from the IABR was completed in October 2012. The IABR facility uses open pond cultivation with a proprietary harvesting method to produce algal biomass; this biomass is then shipped to the extraction facility for conversion to Green Crude. The operation of the IABR and the extraction facilities has demonstrated the critical integration of traditional agricultural techniques with algae cultivation knowledge for algal biomass production, and the successful conversion of the biomass to Green Crude. All primary unit operations are de-risked, and at a scale suitable for process demonstration. The results are stable, reliable, and long-term cultivation of strains for year round algal biomass production. From June 2012 to November 2014, the IABR and extraction facilities produced 524 metric tons (MT) of biomass (on a dry weight basis), and 2,587 gallons of Green Crude. Additionally, the IABR

  17. NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-01

    This fact sheet describes the National Renewable Energy Laboratory's (NREL's) accomplishments in showcasing a Ford hydrogen-powered internal combustion engine (H2ICE) bus at The Taste of Colorado festival in Denver. NREL started using its U.S. Department of Energy-funded H2ICE bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. In September 2010, NREL featured the bus at The Taste of Colorado. This was the first major outreach event for the bus. NREL's educational brochure, vehicle wrap designs, and outreach efforts serve as a model for other organizations with DOE-funded H2ICE buses. Work was performed by the Hydrogen Education Group and Market Transformation Group in the Hydrogen Technologies and Systems Center.

  18. The biochemical womb of schizophrenia: A review.

    Science.gov (United States)

    Gaur, N; Gautam, S; Gaur, M; Sharma, P; Dadheech, G; Mishra, S

    2008-10-01

    The conclusive identification of specific etiological factors or pathogenic processes in the illness of schizophrenia has remained elusive despite great technological progress. The convergence of state-of-art scientific studies in molecular genetics, molecular neuropathophysiology, in vivo brain imaging and psychopharmacology, however, indicates that we may be coming much closer to understanding the genesis of schizophrenia. In near future, the diagnosis and assessment of schizophrenia using biochemical markers may become a "dream come true" for the medical community as well as for the general population. An understanding of the biochemistry/ visa vis pathophysiology of schizophrenia is essential to the discovery of preventive measures and therapeutic intervention.

  19. Environmental assessment for relocation of NREL research experiments

    International Nuclear Information System (INIS)

    1992-06-01

    In compliance with the National Environmental Policy Act (NEPA), the Department of Energy (DOE) has prepared this environmental assessment (DOE/EA-0619) to evaluate the environmental consequences associated with the conduct of ongoing research activities of its National Renewable Energy Laboratory proposed to be relocated to leased commercial laboratory and warehouse space at 6800 Joyce Sum, in Arvada, Colorado. NREL is currently leasing space in Golden, Colorado, for conduct of the research actions discussed in the EA. The research project proposed for relocation is the Amorphous silicon Deposition Laboratory (ASDL). Additionally, it may be financially desirable to relocate the Scanning Hartman Optical Tester (SHOT) and the Whole Building Test Facility at a later date, therefore, the consequences of their operation at the proposed facility is evaluated in the EA to support such future decisions. The new location can also provide additional warehouse space required by NREL

  20. Collection of information on biorefinery research funding and research organisations (projects). Task 2.3.2 Outside Europe

    NARCIS (Netherlands)

    Annevelink, E.; Oever, van den M.J.A.

    2010-01-01

    This report provides an outlook on research into biorefineries in the US, Canada, Australia, China, India, Japan and Brazil. The results will be used for benchmarking or to indicate new opportunities. The most recent EU-funded Specific Support Action projects (Bioref-Integ, Biorefinery Euroview,

  1. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Saur, Genevieve; Ramsden, Todd; Eichman, Joshua

    2015-05-28

    This presentation summarizes NREL's hydrogen and fuel cell analysis work in three areas: resource potential, greenhouse gas emissions and cost of delivered energy, and influence of auxiliary revenue streams. NREL's hydrogen and fuel cell analysis projects focus on low-­carbon and economic transportation and stationary fuel cell applications. Analysis tools developed by the lab provide insight into the degree to which bridging markets can strengthen the business case for fuel cell applications.

  2. NREL-Prime Next-Generation Drivetrain Dynamometer Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Erdman, Bill [Cinch, Inc., Moraga, CA (United States); Blodgett, Douglas [DNV KEMA Renewables, Burlington, VT (United States); Halse, Christopher [Romax Technology, Boulder, CO (United States)

    2016-08-01

    Advances in wind turbine drivetrain technologies are necessary to improve reliability and reduce the cost of energy for land-based and offshore wind turbines. The NREL-Prime Next-Generation Drivetrain team developed a geared, medium-speed drivetrain that is lighter, more reliable and more efficient than existing designs. One of the objectives of Phase II of the project was to complete the detailed design, fabrication, and dynamometer testing of a 750 kilowatt (kW) drivetrain that includes the key gearbox innovations designed by Romax Technology and power converter innovations designed by DNV Kema Renewables. The purpose of this document is to summarize these tests completed in NREL's National Wind Technology Center 2.5 megawatt (MW) dynamometer.

  3. Effect of shortening kraft pulping integrated with extended oxygen delignification on biorefinery process performance of eucalyptus.

    Science.gov (United States)

    Li, Jing; Zhang, Chunyun; Hu, Huichao; Chai, Xin-Sheng

    2016-02-01

    The aim of this work was to study the impact of shortening kraft pulping (KP) process integrated with extended oxygen delignification (OD) on the biorefinery process performance of eucalyptus. Data showed that using kraft pulps with high kappa number could improve the delignification efficiency of OD, reduce hexenuronic acid formation in kraft pulps. Pulp viscosity for a target kappa number of ∼10 was comparable to that obtained from conventional KP and OD process. The energy and alkali consumption in the integrated biorefinery process could be optimized when using a KP pulp with kappa number of ∼27. The process could minimize the overall methanol formation, but greater amounts of carbonate and oxalate were formed. The information from this study will be helpful to the future implementation of short-time KP integrated with extended OD process in actual pulp mill applications for biorefinery, aiming at further improvement in the biorefinery effectiveness of hardwood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. On the Adaptive Design Rules of Biochemical Networks in Evolution

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2007-01-01

    Full Text Available Biochemical networks are the backbones of physiological systems of organisms. Therefore, a biochemical network should be sufficiently robust (not sensitive to tolerate genetic mutations and environmental changes in the evolutionary process. In this study, based on the robustness and sensitivity criteria of biochemical networks, the adaptive design rules are developed for natural selection in the evolutionary process. This will provide insights into the robust adaptive mechanism of biochemical networks in the evolutionary process. We find that if a mutated biochemical network satisfies the robustness and sensitivity criteria of natural selection, there is a high probability for the biochemical network to prevail during natural selection in the evolutionary process. Since there are various mutated biochemical networks that can satisfy these criteria but have some differences in phenotype, the biochemical networks increase their diversities in the evolutionary process. The robustness of a biochemical network enables co-option so that new phenotypes can be generated in evolution. The proposed robust adaptive design rules of natural selection gain much insight into the evolutionary mechanism and provide a systematic robust biochemical circuit design method of biochemical networks for biotechnological and therapeutic purposes in the future.

  5. Recovery Act: Alpena Biorefinery and Alpena Biorefinery Lignin Separation Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Retsina, Theodora [American Process Inc., Atlanta, GA (United States)

    2016-12-19

    The Alpena Biorefinery (AB) was constructed in Alpena, Michigan, at the Decorative Panels International hardboard manufacturing facility. The goal of the AB was to demonstrate a modular, technically successful, and financially viable process of making cellulosic ethanol from woody biomass extract at wood processing facilities. At full capacity, the AB can produce 894,200 gallons per year of cellulosic ethanol and 696,000 gallons per year of aqueous potassium acetate, using extract from northern hardwood and aspen woodchips feedstock. The project objectives and the value proposition of AB promote the national goals of energy independence, greenhouse gas reduction, and green job creation and retention. A successful outcome of the Alpena Biorefinery project has been commercial sales of the first ever cellulosic ethanol RINS generated from woody biomass in the US, under the EPA’s Renewable Fuels Standard Program. We believe that American Process is also likely the first company in the world to produce commercial quantities of cellulosic ethanol from mixed forest residue. Life Cycle Analysis performed by Michigan Institute of Technology found that the entire life cycle greenhouse gas emissions from the plant’s cellulosic ethanol were only 25 percent that of petroleum-based gasoline. They found the potassium acetate runway de-icer coproduct generates up to 45 percent less greenhouse gases than the production of conventional potassium acetate. The Alpena Biorefinery project created 31 permanent jobs for direct employees and helped retain 200 jobs associated with the existing Decorative Panels International facility, by increasing its economic viability through significant savings in waste water treatment costs. The AB project has been declared a Michigan Center of Energy Excellence and was awarded a $4 million State of Michigan grant. The project also received New Market Tax Credit financing for locating in an economically distressed community. All other equity funds

  6. NREL Evaluates Performance of Fast-Charge Electric Buses

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-16

    This real-world performance evaluation is designed to enhance understanding of the overall usage and effectiveness of electric buses in transit operation and to provide unbiased technical information to other agencies interested in adding such vehicles to their fleets. Initial results indicate that the electric buses under study offer significant fuel and emissions savings. The final results will help Foothill Transit optimize the energy-saving potential of its transit fleet. NREL's performance evaluations help vehicle manufacturers fine-tune their designs and help fleet managers select fuel-efficient, low-emission vehicles that meet their bottom line and operational goals. help Foothill Transit optimize the energy-saving potential of its transit fleet. NREL's performance evaluations help vehicle manufacturers fine-tune their designs and help fleet managers select fuel-efficient, low-emission vehicles that meet their bottom line and operational goals.

  7. Energy Systems Integration Partnerships: NREL + Cogent Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Berdahl, Sonja E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-09

    NREL is collaborating with Cogent Energy Systems (Cogent) to introduce small-scale waste-to-energy technology in microgrids.The focus of the project is to test and demonstrate the feasibility, reliability, and usefulness of integrating electricity generated using a simulated syngas composition matching the syngas stream to be produced by a HelioStorm-based WTE gasifier to power a microgrid as a means of addressing and complementing the intermittency of other sources of electricity.

  8. Domestic Wind Energy Workforce; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, Suzanne

    2015-07-30

    A robust workforce is essential to growing domestic wind manufacturing capabilities. NREL researchers conducted research to better understand today's domestic wind workforce, projected needs for the future, and how existing and new education and training programs can meet future needs. This presentation provides an overview of this research and the accompanying industry survey, as well as the Energy Department's Career Maps, Jobs & Economic Development Impacts models, and the Wind for Schools project.

  9. Comparative assessment of selected sugarcane biorefinery-centered systems in Brazil: A multi-criteria method based on sustainability indicators.

    Science.gov (United States)

    Gnansounou, Edgard; Alves, Catarina M; Pachón, Elia Ruiz; Vaskan, Pavel

    2017-11-01

    This work proposes a new sustainability assessment framework aiming to compare selected options of biorefineries subject to provide the same services to a community. At this end, a concept of biorefinery-centered system helps to develop a joint resources and policy-oriented comparison. When an option of biorefinery cannot provide the given amounts of certain services from its own production, it complements its supply portfolio by purchasing the lacking amounts from complementary and conventional production systems. The proposed sustainability assessment framework includes a multi-criteria method used to compare the selected biorefinery options resulting in identifying their respective weaknesses and strengths against categories of criteria. Finally, the methodology helps finding the non-dominated option. Application to selected sugarcane-based biorefineries shows promising results that match with those obtained in a previous work. However, the new methodology allows extended and richer analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. NREL Next Generation Drivetrain: Mechanical Design and Test Plan (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; Halse, C.

    2014-05-01

    The Department of Energy and industry partners are sponsoring a $3m project for design and testing of a 'Next Generation' wind turbine drivetrain at the National Renewable Energy Laboratory (NREL). This poster focuses on innovative aspects of the gearbox design, completed as part of an end-to-end systems engineering approach incorporating innovations that increase drivetrain reliability, efficiency, torque density and minimize capital cost.

  11. Wind LCA Harmonization (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    2013-06-01

    NREL recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that provides more exact estimates of GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty. This involved a systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems in order to determine the causes of life cycle greenhouse gases (GHG) emissions and, where possible, reduce variability in GHG estimates.

  12. Synthesis of Optimal Processing Pathway for Microalgae-based Biorefinery under Uncertainty

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2015-01-01

    MINLP) problem is formulated for determining the optimal biorefinery structure under given parameter uncertainties modelled as sampled scenarios. The solution to the sMINLP problem determines the optimal decisions with respect to processing technologies, material flows, and product portfolio in the presence...... decision making, we propose a systematic framework for the synthesis and optimal design of microalgae-based processing network under uncertainty. By incorporating major uncertainties into the biorefinery superstructure model we developed previously, a stochastic mixed integer nonlinear programming (s...

  13. NREL Screens Universities for Solar and Battery Storage Potential

    Energy Technology Data Exchange (ETDEWEB)

    Elgqvist, Emma M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-12

    In support of the U.S. Department of Energy's SunShot initiative, NREL provided solar photovoltaic (PV) screenings in 2016 and 2017 for universities seeking to go solar. Fifteen universities were selected for screenings based on campus solar and sustainability goals, plans for future solar projects and solar deployment capacity (megawatts), regional diversity, energy costs, and availability of campus energy data for the analysis.

  14. NREL Pyrheliometer Comparison: September 16 to 27, 2013 (NPC-2013)

    Energy Technology Data Exchange (ETDEWEB)

    Reda, I.; Dooraghi, M.; Habte, A.

    2013-11-01

    Accurate measurements of direct normal (beam) solar irradiance from pyrheliometers are important for the development and deployment of solar energy conversion systems, improving our understanding of the Earth's energy budget for climate change studies, and for other science and technology applications involving solar flux. Providing these measurements places many demands on the quality system used by the operator of commercially available radiometers. Maintaining accurate radiometer calibrations traceable to an international standard is the first step in producing research-quality solar irradiance measurements. As with all measurement systems, absolute cavity radiometers and other types of pyrheliometers are subject to performance changes over time. NREL has developed and maintained a group of absolute cavity radiometers with direct calibration traceability to the World Radiometric Reference (WRR). These reference instruments are used by NREL to calibrate pyrheliometers and pyranometers using the ISO 17025 accredited Broadband Outdoor Radiometer Calibration (BORCAL) process (Reda et al. 2008). NPCs are held annually at the Solar Radiation Research Laboratory (SRRL) in Golden, Colorado. Open to all pyrheliometer owners/operators, e.g. NREL, NASA, NIST, NOAA, USA industry and academia, USA-DOE and other national laboratories, and national and international organizations. Each NPC provides an opportunity to determine the unique World Radiometric Reference (WRR) transfer factor (WRR-TF) for each participating pyrheliometer. By adjusting all subsequent pyrheliometer measurements by the appropriate WRR-TF, the solar irradiance data are traceable to the International System of Units through WRR.

  15. Techno-economic feasibility of waste biorefinery

    DEFF Research Database (Denmark)

    Shahzad, Khurram; Narodoslawsky, Michael; Sagir, Muhammad

    2017-01-01

    The utilization of industrial waste streams as input materials for bio-mediated production processes constitutes a current R&D objective not only to reduce process costs at the input side but in parallel, to minimize hazardous environmental emissions. In this context, the EU-funded project ANIMPOL...... elaborated a process for the production of polyhydroxyalkanoate (PHA) biopolymers starting from diverse waste streams of the animal processing industry. This article provides a detailed economic analysis of PHA production from this waste biorefinery concept, encompassing the utilization of low......-quality biodiesel, offal material and meat and bone meal (MBM). Techno-economic analysis reveals that PHA production cost varies from 1.41 €/kg to 1.64 €/kg when considering offal on the one hand as waste, or, on the other hand, accounting its market price, while calculating with fixed costs for the co...

  16. Synthesis and design of optimal biorefinery

    DEFF Research Database (Denmark)

    Cheali, Peam

    process feasibility analysis is of a multidisciplinary nature, often limited and uncertain; (iii) Complexity challenge: this problem is complex requiring multi-criteria evaluation (technical, economic,sustainability). This PhD project aims to develop a decision support tool for identifying optimal...... biorefinery concepts at the early-stage of product-process development. To this end, asystematic framework has been developed, including a superstructure-based optimization approach, a comprehensive database of processing and conversion technologies, and model libraries to allow generation and comparison...... of a large numberof alternatives at their optimality. The result is the identification of the optimal rawmaterial, the product (single vs multi) portfolio and the corresponding process technology selection for a given market scenario. The economic risk of investment due to market uncertainties is further...

  17. Early-Stage Capital Cost Estimation of Biorefinery Processes: A Comparative Study of Heuristic Techniques.

    Science.gov (United States)

    Tsagkari, Mirela; Couturier, Jean-Luc; Kokossis, Antonis; Dubois, Jean-Luc

    2016-09-08

    Biorefineries offer a promising alternative to fossil-based processing industries and have undergone rapid development in recent years. Limited financial resources and stringent company budgets necessitate quick capital estimation of pioneering biorefinery projects at the early stages of their conception to screen process alternatives, decide on project viability, and allocate resources to the most promising cases. Biorefineries are capital-intensive projects that involve state-of-the-art technologies for which there is no prior experience or sufficient historical data. This work reviews existing rapid cost estimation practices, which can be used by researchers with no previous cost estimating experience. It also comprises a comparative study of six cost methods on three well-documented biorefinery processes to evaluate their accuracy and precision. The results illustrate discrepancies among the methods because their extrapolation on biorefinery data often violates inherent assumptions. This study recommends the most appropriate rapid cost methods and urges the development of an improved early-stage capital cost estimation tool suitable for biorefinery processes. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. Pretreatment techniques for biofuels and biorefineries

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhen (ed.) [Chinese Academy of Sciences, Kunming, YN (China). Xishuangbanna Tropical Botonical Garden

    2013-02-01

    The first book focused on pretreatment techniques for biofuels contributed by the world's leading experts. Extensively covers the different types of biomass, various pretreatment approaches and methods that show the subsequent production of biofuels and chemicals. In addition to traditional pretreatment methods, novel techniques are also introduced and discussed. An accessible reference work for students, researchers, academicians and industrialists in biorefineries. This book includes 19 chapters contributed by the world's leading experts on pretreatment methods for biomass. It extensively covers the different types of biomass (e.g. molasses, sugar beet pulp, cheese whey, sugarcane residues, palm waste, vegetable oil, straws, stalks and wood), various pretreatment approaches (e.g. physical, thermal, chemical, physicochemical and biological) and methods that show the subsequent production of biofuels and chemicals such as sugars, ethanol, extracellular polysaccharides, biodiesel, gas and oil. In addition to traditional methods such as steam, hot-water, hydrothermal, diluted-acid, organosolv, ozonolysis, sulfite, milling, fungal and bacterial, microwave, ultrasonic, plasma, torrefaction, pelletization, gasification (including biogas) and liquefaction pretreatments, it also introduces and discusses novel techniques such as nano and solid catalysts, organic electrolyte solutions and ionic liquids. This book offers a review of state-of-the-art research and provides guidance for the future paths of developing pretreatment techniques of biomass for biofuels, especially in the fields of biotechnology, microbiology, chemistry, materials science and engineering. It intends to provide a systematic introduction of pretreatment techniques. It is an accessible reference work for students, researchers, academicians and industrialists in biorefineries.

  19. Prions: the danger of biochemical weapons

    Directory of Open Access Journals (Sweden)

    Eric Almeida Xavier

    2014-09-01

    Full Text Available The knowledge of biotechnology increases the risk of using biochemical weapons for mass destruction. Prions are unprecedented infectious pathogens that cause a group of fatal neurodegenerative diseases by a novel mechanism. They are transmissible particles that are devoid of nucleic acid. Due to their singular characteristics, Prions emerge as potential danger since they can be used in the development of such weapons. Prions cause fatal infectious diseases, and to date there is no therapeutic or prophylactic approach against these diseases. Furthermore, Prions are resistant to food-preparation treatments such as high heat and can find their way from the digestive system into the nervous system; recombinant Prions are infectious either bound to soil particles or in aerosols. Therefore, lethal Prions can be developed by malicious researchers who could use it to attack political enemies since such weapons cause diseases that could be above suspicion.

  20. Biochemical Measurements of the Human Stress Response

    Science.gov (United States)

    1984-03-01

    8217 biochemical stress response. Dr Thomas Longridge was the project scientist and Dr Joe De Maio was the task scientist. This research was conducted by the...under condition A described in next paragraph. Second, DOPAC, MHPG, HVA, 5-HIAA, and VMA were determined by a modified method of Joseph, Kadam , and...n tt Ln 0 0 vJ 0 (N ’lw %.D w 0 0) to CI la, co 0 (r) Ch 𔃺I I 0 𔃺 0 0 0 (’) v 01-4 V~ 4 Hn qqJ Ln NOD & OD N r- ai r, m 0 ~ $4 c4 H 0 OI H r) (n t

  1. Reaching the Environmental Community: Designing an Information Program for the NREL Biofuels Program; May 2002-May 2003

    Energy Technology Data Exchange (ETDEWEB)

    Ames, J.; Werner, C.

    2003-08-01

    Final report on subcontract for holding two briefings for policymakers and the environmental community on environmental issues related to biofuels; one on one on the energy and environmental issues associated with biofuels production and use, and the other on implications of pending renewable fuels standard legislation.

  2. A biorefinery for mobility?

    Science.gov (United States)

    Pacca, S; Moreira, J R

    2011-11-15

    Biofuels are considered as a carbon neutral alternative to hydrocarbons in the transport sector and this approach has triggered concerns about the impact the production of biofuels might have on land usage. Another option that might also lead to reduced emissions in the transport sector is electricity based on renewable energy sources such as biomass. Below, we assess the benefits and drawbacks of the joint production of ethanol and electricity in a sugar cane based refinery, and the use of both energy forms in privately owned automobiles. In this analysis, we have considered technology for energy production that is currently available and cost competitive. The results show that the amount of land that is required to power our current automobile use needs is less than what is typically stated. According to our results that are based on 2010 values, 2 million ha of land are sufficient to power the Brazilian automobile fleet, 25 million ha are enough to satisfy the needs of the U.S. fleet, and 67 million ha are sufficient to cover the global autofuel requirements. When minor efficiency gains are considered, 19 million ha will be enough to satisfy the fuel needs of the U.S. fleet in 2030, whereas land required to supply the Brazilian and global fleet remain basically unchanged. Our analysis shows that the harvested energy density of sugar cane is 306 GJ/ha/yr, which is 1.7 times the value usually reported in the literature for biofuels. As a result, taking advantage of the primary energy potential of sugar cane, only 4% of the world's available cropland area would be sufficient to produce fuels that would power the global car fleet.

  3. Fulton Cellulosic Ethanol Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Sumait, Necy [BlueFire Ethanol, Irvine, CA (United States); Cuzens, John [BlueFire Ethanol, Irvine, CA (United States); Klann, Richard [BlueFire Ethanol, Irvine, CA (United States)

    2015-07-24

    Final report on work performed by BlueFire on the deployment of acid hydrolysis technology to convert cellulosic waste materials into renewable fuels, power and chemicals in a production facility to be located in Fulton, Mississippi.

