WorldWideScience

Sample records for biorefinery facility siting

  1. Microalgae biorefineries: The Brazilian scenario in perspective.

    Science.gov (United States)

    Brasil, B S A F; Silva, F C P; Siqueira, F G

    2017-10-25

    Biorefineries have the potential to meet a significant part of the growing demand for energy, fuels, chemicals and materials worldwide. Indeed, the bio-based industry is expected to play a major role in energy security and climate change mitigation during the 21th century. Despite this, there are challenges related to resource consumption, processing optimization and waste minimization that still need to be overcome. In this context, microalgae appear as a promising non-edible feedstock with advantages over traditional land crops, such as high productivity, continuous harvesting throughout the year and minimal problems regarding land use. Importantly, both cultivation and microalgae processing can take place at the same site, which increases the possibilities for process integration and a reduction in logistic costs at biorefinery facilities. This review describes the actual scenario for microalgae biorefineries integration to the biofuels and petrochemical industries in Brazil, while highlighting the major challenges and recent advances in microalgae large-scale production. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Biorefineries: Current activities and future developments

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2009-01-01

    This paper reviews the current refuel valorization facilities as well as the future importance of biorefineries. A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. Biorefineries combine the necessary technologies of the biorenewable raw materials with those of chemical intermediates and final products. Char production by pyrolysis, bio-oil production by pyrolysis, gaseous fuels from biomass, Fischer-Tropsch liquids from biomass, hydrothermal liquefaction of biomass, supercritical liquefaction, and biochemical processes of biomass are studied and concluded in this review. Upgraded bio-oil from biomass pyrolysis can be used in vehicle engines as fuel.

  3. Biorefineries: Current activities and future developments

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, Ayhan [Sila Science, Trabzon (Turkey)

    2009-11-15

    This paper reviews the current refuel valorization facilities as well as the future importance of biorefineries. A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. Biorefineries combine the necessary technologies of the biorenewable raw materials with those of chemical intermediates and final products. Char production by pyrolysis, bio-oil production by pyrolysis, gaseous fuels from biomass, Fischer-Tropsch liquids from biomass, hydrothermal liquefaction of biomass, supercritical liquefaction, and biochemical processes of biomass are studied and concluded in this review. Upgraded bio-oil from biomass pyrolysis can be used in vehicle engines as fuel. (author)

  4. 76 FR 13351 - Notice of Funds Availability (NOFA) Inviting Applications for the Biorefinery Assistance Program

    Science.gov (United States)

    2011-03-11

    ... commercial-scale biorefineries or for the retrofitting of existing facilities using eligible technology for... biorefineries and the retrofitting of existing facilities using eligible technology for the development of... provide for the development, construction, and/or retrofitting of commercial biorefineries using eligible...

  5. Recovery Act: Alpena Biorefinery and Alpena Biorefinery Lignin Separation Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Retsina, Theodora [American Process Inc., Atlanta, GA (United States)

    2016-12-19

    The Alpena Biorefinery (AB) was constructed in Alpena, Michigan, at the Decorative Panels International hardboard manufacturing facility. The goal of the AB was to demonstrate a modular, technically successful, and financially viable process of making cellulosic ethanol from woody biomass extract at wood processing facilities. At full capacity, the AB can produce 894,200 gallons per year of cellulosic ethanol and 696,000 gallons per year of aqueous potassium acetate, using extract from northern hardwood and aspen woodchips feedstock. The project objectives and the value proposition of AB promote the national goals of energy independence, greenhouse gas reduction, and green job creation and retention. A successful outcome of the Alpena Biorefinery project has been commercial sales of the first ever cellulosic ethanol RINS generated from woody biomass in the US, under the EPA’s Renewable Fuels Standard Program. We believe that American Process is also likely the first company in the world to produce commercial quantities of cellulosic ethanol from mixed forest residue. Life Cycle Analysis performed by Michigan Institute of Technology found that the entire life cycle greenhouse gas emissions from the plant’s cellulosic ethanol were only 25 percent that of petroleum-based gasoline. They found the potassium acetate runway de-icer coproduct generates up to 45 percent less greenhouse gases than the production of conventional potassium acetate. The Alpena Biorefinery project created 31 permanent jobs for direct employees and helped retain 200 jobs associated with the existing Decorative Panels International facility, by increasing its economic viability through significant savings in waste water treatment costs. The AB project has been declared a Michigan Center of Energy Excellence and was awarded a $4 million State of Michigan grant. The project also received New Market Tax Credit financing for locating in an economically distressed community. All other equity funds

  6. European biorefineries: Implications for land, trade and employment

    International Nuclear Information System (INIS)

    Thornley, Patricia; Chong, Katie; Bridgwater, Tony

    2014-01-01

    Highlights: • Five diverse European member states could support around 30 biorefineries. • The facilities would create around 2 million man-years of employment. • Biorefineries create more jobs per unit of feedstock than bioelectricity plants. • Contribution to national GDP is very small; but agriculturally significant. • Increased straw demand could indirectly increase greenhouse gas emissions. - Abstract: Biorefineries are expected to play a major role in a future low carbon economy and substantial investments are being made to support this vision. However, it is important to consider the wider socio-economic impacts of such a transition. This paper quantifies the potential trade, employment and land impacts of economically viable European biorefinery options based on indigenous straw and wood feedstocks. It illustrates how there could be potential for 70–80 European biorefineries, but not hundreds. A single facility could generate tens of thousands of man-years of employment and employment creation per unit of feedstock is higher than for biomass power plants. However, contribution to national GDP is unlikely to exceed 1% in European member states, although contributions to national agricultural productivity may be more significant, particularly with straw feedstocks. There is also a risk that biorefinery development could result in reduced rates of straw incorporation into soil, raising concerns that economically rational decisions to sell rather than reincorporate straw could result in increased agricultural land-use or greenhouse gas emissions

  7. Waste biorefineries: Enabling circular economies in developing countries.

    Science.gov (United States)

    Nizami, A S; Rehan, M; Waqas, M; Naqvi, M; Ouda, O K M; Shahzad, K; Miandad, R; Khan, M Z; Syamsiro, M; Ismail, I M I; Pant, Deepak

    2017-10-01

    This paper aims to examine the potential of waste biorefineries in developing countries as a solution to current waste disposal problems and as facilities to produce fuels, power, heat, and value-added products. The waste in developing countries represents a significant source of biomass, recycled materials, chemicals, energy, and revenue if wisely managed and used as a potential feedstock in various biorefinery technologies such as fermentation, anaerobic digestion (AD), pyrolysis, incineration, and gasification. However, the selection or integration of biorefinery technologies in any developing country should be based on its waste characterization. Waste biorefineries if developed in developing countries could provide energy generation, land savings, new businesses and consequent job creation, savings of landfills costs, GHG emissions reduction, and savings of natural resources of land, soil, and groundwater. The challenges in route to successful implementation of biorefinery concept in the developing countries are also presented using life cycle assessment (LCA) studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Principles of biorefineries.

    Science.gov (United States)

    Kamm, B; Kamm, M

    2004-04-01

    Sustainable economic growth requires safe, sustainable resources for industrial production. For the future re-arrangement of a substantial economy to biological raw materials, completely new approaches in research and development, production and economy are necessary. Biorefineries combine the necessary technologies between biological raw materials and industrial intermediates and final products. The principal goal in the development of biorefineries is defined by the following: (biomass) feedstock-mix + process-mix --> product-mix. Here, particularly the combination between biotechnological and chemical conversion of substances will play an important role. Currently the "whole-crop biorefinery", "green biorefinery" and "lignocellulose-feedstock biorefinery" systems are favored in research and development.

  9. Biorefineries--multi product processes.

    Science.gov (United States)

    Kamm, B; Kamm, M

    2007-01-01

    The development of biorefineries represents the key for access to an integrated production of food, feed, chemicals, materials, goods, and fuels of the future [1]. Biorefineries combine the necessary technologies of the biogenic raw materials with those of intermediates and final products. The main focus is directed at the precursors carbohydrates, lignin, oils, and proteins and the combination between biotechnological and chemical conversion of substances. Currently the lignocellulosic feedstock biorefinery, green biorefinery, whole corn biorefinery, and the so-called two-platform concept are favored in research, development, and industrial implementation.

  10. Biorefineries: from concepts to reality?

    Energy Technology Data Exchange (ETDEWEB)

    Wagemann, K. [DECHEMA e.V., Frankfurt am Main (Germany)

    2007-07-01

    The concept of biorefineries addresses the conversion of plant biomass to fuels, materials and chemicals, waste streams being minimized and used for the production of electricity and heat. Four different types are presently discussed: - Sugar-based biorefineries - Whole-crop biorefineries - Green biorefineries - Lignocellulose biorefineries Besides the lack of existing technical solutions and limited land resources, competition with food production and, as a consequence, rising raw material prices considered. (orig.)

  11. Economically viable biochemical processes for the advanced rural biorefinery and downstream recovery operations

    Science.gov (United States)

    Rural biorefineries offer an alternative to traditional ethanol production by providing the opportunity to produce fuel on site to reduce costs associated with biomass transportation thus making the fuel economically viable. Widespread installation of rural biorefineries could lead to increased upt...

  12. Biorefineries: A Short Introduction.

    Science.gov (United States)

    Wagemann, Kurt; Tippkötter, Nils

    2018-04-13

    The terms bioeconomy and biorefineries are used for a variety of processes and developments. This short introduction is intended to provide a delimitation and clarification of the terminology as well as a classification of current biorefinery concepts. The basic process diagrams of the most important biorefinery types are shown.

  13. Sugarcane-Biorefinery.

    Science.gov (United States)

    Vaz, Sílvio

    2017-03-17

    Concepts such as biorefinery and green chemistry focus on the usage of biomass, as with the oil value chain. However, it can cause less negative impact on the environment. A biorefinery based on sugarcane (Saccharum spp.) as feedstock is an example, because it can integrate into the same physical space, of processes for obtaining biofuels (ethanol), chemicals (from sugars or ethanol), electricity, and heat.The use of sugarcane as feedstock for biorefineries is dictated by its potential to supply sugars, ethanol, natural polymers or macromolecules, organic matter, and other compounds and materials. By means of conversion processes (chemical, biochemical, and thermochemical), sugarcane biomass can be transformed into high-value bioproducts to replace petrochemicals, as a bioeconomy model.

  14. Biorefinery plant design, engineering and process optimisation

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Ehimen, Ehiazesebhor Augustine

    2014-01-01

    Before new biorefinery systems can be implemented, or the modification of existing single product biomass processing units into biorefineries can be carried out, proper planning of the intended biorefinery scheme must be performed initially. This chapter outlines design and synthesis approaches...... applicable for the planning and upgrading of intended biorefinery systems, and includes discussions on the operation of an existing lignocellulosic-based biorefinery platform. Furthermore, technical considerations and tools (i.e., process analytical tools) which could be applied to optimise the operations...... of existing and potential biorefinery plants are elucidated....

  15. Opportunities for Dutch Roadmap Biorefineries

    International Nuclear Information System (INIS)

    Annevelink, E.; Broeze, J.; Van Ree, R.

    2009-09-01

    This Dutch Roadmap Biorefinery forms the framework and knowledge basis for Research, Development and Demonstration (RD and D) activities, covering both technical and non-technical issues, necessary to develop biorefinery-based value chains to such an extend that large-scale market implementation as part of the future Bio-based Economy will become a reality. The Roadmap describes the broad landscape of biorefinery options in The Netherlands. The descriptions of possible initiatives within the so called Moonshots (general biorefinery strategies containing more specific biorefinery-based value chains that will become fully operational at industrial scale in the short and midterm to facilitate the transition to a Bio-based Economy in the longer-term) deliberately do not contain the names of parties that might be involved. However, many of the current initiatives have been described in another document, the 'Status Report Biorefinery 2007'. Also the exact economics of possible initiatives have not been specified yet. These will become clearer when proposals will be submitted by consortia of the stakeholders involved.

  16. Assessment of a novel alder biorefinery concept to meet demands of economic feasibility, energy production and long term environmental sustainability

    DEFF Research Database (Denmark)

    Thomsen, Tobias; Ahrenfeldt, Jesper; Thomsen, Sune Tjalfe

    2013-01-01

    A biorefinery concept based on alder tree plantations on degenerated soil is developed to comply with indicators of economic feasibility, fossil fuel depletion concerns, and long term sustainability issues. The potential performance of feedstock and biorefinery has been assessed through a literat......A biorefinery concept based on alder tree plantations on degenerated soil is developed to comply with indicators of economic feasibility, fossil fuel depletion concerns, and long term sustainability issues. The potential performance of feedstock and biorefinery has been assessed through...... degenerated soils. Integrating a biomass handling system, an LTCFB gasifier, a diarylheptanoids production chain, an anaerobic digestion facility, a slow pyrolysis unit, gas upgrading and various system integration units, the biorefinery could obtain the following production characteristics accounted...

  17. Biorefinery Sustainability Analysis

    DEFF Research Database (Denmark)

    J. S. M. Silva, Carla; Prunescu, Remus Mihail; Gernaey, Krist

    2017-01-01

    This chapter deals with sustainability analysis of biorefinery systems in terms of environmental and socio-economic indicators . Life cycle analysis has methodological issues related to the functional unit (FU), allocation , land use and biogenic carbon neutrality of the reference system and of t......This chapter deals with sustainability analysis of biorefinery systems in terms of environmental and socio-economic indicators . Life cycle analysis has methodological issues related to the functional unit (FU), allocation , land use and biogenic carbon neutrality of the reference system...... and of the biorefinery-based system. Socio-economic criteria and indicators used in sustainability frameworks assessment are presented and discussed. There is not one single methodology that can aptly cover the synergies of environmental, economic, social and governance issues required to assess the sustainable...

  18. Synthesis and design of optimal biorefinery

    DEFF Research Database (Denmark)

    Cheali, Peam

    analysed to enable risk-aware decision making. Theapplication of the developed analysis and decision support toolbox is highlightedthrough relevant biorefinery case studies: bioethanol, biogasoline or biodiesel production; algal biorefinery; and bioethanol-upgrading concepts are presented. This development...... environment. These challenges motivate thedevelopment of sustainable technologies for processing renewable feedstock for the production of fuels, chemicals and materials in what is commonly known as a biorefinery. The biorefinery concept is a term to describe one or more processes whichproduce various...... products from bio-based feedstock. Since there are several bio-basedfeedstock sources, this has motivated development of different conversion concepts producing various desired products. This results in a number of challenges for the synthesis and design of the optimal biorefinery concept at the early...

  19. Sustainable multipurpose biorefineries for third-generation biofuels and value-added co-products

    Science.gov (United States)

    Modern biorefinery facilities conduct many types of processes, including those producing advanced biofuels, commodity chemicals, biodiesel, and value-added co-products such as sweeteners and bioinsecticides, with many more co-products, chemicals and biofuels on the horizon. Most of these processes ...

  20. Hydrothermal pretreatments of macroalgal biomass for biorefineries

    DEFF Research Database (Denmark)

    Ruiz, Héctor A.; Rodríguez-Jasso, Rosa M.; Aguedo, Mario

    2015-01-01

    in accordance with the integrated biorefineries. Furthermore, biorefinery concept requires processes that allow efficient utilization of all components of the biomass. The pretreatment step in a biorefinery is often based on hydrothermal principles of high temperatures in aqueous solution. Therefore...

  1. Effects of Disruption Risks on Biorefinery Location Design

    Directory of Open Access Journals (Sweden)

    Yun Bai

    2015-02-01

    Full Text Available While ever-growing bio-ethanol production poses considerable challenges to the bioenergy supply chain, the risk of refinery operation disruptions further compromises the efficiency and reliability of the energy supply system. This paper applies discrete and continuous reliable facility location models to the design of reliable bio-ethanol supply chains so that the system can hedge against potential operational disruptions. The discrete model is shown to be suitable for obtaining the exact optimality for small or moderate instances, while the continuous model has superior computational tractability for large-scale applications. The impacts of both site-independent and dependent disruptions (i.e., due to flooding are analyzed in empirical case study for the State of Illinois (one of the main biomass supply states in the U.S.. The reliable solution is compared with a deterministic solution under the same setting. It is found that refinery disruptions, especially those site-dependent ones, affect both optimal refinery deployment and the supply chain cost. Sensitivity analysis is also conducted to show how refinery failure probability and fixed cost (for building biorefineries affect optimal supply chain configuration and the total expected system cost.

  2. Requirements of on-site facilities

    International Nuclear Information System (INIS)

    Burchardt, H.

    1977-01-01

    1) Requirements of on-site facilities: a) brief description of supplying the site with electricity and water; communication facilities, b) necessary facilities for containment and pipeline installation, c) necessary facilities for storage, safety, accommodation of personnel, housing; workshops; 2) Site management: a) Organisation schedules for 'turn-key-jobs' and 'single commission', b) Duties of the supervisory staff. (orig.) [de

  3. The Green Integrated Forest Biorefinery: An innovative concept for the pulp and paper mills

    International Nuclear Information System (INIS)

    Rafione, Tatiana; Marinova, Mariya; Montastruc, Ludovic; Paris, Jean

    2014-01-01

    The Green Integrated Forest Biorefinery (GIFBR), a new concept suitable for implementation in pulp and paper mills is characterized by low greenhouse gases emissions, reduced water consumption and production of effluents. Its fossil fuel consumption must be nil. Several challenges have to be addressed to develop a sustainable GIFBR facility. An implementation strategy by phase is proposed to schedule the total capital investment over several years and to mitigate the economic risks associated with the transformation of an existing pulp and paper mill into a GIFBR. In the first phase of the methodology, the receptor mill and the biorefinery plant are selected. An intensive energy and material integration of the two plants is performed in the second phase, then a gasification unit is implemented and, finally a polygeneration unit is installed. The methodology is illustrated by application to a case study based on a reference Canadian Kraft mill. Each phase of the implementation strategy of the GIFBR is described. - Highlights: • The Green Integrated Forest Biorefinery (GIFBR) is a new biorefinery concept. • A GIFBR includes a pulp mill, a biorefinery, a gasification and a polygeneration units. • An implementation strategy by phase is proposed to successfully develop a GIFBR. • To determine achievable level of integration between the GIFBR constituents is crucial. • GIFBR concept technically and economically feasibility for pulp and paper mills

  4. Regional differences in the economic feasibility of advanced biorefineries: Fast pyrolysis and hydroprocessing

    International Nuclear Information System (INIS)

    Brown, Tristan R.; Thilakaratne, Rajeeva; Brown, Robert C.; Hu, Guiping

    2013-01-01

    This analysis identifies the sensitivity of the fast pyrolysis and hydroprocessing pathway to facility location. The economic feasibility of a 2000 metric ton per day fast pyrolysis and hydroprocessing biorefinery is quantified based on 30 different state-specific facility locations within the United States. We calculate the 20-year internal rate of return (IRR) and net present value (NPV) for each location scenario as a function of state- and region-specific factors. This analysis demonstrates that biorefinery IRR and NPV are very sensitive to bio-oil yield, feedstock cost, location capital cost factor, and transportation fuel market value. The IRRs and NPVs generated for each scenario vary widely as a result, ranging from a low of 7.4% and −$79.5 million in Illinois to a high of 17.2% and $165.5 million in Georgia. The results indicate that the economic feasibility of the fast pyrolysis and hydroprocessing pathway is strongly influenced by facility location within the United States. This result could have important implications for cellulosic biofuel commercialization under the revised Renewable Fuel Standard. - Highlights: ► We model the production of biofuel via fast pyrolysis and hydroprocessing of biomass. ► We compile regional- and state-specific factors for 30 different US state scenarios. ► We quantify facility economic feasibility under each state scenario. ► Facility economic feasibility is strongly influenced by facility location

  5. Biorefineries – factories of the future

    Directory of Open Access Journals (Sweden)

    Kołtuniewicz Andrzej B.

    2016-03-01

    Full Text Available Efforts were made to demonstrate that in biorefineries it is possible to manufacture all the commodities required for maintaining human civilisation on the current level. Biorefineries are based on processing biomass resulting from photosynthesis. From sugars, oils and proteins, a variety of food, feed, nutrients, pharmaceuticals, polymers, chemicals and fuels can further be produced. Production in biorefineries must be based on a few rules to fulfil sustainable development: all raw materials are derived from biomass, all products are biodegradable and production methods are in accordance with the principles of Green Chemistry and Clean Technology. The paper presents a summary of state-of-the-art concerning biorefineries, production methods and product range of leading companies in the world that are already implemented. Potential risks caused by the development of biorefineries, such as: insecurities of food and feed production, uncontrolled changes in global production profiles, monocultures, eutrophication, etc., were also highlighted in this paper. It was stressed that the sustainable development is not only an alternative point of view but is our condition to survive.

  6. Biorefinery systems – potential contributors to sustainable innovation

    NARCIS (Netherlands)

    Wellisch, M.; Jungmeier, G.; Karbowski, A.; Patel, M.K.; Rogulska, M.

    2010-01-01

    Sustainable biorefineries have a critical role to play in our common future. The need to provide more goods using renewable resources, combined with advances in science and technology, has provided a receptive environment for biorefinery systems development. Biorefineries offer the promise of using

  7. Maximizing biofuel production in a thermochemical biorefinery by adding electrolytic hydrogen and by integrating torrefaction with entrained flow gasification

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard

    2015-01-01

    double the biofuel production per biomass input by converting almost all of the carbon in the biomass feed to carbon stored in the biofuel product. Water or steam electrolysis can supply the hydrogen to the biorefinery and also the oxygen for the gasifier. This paper presents the design and thermodynamic...... analysis of two biorefineries integrating water electrolysis for the production of methanol. In both plants, torrefied woody biomass is supplied to an entrained flow gasifier, but in one of the plants, the torrefaction process occurs on-site, as it is integrated with the entrained flow gasification process....... The analysis shows that the biorefinery with integrated torrefaction has a higher biomass to methanol energy ratio (136% vs. 101%) as well as higher total energy efficiency (62% vs. 56%). By comparing with two identical biorefineries without electrolysis, it is concluded that the biorefinery with integrated...

  8. Valorization of cereal based biorefinery byproducts: reality and expectations.

    Science.gov (United States)

    Elmekawy, Ahmed; Diels, Ludo; De Wever, Heleen; Pant, Deepak

    2013-08-20

    The growth of the biobased economy will lead to an increase in new biorefinery activities. All biorefineries face the regular challenges of efficiently and economically treating their effluent to be compatible with local discharge requirements and to minimize net water consumption. The amount of wastes resulting from biorefineries industry is exponentially growing. The valorization of such wastes has drawn considerable attention with respect to resources with an observable economic and environmental concern. This has been a promising field which shows great prospective toward byproduct usage and increasing value obtained from the biorefinery. However, full-scale realization of biorefinery wastes valorization is not straightforward because several microbiological, technological and economic challenges need to be resolved. In this review we considered valorization options for cereals based biorefineries wastes while identifying their challenges and exploring the opportunities for future process.

  9. Supply Chain Optimization of Integrated Glycerol Biorefinery: GlyThink Model Development and Application

    DEFF Research Database (Denmark)

    Loureiro da Costa Lira Gargalo, Carina; Carvalho, Ana; Gernaey, Krist

    2017-01-01

    To further advance the development and implementation of glycerol-based biorefinery concepts, it is critical to analyze the glycerol conversion into high value-added products in a holistic manner, considering both production as well as the logistics aspects related to the supply chain structure...... is able to identify operational decisions, including locations, capacity levels, technologies, and product portfolio, as well as strategic decisions such as inventory levels, production amounts, and transportation to the final markets. Several technologies are considered for the glycerol valorization...... to high value-added products. Existing countries with major production and consumption of biodiesel in Europe are considered as candidates for the facility sites and demand markets, and their spatial distribution is also carefully studied. The results showed that (i) the optimal solution that provides...

  10. Recovery of agricultural nutrients from biorefineries.

    Science.gov (United States)

    Carey, Daniel E; Yang, Yu; McNamara, Patrick J; Mayer, Brooke K

    2016-09-01

    This review lays the foundation for why nutrient recovery must be a key consideration in design and operation of biorefineries and comprehensively reviews technologies that can be used to recover an array of nitrogen, phosphorus, and/or potassium-rich products of relevance to agricultural applications. Recovery of these products using combinations of physical, chemical, and biological operations will promote sustainability at biorefineries by converting low-value biomass (particularly waste material) into a portfolio of higher-value products. These products can include a natural partnering of traditional biorefinery outputs such as biofuels and chemicals together with nutrient-rich fertilizers. Nutrient recovery not only adds an additional marketable biorefinery product, but also avoids the negative consequences of eutrophication, and helps to close anthropogenic nutrient cycles, thereby providing an alternative to current unsustainable approaches to fertilizer production, which are energy-intensive and reliant on nonrenewable natural resource extraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Chemistry in forest biorefineries 2 - BIORAFF 2

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M. (Aabo Akademi, Process Chemistry Centre, Turku (Finland)), email: mhupa@abo.fi; Auer, M. (Aabo Akademi, Process Chemistry Centre, Turku (Finland); VTT Technical Research Centre of Finland, Espoo (Finland)), email: mauer@abo.fi

    2009-10-15

    The biorefinery concept may be compared to an oil refinery and petrochemical plant, where fuels and numerous intermediates are produced for further processing into high-value and speciality materials. In biorefineries, the raw material instead of mineral oil is bio-based materials. Biorefinery development at the US and European level mostly covers the use of annual crops and other bio-based materials. However, in this project focus is on non-food materials primarily in industrial pulp and paper processes and this project is limited to forest-based biorefineries. The aim of the project is also to preserve the molecular structures created by the nature as much as possible, to explore new separation and purification methods and look at new applications in the areas such as: functional food, nutritional additives, functional additives in paper making, antioxidants, new biobased materials and biobased energy. As the area, in spite of efforts to limit it, is very large, we have selected to focus on a limited number of concretized projects, which to our knowledge are complementary with other efforts for promoting biorefinery concepts. (orig.)

  12. Biorefineries. Prerequisite for the realization of a future bioeconomy

    Energy Technology Data Exchange (ETDEWEB)

    Wagemann, K. [DECHEMA e.V., Frankfurt am Main (Germany)

    2012-07-01

    The current discussion on how to establish a bioeconomy aims in particular at a significant increase of the share of renewable raw materials in the feedstock pool for the production of chemicals and materials; this share currently is around 12%. Such products can be intermediate chemicals, presently already produced from petroleum. Other chemicals, which can be components of new value chains, are also being discussed. In addition materials like biopolymers are already used directly in consumer goods. These considerations imply a higher demand on renewable raw materials especially from plants. Biorefineries will play an important role in meeting this demand. The German Government has decided to draw up a roadmap being established by a group of independent experts from industry and academia. This roadmap describes in a systematic way status and perspectives of the different biorefinery concepts. It takes economic and ecological aspects into considerations and analyses the R and D demand. The following definition is taken as a basis for the analysis: 'A biorefinery is characterised by having a dedicated, integrative overall approach, using biomass as a versatile raw material source for the sustainable production of a spectrum of different intermediates and marketable products (chemicals, materials, bioenergy and food/feed co-products) by using the biomass components as complete as possible.' The analysis considers the following promising concepts: - Sugar biorefinery and Starch biorefinery; - Plant oil biorefinery including Algae lipid biorefinery; - Lignocellulose (Cellulose/Hemicellulose/Lignin) biorefinery including Green (green fibre/green juice) biorefinery; - Synthesis gas biorefinery; - Biogas biorefinery. The roadmap analyses the strengths, weaknesses, opportunities and threats of the different concepts. For several specific examples preliminary economical and ecological assessment were carried out. The lecture will also give examples how these

  13. Evaluating municipal energy efficiency in biorefinery integration

    International Nuclear Information System (INIS)

    Haikonen, Turo; Tuomaala, Mari; Holmberg, Henrik; Ahtila, Pekka

    2013-01-01

    In this study biomass-based energy production was introduced to an urban city area of Helsinki, Finland. The study compared two cases in integration with a municipality: (1) biomass fuelled small-scale CHP (combined heat and power)-plant and (2) a biorefinery. The comparison was made according to primary energy consumption, primary energy factors, CO 2 (carbon dioxide) emissions and the price of produced biowax. It was also studied how results are influenced by different assumptions. The results showed that the primary energy consumption and CO 2 emissions were higher in the biorefinery case in absolute amounts as more products i.e. biowax was produced. The results indicated the primary energy factors were almost the same for both cases. Additionally, the primary energy use was very low for district heat and electricity produced in the biorefinery, when the primary energy use of the biorefinery was allocated only to the biowax. The sensitivity analysis of biowax pricing showed that a biorefinery is a competitive alternative for a CHP-plant if the prices of biomass and market electricity are low and the price of CO 2 allowance is high. In terms of overall energy efficiency comparison, the comparison cannot be properly completed, because of the different end-products of the plants. - Highlights: • Primary energy consumption and CO 2 emissions in a municipality are studied. • Energy production in a biorefinery is compared to a conventional CHP-plant. • In the biorefinery CO 2 emission per produced energy unit (CO 2 /MWh) is the lowest. • The CHP-case benefits from low primary energy consumption and electricity demand. • More than one energy efficiency figure needs to be considered in analyses

  14. Biomass supply chain optimisation for Organosolv-based biorefineries.

    Science.gov (United States)

    Giarola, Sara; Patel, Mayank; Shah, Nilay

    2014-05-01

    This work aims at providing a Mixed Integer Linear Programming modelling framework to help define planning strategies for the development of sustainable biorefineries. The up-scaling of an Organosolv biorefinery was addressed via optimisation of the whole system economics. Three real world case studies were addressed to show the high-level flexibility and wide applicability of the tool to model different biomass typologies (i.e. forest fellings, cereal residues and energy crops) and supply strategies. Model outcomes have revealed how supply chain optimisation techniques could help shed light on the development of sustainable biorefineries. Feedstock quality, quantity, temporal and geographical availability are crucial to determine biorefinery location and the cost-efficient way to supply the feedstock to the plant. Storage costs are relevant for biorefineries based on cereal stubble, while wood supply chains present dominant pretreatment operations costs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Field to fuel: developing sustainable biorefineries.

    Science.gov (United States)

    Jenkins, Robin; Alles, Carina

    2011-06-01

    Life-cycle assessment (LCA) can be used as a scientific decision support technique to quantify the environmental implications of various biorefinery process, feedstock, and integration options. The goal of DuPont's integrated corn biorefinery (ICBR) project, a cost-share project with the United States Department of Energy, was to demonstrate the feasibility of a cellulosic ethanol biorefinery concept. DuPont used LCA to guide research and development to the most sustainable cellulosic ethanol biorefinery design in its ICBR project and will continue to apply LCA in support of its ongoing effort with joint venture partners. Cellulosic ethanol is a biofuel which has the potential to provide a sustainable solution to the nation's growing concerns around energy supply and climate change. A successful biorefinery begins with sustainable removal of biomass from the field. Michigan State University (MSU) used LCA to estimate the environmental performance of corn grain, corn stover, and the corn cob portion of the stover, grown under various farming practices for several corn growing locations in the United States Corn Belt. In order to benchmark the future technology options for producing cellulosic ethanol with existing technologies, LCA results for fossil energy consumption and greenhouse gas (GHG) emissions are compared to alternative ethanol processes and conventional gasoline. Preliminary results show that the DuPont ICBR outperforms gasoline and other ethanol technologies in the life-cycle impact categories considered here.

  16. Sustainability Assessment of a Biorefinery Complex in Thailand

    Directory of Open Access Journals (Sweden)

    Pariyapat Nilsalab

    2011-03-01

    Full Text Available In this paper, a biorefinery complex in Thailand was assessed vis-à-vis sustainability. The complex studied includes plantations of sugarcane and a biorefinery system composed of several units including, a sugar mill, power plant, ethanol factory and fertilizer plant. The assessment aimed at evaluating the environmental and socio-economic implications relating to molasses-based ethanol production and use, and maximized utilization of the biomass materials produced as part of the biorefinery complex. Global warming potential, human development index and total value added are the three indicators that were selected to perform the assessment. The results obtained revealed that the maximization of biomass utilization at the level of the biorefinery complex provide greenhouse gases emissions reduction benefits, enhanced living conditions for sugarcane farmers and employees of the biorefinery, and economic benefits, particularly with regard to profit and income generation. These results could serve as a first step to further improve and design indicators for sustainability assessment of biomass utilization.

  17. Biorefinery.nl 2006 : the results of the 1st year of the Dutch Network on Biorefinery, BioRef 0606

    NARCIS (Netherlands)

    Zwart, R.W.R.; Ree, van R.; Annevelink, E.; Jong, de E.

    2006-01-01

    The Dutch Network on Biorefinery (Biorefinery.nl) is a joint initiative of the Energy research Centre of the Netherlands (ECN) and Wageningen University and Research Centre (WUR). It is meant to inform industry, research institutes, universities, NGOs, governments and the general public about

  18. The territorial biorefinery as a new business model

    Directory of Open Access Journals (Sweden)

    Ion Lucian Ceapraz

    2016-05-01

    Full Text Available The transition toward more sustainable industries opens the way for alternative solutions based upon new economic models using agricultural inputs or biomass to substitute oil-based inputs. In this context different generations of biorefinery complexes are evolving rapidly and highlight the numerous possibilities for the organization of processing activities, from supply to final markets. The evolution of these biorefineries has followed two main business models, the port biorefinery, based on the import of raw materials, and the territorial biorefinery, based on strong relationships with local (or regional supply bases. In this article we focus on the concept of the ‘territorial biorefinery’, seen as a new business model. We develop the idea of a link between the biorefinery and its territory through several relevant theoretical approaches and demonstrate that the definition of ‘territorial biorefinery’ does not achieve, from these theoretical backgrounds, a consensus. More importantly, we emphasise that the theoretical assumptions underlying the different definitions used should be made explicit in order to facilitate the manner in which practioners study, develop and set up businesses of this kind.

  19. Lignocellulosic ethanol production from woody biomass: The impact of facility siting on competitiveness

    International Nuclear Information System (INIS)

    Stephen, James D.; Mabee, Warren E.; Saddler, Jack N.

    2013-01-01

    Just as temperate region pulp and paper companies need to compete with Brazilian eucalyptus pulp producers, lignocellulosic biofuel producers in North America and Europe, in the absence of protectionist trade policies, will need to be competitive with tropical and sub-tropical biofuel producers. This work sought to determine the impact of lignocellulosic ethanol biorefinery siting on economic performance and minimum ethanol selling price (MESP) for both east and west coast North American fuel markets. Facility sites included the pine-dominated Pacific Northwest Interior, the mixed deciduous forest of Ontario and New York, and the Brazilian state of Espírito Santo. Feedstock scenarios included both plantation (poplar, willow, and eucalyptus, respectively) and managed forest harvest. Site specific variables in the techno-economic model included delivered feedstock cost, ethanol delivery cost, cost of capital, construction cost, labour cost, electricity revenues (and co-product credits), and taxes, insurance, and permits. Despite the long shipping distance from Brazil to North American east and west coast markets, the MESP for Brazilian-produced eucalyptus lignocellulosic ethanol, modelled at $0.74 L −1 , was notably lower than that of all North American-produced cases at $0.83–1.02 L −1 . - Highlights: • Lignocellulosic ethanol production costs vary notably by region. • Feedstock cost is the primary site-specific production cost variable. • Woody feedstocks in North America have a higher cost than those in Brazil. • Use of Brazilian eucalyptus resulted in the lowest MESP for considered feedstocks. • MESP ranged from −1 to >$1.00 L −1

  20. Separation Technology - Making a difference in biorefineries

    NARCIS (Netherlands)

    Kiss, Anton Alexandru; Lange, Jean Paul; Schuur, Boelo; Brilman, Derk Willem Frederik; van der Ham, Aloysius G.J.; Kersten, Sascha R.A.

    2016-01-01

    In the quest for a sustainable bio-based economy, biorefineries play a central role as they involve the sustainable processing of biomass into marketable products and energy. This paper aims to provide a perspective on applications of separations that can make a great difference in biorefineries, by

  1. Regional energy facility siting analysis

    International Nuclear Information System (INIS)

    Eberhart, R.C.; Eagles, T.W.

    1976-01-01

    Results of the energy facility siting analysis portion of a regional pilot study performed for the anticipated National Energy Siting and Facility Report are presented. The question of cell analysis versus site-specific analysis is explored, including an evaluation of the difference in depth between the two approaches. A discussion of the possible accomplishments of regional analysis is presented. It is concluded that regional sitting analysis could be of use in a national siting study, if its inherent limits are recognized

  2. Biorefinery and Carbon Cycling Research Project

    Energy Technology Data Exchange (ETDEWEB)

    Das, K. C., Adams; Thomas, T; Eiteman, Mark A; Kastner, James R; Mani, Sudhagar; Adolphson, Ryan

    2012-06-08

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [ 1] pretreatment of biomass to enhance quality of products from thermochemical conversion; [2] characterization of and development of coproduct uses; [3] advancement in fermentation of lignocellulosics and particularly C5 and C6 sugars simultaneously, and [ 4] development of algal biomass as a potential substrate for the biorefinery. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the thermochemical product quality in the form of lower tar production, simultaneous of use of multiple sugars in fermentation, use ofbiochar in environmental (ammonia adsorption) and agricultural applications, and production of algal biomass in wastewaters. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

  3. Cell disruption for microalgae biorefineries.

    Science.gov (United States)

    Günerken, E; D'Hondt, E; Eppink, M H M; Garcia-Gonzalez, L; Elst, K; Wijffels, R H

    2015-01-01

    Microalgae are a potential source for various valuable chemicals for commercial applications ranging from nutraceuticals to fuels. Objective in a biorefinery is to utilize biomass ingredients efficiently similarly to petroleum refineries in which oil is fractionated in fuels and a variety of products with higher value. Downstream processes in microalgae biorefineries consist of different steps whereof cell disruption is the most crucial part. To maintain the functionality of algae biochemicals during cell disruption while obtaining high disruption yields is an important challenge. Despite this need, studies on mild disruption of microalgae cells are limited. This review article focuses on the evaluation of conventional and emerging cell disruption technologies, and a comparison thereof with respect to their potential for the future microalgae biorefineries. The discussed techniques are bead milling, high pressure homogenization, high speed homogenization, ultrasonication, microwave treatment, pulsed electric field treatment, non-mechanical cell disruption and some emerging technologies. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Development of a biorefinery optimized biofuel supply curve for the Western United States

    International Nuclear Information System (INIS)

    Parker, Nathan; Tittmann, Peter; Hart, Quinn; Nelson, Richard; Skog, Ken; Schmidt, Anneliese; Gray, Edward; Jenkins, Bryan

    2010-01-01

    A resource assessment and biorefinery siting optimization model was developed and implemented to assess potential biofuel supply across the Western United States from agricultural, forest, urban, and energy crop biomass. Spatial information including feedstock resources, existing and potential refinery locations and a transportation network model is provided to a mixed integer-linear optimization model that determines the optimal locations, technology types and sizes of biorefineries to satisfy a maximum profit objective function applied across the biofuel supply and demand chain from site of feedstock production to the product fuel terminal. The resource basis includes preliminary considerations of crop and residue sustainability. Sensitivity analyses explore possible effects of policy and technology changes. At a target market price of 19.6 $ GJ -1 , the model predicts a feasible production level of 610-1098 PJ, enough to supply up to 15% of current regional liquid transportation fuel demand. (author)

  5. To The Biorefinery: Delivered Forestland and Agricultural Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    It can be challenging and costly to transport biomass feedstock supplies from the roadside, or farmgate, to a biorefinery. Given the geographic dispersion and lowbulk density of cellulosic feedstocks, cost effective scaling of commercial biorefinery operations requires overcoming many challenges. The Biomass Research and Development Board’s Feedstock Logistics Interagency Working Group identified four primary barriers related to biorefinery commercialization: • Capacity and efficiency of harvest and collection equipment • High-moisture content leading to degradation of biomass • Variable biomass quality upon arrival at the biorefinery • Costly transportation options.1 Further, feedstock supply systems do not currently mitigate risks such as low crop yield, fire, or competition for resource use. Delivery and preprocessing improvements will allow for the development of a commercial-scale bioenergy industry that achieves national production and cost targets.

  6. Early stage design and analysis of biorefinery networks

    DEFF Research Database (Denmark)

    Sin, Gürkan

    2013-01-01

    Recent work regarding biorefineries resulted in many competing concepts and technologies for conversion of renewable bio-based feedstock into many promising products including fuels, chemicals, materials, etc. The design of a biorefinery process requires, at its earlier stages, the selection...... of the process configuration which exhibits the best performances, for a given set of economical, technical and environmental criteria. To this end, we formulate a computer-aided framework as an enabling technology for early stage design and analysis of biorefineries. The tool represents different raw materials......, different products and different available technologies and proposes a conceptual (early stage) biorefinery network. This network can then be the basis for further detailed and rigorous model-based studies. In this talk, we demonstrate the application of the tool for generating an early stage optimal...

  7. Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Wike, L.D.

    2000-01-01

    A site selection study was conducted to evaluate locations for the proposed Surplus Plutonium Disposition Facilities. Facilities to be located include the Mixed Oxide (MOX) Fuel Fabrication Facility, the Pit Disassembly and Conversion Facility (PDCF), and the Plutonium Immobilization Project (PIP) facility. Objectives of the study include: (1) Confirm that the Department of Energy (DOE) selected locations for the MOX and PDCF were suitable based on selected siting criteria, (2) Recommend a site in the vicinity of F Area that is suitable for the PIP, and (3) Identify alternative suitable sites for one or more of these facilities in the event that further geotechnical characterization or other considerations result in disqualification of a currently proposed site

  8. Realities of proximity facility siting

    International Nuclear Information System (INIS)

    DeMott, D.L.

    1981-01-01

    Numerous commercial nuclear power plant sites have 2 to 3 reactors located together, and a group of Facilities with capabilities for fuel fabrication, a nuclear reactor, a storage area for spent fuel, and a maintenance area for contaminated equipment and radioactive waste storage are being designed and constructed in the US. The proximity of these facilities to each other provides that the ordinary flow of materials remain within a limited area. Interactions between the various facilities include shared resources such as communication, fire protection, security, medical services, transportation, water, electrical, personnel, emergency planning, transport of hazardous material between facilities, and common safety and radiological requirements between facilities. This paper will explore the advantages and disadvantages of multiple facilities at one site. Problem areas are identified, and recommendations for planning and coordination are discussed

  9. A model biorefinery for avocado (Persea americana mill.) processing.

    Science.gov (United States)

    Dávila, Javier A; Rosenberg, Moshe; Castro, Eulogio; Cardona, Carlos A

    2017-11-01

    This research investigated and evaluated a biorefinery for processing avocado Hass variety into microencapsulated phenolic compounds extract, ethanol, oil and xylitol. Avocado was first characterized for its potential valuable compounds; then, the techno-economic and environmental aspects of the biorefinery were developed and finally the total production costs and potential environmental impact of the proposed biorefinery were investigated. Four scenarios of the biorefinery were evaluated with different extent of mass and energy integration as well as the incorporation of a cogeneration system. Results indicated that the main fatty acid in the pulp of the investigated avocado variety was oleic acid (50.96%) and that this fruit contained significant amount of holocellulose (52.88% and 54.36% in the peel and seed, respectively). Techno-economic and environmental assessment suggested an attractive opportunity for a biorefinery for complete utilization of the avocado fruit as well the importance of the level of integration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. FRS (Facility Registration System) Sites, Geographic NAD83, EPA (2007) [facility_registration_system_sites_LA_EPA_2007

    Data.gov (United States)

    Louisiana Geographic Information Center — This dataset contains locations of Facility Registry System (FRS) sites which were pulled from a centrally managed database that identifies facilities, sites or...

  11. Optimizing Biorefinery Design and Operations via Linear Programming Models

    Energy Technology Data Exchange (ETDEWEB)

    Talmadge, Michael; Batan, Liaw; Lamers, Patrick; Hartley, Damon; Biddy, Mary; Tao, Ling; Tan, Eric

    2017-03-28

    The ability to assess and optimize economics of biomass resource utilization for the production of fuels, chemicals and power is essential for the ultimate success of a bioenergy industry. The team of authors, consisting of members from the National Renewable Energy Laboratory (NREL) and the Idaho National Laboratory (INL), has developed simple biorefinery linear programming (LP) models to enable the optimization of theoretical or existing biorefineries. The goal of this analysis is to demonstrate how such models can benefit the developing biorefining industry. It focuses on a theoretical multi-pathway, thermochemical biorefinery configuration and demonstrates how the biorefinery can use LP models for operations planning and optimization in comparable ways to the petroleum refining industry. Using LP modeling tools developed under U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) funded efforts, the authors investigate optimization challenges for the theoretical biorefineries such as (1) optimal feedstock slate based on available biomass and prices, (2) breakeven price analysis for available feedstocks, (3) impact analysis for changes in feedstock costs and product prices, (4) optimal biorefinery operations during unit shutdowns / turnarounds, and (5) incentives for increased processing capacity. These biorefinery examples are comparable to crude oil purchasing and operational optimization studies that petroleum refiners perform routinely using LPs and other optimization models. It is important to note that the analyses presented in this article are strictly theoretical and they are not based on current energy market prices. The pricing structure assigned for this demonstrative analysis is consistent with $4 per gallon gasoline, which clearly assumes an economic environment that would favor the construction and operation of biorefineries. The analysis approach and examples provide valuable insights into the usefulness of analysis tools for

  12. Toward a common classification approach for biorefinery systems

    NARCIS (Netherlands)

    Cherubini, F.; Jungmeier, G.; Wellisch, M.; Wilke, T.; Skiadas, I.; Ree, van R.; Jong, de E.

    2009-01-01

    This paper deals with a biorefinery classification approach developed within International Energy Agency (IEA) Bioenergy Task 42. Since production of transportation biofuels is seen as the driving force for future biorefinery developments, a selection of the most interesting transportation biofuels

  13. Design and Analysis of Offshore Macroalgae Biorefineries.

    Science.gov (United States)

    Golberg, Alexander; Liberzon, Alexander; Vitkin, Edward; Yakhini, Zohar

    2018-03-15

    Displacing fossil fuels and their derivatives with renewables, and increasing sustainable food production are among the major challenges facing the world in the coming decades. A possible, sustainable direction for addressing this challenge is the production of biomass and the conversion of this biomass to the required products through a complex system coined biorefinery. Terrestrial biomass and microalgae are possible sources; however, concerns over net energy balance, potable water use, environmental hazards, and uncertainty in the processing technologies raise questions regarding their actual potential to meet the anticipated food, feed, and energy challenges in a sustainable way. Alternative sustainable sources for biorefineries are macroalgae grown and processed offshore. However, implementation of the offshore biorefineries requires detailed analysis of their technological, economic, and environmental performance. In this chapter, the basic principles of marine biorefineries design are shown. The methods to integrate thermodynamic efficiency, investment, and environmental aspects are discussed. The performance improvement by development of new cultivation methods that fit macroalgae physiology and development of new fermentation methods that address macroalgae unique chemical composition is shown.

  14. Biorefinery opportunities for the forest products industries

    Science.gov (United States)

    Alan W. Rudie

    2013-01-01

    Wood residues offer biorefinery opportunities for new products in our industries including fuel and chemicals. But industry must have two capabilities to succeed with biorefineries. Most forest products companies already have the first capability: knowing where the resource is, how to get it, and how much it will cost. They will need to integrate the acquisition of...

  15. Bioproducts fro biorefineries

    Science.gov (United States)

    Biorefineries of the future may convert biomass to fuels, chemicals, and materials that are provided today by petroleum refineries. Bioproducts are attractive because they could offer benefits of renewability, environmental and personal safety, and biodegradability or recyclability. However, a gre...