  4. Forest biorefinery: Potential of poplar phytochemicals as value-added co-products.

    Science.gov (United States)

    Devappa, Rakshit K; Rakshit, Sudip K; Dekker, Robert F H

    2015-11-01

    The global forestry industry after experiencing a market downturn during the past decade has now aimed its vision towards the integrated biorefinery. New business models and strategies are constantly being explored to re-invent the global wood and pulp/paper industry through sustainable resource exploitation. The goal is to produce diversified, innovative and revenue generating product lines using on-site bioresources (wood and tree residues). The most popular product lines are generally produced from wood fibers (biofuels, pulp/paper, biomaterials, and bio/chemicals). However, the bark and other tree residues like foliage that constitute forest wastes, still remain largely an underexploited resource from which extractives and phytochemicals can be harnessed as by-products (biopharmaceuticals, food additives and nutraceuticals, biopesticides, cosmetics). Commercially, Populus (poplar) tree species including hybrid varieties are cultivated as a fast growing bioenergy crop, but can also be utilized to produce bio-based chemicals. This review identifies and underlines the potential of natural products (phytochemicals) from Populus species that could lead to new business ventures in biorefineries and contribute to the bioeconomy. In brief, this review highlights the importance of by-products/co-products in forest industries, methods that can be employed to extract and purify poplar phytochemicals, the potential pharmaceutical and other uses of >160 phytochemicals identified from poplar species - their chemical structures, properties and bioactivities, the challenges and limitations of utilizing poplar phytochemicals, and potential commercial opportunities. Finally, the overall discussion and conclusion are made considering the recent biotechnological advances in phytochemical research to indicate the areas for future commercial applications from poplar tree species. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  5. Perspectives on the integration of a supercritical fluid extraction plant to a sugarcane biorefinery: thermo-economical evaluation of CO2 recycle systems

    Directory of Open Access Journals (Sweden)

    Juliana Q. ALBARELLI

    Full Text Available Abstract In the present study, the software Aspen Plus® was used to analyse two different systems for CO2 recycle in a SFE process for extraction of more polar compounds using ethanol as co-solvent, the most common co-solvent used due to its environment-friendly nature. The extraction process of β-ecdysone from Brazilian ginseng roots was considered as example in the computational simulations. The first CO2 recycle system, named Recycle A, considered the compression of the CO2 separated in the second flash to the recycle pressure assumed at the first flash tank, its cooling to 25 °C and recirculation, while the second recycle system, named Recycle B, considered the cooling and pumping of the CO2 separated in the second flash, its heating to 25 °C and recirculation. The best techno-economic condition to operate the recycling step would be using Recycle A at 40 bar and 30 °C considering a stand-alone SFE process; and using Recycle B at 40 bar and 40 °C, considering this process in close proximity of a hypothetical sugarcane biorefinery. Therefore, these results suggest that the selection where would be located the SFE plant should be taken into account during the first steps of the process design.

  6. Food waste biorefinery: Sustainable strategy for circular bioeconomy.

    Science.gov (United States)

    Dahiya, Shikha; Kumar, A Naresh; Shanthi Sravan, J; Chatterjee, Sulogna; Sarkar, Omprakash; Mohan, S Venkata

    2018-01-01

    Enormous quantity of food waste (FW) is becoming a global concern. To address this persistent problem, sustainable interventions with green technologies are essential. FW can be used as potential feedstock in biological processes for the generation of various biobased products along with its remediation. Enabling bioprocesses like acidogenesis, fermentation, methanogenesis, solventogenesis, photosynthesis, oleaginous process, bio-electrogenesis, etc., that yields various products like biofuels, platform chemicals, bioelectricity, biomaterial, biofertilizers, animal feed, etc can be utilized for FW valorisation. Integrating these bioprocesses further enhances the process efficiency and resource recovery sustainably. Adapting biorefinery strategy with integrated approach can lead to the development of circular bioeconomy. The present review highlights the various enabling bioprocesses that can be employed for the generation of energy and various commodity chemicals in an integrated approach addressing sustainability. The waste biorefinery approach for FW needs optimization of the cascade of the individual bioprocesses for the transformation of linear economy to circular bioeconomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Superstructure-based optimization of biorefinery networks: Production of biodiesel

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona; Orsi, Albert; Gani, Rafiqul

    2015-01-01

    into account the available technologies, geographical location, future technological developments and global market changes. The problem of optimal design of biorefinery networks is solved in this work through three different stages: (i) synthesis stage, (ii) design stage, and (iii) innovation stage......]. The optimal synthesis of biorefinery networks problem is defined as: given a set of biomass derived feedstock and a set of desired final products and specifications, determine a flexible, sustainable and innovative processing network with the targets of minimum cost and sustainable development taking......, the selected processing network is simulated and analyzed and targets for improvement are identified. Finally, a more sustainable design is achieved at the innovation stage by generating innovative solutions that satisfy the targets from the design stage. The applicability of the proposed approach is shown...

  8. THE INVESTIGATION OF BIOCHEMICAL CONTENT OF Elaeagnus angustifolia

    OpenAIRE

    yıldırım, Işıl

    2018-01-01

    AbstractStudies about herbal products are increasing every day due to their rich biochemical content. Elaeagnus angustofolia is one of the best known plant species to have a strong biochemical substance spectrum. This work was performed to identify the some biochemical content of Eleagnus angustofolia. In this study, vitamins A, E, and C, total sugar content, inverted sugar content, cellulose content, amount of total protein, and fatty acid properties were studied. Our investigations revealed...

  9. Synthesis of biorefinery networks using a superstructure optimization based approach

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona; Anaya-Reza, Omar; Lopez-Arenas, Maria Teresa

    into account the available technologies, geographical location, future technological developments and global market changes. The problem of optimal design of biorefinery networks is solved in this work through three different stages: (i) synthesis stage, (ii) design stage, and (iii) innovation stage......, the selected processing network is simulated and analyzed and targets for improvement are identified. Finally, a more sustainable design is achieved at the innovation stage by generating innovative solutions that satisfy the targets from the design stage. This work is concerned with the first stage......]. The optimal synthesis of biorefinery networks problem is defined as: given a set of biomass derived feedstock and a set of desired final products and specifications, determine a flexible, sustainable and innovative processing network with the targets of minimum cost and sustainable development taking...

  10. Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation.

    Science.gov (United States)

    Salvachúa, Davinia; Mohagheghi, Ali; Smith, Holly; Bradfield, Michael F A; Nicol, Willie; Black, Brenna A; Biddy, Mary J; Dowe, Nancy; Beckham, Gregg T

    2016-01-01

    Co-production of chemicals from lignocellulosic biomass alongside fuels holds promise for improving the economic outlook of integrated biorefineries. In current biochemical conversion processes that use thermochemical pretreatment and enzymatic hydrolysis, fractionation of hemicellulose-derived and cellulose-derived sugar streams is possible using hydrothermal or dilute acid pretreatment (DAP), which then offers a route to parallel trains for fuel and chemical production from xylose- and glucose-enriched streams. Succinic acid (SA) is a co-product of particular interest in biorefineries because it could potentially displace petroleum-derived chemicals and polymer precursors for myriad applications. However, SA production from biomass-derived hydrolysates has not yet been fully explored or developed. Here, we employ Actinobacillus succinogenes 130Z to produce succinate in batch fermentations from various substrates including (1) pure sugars to quantify substrate inhibition, (2) from mock hydrolysates similar to those from DAP containing single putative inhibitors, and (3) using the hydrolysate derived from two pilot-scale pretreatments: first, a mild alkaline wash (deacetylation) followed by DAP, and secondly a single DAP step, both with corn stover. These latter streams are both rich in xylose and contain different levels of inhibitors such as acetate, sugar dehydration products (furfural, 5-hydroxymethylfurfural), and lignin-derived products (ferulate, p-coumarate). In batch fermentations, we quantify succinate and co-product (acetate and formate) titers as well as succinate yields and productivities. We demonstrate yields of 0.74 g succinate/g sugars and 42.8 g/L succinate from deacetylated DAP hydrolysate, achieving maximum productivities of up to 1.27 g/L-h. Moreover, A. succinogenes is shown to detoxify furfural via reduction to furfuryl alcohol, although an initial lag in succinate production is observed when furans are present. Acetate seems to be the

  11. Bio-refinery approach for spent coffee grounds valorization.

    Science.gov (United States)

    Mata, Teresa M; Martins, António A; Caetano, Nídia S

    2018-01-01

    Although normally seen as a problem, current policies and strategic plans concur that if adequately managed, waste can be a source of the most interesting and valuable products, among which metals, oils and fats, lignin, cellulose and hemicelluloses, tannins, antioxidants, caffeine, polyphenols, pigments, flavonoids, through recycling, compound recovery or energy valorization, following the waste hierarchy. Besides contributing to more sustainable and circular economies, those products also have high commercial value when compared to the ones obtained by currently used waste treatment methods. In this paper, it is shown how the bio-refinery framework can be used to obtain high value products from organic waste. With spent coffee grounds as a case study, a sequential process is used to obtain first the most valuable, and then other products, allowing proper valorization of residues and increased sustainability of the whole process. Challenges facing full development and implementation of waste based bio-refineries are highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. CENER/NREL Collaboration in Testing Facility and Code Development: Cooperative Research and Development Final Report, CRADA Number CRD-06-207

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, P.

    2014-11-01

    Under the funds-in CRADA agreement, NREL and CENER will collaborate in the areas of blade and drivetrain testing facility development and code development. The project shall include NREL assisting in the review and instruction necessary to assist in commissioning the new CENER blade test and drivetrain test facilities. In addition, training will be provided by allowing CENER testing staff to observe testing and operating procedures at the NREL blade test and drivetrain test facilities. CENER and NREL will exchange blade and drivetrain facility and equipment design and performance information. The project shall also include exchanging expertise in code development and data to validate numerous computational codes.

  13. ClearFuels-Rentech Integrated Biorefinery Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Joshua [Project Director

    2014-02-26

    The project Final Report describes the validation of the performance of the integration of two technologies that were proven individually on a pilot scale and were demonstrated as a pilot scale integrated biorefinery. The integrated technologies were a larger scale ClearFuels’ (CF) advanced flexible biomass to syngas thermochemical high efficiency hydrothermal reformer (HEHTR) technology with Rentech’s (RTK) existing synthetic gas to liquids (GTL) technology.

  14. Proceedings of the 1994 DOE/NREL Hydrogen Program Review, April 18--21, 1994, Livermore, California

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The US Department of Energy has conducted programs of research and development in hydrogen and related technologies since 1975. The current program, conducted in accordance with the DOE Hydrogen Program Plan FY 1993--FY 1997 published in June 1992, establishes program priorities and guidance for allocating funding. The core program, currently under the Office of Energy Management, supports projects in the areas of hydrogen production, storage, and systems research. At an annual program review, each research project is evaluated by a panel of technical experts for technical quality, progress, and programmatic benefit. This Proceedings of the April 1994 Hydrogen Program Review compiles all research projects supported by the Hydrogen Program during FY 1994. For those people interested in the status of hydrogen technologies, we hope that the Proceedings will serve as a useful technical reference. Individual reports are processed separately.

  15. Affordable High-Performance Homes: The 2002 NREL Denver Habitat for Humanity House, A Cold-Climate Case Study

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-04-01

    Habitat for Humanity affiliates throughout the U.S. are taking the lead on an integrated systems-design approach to building homes that are more efficient, more comfortable, more affordable, and more durable than homes built with standard practices.

  16. Emerging biorefinery technologies for Indian forest industry to reduce GHG emissions.

    Science.gov (United States)

    Sharma, Naman; Nainwal, Shubham; Jain, Shivani; Jain, Siddharth

    2015-11-01

    The production of biofuels as alternative energy source over fossil fuels has gained immense interest over the years as it can contribute significantly to reduce the greenhouse gas (GHG) emissions from energy production and utilization. Also with rapidly increasing fuel price and fall in oil wells, the present scenario forces us to look for an alternative source of energy that will help us in the operation of industrial as well as the transportation sector. The pulp mills in India are one of the many options. The pulp mills in India can help us to produce bio-fuels by thermo-chemical/biochemical conversion of black liquor and wood residues. These technologies include extraction of hemi-cellulose from wooden chips and black liquor, lignin from black liquor, methanol from evaporator condensates, biogas production from waste sludge, syngas production from biomass using gasification and bio-oil production from biomass using pyrolysis. The objective of this paper is to overview these emerging bio-refinery technologies that can be implemented in Indian Forest Industry to get bio-fuels, bio-chemicals and bio-energy to reduce GHG emissions. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Affordable High-Performance Homes: The 2002 NREL Denver Habitat for Humanity House, A Cold-Climate Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Norton, P.; Stafford, B.; Carpenter, B.; Hancock, C. E.; Barker, G.; Reeves, P.; Kriescher, P.

    2005-04-01

    A trend towards ''green'' building with a focus on energy efficiency is sweeping the United States homebuilding industry. An integrated systems-design approach leads to homes that are more efficient, more comfortable, more affordable, and more durable than homes built with standard practices. Habitat for Humanity affiliates throughout the country are taking the lead on this approach to home building for affordable housing. This approach supports Habitat's goals of supplying quality housing and reducing the energy cost burden on families in Habitat homes--goals that are especially important in these days of increasing energy costs.

  18. Biorefinery concept in organic agriculture: combined bioethanol and biogas production

    OpenAIRE

    Kádár, Zsófia; Oleskowicz-Popiel, Piotr; Schmidt, Jens Ejbye; Thomsen, Anne Belinda

    2009-01-01

    Organic agriculture is one sustainable alternative to avoid the negative environmental effects often caused by conventional agriculture. BioConcens is an interdisciplinary project aims at developing new biorefinery concept and processes for co-production of bioethanol, biogas and animal feed based on resources from organic agriculture (clover grass, straw) and associated food processing (whey). Bioenergy produced in organic agriculture can reduce its dependency of fossil fuels and decrease gr...

  19. Shared Solar: Current Landscape, Market Potential, and the Impact of Federal Securities Regulation; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-27

    This presentation provides a high-level overview of the current U.S. shared solar landscape, the impact that a given shared solar program's structure has on requiring federal securities oversight, as well as an estimate of market potential for U.S. shared solar deployment.

  20. Exploring basic biochemical constituents in the body tissues of ...

    African Journals Online (AJOL)

    Feeding regime did not influence susceptibility to mass loss during export. Animal age influenced the biochemical composition and export performance of abalone. Keywords: abalone; aquaculture; feeds; Haliotis midae; live export; mass loss; tissue biochemical constituents. African Journal of Marine Science 2010, 32(1): ...

  1. The Biochemical Prognostic Factors of Subclinical Hypothyroidism

    Directory of Open Access Journals (Sweden)

    Myung Won Lee

    2014-06-01

    Full Text Available BackgroundPatients with subclinical hypothyroidism (SHT are common in clinical practice. However, the clinical significance of SHT, including prognosis, has not been established. Further clarifying SHT will be critical in devising a management plan and treatment guidelines for SHT patients. Thus, the aim of this study was to investigate the prognostic factors of SHT.MethodsWe reviewed the medical records of Korean patients who visited the endocrinology outpatient clinic of Severance Hospital from January 2008 to September 2012. Newly-diagnosed patients with SHT were selected and reviewed retrospectively. We compared two groups: the SHT maintenance group and the spontaneous improvement group.ResultsThe SHT maintenance group and the spontaneous improvement group had initial thyroid-stimulating hormone (TSH levels that were significantly different (P=0.035. In subanalysis for subjects with TSH levels between 5 to 10 µIU/mL, the spontaneous improvement group showed significantly lower antithyroid peroxidase antibody (anti-TPO-Ab titer than the SHT maintenance group (P=0.039. Regarding lipid profiles, only triglyceride level, unlike total cholesterol and low density lipoprotein cholesterol, was related to TSH level, which is correlated with the severity of SHT. Diffuse thyroiditis on ultrasonography only contributed to the severity of SHT, not to the prognosis. High sensitivity C-reactive protein and urine iodine excretion, generally regarded as possible prognostic factors, did not show any significant relation with the prognosis and severity of SHT.ConclusionOnly initial TSH level was a definite prognostic factor of SHT. TPO-Ab titer was also a helpful prognostic factor for SHT in cases with mildly elevated TSH. Other than TSH and TPO-Ab, we were unable to validate biochemical prognostic factors in this retrospective study for Korean SHT patients.

  2. Multitasking mesoporous nanomaterials for biorefinery applications

    Energy Technology Data Exchange (ETDEWEB)

    Kandel, Kapil [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    in microalgae biorefinery. Two different integrated biorefinery systems are highlighted. (i) OM-MSNs are used to harvest microalgae and selectively sequester free fatty acids (FFAs). (ii) OM-MSNs are shown to selectively sequester FFAs and convert them into diesel-range liquid hydrocarbon fuels. A similar MSN supported metal nanoparticle catalyst is demonstrated to transform FFAs into green diesel with even greater activity and selectivity. The incorporation of a different organic functional group into MSN provides a selective adsorbent for separation and purification of α-tocopherol from microalgae oil. The functional group with electron deficient aromatic rings demonstrated high sequestration capacity and selectivity of {alpha}-tocopherol.

  3. Multitasking mesoporous nanomaterials for biorefinery applications

    Science.gov (United States)

    Kandel, Kapil

    in microalgae biorefinery. Two different integrated biorefinery systems are highlighted. (i) OM-MSNs are used to harvest microalgae and selectively sequester free fatty acids (FFAs). (ii) OM-MSNs are shown to selectively sequester FFAs and convert them into diesel-range liquid hydrocarbon fuels. A similar MSN supported metal nanoparticle catalyst is demonstrated to transform FFAs into green diesel with even greater activity and selectivity. The incorporation of a different organic functional group into MSN provides a selective adsorbent for separation and purification of alpha-tocopherol from microalgae oil. The functional group with electron deficient aromatic rings demonstrated high sequestration capacity and selectivity of alpha-tocopherol.

  4. Vehicle Testing and Integration Facility; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-02

    Engineers at the National Renewable Energy Laboratory’s (NREL’s) Vehicle Testing and Integration Facility (VTIF) are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle (EV) grid integration and minimizing fuel consumption related to vehicle climate control. Dedicated to renewable and energy-efficient solutions, the VTIF showcases technologies and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for EV components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies, and industry partners.

  5. Highly valuable microalgae: biochemical and topological aspects.

    Science.gov (United States)

    Pignolet, Olivier; Jubeau, Sébastien; Vaca-Garcia, Carlos; Michaud, Philippe

    2013-08-01

    The past decade has seen a surge in the interest in microalgae culture for biodiesel production and other applications as renewable biofuels as an alternative to petroleum transport fuels. The development of new technologies for the culture of these photosynthetic microorganisms and improved knowledge of their biochemical composition has spurred innovation in the field of high-value biomolecules. These developments are only economically viable if all the microalgae fractions are valorized in a biorefinery strategy. Achieving this objective requires an understanding of microalgae content and the cellular localization of the main biomolecular families in order to develop efficient harvest and sequential recovery technologies. This review summarizes the state of the art in microalgae compositions and topologies using some examples of the main industrially farmed microalgae.

  6. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass and Algal Residues via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olarte, M. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, T. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-21

    Beginning in 2010, UOP, along with the Department of Energy and other project partners, designed a pathway for an integrated biorefinery to process solid biomass into transportation fuel blendstocks. The integrated biorefinery (IBR) would convert second generation feedstocks into pyrolysis oil which would then be upgraded into fuel blendstocks without the limitations of traditional biofuels.

  7. National Renewable Energy Laboratory (NREL) 2007 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    2008-08-01

    This 24-page document focuses on NREL's technology transfer activities for solar cells, hydrogen production, biofuels, nanotechnology, lithium batteries, grid integration, and building technologies.

  8. NREL/Industry Range-Extended Electric Vehicle for Package Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, John T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kelly, Kenneth J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Duran, Adam W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lammert, Michael P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Miller, Eric S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-15

    Range-extended electric vehicle (EV) technology can be a viable option for reducing fuel consumption from medium-duty (MD) and heavy-duty (HD) engines by approximately 50 percent or more. Such engines have wide variations in use and duty cycles, however, and identifying the vocations/duty cycles most suitable for range-extended applications is vital for maximizing the potential benefits. This presentation provides information about NREL's research on range-extended EV technologies, with a focus on NREL's real-world data collection and analysis approach to identifying the vocations/duty cycles best suited for range-extender applications and to help guide related powertrain optimization and design requirements. The presentation also details NREL's drive cycle development process as it pertains to package delivery applications.

  9. Biorefinery of instant noodle waste to biofuels.

    Science.gov (United States)

    Yang, Xiaoguang; Lee, Sang Jun; Yoo, Hah Young; Choi, Han Suk; Park, Chulhwan; Kim, Seung Wook

    2014-05-01

    Instant noodle waste, one of the main residues of the modern food industry, was employed as feedstock to convert to valuable biofuels. After isolation of used oil from the instant noodle waste surface, the starch residue was converted to bioethanol by Saccharomyces cerevisiae K35 with simultaneous saccharification and fermentation (SSF). The maximum ethanol concentration and productivity was 61.1g/l and 1.7 g/lh, respectively. After the optimization of fermentation, ethanol conversion rate of 96.8% was achieved within 36 h. The extracted oil was utilized as feedstock for high quality biodiesel conversion with typical chemical catalysts (KOH and H2SO4). The optimum conversion conditions for these two catalysts were estimated; and the highest biodiesel conversion rates were achieved 98.5% and 97.8%, within 2 and 3h, respectively. The high conversion rates of both bioethanol and biodiesel demonstrate that novel substrate instant noodle waste can be an attractive biorefinery feedstock in the biofuels industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. SWAY/NREL Collaboration on Offshore Wind System Testing and Analysis: Cooperative Research and Development Final Report, CRADA Number CRD-11-459

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-02-01

    This shared resources CRADA defines collaborations between the National Renewable Energy Laboratory and SWAY. Under the terms and conditions described in this CRADA agreement, NREL and SWAY will collaborate on the SWAY 1/5th-scale floating wind turbine demonstration project in Norway. NREL and SWAY will work together to obtain measurement data from the demonstration system to perform model validation.

  11. Summary of NREL's FY13-FY15 Photovoltaic Subprogram

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-31

    In this report, you will find summaries of the completed FY13-FY15 Photovoltaic projects that were funded within NREL. The summaries describe the initial motivation for the project; significant achievements, including publications, intellectual property, and collaborations; and remaining challenges. Among the NREL projects, you will find research of almost every major PV technology - from the next generation of silicon PV to relatively new organic PVs - as well as projects advancing PV module durability and characterization. Each of these projects was designed to support SunShot's goals, putting the United States one step closer to widespread use of low-cost, clean electricity.

  12. Physics-Based GOES Satellite Product for Use in NREL's National Solar Radiation Database: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, M.; Habte, A.; Gotseff, P.; Weekley, A.; Lopez, A.; Molling, C.; Heidinger, A.

    2014-07-01

    The National Renewable Energy Laboratory (NREL), University of Wisconsin, and National Oceanic Atmospheric Administration are collaborating to investigate the integration of the Satellite Algorithm for Shortwave Radiation Budget (SASRAB) products into future versions of NREL's 4-km by 4-km gridded National Solar Radiation Database (NSRDB). This paper describes a method to select an improved clear-sky model that could replace the current SASRAB global horizontal irradiance and direct normal irradiances reported during clear-sky conditions.

  13. NREL Solar Radiation Resource Assessment Project: Status and outlook

    Science.gov (United States)

    Renne, D.; Riordan, C.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.

    1992-05-01

    This report summarizes the activities and accomplishments of NREL's Solar Radiation Resource Assessment Project during fiscal year 1991. Currently, the primary focus of the SRRAP is to produce a 1961 - 1990 National Solar Radiation Data Base, providing hourly values of global horizontal, diffuse, and direct normal solar radiation at approximately 250 sites around the United States. Because these solar radiation quantities were measured intermittently at only about 50 of these sites, models were developed and applied to the majority of the stations to provide estimates of these parameters. Although approximately 93 percent of the data base consists of modeled data this represents a significant improvement over the SOLMET/ERSATZ 1952 - 1975 data base. The magnitude and importance of this activity are such that the majority of SRRAP human and financial resources were devoted to the data base development. However, in FY 1991 the SRRAP was involved in many other activities, which are reported here. These include the continued maintenance of a solar radiation monitoring network in the southeast United States at six Historically Black Colleges and Universities (HBCU's), the transfer of solar radiation resource assessment technology through a variety of activities, participation in international programs, and the maintenance and operation of NREL's Solar Radiation Research Laboratory.

  14. Maximizing biofuel production in a thermochemical biorefinery by adding electrolytic hydrogen and by integrating torrefaction with entrained flow gasification

    International Nuclear Information System (INIS)

    Clausen, Lasse R.

    2015-01-01

    In a “conventional” thermochemical biorefinery, carbon is emitted from the plant in the form of CO 2 to make the synthesis gas from the gasifier suitable for fuel production. The alternative to this carbon removal is to add hydrogen to the plant. By adding hydrogen, it is possible to more than double the biofuel production per biomass input by converting almost all of the carbon in the biomass feed to carbon stored in the biofuel product. Water or steam electrolysis can supply the hydrogen to the biorefinery and also the oxygen for the gasifier. This paper presents the design and thermodynamic analysis of two biorefineries integrating water electrolysis for the production of methanol. In both plants, torrefied woody biomass is supplied to an entrained flow gasifier, but in one of the plants, the torrefaction process occurs on-site, as it is integrated with the entrained flow gasification process. The analysis shows that the biorefinery with integrated torrefaction has a higher biomass to methanol energy ratio (136% vs. 101%) as well as higher total energy efficiency (62% vs. 56%). By comparing with two identical biorefineries without electrolysis, it is concluded that the biorefinery with integrated torrefaction benefits most from the integration of electrolysis. - Highlights: • Two thermochemical biorefineries are designed and analyzed by thermodynamic modeling. • Integration of water electrolysis in a thermochemical biorefinery is investigated. • Biomass to biofuel energy efficiencies of 101–136% are achieved. • Biomass + net electricity to biofuel energy efficiencies of 56–62% are achieved. • The pros and cons of integrated torrefaction and electrolysis are described

  15. Biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy.

    Science.gov (United States)

    Liguori, Rossana; Faraco, Vincenza

    2016-09-01

    The actualization of a circular economy through the use of lignocellulosic wastes as renewable resources can lead to reduce the dependence from fossil-based resources and contribute to a sustainable waste management. The integrated biorefineries, exploiting the overall lignocellulosic waste components to generate fuels, chemicals and energy, are the pillar of the circular economy. The biological treatment is receiving great attention for the biorefinery development since it is considered an eco-friendly alternative to the physico-chemical strategies to increase the biobased product recovery from wastes and improve saccharification and fermentation yields. This paper reviews the last advances in the biological treatments aimed at upgrading lignocellulosic wastes, implementing the biorefinery concept and advocating circular economy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Biochemical constituents of seaweeds along the Maharashtra coast

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.; Jagtap, T.G.; Untawale, A.G.

    Protein, carbohydrate and organic carbon were estimated in 43 marine algal species from different stations along the Maharashtra Coast in India These species showed variation in their biochemical contents Protein varied from 10 to 33% Chlorophyceae...

  17. Lignin pyrolysis for profitable lignocellulosic biorefineries

    NARCIS (Netherlands)

    Wild, de P.J.; Gosselink, R.J.A.; Huijgen, W.J.J.

    2014-01-01

    Bio-based industries (pulp and paper and biorefineries) produce > 50 Mt/yr of lignin that results from fractionation of lignocellulosic biomass. Lignin is world's second biopolymer and a major potential source for production of performance materials and aromatic chemicals. Lignin valorization is

  18. Upgrading of lignocellulosic biorefinery to value-added chemicals: Sustainability and economics of bioethanol-derivatives

    DEFF Research Database (Denmark)

    Cheali, Peam; Posada, John A.; Gernaey, Krist

    2015-01-01

    of operating profit for biorefineries producing bioethanol-derived chemicals (247 MM$/a and 241 MM$/a for diethyl ether and 1,3-butadiene, respectively). Second, the optimal designs for upgrading bioethanol (i.e. production of 1,3-butadiene and diethyl ether) performed also better with respect...... and 1,3-butadiene, respectively). The multi-product biorefinery presented a more robust and risk-aware upgrading strategy considering the uncertainties that are typical for a long-term investment horizon.......In this study, several strategies to upgrade lignocellulosic biorefineries for production of value-added chemicals are systematically generated and evaluated with respect to economic and sustainability objectives. A superstructure-based process synthesis approach under uncertainty integrated...

  19. NREL/NASA Internal Short-Circuit Instigator in Lithium Ion Cells; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Long, Dirk; Ireland, John; Pesaran, Ahmad; Darcy, Eric; Shoesmith, Mark; McCarthy, Ben

    2013-11-14

    NREL has developed a device to test one of the most challenging failure mechanisms of lithium-ion (Li-ion) batteries -- a battery internal short circuit. Many members of the technical community believe that this type of failure is caused by a latent flaw that results in a short circuit between electrodes during use. As electric car manufacturers turn to Li-ion batteries for energy storage, solving the short circuit problem becomes more important. To date, no reliable and practical method exists to create on-demand internal shorts in Li-ion cells that produce a response that is relevant to the ones produced by field failures. NREL and NASA have worked to establish an improved ISC cell-level test method that simulates an emergent internal short circuit, is capable of triggering the four types of cell internal shorts, and produces consistent and reproducible results. Internal short circuit device design is small, low-profile and implantable into Li-ion cells, preferably during assembly. The key component is an electrolyte-compatible phase change material (PCM). The ISC is triggered by heating the cell above PCM melting temperature (presently 40 degrees C – 60 degrees C). In laboratory testing, the activated device can handle currents in excess of 300 A to simulate hard shorts (< 2 mohms). Phase change from non-conducting to conducting has been 100% successful during trigger tests.

  20. Designing optimal bioethanol networks with purification for integrated biorefineries

    International Nuclear Information System (INIS)

    Shenoy, Akshay U.; Shenoy, Uday V.

    2014-01-01

    Highlights: • An analytical method is devised for bioethanol network integration with purification. • Minimum fresh bioethanol flow and pinch are found by the Unified Targeting Algorithm. • Optimal bioethanol networks are then synthesized by the Nearest Neighbors Algorithm. • Continuous targets and networks are developed over the purifier inlet flowrate range. • Case study of a biorefinery producing bioethanol from wheat shows large savings. - Abstract: Bioethanol networks with purification for processing pathways in integrated biorefineries are targeted and designed in this work by an analytical approach not requiring graphical constructions. The approach is based on six fundamental equations involving eight variables: two balance equations for the stream flowrate and the bioethanol load over the total network system; one equation for the above-pinch bioethanol load being picked up by the minimum fresh resource and the purified stream; and three equations for the purification unit. A solution strategy is devised by specifying the two variables associated with the purifier inlet stream. Importantly, continuous targeting is then possible over the entire purifier inlet flowrate range on deriving elegant formulae for the remaining six variables. The Unified Targeting Algorithm (UTA) is utilized to establish the minimum fresh bioethanol resource flowrate and identify the pinch purity. The fresh bioethanol resource flowrate target is shown to decrease linearly with purifier inlet flowrate provided the pinch is held by the same point. The Nearest Neighbors Algorithm (NNA) is used to methodically synthesize optimal networks matching bioethanol demands and sources. A case study of a biorefinery producing bioethanol from wheat with arabinoxylan (AX) coproduction is presented. It illustrates the versatility of the approach in generating superior practical designs with up to nearly 94% savings for integrated bioethanol networks, both with and without process

  1. Ethanol production from rape straw: Part of an oilseed rape biorefinery

    DEFF Research Database (Denmark)

    Arvaniti, Efthalia

    The aim of this study was 1) present an oilseed rape whole crop biorefinery; 2) to investigate the best available experimental conditions for production of cellulosic ethanol from rape straw, and included the processes of thermo-chemical pretreatment, enzymatic hydrolysis, and C6 fermentation......, and 3) to couple cellulosic ethanol production to production of cellulolytic enzymes that are needed for cellulosic ethanol production, inside a rape straw biorefinery. For the first is based less on available experiments, and more on literature review. The second and third study conclusions were drawn...

  2. BIOREFINE-2G — Result In Brief: Novel biopolymers from biorefinery waste-streams

    DEFF Research Database (Denmark)

    Stovicek, Vratislav; Chen, Xiao; Borodina, Irina

    Second generation biorefineries are all about creating value from waste, so it seems only right that the ideal plant should leave nothing behind. With this in mind, the BIOREFINE-2G project has developed novel processes to convert pentose-rich side-streams into biopolymers.......Second generation biorefineries are all about creating value from waste, so it seems only right that the ideal plant should leave nothing behind. With this in mind, the BIOREFINE-2G project has developed novel processes to convert pentose-rich side-streams into biopolymers....

  3. The Biochemical Composition of the Breast Milk of Nigerian Mothers ...

    African Journals Online (AJOL)

    A study was conducted to determine the biochemical composition of the breast milk of Nigerian mothers of Igbo ethnic group. Apparently healthy nursing mothers (157) aged between 20-40 yeas with parities 1-5 who were attending the 6-week postnatal clinics of the University of Nigeria Teaching Hospital Enugu, ...

  4. Synergistic Hydrogen Production in a Biorefinery via Bioelectrochemical Systems

    Energy Technology Data Exchange (ETDEWEB)

    Borole, A. P.; Hamilton, C. Y.; Schell, D. J.

    2012-01-01

    Microbial electrolysis cells are devices that use biocatalysis and electrolysis for production of hydrogen from organic matter. Biorefinery process streams contain fermentation by products and inhibitors which accumulate in the process stream if the water is recycled. These molecules also affect biomass to biofuel yields if not removed from the recycle water. The presence of sugar- and lignin- degradation products such as furfural, vanillic acid and 4-hydroxybenzaldehyde has been shown to reduce fermentation yields. In this work, we calculate the potential for hydrogen production using microbial electrolysis cells from these molecules as substrates. Conversion of these substrates to electricity is demonstrated in microbial fuel cells and will also be presented.

  5. Anaerobic digestion as final step of a cellulosic ethanol biorefinery:

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2010-01-01

    In order to lower the costs for second generation bioethanol from lignocellulosic biomass anaerobic digestion of the effluent from ethanol fermentation was implemented using an upflow anaerobic sludge blanket (UASB) reactor system in a pilot-scale biorefinery plant. Both thermophilic (538C......) and mesophilic (388C) operation of the UASB reactor was investigated. At an OLR of 3.5 kg- VS/(m3 day) a methane yield of 340 L/kg-VS was achieved for thermophilic operation (538C) while 270 L/kg-VS was obtained under mesophilic conditions (388C). For loading rates higher than 5 kg-VS/(m3 day) the methane yields...

  6. Measurement of biochemical oxygen demand of the leachates.

    Science.gov (United States)

    Fulazzaky, Mohamad Ali

    2013-06-01

    Biochemical oxygen demand (BOD) of the leachates originally from the different types of landfill sites was studied based on the data measured using the two manometric methods. The measurements of BOD using the dilution method were carried out to assess the typical physicochemical and biological characteristics of the leachates together with some other parameters. The linear regression analysis was used to predict rate constants for biochemical reactions and ultimate BOD values of the different leachates. The rate of a biochemical reaction implicated in microbial biodegradation of pollutants depends on the leachate characteristics, mass of contaminant in the leachate, and nature of the leachate. Character of leachate samples for BOD analysis of using the different methods may differ significantly during the experimental period, resulting in different BOD values. This work intends to verify effect of the different dilutions for the manometric method tests on the BOD concentrations of the leachate samples to contribute to the assessment of reaction rate and microbial consumption of oxygen.

  7. Fully Integrated Lignocellulosic Biorefinery with Onsite Production of Enzymes and Yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [DSM Innovation, Incorporated, San Francisco, CA (United States)

    2010-06-14

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  8. Integrated cellulosic enzymes hydrolysis and fermentative advanced yeast bioconversion solution ready for biomass biorefineries

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [DSM Innovation, Inc., San Francisco, CA (United States)

    2011-05-04

    These are slides from this conference. Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  9. Vertical Integration of Biomass Saccharification of Enzymes for Sustainable Cellulosic Biofuel Production in a Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [DSM Innovation, Inc., San Francisco, CA (United States)

    2011-05-09

    These are a set of slides from this conference. Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  10. NREL Pyrheliometer Comparisons: September 25-October 6, 2017 (NPC-2017)

    Energy Technology Data Exchange (ETDEWEB)

    Reda, Ibrahim M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dooraghi, Michael R. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Andreas, Afshin M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Habte, Aron M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-07

    Accurate measurements of direct normal (beam) solar irradiance from pyrheliometers are important for developing and deploying solar energy conversion systems, improving our understanding of the Earth's energy budget for climate change studies, and for other science and technology applications involving solar flux. Providing these measurements places many demands on the quality system used by the operator of commercially available radiometers. Maintaining accurate radiometer calibrations that are traceable to an international standard is the first step in producing research-quality solar irradiance measurements. In 1977, the World Meteorological Organization (WMO) established the World Radiometric Reference (WRR) as the international standard for the measurement of direct normal solar irradiance (Frohlich 1991). The WRR is an internationally recognized, detector-based measurement standard determined by the collective performance of six electrically self-calibrated absolute cavity radiometers comprising the World Standard Group (WSG). Various countries, including the United States, have contributed these specialized radiometers to the Physikalisch-Meteorologisches Observatorium Davos - World Radiation Center (PMOD/WRC) to establish the WSG. As with all measurement systems, Absolute Cavity Radiometers (ASR) are subject to performance changes over time. Therefore, every five years the PMOD/WRC in Davos, Switzerland, hosts an International Pyrheliometer Comparison (IPC) for transferring the WRR to participating radiometers. NREL has represented the U.S. Department of Energy (DOE) in each IPC since 1980. As a result, NREL has developed and maintained a select group of absolute cavity radiometers with direct calibration traceability to the WRR, and uses these reference instruments to calibrate pyrheliometers and pyranometers using the International Organization for Standardization (ISO) 17025 accredited Broadband Outdoor Radiometer Calibration (BORCAL) process (Reda

  11. Partnering: An Engine for Innovation, Continuum Magazine, Fall 2014 / Issue 7; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-10-01

    This issue of Continuum highlights the many ways NREL partners with private industry and other research institutions. You will find references to many of the partnerships and examples of the scope of our engagement with industry leaders, government organizations, and startups.

  12. NREL Photovoltaic Program. FY 1994 annual report, October 1, 1993--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This report summarizes the in-house and subcontracted research and development activities under the National renewable Energy Laboratory (NREL) Photovoltaics (PV) program for fiscal year 1994. Research is organized under the following areas; PV program management; crystalline silicon and advanced devices; thin-film PV technologies; PV manufacturing; PV module and system performance and engineering; and PV applications and markets.

  13. URANS simulations of separated flow with stall cells over an NREL S826 airfoil

    DEFF Research Database (Denmark)

    Sarlak Chivaee, Hamid; Nishino, T.; Sørensen, Jens Nørkær

    2016-01-01

    A series of wind tunnel measurements and oil flow visualization was recently carried out at the Technical University of Denmark in order to investigate flow characteristics over a 14% thick NREL S826 airfoil at low Reynolds numbers. This paper aims at presenting numerical simulations of the same ...

  14. Deliberate Science, Continuum Magazine: Clean Energy Innovation at NREL, Winter 2012 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-01

    This quarterly magazine is dedicated to stepping beyond the technical journals to reveal NREL's vital work in a real-world context for our stakeholders. Continuum provides insights into the latest and most impactful clean energy innovations, while spotlighting those talented researchers and unique facilities that make it all happen. This edition focuses on deliberate science.

  15. Becoming Resilient: Disaster Planning and Recovery: NREL Experts Assist Before and After a Disaster (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    Hotchkiss, E.

    2014-08-01

    This fact sheet provides information on how private industry; federal, state, and local governments; non-profit organizations; and communities can utilize NREL's expertise, tools, and innovations to incorporate energy efficiency and renewable energy into the planning, recovery, and rebuilding stages of disaster.

  16. Chemical biorefinery perspectives : the valorisation of functionalised chemicals from biomass resources compared to the conventional fossil fuel production route

    NARCIS (Netherlands)

    Brehmer, B.

    2008-01-01

    In response to the impending problems related to fossil fuels (continued supply, price, and
    regional and global pollution) alternative feedstocks are gaining interest as possible solutions.
    Biomass, considered sustainable and renewable, is an option with the potential to replace a wide

  17. Chemical biorefinery perspectives : the valorisation of functionalised chemicals from biomass resources compared to the conventional fossil fuel production route

    NARCIS (Netherlands)

    Brehmer, B.

    2008-01-01

    In response to the impending problems related to fossil fuels (continued supply, price, and regional and global pollution) alternative feedstocks are gaining interest as possible solutions. Biomass, considered sustainable and renewable, is an option with the potential to replace a wide diversity

  18. The Macroalgae Biorefinery for Production of Bioethanol and Fish Feed from the Two Brown Algae: Laminaria Digitata and Saccharina Latissima

    DEFF Research Database (Denmark)

    Hou, Xiaoru; Bjerre, Anne-Belinda; Hansen, Jonas Høeg

    and conversion of the differently pretreated macroalgae biomass into ethanol by fermentation were compared. The protein contents and nutrient salts in residues from ethanol fermentation trials were characterized for potential fish feed. A first-step scenario for sustainability and feasibility assessment...

  19. Moorella Strains for the Production of Biochemicals from Syngas

    DEFF Research Database (Denmark)

    Redl, Stephanie; Jensen, Torbjørn Ølshøj; Nielsen, Alex Toftgaard

    In the process of sugar fermentation, a significant portion of lignocellulosic biomass is left unused. An alternative is the gasification into syngas, a carbon-rich gas mixture. Syngas serves as energy and carbon source for acetogenic bacteria, which can then produce biochemicals. In the syngas...... value biochemicals (acetone) from syngas using Moorella strains as cell factories. Moorella has outstanding abilities that make it especially suitable for the syngas fermentation process (thermophily, carbon source utilization). Firstly, the project focuses on understanding the primary metabolism...

  20. National Renewable Energy Laboratory (NREL) 2006 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    This 2006 issue of the NREL Research Review again reveals just how vital and diverse our research portfolio has become. Our feature story looks at how our move to embrace the tenants of "translational research" is strengthening our ability to meet the nation's energy goals. By closing the gap between basic science and applied research and development (R&D)--and focusing a bright light on the valuable end uses of our work--translational research promises to shorten the time it takes to push new technology off the lab bench and into the marketplace. This issue also examines our research into fuels of the future and our computer modeling of wind power deployment, both of which point out the real-world benefits of our work.

  1. Techno-Economic Analysis of Bioconversion of Methane into Biofuel and Biochemical (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Q.; Tao, L.; Pienkos, P .T.; Guarnieri, M.; Palou-Rivera, I.

    2014-10-01

    In light of the relatively low price of natural gas and increasing demands of liquid transportation fuels and high-value chemicals, attention has begun to turn to novel biocatalyst for conversion of methane (CH4) into biofuels and biochemicals [1]. A techno-economic analysis (TEA) was performed for an integrated biorefinery process using biological conversion of methane, such as carbon yield, process efficiency, productivity (both lipid and acid), natural gas and other raw material prices, etc. This analysis is aimed to identify research challenges as well provide guidance for technology development.

  2. UTILIZATION OF AGROINDUSTRIALES RESIDUES AS BIOFUELS AND BIOREFINERY

    Directory of Open Access Journals (Sweden)

    Deyanira Muñoz-Muñoz

    2014-12-01

    Full Text Available The use of residues generated in the process agro-industrials are interest worldwide. At present, research is this in lignocellulosic biomass for energy, fuels, chemicals and biomaterials through clean technologies and closed systems that conserve the environment. In this research, based on the characteristics of the typical agro-industrial residues of Cauca Department, sugarcane bagasse, sisal dust, cassava bran and the mixtures, was evaluated use as biorefinery. Were determined the thermal, physical chemical and morphologic properties in seven samples of residues, were performed exploratory tests, were determined pretreatments and applications and the possible use were identified. We conclude that the sample M6 with 9,93 % moisture, 4,12% ash, 43,97% carbon, 5,86% hydrogen, 0,43% nitrogen, 15 MJ/kg of lower heating value and 22,25%of cellulose, 9,30% of hemicellulose and 4,56% lignin, presents characteristics appropriate to be used in furnaces and boilers less power for the rural sector by the amount of ash, which keeps the low heating power stable and reduces the emission of particulate matter. For the thermal, physical, chemical and morphological characteristics, all the samples of M1 to M7, they can be hydrolyzed, densified and taken advantage like biofuel and / or biorefinery

  3. Biogas and Fuel Cells Workshop Summary Report: Proceedings from the Biogas and Fuel Cells Workshop, Golden, Colorado, June 11-13, 2012

    Energy Technology Data Exchange (ETDEWEB)

    2013-01-01

    The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) held a Biogas and Fuel Cells Workshop June 11-13, 2012, in Golden, Colorado, to discuss biogas and waste-to-energy technologies for fuel cell applications. The overall objective was to identify opportunities for coupling renewable biomethane with highly efficient fuel cells to produce electricity; heat; combined heat and power (CHP); or combined heat, hydrogen and power (CHHP) for stationary or motive applications. The workshop focused on biogas sourced from wastewater treatment plants (WWTPs), landfills, and industrial facilities that generate or process large amounts of organic waste, including large biofuel production facilities (biorefineries).

  4. Green compressed fluid technologies for downstream processing of Scenedesmus obliquus in a biorefinery approach

    NARCIS (Netherlands)

    Gilbert-López, Bienvenida; Mendiola, José A.; Broek, van den Lambertus A.M.; Houweling-Tan, Bwee; Sijtsma, Lolke; Cifuentes, Alejandro; Herrero, Miguel; Ibáñez, Elena

    2017-01-01

    The fractionation of algae biomass in several high-value compounds that can be used as ingredients in other applications sets the basis of the algae biorefinery approach. The present study aimed at the extraction and fractionation of bioactive compounds from the microalga Scenedesmus obliquus, by

  5. NREL Analysis: Reimagining What's Possible for Clean Energy, Continuum Magazine, Summer 2015 / Issue 8; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    This issue of Continuum Magazine covers the depth and breadth of NREL's ever-expanding analytical capabilities. For example, in one project we are leading national efforts to create a computer model of one of the most complex systems ever built. This system, the eastern part of the North American power grid, will likely host an increasing percentage of renewable energy in years to come. Understanding how this system will work is important to its success - and NREL analysis is playing a major role. We are also identifying the connections among energy, the environment and the economy through analysis that will point us toward a 'water smart' future.