  16. National Ignition Facility site requirements

    International Nuclear Information System (INIS)

    1996-07-01

    The Site Requirements (SR) provide bases for identification of candidate host sites for the National Ignition Facility (NIF) and for the generation of data regarding potential actual locations for the facilities. The SR supplements the NIF Functional Requirements (FR) with information needed for preparation of responses to queries for input to HQ DOE site evaluation. The queries are to include both documents and explicit requirements for the potential host site responses. The Sr includes information extracted from the NIF FR (for convenience), data based on design approaches, and needs for physical and organization infrastructure for a fully operational NIF. The FR and SR describe requirements that may require new construction or may be met by use or modification of existing facilities. The SR do not establish requirements for NIF design or construction project planning. The SR document does not constitute an element of the NIF technical baseline

  17. Management of Decommissioning on a Multi-Facility Site

    International Nuclear Information System (INIS)

    Laraia, Michele; McIntyre, Peter; Visagie, Abrie

    2008-01-01

    The management of the decommissioning of multi-facility sites may be inadequate or inappropriate if based on approaches and strategies developed for sites consisting of only a single facility. The varied nature of activities undertaken, their interfaces and their interdependencies are likely to complicate the management of decommissioning. These issues can be exacerbated where some facilities are entering the decommissioning phase while others are still operational or even new facilities are being built. Multi-facility sites are not uncommon worldwide but perhaps insufficient attention has been paid to optimizing the overall site decommissioning in the context of the entire life cycle of facilities. Decommissioning management arrangements need to be established taking a view across the whole site. A site-wide decommissioning management system is required. This should include a project evaluation and approval process and specific arrangements to manage identified interfaces and interdependencies. A group should be created to manage decommissioning across the site, ensuring adequate and consistent practices in accordance with the management system. Decommissioning management should be aimed at the entire life cycle of facilities. In the case of multi facility sites, the process becomes more complex and decommissioning management arrangements need to be established with a view to the whole site. A site decommissioning management system, a group that is responsible for decommissioning on site, a site project evaluation and approval process and specific arrangements to manage the identified interfaces are key areas of a site decommissioning management structure that need to be addressed to ensure adequate and consistent decommissioning practices. A decommissioning strategy based on single facilities in a sequential manner is deemed inadequate

  18. Modelling, synthesis and analysis of biorefinery networks

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona

    for the conversion of biomass into chemicals, fuels and energy, because they have the potential to maximize biomass value while reducing emissions. The design of biorefinery networks is a complex decisionmaking problem that involves the selection of feedstocks, processing technologies, products, geographical...... locations, and operating conditions, among others. Unlike petroleumbased processing networks, biorefineries rely on feedstocks that are nonhomogeneous across geographical areas in terms of their availability, type and properties. For this reason, the performance of biorefinery networks depends...... of reactions to convert available biomassbased feedstocks into desired products, the selection of processing routes and technologies from a large set of alternatives, or the generation of hybrid technologies through process intensification. Systematic process synthesis and design methods have been developed...

  19. Early-Stage Design and Analysis of Biorefinery Networks

    DEFF Research Database (Denmark)

    Cheali, Peam; Quaglia, Alberto; Loureiro da Costa Lira Gargalo, Carina

    2016-01-01

    for the production of fuel, chemicals, and materials from renewable feedstock instead of fossil fuel. An emerging technology in response to these challenges is the biorefinery concept. The biorefinery is defined as the set of processes converting a bio‐based feedstock into products such as fuels, chemicals...

  20. Biorefinery of microalgae - opportunities and constraints for different production scenarios.

    Science.gov (United States)

    Hariskos, Ioanna; Posten, Clemens

    2014-06-01

    In order to design economically feasible production processes it is necessary, as part of the biorefinery concept, to valorize all constituents of the microalgal biomass. Such an approach requires appropriate biorefinery side-process strategies to be adapted to production of the primary product. These strategies are particularly valid for microalgae, since the composition and amount of residual biomass can vary significantly depending on cell stoichiometry and cultivation techniques. This review investigates opportunities and constraints for biorefinery concepts in production scenarios for four different products from microalgae with different market volumes, including high- and medium-value products, whole cells and biodiesel. Approaches to close material and energy balances, as well as to adapt the biorefinery according to biological potential, process routes, and market needs are presented, which will further contribute to making the biorefinery concept a success. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Development of a biorefinery optimized biofuel supply curve for the western United States

    Science.gov (United States)

    Nathan Parker; Peter Tittmann; Quinn Hart; Richard Nelson; Ken Skog; Anneliese Schmidt; Edward Gray; Bryan Jenkins

    2010-01-01

    A resource assessment and biorefinery siting optimization model was developed and implemented to assess potential biofuel supply across the Western United States from agricultural, forest, urban, and energy crop biomass. Spatial information including feedstock resources, existing and potential refinery locations and a transportation network model is provided to a mixed...

  2. Environmental impacts of a lignocellulose feedstock biorefinery system: An assessment

    International Nuclear Information System (INIS)

    Uihlein, Andreas; Schebek, Liselotte

    2009-01-01

    Biomass is a sustainable alternative to fossil energy carriers which are used to produce fuels, electricity, chemicals, and other goods. At the moment, the main biobased products are obtained by the conversion of biomass to basic products like starch, oil, and cellulose. In addition, some single chemicals and fuels are produced. Presently, concepts of biorefineries which will produce a multitude of biomass-derived products are discussed. Biorefineries are supposed to contribute to a more sustainable resource supply and to a reduction in greenhouse gas emissions. However, biobased products and fuels may also be associated with environmental disadvantages due to, e.g. land use or eutrophication of water. We performed a Life Cycle Assessment of a lignocellulose feedstock biorefinery system and compared it to conventional product alternatives. The biorefinery was found to have the greatest environmental impacts in the three categories: fossil fuel use, respiratory effects, and carcinogenics. The environmental impacts predominantly result from the provision of hydrochloric acid and to a smaller extent also from the provision of process heat. As the final configuration of the biorefinery cannot be determined yet, various variants of the biorefinery system were analysed. The optimum variant (acid and heat recoveries) yields better results than the fossil alternatives, with the total environmental impacts being approx. 41% lower than those of the fossil counterparts. For most biorefinery variants analysed, the environmental performance in some impact categories is better than that of the fossil counterparts while disadvantages can be seen in other categories.

  3. Chemistry in forest biorefineries II - BIORAFF II

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M. (Aabo Akademi, Turku (Finland). Process Chemistry Centre), Email: mhupa@abo.fi; Auer, M. (Aabo Akademi, Turku (Finland). Process Chemistry Centre), Email: mauer@abo.fi

    2010-10-15

    The biorefinery concept may be compared to an oil refinery and petrochemical plant, where fuels and numerous intermediates are produced for further processing into high-value and speciality materials. In biorefineries, the raw material instead of mineral oil is biobased material. Biorefinery development at the US and European level mostly covers the use of annual crops and other bio-based materials. However, in this project focus is on non-food materials primarily in industrial pulp and paper processes and this project is limited to forest-based biorefineries. The aim of the project is also to preserve the molecular structures created by the nature as much as possible, to explore new separation and purification methods and look at new applications in the areas such as: functional food, nutritional additives, functional additives in paper making, antioxidants, new biobased materials and biobased energy. As the area, in spite of efforts to limit it, is very large, we have selected to focus on a limited number of concretised projects, which to our knowledge are complementary with other efforts for promoting biorefinery concepts. As highlights about promising results are studies on extraction of wood and derivatisations of hemicelluloses. The goals here are twofold; we are looking for the additional functionalities for hemicelluloses and searching for new applications. Hemicelluloses in many applications would benefit from the modification of the structure, especially to improve compatibility and solubility in some applications. Research on metals in trees and fuels, release of elements in combustion, pyrolysis and sorption studies have produced new knowledge. (orig.)

  4. Chemistry in forest biorefineries II - BIORAFF II

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Auer, M. (Aabo Akademi University, Turku (Finland), Process Chemistry Centre), e-mail: mhupa@abo.fi, e-mail: mauer@abo.fi

    2011-11-15

    The biorefinery concept may be compared to an oil refinery and petrochemical plant, where fuels and numerous intermediates are produced for further processing into high-value and speciality materials. In biorefineries, the raw material instead of mineral oil is bio-based material. Biorefinery development at the US and European level mostly covers the use of annual crops and other bio-based materials. However, in this project focus is on non-food materials primarily in industrial pulp and paper processes and this project is limited to forest-based biorefineries. The aim of the project is also to preserve the molecular structures created by the nature as much as possible, to explore new separation and purification methods and look at new applications in the areas such as: functional food, nutritional additives, functional additives in paper making, antioxidants, new biobased materials and biobased energy. As the area, in spite of efforts to limit it, is very large, we have selected to focus on a limited number of concretised projects, which to our knowledge are complementary with other efforts for promoting biorefinery concepts. As highlights about promising results are studies on extraction of wood and derivatisations of hemicelluloses. The goals here are twofold; we are looking for the additional functionalities for hemicelluloses and search of new applications. Hemicelluloses in many applications would benefit from the modification of the structure, especially to improve compatibility and solubility in some applications. Research on metals in trees and fuels, release of elements in combustion, pyrolysis and sorption studies have produced new knowledge. (orig.)

  5. A novel biorefinery integration concept for lignocellulosic biomass

    International Nuclear Information System (INIS)

    Özdenkçi, Karhan; De Blasio, Cataldo; Muddassar, Hassan R.; Melin, Kristian; Oinas, Pekka; Koskinen, Jukka; Sarwar, Golam; Järvinen, Mika

    2017-01-01

    Highlights: • Wide review is provided on supply chain and biomass conversion processes. • The requirements for sustainable biorefinery are listed. • An enhanced version distributed-centralized network is proposed. • A novel hydrothermal process is proposed for biomass conversion. - Abstract: The concept of an integrated biorefinery has increasing importance regarding sustainability aspects. However, the typical concepts have techno-economic issues: limited replacement in co-processing with fossil sources and high investment costs in integration to a specific plant. These issues have directed the current investigations to supply-chain network systems. On the other hand, these studies have the scope of a specific product and/or a feedstock type. This paper proposes a novel biorefinery concept for lignocellulosic biomass: sectoral integration network and a new hydrothermal process for biomass conversion. The sectoral integration concept has the potential for sustainable production from biomass: pre-treatment at the biomass sites, regional distributed conversion of biomass from various sectors (e.g. black liquor, sawdust, straw) and centralized upgrading/separation of crude biofuels. On the other hand, the conversion processes compose the vital part of such a concept. The new conversion involves partial wet oxidation - or simultaneous dissolution with partial wet oxidation for solid biomass- followed by lignin recovery with acidification and a reactor that can perform either hydrothermal liquefaction or supercritical water gasification. The process can intake both liquid and solid biomass to produce lignin as biomaterial and syngas or bio-oil. The new concept can contribute social development of rural areas by utilizing waste as valuable raw material for the production of multiple products and reduce the net greenhouse gas emissions by replacing fossil-based production.

  6. Forest biorefinery : the next century of innovation

    Science.gov (United States)

    Junyong Zhu

    2011-01-01

    The concept of producing cel¬lulosic biofuel, bioproducts, and chemicals using ligno¬celluloses in a biorefinery has been around for over a century. Renewed interest in the biorefinery concept has more recently arisen from concerns about climate change and the depletion of fossil fuels. Much research and progress has been made in the last three decades in the area of...

  7. Using product driven process synthesis in the biorefinery

    NARCIS (Netherlands)

    Kiskini, A.; Zondervan, E.; Wierenga, P.A.; Poiesz, E.; Gruppen, H.

    2015-01-01

    In this work, we propose the use of the product-driven process synthesis (PDPS) methodology for the product and process design stage in biorefinery. The aim of the biorefinery is to optimize the total use of the whole feedstock – with focus being on various products simultaneously – rather than to

  8. Can organic crops increase the economic potential for biorefineries?

    OpenAIRE

    Gylling, Morten; Jakobsen, Anders B.

    2017-01-01

    With the current cost and price relations, the profitability of biorefineries is still challenged. The use of organic crops, such as grass, in biorefineries can increase the profitability because organic products can be sold at higher prices.

  9. Air Permitting Implications of a Biorefinery Producing Raw Bio-Oil in Comparison with Producing Gasoline and Diesel Blendstocks

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Arpit H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-01

    A biorefinery, considered a chemical process plant under the Clean Air Act permitting program, could be classified as a major or minor source based on the size of the facility and magnitude of regulated pollutants emitted. Our previous analysis indicates that a biorefinery using fast pyrolysis conversion process to produce finished gasoline and diesel blendstocks with a capacity of processing 2,000 dry metric tons of biomass per day would likely be classified as a major source because several regulated pollutants (such as particulate matter, sulfur dioxide, nitrogen oxide) are estimated to exceed the 100 tons per year (tpy) major source threshold, applicable to chemical process plants. Being subject to a major source classification could pose additional challenges associated with obtaining an air permit in a timely manner before the biorefinery can start its construction. Recent developments propose an alternative approach to utilize bio-oil produced via the fast pyrolysis conversion process by shipping it to an existing petroleum refinery, where the raw bio-oil can be blended with petroleum-based feedstocks (e.g., vacuum gas oil) to produce gasoline and diesel blendstocks with renewable content. Without having to hydro-treat raw bio-oil, a biorefinery is likely to reduce its potential-to-emit to below the 100 tpy major source threshold, and therefore expedite its permitting process. We compare the PTE estimates for the two biorefinery designs with and without hydrotreating of bio-oils and examine the air permitting implications on potential air permit classification and discuss the best available control technology requirements for the major source biorefinery utilizing hydrotreating operation. Our analysis is expected to provide useful information to new biofuel project developers to identify opportunities to overcome challenges associated with air permitting.

  10. Preliminary siting characterization Salt Disposition Facility - Site B

    International Nuclear Information System (INIS)

    Wyatt, D.

    2000-01-01

    A siting and reconnaissance geotechnical program has been completed in S-Area at the Savannah River Site in South Carolina. This program investigated the subsurface conditions for the area known as ''Salt Disposition Facility (SDF), Site B'' located northeast of H-Area and within the S-Area. Data acquired from the Site B investigation includes both field exploration and laboratory test data

  11. Site Selection for the Salt Disposition Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Gladden, J.B.; Rueter, K.J.; Morin, J.P.

    2000-01-01

    A site selection study was conducted to identify a suitable location for the construction and operation of a new Salt Disposition Facility (SDF) at the Savannah River Site (SRS). The facility to be sited is a single processing facility and support buildings that could house either of three technology alternatives being developed by the High Level Waste Systems Engineering Team: Small Tank Tetraphenylborate Precipitation, Crystalline Silicotitanate Non-Elutable Ion Exchange or Caustic Side Solvent Extraction. A fourth alternative, Direct Disposal in grout, is not part of the site selection study because a location has been identified that is unique to this technology (i.e., Z-Area). Facility site selection at SRS is a formal, documented process that seeks to optimize siting of new facilities with respect to facility-specific engineering requirements, sensitive environmental resources, and applicable regulatory requirements. In this manner, the prime objectives of cost minimization, environmental protection, and regulatory compliance are achieved. The results from this geotechnical characterization indicated that continued consideration be given to Site B for the proposed SDF. Suitable topography, the lack of surface hydrology and floodplain issues, no significant groundwater contamination, the presence of minor soft zones along the northeast portion of footprint, and no apparent geological structure in the Gordon Aquitard support this recommendation

  12. Facility siting as a decision process at the Savannah River Site

    International Nuclear Information System (INIS)

    Wike, L.D.

    1995-01-01

    Site selection for new facilities at Savannah River Site (SRS) historically has been a process dependent only upon specific requirements of the facility. While this approach is normally well suited to engineering and operational concerns, it can have serious deficiencies in the modern era of regulatory oversight and compliance requirements. There are many issues related to the site selection for a facility that are not directly related to engineering or operational requirements; such environmental concerns can cause large schedule delays and budget impact,s thereby slowing or stopping the progress of a project. Some of the many concerns in locating a facility include: waste site avoidance, National Environmental Policy Act requirements, Clean Water Act, Clean Air Act, wetlands conservation, US Army Corps of Engineers considerations, US Fish and Wildlife Service statutes including threatened and endangered species issues, and State of South Carolina regulations, especially those of the Department of Health and Environmental Control. In addition, there are SRS restrictions on research areas set aside for National Environmental Research Park (NERP), Savannah River Ecology Laboratory, Savannah River Forest Station, University of South Carolina Institute of Archaeology and Anthropology, Southeastern Forest Experimental Station, and Savannah River Technology Center (SRTC) programs. As with facility operational needs, all of these siting considerations do not have equal importance. The purpose of this document is to review recent site selection exercises conducted for a variety of proposed facilities, develop the logic and basis for the methods employed, and standardize the process and terminology for future site selection efforts

  13. Biorefinery and Hydrogen Fuel Cell Research

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Das; Thomas T. Adams; Mark A. Eiteman; John Stickney; Joy Doran Peterson; James R. Kastner; Sudhagar Mani; Ryan Adolphson

    2012-06-12

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [1] establishment of pyrolysis processing systems and characterization of the product oils for fuel applications, including engine testing of a preferred product and its pro forma economic analysis; [2] extraction of sugars through a novel hotwater extaction process, and the development of levoglucosan (a pyrolysis BioOil intermediate); [3] identification and testing of the use of biochar, the coproduct from pyrolysis, for soil applications; [4] developments in methods of atomic layer epitaxy (for efficient development of coatings as in fuel cells); [5] advancement in fermentation of lignocellulosics, [6] development of algal biomass as a potential substrate for the biorefinery, and [7] development of catalysts from coproducts. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the pyrolysis biooil based diesel fuel supplement, sugar extraction from lignocelluose, use of biochar, production of algal biomass in wastewaters, and the development of catalysts. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The various coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

  14. Superstructure-based optimization of biorefinery networks: Production of biodiesel

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona; Orsi, Albert; Gani, Rafiqul

    2015-01-01

    through a practical case study for the production biodiesel from a variety of feedstock. The different biorefinery processing alternatives are represented in a superstructure and the associated data is collected and stored in a database. Once a specific biorefinery synthesis problem is formulated...

  15. Jobs and Economic Development Impact (JEDI) User Reference Guide: Fast Pyrolysis Biorefinery Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yimin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Goldberg, Marshall [MRG and Associates, Nevada City, CA (United States)

    2015-02-01

    This guide -- the JEDI Fast Pyrolysis Biorefinery Model User Reference Guide -- was developed to assist users in operating and understanding the JEDI Fast Pyrolysis Biorefinery Model. The guide provides information on the model's underlying methodology, as well as the parameters and data sources used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the JEDI Fast Pyrolysis Biorefinery Model estimates local (e.g., county- or state-level) job creation, earnings, and output from total economic activity for a given fast pyrolysis biorefinery. These estimates include the direct, indirect and induced economic impacts to the local economy associated with the construction and operation phases of biorefinery projects.Local revenue and supply chain impacts as well as induced impacts are estimated using economic multipliers derived from the IMPLAN software program. By determining the local economic impacts and job creation for a proposed biorefinery, the JEDI Fast Pyrolysis Biorefinery Model can be used to field questions about the added value biorefineries might bring to a local community.

  16. Economic risk analysis and critical comparison of optimal biorefinery concepts

    DEFF Research Database (Denmark)

    Cheali, Peam; Posada, John A.; Gernaey, Krist

    2016-01-01

    In this paper, eight optimal biorefinery concepts for biofuels and biochemicals production are critically analyzed and compared in terms of their techno-economic performance and associated economic risks against historical market fluctuations. The investigated biorefinery concepts consider...... different combinations of biomass feedstock (lignocellulosic versus algal) and conversion technologies (biochemical versus thermochemical). In addition, the economic performance of each biorefinery concept is tested assuming a sudden drop in oil prices in order to compare the fitness/survival of each...... concept under extreme market disturbances. The analyses reveal amongst others that: (i) lignocellulosic bioethanol production is not economically feasible considering a drop in oil prices (a negative internal rate of return); (ii) a multi-product biorefinery concept, where bioethanol is upgraded to higher...

  17. Site maps and facilities listings

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used for production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.

  18. Site maps and facilities listings

    International Nuclear Information System (INIS)

    1993-11-01

    In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used for production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities

  19. NN-SITE: A remote monitoring testbed facility

    International Nuclear Information System (INIS)

    Kadner, S.; White, R.; Roman, W.; Sheely, K.; Puckett, J.; Ystesund, K.

    1997-01-01

    DOE, Aquila Technologies, LANL and SNL recently launched collaborative efforts to create a Non-Proliferation Network Systems Integration and Test (NN-Site, pronounced N-Site) facility. NN-Site will focus on wide area, local area, and local operating level network connectivity including Internet access. This facility will provide thorough and cost-effective integration, testing and development of information connectivity among diverse operating systems and network topologies prior to full-scale deployment. In concentrating on instrument interconnectivity, tamper indication, and data collection and review, NN-Site will facilitate efforts of equipment providers and system integrators in deploying systems that will meet nuclear non-proliferation and safeguards objectives. The following will discuss the objectives of ongoing remote monitoring efforts, as well as the prevalent policy concerns. An in-depth discussion of the Non-Proliferation Network Systems Integration and Test facility (NN-Site) will illuminate the role that this testbed facility can perform in meeting the objectives of remote monitoring efforts, and its potential contribution in promoting eventual acceptance of remote monitoring systems in facilities worldwide

  20. Factors affecting public support for forest-based biorefineries: A comparison of mill towns and the general public in Maine, USA

    International Nuclear Information System (INIS)

    Marciano, James A.; Lilieholm, Robert J.; Teisl, Mario F.; Leahy, Jessica E.; Neupane, Binod

    2014-01-01

    Community views toward the risks and benefits of emerging renewable energy technologies are important factors in facility siting decisions and their eventual success. While the actual socioeconomic and biophysical impacts of proposed industrial developments are fraught with uncertainty, understanding public perceptions is critical in managing costs and benefits to local citizens. Here, we explore the social acceptability of forest-based biorefineries in Maine using random utility modeling to identify how project attributes and citizen characteristics interact to affect level of support. Using a statewide sample (Statewide) and a subsample of mill towns (Mill Towns), we found that: (1) in both samples, individual characteristics had similar coefficients and significance levels except for pro-environment attitudes; (2) the coefficients related to the industry’s negative attributes were notably different between the two samples, while positive attributes were not; (3) in both samples, positive industry attributes such as “producing products from a sustainable resource” and “increased economic development” were the most influential variables in determining the level of support for a new biorefinery in an individual’s community; and (4) in general, Mill Town respondents were more accepting of potential negative attributes such as increased levels of truck traffic, odor, noise, and air and water pollution. - Highlights: • We examined social views of bioproducts processing in mill towns and statewide. • Environmental sustainability was a major concern expressed by both samples. • Views were affected by proximity to processing, and by respondent characteristics. • Public concerns should be considered along the entire supply chain. • Views toward biorefineries may be influenced by views of related industries

  1. Energy Opportunities from Lignocellulosic Biomass for a Biorefinery Case Study

    Directory of Open Access Journals (Sweden)

    Franco Cotana

    2016-09-01

    Full Text Available This work presents some energy considerations concerning a biorefinery case study that has been carried out by the CRB/CIRIAF of the University of Perugia. The biorefinery is the case study of the BIT3G project, a national funded research project, and it uses the lignocellulosic biomass that is available in the territory as input materials for biochemical purposes, such as cardoon and carthamus. The whole plant is composed of several sections: the cardoon and carthamus seed milling, the oil refinement facilities, and the production section of some high quality biochemicals, i.e., bio-oils and fatty acids. The main goal of the research is to demonstrate energy autonomy of the latter section of the biorefinery, while only recovering energy from the residues resulting from the collection of the biomass. To this aim, this work presents the quantification of the energy requirements to be supplied to the considered biorefinery section, the mass flow, and the energy and chemical characterization of the biomass. Afterwards, some sustainability strategies have been qualitatively investigated in order to identify the best one to be used in this case study; the combined heat and power (CHP technology. Two scenarios have been defined and presented: the first with 6 MWt thermal input and 1.2 MWe electrical power as an output and the second with 9 MWt thermal input and 1.8 MWe electrical power as an output. The first scenario showed that 11,000 tons of residual biomass could ensure the annual production of about 34,000 MWht, equal to about the 72% of the requirements, and about 9600 MWhe, equal to approximately 60% of the electricity demand. The second scenario showed that 18,000 tons of the residual biomass could ensure the total annual production of about 56,000 MWht, corresponding to more than 100% of the requirements, and about 14,400 MWhe, equal to approximately 90% of the electricity demand. In addition, the CO2 emissions from the energy valorization

  2. The importance of utility systems in today's biorefineries and a vision for tomorrow.

    Science.gov (United States)

    Eggeman, Tim; Verser, Dan

    2006-01-01

    Heat and power systems commonly found in today's corn processing facilities, sugar mills, and pulp and paper mills will be reviewed. We will also examine concepts for biorefineries of the future. We will show that energy ratio, defined as the ratio of renewable energy produced divided by the fossil energy input, can vary widely from near unity to values greater than 12. Renewable-based utility systems combined with low-fossil input agricultural systems lead to high-energy ratios.

  3. 76 FR 13349 - Notice of Funding Availability (NOFA) for Repowering Assistance Payments to Eligible Biorefineries

    Science.gov (United States)

    2011-03-11

    ... Funding Availability (NOFA) for Repowering Assistance Payments to Eligible Biorefineries AGENCY: Rural... announces the acceptance of applications for payments to eligible biorefineries to encourage the use of... operation of these eligible biorefineries. To be eligible for payments, biorefineries must have been in...

  4. Development of hemicelluloses biorefineries for integration into kraft pulp mills

    Science.gov (United States)

    Ajao, Olumoye Abiodun

    The development and wide spread acceptance of production facilities for biofuels, biochemicals and biomaterials is an important condition for reducing reliance on limited fossil resources and transitioning towards a global biobased economy. Pulp and paper mills in North America are confronted with high energy prices, high production costs and intense competition from emerging economies and low demand for traditional products. Integrated forest biorefineries (IFBR) have been proposed as a mean to diversify their product streams, increase their revenue and become more sustainable. This is feasible because they have access to forest biomass, an established feedstock supply chain and wood processing experience. In addition, the integration of a biorefinery process that can share existing infrastructure and utilities on the site of pulp mill would significantly lower investment cost and associated risks. Kraft pulping mills are promising receptor processes for a biorefinery because they either possess a prehydrolysis step for extracting hemicelluloses sugars prior to wood pulping or it can be added by retrofit. The extracted hemicelluloses could be subsequently transformed into a wide range of value added products for the receptor mill. To successfully implement hemicelluloses biorefinery, novel processes that are technically and economically feasible are required. It is necessary to identify products that would be profitable, develop processes that are energy efficient and the receptor mill should be able to supply the energy, chemicals and material demands of the biorefinery unit. The objective of this thesis is to develop energy efficient and economically viable hemicelluloses biorefineries for integration into a Kraft pulping process. A dissolving pulp mill was the reference case study. The transformation of hemicellulosic sugars via a chemical and biochemical conversion pathway, with furfural and ethanol as representative products for each pathway was studied. In

  5. Multi-Product Microalgae Biorefineries

    NARCIS (Netherlands)

    Lam, 't G.P.; Vermuë, M.H.; Eppink, M.H.M.; Wijffels, R.H.; Berg, van den C.

    2018-01-01

    Although microalgae are a promising biobased feedstock, industrial scale production is still far off. To enhance the economic viability of large-scale microalgae processes, all biomass components need to be valorized, requiring a multi-product biorefinery. However, this concept is still too

  6. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis and Catalytic Hydroconversion - Wastewater Cleanup by Catalytic Hydrothermal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olarte, Mariefel V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Todd R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-19

    DOE-EE Bioenergy Technologies Office has set forth several goals to increase the use of bioenergy and bioproducts derived from renewable resources. One of these goals is to facilitate the implementation of the biorefinery. The biorefinery will include the production of liquid fuels, power and, in some cases, products. The integrated biorefinery should stand-alone from an economic perspective with fuels and power driving the economy of scale while the economics/profitability of the facility will be dependent on existing market conditions. UOP LLC proposed to demonstrate a fast pyrolysis based integrated biorefinery. Pacific Northwest National Laboratory (PNNL) has expertise in an important technology area of interest to UOP for use in their pyrolysis-based biorefinery. This CRADA project provides the supporting technology development and demonstration to allow incorporation of this technology into the biorefinery. PNNL developed catalytic hydrothermal gasification (CHG) for use with aqueous streams within the pyrolysis biorefinery. These aqueous streams included the aqueous phase separated from the fast pyrolysis bio-oil and the aqueous byproduct streams formed in the hydroprocessing of the bio-oil to finished products. The purpose of this project was to demonstrate a technically and economically viable technology for converting renewable biomass feedstocks to sustainable and fungible transportation fuels. To demonstrate the technology, UOP constructed and operated a pilot-scale biorefinery that processed one dry ton per day of biomass using fast pyrolysis. Specific objectives of the project were to: The anticipated outcomes of the project were a validated process technology, a range of validated feedstocks, product property and Life Cycle data, and technical and operating data upon which to base the design of a full-scale biorefinery. The anticipated long-term outcomes from successful commercialization of the technology were: (1) the replacement of a significant

  7. Water-based woody biorefinery.

    Science.gov (United States)

    Amidon, Thomas E; Liu, Shijie

    2009-01-01

    The conversion of biomass into chemicals and energy is essential in order to sustain our present way of life. Fossil fuels are currently the predominant energy source, but fossil deposits are limited and not renewable. Biomass is a reliable potential source of materials, chemicals and energy that can be replenished to keep pace with our needs. A biorefinery is a concept for the collection of processes used to convert biomass into materials, chemicals and energy. The biorefinery is a "catch and release" method for using carbon that is beneficial to both the environment and the economy. In this study, we discuss three elements of a wood-based biorefinery, as proposed by the SUNY College of Environmental Science and Forestry (ESF): hot-water extraction, hydrolysis, and membrane separation/concentration. Hemicelluloses are the most easily separable main component of woody biomass and thus form the bulk of the extracts obtained by hot-water extraction of woody biomass. Hot-water extraction is an important step in the processes of woody biomass and product generation, replacing alternative costly pre-treatment methods. The hydrolysis of hemicelluloses produces 5-carbon sugars (mainly xylose), 6-carbon sugars (mainly glucose and mannose), and acetic acid. The use of nano-filtration membranes is an efficient technology that can be employed to fractionate hot-water extracts and wood hydrolysate. The residual solid mass after hot-water extraction has a higher energy content and contains fewer easily degradable components. This allows for more efficient subsequent processing to convert cellulose and lignin into conventional products.

  8. Downstream processing of Isochrysis galbana: a step towards microalgal biorefinery

    NARCIS (Netherlands)

    Gilbert-López, B.; Mendiola, J.A.; Fontecha, J.; Broek, van den L.A.M.; Sijtsma, L.; Cifuentes, A.; Herrero, M.; Ibáñez, E.

    2015-01-01

    An algae-based biorefinery relies on the efficient use of algae biomass through its fractionation of several valuable/bioactive compounds that can be used in industry. If this biorefinery includes green platforms as downstream processing technologies able to fulfill the requirements of green

  9. Impact of trucking network flow on preferred biorefinery locations in the southern United States

    Science.gov (United States)

    Timothy M. Young; Lee D. Han; James H. Perdue; Stephanie R. Hargrove; Frank M. Guess; Xia Huang; Chung-Hao Chen

    2017-01-01

    The impact of the trucking transportation network flow was modeled for the southern United States. The study addresses a gap in existing research by applying a Bayesian logistic regression and Geographic Information System (GIS) geospatial analysis to predict biorefinery site locations. A one-way trucking cost assuming a 128.8 km (80-mile) haul distance was estimated...

  10. Risk management study for the retired Hanford Site facilities: Qualitative risk evaluation for the retired Hanford Site facilities

    International Nuclear Information System (INIS)

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1993-09-01

    This document provides a risk evaluation of the 100 and 200 Area retired, surplus facilities on the Hanford Site. Also included are the related data that were compiled by the risk evaluation team during investigations performed on the facilities. Results are the product of a major effort performed in fiscal year 1993 to produce qualitative information that characterizes certain risks associated with these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1,450-km 2 (570-mi 2 ) Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30-km (20 mi) southeast of the 200 Area. During walkdown investigations of these facilities, data on real and potential hazards that threatened human health or safety or created potential environmental release issues were identified by the risk evaluation team. Using these findings, the team categorized the identified hazards by facility and evaluated the risk associated with each hazard. The factors contributing to each risk, and the consequence and likelihood of harm associated with each hazard also are included in this evaluation

  11. Designation of facility usage categories for Hanford Site facilities

    International Nuclear Information System (INIS)

    Wodrich, D.; Ellingson, D.; Scott, M.; Schade, A.

    1991-01-01

    This report summarizes the Hanford Site methodology used to ensure facility compliance with the natural phenomena design criteria set forth in the US Department of Energy orders and guidance. In particular, the Hanford Site approach to designating a suitable facility open-quotes Usage Category,close quotes is presented. The current Hanford Site methodology for Usage Category designation is based on an engineered feature's safety function and on the feature's assigned Safety Class. At the Hanford Site, Safety Class assignments are deterministic in nature and are based on the consequences of failure, without regard to the likelihood of occurrence. The report also proposes a risk-based approach to Usage Category designation, which is being considered for future application at the Hanford Site. To establish a proper Usage Category designation, the safety analysis and engineering design processes must be coupled. This union produces a common understanding of the safety function(s) to be accomplished by the design feature(s) and a sound basis for the assignment of Usage Categories to the appropriate systems, structures, and components

  12. Monitored retrievable storage facility site screening and evaluation report

    International Nuclear Information System (INIS)

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to ''complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, ''for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed site and facility designs...'' as well as a recommendation of ''the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluated potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the task force presented in this report includes: site screening (Sections 3, 4, and 5), the MRS facilities which are to be sited are described; the criteria, process and outcome of the screening process is presented; and descriptions of the candidate MRS facility sites are given, and site evaluations (Sections 6 through 9) where the rational for the site evaluations are presented, along with each evaluation and findings of the Task Force

  13. Monitored retrievable storage facility site screening and evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed site and facility designs...'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluated potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the task force presented in this report includes: site screening (Sections 3, 4, and 5), the MRS facilities which are to be sited are described; the criteria, process and outcome of the screening process is presented; and descriptions of the candidate MRS facility sites are given, and site evaluations (Sections 6 through 9) where the rational for the site evaluations are presented, along with each evaluation and findings of the Task Force.

  14. Ethanol production from rape straw: Part of an oilseed rape biorefinery

    DEFF Research Database (Denmark)

    Arvaniti, Efthalia

    The aim of this study was 1) present an oilseed rape whole crop biorefinery; 2) to investigate the best available experimental conditions for production of cellulosic ethanol from rape straw, and included the processes of thermo-chemical pretreatment, enzymatic hydrolysis, and C6 fermentation......, and 3) to couple cellulosic ethanol production to production of cellulolytic enzymes that are needed for cellulosic ethanol production, inside a rape straw biorefinery. For the first is based less on available experiments, and more on literature review. The second and third study conclusions were drawn...... rapeseed biodiesel plant of Europe to an oilseed rape whole-crop biorefinery by 2020 is envisioned and discussed. The description and discussion of this biorefinery is based partly on literature review, and partly on own experimental data, especially on pretreatment of rape straw, and production...

  15. A systems analysis approach to nuclear facility siting

    International Nuclear Information System (INIS)

    Gros, J.G.; Avenhaus, R.; Linnerooth, J.; Pahner, P.D.; Otway, H.J.

    1975-01-01

    An attempt is made to demonstrate an application of the techniques of systems analysis, which have been successful in solving a variety of problems, to nuclear facility siting. Within the framework of an overall regional land-use plan, a methodology for establishing the acceptability of a combination of site and facility is discussed. The consequences (e.g. the energy produced, thermal and chemical discharges, radioactive releases, aeshetic values, etc.) of the site-facility combination are identified and compared with formalized criteria in order to ensure 'legal acceptability'. Failure of any consequences to satisfy standard requirements results in a feedback channel which works to effect design changes in the facility. When 'legal acceptability' has been assured, the project enters the public sector for consideration. The responses of individuals and of various interested groups to the external attributes of the nuclear facility gradually emerge. The criteria by which interest groups judge technological advances reflect both their rational assessment and unconscious motivations. This process operates on individual, group, societal and international levels and may result in two basic feedback loops: one which might act to change regulatory criteria; the other which might influence facility design or site selection. Such reactions and responses on these levels result in a continuing process of confrontation, collaborative interchange and possible resolution in the direction of an acceptable solution. Finally, a Paretian approach to optimizing the site-facility combination is presented for the case where there are several possible combinations of site and facility. A hypothetical example of the latter is given, based upon typical preference functions determined for four interest groups. The research effort of the IIASA Energy Systems Project and the Joint IAEA/IIASA Research Project in the area of nuclear siting is summarized. (author)

  16. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed preprocessing supply system designs

    Energy Technology Data Exchange (ETDEWEB)

    Muth, jr., David J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Langholtz, Matthew H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jacobson, Jacob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwab, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wu, May [Argonne National Lab. (ANL), Argonne, IL (United States); Argo, Andrew [Sundrop Fuels, Golden, CO (United States); Brandt, Craig C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cafferty, Kara [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chiu, Yi-Wen [Argonne National Lab. (ANL), Argonne, IL (United States); Dutta, Abhijit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eaton, Laurence M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-03-31

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to

  17. Sapphire Energy - Integrated Algal Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    White, Rebecca L. [Sapphire Energy, Inc., Columbus, NM (United States). Columbus Algal Biomass Farm; Tyler, Mike [Sapphire Energy, Inc., San Diego, CA (United States)

    2015-07-22

    Sapphire Energy, Inc. (SEI) is a leader in large-scale photosynthetic algal biomass production, with a strongly cohesive research, development, and operations program. SEI takes a multidiscipline approach to integrate lab-based strain selection, cultivation and harvest and production scale, and extraction for the production of Green Crude oil, a drop in replacement for traditional crude oil.. SEI’s technical accomplishments since 2007 have produced a multifunctional platform that can address needs for fuel, feed, and other higher value products. Figure 1 outlines SEI’s commercialization process, including Green Crude production and refinement to drop in fuel replacements. The large scale algal biomass production facility, the SEI Integrated Algal Biorefinery (IABR), was built in Luna County near Columbus, New Mexico (see fig 2). The extraction unit was located at the existing SEI facility in Las Cruces, New Mexico, approximately 95 miles from the IABR. The IABR facility was constructed on time and on budget, and the extraction unit expansion to accommodate the biomass output from the IABR was completed in October 2012. The IABR facility uses open pond cultivation with a proprietary harvesting method to produce algal biomass; this biomass is then shipped to the extraction facility for conversion to Green Crude. The operation of the IABR and the extraction facilities has demonstrated the critical integration of traditional agricultural techniques with algae cultivation knowledge for algal biomass production, and the successful conversion of the biomass to Green Crude. All primary unit operations are de-risked, and at a scale suitable for process demonstration. The results are stable, reliable, and long-term cultivation of strains for year round algal biomass production. From June 2012 to November 2014, the IABR and extraction facilities produced 524 metric tons (MT) of biomass (on a dry weight basis), and 2,587 gallons of Green Crude. Additionally, the IABR

  18. 20 CFR 638.303 - Site selection and facilities management.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Site selection and facilities management. 638... Facilities Management § 638.303 Site selection and facilities management. (a) The Job Corps Director shall... center, facilities engineering and real estate management will be conducted by the Job Corps Director or...

  19. Communication in reducing facility siting risk

    International Nuclear Information System (INIS)

    Bisconti, A.S.

    1992-01-01

    Today, social considerations are as important as technical ones in siting new nuclear facilities. Siting any industrial facility has become extremely difficult in this era of not in my backyard (NIMBY). Even if NIMBY does not arise locally, well-organized national opposition groups can be counted on to step in to fan the flames, especially when the industrial facility has to do with anything nuclear. It is now generally recognized that the greatest risk of failure for new nuclear facilities is not technical but social. Applying lessons gained from past experience and social science research can help reduce that risk. From these lessons, six principles for public interaction and communication stand out: (1) create goodwill now; (2) involve the community early; (3) establish the need; (4) communicate controls, not risk; (5) avoid jargon; (6) understand your public

  20. ESTIMATING WATER FOOTPRINT AND MANAGING BIOREFINERY WASTEWATER IN THE PRODUCTION OF BIO-BASED RENEWABLE DIESEL BLENDSTOCK

    Energy Technology Data Exchange (ETDEWEB)

    Wu, May M. [Argonne National Lab. (ANL), Argonne, IL (United States); Sawyer, Bernard M [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    This analysis covers the entire biorefinery operation. The study focuses on net water consumed for the production of a unit of biofuel: blue, green, and grey water footprint. Blue water is defined as the water consumed in the biorefinery that is withdrawn from surface and ground water. Blue water footprint includes enzyme cultivation, pretreatment, hydrolysis, bioreactor, cooling system, boiler, fuel upgrading, combustor track, and on-site WWT. Grey water is defined as wastewater generated from the biorefinery and was evaluated based on the wastewater treatment plant design. Green water, defined as rainwater consumed for the production, is not required in the RDB process. Approximately 7–15 gal of water are required to produce a gallon of RDB when corn stover or non-irrigated perennial grasses, switchgrass and Miscanthus x giganteus (Miscanthus), serve as the feedstock in the contiguous United States. Bioelectricity generation from the biorefinery resulted in a net water credit, which reduced the water footprint. The life cycle grey water footprint for nitrogen is primarily from nitrogen in the feedstock production stage because no wastewater is discharged into the environment in the RDB process. Perennial grasses-based RDB production shows a promising grey water footprint, while corn stover-based RDB production has a relatively low green water footprint. Results from the study can help improve our understanding of the water sustainability of advanced biofuel technology under development. Make-up water for cooling and boiling remains a major demand in the biorefinery. The work revealed a key issue or trade-off between achieving zero liquid discharge to maximize water resource use and potentially increasing cost of fuel production. Solid waste disposal was identified as a management issue, and its inverse relationship with wastewater management could affect economic sustainability.

  1. Bridging the gap between feedstock growers and users: the study of a coppice poplar-based biorefinery.

    Science.gov (United States)

    Dou, Chang; Gustafson, Rick; Bura, Renata

    2018-01-01

    In the biofuel industry, land productivity is important to feedstock growers and conversion process product yield is important to the biorefinery. The crop productivity, however, may not positively correlate with bioconversion yield. Therefore, it is important to evaluate sugar yield and biomass productivity. In this study, 2-year-old poplar trees harvested in the first coppice cycle, including one low-productivity hybrid and one high-productivity hybrid, were collected from two poplar tree farms. Through steam pretreatment and enzymatic hydrolysis, the bioconversion yields of low- and high-productivity poplar hybrids were compared for both sites. The low-productivity hybrids had 9-19% higher sugar yields than the high-productivity hybrids, although they have the similar chemical composition. Economic calculations show the impact on the plantation and biorefinery of using the two feedstocks. Growing a high-productivity hybrid means the land owner would use 11-26% less land (which could be used for other crops) or collect $2.53-$3.46 MM/year extra revenue from the surplus feedstock. On the other side, the biorefinery would receive 5-10% additional revenue using the low-productivity hybrid. We propose a business model based on the integration of the plantation and the biorefinery. In this model, different feedstocks are assessed using a metric of product tonnage per unit land per year. Use of this new economic metric bridges the gap between feedstock growers and users to maximize the overall production efficiency.

  2. Early‐Stage Capital Cost Estimation of Biorefinery Processes: A Comparative Study of Heuristic Techniques

    Science.gov (United States)

    Couturier, Jean‐Luc; Kokossis, Antonis; Dubois, Jean‐Luc

    2016-01-01

    Abstract Biorefineries offer a promising alternative to fossil‐based processing industries and have undergone rapid development in recent years. Limited financial resources and stringent company budgets necessitate quick capital estimation of pioneering biorefinery projects at the early stages of their conception to screen process alternatives, decide on project viability, and allocate resources to the most promising cases. Biorefineries are capital‐intensive projects that involve state‐of‐the‐art technologies for which there is no prior experience or sufficient historical data. This work reviews existing rapid cost estimation practices, which can be used by researchers with no previous cost estimating experience. It also comprises a comparative study of six cost methods on three well‐documented biorefinery processes to evaluate their accuracy and precision. The results illustrate discrepancies among the methods because their extrapolation on biorefinery data often violates inherent assumptions. This study recommends the most appropriate rapid cost methods and urges the development of an improved early‐stage capital cost estimation tool suitable for biorefinery processes. PMID:27484398

  3. Siting controversial facilities

    International Nuclear Information System (INIS)

    Baird, R.D.; Blacker, P.B.

    1985-01-01

    There is often significant difficulty involved with siting controversial facilities. The social and political problems are frequently far more difficult to resolve than the technical and economic issues. The tendancy for most developing organizations is to address only technical issues in the search for a technically optimal site, to the exclusion of such weighting considerations as the social and political climate associated with potential sites--an approach which often imperils the success of the project. The site selection processes currently suggested is summarized and two contemporary examples of their application are cited. The difference between developers' real objectives and the objectives they have implicitly assumed by adopting the recommended approaches without augmentation are noted. The resulting morass of public opposition is attributed to the failure to consider the needs of individuals and groups who stand to be negatively impacted by the development. A comprehensive implementation strategy which addresses non-technical consideration in parallel with technical ones is presented and evaluated

  4. Sustainability assessment of sugarcane biorefinery and molasses ethanol production in Thailand using eco-efficiency indicator

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.; Pongpat, Patcharaporn

    2015-01-01

    Highlights: • Sugarcane biorefinery in Thailand is evaluated using the eco-efficiency concept. • Green cane along with cane trash use for electricity yields highest eco-efficiency. • Proposed biorefinery system increases eco-efficiency by 20–70%. - Abstract: The study aims to evaluate the sugarcane biorefinery and molasses ethanol production in Thailand using the combined environmental and economic sustainability indicator, so called “Eco-efficiency”. Four sugarcane biorefinery scenarios in Thailand are evaluated. The total output values (US$) and the life cycle greenhouse gas (GHG) emissions (kg CO_2eq) are selected as the indicators for characterizing economic and environmental performance, respectively. The results show that the biorefinery system of mechanized farming along with cane trash utilization for power generation yields the highest eco-efficiency. The benefits come from the increased value added of the biorefinery together with the decreased GHG emissions of the biorefinery system. As compared to the base case scenario, the new systems proposed result in the eco-efficiency improvement by around 20–70%. The biorefinery concept induces reduction of GHG emissions attributed to molasses ethanol. Green cane production and harvesting results in further lowering of the GHG emissions. Integration of sugarcane biomass utilization across the entire sugarcane complex would enhance the sustainability of the sugarcane production system.

  5. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth, Jr.; Matthew H. Langholtz; Eric C. D. Tan; Jacob J. Jacobson; Amy Schwab; May M. Wu; Andrew Argo; Craig C. Brandt; Kara G. Cafferty; Yi-Wen Chiu; Abhijit Dutta; Laurence M. Eaton; Erin M. Searcy

    2014-08-01

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to

  6. Biorefinery of the brown seaweed Saccharina latissima for fuels and chemicals

    NARCIS (Netherlands)

    Lopez Contreras, A.M.; Harmsen, P.F.H.; Blaauw, R.; Houweling-Tan, G.B.N.; Wal, van der H.; Huijgen, W.J.J.; Hal, van J.W.

    2014-01-01

    Seaweeds (also called macroalgae) are considered a potential biomass feedstock for biorefineries for production of energy and chemicals. In this study, a biorefinery strategy for the brown seaweed Saccharina latissima is described. Fresh S. latissima harvested at the Irish coast contained glucose

  7. Drivers and barriers for implementation of the biorefinery

    International Nuclear Information System (INIS)

    Janssen, M.; Stuart, P.

    2010-01-01

    This paper discussed the barriers and drivers for the implementation of biorefinery technology in the forestry industry. A multi-criteria decision making (MCDM) methodology was used by a panel of industry experts. The objective, drivers and barriers, and the decision structure and weighting procedure were established during a pre-panel phase. An analytic hierarchy process (AHP) was then applied to compare qualitative criteria. Pair-wise criteria were used to determine the importance of each driver and barrier. Drivers for the implementation of biorefineries included the opportunity to ensure short-term profitability; the provision of raw materials at competitive prices; potential financial incentives; and the opportunity to transform the forestry business model and increase its market value. Barriers included uncertainty in relation to government policies for biorefineries; high technology risks; the need for partnerships; and the fact that many industry members favour short-term decision-making. Results of the study showed that the most significant barrier was related to risk. 5 refs., 3 tabs., 3 figs.

  8. Site and facility transportation services planning documents

    Energy Technology Data Exchange (ETDEWEB)

    Ratledge, J.E. (Oak Ridge National Lab., TN (USA)); Danese, L.; Schmid, S. (Science Applications International Corp., Oak Ridge, TN (USA))

    1990-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and processing of Site and Facility Specific Transportation Services Planning Documents (SPDs) and Site Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities over the next 2 years with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations. 3 figs., 1 tab.

  9. Site and facility transportation services planning documents

    International Nuclear Information System (INIS)

    Ratledge, J.E.; Danese, L.; Schmid, S.