  6. NREL Pyrheliometer Comparisons: September 22-26, 2014 (NPC-2014)

    Energy Technology Data Exchange (ETDEWEB)

    Reda, I.; Dooraghi, M.; Habte, A.

    2014-10-01

    Accurate measurements of direct normal (beam) solar irradiance from pyrheliometers are important for developing and deploying solar energy conversion systems, improving our understanding of the Earth's energy budget for climate change studies, and for other science and technology applications involving solar flux. Providing these measurements places many demands on the quality system used by the operator of commercially available radiometers. Maintaining accurate radiometer calibrations that are traceable to an international standard is the first step in producing research-quality solar irradiance measurements. As with all measurement systems, absolute cavity radiometers and other types of pyrheliometers are subject to performance changes over time. NREL has developed and maintained a select group of absolute cavity radiometers with direct calibration traceability to the World Radiometric Reference (WRR), and uses these reference instruments to calibrate pyrheliometers and pyranometers using the ISO 17025 accredited Broadband Outdoor Radiometer Calibration (BORCAL) process. National Renewable Energy Laboratory (NREL) pyrheliometer comparisons (NPCs) are held annually at the Solar Radiation Research Laboratory (SRRL) in Golden, Colorado. Open to all pyrheliometer owners and operators, each NPC provides an opportunity to determine the unique WRR transfer factor (WRR-TF) for each participating pyrheliometer. By adjusting all subsequent pyrheliometer measurements by the appropriate WRR-TF, the solar irradiance data are traceable to the WRR. NPC-2014 was held September 22-26, 2014. Participants operated 36 absolute cavity radiometers and 22 conventional thermopile-based pyrheliometers to simultaneously measure clear-sky direct normal solar irradiance during this period, and this report documents the findings.

  7. Lignocentric analysis of a carbohydrate-producing lignocellulosic biorefinery process.

    Science.gov (United States)

    Narron, Robert H; Han, Qiang; Park, Sunkyu; Chang, Hou-Min; Jameel, Hasan

    2017-10-01

    A biologically-based lignocellulosic biorefinery process for obtaining carbohydrates from raw biomass was investigated across six diverse biomasses (three hardwoods & three nonwoods) for the purpose of decoding lignin's influence on sugar production. Acknowledging that lignin could positively alter the economics of an entire process if valorized appropriately, we sought to correlate the chemical properties of lignin within the process to the traditional metrics associated with carbohydrate production-cellulolytic digestibility and total sugar recovery. Based on raw carbohydrate, enzymatic recovery ranged from 40 to 64% w/w and total recovery ranged from 70 to 87% w/w. Using nitrobenzene oxidation to quantify non-condensed lignin structures, it was found that raw hardwoods bearing increasing non-condensed S/V ratios (2.5-5.1) render increasing total carbohydrate recovery from hardwood biomasses. This finding indicates that the chemical structure of hardwood lignin influences the investigated biorefinery process' ability to generate carbohydrates from a given raw hardwood feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Alternative use of grassland biomass for biorefinery in Ireland: a scoping study

    NARCIS (Netherlands)

    O'Keeffe, S.

    2010-01-01

    The need to reduce greenhouse gas emissions and dependency on fossil fuels has been one of the main driving forces to use renewable resources for energy and chemicals. The integrated use of grassland biomass for the production of chemicals and energy, also known as Green Biorefinery (GBR), has

  9. Carbon dioxide utilization in a microalga-based biorefinery: Efficiency of carbon removal and economic performance under carbon taxation.

    Science.gov (United States)

    Wiesberg, Igor Lapenda; Brigagão, George Victor; de Medeiros, José Luiz; de Queiroz Fernandes Araújo, Ofélia

    2017-12-01

    Coal-fired power plants are major stationary sources of carbon dioxide and environmental constraints demand technologies for abatement. Although Carbon Capture and Storage is the most mature route, it poses severe economic penalty to power generation. Alternatively, this penalty is potentially reduced by Carbon Capture and Utilization, which converts carbon dioxide to valuable products, monetizing it. This work evaluates a route consisting of carbon dioxide bio-capture by Chlorella pyrenoidosa and use of the resulting biomass as feedstock to a microalgae-based biorefinery; Carbon Capture and Storage route is evaluated as a reference technology. The integrated arrangement comprises: (a) carbon dioxide biocapture in a photobioreactor, (b) oil extraction from part of the produced biomass, (b) gasification of remaining biomass to obtain bio-syngas, and (c) conversion of bio-syngas to methanol. Calculation of capital and operational expenditures are estimated based on mass and energy balances obtained by process simulation for both routes (Carbon Capture and Storage and the biorefinery). Capital expenditure for the biorefinery is higher by a factor of 6.7, while operational expenditure is lower by a factor of 0.45 and revenues occur only for this route, with a ratio revenue/operational expenditure of 1.6. The photobioreactor is responsible for one fifth of the biorefinery capital expenditure, with footprint of about 1000 ha, posing the most significant barrier for technical and economic feasibility of the proposed biorefinery. The Biorefinery and Carbon Capture and Storage routes show carbon dioxide capture efficiency of 73% and 48%, respectively, with capture cost of 139$/t and 304$/t. Additionally, the biorefinery has superior performance in all evaluated metrics of environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. studies on blood and plasma biochemical characteristics of the ...

    African Journals Online (AJOL)

    User

    The rats were fed on commercial grower mash and water provided ad libitum. Two separate blood samples were collected from the jugular veins of eight rats at 4th, 8th and 12th month stages of the experiment. One group of the samples was used for haematological studies and the other for biochemical tests. Data collected.

  11. Studies on blood and plasma biochemical characteristics of the ...

    African Journals Online (AJOL)

    The rats were fed on commercial grower mash and water provided ad libitum. Two separate blood samples were collected from the jugular veins of eight rats at 4th, 8th and 12th month stages of the experiment. One group of the samples was used for haematological studies and the other for biochemical tests. Data collected

  12. A pilot study on the isolation and biochemical characterization of ...

    African Journals Online (AJOL)

    ... microbiological and biochemical methods, the study demonstrated the presence of fluorescent and nonfluorescent Pseudomonads in the rhizosphere of chemical intensive rice growing environments. Augmentation of such PGPR including, Pseudomonads in the rice ecosystems will ensure a healthy micro climate for rice.

  13. on the biochemical indicators of lead poisoning in

    African Journals Online (AJOL)

    N. Sadi

    1 sept. 2017 ... ABSTRACT. This study is conducted to examine the effect of the oral administration of pectin of dates on perturbation of the biochemical parameters induced by lead. Male rats were exposed to lead acetate at 350mg/Kg for one month, after this period, rats treated during one month with the pectin of date at ...

  14. Seasonal variation in the biochemical composition of red seaweed

    Indian Academy of Sciences (India)

    Abstract. The biochemical composition of red seaweeds,Catenella repens was investigated in this present study along with subsequent analysis of relevant physico-chemical variables.In this study, the relationship between the nutritive components of this species and the ambient environmental parameters was established.

  15. Technoeconomic analysis of biofuels: A wiki-based platform for lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Klein-Marcuschamer, Daniel; Oleskowicz-Popiel, Piotr; Simmons, Blake A.

    2010-01-01

    We present a process model for a lignocellulosic ethanol biorefinery that is open to the biofuels academic community. Beyond providing a series of static results, the wiki-based platform provides a dynamic and transparent tool for analyzing, exploring, and communicating the impact of process adva...

  16. Effects of phospholipids in the diet on biochemical factors of ...

    African Journals Online (AJOL)

    A study was carried out to determine the influence of dietary phospholipids biochemical factors parameters of beluga sturgeon (Huso huso) juveniles. Juveniles were fed formulated diet with four varying dietary levels of PL, that is, 0 (D1), 2 (D2), 4 (D3) and 6% (D4). At the end of the experimental period (56 days), there were ...

  17. Biochemical assessment of lead overload and the protective effect of ...

    African Journals Online (AJOL)

    Therefore the biochemical assessment of the effect of lead overload and the possible protective effect of zinc were carried out in guinea pigs. Graded doses of lead (0ppm, 300ppm, 600ppm and 1200ppm) were administered alone or in combination with 800ppm zinc to guinea pigs for a period of 20 weeks. Blood samples ...

  18. Determination of some biochemical values in the blood of Liza ...

    African Journals Online (AJOL)

    The aim of this paper was to determine plasma sugar, triglycerides, cholesterol, iron, alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) levels of Liza klunzingeri from the Persian Gulf. Blood sample was collected from the caudal vessel with syringes coated with sodium heparin. Biochemical values were: sugar ...

  19. Haematological and biochemical evaluation of the n -hexane extract ...

    African Journals Online (AJOL)

    The study undertook to evaluate the sub-chronic toxicological profile of the seed of Ricinus communis var. minor (RICOM-1013-J), widely used as anticonceptive agent among Bassa people of Plateau State, Nigeria, on haematological and biochemical parameters in adult rats. Thirty-six (36) adult female rats were divided ...

  20. Biorefinery methods for separation of protein and oil fractions from rubber seed kernel

    NARCIS (Netherlands)

    Widyarani, R.; Ratnaningsih, E.; Sanders, J.P.M.; Bruins, M.E.

    2014-01-01

    Biorefinery of rubber seeds can generate additional income for farmers, who already grow rubber trees for latex production. The aim of this study was to find the best method for protein and oil production from rubber seed kernel, with focus on protein recovery. Different pre-treatments and oil

  1. Biochemical and histopathological studies on the methanolic extract ...

    African Journals Online (AJOL)

    This study seeks to evaluate the biochemical and the histopathological characteristics of rats administered with various doses of methanolic extract of Jatropha tanjorensis leaf. Wistar albino rats fed with 500 mg/kg and 2 g/kg of methanolic extract of Jatropha tanjorensis leaf for 28 days were dissected and vital organs ...

  2. Serum Biochemical Changes Associated With The Digestibility Of ...

    African Journals Online (AJOL)

    Serum Biochemical Changes Associated With The Digestibility Of Raw And Heat Processed Cajanus cajan Seeds In Rats. ... The level of anti-nutritive food toxicants in exotic breed of Cajanus cajan L. (pigeon pea) was evaluated in this study using an animal model experiment in which animals were fed with raw and heat ...

  3. Haematological and Serum Biochemical Profile of the Blue Crab ...

    African Journals Online (AJOL)

    Haematology and serum biochemistry of the crab, Callinectes amnicola from Epe and Lagos Lagoon in southwest Nigeria were investigated from March –August, 2013. Haemocyte samples were analyzed for haematological and biochemical parameters. The Total Haemocyte count (THC) of C. amnicola from Epe and ...

  4. Biochemical response of normal albino rats to the addition of ...

    African Journals Online (AJOL)

    Experiments were conducted to determine the biochemical effect of Hibiscus cannabinus and Murraya koenigii extracts on normal albino rats using standard methods. Analyses carried out indicated that the aqueous leaf extract of H. cannabinus and M. koenigii exhibited significant hypolipideamic activity in normal rats.

  5. Altered calcium metabolism: the probable major biochemical lesion ...

    African Journals Online (AJOL)

    These data are suggestive of altered calcium metabolism impairing cell membrane stabilization, the vasorelaxing effect of calcium and cell signaling. Altered calcium metabolism may be the major biochemical lesion underlying many pathological and clinical states of lead toxicity. Journal of Biomedical Investigation Vol.

  6. Study on the alteration of bubaline blood biochemical composition ...

    African Journals Online (AJOL)

    Bubaline blood biochemistry as affected by slaughter was the agenda for this work. Blood samples were collected from 30 buffaloes from abattoirs before and at slaughter. After biochemical and statistical analysis (mean was compared with t-test), it was observed that the albumin, lactate dehydrogenase and creatine kinase ...

  7. Isolation and biochemical characterization of transferrin from the ...

    African Journals Online (AJOL)

    Isolation and biochemical characterization of transferrin from the tsetse fly, Glossina morsitan centralis. Alfred Orina Isaac, Dorington Ogoyi, Moses Limo. Abstract. No Abstract. The Egyptian Journal of Biochemistry and Molecular Biology Vol. 23(2) 2005: 169-182. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT

  8. Evaluation of the biochemical responses of catfish ( Clarias ...

    African Journals Online (AJOL)

    This study evaluated biochemical responses of Clarias gariepinus after replacing fish oil with plantbased oils in their diets. The sources of oils were coconut, olive, crude palm, sunflower and sesame seed. These oils were incorporated at 7% level to produce five isonitrogenous (41.03% protein) diets.The sixth diet contained ...

  9. Biochemical Response Of Normal Albino Rats To The Addition

    African Journals Online (AJOL)

    ABSTRACT. Experiments were conducted to determine the biochemical effect of Hibiscus cannabinus and Murraya koenigii extracts on normal albino rats using standard methods. Analyses carried out indicated that the aqueous leaf extract of H. cannabinus and M. koenigii exhibited significant hypolipideamic activity in ...

  10. Algal Biofuels R&D at NREL (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  11. NREL Studies Wind Farm Aerodynamics to Improve Siting (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    NREL researchers have used high-tech instruments and high-performance computing to understand atmospheric turbulence and turbine wake behavior in order to improve wind turbine design and siting within wind farms.

  12. Implications of silica on biorefineries – interactions with organic material and mineral elements in grasses

    DEFF Research Database (Denmark)

    Le, Duy Michael; Sørensen, Hanne Risbjerg; Knudsen, Niels Ole

    2015-01-01

    Biorefineries aim to convert low value biomasses into high value products. The feedstock biomasses are often high-silica agricultural waste products such as rice straw, wheat straw, corn stover, sugarcane bagasse, or empty fruit bunches. This causes challenges, since silica is problematic...

  13. Elemental analysis of various biomass solid fractions in biorefineries by X-ray fluorescence spectrometry

    DEFF Research Database (Denmark)

    Le, Duy Michael; Sorensen, Hanne R.; Meyer, Anne S.

    2017-01-01

    Elemental analysis by X-ray fluorescence spectrometry (XRF) of solid samples from a biorefinery process was performed to study the behaviour of mineral elements in a process involving hydrothermal pretreatment of biomass (wheat straw, corn stover, sugarcane bagasse, palm oil empty fruit bunches...

  14. Biorefinery of microalgal soluble proteins by sequential processing and membrane filtration

    NARCIS (Netherlands)

    Safi, C.; Olivieri, G.; Pina Campos, Rui; Engelen-Smit, N.; Mulder, W.J.; Broek, van den L.A.M.; Sijtsma, L.

    2017-01-01

    A mild biorefinery process was investigated on the microalga Nannochloropsis gaditana, to obtain an enriched fraction of water soluble proteins free from chlorophyll. After harvesting, a 100 g.L−1 solution of cells was first subjected to cell disruption by either high-pressure

  15. Seasonal variation in the biochemical composition of red seaweed ...

    Indian Academy of Sciences (India)

    ence of the nutritional quality of water that can be used for mass cultivation of Catenella repens. 1. ... America, South America and Europe (McHugh. 2003). ... Catenella repens; biochemical composition; physico-chemical parameters; seasonal variation; data analysis. J. Earth Syst. Sci. 118, No. 5, October 2009, pp. 497–505.

  16. Evaluation of the Biochemical Responses of Catfish (Clarias ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: This study evaluated biochemical responses of Clarias gariepinus after replacing fish oil with plant- based oils in their diets. The sources of ... Aquaculture feed accounts for more than 50% cost in intensive aquaculture operations (NRC, ..... Oil. Pakistan Journal of Nutrition 6 (5): 452-. 459. Otubusin, SO (2000).

  17. 15 May 1971 THE CLINICAL AND BIOCHEMICAL EFFECTS OF ...

    African Journals Online (AJOL)

    1971-05-15

    May 15, 1971 ... THE CLINICAL AND BIOCHEMICAL EFFECTS OF RIBOFLAVIN AND NICOTINAMIDE. SUPPLEMENTATION UPON BANTU SCHOOL CHILDREN USING MAIZE MEAL AS. CARRIER MEDIUM*. J. P. DU PLESSIS, W. WITIMANN, t M. E. J. Louw AND A. NEL,t National Institute for Nutritional Diseases, ...

  18. Usefulness of ultrasonography and biochemical features in the ...

    African Journals Online (AJOL)

    10.7196/SAJCH.2016.v10i1.1075. Usefulness of ultrasonography and biochemical features in the diagnosis of cholestatic jaundice in infants. M S Choopa,1 MB ChB, FC Paed (SA); C Kock,1 MB ChB, FC Paed (SA), Cert Gastroenterology Paed ...

  19. Usefulness of ultrasonography and biochemical features in the ...

    African Journals Online (AJOL)

    Such late referrals may render patients inoperable and not acceptable for formal intraoperative diagnosis. Objectives. To determine the usefulness of an absent gall bladder on ultrasonography, and of biochemical features, in differentiating biliary atresia from other causes of cholestasis, using liver needle biopsy as a gold ...

  20. Biochemical and histological evidences for the antitumor potential of ...

    African Journals Online (AJOL)

    Biochemical and histological evidences for the antitumor potential of Teucrium Oliverianum and Rhazya stricta in chemically-induced hepatocellular carcinoma. Abdelaaty A Shahat, Mansour S Alsaid, Soheir E Kotob, Husseiny A Husseiny, Amal AM Al-Ghamdi, Hanaa H Ahmed ...

  1. The biochemical, physiological and therapeutic roles of ascorbic acid

    African Journals Online (AJOL)

    Ascorbic acid is an important micronutrient necessary for a significant number of metabolic reactions in humans and other primates. It is a strong reducing agent involved in reduction reaction and it is structurally related to glucose. Experimental and epidemiological studies have documented the biochemical, physiological ...

  2. The influence of zinc and selenium on some biochemical responses ...

    African Journals Online (AJOL)

    The influence of zinc and selenium on some biochemical responses (lipid peroxidation, ascorbate, glutathione, growth rate, mineral content, catalase and glutathione peroxidase activities) of cowpea and maize seedlings to water deficit condition and rehydration were investigated. Plants seedlings were exposed to water ...

  3. Genetic and biochemical evidences reveal novel insights into the ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 41; Issue 4. Genetic and biochemical evidences reveal novel insights into the mechanism underlying Saccharomyces cerevisiae Sae2-mediated abrogation of DNA replication stress. INDRAJEET GHODKE K MUNIYAPPA. ARTICLE Volume 41 Issue 4 December 2016 pp ...

  4. Aspects on the Physiological and Biochemical Foundations of Neurocritical Care

    Directory of Open Access Journals (Sweden)

    Carl-Henrik Nordström

    2017-06-01

    Full Text Available Neurocritical care (NCC is a branch of intensive care medicine characterized by specific physiological and biochemical monitoring techniques necessary for identifying cerebral adverse events and for evaluating specific therapies. Information is primarily obtained from physiological variables related to intracranial pressure (ICP and cerebral blood flow (CBF and from physiological and biochemical variables related to cerebral energy metabolism. Non-surgical therapies developed for treating increased ICP are based on knowledge regarding transport of water across the intact and injured blood–brain barrier (BBB and the regulation of CBF. Brain volume is strictly controlled as the BBB permeability to crystalloids is very low restricting net transport of water across the capillary wall. Cerebral pressure autoregulation prevents changes in intracranial blood volume and intracapillary hydrostatic pressure at variations in arterial blood pressure. Information regarding cerebral oxidative metabolism is obtained from measurements of brain tissue oxygen tension (PbtO2 and biochemical data obtained from intracerebral microdialysis. As interstitial lactate/pyruvate (LP ratio instantaneously reflects shifts in intracellular cytoplasmatic redox state, it is an important indicator of compromised cerebral oxidative metabolism. The combined information obtained from PbtO2, LP ratio, and the pattern of biochemical variables reveals whether impaired oxidative metabolism is due to insufficient perfusion (ischemia or mitochondrial dysfunction. Intracerebral microdialysis and PbtO2 give information from a very small volume of tissue. Accordingly, clinical interpretation of the data must be based on information of the probe location in relation to focal brain damage. Attempts to evaluate global cerebral energy state from microdialysis of intraventricular fluid and from the LP ratio of the draining venous blood have recently been presented. To be of clinical relevance

  5. Hydrothermal treatment and enzymatic hydrolysis of Tamarix ramosissima: evaluation of the process as a conversion method in a biorefinery concept.

    Science.gov (United States)

    Xiao, Ling-Ping; Shi, Zheng-Jun; Xu, Feng; Sun, Run-Cang

    2013-05-01

    The present work investigated the effects of hydrothermal treatment (HTT) of Tamarix ramosissima by determination of sugar and inhibitor formation in the liquid fraction, and chemical and morphological changes of the pretreated solid material coupled with an evaluation of enzymatic hydrolysis. HTT was carried out in a batch reactor system at a maximal temperature (TMAX 180-240 °C) and evaluated for severities logRo ranging from 2.40 to 4.17. The liquid fractions were analyzed by HPLC, GPC, and GC-MS. The morphology and composition of the solid residues were characterized using an array of techniques, such as SEM, XRD, BET surface area, and CP/MAS (13)C NMR. Using a variety of tools, we have developed a better understanding of how HTT process affects biomass structure and cellulose properties that impact on its digestibility. These results provided new insights into the factors limiting enzymatic digestibility and mechanism of biomass deconstruction during hydrothermal process. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  6. The ferulic acid esterases of Chrysosporium lucknowense C1: Purification, characterization and their potential application in biorefinery

    NARCIS (Netherlands)

    Kuhnel, S.; Pouvreau, L.A.M.; Appeldoorn, M.M.; Hinz, S.W.A.; Schols, H.A.; Gruppen, H.

    2012-01-01

    Three ferulic acid esterases from the filamentous fungus Chrysosporium lucknowense C1 were purified and characterized. The enzymes were most active at neutral pH and temperatures up to 45 °C. All enzymes released ferulic acid and p-coumaric acid from a soluble corn fibre fraction. Ferulic acid

  7. Applicability of Euglena gracilis for biorefineries demonstrated by the production of α-tocopherol and paramylon followed by anaerobic digestion.

    Science.gov (United States)

    Grimm, Philipp; Risse, Joe M; Cholewa, Dominik; Müller, Jakob M; Beshay, Usama; Friehs, Karl; Flaschel, Erwin

    2015-12-10

    In this study the use of Euglena gracilis biomass for α-tocopherol, paramylon and biogas production in a value-added chain was investigated. Therefore, we analyzed the dry cell weight and product concentrations at different growth phases during heterotrophic, photoheterotrophic and photoautotrophic cultivation in a low-cost minimal medium. Furthermore, the specific biogas yields for differently derived biomass with and without product recovery were investigated. We demonstrate that growth phase and cultivation mode not only have a significant impact on product formation, but also influence the yield of biogas obtained from anaerobic digestion of Euglena gracilis biomass. The maximum dry cell weight concentration ranged from 12.3±0.14gL(-1) for heterotrophically to 3.4±0.02gL(-1) for photoautotrophically grown Euglena gracilis cells. The heterotrophically grown biomass accumulated product concentrations of 5.3±0.12mgL(-1) of α-tocopherol and 9.3±0.1gL(-1) of paramylon or 805±10.9mL of biogasgvs(-1) (per gram volatile solids). The results for photoautotrophically grown cells were 8.6±0.22mgL(-1) of α-tocopherol and 0.78±0.01gL(-1) of paramylon or 648±7.2mL of biogasgvs(-1). For an energy-saving downstream procedure the extracting agent methanol does not have to be removed strictly. Samples with residual methanol showed a significantly increased biogas yield, because the solvent can be used as an additional substrate for methane production by archaebacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. BER-Myriant Succinic Acid Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Shmorhun, Mark [Myriant Lake Providence, Inc., Lake Providence, LA (United States)

    2015-12-31

    Myriant Corporation (Myriant) has successfully produced the bioproduct succinic acid by the fermentation of glucose at a commercial scale operation in Lake Providence, Louisiana. The MySAB facility (Myriant Succinic Acid Biorefinery) came on stream in May 2013 and has been producing product since then. The MySAB facility is a demonstration-scale plant, capable of utilizing sorghum grits and commercially available dextrose, to ferment glucose into succinic acid. A downstream processing train has demonstrated the ability to produce an industrial, a standard and a polymer grade product. It consists of cell separation, membrane filtration, continuous chromatography, polishing to remove ionic and color bodies impurities, and final evaporation and crystallization. A by-product of the process is ammonium sulfate which is sold as a liquid fertilizer product. Since 2007 when development work began in the Woburn, Massachusetts R&D laboratories, the succinic acid bio-process has evolved through: Process development (microbiology, fermentation, and downstream) – R&D development laboratories; Piloting efforts at Fermic S.A. de C.V., Mexico City, Mexico – upstream and downstream processes; Design, construction, commissioning, and commercial production operations at the MySAB facility Additionally, Myriant became a wholly-owned subsidiary of the PTT Global Chemical Plc., Thailand, in late 2015, their investment into and support of Myriant goes back to 2011. The support of PTT Global Chemical Plc. helped to improve the upstream and downstream processes, and produce significant metric ton quantities of high quality bio-based succinic acid. The product has gone into a number of commercial markets worldwide for customer applications, development and production. The experience base gained via operations at the MySAB facility since May 2013, along with continued R&D development efforts involving Microbiology, Fermentation, and Downstream processes, at both the Woburn, Massachusetts

  9. Compatibility of High-Moisture Storage for Biochemical Conversion of Corn Stover: Storage Performance at Laboratory and Field Scales.

    Science.gov (United States)

    Wendt, Lynn M; Murphy, J Austin; Smith, William A; Robb, Thomas; Reed, David W; Ray, Allison E; Liang, Ling; He, Qian; Sun, Ning; Hoover, Amber N; Nguyen, Quang A

    2018-01-01

    Wet anaerobic storage of corn stover can provide a year-round supply of feedstock to biorefineries meanwhile serving an active management approach to reduce the risks associated with fire loss and microbial degradation. Wet logistics systems employ particle size reduction early in the supply chain through field-chopping which removes the dependency on drying corn stover prior to baling, expands the harvest window, and diminishes the biorefinery size reduction requirements. Over two harvest years, in-field forage chopping was capable of reducing over 60% of the corn stover to a particle size of 6 mm or less. Aerobic and anaerobic storage methods were evaluated for wet corn stover in 100 L laboratory reactors. Of the methods evaluated, traditional ensiling resulted in benefits for commercial corn stover supply, including particle size reduction during harvest, stability in storage, and compatibility with biochemical conversion of carbohydrates for biofuel production. Evaluation of the operational efficiencies and costs is suggested to quantify the potential benefits of a fully-wet biomass supply system to a commercial biorefinery.

  10. The Biochemical Impact of Surgery and Anesthesia

    NARCIS (Netherlands)

    J.W. Hol (Jaap Willem)

    2014-01-01

    markdownabstract__Abstract__ General anesthesia has been considered by some medical historians as one of the most important contributions to modern medicine second to perhaps the concept of antiseptic medicine and hygiene. The first historical mention of a deep unnatural sleep so that surgery

  11. Histopathological and Biochemical evaluations of the antidotal ...

    African Journals Online (AJOL)

    Objective: The study was designed to investigate the effects of continuous exposure of dichlorvos (DDVP) on hepatic function and hepatic histomorphology, with the possible antidotal efficacy of Nigella sativa oil (NSO). Methods: Twenty four Wistar rats were randomly divided into four groups, with each group comprising of ...

  12. Nutritional alternatives on the haematological and biochemical ...

    African Journals Online (AJOL)

    USER

    2010-05-31

    May 31, 2010 ... glucose at pH 8.0 to give 1 x 105 trypanosomes in 1 ml of PBS. Each rat received 1 ml of the inoculums intraperitonealy. Parasitological, haematological and ... groups of infected animals showed similar degrees of anaemia. The PVC values in control animals fluctuated between 0.38 and 0.42 litres/litre.

  13. Quantifying the Economic Development Impacts of Wind Power in Six Rural Montana Counties Using NREL's JEDI Model; Period of Performance: December 1, 2003--May 31, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Costanti, M.

    2004-09-01

    The economic development potential that wind power offers is often an overlooked aspect of today's wind power projects. Much has been written about how wind can spur economic development, but few have attempted to quantify these impacts. Using the National Renewable Energy Laboratory's (NREL's) Jobs, Economic Development, and Impacts Model (JEDI), the author examined six counties in Montana to quantify these impacts. The overriding project goal was to illuminate economic development opportunities from wind project development for six Montana counties using an objective economic modeling tool. Interested stakeholders include the agriculture community, wind developers, renewable energy advocates, government officials, and other decision-makers. The Model was developed to enable spreadsheet users with limited or no economic modeling background to easily identify the statewide economic impacts associated with constructing and operating wind power plants. The Model's User Add-In feature allows users to conduct county-specific analyses using county IMPLAN (Impact Analysis for PLANning) multipliers, while state-level multipliers are contained within the Model as default values for all 50 states.

  14. The Biochemical Toxin Arsenal from Ant Venoms

    Directory of Open Access Journals (Sweden)

    Axel Touchard

    2016-01-01

    Full Text Available Ants (Formicidae represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents.

  15. The Biochemical Toxin Arsenal from Ant Venoms

    Science.gov (United States)

    Touchard, Axel; Aili, Samira R.; Fox, Eduardo Gonçalves Paterson; Escoubas, Pierre; Orivel, Jérôme; Nicholson, Graham M.; Dejean, Alain

    2016-01-01

    Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents. PMID:26805882

  16. Isolation and biochemical characterizations of the bacteria ...

    African Journals Online (AJOL)

    Studies on Acidovorax avenae subsp. avenae, associated with red stripe disease of sugarcane was conducted in the Department of Plant Pathology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi during 2009 to 2010, in collaboration with Shakarganj Sugar Research Institute (SSRI), Jhang, Pakistan. Red stripe of ...

  17. Balance and saving of GHG emissions in thermochemical biorefineries

    International Nuclear Information System (INIS)

    Haro, Pedro; Aracil, Cristina; Vidal-Barrero, Fernando; Ollero, Pedro

    2015-01-01

    Highlights: • A simplified methodology for the balance and saving of GHG emissions is provided. • The GHG balance has a physical meaning and does not depend on the fossil reference. • The GHG saving depends on regulation of energy carriers. • The impact of Bio-CCS incorporation and multiproduction is analyzed. • The co-production of chemicals needs to be included in future regulation. - Abstract: In this study, a simplified methodology for the calculation of the balance of greenhouse gas (GHG) emissions and corresponding saving compared with the fossil reference is presented. The proposed methodology allows the estimation of the anthropogenic GHG emissions of thermochemical biorefineries (net emitted to the atmosphere). In the calculation of the GHG balance, all relevant factors have been identified and analyzed including multiproduction, emissions from biogenic carbon capture and storage (Bio-CCS), co-feeding of fossil fuels (secondary feedstock) and possible carbon storage in biomass-derived products (chemicals). Therefore, it is possible to calculate the balance of GHG emissions of a hypothetical thermochemical biorefinery considering different alternatives of land-use, biomass feedstock, co-feeding of fossil fuels, Bio-CCS incorporation and final use of the products. The comparison of the estimated GHG balance with the corresponding fossil reference for each product is of special relevance in the methodology since it is the parameter used in European regulation for the fulfillment of sustainability criteria in biomass-derived fuels and liquids. The proposed methodology is tested using a previously assessed set of different process concepts of thermochemical biorefineries (techno-economic analysis). The resulting GHG balance and saving are analyzed to identify uncertainties and provide recommendations for future regulation. In all process concepts, the GHG savings are above the minimum requirement of GHG emissions for 2018. In the case of incorporating

  18. The application of information theory to biochemical signaling systems.

    Science.gov (United States)

    Rhee, Alex; Cheong, Raymond; Levchenko, Andre

    2012-08-01

    Cell signaling can be thought of fundamentally as an information transmission problem in which chemical messengers relay information about the external environment to the decision centers within a cell. Due to the biochemical nature of cellular signal transduction networks, molecular noise will inevitably limit the fidelity of any messages received and processed by a cell's signal transduction networks, leaving it with an imperfect impression of its environment. Fortunately, Shannon's information theory provides a mathematical framework independent of network complexity that can quantify the amount of information that can be transmitted despite biochemical noise. In particular, the channel capacity can be used to measure the maximum number of stimuli a cell can distinguish based upon the noisy responses of its signaling systems. Here, we provide a primer for quantitative biologists that covers fundamental concepts of information theory, highlights several key considerations when experimentally measuring channel capacity, and describes successful examples of the application of information theoretic analysis to biological signaling.

  19. Moorella Strains for the Production of Biochemicals from Syngas

    DEFF Research Database (Denmark)

    Redl, Stephanie; Jensen, Torbjørn Ølshøj; Nielsen, Alex Toftgaard

    In the process of sugar fermentation, a significant portion of lignocellulosic biomass is left unused. Analternative is the gasification into syngas, a carbon-rich gas mixture. Syngas serves as energy andcarbon source for acetogenic bacteria, which can then produce biochemicals. In the syngasferm......In the process of sugar fermentation, a significant portion of lignocellulosic biomass is left unused. Analternative is the gasification into syngas, a carbon-rich gas mixture. Syngas serves as energy andcarbon source for acetogenic bacteria, which can then produce biochemicals...... valuebiochemicals (acetone) from syngas using Moorella strains. Moorella has outstanding abilities likethermophily and carbon source conversion yields that make it especially suitable for the syngasfermentation process.The present project focuses on understanding the primary metabolism in acetogenic bacteria...

  20. Federal Air Pollutant Emission Regulations and Preliminary Estimates of Potential-to-Emit from Biorefineries. Pathway #1: Dilute-Acid and Enzymatic Deconstruction of Biomass-to-Sugars and Biological Conversion of Sugars-to-Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yimin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bhatt, Arpit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thomas, Mae [Eastern Research Group, Lexington, MA (United States); Renzaglia, Jason [Eastern Research Group, Lexington, MA (United States)

    2016-02-01

    Biorefineries are subject to environmental laws, including complex air quality regulations that aim to protect and improve the quality of the air. These regulations govern the amount of certain types of air pollutants that can be emitted from different types of emission sources. To determine which federal air emission regulations potentially apply to the sugars-to-hydrocarbon (HC) biorefinery, we first identified the types of regulated air pollutants emitted to the ambient environment by the biorefinery or from specific equipment. Once the regulated air pollutants are identified, we review the applicability criteria of each federal air regulation to determine whether the sugars-to-HC biorefinery or specific equipment is subject to it. We then estimate the potential-to-emit of pollutants likely to be emitted from the sugars-to-HC biorefinery to understand the air permitting requirements.

  1. Federal Air Pollutant Emission Regulations and Preliminary Estimates of Potential-to-Emit from Biorefineries, Pathway #2: Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-oil Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Arpit [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center. Technology Systems and Sustainability Analysis Group; Zhang, Yimin [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center. Technology Systems and Sustainability Analysis Group; Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center. Technology Systems and Sustainability Analysis Group; Thomas, Mae [Eastern Research Group, Research Triangle Park, NC (United States); Renzaglia, Jason [Eastern Research Group, Research Triangle Park, NC (United States)

    2017-01-01

    Biorefineries are subject to environmental laws, including complex air quality regulations that aim to protect and improve the quality of the air. These regulations govern the amount of certain types of air pollutants that can be emitted from different types of emission sources. To determine which federal air emission regulations potentially apply to the fast pyrolysis biorefinery, we first identified the types of regulated air pollutants emitted to the ambient environment by the biorefinery or from specific equipment. Once the regulated air pollutants are identified, we review the applicability criteria of each federal air regulation to determine whether the fast pyrolysis biorefinery or specific equipment is subject to it. We then estimate the potential-to-emit of pollutants likely to be emitted from the fast pyrolysis biorefinery to understand the air permitting requirements.

  2. CLINICAL AND BIOCHEMICAL CHARACTERISTICS AT THE CIRRHOSIS OF VARIOUS GENESIS

    Directory of Open Access Journals (Sweden)

    A. R. Bilalova

    2016-01-01

    Full Text Available Purpose of the study. To carry out a comparative description of the clinical and biochemical parameters at patients with cirrhosis of an alcoholic genesis (CP-HGA and cirrhosis of mixed etiologies — CP-HGM (HСV+ alcohol.Materials and methods. The study involved 62 patients with cirrhosis of different etiologies, who carries out clinical, immunogenetic and biochemical studies.Results. Patients with the 3d genotype and low viral load were registered with cirrhosis of mixed etiologies (HСV+ alcohol. At the cirrhosis Class B for Child-Pugh basic data biochemical parameters were similar in patients with CP-HGA and CP-HGM, but ALT and AST activity, which are significantly higher than observed in patients with CP-HGM. At dismissal, ALT and GGT activities were detected significantly higher in patients with CP-HGM than the CP-HGA. At the cirrhosis Class C for Child-Pugh the baseline, reflecting cholestasis — is total bilirubin, GGT and alkaline phosphatase and were detected significantly higher in the CP-HGA, than with CP-HGM significantly reduced, and thore is no differences between the groups to be discharged from the hospital, in addition to the activity of GGT, which it remained significantly higher in the CP-HGA, than with CP-HGM. Cytolytic activity of enzymes (ALT, AST during the entire period of the disease was observed significantly higher normal values and did not depend on the CP etiology.Conclusion decision. The maximum rate of change of the basic biochemical parameters is observed in patients with cirrhosis of mixed etiologies Class B for Child-Pugh and at the cirrhosis of an alcoholic genesis — in patients with cirrhosis Class C.

  3. Maximizing biofuel production in a thermochemical biorefinery by adding electrolytic hydrogen and by integrating torrefaction with entrained flow gasification

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard

    2015-01-01

    double the biofuel production per biomass input by converting almost all of the carbon in the biomass feed to carbon stored in the biofuel product. Water or steam electrolysis can supply the hydrogen to the biorefinery and also the oxygen for the gasifier. This paper presents the design and thermodynamic...... analysis of two biorefineries integrating water electrolysis for the production of methanol. In both plants, torrefied woody biomass is supplied to an entrained flow gasifier, but in one of the plants, the torrefaction process occurs on-site, as it is integrated with the entrained flow gasification process......In a "conventional" thermochemical biorefinery, carbon is emitted from the plant in the form of CO2 to make the synthesis gas from the gasifier suitable for fuel production. The alternative to this carbon removal is to add hydrogen to the plant. By adding hydrogen, it is possible to more than...

  4. Organosolv Fractionation of Softwood Biomass for Biofuel and Biorefinery Applications

    Directory of Open Access Journals (Sweden)

    Christos Nitsos

    2017-12-01

    Full Text Available Softwoods represent a significant fraction of the available lignocellulosic biomass for conversion into a variety of bio-based products. Its inherent recalcitrance, however, makes its successful utilization an ongoing challenge. In the current work the research efforts for the fractionation and utilization of softwood biomass with the organosolv process are reviewed. A short introduction into the specific challenges of softwood utilization, the development of the biorefinery concept, as well as the initial efforts for the development of organosolv as a pulping method is also provided for better understanding of the related research framework. The effect of organosolv pretreatment at various conditions, in the fractionation efficiency of wood components, enzymatic hydrolysis and bioethanol production yields is then discussed. Specific attention is given in the effect of the pretreated biomass properties such as residual lignin on enzymatic hydrolysis. Finally, the valorization of organosolv lignin via the production of biofuels, chemicals, and materials is also described.

  5. THE IMPORTANCE OF DIAGNOSTICS OF THE SPORTSMENS BIOCHEMICAL STATUS

    Directory of Open Access Journals (Sweden)

    Franja Fratrić

    2008-08-01

    Full Text Available Widespread opinion that all the sportsmen nowadays “are sick”, as well as the results of the analysis of the random sample from all over Europe, show that very few of them are not under some kind of treatment or doctor’s supervision. This should be a warning for experts and scientists in sports, for making a strategy to prevent this trend. Sickness is a huge individual and socio-economical problem. Sportsmen nowadays are under extreme pressure, without control of biochemical processes. There is a risk of becoming an “organism dump” full of wasteful and harmful substances, that are sediment. These are: - acids - medicaments - chemicals - proteins, etc. The cause of an error is possible resolve only by knowing its origin. This is precisely the most important function of the diagnostics in sport. In this paper we are presenting the strategy of the diagnostics of the biochemical status of the sportsman’s organism. Moreover, we are bringing out the key problems and suggesting concrete prevention measures.

  6. 2-D and 3-D CFD Investigation of NREL S826 Airfoil at Low Reynolds Numbers

    International Nuclear Information System (INIS)

    Cakmakcioglu, S C; Sert, I O; Tugluk, O; Sezer-Uzol, N

    2014-01-01

    In this study CFD investigation of flow over the NREL S826 airfoil is performed. NREL S826 airfoil was designed for HAWTs of 10-15 meter diameters. However, it is used in the NTNU wind turbine rotor model and low Reynolds number flow characteristics become important in the validations with the test cases of this rotor model. The airfoil CFD simulations are carried out in 2-D and 3-D computational domains. The k-rn SST turbulence model with Langtry-Menter (γ-Re θ ) transition prediction model for turbulence closure is used in the calculations. The Delayed DES is also performed in the stall region for comparisons. The results are compared with the available METUWIND experimental data, and are shown to be in fair agreement. It is observed that 3-D CFD analysis provides increased accuracy at increased computational cost

  7. United States Supports Distributed Wind Technology Improvements; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Karin

    2015-06-15

    This presentation provides information on the activities conducted through the Competitiveness Improvement Project (CIP), initiated in 2012 by the U.S. Department of Energy (DOE) and executed through the National Renewable Energy Laboratory (NREL) to support the distributed wind industry. The CIP provides research and development funding and technical support to improve distributed wind turbine technology and increase the competitiveness of U.S. small and midsize wind turbine manufacturers. Through this project, DOE/NREL assists U.S. manufacturers to lower the levelized cost of energy of wind turbines through component improvements, manufacturing process upgrades, and turbine testing. Ultimately, this support is expected to lead to turbine certification through testing to industry-recognized wind turbine performance and safety standards.

  8. Enhanced bioenergy recovery from rapeseed plant in a biorefinery concept

    DEFF Research Database (Denmark)

    Luo, Gang; Talebnia, Farid; Karakashev, Dimitar Borisov

    2011-01-01

    The present study investigated the utilization of the whole rapeseed plant (seed and straw) for multi-biofuels production in a biorefinery concept. Results showed that bioethanol production from straw was technically feasible with ethanol yield of 0.15 g ethanol/g dry straw after combined alkaline...... peroxide and stream pretreatment. The byproducts (rapeseed cake, glycerol, hydrolysate and stillage) were evaluated for hydrogen and methane production. In batch experiments, the energy yields from each feedstock for, either methane production alone or for both hydrogen and methane, were similar. However......, results from continuous experiments demonstrated that the two-stage hydrogen and methane fermentation process could work stably at organic loading rate up to 4.5 gVS/(L d), while the single-stage methane production process failed. The energy recovery efficiency from rapeseed plant increased from 20...

  9. Bioenergy production from sweet sorghum stalks via a biorefinery perspective.

    Science.gov (United States)

    Nozari, Behzad; Mirmohamadsadeghi, Safoora; Karimi, Keikhosro

    2018-04-01

    Besides free sugars, sweet sorghum stalks contain cellulose and hemicellulose that can be used for biofuel production. The pretreatment of stalks without the extraction of free sugars is more complicated than typical lignocelluloses, because of the degradation of free sugars during most pretreatment processes. In this study, the bioconversion of sweet sorghum stalks into biogas and bioethanol was studied using an improved organosolv pretreatment within a biorefinery framework. The organosolv pretreatment was developed using an aqueous solution of ethanol (EtOH) and isopropanol (IPOH). The process was optimized to obtain a liquor containing free sugars with the least sugar degradations together with a highly degradable solid fraction. The liquor was subjected to anaerobic digestion for biomethane production, while the solid was used for ethanol production via simultaneous saccharification and fermentation (SSF). The most influencing pretreatment parameters, i.e., temperature, time, alcohol to water ratio, EtOH to IPOH ratio, and the presence or absence of sulfuric acid (as a catalyst), were adjusted to achieve the highest yields of bioconversion. The maximum methane and ethanol production yields of 271.2 mL CH 4 /g VS and 87.8% (equal to the gasoline equivalent of 0.170 and 0.241 L/kg, respectively) were achieved from the liquor and pretreated solid, respectively; however, they were obtained at different optimum conditions. Considering the biorefinery perspective, the highest gasoline equivalent of 0.249 L/kg was efficiently obtained from the whole process after pretreatment at 140 °C for 30 min using 60:20 EtOH/IPOH ratio in the presence of 1% sulfuric acid. Further analyses, including enzymatic adsorption/desorption, compositional analysis, FTIR, and SEM, were conducted to investigate the effects of this newly developed pretreatment on the substrate.

  10. NREL's Industry Growth Forum Boosts Clean Energy Commercialization Efforts (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-01

    For more than a decade, the National Renewable Energy Laboratory's (NREL) Industry Growth Forum has been the nation's premier event for early-stage clean energy investment. The forum features presentations from the most innovative, promising, and emergent clean energy companies; provocative panels led by thought leaders; and organized networking opportunities. It is the perfect venue for growing cleantech companies to present their business to a wide range of investors.

  11. Analysis Insights, August 2015: Sustainable Transportation; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    NREL Analysis Insights mines our body of analysis work to synthesize topical insights and key findings. In this issue, we examine transportation systems, alternative fuels, and implications of increasing electrification of transit. Moving people and goods from point A to B has never been easier, but our current transportation systems also take a toll on our environment. Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation’s total carbon emissions. With new technology, can we make our transportation system cleaner and more cost effective? NREL is applying its analytical expertise and imagination to do just that. Solutions start with systems thinking. Connecting the dots between physical components - vehicles, fueling stations, and highways - and institutional components - traffic laws, regulations, and vehicle standards - helps illuminate solutions that address the needs of the transportation system's many stakeholders.

  12. Seasonal changes in meat weight and biochemical composition in the Black Clam Villorita cyprinoides (Grey)

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Parulekar, A.H.; Matondkar, S.G.P.

    Seasonal changes in meat weight and biochemical composition are associated with reproduction, storage and utilization of reserves. The main period of increase in biochemical constituents corresponds to gametogenesis and maturation of gonads just...