    1990-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and processing of Site and Facility Specific Transportation Services Planning Documents (SPDs) and Site Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities over the next 2 years with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations. 3 figs., 1 tab

  10. Amyris, Inc. Integrated Biorefinery Project Summary Final Report - Public Version

    Energy Technology Data Exchange (ETDEWEB)

    Gray, David; Sato, Suzanne; Garcia, Fernando; Eppler, Ross; Cherry, Joel

    2014-03-12

    The Amyris pilot-scale Integrated Biorefinery (IBR) leveraged Amyris synthetic biology and process technology experience to upgrade Amyris’s existing Emeryville, California pilot plant and fermentation labs to enable development of US-based production capabilities for renewable diesel fuel and alternative chemical products. These products were derived semi-synthetically from high-impact biomass feedstocks via microbial fermentation to the 15-carbon intermediate farnesene, with subsequent chemical finishing to farnesane. The Amyris IBR team tested and provided methods for production of diesel and alternative chemical products from sweet sorghum, and other high-impact lignocellulosic feedstocks, at pilot scale. This enabled robust techno-economic analysis (TEA), regulatory approvals, and a basis for full-scale manufacturing processes and facility design.

  11. 78 FR 22553 - Generic Drug Facilities, Sites, and Organizations

    Science.gov (United States)

    2013-04-16

    ...] Generic Drug Facilities, Sites, and Organizations AGENCY: Food and Drug Administration, HHS. ACTION.... Generic drug facilities, certain sites, and organizations identified in a generic drug submission are... active pharmaceutical ingredients and certain other sites and organizations that support the manufacture...

  12. Waste Biorefinery: A New Paradigm for a Sustainable Bioelectro Economy.

    Science.gov (United States)

    Mohan, S Venkata; Butti, Sai Kishore; Amulya, K; Dahiya, Shikha; Modestra, J Annie

    2016-11-01

    A waste biorefinery is a means to valorize waste as a renewable feedstock to recover biobased materials and energy through sustainable biotechnology. This approach holistically integrates remediation and resource recovery. Here we discuss the various technologies employable to construct a waste biorefinery platform and its place in a biobased economy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Cell disruption for microalgae biorefineries

    NARCIS (Netherlands)

    Günerken, E.; Hondt, d' E.; Eppink, M.H.M.; Garcia-Gonzalez, L.; Elst, K.; Wijffels, R.H.

    2015-01-01

    Microalgae are a potential source for various valuable chemicals for commercial applications ranging from nutraceuticals to fuels. Objective in a biorefinery is to utilize biomass ingredients efficiently similarly to petroleum refineries in which oil is fractionated in fuels and a variety of

  14. Savannah River Site Surplus Facilities Available for Reuse

    International Nuclear Information System (INIS)

    Clarke, R.M.; Owens, M.B.; Lentz, D.W.

    1995-01-01

    The purpose of this document is to provide a current, centralized list of Savannah River Site facilities, which are surplus and available for reuse. These surplus facilities may be made available for other DOE site missions, commercial economic development reuse, or other governmental reuse. SRS procedures also require that before new construction can be approved, available surplus facilities are screened for possible reuse in lieu of the proposed new construction

  15. Novel renewable products for biorefineries

    Science.gov (United States)

    A biorefinery integrates unit operations to convert biomass into a variety of biobased products, including fuels, chemicals, energy, and feed. Government policy initiatives over the last 1-2 decades have emphasized the production of biobased fuels, and consequently the number of dry-grind ethanol bi...

  16. Design of an Optimal Biorefinery

    DEFF Research Database (Denmark)

    Nawaz, Muhammad; Zondervan, Edwin; Woodley, John

    2011-01-01

    In this paper we propose a biorefinery optimization model that can be used to find the optimal processing route for the production of ethanol, butanol, succinic acid and blends of these chemicals with fossil fuel based gasoline. The approach unites transshipment models with a superstructure...

  17. Location-dependent optimal biorefinery synthesis

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona; Woodley, John M.; Gani, Rafiqul

    2017-01-01

    In this paper, we present an extended framework for synthesis of biorefinery networks. The extension of the framework responds to the needs of: automatically generating problem-specific superstructures from an in-house database in an efficient and reliable way, as well as obtaining and analysing...

  18. Risk management study for the retired Hanford Site facilities: Qualitative risk evaluation for the retired Hanford Site facilities. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1993-09-01

    This document provides a risk evaluation of the 100 and 200 Area retired, surplus facilities on the Hanford Site. Also included are the related data that were compiled by the risk evaluation team during investigations performed on the facilities. Results are the product of a major effort performed in fiscal year 1993 to produce qualitative information that characterizes certain risks associated with these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1,450-km{sup 2} (570-mi{sup 2}) Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30-km (20 mi) southeast of the 200 Area. During walkdown investigations of these facilities, data on real and potential hazards that threatened human health or safety or created potential environmental release issues were identified by the risk evaluation team. Using these findings, the team categorized the identified hazards by facility and evaluated the risk associated with each hazard. The factors contributing to each risk, and the consequence and likelihood of harm associated with each hazard also are included in this evaluation.

  19. Visitor centres at nuclear facility sites

    International Nuclear Information System (INIS)

    1993-01-01

    Communications strategies in the nuclear field are often based on the creation of visitor centres at nuclear facility sites. Today, the design, as well as the realization and management of such centres has become a specialized function, and its role is very complementary to the nuclear operator's. It also uses the latest technology in the field of audio-visual, experiment and interactivity. This publication contains the proceedings of an international seminar organized by the OECD Nuclear Energy Agency on the role of visitor centres at nuclear facility sites. It includes the main papers presented at this Seminar

  20. Sugarcane biorefineries: Case studies applied to the Brazilian sugar–alcohol industry

    International Nuclear Information System (INIS)

    Renó, Maria Luiza Grillo; Olmo, Oscar Almazán del; Palacio, José Carlos Escobar; Lora, Electo Eduardo Silva; Venturini, Osvaldo José

    2014-01-01

    Highlights: • Advanced system of co-generation improves the energy performance of biorefineries. • Sugarcane straw as additional source of fuel in the biorefinery resulted positive. • The farming and transport of sugarcane cause the main environmental impacts. - Abstract: The use of biomasses is becoming increasingly appealing alternative, to give an partial solution lack of energy, with an ecofriendly approach, having on sugarcane a solid fundament; that receives the new and valuable complement of the innovative concept of the biorefineries it is productive installations, that can be summarized as to reach the higher overall yield from the raw materials, with the lowest environmental impact, at minimum energy input and giving the maximum of the energy output. The biorefinery is the true valuable option of a wide diversification, with by-products like the single cell protein and biogas from the distillery vinasse, new oxidants like methanol, second generation biofuels, biobutanol, etc. In this context this paper presents a study of five different configurations of biorefineries. Each case study being a system based on an autonomous distillery or sugar mill with an annexed distillery and coproduction of methanol from bagasse. The paper includes the use of sugarcane harvest residues (mainly straw) and a BIG–GT plant (Biomass Integrated Gasification–Gas Turbine) as alternatives to fulfill the energy demands of the complex

  1. BER-Myriant Succinic Acid Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Shmorhun, Mark [Myriant Lake Providence, Inc., Lake Providence, LA (United States)

    2015-12-31

    Myriant Corporation (Myriant) has successfully produced the bioproduct succinic acid by the fermentation of glucose at a commercial scale operation in Lake Providence, Louisiana. The MySAB facility (Myriant Succinic Acid Biorefinery) came on stream in May 2013 and has been producing product since then. The MySAB facility is a demonstration-scale plant, capable of utilizing sorghum grits and commercially available dextrose, to ferment glucose into succinic acid. A downstream processing train has demonstrated the ability to produce an industrial, a standard and a polymer grade product. It consists of cell separation, membrane filtration, continuous chromatography, polishing to remove ionic and color bodies impurities, and final evaporation and crystallization. A by-product of the process is ammonium sulfate which is sold as a liquid fertilizer product. Since 2007 when development work began in the Woburn, Massachusetts R&D laboratories, the succinic acid bio-process has evolved through: Process development (microbiology, fermentation, and downstream) – R&D development laboratories; Piloting efforts at Fermic S.A. de C.V., Mexico City, Mexico – upstream and downstream processes; Design, construction, commissioning, and commercial production operations at the MySAB facility Additionally, Myriant became a wholly-owned subsidiary of the PTT Global Chemical Plc., Thailand, in late 2015, their investment into and support of Myriant goes back to 2011. The support of PTT Global Chemical Plc. helped to improve the upstream and downstream processes, and produce significant metric ton quantities of high quality bio-based succinic acid. The product has gone into a number of commercial markets worldwide for customer applications, development and production. The experience base gained via operations at the MySAB facility since May 2013, along with continued R&D development efforts involving Microbiology, Fermentation, and Downstream processes, at both the Woburn, Massachusetts

  2. Monitored Retrievable Storage facility site screening and evaluation report

    International Nuclear Information System (INIS)

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to ''complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, ''for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs hor-ellipsis'' as well as a recommendation of ''the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report, all site evaluations (sections 13 through 16) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This is Volume 3 of a three volume document. References are also included in this volume

  3. Monitored retrievable storage facility site screening and evaluation report

    International Nuclear Information System (INIS)

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to ''complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, ''for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs hor-ellipsis'' as well as a recommendation of ''the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report include: site evaluations (sections 10 through 12) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This in Volume 2 of a three volume document

  4. Monitored retrievable storage facility site screening and evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs{hor ellipsis}'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report include: site evaluations (sections 10 through 12) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This in Volume 2 of a three volume document.

  5. Life cycle assessment of biofuels from an integrated Brazilian algae-sugarcane biorefinery

    International Nuclear Information System (INIS)

    Souza, Simone P.; Gopal, Anand R.; Seabra, Joaquim E.A.

    2015-01-01

    Sugarcane ethanol biorefineries in Brazil produce carbon dioxide, electricity and heat as byproducts. These are essential inputs for algae biodiesel production. In this paper, we assessed ethanol's life cycle greenhouse gas emissions and fossil energy use produced in an integrated sugarcane and algae biorefinery where biodiesel replaces petroleum diesel for all agricultural operations. Carbon dioxide from cane juice fermentation is used as the carbon source for algae cultivation, and sugarcane bagasse is the sole source of energy for the entire facility. Glycerin produced from the biodiesel plant is consumed by algae during the mixotrophic growth phase. We assessed the uncertainties through a detailed Monte-Carlo analysis. We found that this integrated system can improve both the life cycle greenhouse gas emissions and the fossil energy use of sugarcane ethanol by around 10% and 50%, respectively, compared to a traditional Brazilian sugarcane ethanol distillery. - Highlights: • A high diesel consumption is associated to the ethanol sugarcane life-cycle. • Sugarcane industry can provide sources of carbon and energy for the algae growing. • The sugarcane-algae integration can improve the ethanol life-cycle performance. • This integration is a promising pathway for the deployment of algae biodiesel. • There are still significant techno-economic barriers associated with algae biodiesel

  6. Improving regulatory effectiveness in Federal/State siting actions. State perspectives on energy facility siting

    International Nuclear Information System (INIS)

    Stevens, D.W.; Helminski, E.L.

    1978-03-01

    The National Governors' Association, through its Committee on Natural Resources and Environmental Management, has been concerned with the growing administrative difficulties, both at the federal and state levels, of certifying sites for new major energy facilities. This concern led, early in 1977, to the creation of a Subcommittee on Energy Facility Siting to comprehensively analyze current conditions and determine how basic improvements might be made to the process. The report is meant to further clarify the issues that confront States and the Federal government in the siting of energy facilities

  7. Screening criteria for siting waste management facilities: Regional Management Plan

    International Nuclear Information System (INIS)

    1986-01-01

    The Midwest Interstate Low-Level Radioactive Waste Commission (Midwest Compact) seeks to define and place into operation a system for low-level waste management that will protect the public health and safety and the environment from the time the waste leaves its point of origin. Once the system is defined it will be necessary to find suitable sites for the components of that waste management system. The procedure for siting waste management facilities that have been chosen by the compact is one in which a host state is chosen for each facility. The host state is then given the freedom to select the site. Sites will be needed of low-level waste disposal facilities. Depending on the nature of the waste management system chosen by the host state, sites may also be needed for regional waste treatment facilities, such as compactors or incinerators. This report provides example criteria for use in selecting sites for low-level radioactive waste treatment and disposal facilities. 14 refs

  8. Biorefineries: Relocating Biomass Refineries to the Rural Area

    Directory of Open Access Journals (Sweden)

    Franka Papendiek

    2012-07-01

    Full Text Available The field for application of biomass is rising. The demand for food and feeding stuff rises while at the same time energy, chemicals and other materials also need to be produced from biomass because of decreasing fossil resources. However, the biorefinery ideas and concepts can help to use the limited renewable raw materials more efficiently than today. With biorefineries, valuable products, such as platform chemicals, can be produced from agricultural feedstock, which can subsequently be further processed into a variety of substances by the chemical industry. Due to the role they play as producers of biomass, rural areas will grow in importance in the decades to come. Parts of the biorefinery process can be relocated to the rural areas to bring a high added value to these regions. By refining biomass at the place of production, new economic opportunities may arise for agriculturists, and the industry gets high-grade pre-products. Additionally, an on-farm refining can increase the quality of the products because of the instant processing. To reduce competition with the food production and to find new possibilities of utilisation for these habitats, the focus for new agricultural biomass should be on grasslands. But also croplands can provide more renewable raw materials without endangering a sustainable agriculture, e.g. by implementing legumes in the crop rotation. To decide if a region can provide adequate amounts of raw material for a biorefinery, new raw material assessment procedures have to be developed. In doing so, involvement of farmers is inevitable to generate a reliable study of the biomass refinery potentials.

  9. Sociological perspective on the siting of hazardous waste facilities

    International Nuclear Information System (INIS)

    Mileti, D.S.

    1985-01-01

    The site of hazardous waste facilities has been, and will likely continue to be, both an important societal need and a publicity controversial topic. Sites have been denounced, shamed, banned, and moved at the same time that the national need for their installation and use has grown. Based on the available technologies, the effective siting of facilities is more of a major contemporary social issue than it is a technological problem. Traditional social impact assessment approaches to the siting process have generally failed to meaningfully contribute to successful project implementation; these efforts have largely ignored the public perception aspects of risk and hazard on the success or failure of facility siting. It is proposed in this paper that more readily acceptable solutions to siting hazardous waste facilities might result from the integration of two social science approaches: (1) social impact assessment, which seeks to define and mitigate problems, and (2) hazards policy studies, which has sought to understand and incorporate public risk perceptions into effective public decision-making. This paper illustrates how this integration of approaches could be implemented

  10. Site and facility waste transportation services planning documents

    International Nuclear Information System (INIS)

    Ratledge, J.E.; Schmid, S.; Danese, L.

    1991-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and maintenance of Site- and Facility-Specific Transportation Services Planning Documents (SPDs) and Site-Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities, with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations

  11. UNCERTAINTY IN THE PROCESS INTEGRATION FOR THE BIOREFINERIES DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Meilyn González Cortés

    2015-07-01

    Full Text Available This paper presents how the design approaches with high level of flexibility can reduce the additional costs of the strategies that apply overdesign factors to consider parameters with uncertainty that impact on the economic feasibility of a project. The elements with associate uncertainties and that are important in the configurations of the process integration under a biorefinery scheme are: raw material, raw material technologies of conversion, and variety of products that can be obtained. From the analysis it is obtained that in the raw materials and products with potentialities in a biorefinery scheme, there are external uncertainties such as availability, demands and prices in the market. Those external uncertainties can determine their impact on the biorefinery and also in the product prices we can find minimum and maximum limits that can be identified in intervals which should be considered for the project economic evaluation and the sensibility analysis due to varied conditions.

  12. Monitored Retrievable Storage facility site screening and evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs {hor ellipsis}'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report, all site evaluations (sections 13 through 16) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This is Volume 3 of a three volume document. References are also included in this volume.

  13. Economically Viable Components from Jerusalem Artichoke (Helianthus tuberosus L.) in a Biorefinery Concept

    DEFF Research Database (Denmark)

    Johansson, Eva; Prade, Thomas; Angelidaki, Irini

    2015-01-01

    Biorefinery applications are receiving growing interest due to climatic and waste disposal issues and lack of petroleum resources. Jerusalem artichoke (Helianthus tuberosus L.) is suitable for biorefinery applications due to high biomass production and limited cultivation requirements. This paper...... focuses on the potential of Jerusalem artichoke as a biorefinery crop and the most viable products in such a case. The carbohydrates in the tubers were found to have potential for production of platform chemicals, e.g., succinic acid. However, economic analysis showed that production of platform chemicals...

  14. Estimating Hydrogen Production Potential in Biorefineries Using Microbial Electrolysis Cell Technology

    Energy Technology Data Exchange (ETDEWEB)

    Borole, Abhijeet P [ORNL; Mielenz, Jonathan R [ORNL

    2011-01-01

    Microbial electrolysis cells (MECs) are devices that use a hybrid biocatalysis-electrolysis process for production of hydrogen from organic matter. Future biofuel and bioproducts industries are expected to generate significant volumes of waste streams containing easily degradable organic matter. The emerging MEC technology has potential to derive added- value from these waste streams via production of hydrogen. Biorefinery process streams, particularly the stillage or distillation bottoms contain underutilized sugars as well as fermentation and pretreatment byproducts. In a lignocellulosic biorefinery designed for producing 70 million gallons of ethanol per year, up to 7200 m3/hr of hydrogen can be generated. The hydrogen can either be used as an energy source or a chemical reagent for upgrading and other reactions. The energy content of the hydrogen generated is sufficient to meet 57% of the distillation energy needs. We also report on the potential for hydrogen production in existing corn mills and sugar-based biorefineries. Removal of the organics from stillage has potential to facilitate water recycle. Pretreatment and fermentation byproducts generated in lignocellulosic biorefinery processes can accumulate to highly inhibitory levels in the process streams, if water is recycled. The byproducts of concern including sugar- and lignin- degradation products such as furans and phenolics can also be converted to hydrogen in MECs. We evaluate hydrogen production from various inhibitory byproducts generated during pretreatment of various types of biomass. Finally, the research needs for development of the MEC technology and aspects particularly relevant to the biorefineries are discussed.

  15. EPA Geospatial Data Download: Facility and Site Information

    Data.gov (United States)

    U.S. Environmental Protection Agency — Contains information about facilities or sites subject to environmental regulation, including key facility information along with associated environmental interests...

  16. Biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy.

    Science.gov (United States)

    Liguori, Rossana; Faraco, Vincenza

    2016-09-01

    The actualization of a circular economy through the use of lignocellulosic wastes as renewable resources can lead to reduce the dependence from fossil-based resources and contribute to a sustainable waste management. The integrated biorefineries, exploiting the overall lignocellulosic waste components to generate fuels, chemicals and energy, are the pillar of the circular economy. The biological treatment is receiving great attention for the biorefinery development since it is considered an eco-friendly alternative to the physico-chemical strategies to increase the biobased product recovery from wastes and improve saccharification and fermentation yields. This paper reviews the last advances in the biological treatments aimed at upgrading lignocellulosic wastes, implementing the biorefinery concept and advocating circular economy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Risk management study for the Hanford Site facilities: Risk reduction cost comparison for the retired Hanford Site facilities

    International Nuclear Information System (INIS)

    Coles, G.A.; Egge, R.G.; Senger, E.; Shultz, M.W.; Taylor, W.E.

    1994-02-01

    This document provides a cost-comparison evaluation for implementing certain risk-reduction measures and their effect on the overall risk of the 100 and 200 Area retired, surplus facilities. The evaluation is based on conditions that existed at the time the risk evaluation team performed facility investigations, and does not acknowledge risk-reduction measures that occurred soon after risk identification. This evaluation is one part of an overall risk management study for these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1450-km 2 Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30 km southeast of the 200 Area. This cost-comparison evaluation (1) determines relative costs for reducing risk to acceptable levels; (2) compares the cost of reducing risk using different risk-reduction options; and (3) compares the cost of reducing risks at different facilities. The result is an identification of the cost effective risk-reduction measures. Supporting information required to develop costs of the various risk-reduction options also is included

  18. Crop residues as raw materials for biorefinery systems - A LCA case study

    International Nuclear Information System (INIS)

    Cherubini, Francesco; Ulgiati, Sergio

    2010-01-01

    Our strong dependence on fossil fuels results from the intensive use and consumption of petroleum derivatives which, combined with diminishing oil resources, causes environmental and political concerns. The utilization of agricultural residues as raw materials in a biorefinery is a promising alternative to fossil resources for production of energy carriers and chemicals, thus mitigating climate change and enhancing energy security. This paper focuses on a biorefinery concept which produces bioethanol, bioenergy and biochemicals from two types of agricultural residues, corn stover and wheat straw. These biorefinery systems are investigated using a Life Cycle Assessment (LCA) approach, which takes into account all the input and output flows occurring along the production chain. This approach can be applied to almost all the other patterns that convert lignocellulosic residues into bioenergy and biochemicals. The analysis elaborates on land use change aspects, i.e. the effects of crop residue removal (like decrease in grain yields, change in soil N 2 O emissions and decrease of soil organic carbon). The biorefinery systems are compared with the respective fossil reference systems producing the same amount of products/services from fossils instead of biomass. Since climate change mitigation and energy security are the two most important driving forces for biorefinery development, the assessment focuses on greenhouse gas (GHG) emissions and cumulative primary energy demand, but other environmental categories are evaluated as well. Results show that the use of crop residues in a biorefinery saves GHG emissions and reduces fossil energy demand. For instance, GHG emissions are reduced by about 50% and more than 80% of non-renewable energy is saved. Land use change effects have a strong influence in the final GHG balance (about 50%), and their uncertainty is discussed in a sensitivity analysis. Concerning the investigation of the other impact categories, biorefinery systems

  19. Lignin pyrolysis for profitable lignocellulosic biorefineries

    NARCIS (Netherlands)

    Wild, de P.J.; Gosselink, R.J.A.; Huijgen, W.J.J.

    2014-01-01

    Bio-based industries (pulp and paper and biorefineries) produce > 50 Mt/yr of lignin that results from fractionation of lignocellulosic biomass. Lignin is world's second biopolymer and a major potential source for production of performance materials and aromatic chemicals. Lignin valorization is

  20. Fumaric Acid Production: A Biorefinery Perspective

    Directory of Open Access Journals (Sweden)

    Victor Martin-Dominguez

    2018-05-01

    Full Text Available The increasing scarcity of fossil raw materials, together with the need to develop new processes and technology based on renewable sources, and the need to dispose of an increasing amount of biomass-derived waste, have boosted the concept of biorefineries. Both 1G and 2G biorefineries are focused on the obtention of biofuels, chemicals, materials, food and feed from biomass, a renewable resource. Fumaric acid, and most compounds involved in the Kreb cycle, are considered key platform chemicals, not only for being acidulants and additives in the food industry, but also for their prospective use as monomers. This review is focused on the biotechnological processes based on fungi, mainly of the Rhizopus genus, whose main product is fumaric acid, on the process conditions, the bioreactors and modes of operation and on the purification of the acid once it is produced.

  1. SITE: a methodology for assessment of energy facility siting patterns. Regional studies program

    International Nuclear Information System (INIS)

    Frigerio, N.A.; Habegger, L.J.; King, R.F.; Hoover, L.J.; Clark, N.A.; Cobian, J.M.

    1975-08-01

    The timely development of the nation's energy production capacity in a manner that minimizes potential adverse local and regional impacts associated with energy facilities requires the use of sophisticated techniques for evaluation of siting alternatives and fuel cycle options. This report is a documentation of the computerized SITE methodology that has been developed for evaluating health, environmental, and socioeconomic impacts related to utilization of alternate sites for energy production within a region of interest. The cost, impact, and attribute vectors, which are generated and displayed on density maps, can be used in a multiparameter overlay process to identify preferable siting areas. The assessment of clustered facilities in energy centers is also possible within the SITE analysis framework. An application of the SITE methodology to Northern Illinois is presented. Also included is a description of the ongoing extension of SITE for the accumulative evaluation of alternative regional energy siting patterns and fuel cycle options. An appendix provides documentation and user information for the SITE computer program

  2. Controlled Archaeological Test Site (CATS) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CATS facility is at the Construction Engineering Research Laboratory (CERL), Champaign, IL. This 1-acre test site includes a variety of subsurface features carefully...

  3. Site selection report basalt waste isolation program near-surface test facility

    International Nuclear Information System (INIS)

    Sharpe, S.D.

    1978-01-01

    A site selection committee was established to review the information gathered on potential sites and to select a site for the Near-Surface Test Facility Phase I. A decision was made to use a site on the north face of Gable Mountain located on the Hanford Site. This site provided convenient access to the Pomona Basalt Flow. This flow was selected for use at this site because it exhibited the characteristics established in the primary criteria. These criteria were: the flows thickness; its dryness; its nearness to the surface; and, its similarities to basalt units which are candidates for the repository. After the selection of the Near-Surface Test Facility Phase I Site, the need arose for an additional facility to demonstrate safe handling, storage techniques, and the physical effects of radioactive materials on an in situ basalt formation. The committee reviewed the sites selected for Phase I and chose the same site for locating Phase II of the Near-Surface Test Facility

  4. Comparative cradle-to-grave life cycle assessment of biogas production from marine algae and cattle manure biorefineries.

    Science.gov (United States)

    Giwa, Adewale

    2017-11-01

    The environmental impacts resulting from the cradle-to-grave life cycles of Enteromorpha prolifera macroalgae and cattle manure biorefineries are assessed and compared. Sensitivity analysis is carried out to evaluate the response of the impacts to changes in biogas application by using Simapro 7.3.3. Three scenarios are considered in the biorefineries. In the first and second scenarios, the biogas produced is considered to be used for electricity production and transportation, respectively. In the third scenario, the biogas is considered to be recycled back to the systems. Process energy requirements and transportation of inputs contribute the largest share of the overall impacts. The cattle manure biorefinery is slightly more eco-friendly than the macroalgae biorefinery in Scenarios 1 and 2 because it requires more eco-friendly inputs. However, the macroalgae biorefinery becomes more eco-friendly than the cattle manure biorefinery in Scenario 3 because macroalgae require less energy and water for biogas production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Unconventional biomasses as feedstocks for production of biofuels and succinic acid in a biorefinery concept

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi

    composition of the specific biomass feedstock, as well as which pretreatment, saccharification, fermentation and extraction techniques are used. Furthermore, integrating biological processes into the biorefinery that effectively consume CO2 will become increasingly important. Such process integration could...... significantly improve the sustainability indicators of the overall biorefinery process. In this study, unconventional lignocellulosic- and aquatic biomasses were investigated as biorefinery feedstocks. The studied biomasses were Jerusalem artichoke, industrial hemp and macroalgae species Laminaria digitata....... The chemical composition of biomasses was determined in order to demonstrate their biorefinery potential. Bioethanol and biogas along with succinic acid production were the explored bioconversion routes, while potential production of other compounds was also investigated. Differences and changes in biomass...

  6. Sociological perspective on the siting of hazardous waste facilities

    International Nuclear Information System (INIS)

    Mileti, D.S.; Williams, R.G.

    1985-01-01

    The siting of hazardous waste facilities has been, and will likely continue to be, both an important societal need and a publically controversial topic. Sites have been denounced, shamed, banned, and moved at the same time that the national need for their installation and use has grown. Despite available technologies and physical science capabilities, the effective siting of facilitites stands more as a major contemporary social issue than it is a technological problem. Traditional social impact assessment approaches to the siting process have largely failed to meaningfully contribute to successful project implementation; these efforts have largely ignored the public perception aspects of risk and hazard on the success or failure of facility siting. This paper proposes that the siting of hazardous waste facilities could well take advantage of two rich but somewhat disparate research histories in the social sciences. A convergent and integrated approach would result from the successful blending of social impact assessment, which seeks to define and mitigate problems, with an approach used in hazards policy studies, which has sought to understand and incorporate public risk perceptions into effective public decision-making. It is proposed in this paper that the integration of these two approaches is necessary for arriving at more readily acceptable solutions to siting hazardous waste facilities. This paper illustrates how this integration of approaches could be implemented

  7. A sustainable woody biomass biorefinery.

    Science.gov (United States)

    Liu, Shijie; Lu, Houfang; Hu, Ruofei; Shupe, Alan; Lin, Lu; Liang, Bin

    2012-01-01

    Woody biomass is renewable only if sustainable production is imposed. An optimum and sustainable biomass stand production rate is found to be one with the incremental growth rate at harvest equal to the average overall growth rate. Utilization of woody biomass leads to a sustainable economy. Woody biomass is comprised of at least four components: extractives, hemicellulose, lignin and cellulose. While extractives and hemicellulose are least resistant to chemical and thermal degradation, cellulose is most resistant to chemical, thermal, and biological attack. The difference or heterogeneity in reactivity leads to the recalcitrance of woody biomass at conversion. A selection of processes is presented together as a biorefinery based on incremental sequential deconstruction, fractionation/conversion of woody biomass to achieve efficient separation of major components. A preference is given to a biorefinery absent of pretreatment and detoxification process that produce waste byproducts. While numerous biorefinery approaches are known, a focused review on the integrated studies of water-based biorefinery processes is presented. Hot-water extraction is the first process step to extract value from woody biomass while improving the quality of the remaining solid material. This first step removes extractives and hemicellulose fractions from woody biomass. While extractives and hemicellulose are largely removed in the extraction liquor, cellulose and lignin largely remain in the residual woody structure. Xylo-oligomers, aromatics and acetic acid in the hardwood extract are the major components having the greatest potential value for development. Higher temperature and longer residence time lead to higher mass removal. While high temperature (>200°C) can lead to nearly total dissolution, the amount of sugars present in the extraction liquor decreases rapidly with temperature. Dilute acid hydrolysis of concentrated wood extracts renders the wood extract with monomeric sugars

  8. 2009 Integrated Biorefinery Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s Integrated Biorefinery (IBR) platform review meeting, held on February 18–19, 2009, at the Westin National Harbor, National Harbor, Maryland.

  9. Procedural justice in wind facility siting: Recommendations for state-led siting processes

    International Nuclear Information System (INIS)

    Ottinger, Gwen; Hargrave, Timothy J.; Hopson, Eric

    2014-01-01

    Evidence suggests that state control of wind facility siting decisions fosters new project development more effectively than local control, yet the literature suggests that affected citizens tend to be more fairly represented in local siting processes. We argue that successful renewable energy policy must satisfy both the need for new project development and the obligation to procedural justice. To suggest how it can do so, we analyze existing state- and county-level siting processes in Washington state, finding that both fall short on measures of procedural justice. To overcome this limitation and address the tension between procedural justice and project development, we then propose a collaborative governance approach to wind facility siting, in which state governments retain ultimate authority over permitting decisions but encourage and support local-level deliberations as the primary means of making those decisions. Such an approach, we argue, would be more just, facilitate wind development by addressing community concerns constructively and result in better projects through the input of diverse stakeholders. - Highlights: • States have made wind energy development a priority. • Local opposition to new projects could hinder future wind energy development. • Procedural justice is necessary to resolve local issues and ensure timely wind facility siting. • Both state- and county-led siting processes fall short with respect to criteria for procedural justice, though local processes have some advantages. • States could instead induce counties, developers to engage in deliberation

  10. Coproducts performances in biorefineries: Development of Claiming-based allocation models for environmental policy.

    Science.gov (United States)

    Gnansounou, Edgard

    2018-04-01

    This study revisited the fundamentals of allocation to joint products and proposed new models for allocating common greenhouse gases emissions among coproducts of biorefineries. These emissions may account for more than 80% of the total emissions of greenhouse gases of the biorefineries. The proposed models optimize the reward of coproducts for their compliance to environmental requirements. They were illustrated by a case study of wheat straw biorefinery built on the literature. Several scenarios were considered with regard to the grain yield, field emissions of greenhouse gases, allocation between grain and straw and policy requirements. The results conform to the expectations and are sensitive to the policy targets and to the environmental performance of the counterpart system. Further research works are necessary to achieve a full application to complex processes. However, the proposed models are promising towards assessing the simultaneous compliance of coproducts of a biorefinery to environment policy requirements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A simulation-based robust biofuel facility location model for an integrated bio-energy logistics network

    Directory of Open Access Journals (Sweden)

    Jae-Dong Hong

    2014-10-01

    Full Text Available Purpose: The purpose of this paper is to propose a simulation-based robust biofuel facility location model for solving an integrated bio-energy logistics network (IBLN problem, where biomass yield is often uncertain or difficult to determine.Design/methodology/approach: The IBLN considered in this paper consists of four different facilities: farm or harvest site (HS, collection facility (CF, biorefinery (BR, and blending station (BS. Authors propose a mixed integer quadratic modeling approach to simultaneously determine the optimal CF and BR locations and corresponding biomass and bio-energy transportation plans. The authors randomly generate biomass yield of each HS and find the optimal locations of CFs and BRs for each generated biomass yield, and select the robust locations of CFs and BRs to show the effects of biomass yield uncertainty on the optimality of CF and BR locations. Case studies using data from the State of South Carolina in the United State are conducted to demonstrate the developed model’s capability to better handle the impact of uncertainty of biomass yield.Findings: The results illustrate that the robust location model for BRs and CFs works very well in terms of the total logistics costs. The proposed model would help decision-makers find the most robust locations for biorefineries and collection facilities, which usually require huge investments, and would assist potential investors in identifying the least cost or important facilities to invest in the biomass and bio-energy industry.Originality/value: An optimal biofuel facility location model is formulated for the case of deterministic biomass yield. To improve the robustness of the model for cases with probabilistic biomass yield, the model is evaluated by a simulation approach using case studies. The proposed model and robustness concept would be a very useful tool that helps potential biofuel investors minimize their investment risk.

  12. Improving Energy Efficiency and Enabling Water Recycle in Biorefineries Using Bioelectrochemical Cells

    International Nuclear Information System (INIS)

    Borole, Abhijeet P.

    2010-01-01

    Improving biofuel yield and water reuse are two important issues in further development of biorefineries. The total energy content of liquid fuels (including ethanol and hydrocarbon) produced from cellulosic biomass via biochemical or hybrid bio-thermochemical routes can vary from 49% to 70% of the biomass entering the biorefinery, on an energy basis. Use of boiler for combustion of residual organics and lignin results in significant energy and water losses. An alternate process to improve energy recovery from the residual organic streams is via use of bioelectrochemical systems such as microbial fuel cells (MFCs) microbial electrolysis cells (MECs). The potential advantages of this alternative scheme in a biorefinery include minimization of heat loss and generation of a higher value product, hydrogen. The need for 5-15 gallons of water per gallon of ethanol can be reduced significantly via recycle of water after MEC treatment. Removal of inhibitory byproducts such as furans, phenolics and acetate in MFC/MECs to generate energy, thus, has dual advantages including improvements in energy efficiency and ability to recycle water. Conversion of the sugar- and lignin- degradation products to hydrogen is synergistic with biorefinery hydrogen requirements for upgrading F-T liquids and other byproducts to high-octane fuels and/or high value products. Some of these products include sorbitol, succinic acid, furan and levulinate derivatives, glycols, polyols, 1,4-butenadiol, phenolics polymers, etc. Potential process alternatives utilizing MECs in biorefineries capable of improving energy efficiency by up to 30% are discussed.

  13. Integration of Microbial Electrolysis Cells (MECs) in the Biorefinery for Production of Ethanol, H2 and Phenolics

    DEFF Research Database (Denmark)

    Thygesen, Anders; Thomsen, Anne Belinda; Possemiers, Sam

    2010-01-01

    production. The mass and energy balances as well as the economical evaluations, show that this strategy may be useful for additional generation of hydrogen and lignin, thereby increasing the final yield of this biorefinery. From one ton of straw, the yield of ethanol upon yeast fermentation is estimated......In a biorefinery, biomass is converted into a variety of chemicals, materials and energy. A typical example is the lignocellulosic ethanol biorefinery process, in which substrates such as wheat straw are used as a feedstock for production of ethanol. In this work, an integrated biorefinery...

  14. Nuclear facility decommissioning and site remedial actions

    International Nuclear Information System (INIS)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords

  15. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  16. Lessons learned from international siting experiences of LLW Disposal facilities

    International Nuclear Information System (INIS)

    McCabe, G.H.

    1990-01-01

    This paper reports that the United States can gain insight into successfully siting low-level radioactive waste (LLW) disposal facilities by studying the process in other nations. Siting experiences in France and Sweden are compared to experiences in the United States. Three factors appear to making siting of LLW disposal facilities easier in France and Sweden than in the United States. First, the level of public trust in the government and the entities responsible for siting, developing, and operating a LLW disposal facility is much greater in France and Sweden than in the United States. Second, France and Sweden are much more dependent on nuclear power than is the United States. Third, French and Swedish citizens do not have the same access to the siting process (i.e., legal means to intervene) as do U.S. citizens. To compensate for these three factors, public officials responsible for siting a facility may need to better listen to the concerns of public interest groups and citizen advisory committees and amend their siting process accordingly and better share power and control with the public. If these two techniques are implemented earnestly by the states, siting efforts may be increasingly more successful in the United States

  17. Biofuels and the biorefinery concept

    International Nuclear Information System (INIS)

    Taylor, Gail

    2008-01-01

    Liquid fuels can be made by refining a range of biomass materials, including oil-rich and sugar-rich crops such as oil-seed rape and sugar beet, biomass that consists mainly of plant cell walls (second generation lignocellulosics), macro- and micro-alga, or material that would now be discarded as waste. This can include animal bi-products as well as waste wood and other resources. In the medium-term, plant cell (lignocellulosic) material is likely to be favoured as the feedstock for biorefineries because of its availability. The UK may make use of a number of these options because of its complex agricultural landscape. There are now a range of targets for biofuel use in the UK, although their environmental effects are disputed. The technology of refining these materials is well known. Possible outputs include biodiesel and bioethanol, both of which can be used as transport fuel. Other potential products include hydrogen, polymers and a wide range of value-added chemicals, making this technology important in a post-petrochemical world. Biorefineries could use cogeneration to produce electricity. The paper identifies a range of research and development priorities which must be met if this opportunity is to be exploited fully

  18. Low-level radioactive waste facility siting in the Rocky Mountain compact region

    International Nuclear Information System (INIS)

    Whitman, M.

    1983-09-01

    The puprose of the Rocky Mountain Low-Level Radioactive Waste Compact is to develop a regional management system for low-level waste (LLW) generated in the six states eligible for membership: Arizona, Colorado, Nevada, New Mexico, Utah and Wyoming. Under the terms of the compact, any party state generating at least 20% of the region's waste becomes responsible for hosting a regional LLW management facility. However, the compact prescribes no system which the host state must follow to develop a facility, but rather calls on the state to fulfill its responsibility through reliance on its own laws and regulations. Few of the Rocky Mountain compact states have legislation dealing specifically with LLW facility siting. Authority for LLW facility siting is usually obtained from radiation control statutes and solid or hazardous waste statutes. A state-by-state analysis of the siting authorities of each of the Rock Mountain compact states as they pertain to LLW disposal facility siting is presented. Siting authority for LLW disposal facilities in the Rocky Mountain compact region runs from no authority, as in Wyoming, to general statutory authority for which regulations would have to be promulgated, as in Arizona and Nevada, to more detailed siting laws, as in Colorado and New Mexico. Barring an amendment to, or different interpretation of, the Utah Hazardous Waste Facility Siting Act, none of the Rocky Mountain States' LLW facility siting authorities preempt local veto authorities

  19. Biorefineries to integrate fuel, energy and chemical production processes

    Directory of Open Access Journals (Sweden)

    Enrica Bargiacchi

    2007-12-01

    Full Text Available The world of renewable energies is in fast evolution and arouses political and public interests, especially as an opportunity to boost environmental sustainability by mitigation of greenhouse gas emissions. This work aims at examining the possibilities related to the development of biorefineries, where biomass conversion processes to produce biofuels, electricity and biochemicals are integrated. Particular interest is given to the production processes of biodiesel, bioethanol and biogas, for which present world situation, problems, and perspectives are drawn. Potential areas for agronomic and biotech researches are also discussed. Producing biomass for biorefinery processing will eventually lead to maximize yields, in the non food agriculture.

  20. Biorefineries for chemical and biofuel production

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene

    crops for biofuel production is research in biorefineries using a whole-crop approach with the aim of having an optimal use of all the components of the specific crop. Looking at rape as a model crop, the components can be used for i.e. bioethanol, biodiesel, biogas, biohydrogen, feed, food and plant...

  1. Process design and economic analysis of a biorefinery co-producing itaconic acid and electricity from sugarcane bagasse and trash lignocelluloses.

    Science.gov (United States)

    Nieder-Heitmann, Mieke; Haigh, Kathleen F; Görgens, Johann F

    2018-08-01

    Itaconic acid has economic potential as a commodity biochemical for the sugar industry, but its production is limited due to high production costs. Using cheaper and alternative lignocellulosic feedstocks together with achieving higher product titres have been identified as potential strategies for viable IA production. Consequently the use of sugarcane bagasse and trash for the production of itaconic acid (IA) and electricity have been investigated for an integrated biorefinery, where the production facility is annexed to an existing sugar mill and new combined heat and power (CHP) plant. Three IA biorefinery scenarios were designed and simulated in Aspen Plus®. Subsequent economic analyses indicated that cheaper feedstocks reduced the IA production cost from 1565.5 US$/t for glucose to 616.5 US$/t, but coal supplementation was required to sufficiently lower the production cost to 604.3 US$/t for a competitive IA selling price of 1740 US$/t, compared to the market price of 1800 US$/t. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Synthesis and Design of Biorefinery Processing Networks with Uncertainty and Sustainability analysis

    DEFF Research Database (Denmark)

    Cheali, Peam; Gernaey, Krist; Sin, Gürkan

    combinations of processing networks. The optimization of the network is formulated as a mixed integer nonlinear programming type of problem and solved in GAMS. The methodology was applied for designing optimal biorefinery networks considering biochemical routes. Furthermore, the methodology has also been...... for processing renewable feedstocks, with the aim of bridging the gap for fuel, chemical and material production. This project is focusing on biorefinery network design, in particular for early stage design and development studies. Optimal biorefinery design is a challenging problem. It is a multi......-objective decision-making problem not only with respect to technical and economic feasibility but also with respect to environmental impacts, sustainability constraints and limited availability & uncertainties of input data at the early design stage. It is therefore useful to develop a systematic methodology...

  3. The production of pigments and hydrogen through a Spirogyra sp. biorefinery

    International Nuclear Information System (INIS)

    Pacheco, R.; Ferreira, A.F.; Pinto, T.; Nobre, B.P.; Loureiro, D.; Moura, P.; Gouveia, L.; Silva, C.M.

    2015-01-01

    Highlights: • Sugar content of microalgae must increase to increase H 2 yield. • Electrocoagulation and solar dryer reduce 90% the harvesting-drying energy demand. • Paddle wheels contribute 5% to culture energy demand when using ideal 0.1 kW/m 2 . • Pigment extraction increases 2 times the biorefinery economic benefits. • Pigment energy demand account for 62% and must be reduced significantly. - Abstract: This paper discusses the overall energy consumption and greenhouse gas emissions when extracting pigments and producing hydrogen from Spirogyra sp. microalga biomass. The energy evaluation from the biomass leftovers was also included in this work. The influence of the functional unit and different allocation criteria on the biorefinery assessments is also shown. The study consists of laboratory tests showing Spirogyra sp. growth, harvesting, drying, pigment extraction and fermentation by Clostridium butyricum. Electrocoagulation and solar drying were tested and compared to conventional centrifugation and electrical dewatering in terms of their energy consumption for harvesting and dewatering, respectively. To discuss the biorefinery viability, the pigments and biohydrogen (bioH 2 ) retail costs are considered against operational costs according to electricity needs. The low yield of biochemical hydrogen and the high energy requirements for the pigment extraction were identified as main topics for further research. This research hopefully contributes to highlight the importance of energy and emission balances in order to decide on feasibility of the biorefinery

  4. Siting a low-level radioactive waste disposal facility in California

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.

    1991-01-01

    US Ecology is the State of California's designee to site, develop and operate a low-level radioactive waste disposal facility. In March 1988, a site in the Ward Valley of California's Mojave Desert was chosen for development. Strong local community support has been expressed for the site. US Ecology anticipates licensing and constructing a facility to receive waste by early 1991. This schedule places California well ahead of the siting milestones identified in Federal law. (author) 1 fig., 2 refs

  5. Risk management study for the Hanford Site facilities: Risk reduction cost comparison for the retired Hanford Site facilities. Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Coles, G.A.; Egge, R.G.; Senger, E.; Shultz, M.W.; Taylor, W.E.

    1994-02-01

    This document provides a cost-comparison evaluation for implementing certain risk-reduction measures and their effect on the overall risk of the 100 and 200 Area retired, surplus facilities. The evaluation is based on conditions that existed at the time the risk evaluation team performed facility investigations, and does not acknowledge risk-reduction measures that occurred soon after risk identification. This evaluation is one part of an overall risk management study for these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1450-km{sup 2} Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30 km southeast of the 200 Area. This cost-comparison evaluation (1) determines relative costs for reducing risk to acceptable levels; (2) compares the cost of reducing risk using different risk-reduction options; and (3) compares the cost of reducing risks at different facilities. The result is an identification of the cost effective risk-reduction measures. Supporting information required to develop costs of the various risk-reduction options also is included.

  6. Liquefaction of Biorefinery Lignin for Fuel Production

    DEFF Research Database (Denmark)

    Jensen, Anders

    at higher loadings. The effect of increased reaction time was found to be beneficial for oil yields but also caused an increase in solvent consumption and so there is a trade-off where a compromise has to be found in the event of an up scaled reaction. The reactions that cause solvent consumption during......Lignocellulosic biorefineries can be an important piece of the puzzle in fighting climate change. Present, biorefineries that produce ethanol from lignocellulose are challenged in working on market terms as the two product streams ethanol and lignin are low value products. The aim of this project...... has been to increase the value of the lignin stream. Recent regulations on shipping exhaust gasses in coastal waters dictate lower sulfur emissions which require ships to use low sulfur fuels for propulsion. This opens or expands a very large market for low sulfur fuels because a shift from...

  7. A game-theoretical model for selecting a site of non-preferred waste facilities

    International Nuclear Information System (INIS)

    Kim, Seong Ho; Kim, Tae Woon

    2006-01-01

    In the present work, a game-theoretic model (GTM) as a tool of conflict analysis is proposed for multiplayer multicriteria decision-making problems in a conflict situation. The developed GTM is used for obtaining the most possible resolutions in the conflict among multiple decision makers. The GTM is based on directed graph structure and solution concepts. To demonstrate the performance of the GTM, using a numerical example, the GTM is applied to an environmental conflict problem, especially a non-preferred waste disposal siting conflict available in the literature. It is found that with GTM the states in equilibrium can be recognized. The conflict under consideration is to select a site of non-preferred waste facilities. The government is to choose a site of installation for users of a toxic waste disposal facility. A certain time-point of interest is a period of time to select one of candidate sites that completely meet regular criteria of governmental body in charge of permitting a facility site. The facility siting conflict among multiple players (i.e., decision-makers, DMs) of concern is viewed as a multiple player-multiple criteria (MPMC) domain. For instance, three possible sites (i.e., site A, site B, and site C) to be selected by multiple players are characterized by the building cost, accessibility, and proximity to the residential area. Concerning the site A, the installation of a facility is not expensive, the accessible to a facility is easy, and the site A is located very near a residential area. Concerning site B, the facility is expensive to build, the facility is easily accessible, and the site is located near the residential area. Concerning site C, the installation cost is expensive, the accessibility is difficult, and the location of site is far from the residential area. In simple models, three main groups of players could be considered to be the government, users, and local residents. The government is to play a role as one of proponents or

  8. Siting simulation for low-level waste disposal facilities

    International Nuclear Information System (INIS)

    Roop, R.D.; Rope, R.C.

    1985-01-01

    The Mock Site Licensing Demonstration Project has developed the Low-Level Radioactive Waste Siting Simulation, a role-playing exercise designed to facilitate the process of siting and licensing disposal facilities for low-level waste (LLW). This paper describes the development, content, and usefulness of the siting simulation. The simulation can be conducted at a workshop or conference, involves 14 or more participants, and requires about eight hours to complete. The simulation consists of two sessions; in the first, participants negotiate the selection of siting criteria, and in the second, a preferred disposal site is chosen from three candidate sites. The project has sponsored two workshops (in Boston, Massachusetts and Richmond, Virginia) in which the simulation has been conducted for persons concerned with LLW management issues. It is concluded that the simulation can be valuable as a tool for disseminating information about LLW management; a vehicle that can foster communication; and a step toward consensus building and conflict resolution. The DOE National Low-Level Waste Management Program is now making the siting simulation available for use by states, regional compacts, and other organizations involved in development of LLW disposal facilities

  9. Biorefinery Demonstration Project Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, David [University of Georgia Research Foundation, Inc., Athens, GA (United States)

    2015-10-20

    In this project we focused on various aspects of biorefinery technology development including algal-biorefinery technology, thermochemical conversion of biomass to bio-oils and biochar; we tested characteristics and applications of biochars and evaluated nutrient cycling with wastewater treatment by the coupling of algal culture systems and anaerobic digestion. Key results include a method for reducing water content of bio-oil through atomized alcohol addition. The effect included increasing the pH and reducing the viscosity and cloud point of the bio-oil. Low input biochar production systems were evaluated via literature reviews and direct experimental work. Additionally, emissions were evaluated and three biochar systems were compared via a life cycle analysis. Attached growth systems for both algal cultivation and algal harvesting were found to be superior to suspended growth cultures. Nutrient requirements for algal cultivation could be obtained by the recycling of anaerobic digester effluents, thus experimentally showing that these two systems could be directly coupled. Twenty-two journal articles and six intellectual property applications resulted from the cumulative work that this project contributed to programmatically.

  10. Replacement Power Facility site selection report

    Energy Technology Data Exchange (ETDEWEB)

    Wike, L.D.; Toole, G.L.; Specht, W.L.

    1992-06-01

    The Department of Energy (DOE) has proposed the construction and operation of a Replacement Power Facility (RPF) for supplementing and replacing existing sources of steam and possibly electricity at the Savannah River Site (SRS). DOE is preparing an Environmental Impact Statement (EIS) for this project As part of the impact analysis of the proposed action, the EIS will include a detailed description of the environment where the RPF will be constructed. This description must be specific to the recommended site at SRS, which contains more than 300 square miles of land including streams, lakes, impoundments, wetlands, and upland areas. A formal site-selection process was designed and implemented to identify the preferred RPF site.

  11. Incentives and the siting of radioactive waste facilities

    Energy Technology Data Exchange (ETDEWEB)

    Carnes, S.A.; Copenhaver, E.D.; Reed, J.H.; Soderstrom, E.J.; Sorensen, J.H.; Peelle, E.; Bjornstad, D.J.

    1982-08-01

    The importance of social and institutional issues in the siting of nuclear waste facilities has been recognized in recent years. Limited evidence from a survey of rural Wisconsin residents in 1980 indicates that incentives may help achieve the twin goals of increasing local support and decreasing local opposition to hosting nuclear waste facilities. Incentives are classified according to functional categories (i.e., mitigation, compensation, and reward) and the conditions which may be prerequisites to the use of incentives are outlined (i.e., guarantee of public health and safety, some measure of local control, and a legitimation of negotiations during siting). Criteria for evaluating the utility of incentives in nuclear waste repository siting are developed. Incentive packages may be more useful than single incentives, and nonmonetary incentives, such as independent monitoring and access to credible information, may be as important in eliciting support as monetary incentives. Without careful attention to prerequisites in the siting process it is not likely that incentives will facilitate the siting process.

  12. Incentives and the siting of radioactive waste facilities

    International Nuclear Information System (INIS)

    Carnes, S.A.; Copenhaver, E.D.; Reed, J.H.; Soderstrom, E.J.; Sorensen, J.H.; Peelle, E.; Bjornstad, D.J.

    1982-08-01

    The importance of social and institutional issues in the siting of nuclear waste facilities has been recognized in recent years. Limited evidence from a survey of rural Wisconsin residents in 1980 indicates that incentives may help achieve the twin goals of increasing local support and decreasing local opposition to hosting nuclear waste facilities. Incentives are classified according to functional categories (i.e., mitigation, compensation, and reward) and the conditions which may be prerequisites to the use of incentives are outlined (i.e., guarantee of public health and safety, some measure of local control, and a legitimation of negotiations during siting). Criteria for evaluating the utility of incentives in nuclear waste repository siting are developed. Incentive packages may be more useful than single incentives, and nonmonetary incentives, such as independent monitoring and access to credible information, may be as important in eliciting support as monetary incentives. Without careful attention to prerequisites in the siting process it is not likely that incentives will facilitate the siting process

  13. Recent advances in yeast cell-surface display technologies for waste biorefineries.

    Science.gov (United States)

    Liu, Zhuo; Ho, Shih-Hsin; Hasunuma, Tomohisa; Chang, Jo-Shu; Ren, Nan-Qi; Kondo, Akihiko

    2016-09-01

    Waste biorefinery aims to maximize the output of value-added products from various artificial/agricultural wastes by using integrated bioprocesses. To make waste biorefinery economically feasible, it is thus necessary to develop a low-cost, environment-friendly technique to perform simultaneous biodegradation and bioconversion of waste materials. Cell-surface display engineering is a novel, cost-effective technique that can auto-immobilize proteins on the cell exterior of microorganisms, and has been applied for use with waste biofinery. Through tethering different enzymes (e.g., cellulase, lipase, and protease) or metal-binding peptides on cell surfaces, various yeast strains can effectively produce biofuels and biochemicals from sugar/protein-rich waste materials, catalyze waste oils into biodiesels, or retrieve heavy metals from wastewater. This review critically summarizes recent applications of yeast cell-surface display on various types of waste biorefineries, highlighting its potential and future challenges with regard to commercializing this technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Multi-Product Microalgae Biorefineries: From Concept Towards Reality.

    Science.gov (United States)

    't Lam, G P; Vermuë, M H; Eppink, M H M; Wijffels, R H; van den Berg, C

    2018-02-01

    Although microalgae are a promising biobased feedstock, industrial scale production is still far off. To enhance the economic viability of large-scale microalgae processes, all biomass components need to be valorized, requiring a multi-product biorefinery. However, this concept is still too expensive. Typically, downstream processing of industrial biotechnological bulk products accounts for 20-40% of the total production costs, while for a microalgae multi-product biorefinery the costs are substantially higher (50-60%). These costs are high due to the lack of appropriate and mild technologies to access the different product fractions such as proteins, carbohydrates, and lipids. To reduce the costs, simplified processes need to be developed for the main unit operations including harvesting, cell disruption, extraction, and possibly fractionation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Environmental performances of coproducts. Application of Claiming-Based Allocation models to straw and vetiver biorefineries in an Indian context.

    Science.gov (United States)

    Gnansounou, Edgard; Raman, Jegannathan Kenthorai

    2018-04-24

    Among the renewables, non-food and wastelands based biofuels are essential for the transport sector to achieve country's climate mitigation targets. With the growing interest in biorefineries, setting policy requirements for other coproducts along with biofuels is necessary to improve the products portfolio of biorefinery, increase the bioproducts perception by the consumers and push the technology forward. Towards this context, Claiming-Based allocation models were used in comparative life cycle assessment of multiple products from wheat straw biorefinery and vetiver biorefinery. Vetiver biorefinery shows promising Greenhouse gas emission savings (181-213%) compared to the common crop based lignocellulose (wheat straw) biorefinery. Assistance of Claiming-Based Allocation models favors to find out the affordable allocation limit (0-80%) among the coproducts in order to achieve the individual prospective policy targets. Such models show promising application in multiproduct life cycle assessment studies where appropriate allocation is challenging to achieve the individual products emission subject to policy targets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Optimal processing pathway selection for microalgae-based biorefinery under uncertainty

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Zaman, Muhammad; Lee, Jay H.

    2015-01-01

    We propose a systematic framework for the selection of optimal processing pathways for a microalgaebased biorefinery under techno-economic uncertainty. The proposed framework promotes robust decision making by taking into account the uncertainties that arise due to inconsistencies among...... and shortage in the available technical information. A stochastic mixed integer nonlinear programming (sMINLP) problem is formulated for determining the optimal biorefinery configurations based on a superstructure model where parameter uncertainties are modeled and included as sampled scenarios. The solution...... the accounting of uncertainty are compared with respect to different objectives. (C) 2015 Elsevier Ltd. All rights reserved....

  17. Determinations of TSD facility acceptability under the CERCLA Off-Site Rule

    International Nuclear Information System (INIS)

    1997-06-01

    On September 22, 1993, the US Environmental Protection Agency (EPA) published the ''Off-Site Rule'' to implement section 121(d)(3) of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). CERCLA section 121(d)(3) requires that wastes generated as a result of remediation activities taken under CERCLA authority and transferred off-site be managed only at facilities that comply with the Resource Conservation and Recovery Act. In 1994, the DOE's Office of Environmental Policy and Assistance (OEPA), RCRA/CERCLA Division (EH-413) published a CERCLA Information Brief titled ''The Off-Site Rule'' which describes the content of the Off-Site Rule and clarifies some of its implications for DOE remedial actions under CERCLA. Additionally, EH-413 published the Guide on Selecting Compliant Off-Site Hazardous Waste Treatment, Storage and Disposal Facilities which provides a regulatory roadmap for accomplishing off-site transfers of environmental restoration and process hazardous waste at DOE facilities in a manner compliant with the Off-Site Rule and other relevant Federal regulations. Those guidance documents concentrate primarily on DOE's perspective as a hazardous waste generator. The purpose of this Information Brief is to address the implications of the Off-Site Rule for DOE-owned hazardous waste treatment, storage or disposal facilities that accept CERCLA remediation wastes from off-site locations

  18. Process design, supply chain, economic and environmental analysis for chemical production in a glycerol biorefinery: Towards the sustainable design of biorefineries

    DEFF Research Database (Denmark)

    Loureiro da Costa Lira Gargalo, Carina

    are developed, where uncertainty and sensitivity analysis play a significant role. Nevertheless, in order to further advance the development and implementation of glyc-erol based biorefinery concepts, it is critical to analyze the glycerol conversion into high value-added products in a holistic manner......, considering both production as well as the logistics aspects related to the supply chain structure. Therefore, the boundaries of anal-ysis were extended to include all activities and operations involved in the glycerol-based biorefinery to bioproducts supply chain. To this end, the GlyThink model is proposed...... so as to identify operational decisions - including locations, capacity levels, technologies and product portfolio, as well as strategic decisions such as inventory levels, production amounts and transportation to the final markets. GlyThink is a multi-period, multi-stage and multi-product Mixed...

  19. Designation of facility usage categories for Hanford Site facilities

    International Nuclear Information System (INIS)

    Woodrich, D.D.; Ellingson, D.R.; Scott, M.A.; Schade, A.R.

    1991-10-01

    This report summarizes the Hanford Site methodology used to ensure facility compliance with the natural phenomena design criteria set forth in the US Department of Energy Orders and guidance. The current Hanford Site methodology for Usage Category designation is based on an engineered feature's safety function and on the feature's assigned Safety Class. At the Hanford Site, Safety Class assignments are deterministic in nature and are based on teh consequences of failure, without regard to the likelihood of occurrence. The report also proposes a risk-based approach to Usage Category designation, which is being considered for future application at the Hanford Site. To establish a proper Usage Category designation, the safety analysis and engineering design processes must be coupled. This union produces a common understanding of the safety function(s) to be accomplished by the design feature(s) and a sound basis for the assignment of Usage Categories to the appropriate systems, structures, and components. 4 refs., 9 figs., 1 tab

  20. Preliminary site requirements and considerations for a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    1991-08-01

    This report presents preliminary requirements and considerations for siting monitored retrievable storage (MRS) facility. It purpose is to provide guidance for assessing the technical suitability of potential sites for the facility. It has been reviewed by the NRC staff, which stated that this document is suitable for ''guidance in making preliminary determinations concerning MRS site suitability.'' The MRS facility will be licensed by the US Nuclear Regulatory Commission. It will receive spent fuel from commercial nuclear power plants and provide a limited amount of storage for this spent fuel. When a geologic repository starts operations, the MRS facility will also stage spent-fuel shipments to the repository. By law, storage at the MRS facility is to be temporary, with permanent disposal provided in a geologic repository to be developed by the DOE

  1. Operators guide: Atmospheric Release Advisory Capability (ARAC) site facility

    International Nuclear Information System (INIS)

    Cassaro, E.; Lomonaco, L.

    1979-01-01

    The Atmospheric Release Advisory Capability (ARAC) is designed to help officials at designated DOE sites and other locations in estimating the effects of atmospheric releases of radionuclides or other hazardous materials by issuing real-time advisories to guide them in their planning. This report outlines the capabilities and sources of ARAC, and in more detail describes an ARAC Site Facility, its operating procedures and interactions with the ARAC Central Facility (ACF) located at LLL

  2. Design methodology for integrated downstream separation systems in an ethanol biorefinery

    Science.gov (United States)

    Mohammadzadeh Rohani, Navid

    Energy security and environmental concerns have been the main drivers for a historic shift to biofuel production in transportation fuel industry. Biofuels should not only offer environmental advantages over the petroleum fuels they replace but also should be economically sustainable and viable. The so-called second generation biofuels such as ethanol which is the most produced biofuel are mostly derived from lignocellulosic biomasses. These biofuels are more difficult to produce than the first generation ones mainly due to recalcitrance of the feedstocks in extracting their sugar contents. Costly pre-treatment and fractionation stages are required to break down lignocellulosic feedstocks into their constituent elements. On the other hand the mixture produced in fermentation step in a biorefinery contains very low amount of product which makes the subsequent separation step more difficult and more energy consuming. In an ethanol biorefinery, the dilute fermentation broth requires huge operating cost in downstream separation for recovery of the product in a conventional distillation technique. Moreover, the non-ideal nature of ethanol-water mixture which forms an iseotrope at almost 95 wt%, hinders the attainment of the fuel grade ethanol (99.5 wt%). Therefore, an additional dehydration stage is necessary to purify the ethanol from its azeotropic composition to fuel-grade purity. In order to overcome the constraint pertaining to vapor-liquid equilibrium of ethanol-water separation, several techniques have been investigated and proposed in the industry. These techniques such as membrane-based technologies, extraction and etc. have not only sought to produce a pure fuel-grade ethanol but have also aimed at decreasing the energy consumption of this energy-intensive separation. Decreasing the energy consumption of an ethanol biorefinery is of paramount importance in improving its overall economics and in facilitating the way to displacing petroleum transportation fuel

  3. Swedish Pulp Mill Biorefineries. A vision of future possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Berntsson, Thore (Chamers Univ. of Technology, Goeteborg (Sweden)); Axegaard, Peter; Backlund, Birgit; Samuelsson, Aasa; Berglin, Niklas; Lindgren, Karin (STFI-Packforsk, Stockholm (Sweden))

    2008-07-01

    Today, modern science could make it possible to develop techniques for refining almost the whole wood-matter, pulp mill side streams and bark compounds into platform chemicals, electricity, high quality fuels and structured feed-stock for chemicals and materials. The major challenge is to convert the state of basic scientific knowledge into industrial practise. Our definition of an integrated biorefinery is: 'Full utilization of the incoming biomass and other raw materials for simultaneous and economically optimized production of fibres, chemicals and energy'. Examples of products from a pulp mill biorefinery are: Chemicals and Materials (Phenols, adhesives, carbon fibres, activated carbon, binders, barriers, adhesives, antioxidants, surfactants, chelants, solvents, adhesives surfactants, descaling agents, specialty polymers, pharmaceuticals, nutraceuticals, cosmetics etc., Biofuels (pellets, lignin fuel, methanol, DME, ethanol etc), Electricity (BLGCC, condensing power etc.). The new or increased amounts of traditional products can be made from internal and/or external biomass. Three different levels can be identified: A high degree of energy saving in future mills, especially chemical pulp mills, will lead to large amounts of excess internal biomass which can be transferred to products mentioned above, Components in e.g. the black liquor, forest residues and bark can be upgraded to more valuable ones and the energy balance of the mill is kept through fuel import, wholly or partly depending on the level of mill energy efficiency. This imported fuel can be biomass or other types. External (imported) biomass (in some cases together with excess internal biomass) can be upgraded using synergy effects of docking this upgrading to a pulp mill. Electricity has been included as one of the possible biorefinery products. The electricity production in a mill can be increased in several ways which cannot be directly considered as biorefineries, e.g. recovery boiler

  4. Sustainability considerations for integrated biorefineries.

    Science.gov (United States)

    Azapagic, Adisa

    2014-01-01

    Integrated biorefineries have the potential to contribute towards sustainable production of transportation fuels, energy, and chemicals. However, because there are currently no commercial biorefining plants in operation, it is not clear how sustainable they really are. This paper sets out to examine key issues associated with biorefining that should be considered carefully along the whole supply chain to ensure sustainable development of the sector. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Solazyme Integrated Biorefinery (SzIBR): Diesel Fuels from Heterotrophic Algae

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, David [Solazyme, Inc., South San Francisco, CA (United States)

    2014-12-23

    Under Department of Energy Award Number DE-EE0002877 (the “DOE Award”), Solazyme, Inc. (“Solazyme”) has built a demonstration scale “Solazyme Integrated Biorefinery (SzlBR).” The SzIBR was built to provide integrated scale-up of Solazyme’s novel heterotrophic algal oil biomanufacturing process, validate the projected commercial-scale economics of producing multiple algal oils, and to enable Solazyme to collect the data necessary to complete the design of its first commercial-scale facility. Solazyme’s technology enables it to convert a range of low-cost plant-based sugars into high-value oils. Solazyme’s renewable products replace or enhance oils derived from the world’s three existing sources—petroleum, plants, and animal fats. Solazyme tailors the composition of its oils to address specific customer requirements, offering superior performance characteristics and value. This report summarizes history and the results of the project.

  6. Building arrangement and site layout design guides for on site low level radioactive waste storage facilities

    International Nuclear Information System (INIS)

    McMullen, J.W.; Feehan, M.J.

    1986-01-01

    Many papers have been written by AE's and utilities describing their onsite storage facilities, why they are needed, NRC regulations, and disposal site requirements. This paper discusses a typical storage facility and address the design considerations and operational aspects that are generally overlooked when designing and siting a low level radioactive waste storage facility. Some topics to be addressed are: 1. Container flexibility; 2. Modular expansion capabilities; 3. DOT regulations; 4. Meterological requirements; 5. OSHA; 6. Fire protection; 7. Floods; 8. ALARA

  7. Nuclear facility decommissioning and site remedial actions

    International Nuclear Information System (INIS)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies

  8. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  9. Integration of Biorefineries and Nuclear Cogeneration Power Plants - A Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Sherrell R [ORNL; Flanagan, George F [ORNL; Borole, Abhijeet P [ORNL

    2009-03-01

    Biomass-based ethanol and nuclear power are two viable elements in the path to U.S. energy independence. Numerous studies suggest nuclear power could provide a practical carbon-free heat source alternative for the production of biomass-based ethanol. In order for this coupling to occur, it is necessary to examine the interfacial requirements of both nuclear power plants and bioethanol refineries. This report describes the proposed characteristics of a small cogeneration nuclear power plant, a biochemical process-based cellulosic bioethanol refinery, and a thermochemical process-based cellulosic biorefinery. Systemic and interfacial issues relating to the co-location of either type of bioethanol facility with a nuclear power plant are presented and discussed. Results indicate future co-location efforts will require a new optimized energy strategy focused on overcoming the interfacial challenges identified in the report.

  10. Integration of Biorefineries and Nuclear Cogeneration Power Plants - A Preliminary Analysis

    International Nuclear Information System (INIS)

    Greene, Sherrell R.; Flanagan, George F.; Borole, Abhijeet P.

    2009-01-01

    Biomass-based ethanol and nuclear power are two viable elements in the path to U.S. energy independence. Numerous studies suggest nuclear power could provide a practical carbon-free heat source alternative for the production of biomass-based ethanol. In order for this coupling to occur, it is necessary to examine the interfacial requirements of both nuclear power plants and bioethanol refineries. This report describes the proposed characteristics of a small cogeneration nuclear power plant, a biochemical process-based cellulosic bioethanol refinery, and a thermochemical process-based cellulosic biorefinery. Systemic and interfacial issues relating to the co-location of either type of bioethanol facility with a nuclear power plant are presented and discussed. Results indicate future co-location efforts will require a new optimized energy strategy focused on overcoming the interfacial challenges identified in the report.

  11. Modern microbial solid state fermentation technology for future biorefineries for the production of added-value products

    Directory of Open Access Journals (Sweden)

    Musaalbakri Abdul Manan

    2017-12-01

    Full Text Available The promise of industrial biotechnology has been around since Chaim Weizmann developed acetone–butanol–ethanol fermentation at the University of Manchester in 1917 and the prospects nowadays look brighter than ever. Today’s biorefinery technologies would be almost unthinkable without biotechnology. This is a growing trend and biorefineries have also increased in importance in agriculture and the food industry. Novel biorefinery processes using solid state fermentation (SSF technology have been developed as alternative to conventional processing routes, leading to the production of added-value products from agriculture and food industry raw materials. SSF involves the growth of microorganisms on moist solid substrate in the absence of free-flowing water. Future biorefineries based on SSF aim to exploit the vast complexity of the technology to modify biomass produced by agriculture and the food industry for valuable by-products through microbial bioconversion. In this review, a summary has been made of the attempts at using modern microbial SSF technology for future biorefineries for the production of many added-value products ranging from feedstock for the fermentation process and biodegradable plastics to fuels and chemicals.

  12. Biorefinery: from biomass to chemicals and fuels

    National Research Council Canada - National Science Library

    Aresta, M; Dibenedetto, Angela; Dumeignil, Franck

    2012-01-01

    ... to end-user requirements) of advanced biorefineries. This concept attempts to integrate the different scientific and industrial communities with the expectation to achieve a breakthrough beyond the "business as usual" scenario. DG Research has been frequently requested to work in closer coordination between its different Themes in order to better answer ...

  13. Potential sites for a spent unreprocessed fuel facility (SURFF), southwesten part of the Nevada Test Site

    International Nuclear Information System (INIS)

    Hoover, D.L.; Eckel, E.B.; Ohl, J.P.

    1978-01-01

    In the absence of specific criteria, the topography, geomorphology, and geology of Jackass Flats and vicinity in the southwestern part of the Nevada Test Site are evaluated by arbitrary guidelines for a Spent Unreprocessed Fuel Facility. The guidelines include requirements for surface slopes of less than 5%, 61 m of alluvium beneath the site, an area free of active erosion or deposition, lack of faults, a minimum area of 5 km 2 , no potential for flooding, and as many logistical support facilities as possible. The geology of the Jackass Flats area is similar to the rest of the Nevada Test Site in topographic relief (305-1,200 m), stratigraphy (complexly folded and faulted Paleozoic sediments overlain by Tertiary ash-flow tuffs and lavas overlain in turn by younger alluvium), and structure (Paleozoic thrust faults and folds, strike-slip faults, proximity to volcanic centers, and Basin and Range normal faults). Of the stratigraphic units at the potential Spent Unreprocessed Fuel Facility site in Jackass Flats, only the thickness and stability of the alluvium are of immediate importance. Basin and Range faults and a possible extension of the Mine Mountain fault need further investigation. The combination of a slope map and a simplified geologic and physiographic map into one map shows several potential sites for a Spent Unreprocessed Fuel Facility in Jackass Flats. The potential areas have slopes of less than 5% and contain only desert pavement or segmented pavement--the two physiographic categories having the greatest geomorphic and hydraulic stability. Before further work can be done, specific criteria for a Spent Unreprocessed Fuel Facility site must be defined. Following criteria definition, potential sites will require detailed topographic and geologic studies, subsurface investigations (including geophysical methods, trenching, and perhaps shallow drilling for faults in alluvium), detailed surface hydrologic studies, and possibly subsurface hydrologic studies

  14. A New Proposal Of Cellulosic Ethanol To Boost Sugarcane Biorefineries: Techno-economic Evaluation

    OpenAIRE

    Albarelli J.Q.; Ensinas A.V.; Silva M.A.

    2014-01-01

    Commercial simulator Aspen Plus was used to simulate a biorefinery producing ethanol from sugarcane juice and second generation ethanol production using bagasse fine fraction composed of parenchyma cells (P-fraction). Liquid hot water and steam explosion pretreatment technologies were evaluated. The processes were thermal and water integrated and compared to a biorefinery producing ethanol from juice and sugarcane bagasse. The results indicated that after thermal and water integration, the ev...

  15. Environmental justice: Implications for siting of Federal Radioactive Waste Management Facilities

    International Nuclear Information System (INIS)

    Easterling, J.B.; Poles, J.S.

    1994-01-01

    Environmental justice is a term that has developed as a result of our need to address whether some of the environmental decisions we have made -- and others we will make -- are fair. The idea of environmental justice has been actively pursued by the Clinton Administration, and this consideration has resulted in Executive Order 12898, which was signed by President Clinton on February 11, 1994. The Executive Order calls for adverse impacts of Federal actions on minority or low-income populations to be identified before decisions implementing those actions are made. Numerous studies show that noxious facilities, such as incinerators and landfills, have been constructed in minority or low-income communities. And since the Department has not yet decided on sites for high-level waste storage or disposal facilities, it will have to take the new Executive Order into consideration as another piece in the complicated quilt of requirements that cover facility siting. An interesting twist to this is the fact that twenty Native American Indian Tribes expressed interest in voluntarily hosting a high-level radioactive waste management facility for temporary storage. They made these expressions on their own initiative, and several Tribes continue to pursue the idea of negotiations with either the Federal Government or private entities to locate a temporary storage site on Tribal land. The Executive Order goes beyond simply studying the effect of siting a facility and addresses in spirit a criticism that the Federal Government has been guilty of open-quotes environmental racismclose quotes in its siting policies -- that it has intentionally picked minority or low-income communities for waste management facilities. What Department of Energy staff and others may have considered foregone conclusions in terms of interim storage facility siting and transportation options will have to be reevaluated for compatibility with provisions of the new Executive Order

  16. Perceived risk impacts from siting hazardous waste facilities

    International Nuclear Information System (INIS)

    Hemphill, R.C.; Edwards, B.K.; Bassett, G.W. Jr.

    1992-01-01

    This paper describes methods for evaluating perception-based economic impacts resulting from siting hazardous waste facilities. Socioeconomic impact analysis has devoted increasing attention to the potential implications of changed public perceptions of risk due to an activity or situation. This contrasts with traditional socioecconomic impact analysis, which has been limited to measuring direct and indirect consequences of activities, e.g., the employment effects of placing a military base in a specified location. Approaches to estimating economic impacts due to changes in public perceptions are ex ante or ex post. The former predict impacts prior to the construction and operation of a facility, while the later is based on impacts that become evident only when the facility is up and running. The theoretical foundations and practical requirements for demonstrating impacts, resulting from the siting of a hazardous facility are described. The theoretical rationale supporting the study of perceived risk research is presented along with discussion of problems that arise in demonstrating the existence and measuring the quantitative importance of economic impacts due to changes in perceived risk. The high-level nuclear waste facility being considered in Nevada is presented as an example in which there is potential for impacts, but where the link between perceived risk and economic conditions has not yet been developed

  17. Perceived risk impacts from siting hazardous waste facilities

    International Nuclear Information System (INIS)

    Hemphill, R.C.; Edwards, B.K.; Bassett, G.W. Jr.

    1992-01-01

    This paper describes methods for evaluating perception-based economic impacts resulting from siting hazardous waste facilities. Socioeconomic impact analysis has devoted increasing attention to the potential implications of changed public perceptions of risk due to an activity or situation. This contrasts with traditional socioeconomic impact analysis, which has been limited to measuring direct and indirect consequences of activities, e.g., the employment effects of placing a military base in a specified location. Approaches to estimating economic impacts due to changes in public perceptions are ex ante or ex post. The former predict impacts prior to the construction and operation of a facility, while the later is based on impacts that become evident only when the facility is up and running. The theoretical foundations and practical requirements for demonstrating impacts resulting from the siting of a hazardous facility are described. The theoretical rationale supporting the study of perceived risk research is presented along with discussion of problems that arise in demonstrating the existence and measuring the quantitative importance of economic impacts due to changes in perceived risk. The high-level nuclear waste facility being considered in Nevada is presented as an example in which there is potential for impacts, but where the link between perceived risk and economic conditions has not yet been developed

  18. Mixed waste disposal facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Wells, M.N.; Bailey, L.L.

    1991-01-01

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission

  19. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP)

  20. Design of a biomass-to-biorefinery logistics system through bio-inspired metaheuristic optimization considering multiple types of feedstocks

    Science.gov (United States)

    Trueba, Isidoro

    Bioenergy has become an important alternative source of energy to alleviate the reliance on petroleum energy. Bioenergy offers significant potential to mitigate climate change by reducing life-cycle greenhouse gas emissions relative to fossil fuels. The Energy Independence and Security Act mandate the use of 21 billion gallons of advanced biofuels including 16 billion gallons of cellulosic biofuels by the year 2022. It is clear that Biomass can make a substantial contribution to supplying future energy demand in a sustainable way. However, the supply of sustainable energy is one of the main challenges that mankind will face over the coming decades. For instance, many logistical challenges will be faced in order to provide an efficient and reliable supply of quality feedstock to biorefineries. 700 million tons of biomass will be required to be sustainably delivered to biorefineries annually to meet the projected use of biofuels by the year of 2022. This thesis is motivated by the urgent need of advancing knowledge and understanding of the highly complex biofuel supply chain. While corn ethanol production has increased fast enough to keep up with the energy mandates, production of biofuels from different types of feedstocks has also been incremented. A number of pilot and demonstration scale advanced biofuel facilities have been set up, but commercial scale facilities are yet to become operational. Scaling up this new biofuel sector poses significant economic and logistical challenges for regional planners and biofuel entrepreneurs in terms of feedstock supply assurance, supply chain development, biorefinery establishment, and setting up transport, storage and distribution infrastructure. The literature also shows that the larger cost in the production of biomass to ethanol originates from the logistics operation therefore it is essential that an optimal logistics system is designed in order to keep low the costs of producing ethanol and make possible the shift from

  1. Application of CAPEC Lipid Property Databases in the Synthesis and Design of Biorefinery Networks

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona; Cunico, Larissa; Gani, Rafiqul

    Petroleum is currently the primary raw material for the production of fuels and chemicals. Consequently, our society is highly dependent on fossil non-renewable resources. However, renewable raw materials are recently receiving increasing interest for the production of chemicals and fuels, so a n...... of biorefinery networks. The objective of this work is to show the application of databases of physical and thermodynamic properties of lipid components to the synthesis and design of biorefinery networks.......]. The wide variety and complex nature of components in biorefineries poses a challenge with respect to the synthesis and design of these types of processes. Whereas physical and thermodynamic property data or models for petroleum-based processes are widely available, most data and models for biobased...

  2. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  3. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria

  4. Trends in decision making for the siting of waste management facilities

    International Nuclear Information System (INIS)

    Vari, A.

    2000-01-01

    Over the last two decades a number of research studies on waste management facility siting have been produced. A Facility Siting Credo exists (Kunreuther et al., 1993). It identifies a comprehensive set of criteria for successful siting, but relationships between them (complementary, conflicting) have not been investigated. An attempt has been made to identify a conceptual framework which helps to structure siting criteria based on Competing Values Approach (CVA) to organisational analysis (Quinn and Rohrbaugh, 1983). Competing values include goal-centred, data-based, participatory, and adaptable processes, as well as efficient, accountable, supportable, and legitimate decisions. Case studies: Analysing LLRW disposal facility siting processes in the US (California, Illinois, Nebraska, New York, and Texas), Canada, France, the Netherlands, Sweden, and Switzerland (1980-1993) by using the CVA framework (Vari et al., 1994). Analysis of LALW siting processes in Hungary (1985-99) (Juhasz et al., 1993; Ormai et al., 1998; Ormai, 1999). (author)

  5. Impact of the resource conservation and recovery act on energy facility siting

    International Nuclear Information System (INIS)

    Tevepaugh, C.W.

    1982-01-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 is a multifaceted approach to the management of both solid and hazardous waste. The focus of this research is on the RCRA mandated proposed regulations for the siting of hazardous waste disposal facilities. This research is an analysis of the interactions among hazardous waste disposal facilities, energy supply technologies and land use issues. This study addresses the impact of RCRA hazardous waste regulations in a descriptive and exploratory manner. A literature and legislative review, interviews and letters of inquiry were synthesized to identify the relationship between RCRA hazardous waste regulations and the siting of selected energy supply technologies. The results of this synthesis were used to determine if and how RCRA influences national land use issues. It was found that the interaction between RCRA and the siting of hazardous waste disposal facilities required by energy supply technologies will impact national land use issues. All energy supply technologies reviewed generate hazardous waste. The siting of industrial functions such as energy supply facilities and hazardous waste disposal facilities will influence future development patterns. The micro-level impacts from the siting of hazardous waste disposal facilities will produce a ripple effect on land use with successive buffer zones developing around the facilities due to the interactive growth of the land use sectors

  6. Use of compensation and incentives in siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1985-04-01

    This report assumes that local opposition is a critical issue in siting low-level radioactive waste disposal facilities. Although it recognizes the importance of local health and safety concerns, this report only addresses the economic issues facing local officials in the siting process. Finding ways to overcome local opposition through economic compensation and incentives is a basic step in the waste facility siting process. The report argues that the use of these compensation and incentive mechanisms can help achieve greater local acceptance of waste facilities and also help ease the economic burdens that many communities bear when they agree to host a low-level waste disposal facility. The growing national need for low-level radioactive waste disposal facilities requires that state and local planning agencies develop creative new procedures for siting facilities, procedures that are sensitive to local perceptions and effects

  7. World scale fuel methanol facility siting

    International Nuclear Information System (INIS)

    Stapor, M.C.; Hederman, W.F.

    1990-01-01

    Since the Administration announced a clean alternative fuels initiative, industry and government agencies' analyses of the economics of methanol as an alternative motor vehicle fuel have accelerated. In the short run, methanol appears attractive because excess production capacity currently has depressed methanol prices and marginal costs of production are lower than other fuels (current excess capacity). In the long run, however, full costs are the more relevant. To lower average production costs, U.S. policy interest has focused on production from a world-scale, 10,000 tons per day (tpd) methanol plant facility on a foreign site. This paper reviews several important site and financial considerations in a framework to evaluate large scale plant development. These considerations include: risks associated with a large process plant; supply economics of foreign sites; and investment climates and financial incentives for foreign investment at foreign sites

  8. National Ignition Facility subsystem design requirements NIF site improvements SSDR 1.2.1

    International Nuclear Information System (INIS)

    Kempel, P.; Hands, J.

    1996-01-01

    This Subsystem Design Requirements (SSDR) document establishes the performance, design, and verification requirements associated with the NIF Project Site at Lawrence Livermore National Laboratory (LLNL) at Livermore, California. It identifies generic design conditions for all NIF Project facilities, including siting requirements associated with natural phenomena, and contains specific requirements for furnishing site-related infrastructure utilities and services to the NIF Project conventional facilities and experimental hardware systems. Three candidate sites were identified as potential locations for the NIF Project. However, LLNL has been identified by DOE as the preferred site because of closely related laser experimentation underway at LLNL, the ability to use existing interrelated infrastructure, and other reasons. Selection of a site other than LLNL will entail the acquisition of site improvements and infrastructure additional to those described in this document. This SSDR addresses only the improvements associated with the NIF Project site located at LLNL, including new work and relocation or demolition of existing facilities that interfere with the construction of new facilities. If the Record of Decision for the PEIS on Stockpile Stewardship and Management were to select another site, this SSDR would be revised to reflect the characteristics of the selected site. Other facilities and infrastructure needed to support operation of the NIF, such as those listed below, are existing and available at the LLNL site, and are not included in this SSDR. Office Building. Target Receiving and Inspection. General Assembly Building. Electro- Mechanical Shop. Warehousing and General Storage. Shipping and Receiving. General Stores. Medical Facilities. Cafeteria services. Service Station and Garage. Fire Station. Security and Badging Services

  9. Catalysis for biorefineries-performance criteria for industrial operation

    NARCIS (Netherlands)

    Lange, Jean Paul

    2016-01-01

    Past analyses of industrial processes for fuel and chemical manufacturing led to a few performance criteria that are critical for viable industrial operation. The present paper reviews these factors and provides a target window for each of them. It then illustrates their relevance for biorefineries

  10. Optimal design of a multi-product biorefinery system

    DEFF Research Database (Denmark)

    Zondervan, E.; Nawaz, Mehboob; de Haan, André B.

    2011-01-01

    In this paper we propose a biorefinery optimization model that can be used to find the optimal processing route for the production of ethanol, butanol, succinic acid and blends of these chemicals with fossil fuel based gasoline. The approach unites transshipment models with a superstructure...

  11. The observational approach for site remediation at federal facilities

    International Nuclear Information System (INIS)

    Myers, R.S.; Gianti, S.J.

    1989-11-01

    The observational approach, developed by geotechnical engineers to cope with the uncertainty associated with subsurface construction such as tunnels and dams, can be applied to hazardous waste site remediation. During the last year, the observational approach has gained increasing attention as a means of addressing the uncertainties involved in site remediation. In order to evaluate the potential advantages and constraints of applying the observational approach to site restoration at federal facilities, a panel of scientists and engineers from Pacific Northwest Laboratory and CH2M Hill was convened. Their review evaluated potential technical and institutional advantages and constraints that may affect the use of the observational approach for site remediation. This paper summarizes the panel's comments and conclusions about the application of the observational approach to site remediation at federal facilities. Key issues identified by the panel include management of uncertainty, cost and schedule, regulations and guidance, public involvement, and implementation. 5 refs

  12. Hanford tank initiative test facility site selection study

    International Nuclear Information System (INIS)

    Staehr, T.W.

    1997-01-01

    The Hanford Tanks Initiative (HTI) project is developing equipment for the removal of hard heel waste from the Hanford Site underground single-shell waste storage tanks. The HTI equipment will initially be installed in the 241-C-106 tank where its operation will be demonstrated. This study evaluates existing Hanford Site facilities and other sites for functional testing of the HTI equipment before it is installed into the 241-C-106 tank

  13. Use of compensation and incentives in siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Smith, T.P.; Jaffe, M.

    1984-09-01

    In discussing the use of compensation and incentives in siting low-level radioactive waste disposal facilities, chapters are devoted to: compensation and incentives in disposal facility siting (definitions and effects of compensation and incentives and siting decisions involving the use of compensation and incentives); the impacts of regional and state low-level radioactive waste facilities; the legal framework of compensation; and recommendations regarding the use of compensation

  14. Library Facility Siting and Location Handbook. The Greenwood Library Management Collection.

    Science.gov (United States)

    Koontz, Christine M.

    This handbook is a guide to the complex process of library facility siting and location. It includes relevant research and professionals' siting experiences, as well as actual case studies of closures, openings, mergers, and relocations of library facilities. While the bulk of the volume provides practical information, the work also presents an…

  15. Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept.

    Science.gov (United States)

    Hull, Claire M; Loveridge, E Joel; Donnison, Iain S; Kelly, Diane E; Kelly, Steven L

    2014-01-01

    Microbial biotechnology and biotransformations promise to diversify the scope of the biorefinery approach for the production of high-value products and biofuels from industrial, rural and municipal waste feedstocks. In addition to bio-based chemicals and metabolites, microbial biomass itself constitutes an obvious but overlooked by-product of existing biofermentation systems which warrants fuller attention. The probiotic yeast Saccharomyces boulardii is used to treat gastrointestinal disorders and marketed as a human health supplement. Despite its relatedness to S. cerevisiae that is employed widely in biotechnology, food and biofuel industries, the alternative applications of S. boulardii are not well studied. Using a biorefinery approach, we compared the bioethanol and biomass yields attainable from agriculturally-sourced grass juice using probiotic S. boulardii (strain MYA-769) and a commercial S. cerevisiae brewing strain (Turbo yeast). Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL(-1) and 4.96 [±0.15] g dry weight L(-1)) compared closely to those of Turbo (37.43 [±1.99] mg mL(-1) and 4.78 [±0.10] g L(-1), respectively). Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries. Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4.

  16. Techno-economic risk analysis of glycerol biorefinery concepts against market price fluctuation

    DEFF Research Database (Denmark)

    Gargalo, Carina L.; Cheali, Peam; Gernaey, Krist

    . The high-value added bio-products boost profitability, the high-volume fuel helps meet national energy targets, and the power production cuts costs and dodges greenhouse-gas emissions [1] [2] [3]. The increasing amount of biodiesel production worldwide (e.g. from vegetable oils, palm oil, animal fats......) and the associated economic risks against historical market fluctuations when assessing the economics of competing glycerol biorefinery concepts. The aim is to compare the fitness/survival of the biorefinery concepts under extreme market disturbances. To perform this analysis, we used a superstructure based...

  17. Bio-refinery approach for spent coffee grounds valorization.

    Science.gov (United States)

    Mata, Teresa M; Martins, António A; Caetano, Nídia S

    2018-01-01

    Although normally seen as a problem, current policies and strategic plans concur that if adequately managed, waste can be a source of the most interesting and valuable products, among which metals, oils and fats, lignin, cellulose and hemicelluloses, tannins, antioxidants, caffeine, polyphenols, pigments, flavonoids, through recycling, compound recovery or energy valorization, following the waste hierarchy. Besides contributing to more sustainable and circular economies, those products also have high commercial value when compared to the ones obtained by currently used waste treatment methods. In this paper, it is shown how the bio-refinery framework can be used to obtain high value products from organic waste. With spent coffee grounds as a case study, a sequential process is used to obtain first the most valuable, and then other products, allowing proper valorization of residues and increased sustainability of the whole process. Challenges facing full development and implementation of waste based bio-refineries are highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Food waste biorefinery: Sustainable strategy for circular bioeconomy.

    Science.gov (United States)

    Dahiya, Shikha; Kumar, A Naresh; Shanthi Sravan, J; Chatterjee, Sulogna; Sarkar, Omprakash; Mohan, S Venkata

    2018-01-01

    Enormous quantity of food waste (FW) is becoming a global concern. To address this persistent problem, sustainable interventions with green technologies are essential. FW can be used as potential feedstock in biological processes for the generation of various biobased products along with its remediation. Enabling bioprocesses like acidogenesis, fermentation, methanogenesis, solventogenesis, photosynthesis, oleaginous process, bio-electrogenesis, etc., that yields various products like biofuels, platform chemicals, bioelectricity, biomaterial, biofertilizers, animal feed, etc can be utilized for FW valorisation. Integrating these bioprocesses further enhances the process efficiency and resource recovery sustainably. Adapting biorefinery strategy with integrated approach can lead to the development of circular bioeconomy. The present review highlights the various enabling bioprocesses that can be employed for the generation of energy and various commodity chemicals in an integrated approach addressing sustainability. The waste biorefinery approach for FW needs optimization of the cascade of the individual bioprocesses for the transformation of linear economy to circular bioeconomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals

    International Nuclear Information System (INIS)

    Cherubini, Francesco

    2010-01-01

    A great fraction of worldwide energy carriers and material products come from fossil fuel refinery. Because of the on-going price increase of fossil resources, their uncertain availability, and their environmental concerns, the feasibility of oil exploitation is predicted to decrease in the near future. Therefore, alternative solutions able to mitigate climate change and reduce the consumption of fossil fuels should be promoted. The replacement of oil with biomass as raw material for fuel and chemical production is an interesting option and is the driving force for the development of biorefinery complexes. In biorefinery, almost all the types of biomass feedstocks can be converted to different classes of biofuels and biochemicals through jointly applied conversion technologies. This paper provides a description of the emerging biorefinery concept, in comparison with the current oil refinery. The focus is on the state of the art in biofuel and biochemical production, as well as discussion of the most important biomass feedstocks, conversion technologies and final products. Through the integration of green chemistry into biorefineries, and the use of low environmental impact technologies, future sustainable production chains of biofuels and high value chemicals from biomass can be established. The aim of this bio-industry is to be competitive in the market and lead to the progressive replacement of oil refinery products. (author)

  20. Towards lactic acid bacteria-based biorefineries.

    Science.gov (United States)

    Mazzoli, Roberto; Bosco, Francesca; Mizrahi, Itzhak; Bayer, Edward A; Pessione, Enrica

    2014-11-15

    Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Assessing the environmental sustainability of ethanol from integrated biorefineries.

    Science.gov (United States)

    Falano, Temitope; Jeswani, Harish K; Azapagic, Adisa

    2014-06-01

    This paper considers the life cycle environmental sustainability of ethanol produced in integrated biorefineries together with chemicals and energy. Four types of second-generation feedstocks are considered: wheat straw, forest residue, poplar, and miscanthus. Seven out of 11 environmental impacts from ethanol are negative, including greenhouse gas (GHG) emissions, when the system is credited for the co-products, indicating environmental savings. Ethanol from poplar is the best and straw the worst option for most impacts. Land use change from forest to miscanthus increases the GHG emissions several-fold. For poplar, the effect is opposite: converting grassland to forest reduces the emissions by three-fold. Compared to fossil and first-generation ethanol, ethanol from integrated biorefineries is more sustainable for most impacts, with the exception of wheat straw. Pure ethanol saves up to 87% of GHG emissions compared to petrol per MJ of fuel. However, for the current 5% ethanol-petrol blends, the savings are much smaller (biorefineries to the reduction of GHG emissions will be insignificant. Yet, higher ethanol blends would lead to an increase in some impacts, notably terrestrial and freshwater toxicity as well as eutrophication for some feedstocks. © 2014 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  2. National Ignition Facility Site Management Plan

    International Nuclear Information System (INIS)

    Roberts, V.

    1997-01-01

    The purpose of the NIF Site Management Plan is to describe the roles, responsibilities, and interfaces for the major NIF Project organizations involved in construction of the facility, installation and acceptance testing of special equipment, and the NIF activation. The plan also describes the resolution of priorities and conflicts. The period covered is from Critical Decision 3 (CD3) through the completion of the Project. The plan is to be applied in a stepped manner. The steps are dependent on different elements of the project being passed from the Conventional Facilities (CF) Construction Manager (CM), to the Special Equipment (SE) CMs, and finally to the Activation/ Start-Up (AS) CM. These steps are defined as follows: The site will be coordinated by CF through Project Milestone 310, end of conventional construction. The site is defined as the fenced area surrounding the facility and the CF laydown and storage areas. The building utilities that are installed by CF will be coordinated by CF through the completion of Project Milestone 310, end of conventional construction. The building utilities are defined as electricity, compressed air, de-ionized water, etc. Upon completion of the CF work, the Optics Assembly Building/Laser and Target Area Building (OAB/LTAB) will be fully operational. At that time, an Inertial Confinement Fusion (ICF) Program building coordinator will become responsible for utilities and site activities. * Step 1. Mid-commissioning (temperature stable, +1 degree C) of an area (e.g., Laser Bay 2, OAB) will precipitate the turnover of that area (within the four walls) from CF to SE. * Step 2. Interior to the turned-over space, SE will manage all interactions, including those necessary by CF. * Step 3. As the SE acceptance testing procedures (ATPS) are completed, AS will take over the management of the area and coordinate all interactions necessary by CF and SE. For each step, the corresponding CMs for CF, SE, or AS will be placed in charge of

  3. National Ignition Facility Site Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, V.

    1997-09-01

    The purpose of the NIF Site Management Plan is to describe the roles, responsibilities, and interfaces for the major NIF Project organizations involved in construction of the facility, installation and acceptance testing of special equipment, and the NIF activation. The plan also describes the resolution of priorities and conflicts. The period covered is from Critical Decision 3 (CD3) through the completion of the Project. The plan is to be applied in a stepped manner. The steps are dependent on different elements of the project being passed from the Conventional Facilities (CF) Construction Manager (CM), to the Special Equipment (SE) CMs, and finally to the Activation/ Start-Up (AS) CM. These steps are defined as follows: The site will be coordinated by CF through Project Milestone 310, end of conventional construction. The site is defined as the fenced area surrounding the facility and the CF laydown and storage areas. The building utilities that are installed by CF will be coordinated by CF through the completion of Project Milestone 310, end of conventional construction. The building utilities are defined as electricity, compressed air, de-ionized water, etc. Upon completion of the CF work, the Optics Assembly Building/Laser and Target Area Building (OAB/LTAB) will be fully operational. At that time, an Inertial Confinement Fusion (ICF) Program building coordinator will become responsible for utilities and site activities. * Step 1. Mid-commissioning (temperature stable, +1{degree}C) of an area (e.g., Laser Bay 2, OAB) will precipitate the turnover of that area (within the four walls) from CF to SE. * Step 2. Interior to the turned-over space, SE will manage all interactions, including those necessary by CF. * Step 3. As the SE acceptance testing procedures (ATPS) are completed, AS will take over the management of the area and coordinate all interactions necessary by CF and SE. For each step, the corresponding CMs for CF, SE, or AS will be placed in charge of

  4. Siting a low-level waste facility

    International Nuclear Information System (INIS)

    English, M.R.