  13. Amyris, Inc. Integrated Biorefinery Project Summary Final Report - Public Version

    Energy Technology Data Exchange (ETDEWEB)

    Gray, David; Sato, Suzanne; Garcia, Fernando; Eppler, Ross; Cherry, Joel

    2014-03-12

    The Amyris pilot-scale Integrated Biorefinery (IBR) leveraged Amyris synthetic biology and process technology experience to upgrade Amyris’s existing Emeryville, California pilot plant and fermentation labs to enable development of US-based production capabilities for renewable diesel fuel and alternative chemical products. These products were derived semi-synthetically from high-impact biomass feedstocks via microbial fermentation to the 15-carbon intermediate farnesene, with subsequent chemical finishing to farnesane. The Amyris IBR team tested and provided methods for production of diesel and alternative chemical products from sweet sorghum, and other high-impact lignocellulosic feedstocks, at pilot scale. This enabled robust techno-economic analysis (TEA), regulatory approvals, and a basis for full-scale manufacturing processes and facility design.

  14. Air Permitting Implications of a Biorefinery Producing Raw Bio-Oil in Comparison with Producing Gasoline and Diesel Blendstocks

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Arpit H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-01

    A biorefinery, considered a chemical process plant under the Clean Air Act permitting program, could be classified as a major or minor source based on the size of the facility and magnitude of regulated pollutants emitted. Our previous analysis indicates that a biorefinery using fast pyrolysis conversion process to produce finished gasoline and diesel blendstocks with a capacity of processing 2,000 dry metric tons of biomass per day would likely be classified as a major source because several regulated pollutants (such as particulate matter, sulfur dioxide, nitrogen oxide) are estimated to exceed the 100 tons per year (tpy) major source threshold, applicable to chemical process plants. Being subject to a major source classification could pose additional challenges associated with obtaining an air permit in a timely manner before the biorefinery can start its construction. Recent developments propose an alternative approach to utilize bio-oil produced via the fast pyrolysis conversion process by shipping it to an existing petroleum refinery, where the raw bio-oil can be blended with petroleum-based feedstocks (e.g., vacuum gas oil) to produce gasoline and diesel blendstocks with renewable content. Without having to hydro-treat raw bio-oil, a biorefinery is likely to reduce its potential-to-emit to below the 100 tpy major source threshold, and therefore expedite its permitting process. We compare the PTE estimates for the two biorefinery designs with and without hydrotreating of bio-oils and examine the air permitting implications on potential air permit classification and discuss the best available control technology requirements for the major source biorefinery utilizing hydrotreating operation. Our analysis is expected to provide useful information to new biofuel project developers to identify opportunities to overcome challenges associated with air permitting.

  15. New Multijunction Design Leads to Ultra-Efficient Solar Cell; Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-09-01

    NREL has demonstrated a 45.7% conversion efficiency for a four-junction solar cell at 234 suns concentration. This achievement represents one of the highest photovoltaic research cell efficiencies ever achieved across all types of solar cells. NREL's new solar cell, which is designed for operation in a concentrator photovoltaic (CPV) system where it can receive more than 1,000 suns of concentrated sunlight, greatly improves earlier designs by adding an additional high quality absorber layer to achieve an ultra-high efficiency.

  16. NREL's System Advisor Model Simplifies Complex Energy Analysis (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2015-01-01

    NREL has developed a tool -- the System Advisor Model (SAM) -- that can help decision makers analyze cost, performance, and financing of any size grid-connected solar, wind, or geothermal power project. Manufacturers, engineering and consulting firms, research and development firms, utilities, developers, venture capital firms, and international organizations use SAM for end-to-end analysis that helps determine whether and how to make investments in renewable energy projects.

  17. Early Biochemical Screening for Fetal Aneuploidy in the First Trimester

    DEFF Research Database (Denmark)

    Tørring, Niels

    2013-01-01

    8+0 to 14+0 weeks, and clinical test performance of risk assesment was conducted. Results The in-between day imprecision of the Elecsys® free βhCG and PAPP-A assays were between 1.0 and 2.8%. Comparison (Passing/Bablok regression) of free βhCG and PAPP-A from Roche Elecsys® and the Brahms Kryptor...... with the standards for biochemical assays for prenatal screening set by the Fetal Medicine Foundation, with low assay imprecision, and a high clinical performance of prenatal screening for fetal trisomy in the first trimester....

  18. NREL Energy Storage Projects. FY2014 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ban, Chunmei [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burton, Evan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gonder, Jeff [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Grad, Peter [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jun, Myungsoo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matt [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kim, Gi-Heon [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Neubauer, Jeremy [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Shi, Ying [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Smith, Kandler [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sprague, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tenent, Robert [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Chuanbo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Chao [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Han, Taeyoung [General Motors, Detroit, MI (United States); Hartridge, Steve [CD-adapco, Detroit, MI (United States); Shaffer, Christian E. [EC Power, Aurora, CO (United States)

    2015-03-01

    The National Renewable Energy Laboratory supports energy storage R&D under the Office of Vehicle Technologies at the U.S. Department of Energy. The DOE Energy Storage Program’s charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation’s goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are; Advanced Battery Development through the United States Advanced Battery Consortium (USABC); Battery Testing, Analysis, and Design; Applied Battery Research (ABR); and Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT) In FY14, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL’s R&D projects in FY14 in support of the USABC; Battery Testing, Analysis, and Design; ABR; and BATT program elements. The FY14 projects under NREL’s Energy Storage R&D program are briefly described below. Each of these is discussed in depth in this report.

  19. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...... for efficient hydrolysis, enzyme stability, and the detrimental interaction between enzyme and lignin. This review provides a comprehensive overview of the various methods for enzyme recovery and recycling, for example recycling of free enzymes, readsorption to fresh material, recycling of solids, membrane...

  20. Integrated Biorefinery for Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Gabriel [Society for Energy and Environmental Research (SEER), New York, NY (United States)

    2011-09-02

    This project has focused on very low grade fats, oil and greases found in municipal, commercial and industrial facilities around the country. These wastes are often disposed in landfills, wastewater treatment plants or farm fields or are blended illegally into animal feeds. Using any of these waste fatty materials that are unfit for human or animal nutrition as a clean alternative fuel makes good sense. This project defines the aforementioned wastes in terms of quality and prevalence in the US, then builds on specific promising pathways for utilizing these carbon neutral wastes. These pathways are discussed and researched at bench-scale, and in one instance, at pilot-scale. The three primary pathways are as follows: The production of Renewable Diesel Oil (RDO) as a stand-alone fuel or blended with standard distillate or residual hydrocarbons; The production of RDO as a platform for the further manufacture of Biodiesel utilizing acid esterification; The production of RDO as a platform for the manufacture of an ASTM Diesel Fuel using one or more catalysts to effect a decarboxylation of the carboxylics present in RDO This study shows that Biodiesel and ASTM Diesel produced at bench-scale (utilizing RDO made from grease trap waste as an input) could not meet industry specifications utilizing the technologies that were selected by the investigators. Details of these investigations are discussed in this report and will hopefully provide a starting point for other researchers interested in these pathways in future studies. Although results were inconclusive in finding ways to utilize RDO technology, in effect, as a pretreatment for commonly discussed technologies such as Biodiesel and ASTM Diesel, this study does shed light on the properties, performance and cost of utilizing waste greases directly as a retail liquid fuel (RDO). The utilization as a retail RDO as a boiler fuel, or for other such applications, is the most important finding of the study.

  1. Recycling nutrients in algae biorefinery

    NARCIS (Netherlands)

    Garcia Alba, Laura; Vos, M.P.; Torri, C.; Fabbri, D.; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik

    2013-01-01

    Algal fuel cells: Repeated nutrient recycling is demonstrated by reusing the aqueous phase obtained from the hydrothermal liquefaction (HTL) of microalgae. This is achieved, for the first time, by performing a complete set of four continuous growth–HTL cycles. Results show similar growth rates in

  2. NREL Pyrheliometer Comparisons: September 26-October 7, 2016 (NPC-2016)

    Energy Technology Data Exchange (ETDEWEB)

    Reda, Ibrahim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dooraghi, Mike [National Renewable Energy Lab. (NREL), Golden, CO (United States); Andreas, Afshin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Habte, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    Accurate measurements of direct normal (beam) solar irradiance from pyrheliometers are important for developing and deploying solar energy conversion systems, improving our understanding of the Earth's energy budget for climate change studies, and for other science and technology applications involving solar flux. Providing these measurements places many demands on the quality system used by the operator of commercially available radiometers. Maintaining accurate radiometer calibrations that are traceable to an international standard is the first step in producing research-quality solar irradiance measurements. National Renewable Energy Laboratory (NREL) pyrheliometer comparisons (NPCs) are held annually at the Solar Radiation Research Laboratory (SRRL) in Golden, Colorado. Open to all pyrheliometer owners and operators, each NPC provides an opportunity to determine the unique World Radiometric Reference transfer factor (WRR-TF) for each participating pyrheliometer. By adjusting all subsequent pyrheliometer measurements by the appropriate WRR-TF, the solar irradiance data are traceable to the WRR. NPC-2016 was September 26 through October 7, 2016. Participants operated 45 absolute cavity radiometers and 27 conventional thermopile-based pyrheliometers to simultaneously measure clear-sky, direct normal solar irradiance during this period.

  3. Syngas Biorefinery and Syngas Utilization.

    Science.gov (United States)

    De Tissera, Sashini; Köpke, Michael; Simpson, Sean D; Humphreys, Christopher; Minton, Nigel P; Dürre, Peter

    2017-06-20

    Autotrophic acetogenic bacteria are able to capture carbon (CO or CO 2 ) through gas fermentation, allowing them to grow on a spectrum of waste gases from industry (e.g., steel manufacture and oil refining, coal, and natural gas) and to produce ethanol. They can also consume syn(thesis) gas (CO and H 2 ) made from the gasification of renewable/sustainable resources, such as biomass and domestic/agricultural waste. Acetogenic gas fermentation can, therefore, produce ethanol in any geographic region without competing for food or land. The commercialization of the process is now at an advanced stage. The real potential of acetogens, however, resides in their capacity to produce chemicals and fuels other than ethanol. This requires the redesign and implementation of more efficient metabolic pathways, adapting them to high performing manufacturing processes. Respective species, their bioenergetics, the genetic tools developed for their metabolic engineering, culture techniques and fermenter set-ups, as well as the commercialization, are comprehensively described and discussed in this chapter.

  4. Biochemical markers for the assessment of aquatic environment contamination

    Science.gov (United States)

    Havelková, Marcela; Randák, Tomáš; Blahová, Jana; Slatinská, Iveta; Svobodová, Zdeňka

    2008-01-01

    The need for assessment of aquatic ecosystem contamination and of its impact on water dwelling organisms was developed in response to rising aquatic environmental pollution. In this field study, liver enzymes of phase I and phase II of xenobiotic transformation, namely cytochrome P450, ethoxyresorufin-O-deethylase, glutathione-S-transferase and tripeptide glutathione were used to assess the contamination of the aquatic environment at different rivers in the Czech Republic. The indicator species selected was the male chub (Leuciscus cephalus L.) and male brown trout (Salmo trutta fario). Chemical analyses included also the assessment of the most important inductors of previously mentioned biochemical markers. The major inductors of monitored biomarkers are industrial contaminants which belong to a large group of organic pollutants (PCB, PAH, PCDD/F, DDT, HCH, HCB and OCS), persistent in the environment. Four different groups of river basins were assessed: the River Tichá Orlice and its tributary the Kralický brook; important tributaries of the River Elbe (the rivers Orlice, Chrudimka, Cidlina, Jizera, Vltava, Ohře and Bílina); major rivers in the Czech Republic (the rivers Lužnice, Otava, Sázava, Berounka, Vltava, Labe, Ohře, Svratka, Dyje, Morava and Odra) and the River Vltava. The use of the biochemical markers together with chemical analyses seems to be an effective way to monitor the quality of aquatic environment. PMID:21218108

  5. Supply Chain Optimization of Integrated Glycerol Biorefinery: GlyThink Model Development and Application

    DEFF Research Database (Denmark)

    Loureiro da Costa Lira Gargalo, Carina; Carvalho, Ana; Gernaey, Krist

    2017-01-01

    To further advance the development and implementation of glycerol-based biorefinery concepts, it is critical to analyze the glycerol conversion into high value-added products in a holistic manner, considering both production as well as the logistics aspects related to the supply chain structure....... To address the optimal design and planning of the glycerol-based biorefinery supply chain, in this work, we propose a multiperiod, multistage, and multiproduct Mixed Integer Linear Programming optimization model, called GlyThink, based upon the maximization of the net present value (NPV). The proposed model...... to high value-added products. Existing countries with major production and consumption of biodiesel in Europe are considered as candidates for the facility sites and demand markets, and their spatial distribution is also carefully studied. The results showed that (i) the optimal solution that provides...

  6. Optimal processing pathway selection for microalgae-based biorefinery under uncertainty

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Zaman, Muhammad; Lee, Jay H.

    2015-01-01

    to the sMINLP problem determines the processing technologies, material flows, and product portfolio that are optimal with respect to all the sampled scenarios. The developed framework is implemented and tested on a specific case study. The optimal processing pathways selected with and without......We propose a systematic framework for the selection of optimal processing pathways for a microalgaebased biorefinery under techno-economic uncertainty. The proposed framework promotes robust decision making by taking into account the uncertainties that arise due to inconsistencies among...... and shortage in the available technical information. A stochastic mixed integer nonlinear programming (sMINLP) problem is formulated for determining the optimal biorefinery configurations based on a superstructure model where parameter uncertainties are modeled and included as sampled scenarios. The solution...

  7. Scenario optimization modeling approach for design and management of biomass-to-biorefinery supply chain system.

    Science.gov (United States)

    Sharma, Bhavna; Ingalls, Ricki G; Jones, Carol L; Huhnke, Raymond L; Khanchi, Amit

    2013-12-01

    The aim of this study was to develop a scenario optimization model to address weather uncertainty in the Biomass Supply Chain (BSC). The modeling objective was to minimize the cost of biomass supply to biorefineries over a one-year planning period using monthly time intervals under different weather scenarios. The model is capable of making strategic, tactical and operational decisions related to BSC system. The performance of the model was demonstrated through a case study developed for Abengoa biorefinery in Kansas. Sensitivity analysis was done to demonstrate the effect of input uncertainty in yield, land rent and storage dry matter loss on the model outputs. The model results show that available harvest work hours influence major cost-related decisions in the BSC. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. DOEGO85004_1: Final Non-proprietary Technical Report, Generating Process and Economic Data for Preliminary Design of PureVision Biorefineries DOEGO85004_2: One Original Final Proprietary Technical Report to be mailed to DOE Golden.

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, Kiran L., Ph.D; Lehrburger, Ed

    2008-01-17

    The overall objective of the project was to define a two-stage reactive fractionation process for converting corn stover into a solid cellulose stream and two liquid streams containing mostly hemicellulosic sugars and lignin, respectively. Toward this goal, biomass fractionation was conducted using a small continuous pilot unit with a nominal capacity of 100 pounds per day of dry biomass to generate performance data using primarily corn stover as feedstock. In the course of the program, the PureVision process was optimized for efficient hemicellulose hydrolysis in the first stage employing autohydrolysis and delignification in the second stage using sodium hydroxide as a catalyst. The remaining cellulose was deemed to be an excellent substrate for producing fermentation sugars, requiring 40% less enzymes for hydrolysis than conventional pretreatment systems using dilute acid. The fractionated cellulose was also determined to have potential higher-value applications as a pulp product. The lignin coproduct was determined to be substantially lower in molecular weight (MW) compared to lignins produced in the kraft or sulfite pulping processes. This low-MW lignin can be used as a feed and concrete binder and as an intermediate for producing a range of high-value products including phenolic resins. This research adds to the understanding of the biomass conversion area in that a new process was developed in the true spirit of biorefineries. The work completed successfully demonstrated the technical effectiveness of the process at the pilot level indicating the technology is ready to advance to a 2–3 ton per day scale. No technical showstoppers are anticipated in scaling up the PureVision fractionation process to commercial scale. Also, economic feasibility of using the PureVision process in a commercial-scale biorefinery was investigated and the minimum ethanol selling price for the PureVision process was calculated to be $0.94/gal ethanol vs. $1.07/gal ethanol for the

  9. Synthesis and Design of Biorefinery Processing Networks with Uncertainty and Sustainability analysis

    DEFF Research Database (Denmark)

    Cheali, Peam; Gernaey, Krist; Sin, Gürkan

    solution obtained after the MINLP by using an in-house software (SustainPRO) that employs ICHEME sustainability metrics. Secondly, the sustainability analysis was included proactively as part of the MINLP optimization problem that is performed to find the optimal processing path with respect to multi......Chemical industries usually rely on fossil based feedstock, which is a limited resource. In view of increasing energy demands and the negative environmental and climate effects related to the use of fossil based fuels, this motivates the development of new and more sustainable technologies...... for processing renewable feedstocks, with the aim of bridging the gap for fuel, chemical and material production. This project is focusing on biorefinery network design, in particular for early stage design and development studies. Optimal biorefinery design is a challenging problem. It is a multi...

  10. Improved methods for the mathematically controlled comparison of biochemical systems

    Directory of Open Access Journals (Sweden)

    Schwacke John H

    2004-06-01

    Full Text Available Abstract The method of mathematically controlled comparison provides a structured approach for the comparison of alternative biochemical pathways with respect to selected functional effectiveness measures. Under this approach, alternative implementations of a biochemical pathway are modeled mathematically, forced to be equivalent through the application of selected constraints, and compared with respect to selected functional effectiveness measures. While the method has been applied successfully in a variety of studies, we offer recommendations for improvements to the method that (1 relax requirements for definition of constraints sufficient to remove all degrees of freedom in forming the equivalent alternative, (2 facilitate generalization of the results thus avoiding the need to condition those findings on the selected constraints, and (3 provide additional insights into the effect of selected constraints on the functional effectiveness measures. We present improvements to the method and related statistical models, apply the method to a previously conducted comparison of network regulation in the immune system, and compare our results to those previously reported.

  11. Dust Fertilization of the Western Atlantic Biota: a Biochemical Model

    Science.gov (United States)

    Holmes, C. W.

    2017-12-01

    Every year an estimated 50 million tons of African dust reaches the Western Atlantic. This dust is composed of quartz sand, clay, and a mixture of quartz and clay particles agglutinated with micronutrient enriched ferruginous cement. However, whether it is friend or foe to biochemical systems is a matter of conjecture. Corals are ideal recorders of changing conditions as the layers can be dated so that the record of chemical changes is easily assessed. There is extensive shallow-and deep water coral development bordering the Florida Straits. The changes in trace element chemistry within these corals show a positive relationship with the African dust record. Recently, it has been demonstrated that many of the metals contained within the dust are necessary micronutrients in the fertilization of plankton. Using the results of these studies, a biochemical model has been constructed. This model suggests a path from inorganic dust through microbial transformation to micronutrient enzymes (i.e. Cd-enriched carbonic anahydrase) and carbonate precipitation on the Bahamian Banks. It is estimated that more than ten million metric tons of this fine, metal-rich sediment is formed each year. However, for much of this sediment, its deposition is temporary, as it is transported into the Florida Straits yearly by tropical cyclones. This metal-enriched fine carbonate becomes nutrients for phytoplankton, providing food for the corals, both shallow and deep.

  12. Biochemical characterization of the human copper transporter Ctr1.

    Science.gov (United States)

    Lee, Jaekwon; Peña, Maria Marjorette O; Nose, Yasuhiro; Thiele, Dennis J

    2002-02-08

    The trace metal copper is an essential cofactor for a number of biological processes including mitochondrial oxidative phosphorylation, free radical detoxification, neurotransmitter synthesis and maturation, and iron metabolism. Consequently, copper transport at the cell surface and the delivery of copper to intracellular proteins are critical events in normal physiology. Little is known about the molecules and biochemical mechanisms responsible for copper uptake at the plasma membrane in mammals. Here, we demonstrate that human Ctr1 (hCtr1) is a component of the copper transport machinery at the plasma membrane. hCtr1 transports copper with high affinity in a time-dependent and saturable manner and is metal-specific. hCtr1-mediated (64)Cu transport is an energy-independent process and is stimulated by extracellular acidic pH and high K(+) concentrations. hCtr1 exists as a homomultimer at the plasma membrane in mammalian cells. This is the first report on the biochemical characterization of the human copper transporter hCtr1, which is important for understanding mechanisms for mammalian copper transport at the plasma membrane.

  13. Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries.

    Science.gov (United States)

    Gnansounou, Edgard; Vaskan, Pavel; Pachón, Elia Ruiz

    2015-11-01

    This work addresses the economic and environmental performance of integrated biorefineries based on sugarcane juice and residues. Four multiproduct scenarios were considered; two from sugar mills and the others from ethanol distilleries. They are integrated biorefineries producing first (1G) and second (2G) generation ethanol, sugar, molasses (for animal feed) and electricity in the context of Brazil. The scenarios were analysed and compared using techno-economic value-based approach and LCA methodology. The results show that the best economic configuration is provided by a scenario with largest ethanol production while the best environmental performance is presented by a scenario with full integration sugar - 1G2G ethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Life cycle assessment of castor-based biorefinery: a well to wheel LCA

    DEFF Research Database (Denmark)

    Khoshnevisan, Benyamin; Rafiee, Shahin; Tabatabaei, Meisam

    2017-01-01

    also considered as byproducts. Developed scenarios were also compared with a fossil reference system delivering the same amount of energy through the combustion of neat diesel. Materials and methods: Life cycle assessment (LCA) was used to investigate the environmental consequences of castor biodiesel...... of their ability in converting biomass into a spectrum of marketable products and bioenergies. This study was aimed at developing different novel castor-based biorefinery scenarios for generating biodiesel and other co-products, i.e., ethanol and biogas. In these scenarios, glycerin, heat, and electricity were...... production and consumption with a biorefinery approach. All the input and output flows from the cultivation stage to the combustion in diesel engines as well as changes in soil organic carbon (SOC) were taken into account. Impact 2002+ method was used to quantify the environmental consequences. Results...

  15. Synthesis and Design of Biorefinery Processing Networks with Uncertainty and Sustainability analysis

    DEFF Research Database (Denmark)

    Cheali, Peam; Gernaey, Krist; Sin, Gürkan

    Chemical industries usually rely on fossil based feedstock, which is a limited resource. In view of increasing energy demands and the negative environmental and climate effects related to the use of fossil based fuels, this motivates the development of new and more sustainable technologies...... for processing renewable feedstocks, with the aim of bridging the gap for fuel, chemical and material production. This project is focusing on biorefinery network design, in particular for early stage design and development studies. Optimal biorefinery design is a challenging problem. It is a multi......-objective decision-making problem not only with respect to technical and economic feasibility but also with respect to environmental impacts, sustainability constraints and limited availability & uncertainties of input data at the early design stage. It is therefore useful to develop a systematic methodology...

  16. Unconventional biomasses as feedstocks for production of biofuels and succinic acid in a biorefinery concept

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi

    significantly improve the sustainability indicators of the overall biorefinery process. In this study, unconventional lignocellulosic- and aquatic biomasses were investigated as biorefinery feedstocks. The studied biomasses were Jerusalem artichoke, industrial hemp and macroalgae species Laminaria digitata...... composition and productivity of eleven different Jerusalem artichoke clones was examined at three harvest times. Yields of up to 35 t ha-1 of dry lignocellulose matter was reported, nonetheless the amount of cellulose in many cases was less than 50% of what was observed in e.g. hemp. However, the underground...... methods for pretreatment and saccharification of biomass were used depending on the type of biomass. L. digitata did not required any pretreatment before enzymatic hydrolysis other than milling and drying. Pretreatments using H2SO4, NaOH and H2O2 at different conditions were used to pretreat hemp prior...