    1988-01-01

    In processes to site disposal facilities for low-level radioactive waste, volunteerism and incentives packages hold more promise for attracting host communities than they have for attracting host states. But volunteerism and incentives packages can have disadvantages as well as advantages. This paper discusses their pros and cons and summarizes the different approaches that states are using in their relationships with local governments

  5. 77 FR 60125 - Generic Drug Facilities, Sites and Organizations

    Science.gov (United States)

    2012-10-02

    ...] Generic Drug Facilities, Sites and Organizations AGENCY: Food and Drug Administration, HHS. ACTION: Notice..., and certain sites and organizations identified in a generic drug submission, that they must provide... and Innovation Act (FDASIA). This notice is intended to help organizations ascertain if they need to...

  6. The Blue Ribbon Commission and siting radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Pescatore, C.

    2010-01-01

    On 21 September 2010, the NEA Secretariat was invited to address the Blue Ribbon Commission on America's Nuclear Future. This paper is a summary of the remarks made. The successful siting of radioactive waste disposal facilities implies creating the conditions for continued ownership of the facility over time. Acceptance of the facility at a single point in time is not good enough. Continued ownership implies the creation of conscious, constructive and durable relationships between the (most affected) communities and the waste management facility. Being comfortable about the technical safety of the facility requires a degree of familiarity and control . Having peace of mind about the safety of the facility requires trust in the waste management system and its actors as well as some control over the decision making. Regulators are especially important players who need to be visible in the community. The ideal site selection process should be step- wise, combining procedures for excluding sites that do not meet pre-identified criteria with those for identifying sites where nearby and more distant residents are willing to discuss acceptance of the facility. The regional authorities are just as important as the local authorities. Before approaching a potential siting region or community, there should be clear results of national (and state) debates establishing the role of nuclear power in the energy mix, as well as information on the magnitude of the ensuing waste commitment and its management end-points, and the allocation of the financial and legal responsibilities until the closure of the project. Once the waste inventories and type of facilities have been decided upon, there should be agreement that all significant changes will require a new decision-making process. Any proposed project has a much better chance to move forward positively if the affected populations can participate in its definition, including, at the appropriate time, its technical details. A

  7. Techno-economic comparison of centralized versus decentralized biorefineries for two alkaline pretreatment processes.

    Science.gov (United States)

    Stoklosa, Ryan J; Del Pilar Orjuela, Andrea; da Costa Sousa, Leonardo; Uppugundla, Nirmal; Williams, Daniel L; Dale, Bruce E; Hodge, David B; Balan, Venkatesh

    2017-02-01

    In this work, corn stover subjected to ammonia fiber expansion (AFEX™) 1 pretreatment or alkaline pre-extraction followed by hydrogen peroxide post-treatment (AHP pretreatment) were compared for their enzymatic hydrolysis yields over a range of solids loadings, enzymes loadings, and enzyme combinations. Process techno-economic models were compared for cellulosic ethanol production for a biorefinery that handles 2000tons per day of corn stover employing a centralized biorefinery approach with AHP or a de-centralized AFEX pretreatment followed by biomass densification feeding a centralized biorefinery. A techno-economic analysis (TEA) of these scenarios shows that the AFEX process resulted in the highest capital investment but also has the lowest minimum ethanol selling price (MESP) at $2.09/gal, primarily due to good energy integration and an efficient ammonia recovery system. The economics of AHP could be made more competitive if oxidant loadings were reduced and the alkali and sugar losses were also decreased. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Upgrading of lignocellulosic biorefinery to value-added chemicals: Sustainability and economics of bioethanol-derivatives

    DEFF Research Database (Denmark)

    Cheali, Peam; Posada, John A.; Gernaey, Krist

    2015-01-01

    with a sustainability assessment method is used as evaluation tool. First, an existing superstructure representing the lignocellulosic biorefinery design network is extended to include the options for catalytic conversion of bioethanol to value-added derivatives. Second, the optimization problem for process upgrade...... of operating profit for biorefineries producing bioethanol-derived chemicals (247 MM$/a and 241 MM$/a for diethyl ether and 1,3-butadiene, respectively). Second, the optimal designs for upgrading bioethanol (i.e. production of 1,3-butadiene and diethyl ether) performed also better with respect...... to sustainability compared with the petroleum-based processes. In both cases, the effects of the market price uncertainties were also analyzed by performing quantitative economic risk analysis and presented a significant risk of investment for a lignocellulosic biorefinery (12 MM$/a and 92 MM$/a for diethyl ether...

  9. Audit of the Uranium Solidification Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    1994-01-01

    In the late 1980s, DOE decided to construct a Uranium Solidification Facility at the Savannah River Site to process liquid uranyl nitrate into powder. Since the need for weapons materials has been reduced, an audit was conducted to assess the need for this facility. The audit disclosed that DOE continued to construct the facility, because DOE's procedures did not ensure that projects of this type were periodically reassessed when significant program changes occurred. The audit identified more economical alternatives for processing existing quantities of liquid uranyl nitrate at the Savannah River Site

  10. Application of GIS in siting of linear facilities

    International Nuclear Information System (INIS)

    Gallagher, G.A. III; Heatwole, D.W.; Schmidt, J.A.

    1993-01-01

    Geographic information systems (GIS) are powerful tools in the analysis and selection of environmentally acceptable corridors for linear facilities, such as roads and utility lines. GIS can serve several functions in corridor siting, including managing and manipulating extensive environmental databases, weighting and compositing data layers to enable spatial analysis for a ''path of least resistance,'' summarizing statistics for a comparison of alternative corridors, preparing color graphics for presentations and reports, and providing a record of alternative analysis for permitting reviews and legal challenges. In this paper, the authors examine the benefits and limitations of using GIS to site linear facilities, based mainly on their experience in siting a 600-mile natural gas pipeline in Florida. They implemented a phased analytical approach to define acceptable corridors several miles in width and then selected viable routes within the corridors using a magnified scale. This approach resulted in a dynamic siting process which required numerous iterations of analysis. Consequently, their experience has instilled the benefits derived by expending preliminary effort to create macros of the GIS analytical process so that subsequent effort is minimized during numerous iterations of corridor and route refinement

  11. Carbon dioxide utilization in a microalga-based biorefinery: Efficiency of carbon removal and economic performance under carbon taxation.

    Science.gov (United States)

    Wiesberg, Igor Lapenda; Brigagão, George Victor; de Medeiros, José Luiz; de Queiroz Fernandes Araújo, Ofélia

    2017-12-01

    Coal-fired power plants are major stationary sources of carbon dioxide and environmental constraints demand technologies for abatement. Although Carbon Capture and Storage is the most mature route, it poses severe economic penalty to power generation. Alternatively, this penalty is potentially reduced by Carbon Capture and Utilization, which converts carbon dioxide to valuable products, monetizing it. This work evaluates a route consisting of carbon dioxide bio-capture by Chlorella pyrenoidosa and use of the resulting biomass as feedstock to a microalgae-based biorefinery; Carbon Capture and Storage route is evaluated as a reference technology. The integrated arrangement comprises: (a) carbon dioxide biocapture in a photobioreactor, (b) oil extraction from part of the produced biomass, (b) gasification of remaining biomass to obtain bio-syngas, and (c) conversion of bio-syngas to methanol. Calculation of capital and operational expenditures are estimated based on mass and energy balances obtained by process simulation for both routes (Carbon Capture and Storage and the biorefinery). Capital expenditure for the biorefinery is higher by a factor of 6.7, while operational expenditure is lower by a factor of 0.45 and revenues occur only for this route, with a ratio revenue/operational expenditure of 1.6. The photobioreactor is responsible for one fifth of the biorefinery capital expenditure, with footprint of about 1000 ha, posing the most significant barrier for technical and economic feasibility of the proposed biorefinery. The Biorefinery and Carbon Capture and Storage routes show carbon dioxide capture efficiency of 73% and 48%, respectively, with capture cost of 139$/t and 304$/t. Additionally, the biorefinery has superior performance in all evaluated metrics of environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Economic feasibility of artificial islands for cluster-siting of offshore energy facilities

    International Nuclear Information System (INIS)

    Baram, M.S.; Spencer, J.; Munson, J.S.

    1977-04-01

    The study presents a general first-order cost feasibility analysis of the artificial island concept and its usefulness for the offshore siting of multiple energy facilities. The results of the study include a recommended method of cost-feasibility assessment; the collection and organization of the most useful information presently available; and a series of conclusions on feasibility for generic comparison purposes. These conclusions can be summarized as follows: (1) artificial islands to the outer bound of the continental shelf are technologically feasible; (2) offshore nuclear power plants appear to be competitive with onshore plants from a cost standpoint; (3) offshore deepwater ports appear to be more economical than proposed onshore deepwater ports, existing facilities or facilities presently under construction; (4) offshore oil refineries, except under special circumstantces, will probably be more costly than onshore counterparts; (5) the cluster-siting of facilities on an artificial island has definite cost-effectiveness potential; (6) a joint public-private financial venture with a strong federal agency lead role appears essential for the multi-facility island concept to be realized; and (7) artificial island siting of energy complexes appears to be a concept worth pursuing in terms of further site and facility-specific research, and possibly in terms of a demonstration project

  13. System visualization of integrated biofuels and high value chemicals developed within the MacroAlgaeBiorefinery (MAB3) project

    DEFF Research Database (Denmark)

    Seghetta, Michele; Hasler, Berit; Bastianoni, Simone

    MacroAlgaeBiorefinery (MAB3) may functions as production platform and raw material supplier for future sustainable production chains of biofuels and high value chemicals. Biofuels are interesting energy source but challenges in terms of the composition of the biomass and resulting energy...... efficiencies has to be compensated for to make the biofuel prices competitive in replacing fossil fuel. Since it is difficult to increase the yield of the single biorefinery, the overall system productivity can be improved integrating different sub-systems. In this study, macroalgae cultivation in Denmark...... is integrated with a biogas biorefinery, a bioethanol biorefinery and a fish feed industry. The modeled system is able to adapt itself to different amount and quality of feedstock and to maximize valuable outputs (e.g. bio-fuels and chemical). Macroalgae are harvested and utilized as feedstock in bioethanol...

  14. The role of economic incentives in nuclear waste facility siting

    International Nuclear Information System (INIS)

    Davis, E.M.

    1986-01-01

    There is a need to provide some public benefit and/or reward for accepting a ''locally unwanted land use'' (LULU) facility such as a nuclear waste storage or disposal facility. This paper concludes that DOE, Congress and the states should immediately quantify an economic incentive for consideration ''up front'' by society on siting decisions for nuclear waste storage and disposal facilities

  15. Algal biorefinery-based industry: an approach to address fuel and food insecurity for a carbon-smart world.

    Science.gov (United States)

    Subhadra, Bobban

    2011-01-15

    Food and fuel production are intricately interconnected. In a carbon-smart society, it is imperative to produce both food and fuel sustainably. Integration of the emerging biorefinery concept with other industries can bring many environmental deliverables while mitigating several sustainability-related issues with respect to greenhouse gas emissions, fossil fuel usage, land use change for fuel production and future food insufficiency. A new biorefinery-based integrated industrial ecology encompasses the different value chain of products, coproducts, and services from the biorefinery industries. This paper discusses a framework to integrate the algal biofuel-based biorefinery, a booming biofuel sector, with other industries such as livestock, lignocellulosic and aquaculture. Using the USA as an example, this paper also illustrates the benefits associated with sustainable production of fuel and food. Policy and regulatory initiatives for synergistic development of the algal biofuel sector with other industries can bring many sustainable solutions for the future existence of mankind. Copyright © 2010 Society of Chemical Industry.

  16. A methodology to assess the contribution of biorefineries to a sustainable bio-based economy

    International Nuclear Information System (INIS)

    Maga, Daniel

    2015-01-01

    Within this thesis for the first time an integrative methodology to assess the sustainability of biorefineries and bio-based products has been developed which is based on a fundamental understanding of sustainability as presented in the Brundtland report. The applied integrative concept of sustainability as developed by the Institute for Technology Assessment and Systems Analysis (ITAS) overcomes the widespread thinking in three pillars of sustainability and opens up new perspectives. The methodology developed addresses innovative life cycle assessment evaluation methods on midpoint level as well as on the area of protection and adopts state-of-the-art assessment procedures e.g. to determine water deprivation. It goes far beyond the scope of conventional LCA studies and examines effects on human health, on the environment, on the development of knowledge and physical capital, and on regional development and acceptance. In order to validate the developed method it was applied to an algae biorefinery currently under development and construction in the south of Spain. For this assessment for the first time extensive process data was collected of a real algae biorefinery which uses municipal waste water as a culture medium for microalgae. The use of waste water allows to reduce the demand for fresh water and avoids additional fertilisation of microalgae. Moreover, the analysed algae biorefinery replaces conventional waste water treatment by a biological purification and produces biogas by an anaerobic pretreatment of waste water as well as by anaerobic digestion of algae. After several purification steps the biogas can be used as automotive fuel and thus contributes to further development and increased use of biofuels. On the one hand the sustainability assessment shows that this way of waste water treatment contributes to climate protection and to the conservation of fossil energy carrier. On the other hand approximately ten times more land is needed and twenty times

  17. A methodology to assess the contribution of biorefineries to a sustainable bio-based economy

    Energy Technology Data Exchange (ETDEWEB)

    Maga, Daniel

    2015-07-01

    Within this thesis for the first time an integrative methodology to assess the sustainability of biorefineries and bio-based products has been developed which is based on a fundamental understanding of sustainability as presented in the Brundtland report. The applied integrative concept of sustainability as developed by the Institute for Technology Assessment and Systems Analysis (ITAS) overcomes the widespread thinking in three pillars of sustainability and opens up new perspectives. The methodology developed addresses innovative life cycle assessment evaluation methods on midpoint level as well as on the area of protection and adopts state-of-the-art assessment procedures e.g. to determine water deprivation. It goes far beyond the scope of conventional LCA studies and examines effects on human health, on the environment, on the development of knowledge and physical capital, and on regional development and acceptance. In order to validate the developed method it was applied to an algae biorefinery currently under development and construction in the south of Spain. For this assessment for the first time extensive process data was collected of a real algae biorefinery which uses municipal waste water as a culture medium for microalgae. The use of waste water allows to reduce the demand for fresh water and avoids additional fertilisation of microalgae. Moreover, the analysed algae biorefinery replaces conventional waste water treatment by a biological purification and produces biogas by an anaerobic pretreatment of waste water as well as by anaerobic digestion of algae. After several purification steps the biogas can be used as automotive fuel and thus contributes to further development and increased use of biofuels. On the one hand the sustainability assessment shows that this way of waste water treatment contributes to climate protection and to the conservation of fossil energy carrier. On the other hand approximately ten times more land is needed and twenty times

  18. Assessment of the facilities on Jackass Flats and other Nevada Test Site facilities for the new nuclear rocket program

    International Nuclear Information System (INIS)

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D.

    1992-01-01

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research L, Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad. The total cost for such a refurbishment we estimate to be about $253M which includes additional contractor fees related to indirect, construction management, profit, contingency, and management reserves. This figure also includes the cost of the required NEPA, safety, and security documentation

  19. Operating procedures for the Pajarito Site Critical Assembly Facility

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1983-03-01

    Operating procedures consistent with DOE Order 5480.2, Chapter VI, and the American National Standard Safety Guide for the Performance of Critical Experiments are defined for the Pajarito Site Critical Assembly Facility of the Los Alamos National Laboratory. These operating procedures supersede and update those previously published in 1973 and apply to any criticality experiment performed at the facility

  20. Development of operation control expert system for off-site facilities

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Masaaki

    1988-09-01

    Concerning off-site facilities of oil refinary, changes of facilities and equipment are frequently made in order to cope flexibly with the market trends and changes of the social environment. In addition, it is desirable to introduce computerization into control and manipulation of off-site facilities for its fast, safe and sure operation. In order to achieve the above, against the existing exclusively control-oriented system, it is necessary to add the processing and generating functions to combinations between valves to be shut and piping as well as equipment to be used along the whole extent of the oil flow in the system and to add the function which makes verification of the above functions easy through a dialogue between users and the system. In order to realize the above, Cosmo Oil and Yokokawa Denki developed jointly an operation control expert system for off-site facilities and the system started its actual operation from October 1986. This article is an outline of the system. The result of its actual operation for one and a half years since its inception showed that the system was operated only by the staff responsible for the operation of the facilities, the workload was reduced to 1/3-1/4 of the workload before the adoption of the system and absolutely no omission of work nor mistake was experienced. (2 figs)

  1. Process Simulation and Techno-Economic Evaluation of Alternative Biorefinery Scenarios

    Science.gov (United States)

    Aizpurua Gonzalez, Carlos Ernesto

    A biorefinery is a complex processing facility that uses sustainably produced biomass as feedstock to generate biofuels and chemical products using a wide variety of alternative conversion pathways. The alternative conversion pathways can be generally classified as either biochemical or thermochemical conversion. A biorefinery is commonly based on a core biomass conversion technology (pretreatment, hydrolysis, pyrolysis, etc.) followed by secondary processing stages that determine the specific product, and its recovery. In this study, techno-economic analysis of several different lignocellulosic biomass conversion pathways have been performed. First, a novel biochemical conversion, which used electron beam and steam explosion pretreatments for ethanol production was evaluated. This evaluation include both laboratory work and process modeling. Encouraging experimental results are obtained that showed the biomass had enhanced reactivity to the enzyme hydrolysis. The total sugar recovery for the hardwood species was 72% using 5 FPU/g enzyme dosage. The combination of electron beam and steam explosion provides an improvement in sugar conversion of more than 20% compared to steam explosion alone. This combination of pretreatments was modeled along with a novel ethanol dehydration process that is based on vapor permeation membranes. The economic feasibility of this novel pretreatment-dehydration technology was evaluated and compared with the dilute acid process proposed by NREL in 2011. Overall, the pretreatment-dehydration technology process produces the same ethanol yields (81 gal/bdton). However, the economics of this novel process does not look promising since the minimum ethanol selling price (MESP) to generate an internal rate of return of 10% is of 3.09 /gal, compared to 2.28 /gal for the base case. To enhance the economic potential of a biorefinery, the isolation of value-added co-products was incorporated into the base dilute acid biorefinery process. In this

  2. Compensation for risks: host community benefits in siting locally unwanted facilities

    Science.gov (United States)

    Himmelberger, Jeffery J.; Ratick, Samuel J.; White, Allen L.

    1991-09-01

    This article analyzes the recent negotiations connected with siting 24 solid-waste landfills in Wisconsin. We examine the association between the type and amount of compensation paid to host communities by facility developers and the size of facilities, certain facility characteristics, the timing of negotiated agreements, the size of the host community, and the socioeconomic status of the host area. Our findings suggest that the level of compensation after adjusting for landfill capacity is positively associated with the percentage of total facility capacity dedicated to host community use, positively associated with the percentage of people of the host area who are in poverty, and larger for public facilities that accept municipal wastes. Other explanatory variables we examined, whose association with levels of compensation proved statistically insignificant, were facility size, facility status (new vs expansion), facility use (countyonly vs multicounty), timing of negotiation, host community size, and the host area education level, population density, and per capita income. We discuss the policy implications of our principal findings and future research questions in light of the persistent opposition surrounding the siting of solid-waste and other waste-management facilities.

  3. Lessons learned from the Siting Process of an Interim Storage Facility in Spain - 12024

    Energy Technology Data Exchange (ETDEWEB)

    Lamolla, Meritxell Martell [MERIENCE Strategic Thinking, 08734 Olerdola, Barcelona (Spain)

    2012-07-01

    On 29 December 2009, the Spanish government launched a site selection process to host a centralised interim storage facility for spent fuel and high-level radioactive waste. It was an unprecedented call for voluntarism among Spanish municipalities to site a controversial facility. Two nuclear municipalities, amongst a total of thirteen municipalities from five different regions, presented their candidatures to host the facility in their territories. For two years the government did not make a decision. Only in November 30, 2011, the new government elected on 20 November 2011 officially selected a non-nuclear municipality, Villar de Canas, for hosting this facility. This paper focuses on analysing the factors facilitating and hindering the siting of controversial facilities, in particular the interim storage facility in Spain. It demonstrates that involving all stakeholders in the decision-making process should not be underestimated. In the case of Spain, all regional governments where there were candidate municipalities willing to host the centralised interim storage facility, publicly opposed to the siting of the facility. (author)

  4. Hanford Site existing irradiated fuel storage facilities description

    Energy Technology Data Exchange (ETDEWEB)

    Willis, W.L.

    1995-01-11

    This document describes facilities at the Hanford Site which are currently storing spent nuclear fuels. The descriptions provide a basis for the no-action alternatives of ongoing and planned National Environmental Protection Act reviews.

  5. Sugar beet leaves: from biorefinery to techno-functionality

    NARCIS (Netherlands)

    Kiskini, Alexandra

    2017-01-01

    Sugar beet leaves (SBL), which are a side stream of the sugar beets cultivation, are currently left unexploited after sugar beets have been harvested. The general aim of this thesis was to study the biorefinery of SBL, with a special focus on the isolation of proteins. To reach this aim the

  6. A dynamic simulation of the Hanford site grout facility

    International Nuclear Information System (INIS)

    Zimmerman, B.D.; Klimper, S.C.; Williamson, G.F.

    1992-01-01

    Computer-based dynamic simulation can be a powerful, low-cost tool for investigating questions concerning timing, throughput capability, and ability of engineering facilities and systems to meet established milestones. The simulation project described herein was undertaken to develop a dynamic simulation model of the Hanford site grout facility and its associated systems at the US Department of Energy's (DOE's) Hanford site in Washington State. The model allows assessment of the effects of engineering design and operation trade-offs and of variable programmatic constraints, such as regulatory review, on the ability of the grout system to meet milestones established by DOE for low-level waste disposal

  7. Review Article : Utilization of Environmental Radiochemistry Techniques for Selection and Evaluation of Nuclear Facility Sites

    International Nuclear Information System (INIS)

    Atta, E.R.; Madbouly, A.M.; Zakaria, Kh.M.

    2016-01-01

    This research review puts necessary considerations on the available environmental radiochemistry techniques for selection and evaluation of a nuclear facility sites.The main bjective in site evaluation for nuclear facilities in terms of nuclear safety is to protect the site workers, the public and the environment from the effects of ionizing radiation release from nuclear facilities due to accidents. The extreme sensitivity and speed of radiochemical methods make their applications of considerable importance in several fields and they have found many uses. Information about the existed radioactivity in the different nuclear facilities is an essential requirement for their environmental assessment. It is necessary to estimate the various radioactivity levels in the environment through qualitative and quantitative analytical techniques and to assess the potential effects of the nuclear facility in the region by considering the characteristics of sites.The siting and site evaluation requirements are discussed. Emphasis was given to types of radiochemical techniques used for characterization of the site parameters which determine the potential hazards of the site on the facility and the facility on the site. Emphasis has been also given to the quantitative and qualitative analysis of naturally occurring radionuclides for monitoring and control .There are some techniques employed such as radioactive tracer technique, liquid scintillation technique, gamma spectrometry technique, neutron activation analysis technique, fluorimetric technique and isotope hydrology technique.

  8. A guide for preparing Hanford Site facility effluent monitoring plans

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1992-06-01

    This document provides guidance on the format and content of effluent monitoring plans for facilities at the Hanford Site. The guidance provided in this document is designed to ensure compliance with US Department of Energy (DOE) Orders 5400.1 (DOE 1988a), 5400.3 (DOE 1989a), 5400.4 (DOE 1989b), 5400.5 (DOE 1990a), 5480.1 (DOE 1982), 5480.11 (DOE 1988b), and 5484.1 (DOE 1981). These require environmental monitoring plans for each site, facility, or process that uses, generates, releases, or manages significant pollutants of radioactive or hazardous materials. In support of DOE Orders 5400.5 (Radiation Protection of the Public and the Environment) and 5400.1 (General Environmental Protection Program), the DOE Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE 1991) should be used to establish elements of a radiological effluent monitoring program in the Facility Effluent Monitoring Plan. Evaluation of facilities for compliance with the US Environmental Protection Agency Clean Air Act of 1977 requirements also is included in the airborne emissions section of the Facility Effluent Monitoring Plans. Sampling Analysis Plans for Liquid Effluents, as required by the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), also are included in the Facility Effluent Monitoring Plans. The Facility Effluent Monitoring Plans shall include complete documentation of gaseous and liquid effluent sampling and monitoring systems

  9. Energy and environmental analysis of a rapeseed biorefinery conversion process

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Balzan, Alberto; Astrup, Thomas Fruergaard

    2013-01-01

    )-based environmental assessment of a Danish biorefinery system was carried out to thoroughly analyze and optimize the concept and address future research. The LCA study was based on case-specific mass and energy balances and inventory data, and was conducted using consequential LCA approach to take into account market...... mechanisms determining the fate of products, lost opportunities and marginal productions. The results show that introduction of enzymatic transesterification and improved oil extraction procedure result in environmental benefits compared to a traditional process. Utilization of rapeseed straw seems to have...... positive effects on the greenhouse gases (GHG) footprint of the biorefinery system, with improvements in the range of 9 % to 29 %, depending on the considered alternative. The mass and energy balances showed the potential for improvement of straw treatment processes (hydrothermal pre-treatment and dark...

  10. ClearFuels-Rentech Integrated Biorefinery Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Joshua [Project Director

    2014-02-26

    The project Final Report describes the validation of the performance of the integration of two technologies that were proven individually on a pilot scale and were demonstrated as a pilot scale integrated biorefinery. The integrated technologies were a larger scale ClearFuels’ (CF) advanced flexible biomass to syngas thermochemical high efficiency hydrothermal reformer (HEHTR) technology with Rentech’s (RTK) existing synthetic gas to liquids (GTL) technology.

  11. BIOREFINE-2G — Result In Brief: Novel biopolymers from biorefinery waste-streams

    DEFF Research Database (Denmark)

    Stovicek, Vratislav; Chen, Xiao; Borodina, Irina

    Second generation biorefineries are all about creating value from waste, so it seems only right that the ideal plant should leave nothing behind. With this in mind, the BIOREFINE-2G project has developed novel processes to convert pentose-rich side-streams into biopolymers.......Second generation biorefineries are all about creating value from waste, so it seems only right that the ideal plant should leave nothing behind. With this in mind, the BIOREFINE-2G project has developed novel processes to convert pentose-rich side-streams into biopolymers....

  12. Techno-economical evaluation of protein extraction for microalgae biorefinery

    NARCIS (Netherlands)

    Sari, Y.W.; Sanders, J.P.M.; Bruins, M.

    2016-01-01

    Due to scarcity of fossil feedstocks, there is an increasing demand for biobased fuels. Microalgae are considered as promising biobased feedstocks. However, microalgae based fuels are not yet produced at large scale at present. Applying biorefinery, not only for oil, but also for other

  13. Disposal facilities for radioactive waste - legislative requirements for siting

    International Nuclear Information System (INIS)

    Markova-Mihaylova, Radosveta

    2015-01-01

    The specifics of radioactive waste, namely the content of radionuclides require the implementation of measures to protect human health and the environment against the hazards arising from ionizing radiation, including disposal of waste in appropriate facilities. The legislative requirements for siting of such facilities, and classification of radioactive waste, as well as the disposal methods, are presented in this publication

  14. Multitasking mesoporous nanomaterials for biorefinery applications

    Energy Technology Data Exchange (ETDEWEB)

    Kandel, Kapil [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Mesoporous silica nanoparticles (MSNs) have attracted great interest for last two decades due to their unique and advantageous structural properties, such as high surface area, pore volume, stable mesostructure, tunable pore size and controllable particle morphology. The robust silica framework provides sites for organic modifications, making MSNs ideal platforms for adsorbents and supported organocatalysts. In addition, the pores of MSNs provide cavities/ channels for incorporation of metal and metal oxide nanoparticle catalysts. These supported metal nanoparticle catalysts benefit from confined local environments to enhance their activity and selectivity for various reactions. Biomass is considered as a sustainable feedstock with potential to replace diminishing fossil fuels for the production of biofuels. Among several strategies, one of the promising methods of biofuel production from biomass is to reduce the oxygen content of the feedstock in order to improve the energy density. This can be achieved by creating C-C bonds between biomass derived intermediates to increase the molecular weight of the final hydrocarbon molecules. In this context, pore size and organic functionality of MSNs are varied to obtain the ideal catalyst for a C-C bond forming reaction: the aldol condensation. The mechanistic aspects of this reaction in supported heterogeneous catalysts are explored. The modification of supported organocatalyst and the effect of solvent on the reaction are rationalized. The significance of two functional surfaces of MSNs is exploited by enzyme immobilization on the external surface and organo catalyst functionalization on the internal surface. Using this bifunctional catalyst, the tandem conversion of small chain alcohols into longer chain hydrocarbon molecules is demonstrated. The ability to incorporate metal and metal oxide nanoparticles in the pores and subsequent functionalization led to develop organic modified magnetic MSNs (OM-MSNs) for applications

  15. Environmental Assessment for the construction and operation of the Health Physics Site Support Facility on the Savannah River Site

    International Nuclear Information System (INIS)

    1995-07-01

    DOE has prepared an environmental assessment for the proposed construction and operation of the Health Physics Site Support Facility on the Savannah River Site. This (new) facility would meet requirements of the site radiological protection program and would ensure site compliance with regulations. It was determined that the proposed action is not a major Federal action significantly affecting the quality of the environment within the meaning of NEPA. Therefore, a finding of no significant impact is made, and no environmental impact statement is needed

  16. Descriptions of representative contaminated sites and facilities within the DOE complex

    International Nuclear Information System (INIS)

    Short, S.M.; Buck, J.W.; Clark, L.L.; Fletcher, J.F.; Glantz, C.S.; Holdren, G.R.; Huesties, L.R.; Williams, M.D.; Oates, L.

    1994-10-01

    The U.S. Department of Energy (DOE) has initiated efforts to prepare a Programmatic Environmental Impact Statement (PEIS) that will analyze the existing environmental restoration and waste management program and evaluate alternatives for an integrated program. The alternatives being evaluated include (1) a open-quotes No Actionclose quotes alternative as required by the National Environmental Policy Act (NEPA), (2) an Applicable, Relevant, and Appropriate Requirements (ARAR)-driven alternative, (3) a land-use-driven alternative, (4) a health-risk-driven alternative, and (5) a combination land-use and health-risk-driven alternative. The analytical approach being taken to evaluate each of these alternatives is to perform a remedial engineering analysis and human health and ecosystem effects analyses on every contaminated site and facility in the DOE complex. One of Pacific Northwest Laboratory's (PNL) roles in this approach has been to compile the source term and environmental setting data needed to drive each of these analyses. To date, over 10,000 individual contaminated sites and facilities located throughout the DOE complex of installations have been identified and at least some minimal data compiled on each. The PEIS analyses have been appreciably simplified by categorizing all of these contaminated sites and facilities into six broad categories: (1) contaminated buildings, (2) contaminated soils, (3) solid waste sites (e.g., burial grounds), (4) liquid containment structures (e.g., tanks), (5) surface water sites, and (6) contaminated groundwater sites. A report containing a complete description of each of these thousands of contaminated sites and facilities would be tremendously large and unwildy, as would separate reports describing the application of the analytical methodologies to each

  17. Techno-economic and profitability analysis of food waste biorefineries at European level.

    Science.gov (United States)

    Cristóbal, Jorge; Caldeira, Carla; Corrado, Sara; Sala, Serenella

    2018-07-01

    Food waste represents a potential source to produce value-added materials replacing the use of virgin ones. However, the use of food waste as feedstock in biorefineries is still at an early stage of development and studies assessing its economic viability at large scale are lacking in the literature. This paper presents a techno-economic and profitability analysis of four food waste biorefineries that use wastes from tomato, potato, orange, and olive processing as feedstock. The study includes the assessment of potentially available quantities of those waste flows in Europe. Due to the low technology readiness level of this kind of biorefineries, a screening methodology to estimate the investment and manufacturing costs as well as two profitability ratios (the return on investment and the payback time) was adopted. Results show that not all the waste feedstocks have the same potential. The most profitable options are those related to implementing fewer plants, namely concentrating the production and capitalising on economies of scale while being at risk of increasing externalities, e.g. due to logistics of the feedstocks. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. From tiny microalgae to huge biorefineries

    OpenAIRE

    Gouveia, L.

    2014-01-01

    Microalgae are an emerging research field due to their high potential as a source of several biofuels in addition to the fact that they have a high-nutritional value and contain compounds that have health benefits. They are also highly used for water stream bioremediation and carbon dioxide mitigation. Therefore, the tiny microalgae could lead to a huge source of compounds and products, giving a good example of a real biorefinery approach. This work shows and presents examples of experimental...

  19. Thermochemical biorefinery based on dimethyl ether as intermediate: Technoeconomic assessment

    International Nuclear Information System (INIS)

    Haro, P.; Ollero, P.; Villanueva Perales, A.L.; Gómez-Barea, A.

    2013-01-01

    Highlights: ► A thermochemical biorefinery based on bio-DME as intermediate is studied. ► The assessed concepts (12) lead to multi-product generation (polygeneration). ► In all concepts DME is converted by carbonylation or hydrocarbonylation. ► Rates of return are similar to or higher than plants producing a single product. -- Abstract: Thermochemical biorefinery based on dimethyl ether (DME) as an intermediate is studied. DME is converted into methyl acetate, which can either be hydrogenated to ethanol or sold as a co-product. Considering this option together with a variety of technologies for syngas upgrading, 12 different process concepts are analyzed. The considered products are ethanol, methyl acetate, H 2 , DME and electricity. The assessment of each alternative includes biomass pretreatment, gasification, syngas clean-up and conditioning, DME synthesis and conversion, product separation, and heat and power integration. A plant size of 500 MW th processing poplar chips is taken as a basis. The resulting energy efficiency to products ranges from 34.9% to 50.2%. The largest internal rate of return (28.74%) corresponds to a concept which produces methyl acetate, DME and electricity (exported to grid). A sensitivity analysis with respect to total plant investment (TPI), total operation costs (TOC) and market price of products was carried out. The overall conclusion is that, despite its greater complexity, this kind of thermochemical biorefinery is more profitable than thermochemical bioprocesses oriented to a single product.

  20. Scaling laws and technology development strategies for biorefineries and bioenergy plants.

    Science.gov (United States)

    Jack, Michael W

    2009-12-01

    The economies of scale of larger biorefineries or bioenergy plants compete with the diseconomies of scale of transporting geographically distributed biomass to a central location. This results in an optimum plant size that depends on the scaling parameters of the two contributions. This is a fundamental aspect of biorefineries and bioenergy plants and has important consequences for technology development as "bigger is better" is not necessarily true. In this paper we explore the consequences of these scaling effects via a simplified model of biomass transportation and plant costs. Analysis of this model suggests that there is a need for much more sophisticated technology development strategies to exploit the consequences of these scaling effects. We suggest three potential strategies in terms of the scaling parameters of the system.

  1. Synthesis of Optimal Processing Pathway for Microalgae-based Biorefinery under Uncertainty

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2015-01-01

    decision making, we propose a systematic framework for the synthesis and optimal design of microalgae-based processing network under uncertainty. By incorporating major uncertainties into the biorefinery superstructure model we developed previously, a stochastic mixed integer nonlinear programming (s......The research in the field of microalgae-based biofuels and chemicals is in early phase of the development, and therefore a wide range of uncertainties exist due to inconsistencies among and shortage of technical information. In order to handle and address these uncertainties to ensure robust......MINLP) problem is formulated for determining the optimal biorefinery structure under given parameter uncertainties modelled as sampled scenarios. The solution to the sMINLP problem determines the optimal decisions with respect to processing technologies, material flows, and product portfolio in the presence...

  2. Forest biorefinery: Potential of poplar phytochemicals as value-added co-products.

    Science.gov (United States)

    Devappa, Rakshit K; Rakshit, Sudip K; Dekker, Robert F H

    2015-11-01

    The global forestry industry after experiencing a market downturn during the past decade has now aimed its vision towards the integrated biorefinery. New business models and strategies are constantly being explored to re-invent the global wood and pulp/paper industry through sustainable resource exploitation. The goal is to produce diversified, innovative and revenue generating product lines using on-site bioresources (wood and tree residues). The most popular product lines are generally produced from wood fibers (biofuels, pulp/paper, biomaterials, and bio/chemicals). However, the bark and other tree residues like foliage that constitute forest wastes, still remain largely an underexploited resource from which extractives and phytochemicals can be harnessed as by-products (biopharmaceuticals, food additives and nutraceuticals, biopesticides, cosmetics). Commercially, Populus (poplar) tree species including hybrid varieties are cultivated as a fast growing bioenergy crop, but can also be utilized to produce bio-based chemicals. This review identifies and underlines the potential of natural products (phytochemicals) from Populus species that could lead to new business ventures in biorefineries and contribute to the bioeconomy. In brief, this review highlights the importance of by-products/co-products in forest industries, methods that can be employed to extract and purify poplar phytochemicals, the potential pharmaceutical and other uses of >160 phytochemicals identified from poplar species - their chemical structures, properties and bioactivities, the challenges and limitations of utilizing poplar phytochemicals, and potential commercial opportunities. Finally, the overall discussion and conclusion are made considering the recent biotechnological advances in phytochemical research to indicate the areas for future commercial applications from poplar tree species. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  3. Algal Biomass for Bioenergy and Bioproducts Production in Biorefinery Concepts

    DEFF Research Database (Denmark)

    D'Este, Martina

    industry. The macroalgae used in this work were Laminaria digitata and Saccharina latissima, while the microalgae were Chlorella sorokiniana, Chlorella vulgaris and Chlorella protothecoides. Moreover, an evaluation of the effect of the harvesting season and location on the composition of high value...... feedstocks. Biorefinery represents an important tool towards the development of a sustainable economy. Within the biorefinery framework several bioproducts, such as food, feed and biofuels, can be produced from biomass. The specific composition of the biomass feedstock determines the potential final product...... heterotrophically in the macroalgae L. digitata hydrolyzed. The final composition of the microalgal biomass showed that the protein content was increased from 0.07 ± 0.01 gProtein gDM-1 to 0.44 ± 0.04 gProtein DM-1. The results obtained show that this solution may represent an interesting strategy to be applied...

  4. Hanford site near-facility environmental monitoring annual report, calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, C.J.

    1997-08-05

    This document summarizes the results of the near-facility environmental monitoring results for 1996 in the 100, 200/600, and 300/400 areas of the Hanford Site in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. The monitoring implements applicable portions of DOE Orders 5400.1 (DOE 1988a), 5400.5 (DOE 1990), and 5820.2A (DOE 1988b); Washington Administrative Code (WAC) 246-247; and Title 40 Code of Federal Regulations (CFR) Part 61, Subpart H (EPA 1989). In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels were slightly elevated when compared to offsite locations, the differences are less than in previous years.

  5. Biomass Program 2007 Peer Review - Integrated Biorefinery Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Integrated Biorefinery Platform Review held on August 13-15, 2007 in Golden, Colorado.

  6. Near-term deployment of carbon capture and sequestration from biorefineries in the United States.

    Science.gov (United States)

    Sanchez, Daniel L; Johnson, Nils; McCoy, Sean T; Turner, Peter A; Mach, Katharine J

    2018-05-08

    Capture and permanent geologic sequestration of biogenic CO 2 emissions may provide critical flexibility in ambitious climate change mitigation. However, most bioenergy with carbon capture and sequestration (BECCS) technologies are technically immature or commercially unavailable. Here, we evaluate low-cost, commercially ready CO 2 capture opportunities for existing ethanol biorefineries in the United States. The analysis combines process engineering, spatial optimization, and lifecycle assessment to consider the technical, economic, and institutional feasibility of near-term carbon capture and sequestration (CCS). Our modeling framework evaluates least cost source-sink relationships and aggregation opportunities for pipeline transport, which can cost-effectively transport small CO 2 volumes to suitable sequestration sites; 216 existing US biorefineries emit 45 Mt CO 2 annually from fermentation, of which 60% could be captured and compressed for pipeline transport for under $25/tCO 2 A sequestration credit, analogous to existing CCS tax credits, of $60/tCO 2 could incent 30 Mt of sequestration and 6,900 km of pipeline infrastructure across the United States. Similarly, a carbon abatement credit, analogous to existing tradeable CO 2 credits, of $90/tCO 2 can incent 38 Mt of abatement. Aggregation of CO 2 sources enables cost-effective long-distance pipeline transport to distant sequestration sites. Financial incentives under the low-carbon fuel standard in California and recent revisions to existing federal tax credits suggest a substantial near-term opportunity to permanently sequester biogenic CO 2 This financial opportunity could catalyze the growth of carbon capture, transport, and sequestration; improve the lifecycle impacts of conventional biofuels; support development of carbon-negative fuels; and help fulfill the mandates of low-carbon fuel policies across the United States. Copyright © 2018 the Author(s). Published by PNAS.

  7. Siting a low-level waste facility in California: A success story

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.

    1988-01-01

    US Ecology is the state of California's designee to site, develop, and operate a low-level radioactive waste disposal facility. The facility will meet the state's responsibilities under the Low-Level Radioactive Waste Policy Act as amended. By January 1988, US Ecology narrowed its efforts to two candidate sites. Strong local community support has been expressed for both sites. US Ecology will select a single proposed site for licensing in 1988 and anticipates receiving waste in late 1900 or early 1991. This schedule places California well ahead of the milestones identified in federal law. The success to date in California can be attributed in large part to the open process used to involve citizens' advisory committees (CACs) and the general public at critical stages of the projects

  8. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  9. Engineered surface barriers for waste disposal sites: lysimeter facility design and construction

    International Nuclear Information System (INIS)

    Phillips, S.J.; Ruben, M.S.; Kirkham, R.R.

    1988-01-01

    A facility to evaluate performance of engineered surface carriers for confinement of buried wastes has been designed, constructed, and operations initiated. The Field Lysimeter Test Facility is located at the US Department of Energy's Hanford Site in Richland, Washington. The facility consists of 18 one-dimensional drainage and weighing lysimeters used to evaluate 7 replicated barrier treatments. Distinct layers of natural earth materials were used to construct layered soil and rock barriers in each lysimeter. These barrier designs are capable in principal of significantly reducing or precluding infiltration of meteoric water through barriers into underlying contaminated zones. This paper summarizes salient facility design and construction features used in testing of the Hanford Site's engineered surface barriers

  10. Negotiating the voluntary siting of nuclear waste facilities

    International Nuclear Information System (INIS)

    Mussler, R.M.

    1992-01-01

    This paper discusses the Office of the Nuclear Waste Negotiator which was created by Congress with the purpose of seeking a voluntary host State or Indian tribe for a high level nuclear waste repository or monitored retrievable storage facility. Given the history of the Federal government's efforts at siting such facilities, this would appear to be an impossible mission. Since commencing operations in August 1990, the Office has accomplished perhaps more than had been expected. Some of the approaches it has taken to implementing this mission may be applicable to other endeavors

  11. The Civilisation Biorefinery - A Future Approach for Material and Energy Recovery from Regional Organic Waste

    International Nuclear Information System (INIS)

    Koerner, I.

    2010-01-01

    The future shortage of energy and raw materials as well as the problems on climate protection are challenges for which a solution is imperative. For efficient utilizing organic liquid and solid wastes which are generated in a city, a city itself could become a civilisation biorefinery. The output will be various energetic and material products, which can be used in the city or in the surrounding of the city. Depending on the nature of the various urban input materials, they need to be fed in to biorefineries adapted to the substrate type. The separate substrate-specific biorefineries may be at central or decentralised locations within the city. Moreover, since the residues from one system can be used in others as input, mutual networking is of importance. To facilitate efficient valorification, bioresources and the type of biorefinery need to be optimally matched. That also means that at the collection stage already, the material properties of the bioresource must be taken into account and where appropriate, new collection systems introduced, or consideration should be given to technical processes for separation of mixtures of materials. Extremely differing cascades will be appropriate for the various regional situations. For this reason, the evaluation of alternative schemes will be seen as very significant. Additional important points are the suitability of new measures or processes for integration into existing regional structures, as well as the logistics aspects, including the question of whether bioconversion processes should be conducted centrally or in decentralised locations. In Germany, considerable amounts of biowaste are available today and in the future which, until now, were almost entirely composted. The possibilities of anaerobic fermentation are gaining more and more in importance. Aerobic and anaerobic treatments of biowaste are more and more combined within the scope of a win-win situation. These technologies will be important parts of a

  12. Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries.

    Science.gov (United States)

    Gnansounou, Edgard; Vaskan, Pavel; Pachón, Elia Ruiz

    2015-11-01

    This work addresses the economic and environmental performance of integrated biorefineries based on sugarcane juice and residues. Four multiproduct scenarios were considered; two from sugar mills and the others from ethanol distilleries. They are integrated biorefineries producing first (1G) and second (2G) generation ethanol, sugar, molasses (for animal feed) and electricity in the context of Brazil. The scenarios were analysed and compared using techno-economic value-based approach and LCA methodology. The results show that the best economic configuration is provided by a scenario with largest ethanol production while the best environmental performance is presented by a scenario with full integration sugar - 1G2G ethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A short-term scheduling for the optimal operation of biorefineries

    International Nuclear Information System (INIS)

    Grisi, E.F.; Yusta, J.M.; Khodr, H.M.

    2011-01-01

    This work presents an analysis of the inherent potentialities and characteristics of the sugarcane industries that produce sugar, bioethanol, biogas and bioelectricity and that are being described as ''Biorefineries''. These Biorefineries are capable of producing bio-energy under diverse forms, intended for their own internal consumption and for external sales and marketing. A complex model and simulation are carried out of the processes of a sugarcane industry, with the data characteristic as well as the production costs, prices of products and considerations on the energy demand by basic processes. A Mixed-Integer Linear Programming (MILP) optimization problem formulation and an analysis of optimal solutions in short-term operation are described, taking into account the production cost functions of each commodity and the incomes obtained from selling electricity and other products. The objective is to maximize the hourly plant economic profit in the different scenarios considered in a real case study. (author)

  14. Selection of candidate sites for a LLRW disposal facility in Connecticut

    International Nuclear Information System (INIS)

    Gingerich, Ronald E.; Holeman, George R.; Hileman, James A.

    1992-01-01

    Connecticut, one of the two members of the Northeast Interstate Low-Level Radioactive Waste Management Compact, has been directed by the Compact Commission to site a facility to manage the low-level radioactive waste (LLRW) generated in Connecticut. The Connecticut Hazardous Waste Management Service (CHWMS) has been given the responsibility to identify a site in the state for a LLRW disposal facility. The CHWMS has decided to plan for a site with an operating life of 50 years. A site of at least 160 acres will be needed to accommodate (he expected volume of LLRW and meet state and federal site requirements. A Site Selection Plan establishing the process and criteria to be used in siting a facility was adopted by the CHWMS in November 1990. The Plan calls for a stepwise screening of the state using published data to identify three candidate sites. A preferred site will be selected from among the candidate sites using onsite testing. The site selection criteria, which closely follow state and federal statutory and regulatory requirements, are divided into three types: exclusionary, avoidance and preference. Battelle Memorial Institute was selected as the contractor to assist the CHWMS in site screening. With guidance from the CHWMS, Battelle undertook screening of the state by applying the exclusionary, avoidance and preference criteria in three steps to identify from eight to twelve potential sites. The CHWMS Board of Directors bad decided that it wanted to be closely involved in the selection of the three candidate sites and to do so in a way that precluded the political and parochial pressures that are inevitably associated with a siting process. To meet these two goals a geographically neutral approach was devised for candidate site selection. In June, 1991 the CHWMS, with assistance from Battelle, conducted a three day workshop, open to the public, in which eight sites were presented to the Board. Data on the sites were presented in a way that did not disclose

  15. Federal Facility Compliance Act, Proposed Site Treatment Plan: Background Volume. Executive Summary

    International Nuclear Information System (INIS)

    1995-01-01

    This Federal Facility Compliance Act Site Treatment Plan discusses the options of radioactive waste management for Ames Laboratory. This is the background volume which discusses: site history and mission; framework for developing site treatment plans; proposed plan organization and related activities; characterization of mixed waste and waste minimization; low level mixed waste streams and the proposed treatment approach; future generation of TRU and mixed wastes; the adequacy of mixed waste storage facilities; and a summary of the overall DOE activity in the area of disposal of mixed waste treatment residuals

  16. Hanford Site near-facility environmental monitoring data report for calendar year 1998

    Energy Technology Data Exchange (ETDEWEB)

    DIEDIKER, L.P.

    1999-07-29

    This document summarizes the results of the U.S. Department of Energy's Near-Facility Environmental Monitoring program conducted by Waste Management Federal Services of Hanford, Inc. for Fluor Daniel Hanford, Inc. for 1998 in the 100,200/600, and 300/400 Areas of the Hanford Site, in southcentral Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  17. Hanford Site near-facility environmental monitoring data report for calendar year 1998

    International Nuclear Information System (INIS)

    DIEDIKER, L.P.

    1999-01-01

    This document summarizes the results of the U.S. Department of Energy's Near-Facility Environmental Monitoring program conducted by Waste Management Federal Services of Hanford, Inc. for Fluor Daniel Hanford, Inc. for 1998 in the 100,200/600, and 300/400 Areas of the Hanford Site, in southcentral Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years

  18. Techno-economic feasibility of waste biorefinery

    DEFF Research Database (Denmark)

    Shahzad, Khurram; Narodoslawsky, Michael; Sagir, Muhammad

    2017-01-01

    elaborated a process for the production of polyhydroxyalkanoate (PHA) biopolymers starting from diverse waste streams of the animal processing industry. This article provides a detailed economic analysis of PHA production from this waste biorefinery concept, encompassing the utilization of low......-quality biodiesel, offal material and meat and bone meal (MBM). Techno-economic analysis reveals that PHA production cost varies from 1.41 €/kg to 1.64 €/kg when considering offal on the one hand as waste, or, on the other hand, accounting its market price, while calculating with fixed costs for the co...

  19. Earthquake research for the safer siting of critical facilities

    Energy Technology Data Exchange (ETDEWEB)

    Cluff, J.L. (ed.)

    1980-01-01

    The task of providing the necessities for living, such as adequate electrical power, water, and fuel, is becoming more complicated with time. Some of the facilities that provide these necessities would present potential hazards to the population if serious damage were to occur to them during earthquakes. Other facilities must remain operable immediately after an earthquake to provide life-support services to people who have been affected. The purpose of this report is to recommend research that will improve the information available to those who must decide where to site these critical facilities, and thereby mitigate the effects of the earthquake hazard. The term critical facility is used in this report to describe facilities that could seriously affect the public well-being through loss of life, large financial loss, or degradation of the environment if they were to fail. The term critical facility also is used to refer to facilities that, although they pose a limited hazard to the public, are considered critical because they must continue to function in the event of a disaster so that they can provide vital services.

  20. Risk management study for the retired Hanford Site facilities

    International Nuclear Information System (INIS)

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1993-04-01

    Risk from retired surplus facilities has always been assumed to be low at the Hanford Site as the facilities are inactive and have few potentials for causing an offsite hazardous material release. However,the fatal accident that occurred in the spring of 1992 in which an employee fell through a deteriorated roof at the 105-F Reactor Building has raised the possibility that retired facilities represent a greater risk than was originally assumed. Therefore, Westinghouse Hanford Company and the US Department of Energy management have determined that facility risk management strategies and programmatic plans should be reevaluated to assure risks are identified and appropriate corrective action plans are developed. To evaluate risk management strategies, accurate risk information about the current and projected condition of the facilities must be developed. This work procedure has been created to address the development of accurate and timely risk information. By using the evaluation results in this procedure, it will be possible to create a prioritized baseline for managing facility risk until all retired surplus facilities are demolished

  1. Microwave heating processing as alternative of pretreatment in second-generation biorefinery: An overview

    International Nuclear Information System (INIS)

    Aguilar-Reynosa, Alejandra; Romaní, Aloia; Rodríguez-Jasso, Rosa Ma.; Aguilar, Cristóbal N.; Garrote, Gil; Ruiz, Héctor A.

    2017-01-01

    Highlights: • Microwave heating pretreatment for lignocellulosic material. • Fundament of lignocellulosic material fractionation using microwave irradiation. • Energy consumption in microwave pretreatments and microwave reactors description. • Microwave heating as pretreatment in a biorefinery concept. - Abstract: The development of a feasible biorefinery is in need of alternative technologies to improve lignocellulosic biomass conversion by the suitable use of energy. Microwave heating processing (MHP) is emerging as promising unconventional pretreatment of lignocellulosic materials (LCMs). MHP applied as pretreatment induces LCMs breakdown through the molecular collision caused by the dielectric polarization. Polar particles movement generates a quick heating consequently the temperatures and times of process are lower. In this way, MHP has positioned as green technology in comparison with other types of heating. Microwave technology represents an excellent option to obtain susceptible substrates to enzymatic saccharification and subsequently in the production of bioethanol and high-added compounds. However, it is still necessary to study the dielectric properties of materials, and conduct economic studies to achieve development in pilot and industrial scale. This work aims to provide an overview of recent progress and alternative configurations for combining the application of microwave technology on the pretreatment of LCMs in terms of biorefinery.

  2. Simulating Pelletization Strategies to Reduce the Biomass Supply Risk at America’s Biorefineries

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Shane Carnohan; Andrew Ford; Allyson Beall

    2014-07-01

    Demand for cellulosic ethanol and other advanced biofuels has been on the rise, due in part to federal targets enacted in 2005 and extended in 2007. The industry faces major challenges in meeting these worthwhile and ambitious targets. The challenges are especially severe in the logistics of timely feedstock delivery to biorefineries. Logistical difficulties arise from seasonal production that forces the biomass to be stored in uncontrolled field-side environments. In this storage format physical difficulties arise; transportation is hindered by the low bulk density of baled biomass and the unprotected material can decay leading to unpredictable losses. Additionally, uncertain yields and contractual difficulties can exacerbate these challenges making biorefineries a high-risk venture. Investors’ risk could limit business entry and prevent America from reaching the targets. This paper explores pelletizer strategies to convert the lignocellulosic biomass into a denser form more suitable for storage. The densification of biomass would reduce supply risks, and the new system would outperform conventional biorefinery supply systems. Pelletizer strategies exhibit somewhat higher costs, but the reduction in risk is well worth the extra cost if America is to grow the advanced biofuels industry in a sustainable manner.

  3. National Ignition Facility Project Site Safety Program

    International Nuclear Information System (INIS)

    Dun, C

    2003-01-01

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES and H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES and H requirements are consistent with the ''LLNL ES and H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B

  4. Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Dalgaard, Tommy; Jørgensen, Uffe

    2015-01-01

    comparisons of alternatives. Life Cycle Assessment is regarded as one of the most relevant tools to assess the environmental hotspots in the biomass supply chains, at processing stages and also to support in the prioritization of any specific biobased products and the alternatives delivered from biorefineries.......The aim of the current paper is to discuss the sustainability aspect of biorefinery systems with focus on biomass supply chains, processing of biomass feedstocks in biorefinery platforms and sustainability assessment methodologies. From the stand point of sustainability, it is important to optimize...... the agricultural production system and minimize the related environmental impacts at the farming system level. These impacts are primarily related to agri-chemical inputs and the related undesired environmental emissions and to the repercussions from biomass production. At the same time, the biorefineries need...

  5. Screening and identification of sites for a proposed Monitored Retrievable Storage Facility

    International Nuclear Information System (INIS)

    1985-04-01

    The Director, Office of Civilian Radioactive Waste Management (OCRWM), Department of Energy (DOE), has identified the Clinch River Breeder Reactor site, the DOE Oak Ridge Reservation and the Tennessee Valley Authority (TVA) Hartsville Nuclear Plant site as preferred and alternative sites, respectively, for development of site-specific designs as part of the proposal for construction of an integrated Monitored Retrievable Storage (MRS) Facility. The proposal, developed pursuant to Section 141 (b) of the Nuclear Waste Policy Act of 1982, will be submitted to Congress in January 1986. The Director expects to propose to Congress that an MRS be constructed at the perferred site. His judgment could change based on information to be developed between now and January 1986. The decision to construct an MRS facility and final site selection are reserved by Congress for itself. The Director's judgment is based on the results of a rigorous site screening and evaluation process described in this report. The three sites were selected from among eleven sites evaluated in detail. The Clinch River Breeder Reactor site, owned by the Tennessee Valley Authority, was identified as the preferred site. It has several particularly desirable features including: (1) federal ownership and control by the Department of Energy; (2) particularly good transportation access (five miles to the nearest interstate highway and direct rail access); (3) site characteristics and current data base judged by the NRC in 1983 as sufficient for granting a limited work authorization for the now cancelled breeder reactor; and (4) a technical community in the vicinity of site which can provide experienced nuclear facility support functions. 6 figs., 2 tabs

  6. Designing optimal bioethanol networks with purification for integrated biorefineries

    International Nuclear Information System (INIS)

    Shenoy, Akshay U.; Shenoy, Uday V.

    2014-01-01

    Highlights: • An analytical method is devised for bioethanol network integration with purification. • Minimum fresh bioethanol flow and pinch are found by the Unified Targeting Algorithm. • Optimal bioethanol networks are then synthesized by the Nearest Neighbors Algorithm. • Continuous targets and networks are developed over the purifier inlet flowrate range. • Case study of a biorefinery producing bioethanol from wheat shows large savings. - Abstract: Bioethanol networks with purification for processing pathways in integrated biorefineries are targeted and designed in this work by an analytical approach not requiring graphical constructions. The approach is based on six fundamental equations involving eight variables: two balance equations for the stream flowrate and the bioethanol load over the total network system; one equation for the above-pinch bioethanol load being picked up by the minimum fresh resource and the purified stream; and three equations for the purification unit. A solution strategy is devised by specifying the two variables associated with the purifier inlet stream. Importantly, continuous targeting is then possible over the entire purifier inlet flowrate range on deriving elegant formulae for the remaining six variables. The Unified Targeting Algorithm (UTA) is utilized to establish the minimum fresh bioethanol resource flowrate and identify the pinch purity. The fresh bioethanol resource flowrate target is shown to decrease linearly with purifier inlet flowrate provided the pinch is held by the same point. The Nearest Neighbors Algorithm (NNA) is used to methodically synthesize optimal networks matching bioethanol demands and sources. A case study of a biorefinery producing bioethanol from wheat with arabinoxylan (AX) coproduction is presented. It illustrates the versatility of the approach in generating superior practical designs with up to nearly 94% savings for integrated bioethanol networks, both with and without process

  7. Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense?

    International Nuclear Information System (INIS)

    Moraes, Bruna S.; Junqueira, Tassia L.; Pavanello, Lucas G.; Cavalett, Otávio; Mantelatto, Paulo E.; Bonomi, Antonio; Zaiat, Marcelo

    2014-01-01

    Highlights: • Anaerobic digestion of vinasse from Brazilian sugarcane biorefineries was assessed. • Energy from biogas could be used for electricity or vehicular fuel replacement. • Biogas in cogeneration could release bagasse for second-generation ethanol production. • Environmental analysis showed decrease of greenhouse gas emissions and pollutant load. • Diesel replacement was the most economically attractive alternative. - Abstract: The need to improve the sustainability of bioethanol production from sugarcane in Brazil has intensified the search for process energy optimization coupled with the environmental suitability of the generated coproducts and wastes. In this scenario, the anaerobic digestion of vinasse (the most abundant effluent from a sugarcane biorefinery) arises as an interesting alternative because, in addition to promoting the stabilization of organic matter, it also enables energy generation from biogas. In this work, vinasse anaerobic digestion in biorefineries was evaluated in terms of energy, environmental, and economic considerations. The energy potential from vinasse of a single sugarcane biorefinery, which is generally lost due to its application to soil with no treatment, was found to be comparable to the electricity supply demand of a city of approximately 130,000 inhabitants or to the surplus energy from bagasse burning that is exported by some sugarcane mills in Brazil. On a national level, such energy is comparable to the electricity generated by some hydroelectric plants, reaching 7.5% of the electricity generated by the world’s largest hydroelectric plant. When burned in boilers, biogas could be used to stimulate second-generation ethanol production because almost 12% of the bagasse could be released from burning and the biogas used to attenuate the process energy demand. As an alternative fuel, biogas could replace up to 40% of the annual diesel supply in the agricultural operations of a sugarcane biorefinery and still

  8. Systematic approach for synthesis of palm oil-based biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    NG, Rex T. L.; NG, Denny K. S.; LAM, Hon Loong [Dept. of Chemical and Environmental Engineering, Centre of Excellence for Green Technologies, Univ. of Nottingham, Selangor, (Malaysia); TAY, Douglas H. S.; LIM, Joseph H. E. [2GGS Eco Solutions Sdn Bhd, Kuala Lumpur (Malaysia)

    2012-11-01

    Various types of palm oil biomasses are generated from palm oil mill when crude palm oil (CPO) is produced from fresh fruit bunch (FFB). In the current practice, palm oil biomasses are used as the main source of energy input in the palm oil mill to produce steam and electricity. Moreover, those biomasses are regarded as by-products and can be reclaimed easily. Therefore, there is a continuous increasing interest concerning biomasses generated from the palm oil mill as a source of renewable energy. Although various technologies have been exploited to produce bio-fuel (i.e., briquette, pellet, etc.) as well as heat and power generation, however, no systematic approach which can analyse and optimise the synthesise biorefinery is presented. In this work, a systematic approach for synthesis and optimisation of palm oil-based biorefinery which including palm oil mill and refinery with maximum economic performance is developed. The optimised network configuration with achieves the maximum economic performance can also be determined. To illustrate the proposed approach, a case study is solved in this work.

  9. Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery

    Directory of Open Access Journals (Sweden)

    Rahul Vijay Kapoore

    2018-02-01

    Full Text Available The commercial reality of bioactive compounds and oil production from microalgal species is constrained by the high cost of production. Downstream processing, which includes harvesting and extraction, can account for 70–80% of the total cost of production. Consequently, from an economic perspective extraction technologies need to be improved. Microalgal cells are difficult to disrupt due to polymers within their cell wall such as algaenan and sporopollenin. Consequently, solvents and disruption devices are required to obtain products of interest from within the cells. Conventional techniques used for cell disruption and extraction are expensive and are often hindered by low efficiencies. Microwave-assisted extraction offers a possibility for extraction of biochemical components including lipids, pigments, carbohydrates, vitamins and proteins, individually and as part of a biorefinery. Microwave technology has advanced since its use in the 1970s. It can cut down working times and result in higher yields and purity of products. In this review, the ability and challenges in using microwave technology are discussed for the extraction of bioactive products individually and as part of a biorefinery approach.

  10. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.

  11. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    International Nuclear Information System (INIS)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations

  12. Nuclear Facilities Decommissioning and site remedial actions: a selected bibliography. Vol. 2

    International Nuclear Information System (INIS)

    Owen, P.T.; Fielden, J.M.; Knox, N.P.; Trotter, ES.

    1981-10-01

    This bibliography of 643 references represents the second in a series on nuclear facility decommissioning and site remedial actions to be produced by the Radiation Effects Information Center (REIC) within the Information Center Complex, Information Division, Oak Ridge National Laboratory. The bibliography contains scientific, technical, economic, and regulatory information pertaining to the US Department of Energy's Remedial Action Program. Major chapters are: Surplus Facilities Management Program; Nuclear Facilities Decommissioning; Formerly Utilized Sites Remedial Action Program; and Uranium Mill Tailings Management. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by title. Indexes are provided for: (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. The bibliography was compiled from a specialized data base established and maintained by REIC to provide information support for the US Department of Energy's Remedial Action Program, under the cosponsorship of its four major components: Surplus Facilities Management Program; Formerly Utilized Sites Remedial Action Program; Uranium Mill Tailings Remedial Action Program; and the Grand Junction Remedial Action Program

  13. Siting of an MRS facility: identification of a geographic region that reduces transportation requirements

    International Nuclear Information System (INIS)

    Holter, G.M.; Braitman, J.L.

    1985-04-01

    The study reported here was undertaken as part of the site screening and evaluation activities for the Monitored Retrievable Storage (MRS) Program of the Office of Civilian Radioactive Waste Management (OCRWM), Department of Energy (DOE). Its primary purpose was to determine: the location and shape of a preferred geographic region within which locating an MRS facility would minimize total shipment miles for spent fuel transported through the MRS facility to a repository, and the sensitivity of the location and shape of this region and the reduction in total shipment miles to possible variations in waste management system logistics. As a result of this analysis, a geographic region has been identified which is preferred for siting an MRS facility. This region will be referred to as the preferred region in this study. Siting an MRS facility in the preferred region will limit total shipment miles (i.e., the total miles traveled for all shipments of spent fuel) to and from the MRS facility to within 20% of the lowest achievable. The region is preferred for a mixed truck/rail system of transport from reactors to the MRS facility. It is assumed that rail will be used to ship spent fuel from the MRS facility to a geologic repository for disposal. Siting an MRS facility in the preferred region will reduce total shipment miles for all currently considered system logistics options which include an MRS facility in the system. These options include: any first repository location, the possible range of spent fuel consolidation at the MRS, use of multi-cask or single-cask train shipments, use of current or future spent fuel transport casks, servicing only the first or both the first and second repositories, and shipment of fuel from western reactors either through the MRS facility or to a western facility (a second, smaller MRS facility or the first repository)

  14. Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries.

    Science.gov (United States)

    Ellilä, Simo; Fonseca, Lucas; Uchima, Cristiane; Cota, Junio; Goldman, Gustavo Henrique; Saloheimo, Markku; Sacon, Vera; Siika-Aho, Matti

    2017-01-01

    During the past few years, the first industrial-scale cellulosic ethanol plants have been inaugurated. Although the performance of the commercial cellulase enzymes used in this process has greatly improved over the past decade, cellulases still represent a very significant operational cost. Depending on the region, transport of cellulases from a central production facility to a biorefinery may significantly add to enzyme cost. The aim of the present study was to develop a simple, cost-efficient cellulase production process that could be employed locally at a Brazilian sugarcane biorefinery. Our work focused on two main topics: growth medium formulation and strain improvement. We evaluated several Brazilian low-cost industrial residues for their potential in cellulase production. Among the solid residues evaluated, soybean hulls were found to display clearly the most desirable characteristics. We engineered a Trichoderma reesei strain to secrete cellulase in the presence of repressing sugars, enabling the use of sugarcane molasses as an additional carbon source. In addition, we added a heterologous β-glucosidase to improve the performance of the produced enzymes in hydrolysis. Finally, the addition of an invertase gene from Aspegillus niger into our strain allowed it to consume sucrose from sugarcane molasses directly. Preliminary cost analysis showed that the overall process can provide for very low-cost enzyme with good hydrolysis performance on industrially pre-treated sugarcane straw. In this study, we showed that with relatively few genetic modifications and the right growth medium it is possible to produce considerable amounts of well-performing cellulase at very low cost in Brazil using T. reesei . With further enhancements and optimization, such a system could provide a viable alternative to delivered commercial cellulases.

  15. Optimizing fermentation process miscanthus-to-ethanol biorefinery scale under uncertain conditions

    International Nuclear Information System (INIS)

    Bomberg, Matthew; Sanchez, Daniel L; Lipman, Timothy E

    2014-01-01

    Ethanol produced from cellulosic feedstocks has garnered significant interest for greenhouse gas abatement and energy security promotion. One outstanding question in the development of a mature cellulosic ethanol industry is the optimal scale of biorefining activities. This question is important for companies and entrepreneurs seeking to construct and operate cellulosic ethanol biorefineries as it determines the size of investment needed and the amount of feedstock for which they must contract. The question also has important implications for the nature and location of lifecycle environmental impacts from cellulosic ethanol. We use an optimization framework similar to previous studies, but add richer details by treating many of these critical parameters as random variables and incorporating a stochastic sub-model for land conversion. We then use Monte Carlo simulation to obtain a probability distribution for the optimal scale of a biorefinery using a fermentation process and miscanthus feedstock. We find a bimodal distribution with a high peak at around 10–30 MMgal yr −1 (representing circumstances where a relatively low percentage of farmers elect to participate in miscanthus cultivation) and a lower and flatter peak between 150 and 250 MMgal yr −1 (representing more typically assumed land-conversion conditions). This distribution leads to useful insights; in particular, the asymmetry of the distribution—with significantly more mass on the low side—indicates that developers of cellulosic ethanol biorefineries may wish to exercise caution in scale-up. (letters)

  16. Optimizing fermentation process miscanthus-to-ethanol biorefinery scale under uncertain conditions

    Science.gov (United States)

    Bomberg, Matthew; Sanchez, Daniel L.; Lipman, Timothy E.

    2014-05-01

    Ethanol produced from cellulosic feedstocks has garnered significant interest for greenhouse gas abatement and energy security promotion. One outstanding question in the development of a mature cellulosic ethanol industry is the optimal scale of biorefining activities. This question is important for companies and entrepreneurs seeking to construct and operate cellulosic ethanol biorefineries as it determines the size of investment needed and the amount of feedstock for which they must contract. The question also has important implications for the nature and location of lifecycle environmental impacts from cellulosic ethanol. We use an optimization framework similar to previous studies, but add richer details by treating many of these critical parameters as random variables and incorporating a stochastic sub-model for land conversion. We then use Monte Carlo simulation to obtain a probability distribution for the optimal scale of a biorefinery using a fermentation process and miscanthus feedstock. We find a bimodal distribution with a high peak at around 10-30 MMgal yr-1 (representing circumstances where a relatively low percentage of farmers elect to participate in miscanthus cultivation) and a lower and flatter peak between 150 and 250 MMgal yr-1 (representing more typically assumed land-conversion conditions). This distribution leads to useful insights; in particular, the asymmetry of the distribution—with significantly more mass on the low side—indicates that developers of cellulosic ethanol biorefineries may wish to exercise caution in scale-up.

  17. Pretreatment techniques for biofuels and biorefineries

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhen (ed.) [Chinese Academy of Sciences, Kunming, YN (China). Xishuangbanna Tropical Botonical Garden

    2013-02-01

    The first book focused on pretreatment techniques for biofuels contributed by the world's leading experts. Extensively covers the different types of biomass, various pretreatment approaches and methods that show the subsequent production of biofuels and chemicals. In addition to traditional pretreatment methods, novel techniques are also introduced and discussed. An accessible reference work for students, researchers, academicians and industrialists in biorefineries. This book includes 19 chapters contributed by the world's leading experts on pretreatment methods for biomass. It extensively covers the different types of biomass (e.g. molasses, sugar beet pulp, cheese whey, sugarcane residues, palm waste, vegetable oil, straws, stalks and wood), various pretreatment approaches (e.g. physical, thermal, chemical, physicochemical and biological) and methods that show the subsequent production of biofuels and chemicals such as sugars, ethanol, extracellular polysaccharides, biodiesel, gas and oil. In addition to traditional methods such as steam, hot-water, hydrothermal, diluted-acid, organosolv, ozonolysis, sulfite, milling, fungal and bacterial, microwave, ultrasonic, plasma, torrefaction, pelletization, gasification (including biogas) and liquefaction pretreatments, it also introduces and discusses novel techniques such as nano and solid catalysts, organic electrolyte solutions and ionic liquids. This book offers a review of state-of-the-art research and provides guidance for the future paths of developing pretreatment techniques of biomass for biofuels, especially in the fields of biotechnology, microbiology, chemistry, materials science and engineering. It intends to provide a systematic introduction of pretreatment techniques. It is an accessible reference work for students, researchers, academicians and industrialists in biorefineries.

  18. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  19. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    International Nuclear Information System (INIS)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints

  20. Operators guide: Atmospheric Release Advisory Capability (ARAC) site facility

    International Nuclear Information System (INIS)

    Lawver, B.S.

    1977-01-01

    In this report capabilities and services are described for the Atmospheric Release Advisory Capability (ARAC). The ARAC site system and its operating procedures and interactions with the ARAC central facility located at LLL is outlined. ARAC is designed to help officials at designated ERDA sites and other locations in estimating the effects of atmospheric releases of radionuclides or other hazardous materials by issuing real-time advisories to guide them in their planning

  1. An oil palm-based biorefinery concept for cellulosic ethanol and phytochemicals production: Sustainability evaluation using exergetic life cycle assessment

    International Nuclear Information System (INIS)

    Ofori-Boateng, Cynthia; Lee, Keat Teong

    2014-01-01

    In this study, thermo-environmental sustainability of an oil palm-based biorefinery concept for the co-production of cellulosic ethanol and phytochemicals from oil palm fronds (OPFs) was evaluated based on exergetic life cycle assessment (ExLCA). For the production of 1 tonne bioethanol, the exergy content of oil palm seeds was upgraded from 236 MJ to 77,999 MJ during the farming process for OPFs production. Again, the high exergy content of the OPFs was degraded by about 62.02% and 98.36% when they were converted into cellulosic ethanol and phenolic compounds respectively. With a total exergy destruction of about 958,606 MJ (internal) and 120,491 MJ (external or exergy of wastes), the biorefinery recorded an overall exergy efficiency and thermodynamic sustainability index (TSI) of about 59.05% and 2.44 per tonne of OPFs' bioethanol respectively. Due to the use of fossil fuels, pesticides, fertilizers and other toxic chemicals during the production, the global warming potential (GWP = 2265.69 kg CO 2 eq.), acidification potential (AP = 355.34 kg SO 2 eq.) and human toxicity potential (HTP = 142.79 kg DCB eq.) were the most significant environmental impact categories for a tonne of bioethanol produced in the biorefinery. The simultaneous saccharification and fermentation (SSF) unit emerged as the most exergetically efficient (89.66%), thermodynamically sustainable (TSI = 9.67) and environmentally friendly (6.59% of total GWP) production system. -- Highlights: • Thermo-environmental sustainability of palm-based biorefinery was assessed. • OPFs' exergy content was degraded when converted into bioethanol and phytochemicals. • Exergy efficiency (59.05%) and TSI (2.44) were recorded for the biorefinery • Global warming potential of 2265.6 kg CO 2 eq. was recorded for the whole biorefinery

  2. Use of critical pathway models and log-normal frequency distributions for siting nuclear facilities

    International Nuclear Information System (INIS)

    Waite, D.A.; Denham, D.H.

    1975-01-01

    The advantages and disadvantages of potential sites for nuclear facilities are evaluated through the use of environmental pathway and log-normal distribution analysis. Environmental considerations of nuclear facility siting are necessarily geared to the identification of media believed to be sifnificant in terms of dose to man or to be potential centres for long-term accumulation of contaminants. To aid in meeting the scope and purpose of this identification, an exposure pathway diagram must be developed. This type of diagram helps to locate pertinent environmental media, points of expected long-term contaminant accumulation, and points of population/contaminant interface for both radioactive and non-radioactive contaminants. Confirmation of facility siting conclusions drawn from pathway considerations must usually be derived from an investigatory environmental surveillance programme. Battelle's experience with environmental surveillance data interpretation using log-normal techniques indicates that this distribution has much to offer in the planning, execution and analysis phases of such a programme. How these basic principles apply to the actual siting of a nuclear facility is demonstrated for a centrifuge-type uranium enrichment facility as an example. A model facility is examined to the extent of available data in terms of potential contaminants and facility general environmental needs. A critical exposure pathway diagram is developed to the point of prescribing the characteristics of an optimum site for such a facility. Possible necessary deviations from climatic constraints are reviewed and reconciled with conclusions drawn from the exposure pathway analysis. Details of log-normal distribution analysis techniques are presented, with examples of environmental surveillance data to illustrate data manipulation techniques and interpretation procedures as they affect the investigatory environmental surveillance programme. Appropriate consideration is given these

  3. Assessment of national systems for obtaining local siting acceptance of nuclear waste management facilities (October 1, 1985). Volume I. Political structure and formal system for obtaining approvals for siting waste management facilities

    International Nuclear Information System (INIS)

    Paige, H.W.; Numark, N.J.

    1985-01-01

    This report is the fourth in a series of periodic surveys of approaches and progress in other countries in dealing with the problems of obtaining local acceptance for siting of waste management facilities. This volume contains the following sections: Nation's political/industrial structure for obtaining waste management siting decisions; and Nation's formal legal procedure for obtaining necessary approvals for siting nuclear waste management facilities. Two of the countries visited, Finland and Sweden, have had major changes in the past two years in their formal/legal procedures for obtaining waste management siting decisions. (LM)

  4. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

  5. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    International Nuclear Information System (INIS)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description

  6. Economically Viable Components from Jerusalem Artichoke (Helianthus tuberosus L.) in a Biorefinery Concept

    Science.gov (United States)

    Johansson, Eva; Prade, Thomas; Angelidaki, Irini; Svensson, Sven-Erik; Newson, William R.; Gunnarsson, Ingólfur Bragi; Persson Hovmalm, Helena

    2015-01-01

    Biorefinery applications are receiving growing interest due to climatic and waste disposal issues and lack of petroleum resources. Jerusalem artichoke (Helianthus tuberosus L.) is suitable for biorefinery applications due to high biomass production and limited cultivation requirements. This paper focuses on the potential of Jerusalem artichoke as a biorefinery crop and the most viable products in such a case. The carbohydrates in the tubers were found to have potential for production of platform chemicals, e.g., succinic acid. However, economic analysis showed that production of platform chemicals as a single product was too expensive to be competitive with petrochemically produced sugars. Therefore, production of several products from the same crop is a must. Additional products are protein based ones from tubers and leaves and biogas from residues, although both are of low value and amount. High bioactive activity was found in the young leaves of the crop, and the sesquiterpene lactones are of specific interest, as other compounds from this group have shown inhibitory effects on several human diseases. Thus, future focus should be on understanding the usefulness of small molecules, to develop methods for their extraction and purification and to further develop sustainable and viable methods for the production of platform chemicals. PMID:25913379

  7. A New Proposal of Cellulosic Ethanol to Boost Sugarcane Biorefineries: Techno-Economic Evaluation

    Directory of Open Access Journals (Sweden)

    Juliana Q. Albarelli

    2014-01-01

    Full Text Available Commercial simulator Aspen Plus was used to simulate a biorefinery producing ethanol from sugarcane juice and second generation ethanol production using bagasse fine fraction composed of parenchyma cells (P-fraction. Liquid hot water and steam explosion pretreatment technologies were evaluated. The processes were thermal and water integrated and compared to a biorefinery producing ethanol from juice and sugarcane bagasse. The results indicated that after thermal and water integration, the evaluated processes were self-sufficient in energy demand, being able to sell the surplus electricity to the grid, and presented water intake inside the environmental limit for São Paulo State, Brazil. The processes that evaluated the use of the bagasse fine fraction presented higher economic results compared with the use of the entire bagasse. Even though, due to the high enzyme costs, the payback calculated for the biorefineries were higher than 8 years for all cases that considered second generation ethanol and the net present value for the investment was negative. The reduction on the enzyme load, in a way that the conversion rates could be maintained, is the limiting factor to make second generation ethanol competitive with the most immediate uses of bagasse: fuel for the cogeneration system to surplus electricity production.

  8. Mixed waste disposal facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dickman, P.T.; Kendall, E.W.

    1987-01-01

    In 1984, a law suit brought against DOE resulted in the requirement that DOE be subject to regulation by the state and US Environmental Protection Agency (EPA) for all hazardous wastes, including mixed wastes. Therefore, all DOE facilities generating, storing, treating, or disposing of mixed wastes will be regulated under the Resource Conservation and Recovery Act (RCTA). In FY 1985, DOE Headquarters requested DOE low-level waste (LLW) sites to apply for a RCRA Part B Permit to operate radioactive mixed waste facilities. An application for the Nevada Test Site (NTS) was prepared and submitted to the EPA, Region IX in November 1985 for review and approval. At that time, the state of Nevada had not yet received authorization for hazardous wastes nor had they applied for regulatory authority for mixed wastes. In October 1986, DOE Nevada Operations Office was informed by the Rocky Flats Plant that some past waste shipments to NTS contained trace quantities of hazardous substances. Under Colorado law, these wastes are defined as mixed. A DOE Headquarters task force was convened by the Under Secretary to investigate the situation. The task force concluded that DOE has a high priority need to develop a permitted mixed waste site and that DOE Nevada Operations Office should develop a fast track project to obtain this site and all necessary permits. The status and issues to be resolved on the permit for a mixed waste site are discussed

  9. UTILIZATION OF AGROINDUSTRIALES RESIDUES AS BIOFUELS AND BIOREFINERY

    Directory of Open Access Journals (Sweden)

    Deyanira Muñoz-Muñoz

    2014-12-01

    Full Text Available The use of residues generated in the process agro-industrials are interest worldwide. At present, research is this in lignocellulosic biomass for energy, fuels, chemicals and biomaterials through clean technologies and closed systems that conserve the environment. In this research, based on the characteristics of the typical agro-industrial residues of Cauca Department, sugarcane bagasse, sisal dust, cassava bran and the mixtures, was evaluated use as biorefinery. Were determined the thermal, physical chemical and morphologic properties in seven samples of residues, were performed exploratory tests, were determined pretreatments and applications and the possible use were identified. We conclude that the sample M6 with 9,93 % moisture, 4,12% ash, 43,97% carbon, 5,86% hydrogen, 0,43% nitrogen, 15 MJ/kg of lower heating value and 22,25%of cellulose, 9,30% of hemicellulose and 4,56% lignin, presents characteristics appropriate to be used in furnaces and boilers less power for the rural sector by the amount of ash, which keeps the low heating power stable and reduces the emission of particulate matter. For the thermal, physical, chemical and morphological characteristics, all the samples of M1 to M7, they can be hydrolyzed, densified and taken advantage like biofuel and / or biorefinery

  10. Siting of near surface disposal facilities

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials in industrial applications, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. The Radioactive Waste Safety Standards (RADWASS) programme is the IAEA's contribution to establishing and promoting, in a coherent and comprehensive manner, the basic safety philosophy for radioactive waste management and the steps necessary to ensure its implementation. The Safety Standards are supplemented by a number of Safety Guides and Safety Practices. This Safety Guide defines the site selection process and criteria for identifying suitable near surface disposal facilities for low and intermediate level solid wastes. Management of the siting process and data needed to apply the criteria are also specified. 4 refs

  11. The pros and cons of lignin valorisation in an integrated biorefinery

    NARCIS (Netherlands)

    Strassberger, Z.; Tanase, S.; Rothenberg, G.

    2014-01-01

    This short critical review outlines possible scenarios for using lignin as a feedstock in a biorefinery environment. We first explain the position of biomass with respect to fossil carbon sources and the possibilities of substituting these in tomorrow's transportation fuels, energy, and chemicals

  12. Lessons learned -- a comparison of the proposed on-site waste management facilities at the various Department of Energy sites

    International Nuclear Information System (INIS)

    Ciocco, J.; Singh, D.; Survochak, S.; Elo, M.

    1996-01-01

    The Department of Energy Sites (DOE) are faced with the challenge of managing several categories of waste generated from past or future cleanup activities, such as 11(e)2 byproduct material, low-level radioactive (LL), low-level radioactive mixed (LLM), transuranic (TRU), high level radioactive (HL), and hazardous waste (HW). DOE must ensure safe and efficient management of these wastes while complying with all applicable federal and state laws. Proposed waste management strategies for the EM-40 Environmental Restoration (ER) program at these sites indicate that on-site disposal is becoming a viable option. For purposes of this paper, on-site disposal cells managed by the EM-40 program at Hanford, Weldon Spring, Fernald Environmental Management Project (FEMP) and Rocky Flats were compared. Programmatic aspects and design features were evaluated to determine what comparisons can be made, and to identify benefits lessons learned that may be applicable to other sites. Based on comparative analysis, it can be concluded that the DOE EM-40 disposal cells are very unique. Stakeholders played a major role in the decision to locate the various DOE on-site disposal facilities. The disposal cells will be used to manage 11(e)2 by-product materials, LL, LLM, and/or HLW. The analysis further suggests that the design criteria are comparable. Lessons learned relative to the public involvement activities at Weldon Spring, and the design approach at Hanford should be considered when planning future on-site disposal facilities at DOE sites. Further, a detailed analysis of progress made at Hanford should be evaluated for application at sites such as Rocky Flats that are currently planning on-site disposal facilities

  13. Case study: Preliminary assessment of integrated palm biomass biorefinery for bioethanol production utilizing non-food sugars from oil palm frond petiole

    International Nuclear Information System (INIS)

    Abdullah, Sharifah Soplah Syed; Shirai, Yoshihito; Ali, Ahmad Amiruddin Mohd; Mustapha, Mahfuzah; Hassan, Mohd Ali

    2016-01-01

    Highlights: • Fermentable sugars production from oil palm frond by integrated technology concept. • Bioethanol production from oil palm frond sugars in a biorefinery. • Palm oil mills have sufficient excess energy and steam to support biorefinery. • The net energy ratio of bioethanol from oil palm frond petiole is 7.48. - Abstract: In this case study, a preliminary assessment on the bioethanol production from oil palm frond (OPF) petiole sugars within an integrated palm biomass biorefinery was carried out. Based on the case study of 4 neighbouring palm oil mills, approximately 55,600 t/y of fermentable sugars could be obtained from OPF petiole. The integrated biorefinery will be located at one of the 4 mills. The mill has potential excess energy comprising 3.64 GW h/y of electricity and 177,000 t/y of steam which are sufficient to run the biorefinery. With 33.9 million litres/y of bioethanol production, the specific production cost of bioethanol is estimated at $ 0.52/l bioethanol, compared to $ 0.31–0.34/l bioethanol produced from sugarcane and $ 0.49–0.60/l bioethanol from other lignocellulosics. The net energy ratio of 7.48 for bioethanol production from OPF provides a promising alternative for OPF utilization as a non-food sugar feedstock.

  14. Technoeconomic analysis of biofuels: A wiki-based platform for lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Klein-Marcuschamer, Daniel; Oleskowicz-Popiel, Piotr; Simmons, Blake A.

    2010-01-01

    We present a process model for a lignocellulosic ethanol biorefinery that is open to the biofuels academic community. Beyond providing a series of static results, the wiki-based platform provides a dynamic and transparent tool for analyzing, exploring, and communicating the impact of process adva...

  15. Comparative approaches to siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Newberry, W.F.

    1994-07-01

    This report describes activities in nine States to select site locations for new disposal facilities for low-level radioactive waste. These nine States have completed processes leading to identification of specific site locations for onsite investigations. For each State, the status, legal and regulatory framework, site criteria, and site selection process are described. In most cases, States and compact regions decided to assign responsibility for site selection to agencies of government and to use top-down mapping methods for site selection. The report discusses quantitative and qualitative techniques used in applying top-down screenings, various approaches for delineating units of land for comparison, issues involved in excluding land from further consideration, and different positions taken by the siting organizations in considering public acceptance, land use, and land availability as factors in site selection

  16. Site characterization of ORNL D ampersand D facilities

    International Nuclear Information System (INIS)

    Kelsey, A.P.; Mandry, G.J.; Haghighi, M.H.

    1994-01-01

    Site characterization for decontamination and decommissioning (D ampersand D) planning purposes was done for two surplus facilities at Oak Ridge National Laboratory (ORNL) in late 1993 and early 1994. This site characterization includes measurements of radiological and chemical contaminants, assessment of general structural conditions, and investigation of unknown conditions within the buildings. It will serve as input to decisions on D ampersand D engineering, D ampersand D task sequences, radiological and contamination control, and waste management. This paper presents the methods used to investigate these facilities and discusses the preliminary results as they apply to D ampersand D planning. Investigation methods include gross alpha, beta, and gamma surveys; directional gamma surveys; gamma spectroscopy; concrete coring; photography; and collection of soil and miscellaneous samples that are analyzed for radiological and chemical contaminants. Data will be analyzed using radiological models to sort sources and estimate exposure rates and waste volumes due to D ampersand D. The former Waste Evaporator Facility (WEF), consisting of two concrete cells and an operating gallery, once contained a liquid radwaste evaporator. Subsequently it was used for an incinerator experiment and as a dressing area for remediation work on an adjacent tank farm. The building has been partially decontaminated. Figure 1 is a photograph of the WEF. The Fission Product Pilot Plant (FPPP) is a small concrete building containing two cells. It was used to extract isotopes of ruthenium, strontium, cesium, cerium, and other elements from liquid waste. This facility is highly contaminated. In 1960 all doors into FPPP were sealed with concrete block and mortar, and concrete block shielding was added to the external walls making them up to five feet thick. Prior to this study, almost nothing was known about the interior of this building

  17. Quantifying Supply Risk at a Cellulosic Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Jason K [Idaho National Laboratory; Jacobson, Jacob Jordan [Idaho National Laboratory; Cafferty, Kara Grace [Idaho National Laboratory; Lamers, Patrick [Idaho National Laboratory; Roni, MD S [Idaho National Laboratory

    2015-03-01

    In order to increase the sustainability and security of the nation’s energy supply, the U.S. Department of Energy through its Bioenergy Technology Office has set a vision for one billion tons of biomass to be processed for renewable energy and bioproducts annually by the year 2030. The Renewable Fuels Standard limits the amount of corn grain that can be used in ethanol conversion sold in the U.S, which is already at its maximum. Therefore making the DOE’s vision a reality requires significant growth in the advanced biofuels industry where currently three cellulosic biorefineries convert cellulosic biomass to ethanol. Risk mitigation is central to growing the industry beyond its infancy to a level necessary to achieve the DOE vision. This paper focuses on reducing the supply risk that faces a firm that owns a cellulosic biorefinery. It uses risk theory and simulation modeling to build a risk assessment model based on causal relationships of underlying, uncertain, supply driving variables. Using the model the paper quantifies supply risk reduction achieved by converting the supply chain from a conventional supply system (bales and trucks) to an advanced supply system (depots, pellets, and trains). Results imply that the advanced supply system reduces supply system risk, defined as the probability of a unit cost overrun, from 83% in the conventional system to 4% in the advanced system. Reducing cost risk in this nascent industry improves the odds of realizing desired growth.

  18. Quantifying Supply Risk at a Cellulosic Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Jason K.; Jacobson, Jacob J.; Cafferty, Kara G.; Lamers, Patrick; Roni, Mohammad S.

    2015-07-01

    In order to increase the sustainability and security of the nation’s energy supply, the U.S. Department of Energy through its Bioenergy Technology Office has set a vision for one billion tons of biomass to be processed for renewable energy and bioproducts annually by the year 2030. The Renewable Fuels Standard limits the amount of corn grain that can be used in ethanol conversion sold in the U.S, which is already at its maximum. Therefore making the DOE’s vision a reality requires significant growth in the advanced biofuels industry where currently three cellulosic biorefineries convert cellulosic biomass to ethanol. Risk mitigation is central to growing the industry beyond its infancy to a level necessary to achieve the DOE vision. This paper focuses on reducing the supply risk that faces a firm that owns a cellulosic biorefinery. It uses risk theory and simulation modeling to build a risk assessment model based on causal relationships of underlying, uncertain, supply driving variables. Using the model the paper quantifies supply risk reduction achieved by converting the supply chain from a conventional supply system (bales and trucks) to an advanced supply system (depots, pellets, and trains). Results imply that the advanced supply system reduces supply system risk, defined as the probability of a unit cost overrun, from 83% in the conventional system to 4% in the advanced system. Reducing cost risk in this nascent industry improves the odds of realizing desired growth.

  19. Regional-interstate site-review procedure: low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    1983-09-01

    The attributes of the Southern States Energy Board (SSEB) enable it to view federal/state interface problem areas from a perspective that can be uniquely constructive. The board is sensitive to the interests of both federal and state levels of government since it is composed of member states with common regional interests and confirmed by federal legislative action. It has been most effective when exercising a leadership role in finding procedures and practices that use the resources of both levels of government that are mutually supportive and nonduplicative. SSEB began an NRC-funded effort in that direction related to nuclear power plant siting in June 1975, entitled Regional-Interstate Nuclear Facility Siting Procedure Demonstration Project. SSEB approached the problem by working with interested states to analyze various elements of the licensing process, in particular with NEPA review procedures for interstate coordination where potential impacts extend beyond a single state and where the facility serves an interstate or regional need. SSEB also served as a catalyst in the development of a region-wide nuclear facility siting procedure that could improve the effectiveness and timeliness of the regulatory process

  20. Methodology to evaluate the site standard seismic motion to a nuclear facility

    International Nuclear Information System (INIS)

    Soares, W.A.

    1983-01-01

    For the seismic design of nuclear facilities, the input motion is normally defined by the predicted maximum ground horizontal acceleration and the free field ground response spectrum. This spectrum is computed on the basis of records of strong motion earthquakes. The pair maximum acceleration-response spectrum is called the site standard seismic motion. An overall view of the subjects involved in the determination of the site standard seismic motion to a nuclear facility is presented. The main topics discussed are: basic principles of seismic instrumentation; dynamic and spectral concepts; design earthquakes definitions; fundamentals of seismology; empirical curves developed from prior seismic data; available methodologies and recommended procedures to evaluate the site standard seismic motion. (Author) [pt

  1. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 7

    International Nuclear Information System (INIS)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.; Fowler, J.W.

    1986-09-01

    The 644 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the seventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. References are arranged alphabetically by leading author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations

  2. Commercializing Biorefinery Technology: A Case for the Multi-Product Pathway to a Viable Biorefinery

    Directory of Open Access Journals (Sweden)

    Shijie Liu

    2011-11-01

    Full Text Available While there may be many reasons why very interesting science ideas never reach commercial practice, one of the more prevalent is that the reaction or process, which is scientifically possible, cannot be made efficient enough to achieve economic viability. One pathway to economic viability for many business sectors is the multi-product portfolio. Research, development, and deployment of viable biorefinery technology must meld sound science with engineering and business economics. It is virtually axiomatic that increased value can be generated by isolating relatively pure substances from heterogeneous raw materials. Woody biomass is a heterogeneous raw material consisting of the major structural components, cellulose, lignin, and hemicelluloses, as well as minor components, such as extractives and ash. Cellulose is a linear homopolymer of D-glucopyrano-units with β-D(1®4 connections and is the wood component most resistant to chemical and biological degradation. Lignin is a macromolecule of phenylpropanoid units, second to cellulose in bio-resistance, and is the key component that is sought for removal from woody biomass in chemical pulping. Hemicelluloses are a collection of heteropolysaccharides, comprised mainly of 5- and 6-carbon sugars. Extractives, some of which have high commercial value, are a collection of low molecular weight organic and inorganic woody materials that can be removed, to some extent, under mild conditions. Applied Biorefinery Sciences, LLC (a private, New York, USA based company is commercializing a value-optimization pathway (the ABS Process™ for generating a multi-product portfolio by isolating and recovering homogeneous substances from each of the above mentioned major and minor woody biomass components. The ABS Process™ incorporates the patent pending, core biorefinery technology, “hot water extraction”, as developed at the State University of New York College of Environmental Science and Forestry (SUNY

  3. Balance and saving of GHG emissions in thermochemical biorefineries

    International Nuclear Information System (INIS)

    Haro, Pedro; Aracil, Cristina; Vidal-Barrero, Fernando; Ollero, Pedro

    2015-01-01

    Highlights: • A simplified methodology for the balance and saving of GHG emissions is provided. • The GHG balance has a physical meaning and does not depend on the fossil reference. • The GHG saving depends on regulation of energy carriers. • The impact of Bio-CCS incorporation and multiproduction is analyzed. • The co-production of chemicals needs to be included in future regulation. - Abstract: In this study, a simplified methodology for the calculation of the balance of greenhouse gas (GHG) emissions and corresponding saving compared with the fossil reference is presented. The proposed methodology allows the estimation of the anthropogenic GHG emissions of thermochemical biorefineries (net emitted to the atmosphere). In the calculation of the GHG balance, all relevant factors have been identified and analyzed including multiproduction, emissions from biogenic carbon capture and storage (Bio-CCS), co-feeding of fossil fuels (secondary feedstock) and possible carbon storage in biomass-derived products (chemicals). Therefore, it is possible to calculate the balance of GHG emissions of a hypothetical thermochemical biorefinery considering different alternatives of land-use, biomass feedstock, co-feeding of fossil fuels, Bio-CCS incorporation and final use of the products. The comparison of the estimated GHG balance with the corresponding fossil reference for each product is of special relevance in the methodology since it is the parameter used in European regulation for the fulfillment of sustainability criteria in biomass-derived fuels and liquids. The proposed methodology is tested using a previously assessed set of different process concepts of thermochemical biorefineries (techno-economic analysis). The resulting GHG balance and saving are analyzed to identify uncertainties and provide recommendations for future regulation. In all process concepts, the GHG savings are above the minimum requirement of GHG emissions for 2018. In the case of incorporating

  4. New instrument calibration facility for the DOE Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wilkie, W.H.; Polz, E.J. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1993-12-31

    A new laboratory facility is being designed, constructed, and equipped at the Savannah River Site (SRS) as a fiscal year 1992 line item project. This facility will provide space and equipment for test, evaluation, repair, maintenance, and calibration of radiation monitoring instrumentation. The project will replace an obsolete facility and will allow implementation of program upgrades necessary to meet ANSI N323 requirements and National Voluntary Laboratory Accreditation Program (NVLAP) criteria for accreditation of federally owned secondary calibration laboratories. An outline of the project is presented including description, scope, cost, management organization, chronology, and current status. Selected design criteria and their impacts on the project are discussed. The upgraded SRS calibration program is described, and important features of the new facility and equipment that will accommodate this program are listed. The floor plan for the facility is shown, and equipment summaries and functional descriptions for each area are provided.