  17. Integration of Colombians Forest Commercial Crops in Thermochemical Biorefinery Concepts: A Review

    OpenAIRE

    Juan Fernando Pérez Bayer; Rolando Barrera; Gloria Lucía Ramírez Córdoba

    2015-01-01

    The technical, energy, social and environmental benefits of the integration of commercial forest crops in Colombia under biorefinery concepts are evaluated. This concept is part of various programs and government policies that consider the energy use of biomass as an alternative source to the silvicultural potential of the country. In this paper we review some specific processes that can be evaluated as integration strategies with high potential to use the wood planted in Colombia under biore...

  18. Applications of Process Synthesis: Moving from Conventional Chemical Processes towards Biorefinery Processes

    DEFF Research Database (Denmark)

    Yuan, Zhihong; Chen, Bingzhen; Gani, Rafiqul

    2013-01-01

    be predicted to play a significant role in the design and commercialization of sustainable and cost-effective biorefinery processes. The main objective of this perspective paper is to elucidate the potential opportunities that biorenewables processing offers to optimal synthesis; challenges and future......Concerns about diminishing petroleum reserves, enhanced worldwide demand for fuels and fluctuations in the global oil market, together with climate change and national security have promoted many initiatives for exploring alternative, non-petroleum based processes. Among these initiatives......, biorefinery processes for converting biomass-derived carbohydrates into transportation fuels and chemicals are now gaining more and more attention from both academia and industry. Process synthesis, which has played a vital role for the development, design and operation of (petro) chemical processes, can...

  19. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives.

    Science.gov (United States)

    Venkata Mohan, S; Nikhil, G N; Chiranjeevi, P; Nagendranatha Reddy, C; Rohit, M V; Kumar, A Naresh; Sarkar, Omprakash

    2016-09-01

    Increased urbanization worldwide has resulted in a substantial increase in energy and material consumption as well as anthropogenic waste generation. The main source for our current needs is petroleum refinery, which have grave impact over energy-environment nexus. Therefore, production of bioenergy and biomaterials have significant potential to contribute and need to meet the ever increasing demand. In this perspective, a biorefinery concept visualizes negative-valued waste as a potential renewable feedstock. This review illustrates different bioprocess based technological models that will pave sustainable avenues for the development of biobased society. The proposed models hypothesize closed loop approach wherein waste is valorised through a cascade of various biotechnological processes addressing circular economy. Biorefinery offers a sustainable green option to utilize waste and to produce a gamut of marketable bioproducts and bioenergy on par to petro-chemical refinery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Strategy and design of Innovation Policy Road Mapping for a waste biorefinery.

    Science.gov (United States)

    Rama Mohan, S

    2016-09-01

    Looming energy crisis, climate change concerns coupled with decreasing fossil fuel resources has garnered significant global attention toward development of alternative, renewable, carbon-neutral and eco-friendly fuels to fulfil burgeoning energy demands. Waste utilization and its management are being pursued with renewed interest due to the gamut of biobased products it can offer apart from providing enough energy to meet a major fraction of the world's energy demand. Biorefining is the sustainable processing of biomass into a spectrum of marketable products and energy. Integrating all components of waste treatment culminating into biobased products and energy recovery in a single integrated waste biorefinery is self sufficient, highly sustainable and is very beneficial. Designing systematic innovation policies are essential for development and commercialization of new technologies in this important futuristic research area. This communication explores Innovation Policy Road Mapping (IPRM) methodology available in the literature and applies it to design integrated waste biorefinery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Identification and genetic characterization of maize cell wall variation for improved biorefinery feedstock characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, Markus [UC Berkeley; Hake, Sarah [USDA Albany

    2013-10-31

    The objectives of this program are to 1) characterize novel maize mutants with altered cell walls for enhanced biorefinery characteristics and 2) find quantitative trait loci (QTLs) related to biorefinery characteristics by taking advantage of the genetic diversity of maize. As a result a novel non-transgenic maize plant (cal1) has been identified, whose stover (leaves and stalk) contain more glucan in their walls leading to a higher saccharification yield, when subjected to a standard enzymatic digestion cocktail. Stacking this trait with altered lignin mutants yielded evene higher saccharification yields. Cal-1 mutants do not show a loss of kernel and or biomass yield when grown in the field . Hence, cal1 biomass provides an excellent feedstock for the biofuel industry.

  2. Biochemical analysis of the crude extract of Momordica charantia (L.).

    Science.gov (United States)

    Dar, Ume Kalsoom; Owais, Farah; Ahmad, Manzoor; Rizwani, Ghazala H

    2014-11-01

    Momordica charantia (L.) commonly referred as bitter gourd, karela and balsam pear. Its fruit is used for the treatment of diabetes and related conditions amongst the indigenous populations of Asia, South America, India and East Africa. The study was conducted to find out the biochemical aspects of crude extract of whole fruit of M. charantia including seeds which includes blood test (Hemoglobin, RBC, Total leukocyte count, platelets count, HbA1C (Glycocylated heamoglobin Type A1C)), Lipid profile test and electrolyte balance. Hemoglobin (7.1±0.14), platelets count (827 ×109±1.95), Cholesterol level (111±2), HDL (high density lipoproteins) (20±1.22) at 10mg shows marked increase in values as compared to control. While 25 mg dose shows insignificant result. Electrolyte balance are found significant at 10mg and 25mg except bicarbonates (Na(+¬)=143±1.87, K-=3.45±0.35, Cl(-) =108±1.48). Another important property of M. charantia is the elevation of platelet counts, heamoglobin and specifically high-density lipoproteins (HDL). It also controls cholesterol, triglycerides, HDL, LDL and VLDL at low dosage (10mg). Further studies can be conducted to find out which phytochemical components acts on specific biochemical activity.

  3. A New Proposal of Cellulosic Ethanol to Boost Sugarcane Biorefineries: Techno-Economic Evaluation

    Directory of Open Access Journals (Sweden)

    Juliana Q. Albarelli

    2014-01-01

    Full Text Available Commercial simulator Aspen Plus was used to simulate a biorefinery producing ethanol from sugarcane juice and second generation ethanol production using bagasse fine fraction composed of parenchyma cells (P-fraction. Liquid hot water and steam explosion pretreatment technologies were evaluated. The processes were thermal and water integrated and compared to a biorefinery producing ethanol from juice and sugarcane bagasse. The results indicated that after thermal and water integration, the evaluated processes were self-sufficient in energy demand, being able to sell the surplus electricity to the grid, and presented water intake inside the environmental limit for São Paulo State, Brazil. The processes that evaluated the use of the bagasse fine fraction presented higher economic results compared with the use of the entire bagasse. Even though, due to the high enzyme costs, the payback calculated for the biorefineries were higher than 8 years for all cases that considered second generation ethanol and the net present value for the investment was negative. The reduction on the enzyme load, in a way that the conversion rates could be maintained, is the limiting factor to make second generation ethanol competitive with the most immediate uses of bagasse: fuel for the cogeneration system to surplus electricity production.

  4. Biomass pre-extraction, hydrolysis and conversion process improvements fro an integrated biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Robert [Virdia, Inc., Danville, VA (United States)

    2014-12-23

    In this project, Virdia will show that it can improve the production of sugars suitable for the conversion into advanced biofuels from a range of woods. Several biomass feedstocks (Pine wood chips & Eucalyptus wood chips) will be tested on this new integrated biorefinery platform. The resultant drop-in biodiesel can be a cost-effective petroleum-replacement that can compete with projected market prices

  5. Use of residual banana for polyhydroxybutyrate (PHB) production: case of study in an integrated biorefinery.

    Science.gov (United States)

    Naranjo, Javier M; Cardona, Carlos A; Higuita, Juan C

    2014-12-01

    Polyhydroxybutyrate is a type of biopolymer that can be produced from hydrolyzed polysaccharide materials and could eventually replace polypropylene and polyethylene, being biodegradable, biocompatible and produced from renewable carbon sources. However, polyhydroxybutyrate is not still competitive compared to petrochemical polymers due to their high production costs. The improvement of the production processes requires a search for new alternative raw materials, design of the pretreatment technique and improvement in the fermentation and separation steps. In addition, if the polyhydroxybutyrate production is coupled into a multiproduct biorefinery it could increase the economic and environmental availability of the process through energy and mass integration strategies. In this work alternatives of energy and mass integrations for the production of polyhydroxybutyrate into a biorefinery from residual banana (an agro-industrial waste) were analyzed. The results show that the energetic integration can reduce up to 30.6% the global energy requirements of the process and the mass integration allows a 35% in water savings. Thus, this work demonstrates that energy and mass integration in a biorefinery is a very important way for the optimal use of energy and water resources hence decreasing the production cost and the negative environmental impacts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Utility-Scale Future, Continuum Magazine: Clean Energy Innovation at NREL, Spring 2011, Issue 1 Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    2011-08-01

    This quarterly magazine is dedicated to stepping beyond the technical journals to reveal NREL's vital work in a real-world context for our stakeholders. Continuum provides insights into the latest and most impactful clean energy innovations, while spotlighting those talented researchers and unique facilities that make it all happen. This edition focuses on creating a utility-scale future.

  7. Techno-economic and profitability analysis of food waste biorefineries at European level.

    Science.gov (United States)

    Cristóbal, Jorge; Caldeira, Carla; Corrado, Sara; Sala, Serenella

    2018-03-07

    Food waste represents a potential source to produce value-added materials replacing the use of virgin ones. However, the use of food waste as feedstock in biorefineries is still at an early stage of development and studies assessing its economic viability at large scale are lacking in the literature. This paper presents a techno-economic and profitability analysis of four food waste biorefineries that use wastes from tomato, potato, orange, and olive processing as feedstock. The study includes the assessment of potentially available quantities of those waste flows in Europe. Due to the low technology readiness level of this kind of biorefineries, a screening methodology to estimate the investment and manufacturing costs as well as two profitability ratios (the return on investment and the payback time) was adopted. Results show that not all the waste feedstocks have the same potential. The most profitable options are those related to implementing fewer plants, namely concentrating the production and capitalising on economies of scale while being at risk of increasing externalities, e.g. due to logistics of the feedstocks. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Biorefinery production of poly-3-hydroxybutyrate using waste office paper hydrolysate as feedstock for microbial fermentation.

    Science.gov (United States)

    Neelamegam, Annamalai; Al-Battashi, Huda; Al-Bahry, Saif; Nallusamy, Sivakumar

    2018-01-10

    Waste paper, a major fraction of municipal solid waste, has a potential to serve as renewable feedstock for the biorefineries of fuels, chemicals and materials due to rich in cellulose and abundant at low cost. This study evaluates the possibility of waste office paper (WOP) to serve as a potential feedstock for the biorefinery production of poly (3-hydroxybutyrate). In this study, the WOP was pretreated, enzymatically saccharified and the hydrolysate was used for PHB production. The hydrolysate mainly consists of glucose (22.70g/L) and xylose (1.78g/L) and the corresponding sugar yield was about 816mg/g. Ammonium sulphate and C/N ratio 20 were identified as most favorable for high yield of PHB. The batch fermentation of Cupriavidus necator using the pretreated WOP hydrolysate resulted in cell biomass, PHB production and PHB content of 7.74g/L, 4.45g/L and 57.52%, respectively. The volumetric productivity and yield achieved were 0.061g/L/h and 0.210g/g sugar, respectively. The results suggested that WOP could be a potential alternative feedstock for the biorefinery production of bioplastics. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste.

    Science.gov (United States)

    Almeida, João R M; Fávaro, Léia C L; Quirino, Betania F

    2012-07-18

    The considerable increase in biodiesel production worldwide in the last 5 years resulted in a stoichiometric increased coproduction of crude glycerol. As an excess of crude glycerol has been produced, its value on market was reduced and it is becoming a "waste-stream" instead of a valuable "coproduct". The development of biorefineries, i.e. production of chemicals and power integrated with conversion processes of biomass into biofuels, has been singled out as a way to achieve economically viable production chains, valorize residues and coproducts, and reduce industrial waste disposal. In this sense, several alternatives aimed at the use of crude glycerol to produce fuels and chemicals by microbial fermentation have been evaluated. This review summarizes different strategies employed to produce biofuels and chemicals (1,3-propanediol, 2,3-butanediol, ethanol, n-butanol, organic acids, polyols and others) by microbial fermentation of glycerol. Initially, the industrial use of each chemical is briefly presented; then we systematically summarize and discuss the different strategies to produce each chemical, including selection and genetic engineering of producers, and optimization of process conditions to improve yield and productivity. Finally, the impact of the developments obtained until now are placed in perspective and opportunities and challenges for using crude glycerol to the development of biodiesel-based biorefineries are considered. In conclusion, the microbial fermentation of glycerol represents a remarkable alternative to add value to the biodiesel production chain helping the development of biorefineries, which will allow this biofuel to be more competitive.

  10. Economically Viable Components from Jerusalem Artichoke (Helianthus tuberosus L. in a Biorefinery Concept

    Directory of Open Access Journals (Sweden)

    Eva Johansson

    2015-04-01

    Full Text Available Biorefinery applications are receiving growing interest due to climatic and waste disposal issues and lack of petroleum resources. Jerusalem artichoke (Helianthus tuberosus L. is suitable for biorefinery applications due to high biomass production and limited cultivation requirements. This paper focuses on the potential of Jerusalem artichoke as a biorefinery crop and the most viable products in such a case. The carbohydrates in the tubers were found to have potential for production of platform chemicals, e.g., succinic acid. However, economic analysis showed that production of platform chemicals as a single product was too expensive to be competitive with petrochemically produced sugars. Therefore, production of several products from the same crop is a must. Additional products are protein based ones from tubers and leaves and biogas from residues, although both are of low value and amount. High bioactive activity was found in the young leaves of the crop, and the sesquiterpene lactones are of specific interest, as other compounds from this group have shown inhibitory effects on several human diseases. Thus, future focus should be on understanding the usefulness of small molecules, to develop methods for their extraction and purification and to further develop sustainable and viable methods for the production of platform chemicals.

  11. Better Solar Cells and Manufacturing Processes Using NREL's Ultrafast Quantum Efficiency Method (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-08-01

    Fact sheet on the FlashQE system, a 2011 R&D 100 Award winner. A solid-state optical system by NREL and Tau Science measures solar cell quantum efficiency in less than a second, enabling a suite of new capabilities for solar cell manufacturers.

  12. A Method to Estimate Uncertainty in Radiometric Measurement Using the Guide to the Expression of Uncertainty in Measurement (GUM) Method; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Reda, I.

    2015-03-01

    Radiometric data with known and traceable uncertainty is essential for climate change studies to better understand cloud radiation interactions and the earth radiation budget. Further, adopting a known and traceable method of estimating uncertainty with respect to SI ensures that the uncertainty quoted for radiometric measurements can be compared based on documented methods of derivation.Therefore, statements about the overall measurement uncertainty can only be made on an individual basis, taking all relevant factors into account. This poster provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements from radiometers. The approach follows the Guide to the Expression of Uncertainty in Measurement (GUM). derivation.Therefore, statements about the overall measurement uncertainty can only be made on an individual basis, taking all relevant factors into account. This poster provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements from radiometers. The approach follows the Guide to the Expression of Uncertainty in Measurement (GUM).

  13. Economically Viable Components from Jerusalem Artichoke (Helianthus tuberosus L.) in a Biorefinery Concept

    DEFF Research Database (Denmark)

    Johansson, Eva; Prade, Thomas; Angelidaki, Irini

    2015-01-01

    Biorefinery applications are receiving growing interest due to climatic and waste disposal issues and lack of petroleum resources. Jerusalem artichoke (Helianthus tuberosus L.) is suitable for biorefinery applications due to high biomass production and limited cultivation requirements. This paper...

  14. [The biochemical carcinogenesis of selected heavy metals in bladder cancer].

    Science.gov (United States)

    Rorbach-Dolata, Anna; Marchewka, Zofia; Piwowar, Agnieszka

    2015-01-01

    Bladder cancer takes the second place in the classification of morbidity of urinary system cancers. Many chemical factors take part in cancerogenesis. It is suggested that exposure to heavy metals such as arsenic, chromium, nickel and cadmium as well as its metabolites may trigger the bladder cancer through inducing excessive reactive oxygen species production and oxidative stress formation which are responsible for DNA damage. In patients with bladder cancer is observed the disorder of processes regulated by p-53, including apoptosis. There are many patients with bladder cancer with confirmed absence of retinoblastoma protein, which is responsible of holding on the process of coming up the cells with mutation into synthesis, where the replication process undergoes. It is mentioned that excessive expression of proto-oncogenes may also cause the bladder cancer. The article concerns biochemical effects of exposure to chosen heavy metals and their potential role in bladder cancer progression.

  15. Biochemical methane potential (BMP) of artichoke waste: the inoculum effect.

    Science.gov (United States)

    Fabbri, Andrea; Serranti, Silvia; Bonifazi, Giuseppe

    2014-03-01

    The aim of this work was to investigate anaerobic digestibility of artichoke waste resulting from industrial transformation. A series of batch anaerobic digestion tests was performed in order to evaluate the biochemical methane potential of the matrix in respect of the process. A comparison of the different performances of the laboratory-scale reactors operating in mesophilic conditions and utilizing three different values of the inoculum/substrate ratio was carried out. The best performance was achieved with an inoculum/substrate ratio of 2. Artichoke-processing byproducts showed a classical organic waste decomposition behaviour: a fast start-up phase, an acclimation stage, and a final stabilization phase. Following this approach, artichoke waste reached chemical oxygen demand removal of about 90% in 40 days. The high methane yield (average 408.62 mL CH4 gvs (-1) voltatile solids), makes artichoke waste a good product to be utilized in anaerobic digestion plants for biogas production.

  16. Biochemical characterization of the maltokinase from Mycobacterium bovis BCG

    Directory of Open Access Journals (Sweden)

    Lamosa Pedro

    2010-05-01

    Full Text Available Abstract Background Maltose-1-phosphate was detected in Mycobacterium bovis BCG extracts in the 1960's but a maltose-1-phosphate synthetase (maltokinase, Mak was only much later purified from Actinoplanes missouriensis, allowing the identification of the mak gene. Recently, this metabolite was proposed to be the intermediate in a pathway linking trehalose with the synthesis of glycogen in M. smegmatis. Although the M. tuberculosis H37Rv mak gene (Rv0127 was considered essential for growth, no mycobacterial Mak has, to date, been characterized. Results The sequence of the Mak from M. bovis BCG was identical to that from M. tuberculosis strains (99-100% amino acid identity. The enzyme was dependent on maltose and ATP, although GTP and UTP could be used to produce maltose-1-phosphate, which we identified by TLC and characterized by NMR. The Km for maltose was 2.52 ± 0.40 mM and 0.74 ± 0.12 mM for ATP; the Vmax was 21.05 ± 0.89 μmol/min.mg-1. Divalent cations were required for activity and Mg2+ was the best activator. The enzyme was a monomer in solution, had maximal activity at 60°C, between pH 7 and 9 (at 37°C and was unstable on ice and upon freeze/thawing. The addition of 50 mM NaCl markedly enhanced Mak stability. Conclusions The unknown role of maltokinases in mycobacterial metabolism and the lack of biochemical data led us to express the mak gene from M. bovis BCG for biochemical characterization. This is the first mycobacterial Mak to be characterized and its properties represent essential knowledge towards deeper understanding of mycobacterial physiology. Since Mak may be a potential drug target in M. tuberculosis, its high-level production and purification in bioactive form provide important tools for further functional and structural studies.

  17. Economic Analysis of an Integrated Annatto Seeds-Sugarcane Biorefinery Using Supercritical CO₂ Extraction as a First Step.

    Science.gov (United States)

    Albarelli, Juliana Q; Santos, Diego T; Cocero, María José; Meireles, M Angela A

    2016-06-21

    Recently, supercritical fluid extraction (SFE) has been indicated to be utilized as part of a biorefinery, rather than as a stand-alone technology, since besides extracting added value compounds selectively it has been shown to have a positive effect on the downstream processing of biomass. To this extent, this work evaluates economically the encouraging experimental results regarding the use of SFE during annatto seeds valorization. Additionally, other features were discussed such as the benefits of enhancing the bioactive compounds concentration through physical processes and of integrating the proposed annatto seeds biorefinery to a hypothetical sugarcane biorefinery, which produces its essential inputs, e.g., CO₂, ethanol, heat and electricity. For this, first, different configurations were modeled and simulated using the commercial simulator Aspen Plus ® to determine the mass and energy balances. Next, each configuration was economically assessed using MATLAB. SFE proved to be decisive to the economic feasibility of the proposed annatto seeds-sugarcane biorefinery concept. SFE pretreatment associated with sequential fine particles separation process enabled higher bixin-rich extract production using low-pressure solvent extraction method employing ethanol, meanwhile tocotrienols-rich extract is obtained as a first product. Nevertheless, the economic evaluation showed that increasing tocotrienols-rich extract production has a more pronounced positive impact on the economic viability of the concept.

  18. Economic Analysis of an Integrated Annatto Seeds-Sugarcane Biorefinery Using Supercritical CO2 Extraction as a First Step

    Directory of Open Access Journals (Sweden)

    Juliana Q. Albarelli

    2016-06-01

    Full Text Available Recently, supercritical fluid extraction (SFE has been indicated to be utilized as part of a biorefinery, rather than as a stand-alone technology, since besides extracting added value compounds selectively it has been shown to have a positive effect on the downstream processing of biomass. To this extent, this work evaluates economically the encouraging experimental results regarding the use of SFE during annatto seeds valorization. Additionally, other features were discussed such as the benefits of enhancing the bioactive compounds concentration through physical processes and of integrating the proposed annatto seeds biorefinery to a hypothetical sugarcane biorefinery, which produces its essential inputs, e.g., CO2, ethanol, heat and electricity. For this, first, different configurations were modeled and simulated using the commercial simulator Aspen Plus® to determine the mass and energy balances. Next, each configuration was economically assessed using MATLAB. SFE proved to be decisive to the economic feasibility of the proposed annatto seeds-sugarcane biorefinery concept. SFE pretreatment associated with sequential fine particles separation process enabled higher bixin-rich extract production using low-pressure solvent extraction method employing ethanol, meanwhile tocotrienols-rich extract is obtained as a first product. Nevertheless, the economic evaluation showed that increasing tocotrienols-rich extract production has a more pronounced positive impact on the economic viability of the concept.

  19. Perspectives on an NWCC/NREL Assessment of Distributed Wind

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, B. (National Renewable Energy Laboratory); Cohen, J. (Princeton Energy Resources International, LLC); DeMeo, E. (Renewable Energy Consulting Services, Inc.)