  5. New instrument calibration facility for the DOE Savannah River Site

    International Nuclear Information System (INIS)

    Wilkie, W.H.; Polz, E.J.

    1993-01-01

    A new laboratory facility is being designed, constructed, and equipped at the Savannah River Site (SRS) as a fiscal year 1992 line item project. This facility will provide space and equipment for test, evaluation, repair, maintenance, and calibration of radiation monitoring instrumentation. The project will replace an obsolete facility and will allow implementation of program upgrades necessary to meet ANSI N323 requirements and National Voluntary Laboratory Accreditation Program (NVLAP) criteria for accreditation of federally owned secondary calibration laboratories. An outline of the project is presented including description, scope, cost, management organization, chronology, and current status. Selected design criteria and their impacts on the project are discussed. The upgraded SRS calibration program is described, and important features of the new facility and equipment that will accommodate this program are listed. The floor plan for the facility is shown, and equipment summaries and functional descriptions for each area are provided

  6. Critical analysis of emerging forest biorefinery (FBR) technologies for ethanol production

    International Nuclear Information System (INIS)

    Cohen, J.; Janssen, M.; Chambost, V.; Stuart, P.

    2010-01-01

    This article provided a literature review of emerging technologies for ethanol production in Canada. A multi-criteria decision making (MCDM) panel was used to weigh critical metrics for evaluating the potential of emerging forest biorefinery technologies for bio-ethanol production. The 3-step methodology identified key factors for evaluating technology pathways. Key factors were applied to a group of selected technologies in order to collect data. All previous criteria were weighted through the MCDM panel in order to rank the technologies, which included biochemical pathway and thermochemical pathway production processes. Criteria included return on investment; feedstock flexibility; technology risk; energy and integration; products and revenue diversification; potential for additional products; and potential environmental impact. The study showed that techno-economic criteria are the most important barriers to the implementation of ethanol biorefineries. While thermochemical processes are economically feasible and provide greater flexibility, biochemical refining processes may provide for the development of other value-added products. 21 refs., 3 tabs., 7 figs.

  7. Critical analysis of emerging forest biorefinery (FBR) technologies for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J.; Janssen, M.; Chambost, V.; Stuart, P. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Chimique. Design Engineering Chair in Process Integration

    2010-05-15

    This article provided a literature review of emerging technologies for ethanol production in Canada. A multi-criteria decision making (MCDM) panel was used to weigh critical metrics for evaluating the potential of emerging forest biorefinery technologies for bio-ethanol production. The 3-step methodology identified key factors for evaluating technology pathways. Key factors were applied to a group of selected technologies in order to collect data. All previous criteria were weighted through the MCDM panel in order to rank the technologies, which included biochemical pathway and thermochemical pathway production processes. Criteria included return on investment; feedstock flexibility; technology risk; energy and integration; products and revenue diversification; potential for additional products; and potential environmental impact. The study showed that techno-economic criteria are the most important barriers to the implementation of ethanol biorefineries. While thermochemical processes are economically feasible and provide greater flexibility, biochemical refining processes may provide for the development of other value-added products. 21 refs., 3 tabs., 7 figs.

  8. Safety Report within the licence application for the siting of a radioactive waste repository/disposal facility

    International Nuclear Information System (INIS)

    Horyna, J.; Sinaglova, R.

    2004-01-01

    The initial safety specification report, which is submitted to the licensing authority as one of the application documents, is the basic document assessing the planned repository/disposal facility with respect to the suitability of the chosen site for this purpose. The following topics are covered: General information; Description and evidence of suitability of the site chosen; Description and tentative assessment of the repository/disposal facility design; Tentative assessment of impacts of running the facility on the employees, general public and environment (radionuclide inventory, transport routes, radionuclide release in normal, abnormal and emergency situations); Proposed concept of repository/disposal facility shutdown; and Assessment of quality assurance in the site selection, in preparatory work for the construction of the facility and in the subsequent stages. (P.A.)

  9. Novel heat–integrated and intensified biorefinery process for cellulosic ethanol production from lignocellulosic biomass

    International Nuclear Information System (INIS)

    Nhien, Le Cao; Long, Nguyen Van Duc; Lee, Moonyong

    2017-01-01

    Highlights: • A compact biorefinery design was proposed for cellulosic ethanol purification. • Actual fermentation broth from lignocellulosic biomass was considered. • Process integration and intensification achieves competitive biorefinery context. • The response surface method optimizes the complex column structure effectively. • The proposed process could save up to 47.6% of total annual cost. - Abstract: Biofuels have the most potential as an alternative to fossil fuels and overcoming global warming, which has become one of the most serious environmental issues over the past few decades. As the world confronts food shortages due to an increase in world population, the development of biofuels from inedible lignocellulosic feedstock may be more sustainable in the long term. Inspired by the NREL conventional process, this paper proposes a novel heat–integrated and intensified biorefinery design for cellulosic ethanol production from lignocellulosic biomass. For the preconcentration section, heat pump assisted distillation and double–effect heat integration were evaluated, while a combination of heat–integrated technique and intensified technique, extractive dividing wall column (EDWC), was applied to enhance the process energy and cost efficiency for the purification section. A biosolvent, glycerol, which can be produced from biodiesel production, was used as the extracting solvent in an EDWC to obtain a high degree of integration in a biorefinery context. All configuration alternatives were simulated rigorously using Aspen Plus were based on the energy requirements, total annual costs (TAC), and total carbon dioxide emissions (TCE). In addition, the structure of the EDWC was optimized using the reliable response surface method, which was carried out using Minitab statistical software. The simulation results showed that the proposed heat–integrated and intensified process can save up to 47.6% and 56.9% of the TAC and TCE for the purification

  10. Consequence estimation for decontaminated sites and facilities

    International Nuclear Information System (INIS)

    Niemczyk, S.J.

    1988-01-01

    To aid the US EPA's selection of decommissioning criteria for unrestricted release of cleaned up sites and facilities, a new approach has been developed for estimating the potential hazard from residual radioactivity. That approach, intended to provide conservatively realistic estimates of radiation doses to individual residents from such radioactivity in the environment and in buildings, uses a comprehensive yet relatively simple set of physically-based risk-level environmental transport and exposure pathway models. Doses are estimated for up to 10,000 years. Radioactive decay and ingrowth are explicitly accounted for. Compared to some other approaches, the new approach has several outstanding features. First, some of its models are less conservative than the comparable models in other approaches. Second, the new approach includes models for estimating certain doses in multi-room buildings. Third, the approach's integrated set of transport and behavior models permits straightforward consideration of situations with significant movement of radioactivity within the environment and/or significant radioactive ingrowth. Fourth, the approach's efficient solution techniques, combined with its comprehensive set of transport and behavior models, make consideration of many situations practical. And fifth, the associated computer code runs on a personal computer. The new approach constitutes a significant first step toward a set of comprehensive relationships for providing dose and health risk estimates for residual radioactivity at a variety of sites and facilities

  11. Sludge treatment facility preliminary siting study for the sludge treatment project (A-13B)

    International Nuclear Information System (INIS)

    WESTRA, A.G.

    1999-01-01

    This study evaluates various sites in the 100 K area and 200 areas of Hanford for locating a treatment facility for sludge from the K Basins. Both existing facilities and a new standalone facility were evaluated. A standalone facility adjacent to the AW Tank Farm in the 200 East area of Hanford is recommended as the best location for a sludge treatment facility

  12. Preoperational baseline and site characterization report for the Environmental Restoration Disposal Facility: Volume 1. Revision 1

    International Nuclear Information System (INIS)

    Weekes, D.C.; Ford, B.H.; Jaeger, G.K.

    1996-09-01

    This site characterization report provides the results of the field data collection activities for the Environmental Restoration Disposal Facility site. Information gathered on the geology, hydrology, ecology, chemistry, and cultural resources of the area is presented. The Environmental Restoration Disposal Facility is located at the Hanford Site in Richland, Washington

  13. Adaptation of the ITER facility design to a Canadian site

    International Nuclear Information System (INIS)

    Smith, S.

    2001-01-01

    This paper presents the status of Canadian efforts to adapt the newly revised ITER facility design to suit the specific characteristics of the proposed Canadian site located in Clarington, west of Toronto, Ontario. ITER Canada formed a site-specific design team in 1999, comprising participants from three Canadian consulting companies to undertake this work. The technical aspects of this design activity includes: construction planning, geotechnical investigations, plant layout, heat sink design, electrical system interface, site-specific modifications and tie-ins, seismic design, and radwaste management. These areas are each addressed in this paper. (author)

  14. The Chemistry and Technology of Furfural Production in Modern Lignocellulose-Feedstock Biorefineries

    NARCIS (Netherlands)

    Marcotullio, G.

    2011-01-01

    This dissertation deals with biorefinery technology development, i.e. with the development of sustainable industrial methods aimed at the production of chemicals, fuels, heat and power from lignocellulosic biomass. This work is particularly focused on the production of furfural from

  15. Progress and problems in the Formerly Utilized Sites Remedial Action Program and Surplus Facilities Management Program

    International Nuclear Information System (INIS)

    Fiore, J.J.; Turi, G.P.

    1988-01-01

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) was established in 1974 to identify, evaluate, and as appropriate, conduct remedial actions at sites used in the early years of nuclear energy development by the Manhattan Engineer District and the Atomic Energy Commission (AEC). This program currently has 29 sites and is evaluating 350 other sites for possible inclusion in the program. Another remedial action program in the Department of Energy's (DOE) Division of Facility and Site Decommissioning Projects is the Surplus Facilities Management Program (SFMP). The SFMP involves the safe management, decontamination and disposal of surplus DOE contaminated facilities which were not related to defense activities. There are currently 33 projects at 15 different sites in the program. These two programs have made steady progress over the last 10 or so years in cleaning up sites so that they can be reused or released for unrestricted use. Work has been completed at 8 of the FUSRAP sites and three of the SFMP sites

  16. Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries.

    Science.gov (United States)

    Silveira, Marcos Henrique Luciano; Morais, Ana Rita C; da Costa Lopes, Andre M; Olekszyszen, Drielly Nayara; Bogel-Łukasik, Rafał; Andreaus, Jürgen; Pereira Ramos, Luiz

    2015-10-26

    Lignocellulosic materials, such as forest, agriculture, and agroindustrial residues, are among the most important resources for biorefineries to provide fuels, chemicals, and materials in such a way to substitute for, at least in part, the role of petrochemistry in modern society. Most of these sustainable biorefinery products can be produced from plant polysaccharides (glucans, hemicelluloses, starch, and pectic materials) and lignin. In this scenario, cellulosic ethanol has been considered for decades as one of the most promising alternatives to mitigate fossil fuel dependence and carbon dioxide accumulation in the atmosphere. However, a pretreatment method is required to overcome the physical and chemical barriers that exist in the lignin-carbohydrate composite and to render most, if not all, of the plant cell wall components easily available for conversion into valuable products, including the fuel ethanol. Hence, pretreatment is a key step for an economically viable biorefinery. Successful pretreatment method must lead to partial or total separation of the lignocellulosic components, increasing the accessibility of holocellulose to enzymatic hydrolysis with the least inhibitory compounds being released for subsequent steps of enzymatic hydrolysis and fermentation. Each pretreatment technology has a different specificity against both carbohydrates and lignin and may or may not be efficient for different types of biomasses. Furthermore, it is also desirable to develop pretreatment methods with chemicals that are greener and effluent streams that have a lower impact on the environment. This paper provides an overview of the most important pretreatment methods available, including those that are based on the use of green solvents (supercritical fluids and ionic liquids). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Utilization of Ionic Liquids in Lignocellulose Biorefineries as Agents for Separation, Derivatization, Fractionation, or Pretreatment.

    Science.gov (United States)

    Peleteiro, Susana; Rivas, Sandra; Alonso, José L; Santos, Valentín; Parajó, Juan C

    2015-09-23

    Ionic liquids (ILs) can play multiple roles in lignocellulose biorefineries, including utilization as agents for the separation of selected compounds or as reaction media for processing lignocellulosic materials (LCM). Imidazolium-based ILs have been proposed for separating target components from LCM biorefinery streams, for example, the dehydration of ethanol-water mixtures or the extractive separation of biofuels (ethanol, butanol) or lactic acid from the respective fermentation broths. As in other industries, ILs are potentially suitable for removing volatile organic compounds or carbon dioxide from gaseous biorefinery effluents. On the other hand, cellulose dissolution in ILs allows homogeneous derivatization reactions to be carried out, opening new ways for product design or for improving the quality of the products. Imidazolium-based ILs are also suitable for processing native LCM, allowing the integral benefit of the feedstocks via separation of polysaccharides and lignin. Even strongly lignified materials can yield cellulose-enriched substrates highly susceptible to enzymatic hydrolysis upon ILs processing. Recent developments in enzymatic hydrolysis include the identification of ILs causing limited enzyme inhibition and the utilization of enzymes with improved performance in the presence of ILs.

  18. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept

    DEFF Research Database (Denmark)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar Borisov

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery...... productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149 kg of EtOH and 115 kg of succinic acid can be obtained per 1 ton of dry hemp....... Results obtained in this study clearly document the potential of industrial hemp for a biorefinery....

  19. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    International Nuclear Information System (INIS)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568

  20. Lessons Learned from the On-Site Disposal Facility at Fernald Closure Project

    International Nuclear Information System (INIS)

    Kumthekar, U.A.; Chiou, J.D.

    2006-01-01

    The On-Site Disposal Facility (OSDF) at the U.S. Department of Energy's (DOE) Fernald Closure Project near Cincinnati, Ohio is an engineered above-grade waste disposal facility being constructed to permanently store low level radioactive waste (LLRW) and treated mixed LLRW generated during Decommissioning and Demolition (D and D) and soil remediation performed in order to achieve the final land use goal at the site. The OSDF is engineered to store 2.93 million cubic yards of waste derived from the remediation activities. The OSDF is intended to isolate its LLRW from the environment for at least 200 years and for up to 1,000 years to the extent practicable and achievable. Construction of the OSDF started in 1997 and waste placement activities will complete by the middle of April 2006 with the final cover (cap) placement over the last open cell by the end of Spring 2006. An on-site disposal alternative is considered critical to the success of many large-scale DOE remediation projects throughout the United States. However, for various reasons this cost effective alternative is not readily available in many cases. Over the last ten years Fluor Fernald Inc. has cumulated many valuable lessons learned through the complex engineering, construction, operation, and closure processes of the OSDF. Also in the last several years representatives from other DOE sites, State agencies, as well as foreign government agencies have visited the Fernald site to look for proven experiences and practices, which may be adapted for their sites. This paper present a summary of the major issues and lessons leaned at the Fernald site related to engineering, construction, operation, and closure processes for the disposal of remediation waste. The purpose of this paper is to share lessons learned and to benefit other projects considering or operating similar on-site disposal facilities from our successful experiences. (authors)

  1. On-Site Enzyme Production by Trichoderma asperellum for the Degradation of Duckweed

    DEFF Research Database (Denmark)

    Bech, Lasse; Herbst, Florian-Alexander; Grell, Morten Nedergaard

    2015-01-01

    The on-site production of cell wall degrading enzymes is an important strategy for the development of sustainable bio-refinery processes. This study concerns the optimization of production of plant cell wall-degrading enzymes produced by Trichoderma asperellum. A comparative secretome analysis...

  2. Siting, design and cost of shallow land burial facilities in northern New England. Volume 1

    International Nuclear Information System (INIS)

    1985-05-01

    This study investigated the technical feasibility and cost of shallow land burial (SLB) as one low-level radioactive waste disposal option for Maine and the northern New England states of Maine, New Hampshire, and Vermont. The results are presented in five chapters addressing the licensing process for an SLB facility, the siting process, the engineering design, the cost of disposal, and the cost of transportation. Chapter 2 reviews the Federal and State licensing processes and requirements for development of an SLB facility. Included in this discussion are the stages in the life cycle of SLB facility. Chapter 3 provides site selection criteria for Maine and presents a proposed site selection methodology. The site selection criteria are defined and the reasoning behind their selection is explained. Chapter 4 discusses SLB trench and facility designs and costs. To accommodate different waste volume scenarios, differently sized facilities are discussed, representing Maine going-it-alone and a northern New England compact. Designs and costs of scenarios including nuclear power plant decommissioning wastes are also discussed. Cost estimates of licensing, facility construction, operation, closure, and post closure care are presented for the different waste volume scenarios. Chapter 5 presents estimates of what it would cost LLW generators to dispose of their waste in a Maine-only or a northern New England shallow land burial facility. The reliability of the estimates and their sensitivity to changes in waste volume are also discussed. Chapter 6 examines transportation costs

  3. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives.

    Science.gov (United States)

    Venkata Mohan, S; Nikhil, G N; Chiranjeevi, P; Nagendranatha Reddy, C; Rohit, M V; Kumar, A Naresh; Sarkar, Omprakash

    2016-09-01

    Increased urbanization worldwide has resulted in a substantial increase in energy and material consumption as well as anthropogenic waste generation. The main source for our current needs is petroleum refinery, which have grave impact over energy-environment nexus. Therefore, production of bioenergy and biomaterials have significant potential to contribute and need to meet the ever increasing demand. In this perspective, a biorefinery concept visualizes negative-valued waste as a potential renewable feedstock. This review illustrates different bioprocess based technological models that will pave sustainable avenues for the development of biobased society. The proposed models hypothesize closed loop approach wherein waste is valorised through a cascade of various biotechnological processes addressing circular economy. Biorefinery offers a sustainable green option to utilize waste and to produce a gamut of marketable bioproducts and bioenergy on par to petro-chemical refinery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Biorefinery lignosulfonates from sulfite-pretreated softwoods as dispersant for graphite

    Science.gov (United States)

    Yanlin Qin; Lixuan Yu; Ruchun Wu; Dongjie Yang; Xueqing Qiu; Junyong Zhu

    2016-01-01

    Two biorefinery lignosulfonates (LSs), Ca-LS-DF and Na-LS-LP were, respectively, isolated from pilot-scale sulfite-pretreated spent liquor of lodgepole pine and fermentation residue of Douglas-fir harvest forest residue. The molecular weights of Na-LS-LP and Ca-LS-DF were approximately 9 000 and 11 000 Da, respectively. The two LSs were applied as dispersant for...

  5. Guide to radiological accident considerations for siting and design of DOE nonreactor nuclear facilities

    International Nuclear Information System (INIS)

    Elder, J.; Graf, J.M.

    1984-01-01

    DOE Office of Nuclear Safety has sponsored preparation of a guidance document to aid field offices and contractors in their analyses of consequences of postulated major accidents. The guide addresses the requirements of DOE Orders 5480.1A, Chapter V, and 6430.1, including the general requirement that DOE nuclear facilities be sited, designed, and operated in accordance with standards, codes, and guides consistent with those applied to comparable licensed nuclear facilities. The guide includes both philosophical and technical information in the areas of: siting guidelines doses applied to an offsite reference person; consideration also given to an onsite reference person; physical parameters, models, and assumptions to be applied when calculating doses for comparison to siting criteria; and potential accident consequences other than radiological dose to a reference person which might affect siting and major design features of the facility, such as environmental contamination, population dose, and associated public health effects. Recommendations and/or clarifications are provided where this could be done without adding new requirements. In this regard, the guide is considered a valuable aid to the safety analyst, especially where requirements have been subject to inconsistent interpretation or where analysis methods are in transition, such as use of dose model (ICRP 2 or ICRP 30) or use of probabilistic methods of risk analysis in the siting and design of nuclear facilities

  6. Spatially and Temporally Optimal Biomass Procurement Contracting for Biorefineries

    Directory of Open Access Journals (Sweden)

    Subbu Kumarappan

    2014-02-01

    Full Text Available This paper evaluates the optimal composition of annual and perennial biomass feedstocks for a biorefinery. A generic optimization model is built to minimize costs – harvest, transport, storage, seasonal, and environmental costs – subject to various constraints on land availability, feedstock availability, processing capacity, contract terms, and storage losses. The model results are demonstrated through a case study for a midwestern U.S. location, focusing on bioethanol as the likely product. The results suggest that high-yielding energy crops feature prominently (70 to 80% in the feedstock mix in spite of the higher establishment costs. The cost of biomass ranges from 0.16 to 0.20 $ l-1 (US$ 0.60 to $0.75 per gallon of biofuel. The harvest shed shows that high-yielding energy crops are preferably grown in fields closer to the biorefinery. Low-yielding agricultural residues primarily serve as a buffer crop to meet the shortfall in biomass requirement. For the case study parameters, the model results estimated a price premium for energy crops (2 to 4 $ t-1 within a 16 km (10-mile radius and agricultural residues (5 to 17 $ t-1 in a 16 to 20 km (10 to 20 mile radius.

  7. Economic Analysis of an Integrated Annatto Seeds-Sugarcane Biorefinery Using Supercritical CO2 Extraction as a First Step

    Directory of Open Access Journals (Sweden)

    Juliana Q. Albarelli

    2016-06-01

    Full Text Available Recently, supercritical fluid extraction (SFE has been indicated to be utilized as part of a biorefinery, rather than as a stand-alone technology, since besides extracting added value compounds selectively it has been shown to have a positive effect on the downstream processing of biomass. To this extent, this work evaluates economically the encouraging experimental results regarding the use of SFE during annatto seeds valorization. Additionally, other features were discussed such as the benefits of enhancing the bioactive compounds concentration through physical processes and of integrating the proposed annatto seeds biorefinery to a hypothetical sugarcane biorefinery, which produces its essential inputs, e.g., CO2, ethanol, heat and electricity. For this, first, different configurations were modeled and simulated using the commercial simulator Aspen Plus® to determine the mass and energy balances. Next, each configuration was economically assessed using MATLAB. SFE proved to be decisive to the economic feasibility of the proposed annatto seeds-sugarcane biorefinery concept. SFE pretreatment associated with sequential fine particles separation process enabled higher bixin-rich extract production using low-pressure solvent extraction method employing ethanol, meanwhile tocotrienols-rich extract is obtained as a first product. Nevertheless, the economic evaluation showed that increasing tocotrienols-rich extract production has a more pronounced positive impact on the economic viability of the concept.

  8. Call for information on coastal energy facility siting: an analysis of responses

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The Call for Information issued by the New Jersey Department of Environmental Protection in December 1975 consisted of an eight page questionnaire which was sent to industries, government agencies, and private organizations. Its objective was to seek the help of these groups in plans for the siting of energy facilities in the coastal zone. Potential development of oil and gas from the Baltimore Canyon region adjacent to New Jersey has made planning for energy facilities a priority issue both at the state and federal level. The Call for Information invited government and the energy industry to submit (a) suggested criteria for locating energy and energy-related facilities within the New Jersey coastal zone, (b) analyses by governmental and private agencies or groups of the need to locate energy facilities in specific sites within New Jersey's coastal zone, or in generalized portions thereof, and (c) identification of the land-use parameters, appropriate to the various types of facilities which may be proposed, now or later, for coastal siting. The findings obtained from the draft call and the final call issued seven months later are presented. The results of the industries' responses show that the electric and gas utilities gave some useful information while this was true of only a few of the oil companies. The reluctance to give informatign was perhaps aggravated by lack of clear state and federal policies. The appendices illustrate specific information on manpower, cost and facility requirements to develop oil refineries, establish a gas processing plant as well as information from the US Coast Guard and the Environmental Protection Agency. There is also a listing of the companies that bid in the August 1976 lease sale indicating which bids were accepted, a map of the offshore tracts, and a list of which companies responded to the Call for Information

  9. Potential of Jerusalem artichoke (Helianthus tuberosus L.) as a biorefinery crop

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Svensson, S.-E.; Johansson, E.

    2014-01-01

    The utilization of Jerusalem artichoke in a biorefinery context was not investigated so far. Therefore the aim of this study was to evaluate the potential of this plant as feedstock for production of bioethanol, protein and inulin. We investigated the biomass productivity and chemical composition...... of Jerusalem artichoke. Although not high (in total

  10. Crude protein yield and theoretical extractable true protein of potential biorefinery feedstocks

    DEFF Research Database (Denmark)

    Solati, Zeinab; Manevski, Kiril; Jørgensen, Uffe

    2018-01-01

    for supplying biomass to biorefineries. Field experiments during 2013–2014 with perennial crops (pure grasses: cocksfoot, festulolium, reed canary, tall fescue, two miscanthus species and two grass-legume mixtures) and annual crops in optimized rotations (winter rye, sugar beet, maize, triticale, hemp and grass...

  11. Latest development in project site radwaste treatment facility (SRTF) Sanmen

    International Nuclear Information System (INIS)

    Mennicken, K.; Lohmann, P.

    2015-01-01

    Westinghouse Electric Germany GmbH (WEG) was successful in being awarded a contract as to the planning, delivery, installation and commissioning of radwaste treatment systems for the AP1000 units at Sanmen site, PR China. Operational low and intermediate level radioactive waste will be processed in the Site Radwaste Treatment Facility (SRTF). This paper explains the latest developments of the project, especially the experience with customer-hired Chinese planning partners, installation companies and Customer operating personnel. (authors)

  12. Cleanups In My Community (CIMC) - Federal facilities that are also Superfund sites, National Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — Federal facilities are properties owned by the federal government. This data layer provides access to Federal facilities that are Superfund sites as part of the CIMC...

  13. Value chains for biorefineries of wastes from food production and services - ValueWaste

    Energy Technology Data Exchange (ETDEWEB)

    Kahiluoto, H.; Kuisma, M.; Knuuttila, M. (and others) (MTT Agrifood Research Finland, Mikkeli (Finland)). Email: helena.kahiluoto@mtt.fi

    2010-10-15

    The aim of the ValueWaste project is to analyse biomass potentials, appropriate technologies and business opportunities. Contrasting regional scenarios for biorefinery activities are developed, and their overall sustainability is assessed: environmental impacts using life cycle assessment, impacts on regional economy, partnership in actor chains, as well as business opportunities and possibilities for commercialisation are considered. South Savo and partly Satakunta provide the case study regions, but the project also produces tools for generalisation and contributes to national solutions. The theoretical potentials suggest that the agrifood waste has a significant and currently untapped potential for replacing non-renewable energy and recycling nutrients, and further for climate and water protection. The volume of agrifood waste varies mainly according to animal husbandry, crop production and food processing of a region. New business opportunities were found from the value chain of biowaste flows in the area of Etelae-Savo. Unexploited raw materials and new methods in waste collection and transportation offer entrepreneurial opportunities and decrease the costs of operation. Based on the conceptual work for creation of the contrasting regional biorefinery scenarios, performed in workshops for project and steering group members, four different optimisation starting points were determined: 1) replacement of fossil energy; 2) maximisation of carbon sequestration; 3) water protection and 4) enhancement of regional economy. Present situation of the biomass utilisation in the region was adopted as the baseline scenario. Four contrasting, consistent scenarios for the value chain of waste-based biorefineries are formed in South Savo. (orig.)

  14. Risk management study for the retired Hanford Site facilities: Risk management executive summary

    International Nuclear Information System (INIS)

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1994-02-01

    This document provides a cost-comparison evaluation for implementing certain risk-reduction measures and their effect on the overall risk of the 100 and 200 Area retired, surplus facilities. The evaluation is based on conditions that existed at the time the risk evaluation team performed facility investigations, and does not acknowledge risk-reduction measures that occurred soon after risk identification. This evaluation is one part of an overall risk management study for these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1450-km 2 Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30 km southeast of the 200 Area. This document is the first in a four volume series that comprise the risk management study for the retired, surplus facilities. Volume 2 is the risk evaluation work procedure; volume 3 provides the results for the risk evaluation; and volume 4 is the risk-reduction cost comparison

  15. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1995

    International Nuclear Information System (INIS)

    Hartman, M.J.

    1996-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the US Department of Energy's Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1994 and September 1995. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides

  16. Annual report for RCRA groundwater monitoring projects at Hanford site facilities for 1994

    International Nuclear Information System (INIS)

    1995-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the U.S. Department of Energy's Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1993 and September 1994. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides

  17. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

  18. Environmental Monitoring Plan, Nevada Test Site and support facilities

    International Nuclear Information System (INIS)

    1991-11-01

    This Operational Area Monitoring Plan for environmental monitoring, is for EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) which operates several offsite facilities in support of activities at the Nevada Test Site (NTS). These facilities include: (1) Amador Valley Operations (AVO), Pleasanton, California; (2) Kirtland Operations (KO), Kirtland Air Force base, Albuquerque, New Mexico (KAFB); (3) Las Vegas Area Operations (LVAO), Remote Sensing Laboratory (RSL), and North Las Vegas (NLV) Complex at Nellis Air Force Base (NAFB), North Las Vegas, Nevada; (4) Los Alamos Operations (LAO), Los Alamos, New Mexico; (5) Santa Barbara Operations (SBO), Goleta, California; (6) Special Technologies Laboratory (STL), Santa Barbara, California; (7) Washington Aerial Measurements Department (WAMD), Andrews Air Force Base, Maryland; and, (8) Woburn Cathode Ray Tube Operations (WCO), Woburn, Massachusetts. Each of these facilities has an individual Operational Area Monitoring Plan, but they have been consolidated herein to reduce redundancy

  19. Technical specifications for the Pajarito Site Critical Experiments Facility

    International Nuclear Information System (INIS)

    Malenfant, R.E.; Paxton, H.C.

    1980-12-01

    This document is to satisfy the requirement for technical specifications spelled out in DOE Manual Chapter 0540, Safety of DOE-Owned Reactors. Technical specifications are defined in Sec. 0540-048, and the requirement for them appears in Sec. 0540-015. The following technical specifications update the document, Technical Specifications for the Pajarito Site Critical Experiments Facility

  20. Life cycle assessment of castor-based biorefinery: a well to wheel LCA

    DEFF Research Database (Denmark)

    Khoshnevisan, Benyamin; Rafiee, Shahin; Tabatabaei, Meisam

    2017-01-01

    of their ability in converting biomass into a spectrum of marketable products and bioenergies. This study was aimed at developing different novel castor-based biorefinery scenarios for generating biodiesel and other co-products, i.e., ethanol and biogas. In these scenarios, glycerin, heat, and electricity were...

  1. Identification of an industrial microalgal strain for starch production in biorefinery context

    NARCIS (Netherlands)

    Gifuni, Imma; Olivieri, Giuseppe; Pollio, Antonino; Marzocchella, Antonio

    2018-01-01

    The recent trends in microalgal cultures are focused on the biorefinery of the biomass components. Some of them are not completely valorised, for example starch. Since there is a wide market for starch products in food and non-food industries, the exploitation of microalgal starch fractions could

  2. Strategy and design of Innovation Policy Road Mapping for a waste biorefinery.

    Science.gov (United States)

    Rama Mohan, S

    2016-09-01

    Looming energy crisis, climate change concerns coupled with decreasing fossil fuel resources has garnered significant global attention toward development of alternative, renewable, carbon-neutral and eco-friendly fuels to fulfil burgeoning energy demands. Waste utilization and its management are being pursued with renewed interest due to the gamut of biobased products it can offer apart from providing enough energy to meet a major fraction of the world's energy demand. Biorefining is the sustainable processing of biomass into a spectrum of marketable products and energy. Integrating all components of waste treatment culminating into biobased products and energy recovery in a single integrated waste biorefinery is self sufficient, highly sustainable and is very beneficial. Designing systematic innovation policies are essential for development and commercialization of new technologies in this important futuristic research area. This communication explores Innovation Policy Road Mapping (IPRM) methodology available in the literature and applies it to design integrated waste biorefinery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Biorefineries for the production of top building block chemicals and their derivatives.

    Science.gov (United States)

    Choi, Sol; Song, Chan Woo; Shin, Jae Ho; Lee, Sang Yup

    2015-03-01

    Due to the growing concerns on the climate change and sustainability on petrochemical resources, DOE selected and announced the bio-based top 12 building blocks and discussed the needs for developing biorefinery technologies to replace the current petroleum based industry in 2004. Over the last 10 years after its announcement, many studies have been performed for the development of efficient technologies for the bio-based production of these chemicals and derivatives. Now, ten chemicals among these top 12 chemicals, excluding the l-aspartic acid and 3-hydroxybutyrolactone, have already been commercialized or are close to commercialization. In this paper, we review the current status of biorefinery development for the production of these platform chemicals and their derivatives. In addition, current technological advances on industrial strain development for the production of platform chemicals using micro-organisms will be covered in detail with case studies on succinic acid and 3-hydroxypropionic acid as examples. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. 78 FR 73144 - Acceleration of Broadband Deployment by Improving Wireless Facilities Siting Policies

    Science.gov (United States)

    2013-12-05

    ... license is required, which in turn extends to any apparatus for the transmission of energy, or... No. 11-59; FCC 13-122] Acceleration of Broadband Deployment by Improving Wireless Facilities Siting... of new wireless facilities and on rules to implement statutory provisions governing State and local...

  5. Biorefinery production of poly-3-hydroxybutyrate using waste office paper hydrolysate as feedstock for microbial fermentation.

    Science.gov (United States)

    Neelamegam, Annamalai; Al-Battashi, Huda; Al-Bahry, Saif; Nallusamy, Sivakumar

    2018-01-10

    Waste paper, a major fraction of municipal solid waste, has a potential to serve as renewable feedstock for the biorefineries of fuels, chemicals and materials due to rich in cellulose and abundant at low cost. This study evaluates the possibility of waste office paper (WOP) to serve as a potential feedstock for the biorefinery production of poly (3-hydroxybutyrate). In this study, the WOP was pretreated, enzymatically saccharified and the hydrolysate was used for PHB production. The hydrolysate mainly consists of glucose (22.70g/L) and xylose (1.78g/L) and the corresponding sugar yield was about 816mg/g. Ammonium sulphate and C/N ratio 20 were identified as most favorable for high yield of PHB. The batch fermentation of Cupriavidus necator using the pretreated WOP hydrolysate resulted in cell biomass, PHB production and PHB content of 7.74g/L, 4.45g/L and 57.52%, respectively. The volumetric productivity and yield achieved were 0.061g/L/h and 0.210g/g sugar, respectively. The results suggested that WOP could be a potential alternative feedstock for the biorefinery production of bioplastics. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Risk communication on the siting of radioactive waste management facility

    International Nuclear Information System (INIS)

    Okoshi, Minoru; Torii, Hiroyuki; Fujii, Yasuhiko

    2007-01-01

    Siting of radioactive waste management facilities frequently raise arguments among stakeholders such as a municipal government and the residents. Risk communication is one of the useful methods of promoting mutual understanding on related risks among stakeholders. In Finland and Sweden, siting selection procedures of repositories for spent nuclear fuels have been carried out successfully with risk communication. The success reasons are analyzed based on the interviews with those who belong to the regulatory authorities and nuclear industries in both countries. Also, in this paper, risk communication among the Japan Radioisotope Association (JRIA), a local government and the general public, which was carried out during the establishment process of additional radioactive waste treatment facilities in Takizawa Village, Iwate Prefecture, is analyzed based on articles in newspapers and interviews with persons concerned. The analysis results showed that good risk communication was not carried out because of the lack of confidence on the JRIA, decision making rules, enough communication chances and economic benefits. In order to make good use of these experiences for the future establishment of radioactive waste management facilities, the lessons learned from these cases are summarized and proposals for good risk communication (establishment of exploratory committee and technical support system for decision making, and measurements to increase familiarity of radioactive waste) are discussed. (author)

  7. High impact biowastes from South European agro-industries as feedstock for second-generation biorefineries.

    Science.gov (United States)

    Scoma, Alberto; Rebecchi, Stefano; Bertin, Lorenzo; Fava, Fabio

    2016-01-01

    Availability of bio-based chemicals, materials and energy at reasonable cost will be one of the forthcoming issues for the EU economy. In particular, the development of technologies making use of alternative resources to fossil fuels is encouraged by the current European research and innovation strategy to face the societal challenge of natural resource scarcity, fossil resource dependence and sustainable economic growth. In this respect, second- generation biorefineries, i.e. biorefineries fed with biowastes, appear to be good candidates to substitute and replace the present downstream processing scheme. Contrary to first-generation biorefineries, which make use of dedicated crops or primary cultivations to achieve such a goal, the former employ agricultural, industrial, zootechnical, fishery and forestry biowastes as the main feedstock. This leaves aside any ethical and social issue generated by first-generation approaches, and concomitantly prevents environmental and economical issues associated with the disposal of the aforementioned leftovers. Unfortunately, to date, a comprehensive and updated mapping of the availability and potential use of bioresources for second-generation biorefineries in Europe is missing. This is a lack that severely limits R&D and industrial applications in the sector. On the other hand, attempts at valorizing the most diverse biowastes dates back to the nineteenth century and plenty of information in the literature on their sustainable exploitation is available. However, the large majority of these investigations have been focused on single fractions of biowastes or single steps of biowaste processing, preventing considerations on an integrated and modular (cascade) approach for the whole valorization of organic leftovers. This review aims at addressing these issues by gathering recent data on (a) some of the main high-impact biowastes located in Europe and in particular in its Southern part, and (b) the bio-based chemicals, materials

  8. Environmental Assessment for the Health Protection Instrument Calibration Facility at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The purpose of this Environmental Assessment (EA) is to review the possible environmental consequences associated with the construction and operation of a Health Protection Instrument Calibration Facility on the Savannah River Site (SRS). The proposed replacement calibration facility would be located in B Area of SRS and would replace an inadequate existing facility currently located within A Area of SRS (Building 736-A). The new facility would provide laboratories, offices, test equipment and the support space necessary for the SRS Radiation Monitoring Instrument Calibration Program to comply with DOE Orders 5480.4 (Environmental Protection, Safety and Health Protection Standards) and 5480.11 (Radiation Protection for Occupational Workers). The proposed facility would serve as the central site source for the evaluation, selection, inspection, testing, calibration, and maintenance of all SRS radiation monitoring instrumentation. The proposed facility would be constructed on a currently undeveloped portion in B Area of SRS. The exact plot associated with the proposed action is a 1.2 hectare (3 acre) tract of land located on the west side of SRS Road No. 2. The proposed facility would lie approximately 4.4 km (2.75 mi) from the nearest SRS site boundary. The proposed facility would also lie within the confines of the existing B Area, and SRS safeguards and security systems. Archaeological, ecological, and land use reviews have been conducted in connection with the use of this proposed plot of land, and a detailed discussion of these reviews is contained herein. Socioeconomic, operational, and accident analyses were also examined in relation to the proposed project and the findings from these reviews are also contained in this EA.

  9. Environmental Assessment for the Health Protection Instrument Calibration Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    1993-08-01

    The purpose of this Environmental Assessment (EA) is to review the possible environmental consequences associated with the construction and operation of a Health Protection Instrument Calibration Facility on the Savannah River Site (SRS). The proposed replacement calibration facility would be located in B Area of SRS and would replace an inadequate existing facility currently located within A Area of SRS (Building 736-A). The new facility would provide laboratories, offices, test equipment and the support space necessary for the SRS Radiation Monitoring Instrument Calibration Program to comply with DOE Orders 5480.4 (Environmental Protection, Safety and Health Protection Standards) and 5480.11 (Radiation Protection for Occupational Workers). The proposed facility would serve as the central site source for the evaluation, selection, inspection, testing, calibration, and maintenance of all SRS radiation monitoring instrumentation. The proposed facility would be constructed on a currently undeveloped portion in B Area of SRS. The exact plot associated with the proposed action is a 1.2 hectare (3 acre) tract of land located on the west side of SRS Road No. 2. The proposed facility would lie approximately 4.4 km (2.75 mi) from the nearest SRS site boundary. The proposed facility would also lie within the confines of the existing B Area, and SRS safeguards and security systems. Archaeological, ecological, and land use reviews have been conducted in connection with the use of this proposed plot of land, and a detailed discussion of these reviews is contained herein. Socioeconomic, operational, and accident analyses were also examined in relation to the proposed project and the findings from these reviews are also contained in this EA

  10. Federal Air Pollutant Emission Regulations and Preliminary Estimates of Potential-to-Emit from Biorefineries, Pathway #2: Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-oil Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Arpit [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center. Technology Systems and Sustainability Analysis Group; Zhang, Yimin [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center. Technology Systems and Sustainability Analysis Group; Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center. Technology Systems and Sustainability Analysis Group; Thomas, Mae [Eastern Research Group, Research Triangle Park, NC (United States); Renzaglia, Jason [Eastern Research Group, Research Triangle Park, NC (United States)

    2017-01-01

    Biorefineries are subject to environmental laws, including complex air quality regulations that aim to protect and improve the quality of the air. These regulations govern the amount of certain types of air pollutants that can be emitted from different types of emission sources. To determine which federal air emission regulations potentially apply to the fast pyrolysis biorefinery, we first identified the types of regulated air pollutants emitted to the ambient environment by the biorefinery or from specific equipment. Once the regulated air pollutants are identified, we review the applicability criteria of each federal air regulation to determine whether the fast pyrolysis biorefinery or specific equipment is subject to it. We then estimate the potential-to-emit of pollutants likely to be emitted from the fast pyrolysis biorefinery to understand the air permitting requirements.

  11. From NIMBY to YIMBY: How generators can support siting LLRW disposal facilities

    International Nuclear Information System (INIS)

    Hoffman, J.P.

    1995-01-01

    The most frequently head complaint about siting low-level radioactive waste disposal facilities is the NIMBY (Not In My Back Yard) syndrome. The producers or generators of this waste can help move public opinion form NIMBY to YIMBY (YES exclamation point In MY Back Yard exclamation point). Generators of low-level radioactive waste often believe it is the responsibility of other organizations to site disposal facilities for the waste, and that their role is to assure the technical aspects of the facility, such as acceptability criteria for the various waste forms, are clearly defined. In reality, generators, using a properly designed and effectively implemented communications plan, can be the most effective advocates for siting a facility. The communications plan must include the following elements: an objective focusing on the importance of generators becoming vocal and active; clearly defined and crafted key messages; specifically defined and targeted audiences for those messages; and speaker training which includes how to communicate with hostile or concerned audiences about a subject they perceive as very risky. Generators must develop coalitions with other groups and form a grassroots support organization. Finally, opportunities must be developed to deliver these messages using a variety of means. Written materials should be distributed often to keep the need for disposal capability in the public's mind. Can we get from NIMBY to YIMBY? It is difficult, but doable--especially with support from the people who make the waste in the first place

  12. Alternative use of grassland biomass for biorefinery in Ireland: a scoping study

    NARCIS (Netherlands)

    O'Keeffe, S.

    2010-01-01

    The need to reduce greenhouse gas emissions and dependency on fossil fuels has been one of the main driving forces to use renewable resources for energy and chemicals. The integrated use of grassland biomass for the production of chemicals and energy, also known as Green Biorefinery (GBR), has

  13. Removal site evaluation report for the Isotope Facilities at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This removal site evaluation (RmSE) report of the Isotope Facilities at Oak Ridge National Laboratory (ORNL) was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Isotopes Facility pose a substantial risk to human health or the environment and if remedial site evaluations (RSEs) or removal actions are required. The scope of the project included: (1) a review of historical evidence regarding operations and use of the facility; (2) interviews with facility personnel concerning current and past operating practices; (3) a site inspection; and (4) identification of hazard areas requiring maintenance, removal, or remedial actions. The results of RmSE indicate that no substantial risks exist from contaminants present in the Isotope Facilities because adequate controls and practices exist to protect human health and the environment. The recommended correction from the RmSE are being conducted as maintenance actions; accordingly, this RmSE is considered complete and terminated.

  14. Removal site evaluation report for the Isotope Facilities at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-07-01

    This removal site evaluation (RmSE) report of the Isotope Facilities at Oak Ridge National Laboratory (ORNL) was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Isotopes Facility pose a substantial risk to human health or the environment and if remedial site evaluations (RSEs) or removal actions are required. The scope of the project included: (1) a review of historical evidence regarding operations and use of the facility; (2) interviews with facility personnel concerning current and past operating practices; (3) a site inspection; and (4) identification of hazard areas requiring maintenance, removal, or remedial actions. The results of RmSE indicate that no substantial risks exist from contaminants present in the Isotope Facilities because adequate controls and practices exist to protect human health and the environment. The recommended correction from the RmSE are being conducted as maintenance actions; accordingly, this RmSE is considered complete and terminated

  15. Methodology for determining acceptable residual radioactive contamination levels at decommissioned nuclear facilities/sites

    International Nuclear Information System (INIS)

    Watson, E.C.; Kennedy, W.E. Jr.; Hoenes, G.R.; Waite, D.A.

    1979-01-01

    The ultimate disposition of decommissioned nuclear facilities and their surrrounding sites depends upon the degree and type of residual contamination. Examination of existing guidelines and regulations has led to the conclusion that there is a need for a general method to derive residual radioactive contamination levels that are acceptable for public use of any decommissioned nuclear facility or site. This paper describes a methodology for determining acceptable residual radioactive contamination levels based on the concept of limiting the annual dose to members of the public. It is not the purpose of this paper to recommend or even propose dose limits for the exposure of the public to residual radioactive contamination left at decommissioned nuclear facilities or sites. Unrestricted release of facilities and/or land is based on the premise that the potential annual dose to any member of the public using this property from all possible exposure pathways will not exceed appropriate limits as may be defined by Federal regulatory agencies. For decommissioned land areas, consideration should be given to people living directly on previously contaminated areas, growing crops, grazing food animals and using well water. Mixtures of radionuclides in the residual contamination representative of fuel reprocessing plants, light water reactors and their respective sites are presented. These mixtures are then used to demonstrate the methodology. Example acceptable residual radioactive contamination levels, based on an assumed maximum annual dose of one millirem, are calculated for several selected times following shutdown of a facility. It is concluded that the methodology presented in this paper results in defensible acceptable residual contamination levels that are directly relatable to risk assessment with the proviso that an acceptable limit to the maximum annual dose will be established. (author)

  16. IEA Bioenergy Task 42 - Countries report. IEA Bioenergy Task 42 on biorefineries: Co-production of fuels, chemicals, power and materials from biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cherubini, F.; Jungmeier, G.; Mandl, M. (Joanneum Research, Graz (Austria)) (and others)

    2010-07-01

    This report has been developed by the members of IEA Bioenergy Task 42 on Biorefinery: Co-production of Fuels, Chemicals, Power and Materials from Biomass (www.biorefinery.nl/ieabioenergy-task42). IEA Bioenergy is a collaborative network under the auspices of the International Energy Agency (IEA) to improve international cooperation and information exchange between national bioenergy RD and D programs. IEA Bioenergy Task 42 on Biorefinery covers a new and very broad biomass-related field, with a very large application potential, and deals with a variety of market sectors with many interested stakeholders, a large number of biomass conversion technologies, and integrated concepts of both biochemical and thermochemical processes. This report contains an overview of the biomass, bioenergy and biorefinery situation, and activities, in the Task 42 member countries: Austria, Canada, Denmark, France, Germany, Ireland, and the Netherlands. The overview includes: national bioenergy production, non-energetic biomass use, bioenergy related policy goals, national oil refineries, biofuels capacity for transport purposes, existing biorefinery industries, pilot and demo plants, and other activities of research and development (such as main national projects and stakeholders). Data are provided by National Task Leaders (NTLs), whose contact details are listed at the end of the report. (author)

  17. Environmental Assessment for the Independent Waste Handling Facility, 211-F at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    Currently, liquid Low Activity Waste (LAW) and liquid High Activity Waste (HAW) are generated from various process operational facilities/processes throughout the Savannah River Site (SRS) as depicted on Figure 2-1. Prior to storage in the F-Area tank farm, these wastes are neutralized and concentrated to minimize their volume. The Waste Handling Facility (211-3F) at Building 211-F Complex (see Figure 2-2) is the only existing facility onsite equipped to receive acidic HAW for neutralization and volume reduction processing. Currently, Building 221-F Canyon (see Figure 2-2) houses the neutralization and evaporation facilities for HAW volume reduction and provides support services such as electric power and plant, process, and instrument air, waste transfer capabilities, etc., for 21 1-F operations. The future plan is to deactivate the 221-F building. DOE`s purpose is to be able to process the LAW/HAW that will continue to be generated on site. DOE needs to establish an alternative liquid waste receipt and treatment capability to support site facilities with a continuing mission. The desire is for Building 211-F to provide the receipt and neutralization functions for LAW and HAW independent of 221-F Canyon. The neutralization capability is required to be part of the Nuclear Materials Stabilization Programs (NMSP) facilities since the liquid waste generated by the various site facilities is acidic. Tn order for Waste Management to receive the waste streams, the solutions must be neutralized to meet Waste Management`s acceptance criteria. The Waste Management system is caustic in nature to prevent corrosion and the subsequent potential failure of tanks and associated piping and hardware.