    2000-09-13

    During 1998 and 1999, the National Wind Coordinating Committee (NWCC) conducted an assessment of distributed wind power. The project team was led by Princeton Economic Research, Inc., now known as Princeton Energy Resources International (PERI). Financial support was provided by the US Department of Energy (DOE) through the wind energy program at the National Renewable Energy Laboratory (NREL) and the Electric Power Research Institute (EPRI). Project oversight and review were provided by NWCC's Distributed Working Group. The overall objective for the NWCC assessment was to enhance understanding of business, policy, and technical issues associated with the deployment of wind-electric generating systems in the distributed-generation mode. In general, that mode is defined by placement of the generation close to customers-in contrast to large, distant central stations-and by electrical interconnection to the local distribution system-in contrast to higher voltage electrical transmission systems. As a follow-up to the assessment, NWCC intends to prepare a consensus-based issue brief that summarizes its findings and highlights the major results and conclusions for each stakeholder sector. This brief will also identify key action steps that could be undertaken by each stakeholder sector to facilitate the growth of distributed wind. The aim of this paper is to provide input to the NWCC for its consideration in developing the issue brief. Accordingly, this paper is in no way an NWCC consensus document. However, the authors hope to assist in the issue-brief preparation process by providing a starting point for NWCC's consideration. One of the authors, Joseph Cohen, led the team that performed the NWCC assessment. The other two were involved in management of the assessment effort on behalf of the contracting organizations and are active members of the NWCC. They feel the perspectives offered in this paper are well-grounded in the findings of the assessment research

  20. Biochemical composition of the alligator pipefish, Syngnathoides biaculeatus (Bloch, 1785)

    Science.gov (United States)

    Sanaye, Sushant Vilas; Pawar, Ashwini Pandurang; Rivonker, Chandrasheker Umanath; Sreepada, Rayadurga Anantha; Ansari, Zakir Ali; Ram, Anirudh

    2017-11-01

    Considering the economic importance in traditional Chinese medicine (TCM) and lack of baseline information, we evaluated the proximate composition, fatty acid and amino acid profiles, trace element content and C:N ratio in the alligator pipefish, Syngnathoides biaculeatus. Amongst proximate principals, a crude protein formed the major biochemical component ((58.9±2.2)% dry weight). Mean percent concentrations (dry weight) of other components such as a total lipid (TL), ash and nitrogen-free extract measured were, (1.8±0.2)%, (19.2±2.2)% and (20.1±0.45)%, respectively. The fatty acid profile revealed the presence of 27 saturated fatty acids (SFA) with 13 straight-chained and 14 branched-chained, 28 unsaturated fatty acids (UFA) with 14 monounsaturated and 14 polyunsaturated and nine other minor fatty acids. Mean percent contributions of total SFAs and UFAs to TL were found to be (55.41±0.24)% and (44.05±0.25)%, respectively. Altogether, 16 different amino acids with an equal number of essential (EAA) and non-essential (NAA) ones were identified. Percent contributions by EAA and NAA to the total amino acid content were 38.11% and 61.89%, respectively. Trace metal concentrations in S. biaculeatus were generally low and their distribution followed the order, Mg>Fe>Zn>Mn>Cu>Cr>Ni>Hg>Co. The C:N ratio was (4.37±0.04)%. The profile of major biochemical constituents in alligator pipefish, S. biaculeatus revealed its potential use in TCM as well as a nutritional diet for human consumption. The results of the study would also form the basis for formulation and optimization of diets for the culture of S. biaculeatus.

  1. [Cardiorenal syndrome: the role of new biochemical markers].

    Science.gov (United States)

    Vernuccio, Federica; Grutta, Giuseppe; Ferrara, Filippo; Novo, Giuseppina; Novo, Salvatore

    2012-12-01

    Cardiorenal syndrome is a pathophysiological heart and kidney disorder, in which acute or chronic dysfunction of one organ induces a damage in the other. It's a syndrome more and more often encountered in clinical practice and this implies the need to recognize the syndrome through biochemical markers with a good sensitivity and specificity, since its earliest stages in order to optimize therapy. In addition to widely validated biomarkers, such as BNP, pro BNP, creatinine, GFR and cystatin C, other promising molecules are available, like NGAL (neutrophil gelatinase-associated lipocalin, KIM-1 (kidney injury molecule-1), MCP-1 (monocyte chemotactic peptide), Netrin-1, interleuchin 18 and NAG (N-acetyl-β-glucosa-minidase). The role of these emerging biomarkers is still not completely clarified: hence the need of new clinical trials.

  2. Butanol production in a first-generation Brazilian sugarcane biorefinery: technical aspects and economics of greenfield projects.

    Science.gov (United States)

    Mariano, Adriano Pinto; Dias, Marina O S; Junqueira, Tassia L; Cunha, Marcelo P; Bonomi, Antonio; Filho, Rubens Maciel

    2013-05-01

    The techno-economics of greenfield projects of a first-generation sugarcane biorefinery aimed to produce ethanol, sugar, power, and n-butanol was conducted taking into account different butanol fermentation technologies (regular microorganism and mutant strain with improved butanol yield) and market scenarios (chemicals and automotive fuel). The complete sugarcane biorefinery with the batch acetone-butanol-ethanol (ABE) fermentation process was simulated using Aspen Plus®. The biorefinery was designed to process 2 million tonne sugarcane per year and utilize 25%, 50%, and 25% of the available sugarcane juice to produce sugar, ethanol, and butanol, respectively. The investment on a biorefinery with butanol production showed to be more attractive [14.8% IRR, P(IRR>12%)=0.99] than the conventional 50:50 (ethanol:sugar) annexed plant [13.3% IRR, P(IRR>12%)=0.80] only in the case butanol is produced by an improved microorganism and traded as a chemical. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Algal biorefinery-based industry: an approach to address fuel and food insecurity for a carbon-smart world.

    Science.gov (United States)

    Subhadra, Bobban

    2011-01-15

    Food and fuel production are intricately interconnected. In a carbon-smart society, it is imperative to produce both food and fuel sustainably. Integration of the emerging biorefinery concept with other industries can bring many environmental deliverables while mitigating several sustainability-related issues with respect to greenhouse gas emissions, fossil fuel usage, land use change for fuel production and future food insufficiency. A new biorefinery-based integrated industrial ecology encompasses the different value chain of products, coproducts, and services from the biorefinery industries. This paper discusses a framework to integrate the algal biofuel-based biorefinery, a booming biofuel sector, with other industries such as livestock, lignocellulosic and aquaculture. Using the USA as an example, this paper also illustrates the benefits associated with sustainable production of fuel and food. Policy and regulatory initiatives for synergistic development of the algal biofuel sector with other industries can bring many sustainable solutions for the future existence of mankind. Copyright © 2010 Society of Chemical Industry.

  4. Laminaria digitata as a potential carbon source for succinic acid and bioenergy production in a biorefinery perspective

    DEFF Research Database (Denmark)

    Alvarado-Morales, Merlin; Gunnarsson, Ingólfur Bragi; Fotidis, Ioannis

    2015-01-01

    to 298 and 285 NmL CH4 g− 1 VSadded, respectively. PHSR could potentially be used for: dietary food additive, fish feed, bioenergy production and added value products. This study opens possibility to conceive different biorefinery scenarios in which the efficient use of the macroalgal biomass fractions...... can provide numerous added-value bio-based products and energy....

  5. The Evolution of Biochemical Indices After Basal Cell Epithelioma Removal - Case Report

    Directory of Open Access Journals (Sweden)

    Gurgas L.

    2017-05-01

    Full Text Available The paper proposes new exposure data on etiopathogenesis basal cell epithelioma and present a clinical case investigated dermatoscopic, biochemically, treated surgically and guided to avoid relapses. The case presented is part of typical cases of pigmented basal cell carcinoma. Biochemical and haematological investigations performed one day before the excisional intervention (results 1 and 30 days (results 2 after the intervention: It is recommended to monitor biochemical investigations in which alterations were found, and ways for raising the immunological status.

  6. Energy Transition Initiative: Island Energy Snapshot - Commonwealth of the Northern Mariana Islands; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This profile provides a snapshot of the energy landscape of the Commonwealth of the Northern Mariana Islands (CNMI), a commonwealth in political union with the United States that is located in the northern Pacific Ocean. CNMI’s electricity rates for residential customers range from $0.19 to $0.33 U.S. dollars (USD) per kilowatt-hour (kWh), above the average U.S. residential rate of $0.13 USD/kWh.

  7. Wind Vision: A New Era for Wind Power in the United States (Highlights); U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    This is a four-part Wind Vision project, consisting of Wind Vision Highlights, Executive Summary, a Full Report, and Appendix. The U.S. Department of Energy (DOE) Wind Program, in close cooperation with the wind industry, led a comprehensive analysis to evaluate future pathways for the wind industry. The Wind Vision report updates and expands upon the DOE's 2008 report, 20% Wind Energy by 2030, and defines the societal, environmental, and economic benefits of wind power in a scenario with wind energy supplying 10% of national end-use electricity demand by 2020, 20% by 2030, and 35% by 2050.

  8. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis and Catalytic Hydroconversion - Wastewater Cleanup by Catalytic Hydrothermal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olarte, Mariefel V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Todd R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-19

    DOE-EE Bioenergy Technologies Office has set forth several goals to increase the use of bioenergy and bioproducts derived from renewable resources. One of these goals is to facilitate the implementation of the biorefinery. The biorefinery will include the production of liquid fuels, power and, in some cases, products. The integrated biorefinery should stand-alone from an economic perspective with fuels and power driving the economy of scale while the economics/profitability of the facility will be dependent on existing market conditions. UOP LLC proposed to demonstrate a fast pyrolysis based integrated biorefinery. Pacific Northwest National Laboratory (PNNL) has expertise in an important technology area of interest to UOP for use in their pyrolysis-based biorefinery. This CRADA project provides the supporting technology development and demonstration to allow incorporation of this technology into the biorefinery. PNNL developed catalytic hydrothermal gasification (CHG) for use with aqueous streams within the pyrolysis biorefinery. These aqueous streams included the aqueous phase separated from the fast pyrolysis bio-oil and the aqueous byproduct streams formed in the hydroprocessing of the bio-oil to finished products. The purpose of this project was to demonstrate a technically and economically viable technology for converting renewable biomass feedstocks to sustainable and fungible transportation fuels. To demonstrate the technology, UOP constructed and operated a pilot-scale biorefinery that processed one dry ton per day of biomass using fast pyrolysis. Specific objectives of the project were to: The anticipated outcomes of the project were a validated process technology, a range of validated feedstocks, product property and Life Cycle data, and technical and operating data upon which to base the design of a full-scale biorefinery. The anticipated long-term outcomes from successful commercialization of the technology were: (1) the replacement of a significant

  9. Use of Cultivation Data from the Algae Testbed Public Private Partnership as Utilized in NREL's Algae State of Technology Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Knoshaug, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Laurens, Lieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    The Algae Testbed Public Private Partnership (ATP3) conducted algal growth experiments over the course of 16 months termed the Unified Field Studies (UFS). These experiments were conducted at 5 different geographic locations in Arizona (ASU), California (CP), Florida (FA), Georgia (GT), and Hawaii (CELL). The UFS sought to evaluate different algal biomass harvesting strategies using identical ponds, media, and operational conditions through all four seasons across different geographic regions to isolate the effects on productivity attributed to locational climate and seasonal variability, overlaid by the differing harvest strategies. Set up as the baseline against which other experiments would build upon, it must be emphasized that as per the stated, approved experimental goals of the ATP3 UFS, no attempts at growth or lipid accumulation optimization were made; rather, the primary focus of the UFS work was to cultivate algal biomass under deliberate, consistent conditions, time periods, and harvesting protocols, to provide public data on year-round outdoor biomass production that could be directly compared between one site and another (with accompanying climate data for each site). Thus the resulting productivity numbers in effect represent a conservative baseline of non-optimized algal growth one may expect at these sites. Also clearly weather can vary dramatically from season to season and from year to year, and even within a given 'season' where an individual season's data was typically based on 4-6 week operating windows. Thus these numbers also only reflect a short snapshot in time, and must be interpreted carefully in projecting what may be expected over many years or decades (for example, a 30-year facility lifetime as evaluated in techno-economic models).

  10. On the variational framework employing optimal control for biochemical thermodynamics

    International Nuclear Information System (INIS)

    Moroz, Adam; Wimpenny, David Ian

    2011-01-01

    Graphical abstract: The study presented in the paper shows that the nonlinear kinetic processes (like logistic kinetics) at the level of the biomolecular and biophysical phenomena can be effectively described in terms of the maximum energy dissipation principle and its variational formulation. The variational approach and the logistic dissipative kinetic. (A) The trajectories of extent variable ξ*. d* - calculated Lagrange function (L) corresponding to extent variable trajectory d. (B) The plot of the logarithm of numerically calculated dissipative (thermodynamic) momentum p*. Research highlights: → The variational outline for maximum energy dissipation principle for non-linear biochemical processes is discussed. → The Lagrangians are built as a goal functions, having an energetical sense. → The Hamiltonians, canonical equations and optimal solutions have been obtained. → The maximum energy dissipation principle is interpreted as thermodynamic form of the least action principle. - Abstract: The maximum energy dissipation principle can be successfully applied to describe a range of basic nonlinear models. The application of the general variational framework has been illustrated for basic linear schemes. The study presented in the paper shows how the kinetic processes at this level of the biomolecular and biophysical phenomena can be effectively described in terms of the maximum energy dissipation principle and its variational formulation. On the basis of this approach, a range of Lagrangians was proposed for basic nonlinear dissipative kinetic models. The results of this study show that the framework is in agreement with nonlinear equilibrium thermodynamics.

  11. NREL's Cyanobacteria Engineering Shortens Biofuel Production Process, Captures CO2

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    This highlight describes NREL's work to systematically analyze the flow of energy in a photosynthetic microbe and show how the organism adjusts its metabolism to meet the increased energy demand for making ethylene. This work successfully demonstrates that the organism could cooperate by stimulating photosynthesis. The results encourage further genetic engineering for the conversion of CO2 to biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting. biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting.

  12. Diazinon mediated biochemical changes in the African toad (Bufo regularis

    Directory of Open Access Journals (Sweden)

    Isioma Tongo

    2012-07-01

    Full Text Available The sublethal toxicity of diazinon to the adult African toad, Bufo regularis was assessed using an integration of biomarkers. Changes in acetylcholinesterase (AChE, corticosterone and total protein levels were assessed in the serum, brain, liver, lungs and gastrointestinal tract (GIT and the results supported by bioaccumulation data. The biomarkers were chosen as indicators of key physiological functions: AChE for neurotoxicity, corticosterone and total protein levels as indicators of oxidative stress. Toads were exposed to 0.01, 0.02, 0.03 and 0.04 g/L for 28 days. Brain AChE activity reduced by 96% in the highest concentration (0.04 g/L compared to the control brain. Similarly, AChE activities in serum, liver, lungs and GIT tissues (88%, 88%, 87, 87% umg-1 protein respectively were also inhibited in the toads. Corticosterone and total protein levels in the tissues decreased compared to the control. The accumulation results obtained showed accumulation in the tissues (liver>serum>brain> lung>GIT, with a direct relationship between tissue concentration and changes in the biochemical indices. The alterations in all the indices were significantly concentration dependent. The biomarkers described in this study could be useful complementary indices in the risk assessment of diazinon pesticide.

  13. Effects of Disruption Risks on Biorefinery Location Design

    Directory of Open Access Journals (Sweden)

    Yun Bai

    2015-02-01

    Full Text Available While ever-growing bio-ethanol production poses considerable challenges to the bioenergy supply chain, the risk of refinery operation disruptions further compromises the efficiency and reliability of the energy supply system. This paper applies discrete and continuous reliable facility location models to the design of reliable bio-ethanol supply chains so that the system can hedge against potential operational disruptions. The discrete model is shown to be suitable for obtaining the exact optimality for small or moderate instances, while the continuous model has superior computational tractability for large-scale applications. The impacts of both site-independent and dependent disruptions (i.e., due to flooding are analyzed in empirical case study for the State of Illinois (one of the main biomass supply states in the U.S.. The reliable solution is compared with a deterministic solution under the same setting. It is found that refinery disruptions, especially those site-dependent ones, affect both optimal refinery deployment and the supply chain cost. Sensitivity analysis is also conducted to show how refinery failure probability and fixed cost (for building biorefineries affect optimal supply chain configuration and the total expected system cost.

  14. Enzymatic cell disruption of microalgae biomass in biorefinery processes.

    Science.gov (United States)

    Demuez, Marie; Mahdy, Ahmed; Tomás-Pejó, Elia; González-Fernández, Cristina; Ballesteros, Mercedes

    2015-10-01

    When employing biotechnological processes for the procurement of biofuels and bio-products from microalgae, one of the most critical steps affecting economy and yields is the "cell disruption" stage. Currently, enzymatic cell disruption has delivered effective and cost competitive results when compared to mechanical and chemical cell disruption methods. However, the introduction of enzymes implies additional associated cost within the overall process. In order to reduce this cost, autolysis of microalgae is proposed as alternative enzymatic cell disruption method. This review aims to provide the state of the art of enzymatic cell disruption treatments employed in biorefinery processes and highlights the use of endopeptidases. During the enzymatic processes of microalgae life cycle, some lytic enzymes involved in cell division and programmed cell death have been proven useful in performing cell lysis. In this context, the role of endopeptidases is emphasized. Mirroring these natural events, an alternative cell disruption approach is proposed and described with the potential to induce the autolysis process using intrinsic cell enzymes. Integrating induced autolysis within biofuel production processes offers a promising approach to reduce overall global costs and energetic input associated with those of current cell disruption methods. A number of options for further inquiry are also discussed. © 2015 Wiley Periodicals, Inc.

  15. The Toxicology and Biochemical Characterization of Cantharidin on Cydia pomonella.

    Science.gov (United States)

    Wu, Zheng-Wei; Yang, Xue-Qing; Zhang, Ya-Lin

    2015-02-01

    Cantharidin, a natural toxin produced by beetles in the families Meloidae and Oedemeridae, reported to be toxic to some pests, is being developed as a biopesticide in China. This study evaluates the toxicity and biochemical characterization of cantharidin on the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), an economically important fruit pest, under both laboratory and field conditions. Laboratory dose response bioassays showed that the LC50 value of cantharidin against neonate larvae was 0.057 mg ml(-1). Exposure of the larvae to 0.024 and 0.057 mg ml(-1) of cantharidin resulted in significant reduction in larval body weight. Neonate larvae exposed to LC10 of cantharidin showed increased glutathione S-transferase activity and significantly reduced the carboxylesterase and cytochrome P450-dependent mixed-function oxidase activities. Results also showed 16 and 25% ovicidal activity at concentrations of 0.057 and 0.14 mg ml(-1) of cantharidin, respectively. Field trials demonstrated cantharidin has a significant effect on both the first and second generations of C. pomonella larvae, but it exhibits a lower control efficiency than the chemical reference emamectin benzoate. Cantharidin may be considered a valuable tool for the control of codling moth. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery.

    Science.gov (United States)

    Jiang, Guozhan; Hill, David J; Kowalczuk, Marek; Johnston, Brian; Adamus, Grazyna; Irorere, Victor; Radecka, Iza

    2016-07-19

    Polyhydroxyalkanoates (PHAs) are a group of bioplastics that have a wide range of applications. Extensive progress has been made in our understanding of PHAs' biosynthesis, and currently, it is possible to engineer bacterial strains to produce PHAs with desired properties. The substrates for the fermentative production of PHAs are primarily derived from food-based carbon sources, raising concerns over the sustainability of their production in terms of their impact on food prices. This paper gives an overview of the current carbon sources used for PHA production and the methods used to transform these sources into fermentable forms. This allows us to identify the opportunities and restraints linked to future sustainable PHA production. Hemicellulose hydrolysates and crude glycerol are identified as two promising carbon sources for a sustainable production of PHAs. Hemicellulose hydrolysates and crude glycerol can be produced on a large scale during various second generation biofuels' production. An integration of PHA production within a modern biorefinery is therefore proposed to produce biofuels and bioplastics simultaneously. This will create the potential to offset the production cost of biofuels and reduce the overall production cost of PHAs.

  17. Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery

    Directory of Open Access Journals (Sweden)

    Guozhan Jiang

    2016-07-01

    Full Text Available Polyhydroxyalkanoates (PHAs are a group of bioplastics that have a wide range of applications. Extensive progress has been made in our understanding of PHAs’ biosynthesis, and currently, it is possible to engineer bacterial strains to produce PHAs with desired properties. The substrates for the fermentative production of PHAs are primarily derived from food-based carbon sources, raising concerns over the sustainability of their production in terms of their impact on food prices. This paper gives an overview of the current carbon sources used for PHA production and the methods used to transform these sources into fermentable forms. This allows us to identify the opportunities and restraints linked to future sustainable PHA production. Hemicellulose hydrolysates and crude glycerol are identified as two promising carbon sources for a sustainable production of PHAs. Hemicellulose hydrolysates and crude glycerol can be produced on a large scale during various second generation biofuels’ production. An integration of PHA production within a modern biorefinery is therefore proposed to produce biofuels and bioplastics simultaneously. This will create the potential to offset the production cost of biofuels and reduce the overall production cost of PHAs.

  18. Dilute alkali pretreatment of softwood pine: A biorefinery approach.

    Science.gov (United States)

    Safari, Ali; Karimi, Keikhosro; Shafiei, Marzieh

    2017-06-01

    Dilute alkali pretreatment was performed on softwood pine to maximize ethanol and biogas production via a biorefinery approach. Alkali pretreatments were performed with 0-2% w/v NaOH at 100-180°C for 1-5h. The liquid fraction of the pretreated substrates was subjected to anaerobic digestion. The solid fraction of the pretreatment was used for separate enzymatic hydrolysis and fermentation. High ethanol yields of 76.9‒78.0% were achieved by pretreatment with 2% (w/v) NaOH at 180°C. The highest biogas yield of 244mL/g volatile solid (at 25°C, 1bar) was achieved by the pretreatment with 1% (w/v) NaOH at 180°C. The highest gasoline equivalent (sum of ethanol and methane) of 197L per ton of pinewood and the lowest ethanol manufacturing cost of 0.75€/L was obtained after pretreatment with 1% NaOH at 180°C for 5h. The manufacturing cost of ethanol from untreated wood was 4.12€/L. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Biochemical Changes in the Serum and Liver of albino rats exposed ...

    African Journals Online (AJOL)

    Biochemical changes in the serum and liver of albino rats chronically exposed to rats administered 5gk-1 , 7.5gk-1 and 15gk-1 of gasoline , kerosine and crude petroleum(bonny light) respectively were studied. The petroleum samples were administered intraperitoneally and the biochemical changes in the rat serum and the ...

  20. Biochemical Characterization of Early Osteoarthritis in the Ankle

    Directory of Open Access Journals (Sweden)

    Hagen Schmal

    2014-01-01

    Full Text Available Purpose. Reliable data about in vivo regulation of cytokines in early ankle osteoarthritis (OA are still missing. Methods. 49 patients with a mean age of 33±14 years undergoing an arthroscopy of the ankle with different stages of chronic OA were prospectively included in a clinical trial. Lavage fluids were analyzed by ELISA. Additionally, clinical parameters and scores (FFI, CFSS, and AOFAS were evaluated and supplemented by the Kellgren Lawrence Score (KLS and the ankle osteoarthritis scoring system (AOSS. Results. ICRS grading of cartilage damage, previous operations, and duration of complains were strong indicators for OA progress and showed correlations to age, clinical scores, validated KLS, and AOSS (P<0.04. Systemic and intraarticular inflammatory parameters were low in all patients. Biochemically, aggrecan and BMP-7 positively indicated OA with statistically significant associations with duration of symptoms, FFI, AOFAS, and KLS (P<0.04. In contrast, BMP-2 levels showed statistically significant negative correlations to aggrecan or BMP-7 concentrations, which is in line with the negative association with ICRS score and KLS and the positive correlation with FFI (P<0.03. Conclusions. We were able to identify different key markers of OA in the ankle as aggrecan, BMP-7, and BMP-2, offering starting points for new ways in diagnostics and interventional strategies.