  18. Challenges in radiological impact assessment studies at new sites for nuclear facilities and its safety review and assessment for siting consent

    International Nuclear Information System (INIS)

    Mukherjee Roy, Susmita; Roshan, A.D.; Bishnoi, L.R.

    2018-01-01

    One of the basic requirement of site evaluation for a Nuclear Facility (NF) is radiological impact assessment (RIA). This involves evaluation of transportation of radioactive materials discharged from a nuclear facility under normal operational or accidental conditions, through different compartments of environment viz. air, land and water, and finally assessment of its consequences. Amongst others, site characteristics and the site related parameters play major role in evaluation of impact of postulated releases from NPPs. Doses to public from both external and internal exposures are computed to assess potential consequences of a radiological release and acceptability of the site-plant pair is established based on the outcome of this assessment. A comprehensive study of the site characteristics including meteorology, hydrology, hydro-geology and demography of the region along with details of land and water use, bioaccumulation, transfer to and from the environmental matrices is required for accomplishing satisfactory RIA

  19. Guide to radiological accident considerations for siting and design of DOE nonreactor nuclear facilities

    International Nuclear Information System (INIS)

    Elder, J.C.; Graf, J.M.; Dewart, J.M.; Buhl, T.E.; Wenzel, W.J.; Walker, L.J.; Stoker, A.K.

    1986-01-01

    This guide was prepared to provide the experienced safety analyst with accident analysis guidance in greater detail than is possible in Department of Energy (DOE) Orders. The guide addresses analysis of postulated serious accidents considered in the siting and selection of major design features of DOE nuclear facilities. Its scope has been limited to radiological accidents at nonreactor nuclear facilities. The analysis steps addressed in the guide lead to evaluation of radiological dose to exposed persons for comparison with siting guideline doses. Other possible consequences considered are environmental contamination, population dose, and public health effects. Choices of models and parameters leading to estimation of source terms, release fractions, reduction and removal factors, dispersion and dose factors are discussed. Although requirements for risk analysis have not been established, risk estimates are finding increased use in siting of major nuclear facilities, and are discussed in the guide. 3 figs., 9 tabs

  20. Development of the Nordic Bioeconomy: NCM reporting: Test centers for green energy solutions - Biorefineries and business needs

    DEFF Research Database (Denmark)

    Lange, Lene; Björnsdóttir, Bryndís; Brandt, Asbjørn

    In 2014 the Nordic Council of Ministers initiated a new bioeconomy project: “Test centers for green energy solutions – Biorefineries and Busi-ness needs”. The purpose was to strengthen green growth in the area of the bioeconomy by analyzing and mapping the current status of the bio-economy in the......In 2014 the Nordic Council of Ministers initiated a new bioeconomy project: “Test centers for green energy solutions – Biorefineries and Busi-ness needs”. The purpose was to strengthen green growth in the area of the bioeconomy by analyzing and mapping the current status of the bio...

  1. Engineering study of generic site criteria for selected DOE plutonium facilities

    International Nuclear Information System (INIS)

    Kingsbury, R.J.; Greenwood, J.M.; Sandoval, M.D.

    1980-09-01

    The objectives of this study were to identify criteria that would be applied to selection of a site for plutonium facilities such as those at the Rocky Flats Plant, to establish the relative importance of these criteria, and to identify suitable areas within the United States for location of plutonium facilities with respect to these criteria. Sources of the site criteria identified include federal laws, federal agency regulations, state laws and regulations, and requirements associated with operations to be performed at the site. The criteria identified during the study were organized into 14 major categories. The relative importnace of each category and each criterion within the categories were established using group decision-making techniques. The major criteria categories, their assigned weight on a scale of 1 to 10, and their relative priority ranks are as follows: geology/seismicity; public safety; environmental impact; meteorology; hydrology; topography; transportation; utilities; personnel; safeguards/security; land area and availability; land use compatibility; and, public acceptance. A suitability analysis of the continental United States was performed using only those criteria that could be mapped at a national scale. Suitability was assessed with respect to each of these criteria, and individual suitability maps were prepared. A composite suitability map was generated using computerized overlay techniques. This map provides a starting point for identifying specific candidate sites if an actual site selection were to be conducted

  2. Fuels and Materials Examination Facility: Environmental assessment, Hanford site, Richland, Washington: Environmental assessment

    International Nuclear Information System (INIS)

    1980-07-01

    The Fuels and Materials Examination Facility (FMEF) and the High Performance Fuel Laboratory (HPFL) were originally proposed to be constructed as separate facilities in the 400 Area of the Hanford Site near Richland, Washington. The environmental effects of these two facilities were described and evaluated in the FMEF Environmental Assessment and the HPFL Final Environmental Impact Statement, ERDA-1550. For economic reasons, the two facilities will no longer be built as separate facilities. The FMEF facility plans have been modified to incorporate some of the features of the proposed HPFL facility while retaining essentially all of the capabilities of the original FMEF proposal. The purpose of this document is to update the FMEF Environmental Assessment to appropriately reflect addition of certain HPFL features into the FMEF facility and to assess the environmental affects of the facility which resulted from inclusion of HPFL features into the FMEF facility

  3. Cold vacuum drying facility site evaluation report

    International Nuclear Information System (INIS)

    Diebel, J.A.

    1996-01-01

    In order to transport Multi-Canister Overpacks to the Canister Storage Building they must first undergo the Cold Vacuum Drying process. This puts the design, construction and start-up of the Cold Vacuum Drying facility on the critical path of the K Basin fuel removal schedule. This schedule is driven by a Tri-Party Agreement (TPA) milestone requiring all of the spent nuclear fuel to be removed from the K Basins by December, 1999. This site evaluation is an integral part of the Cold Vacuum Drying design process and must be completed expeditiously in order to stay on track for meeting the milestone

  4. North Carolina Geological Survey's role in siting a low-level radioactive (LLRW) waste disposal facility in North Carolina

    International Nuclear Information System (INIS)

    Reid, J.C.; Wooten, R.M.; Farrell, K.M.

    1993-01-01

    The Southeast Compact Commission in 1986 selected North Carolina to host the Southeast's LLRW disposal facility for the next twenty years. The North Carolina Geological Survey (NCGS) for six years has played a major role in the State's efforts by contributing to legislation and administrative code, policy, technical oversight and surveillance and regulation as a member of the State's regulatory team. Future activities include recommendation of the adequacy of characterization and site performance pursuant to federal code, state general statutes and administrative code, and review of a license application. Staff must be prepared to present testimony and professional conclusions in court. The NCGS provides technical advice to the Division of Radiation Protection (DRP), the regulatory agency which will grant or deny a LLRW license. The NCGS has not participated in screening the state for potential sites to minimize bias. The LLRW Management Authority, a separate state agency siting the LLRW facility, hired a contractor to characterize potential sites and to write a license application. Organizational relationships enable the NCGS to assist the DRP in its regulatory role without conflict of interest. Disposal facilities must be sited to ensure safe disposal of LLRW. By law, the siting of a LLRW disposal facility is primarily a geological, rather than an engineering, effort. Federal and State statutes indicate a site must be licensable on its own merits. Engineered barriers cannot make a site licensable. The project is 3 years behind schedule and millions of dollars over budget. This indicates the uncertainty and complexity inherent in siting such as facility, the outcome of which cannot be predicted until site characterization is complete, the license application reviewed and the performance assessment evaluated. State geological surveys are uniquely qualified to overview siting of LLRW facilities because of technical expertise and experience in the state's geology

  5. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    International Nuclear Information System (INIS)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms

  6. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

  7. Obstacle factors and overcoming plans of public communication: With an emphasis on radioactive waste disposal facility siting

    International Nuclear Information System (INIS)

    Yoo, Hae-Woon; Oh, Chang-Taeg

    1996-01-01

    Korea is confronting a serious social conflict, which is phenomenon of local residents reaction to radioactive waste disposal facility. This phenomenon is traced back to the reason that the project sponsors and local residents do not communicate sufficiently each other. Accordingly, in order to overcome local residents' reaction to radioactive waste disposal facility siting effectively, it is absolutely necessary to consider the way of solutions and strategies with regard to obstacle factors for public communication. In this content, this study will review three cases (An-myon Island, Gul-up Island, Yang-yang) on local residents reaction to facility siting. As a result of analysis, authoritarian behavior of project sponsors, local stigma, risk, antinuclear activities of environmental group, failures in siting the radioactive waste disposal facility, etc. has negative impact on public communication of the radioactive waste disposal facility siting. In this study, 5 strategies (reform of project sponsor's authoritarianism, incentive offer, strengthening PA activities, more active talks with environmental groups, promoting credibility of project sponsors) arc suggested to cope with obstacle factors of public communication

  8. State-of-the-Art Report for the Deep URL Facility Development : Aspo Hard Rock Laboratory, Grimsel Test Site

    International Nuclear Information System (INIS)

    Kim, Kyung Su; Bae, Dae Seok; Kim, Geon Young

    2012-01-01

    This report analysed the development status on the SKB's Hard Rock Laboratory and Nagra's Grimsel Test Site facilities to investigate their facility overview, operation system, site condition, project history and procedure, and current experiment programmes of underground research laboratory. SKB and Nagra had launched high level radioactive waste disposal project around 1970's. Actual site investigation activities were initiated since 1990's and the time schedule for siting programmes to determine the final disposal site were taken fifteen to thirty years. Furthermore, ten to twenty years will be needed to site characterization, facility design, construction, and operation commissioning. Nagra had constructed Grimsel Test Site facility in southern Switzerland Apls with the collaboration of KWO electrical company in early 1980's. This facility is characterized of a centre of excellence for underground Research and Development (R and D) to support projects for the disposal of radioactive and chemo-toxic waste and not a potential repository site. The SKB's Aspo HRL constructed in outside Oskarshamn is a unique PBG-URL facility. SKB is conducting full-scale research and development here in preparation for the construction of a final repository for spent nuclear fuel. The research programmes for the development of disposal technologies is performed over thirty to fifty years prior to repository operation. In 2000's, research on long-term phenomena, i.e., optimization of disposal concept, understanding of coupling process, validation of mathematical model, test and development of safety assessment models, characterization of deep geochemical environment, and long-term demonstration experiments have been leading the issues of research and development

  9. The partnership approach to siting and developing radioactive waste management facilities

    International Nuclear Information System (INIS)

    2010-03-01

    History shows that the search for sites for radioactive waste management facilities has been marred by conflicts and delays. Affected communities have often objected that their concerns and interests were not addressed. In response, institutions have progressively turned away from the traditional 'decide, announce and defend' model, and are learning to 'engage, interact and co-operate'. This shift has fostered the emergence of partnerships between the proponent of the facility and the potential host community. Working in partnership with potential host communities enables pertinent issues and concerns to be raised and addressed, and creates an opportunity for developing a relationship of mutual understanding and mutual learning, as well as for developing solutions that will add value to the host community and region. Key elements of the partnership approach are being incorporated into waste management strategies, leading increasingly to positive outcomes. National radioactive waste management programmes are in various phases of siting facilities and rely on different technical approaches for the various categories of waste. In all cases, it is necessary for institutional actors and the potential or actual host community to build a meaningful, workable relationship. Partnership approaches are effective in achieving a desirable combination of licensable site and management concept while meeting the sometimes competing requirements of fair representation and competent participation. Partnership arrangements facilitate reaching agreement on measures for local control, financial support and future development

  10. Preliminary siting criteria for the proposed mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Jorgenson-Waters, M.

    1992-09-01

    The Mixed and Low-Level Waste Treatment Facility project was established in 1991 by the US Department of Energy Idaho Field Office. This facility will provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies the siting requirements imposed on facilities that treat and store these waste types by Federal and State regulatory agencies and the US Department of Energy. Site selection criteria based on cost, environmental, health and safety, archeological, geological and service, and support requirements are presented. These criteria will be used to recommend alternative sites for the new facility. The National Environmental Policy Act process will then be invoked to evaluate the alternatives and the alternative sites and make a final site determination

  11. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass and Algal Residues via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olarte, M. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, T. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-21

    Beginning in 2010, UOP, along with the Department of Energy and other project partners, designed a pathway for an integrated biorefinery to process solid biomass into transportation fuel blendstocks. The integrated biorefinery (IBR) would convert second generation feedstocks into pyrolysis oil which would then be upgraded into fuel blendstocks without the limitations of traditional biofuels.

  12. RCRA Facility Investigation/Remedial Investigation Report for the Grace Road Site (631-22G)

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E.

    1998-10-02

    This report summarizes the activities and documents the results of a Resource Conservation and Recovery Act Facility Investigation/Remedial Investigation conducted at Grace Road Site on the Savannah River Site near Aiken, South Carolina.

  13. RCRA Facility Investigation/Remedial Investigation Report for the Grace Road Site (631-22G)

    International Nuclear Information System (INIS)

    Palmer, E.

    1998-01-01

    This report summarizes the activities and documents the results of a Resource Conservation and Recovery Act Facility Investigation/Remedial Investigation conducted at Grace Road Site on the Savannah River Site near Aiken, South Carolina

  14. Alternative energy facility siting policies for urban coastal areas: executive summary of findings and policy recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Morell, D; Singer, G

    1980-11-01

    An analysis was made of siting issues in the coastal zone, one of the nation's most critical natural resource areas and one which is often the target for energy development proposals. The analysis addressed the changing perceptions of citizens toward energy development in the coastal zone, emphasizing urban communities where access to the waterfront and revitalization of waterfront property are of interest to the citizen. The findings of this analysis are based on an examination of energy development along New Jersey's urban waterfront and along the Texas-Louisiana Gulf Coast, and on redevelopment efforts in Seattle, San Francisco, Boston, and elsewhere. The case studies demonstrate the significance of local attitudes and regional cooperation in the siting process. In highly urbanized areas, air quality has become a predominant concern among citizen groups and an influential factor in development of alternative energy facility siting strategies, such as consideration of inland siting connected by pipeline to a smaller coastal facility. The study addresses the economic impact of the permitting process on the desirability of energy facility investments, and the possible effects of the location selected for the facility on the permitting process and investment economics. The economic analysis demonstrates the importance of viewing energy facility investments in a broad perspective that includes the positive or negative impacts of various alternative siting patterns on the permitting process. Conclusions drawn from the studies regarding Federal, state, local, and corporate politics; regulatory, permitting, licensing, environmental assessment, and site selection are summarized. (MCW)

  15. Secrets of successful siting legislation for low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Pasternak, A.D.

    1988-01-01

    California's users of radioactive materials, working together through the California Radioactive Materials Management Forum (Cal Rad), have played a role in fostering development of our state's low-level radioactive waste disposal facility. One of Cal Rad's contributions was to develop and sponsor California's siting legislation in 1983. In this paper, the elements of the state's LLRW siting law, California Senate Bill 342 (Chapter 1177, Statutes a 1983), and their relationship to a successful siting program are described

  16. Removal site evaluation report on the Tower Shielding Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-09-01

    This removal site evaluation report for the Tower Shielding Facility (TSF) at Oak Ridge National Laboratory was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Tower Shielding Facility pose a substantial risk to human health or the environment (i.e., a high probability of adverse effects) and if remedial site evaluations or removal actions are, therefore, required. The scope of the project included a review of historical evidence regarding operations and use of the facility; interviews with facility personnel concerning current and past operating practices; a site inspection; and identification of hazard areas requiring maintenance, removal, or remedial actions. Based an the findings of this removal site evaluation, adequate efforts are currently being made at the TSF to contain and control existing contamination and hazardous substances on site in order to protect human health and the environment No conditions requiring maintenance or removal actions to mitigate imminent or potential threats to human health and the environment were identified during this evaluation. Given the current conditions and status of the buildings associated with the TSF, this removal site evaluation is considered complete and terminated according to the requirements for removal site evaluation termination

  17. First workshop on the possibilities of biorefinery concepts for the industry : held at hotel "De Wageningse Berg", Wageningen, the Netherlands (16 June 2006) : official minutes

    NARCIS (Netherlands)

    Annevelink, E.; Jong, de E.; Ree, van R.; Zwart, R.W.R.

    2006-01-01

    On June the 16th the first ¿workshop on the possibilities of biorefinery concepts for the industry¿ was held, bringing together different Dutch stakeholders, and addressing common as well as conflicting technical and market issues with regard to biorefinery opportunities. The first-of-akind workshop

  18. Development of corrective measures and site stabilization technologies for shallow land burial facilities at semiarid sites: summary paper

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Abeele, W.V.

    1987-01-01

    The overall purpose of the corrective measures task performed for the national Low-Level Waste Management Program (NLLWMP) has been to develop and test methods that can be used to correct any actual or anticipated problems with new and existing shallow land burial (SLB) sites in a semiarid environment. These field tests have not only evaluated remedial actions, but have also investigated phenomena suspected of being a possible problem at semiarid SLB sites. The approach the authors have taken in developing remedial action and site closure technologies for low-level waste sites is to recognize the physical and biological processes affecting site integrity are interdependent, and therefore, cannot be treated as separate problems. More specifically the field experiments performed for this task were to identify, evaluate, and model erosion control technologies, field test second generation biointrusion barriers, determine by field experiments the extent of upward radionuclide migration due to moisture cycling, and measure the effects of subsidence on remedial action of other system components. In the following sections of this final task summary report, the authors describe the progress made in establishing the facility in which many of these field experiments were performed, the Los Alamos Experimental Engineered Test Facility (EETF), as well as a brief description of the four research areas encompassed by this task. 45 references, 4 figures

  19. The decision-making process and EIA in connection with the siting of nuclear waste facilities - a municipal perspective

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Torsten [Oskarshamn Municipality (Sweden)

    1995-12-01

    Past experiences from siting of nuclear facilities at Oskarshamn, Sweden are reviewed. This siting were carried out in a traditional manner for that time, i e it was decided to locate the facility at a particular site, then this decision was made public, and finally the decision was defended. New plans now exists for locating nuclear waste facilities to Oskarshamn, and this contribution discusses what the local communities demand from the EIA and EIS processes for producing a meaningful basis for decision-making. 9 refs.

  20. Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass

    NARCIS (Netherlands)

    Luque, L.; Westerhof, Roel Johannes Maria; van Rossum, G.; Oudenhoven, Stijn; Kersten, Sascha R.A.; Berruti, F.; Rehmann, L.

    2014-01-01

    This paper evaluates a novel biorefinery approach for the conversion of lignocellulosic biomass from pinewood. A combination of thermochemical and biochemical conversion was chosen with the main product being ethanol. Fast pyrolysis of lignocellulosic biomasss with fractional condensation of the

  1. Site selection experience for a new low-level radioactive waste storage/disposal facility at the Savannah River Plant

    International Nuclear Information System (INIS)

    Towler, O.A.; Cook, J.R.; Helton, B.D.

    1985-10-01

    Preliminary performance criteria and site selection guides specific to the Savannah River Plant, were developed for a new low-level radioactive waste storage/disposal facility. These site selection guides were applied to seventeen potential sites identified at SRP. The potential site were ranked based on how well they met a set of characteristics considered important in site selection for a low-level radioactive waste disposal facility. The characteristics were given a weighting factor representing its relative importance in meeting site performance criteria. A candidate site was selected and will be the subject of a site characterization program

  2. Scenario optimization modeling approach for design and management of biomass-to-biorefinery supply chain system.

    Science.gov (United States)

    Sharma, Bhavna; Ingalls, Ricki G; Jones, Carol L; Huhnke, Raymond L; Khanchi, Amit

    2013-12-01

    The aim of this study was to develop a scenario optimization model to address weather uncertainty in the Biomass Supply Chain (BSC). The modeling objective was to minimize the cost of biomass supply to biorefineries over a one-year planning period using monthly time intervals under different weather scenarios. The model is capable of making strategic, tactical and operational decisions related to BSC system. The performance of the model was demonstrated through a case study developed for Abengoa biorefinery in Kansas. Sensitivity analysis was done to demonstrate the effect of input uncertainty in yield, land rent and storage dry matter loss on the model outputs. The model results show that available harvest work hours influence major cost-related decisions in the BSC. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Identifying the point of departures for the detailed sustainability assessment of biomass feedstocks for biorefinery

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Knudsen, Marie Trydeman; Dalgaard, Tommy

    for biorefineries and potential impacts to the existing market. This study aims to assist in the sustainability assessment of straw conversion in the biochemical conversion routes to deliver bioethanol and other biobased products. For the comparison, conversion of straw to produce heat and electricity in a Combined......In the light of sustainable development in the energy sector, biomasses have gained increasing attention, which have exacerbated competition among them. Biorefineries are increasing its hold in developed economies, since it facilitates the delivery of multiple products including food, feed...... and fuels. Lignocelluloses (e.g straw) are one of the important biomasses considered in such transition. Meanwhile, it is also relevant to examine how the current utilization of biomasses are taking place and the related environmental and economic burdens. This also allows to compare the sustainability...

  4. Site dose calculations for the INEEL/TMI-2 storage facility

    International Nuclear Information System (INIS)

    Jones, K.B.

    1997-01-01

    The U.S. Department of Energy (DOE) is licensing an independent spent-fuel storage installation (ISFSI) for the Three Mile Island unit 2 (TMI-2) core debris to be constructed at the Idaho Chemical Processing Plant (ICPP) site at the Idaho National Engineering and Environmental Laboratory (INEEL) using the NUHOMS spent-fuel storage system. This paper describes the site dose calculations, performed in support of the license application, that estimate exposures both on the site and for members of the public. These calculations are unusual for dry-storage facilities in that they must account for effluents from the system in addition to skyshine from the ISFSI. The purpose of the analysis was to demonstrate compliance with the 10 CFR 20 and 10 CFR 72.104 exposure limits

  5. Biorefinery methods for separation of protein and oil fractions from rubber seed kernel

    NARCIS (Netherlands)

    Widyarani, R.; Ratnaningsih, E.; Sanders, J.P.M.; Bruins, M.E.

    2014-01-01

    Biorefinery of rubber seeds can generate additional income for farmers, who already grow rubber trees for latex production. The aim of this study was to find the best method for protein and oil production from rubber seed kernel, with focus on protein recovery. Different pre-treatments and oil

  6. Waste immobilization demonstration program for the Hanford Site's Mixed Waste Facility

    International Nuclear Information System (INIS)

    Burbank, D.A.; Weingardt, K.M.

    1994-05-01

    This paper presents an overview of the Waste Receiving and Processing facility, Module 2A> waste immobilization demonstration program, focusing on the cooperation between Hanford Site, commercial, and international participants. Important highlights of the development and demonstration activities is discussed from the standpoint of findings that have had significant from the standpoint of findings that have had significant impact on the evolution of the facility design. A brief description of the future direction of the program is presented, with emphasis on the key aspects of the technologies that call for further detailed investigation

  7. Plutonium production story at the Hanford site: processes and facilities history

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S., Westinghouse Hanford

    1996-06-20

    This document tells the history of the actual plutonium production process at the Hanford Site. It contains five major sections: Fuel Fabrication Processes, Irradiation of Nuclear Fuel, Spent Fuel Handling, Radiochemical Reprocessing of Irradiated Fuel, and Plutonium Finishing Operations. Within each section the story of the earliest operations is told, along with changes over time until the end of operations. Chemical and physical processes are described, along with the facilities where these processes were carried out. This document is a processes and facilities history. It does not deal with the waste products of plutonium production.

  8. Perencanaan Site Layout Facilities Berdasarkan Traveling Distance Dan Safety Index Pada Proyek Pembangunan Hotel The Alimar Surabaya

    Directory of Open Access Journals (Sweden)

    Angga Sukma Wijaya

    2017-01-01

    Full Text Available Proyek pembangunan hotel The Alimar Surabaya dengan 7 lantai , mempunyai luas tanah sebesar 900 m2 dengan KDB  650 m2 KLB 4550 m2. Permasalahan yang terjadi adalah bangunan tersebut mempunyai lahan yang tidak terlalu luas dan  berhimpitan langsung dengan rumah warga. Ruang gerak yang sempit akan sulit untuk menentukan penempatan site facilities. Dengan perencanaan site layout facilities yang dapat menghemat pemakaian ruang bangun. Semakin besar area yang digunakan dalam penempatan site facilities maka perjalanan antar fasilitas juga semakin banyak memakan waktu. Pembuatan alternatif site layout perlu dilakukan agar memperoleh site facilities yang optimal. Pada penelitian ini dilakukan perencanaan site layout facilities dengan traveling distance dan safety index  atau bisa disebut multi objectives function sebagai acuannya. Perencanaan site layout tersebut pada dasarnya dibagi dua tahap yaitu pada saat pekerjaan sub structure dan pekerjaan upper structure. Dari kedua tahap pekerjaan tersebut dapat menggunakan metode equal maupun unequal site layout. Pada perencanaan fasilitas juga diperhitungkan kebutuhan luas dan fasilitas material pada stock yard. Setelah melakukan iterasi dan membuat skenario-skenario bentuk site layout yang berbeda-beda kemudian terpilih salah satu yang mempunyai nilai multi objectives function paling minimum. Kemudian dengan menggunakan grafik pareto optima maka grafik tersebut mampu menunjukkan titik-titik objectives function yang paling minimum. Hasil yang di dapatkan adalah pada saat pekerjaan Sub Structure, site layout yang paling optimal adalah pada alternatif 665 yang mempunyai travelling distance dan safety index terendah dengan nilai TD sebesar 13246,18 m atau mengalami penurunan sebesar 3,30% dan nilai SI sebesar 1048 atau mengalami penurunan sebesar 5,76% dari kondisi perencanaan awal. Sedangkan Pada saat pekerjaan Upper Structure, site layout yang paling optimal adalah pada alternatif 122 yang mempunyai

  9. Methodology to evaluate the site standard seismic motion for a nuclear facility

    International Nuclear Information System (INIS)

    Soares, W.A.

    1983-03-01

    An overall view of the subjects involved in the determination of the site standard seismic motion to a nuclear facility is presented. The main topics discussed are: basic priciples of seismic instrumentation; dynamic and spectral concepts; design earthquakes definitions; fundamentals of seismology; empirical curves developed from prior seismic data; avalable methodologies and recommended procedures to evaluate the site standard seismic motion. (E.G.) [pt

  10. Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells

    Directory of Open Access Journals (Sweden)

    Vishnivetskaya Tatiana A

    2009-04-01

    Full Text Available Abstract Background Microbial fuel cells (MFC and microbial electrolysis cells are electrical devices that treat water using microorganisms and convert soluble organic matter into electricity and hydrogen, respectively. Emerging cellulosic biorefineries are expected to use large amounts of water during production of ethanol. Pretreatment of cellulosic biomass results in production of fermentation inhibitors which accumulate in process water and make the water recycle process difficult. Use of MFCs to remove the inhibitory sugar and lignin degradation products from recycle water is investigated in this study. Results Use of an MFC to reduce the levels of furfural, 5-hydroxymethylfurfural, vanillic acid, 4-hydroxybenzaldehyde and 4-hydroxyacetophenone while simultaneously producing electricity is demonstrated here. An integrated MFC design approach was used which resulted in high power densities for the MFC, reaching up to 3700 mW/m2 (356 W/m3 net anode volume and a coulombic efficiency of 69%. The exoelectrogenic microbial consortium enriched in the anode was characterized using a 16S rRNA clone library method. A unique exoelectrogenic microbial consortium dominated by δ-Proteobacteria (50%, along with β-Proteobacteria (28%, α-Proteobacteria (14%, γ-Proteobacteria (6% and others was identified. The consortium demonstrated broad substrate specificity, ability to handle high inhibitor concentrations (5 to 20 mM with near complete removal, while maintaining long-term stability with respect to power production. Conclusion Use of MFCs for removing fermentation inhibitors has implications for: 1 enabling higher ethanol yields at high biomass loading in cellulosic ethanol biorefineries, 2 improved water recycle and 3 electricity production up to 25% of total biorefinery power needs.

  11. Roadmap biorefineries within the scope of action plans of the Federal Government for the material and energetic utilization of renewable raw materials; Roadmap Bioraffinerien im Rahmen der Aktionsplaene der Bundesregierung zur stofflichen und energetischen Nutzung nachwachsender Rohstoffe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    In order to determine the current status and the further energy demand of different biorefinery concepts, the Federal Government has announced the development of a 'Roadmap biorefineries' under involvement of business and science. This comprehensive overview on different technologies and on possibilities of realization now is available and includes the following aspects: (1) Biorefineries in te context of utilizing biomass; (2) Definition and systematics of biorefineries, state of the art and initial situation; (3) Technological description and analysis; (4) Economic and ecologic classification; (5) Challenges of the establishment of biorefineries - SWOT analysis; (6) need for action.

  12. Federal Air Pollutant Emission Regulations and Preliminary Estimates of Potential-to-Emit from Biorefineries. Pathway #1: Dilute-Acid and Enzymatic Deconstruction of Biomass-to-Sugars and Biological Conversion of Sugars-to-Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yimin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bhatt, Arpit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thomas, Mae [Eastern Research Group, Lexington, MA (United States); Renzaglia, Jason [Eastern Research Group, Lexington, MA (United States)

    2016-02-01

    Biorefineries are subject to environmental laws, including complex air quality regulations that aim to protect and improve the quality of the air. These regulations govern the amount of certain types of air pollutants that can be emitted from different types of emission sources. To determine which federal air emission regulations potentially apply to the sugars-to-hydrocarbon (HC) biorefinery, we first identified the types of regulated air pollutants emitted to the ambient environment by the biorefinery or from specific equipment. Once the regulated air pollutants are identified, we review the applicability criteria of each federal air regulation to determine whether the sugars-to-HC biorefinery or specific equipment is subject to it. We then estimate the potential-to-emit of pollutants likely to be emitted from the sugars-to-HC biorefinery to understand the air permitting requirements.

  13. Configuration system development of site and environmental information for radwaste disposal facility

    International Nuclear Information System (INIS)

    Park, Se-Moon; Yoon, Bong-Yo; Kim, Chang-Lak

    2005-01-01

    License for the nuclear facilities such as radioactive waste repository demands documents of site characterization, environmental assessment and safety assessment. This performance will produce bulk of the relevant data. For the safe management of radioactive waste repository, data of the site and environment have to be collected and managed systematically. Particularly for the radwaste repository, which has to be institutionally controlled for a long period after closure, the data will be collected and maintained through the monitoring programme. To meet this requirement, a new programme called 'Site Information and Total Environmental data management System (SITES)' has been developed. The scope and function of the SITES is issued in data DB, safety assessment and monitoring system. In this respect, SITES is designed with two modules of the SITES Database Module (SDM) and the Monitoring and Assesment (M and A). The SDM module is composed of three sub-modules. One is the Site Information Management System (SIMS), which manages data of site characterization such as topography, geology, hydrogeology, engineering geology, etc. The other is the ENVironmental Information management System (ENVIS) and Radioactive ENVironmental Information management System (RENVIS), which manage environmental data required for environmental assessment performance. ENVIS and RENVIS covered almost whole items of environmental assessment report required by Korean government. The SDM was constructed based on Entity Relationship Diagram produced from each item. Also using ArcGIS with the spatial characteristics of the data, it enables groundwater and water property monitoring networks, etc. To be analyzed in respect of every theme. The sub-modules of M and A called the Site and Environment Monitoring System (SEMS) and the Safety Assessment System (SAS) were developed. SEMS was designed to manage the inspection records of the individual measuring instruments and facilities, and the on

  14. Initial Operation of the Savannah River Site Advanced Storage Monitoring Facility

    International Nuclear Information System (INIS)

    McCurry, D.R.

    2001-01-01

    An advanced storage monitoring facility has been constructed at the Savannah River Site capable of storing sensitive nuclear materials (SNM) with access to monitoring information available over the Internet. This system will also have monitoring information available over the Internet to appropriate users. The programs will ultimately supply authenticated and encrypted data from the storage sites to certified users to demonstrate the capability of using the Internet as a safe and secure communications medium for remote monitoring of sensitive items

  15. Remediation of radioactively contaminated facilities and the site of Russian Research Center Kurchatov Institute

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Ponomarev-Stepnoj, N.N.; Volkov, V.G.

    2007-01-01

    One discusses the efforts to rehabilitate the radiation hazard installations and to remediate the contaminated territory of the Kurchatov Institute RSC undertaken in 2006-2007 in terms of the Remediation Project. The old radwaste storage facilities constructed at the site when the Institute was involved in activities to elaborate both war and civil nuclear technologies were the basic objects of the rehabilitation efforts. Paper describes the structure of the storage facilities covering the volume and the characteristics of the stored radwaste. Paper discusses the storage facility site layout parameters taken into consideration in the course of the remediation efforts. Paper describes the procedures, the sequence of the remediation efforts and the peculiar features of the planning and engineering approaches. Paper dwells upon the results of the rehabilitation and the remediation efforts [ru

  16. New Sustainable Model of Biorefineries: Biofactories and Challenges of Integrating Bio- and Solar Refineries.

    Science.gov (United States)

    Abate, Salvatore; Lanzafame, Paola; Perathoner, Siglinda; Centi, Gabriele

    2015-09-07

    The new scenario for sustainable (low-carbon) chemical and energy production drives the development of new biorefinery concepts (indicated as biofactories) with chemical production at the core, but flexible and small-scale production. An important element is also the integration of solar energy and CO2 use within biobased production. This concept paper, after shortly introducing the motivation and recent trends in this area, particularly at the industrial scale, and some of the possible models (olefin and intermediate/high-added-value chemicals production), discusses the opportunities and needs for research to address the challenge of integrating bio- and solar refineries. Aspects discussed regard the use of microalgae and CO2 valorization in biorefineries/biofactories by chemo- or biocatalysis, including possibilities for their synergetic cooperation and symbiosis, as well as integration within the agroenergy value chain. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Institutional aspects of siting nuclear waste disposal facilities in the United States

    International Nuclear Information System (INIS)

    Stewart, J.C.; Prichard, W.C.

    1987-01-01

    This paper has dealt with the institutional issues associated with disposal of nuclear waste in the US. The authors believe that these institutional problems must be resolved, no matter how technologically well suited a site may be for disposal, before site selection may take place. The authors have also pointed out that the geography of the US, with its large arid regions of very low population density, contributes to the institutional acceptability of nuclear waste disposal. Economic factors, especially in sparsely populated areas where the uranium mining and milling industry has caused operation, also weigh on the acceptability of nuclear waste to local communities. This acceptability will be highest where there are existing nuclear facilities and/or facilities which are closed - thus creating unemployment especially where alternative economic opportunities are few

  18. Facility planning and site development

    International Nuclear Information System (INIS)

    Reisman, R.C.; Handmaker, H.

    1986-01-01

    Planning for a magnetic resonance imaging (MRI) facility should provide for the efficient operation of current and future MRI devices and must also take into consideration a broad range of general planning principles. Control of budgeted facility costs and construction schedules is of increasing importance due to the magnitude of expense of MRI facility development as well as the need to protect institutional or entrepreneurial investment. In a competitive environment facility costs may be the determining factor in a project's success

  19. Valorization of lignin from biorefineries for fuels and chemicals

    DEFF Research Database (Denmark)

    Nielsen, Joachim Bachmann

    Direct lignin liquefaction is a promising process for lignin valorization in which ligninis treated in a solvent at elevated temperature and pressure. Liquefaction of sulfur freelignin obtained as a waste product from 2nd generation bio-ethanol production canprovide a sulfur free bio-oil which may...... substitute fossil fuel.In this Ph.D. study the direct liquefaction of a biorefinery lignin (hydrothermallypretreated enzymatic hydrolysis lignin) is explored. The goal is to provide a bio-crude which can substitute marine diesel as the engines found aboard large ships are adapted to more crude fuels. A novel...

  20. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

  1. Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels

    NARCIS (Netherlands)

    Bikker, Paul; Krimpen, van Marinus M.; Wikselaar, van Piet; Houweling-Tan, Bwee; Scaccia, Nazareno; Hal, van Jaap W.; Huijgen, Wouter J.J.; Cone, John W.; López-Contreras, Ana M.

    2016-01-01

    The growing world population demands an increase in animal protein production. Seaweed may be a valuable source of protein for animal feed. However, a biorefinery approach aimed at cascading valorisation of both protein and non-protein seaweed constituents is required to realise an economically

  2. Siting history and current construction status of disposal facility for low and intermediate level radioactive waste in Korea

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Kikuchi, Saburo; Maruyama, Masakatsu

    2008-01-01

    Korean government decided disposal site for low and intermediate level radioactive waste (LILW), which is located at coastal area near the Wolsong nuclear power plants in Gyeong-Ju city in December. 2005, based on the result of votes of residents in four candidate sites. Since then, Korea Hydro and Nuclear Power Co., Ltd (KHNP), which is the management company of the LILW disposal facility, has carried out the preparation for construction of disposal facility and its licensing process. At the first phase, 100 thousand drums in 200 liter are planned to be disposed of in the rock cavern type disposal facility located at the depth from 80m to 130m below the sea level, and finally 800 thousand drums in 200 liter are planned to be disposed of in the site. This report shows the history of siting for the LILW disposal, the outline of design of disposal facility and current status of its construction, based on the information which was obtained mainly during our visit to the disposal site in Korea. (author)

  3. The Oskarshamn model for public involvement in the siting of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Aahagen, H. [Ahagen and Co (Sweden); CarIsson, Torsten [Mayor, Oskarshamn (Sweden); Hallberg, K. [Local Competence Building, Oskarshamn (Sweden); Andersson, Kjell [Karinta-Konsult, Taeby(Sweden)

    1999-12-01

    The Oskarshamn model has so far worked extremely well as a tool to achieve openness and public participation. The municipality involvement has been successful in several aspects, e.g.: It has been possible to influence the program, to a large extent, to meet certain municipality conditions and to ensure the local perspective. The local competence has increased to a considerable degree. The activities generated by the six working groups with a total of 40 members have generated a large number of contacts with various organisations, schools, mass media, individuals in the general public and interest groups. For the future, clarification of the disposal method and site selection criteria as well as the site selection process as such is crucial. The municipality has also emphasised the importance of SKB having shown the integration between site selection criteria, the feasibility study and the safety assessment. Furthermore, the programs for the encapsulation facility and the repository must be co-ordinated. For Oskarshamn it will be of utmost importance that the repository is well under way to be realised before the encapsulation facility can be built.

  4. The Oskarshamn model for public involvement in the siting of nuclear facilities

    International Nuclear Information System (INIS)

    Aahagen, H.; CarIsson, Torsten; Hallberg, K.; Andersson, Kjell

    1999-01-01

    The Oskarshamn model has so far worked extremely well as a tool to achieve openness and public participation. The municipality involvement has been successful in several aspects, e.g.: It has been possible to influence the program, to a large extent, to meet certain municipality conditions and to ensure the local perspective. The local competence has increased to a considerable degree. The activities generated by the six working groups with a total of 40 members have generated a large number of contacts with various organisations, schools, mass media, individuals in the general public and interest groups. For the future, clarification of the disposal method and site selection criteria as well as the site selection process as such is crucial. The municipality has also emphasised the importance of SKB having shown the integration between site selection criteria, the feasibility study and the safety assessment. Furthermore, the programs for the encapsulation facility and the repository must be co-ordinated. For Oskarshamn it will be of utmost importance that the repository is well under way to be realised before the encapsulation facility can be built

  5. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste.

    Science.gov (United States)

    Almeida, João R M; Fávaro, Léia C L; Quirino, Betania F

    2012-07-18

    The considerable increase in biodiesel production worldwide in the last 5 years resulted in a stoichiometric increased coproduction of crude glycerol. As an excess of crude glycerol has been produced, its value on market was reduced and it is becoming a "waste-stream" instead of a valuable "coproduct". The development of biorefineries, i.e. production of chemicals and power integrated with conversion processes of biomass into biofuels, has been singled out as a way to achieve economically viable production chains, valorize residues and coproducts, and reduce industrial waste disposal. In this sense, several alternatives aimed at the use of crude glycerol to produce fuels and chemicals by microbial fermentation have been evaluated. This review summarizes different strategies employed to produce biofuels and chemicals (1,3-propanediol, 2,3-butanediol, ethanol, n-butanol, organic acids, polyols and others) by microbial fermentation of glycerol. Initially, the industrial use of each chemical is briefly presented; then we systematically summarize and discuss the different strategies to produce each chemical, including selection and genetic engineering of producers, and optimization of process conditions to improve yield and productivity. Finally, the impact of the developments obtained until now are placed in perspective and opportunities and challenges for using crude glycerol to the development of biodiesel-based biorefineries are considered. In conclusion, the microbial fermentation of glycerol represents a remarkable alternative to add value to the biodiesel production chain helping the development of biorefineries, which will allow this biofuel to be more competitive.

  6. Siting of a low-level radioactive waste management facility - environmental assessment experiences of the Canadian siting task force

    International Nuclear Information System (INIS)

    Gorber, D.M.; Story, V.A.

    1995-01-01

    After public opposition to the plans for a low-level radioactive waste facility at one of two candidate areas at Port Hope, Canada the Environmental Assessment process was postponed, and an independent Siting Process Task Force was set-up to assess the most suitable technologies for LLRW disposal, the areas with the best potential in the province to use these technologies, and the most promising approaches to site selection. The Task Force recommended a five-phased siting process known as the 'Co-operative Siting Process', which was based on the voluntary participation of local communities and a collaborative, joint-planning style of decision making. An independent Siting Task Force was to be established to ensure that the principles of the recommended process was upheld. This siting process is still underway, and problems and successes that have been encountered are summarized in this contribution

  7. Recent trends on techno-economic assessment (TEA of sugarcane biorefineries

    Directory of Open Access Journals (Sweden)

    Mohsen Ali Mandegari

    2017-09-01

    Full Text Available Sustainability challenges, e.g., climate change, resource depletion, and expanding populations, have triggered a swift move towards a circular bio-economy which is expected to evolve progressively in the coming decades. However, the transition from a fossil fuel-based economy to a bio-based economy requires the exploitation of scientific innovations and step changes in the infrastructure of chemical industry. Biorefineries have been extensively investigated for biofuel production from first and second generation feedstocks, whereas some research activities have been conducted on production of biochemical and biopolymers from renewable resources. Techno-economic evaluation of diverse technologies for production of biofuels and biochemical is a crucial step for decision making in the development of bio-economy. This contribution focuses on the economic studies carried out on biorefineries converting sugarcane bagasse, due to its availability and importance in the South African context, into value-added products. Recent studies on biofuel production via biochemical pathway, e.g., ethanol, butanol, or thermochemical pathway, e.g., methanol and bio jet fuel as well as production of biochemicals with high market demands and diverse applications such as lactic acid, succinic acid, and xylitol have been briefly reviewed. In addition, an overview on the production of biopolymers such as polyl-lactic acid and bio-based monomers, i.e., butanediol, from sugarcane bagasse is reported.

  8. Nuclear facility decommissioning and site remedial actions. Volume 1. A selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Faust, R.A.; Fore, C.S.; Knox, N.P.

    1980-09-01

    This bibliography of 633 references represents the first in a series to be produced by the Remedial Actions Program Information Center (RAPIC) containing scientific, technical, economic, and regulatory information concerning the decommissioning of nuclear facilities. Major chapters selected for this bibliography are Facility Decommissioning, Uranium Mill Tailings Cleanup, Contaminated Site Restoration, and Criteria and Standards. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for (1) author(s), (2) keywords, (3) title, (4) technology development, and (5) publication description. An appendix of 123 entries lists recently acquired references relevant to decommissioning of nuclear facilities. These references are also arranged according to one of the four subject categories and followed by author, title, and publication description indexes. The bibliography was compiled from a specialized data base established and maintained by RAPIC to provide information support for the Department of Energy's Remedial Actions Program, under the cosponsorship of its three major components: Surplus Facilities Management Program, Uranium Mill Tailings Remedial Actions Program, and Formerly Utilized Sites Remedial Actions Program. RAPIC is part of the Ecological Sciences Information Center within the Information Center Complex at Oak Ridge National Laboratory.

  9. Nuclear facility decommissioning and site remedial actions. Volume 1. A selected bibliography

    International Nuclear Information System (INIS)

    Faust, R.A.; Fore, C.S.; Knox, N.P.

    1980-09-01

    This bibliography of 633 references represents the first in a series to be produced by the Remedial Actions Program Information Center (RAPIC) containing scientific, technical, economic, and regulatory information concerning the decommissioning of nuclear facilities. Major chapters selected for this bibliography are Facility Decommissioning, Uranium Mill Tailings Cleanup, Contaminated Site Restoration, and Criteria and Standards. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for (1) author(s), (2) keywords, (3) title, (4) technology development, and (5) publication description. An appendix of 123 entries lists recently acquired references relevant to decommissioning of nuclear facilities. These references are also arranged according to one of the four subject categories and followed by author, title, and publication description indexes. The bibliography was compiled from a specialized data base established and maintained by RAPIC to provide information support for the Department of Energy's Remedial Actions Program, under the cosponsorship of its three major components: Surplus Facilities Management Program, Uranium Mill Tailings Remedial Actions Program, and Formerly Utilized Sites Remedial Actions Program. RAPIC is part of the Ecological Sciences Information Center within the Information Center Complex at Oak Ridge National Laboratory

  10. Use of Savannah River Site facilities for blend down of highly enriched uranium

    International Nuclear Information System (INIS)

    Bickford, W.E.; McKibben, J.M.

    1994-02-01

    Westinghouse Savannah River Company was asked to assess the use of existing Savannah River Site (SRS) facilities for the conversion of highly enriched uranium (HEU) to low enriched uranium (LEU). The purpose was to eliminate the weapons potential for such material. Blending HEU with existing supplies of depleted uranium (DU) would produce material with less than 5% U-235 content for use in commercial nuclear reactors. The request indicated that as much as 500 to 1,000 MT of HEU would be available for conversion over a 20-year period. Existing facilities at the SRS are capable of producing LEU in the form of uranium trioxide (UO 3 ) powder, uranyl nitrate [UO 2 (NO 3 ) 2 ] solution, or metal. Additional processing, and additional facilities, would be required to convert the LEU to uranium dioxide (UO 2 ) or uranium hexafluoride (UF 3 ), the normal inputs for commercial fuel fabrication. This study's scope does not include the cost for new conversion facilities. However, the low estimated cost per kilogram of blending HEU to LEU in SRS facilities indicates that even with fees for any additional conversion to UO 2 or UF 6 , blend-down would still provide a product significantly below the spot market price for LEU from traditional enrichment services. The body of the report develops a number of possible facility/process combinations for SRS. The primary conclusion of this study is that SRS has facilities available that are capable of satisfying the goals of a national program to blend HEU to below 5% U-235. This preliminary assessment concludes that several facility/process options appear cost-effective. Finally, SRS is a secure DOE site with all requisite security and safeguard programs, personnel skills, nuclear criticality safety controls, accountability programs, and supporting infrastructure to handle large quantities of special nuclear materials (SNM)

  11. Biomass pre-extraction, hydrolysis and conversion process improvements fro an integrated biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Robert [Virdia, Inc., Danville, VA (United States)

    2014-12-23

    In this project, Virdia will show that it can improve the production of sugars suitable for the conversion into advanced biofuels from a range of woods. Several biomass feedstocks (Pine wood chips & Eucalyptus wood chips) will be tested on this new integrated biorefinery platform. The resultant drop-in biodiesel can be a cost-effective petroleum-replacement that can compete with projected market prices

  12. Engineering Cellulases for Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [Royal DSM, San Francisco, CA (United States)

    2010-06-27

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  13. National Geo-Database for Biofuel Simulations and Regional Analysis of Biorefinery Siting Based on Cellulosic Feedstock Grown on Marginal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01

    The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. ARRA support for this project and to the PNNL Joint Global Change Research Institute enabled us to create an advanced computing infrastructure to execute millions of simulations, conduct post-processing calculations, store input and output data, and visualize results. These computing resources included two components installed at the Research Data Center of the University of Maryland. The first resource was 'deltac': an 8-core Linux server, dedicated to county-level and state-level simulations

  14. Feasibility assessment grants in support of volunteer siting of a monitored retrievables storage facility

    International Nuclear Information System (INIS)

    Benson, A.; Weisman, N.M.; Morgan, W.

    1993-01-01

    The Monitored Retrievable Storage facility (MRS) is an integral component of the planned Federal radioactive waste management system. The MRS will temporarily store spent fuel from commercial nuclear power plants prior to shipment to a geologic repository for permanent disposal. To facilitate voluntary siting of an MRS facility, Congress, in 1987, authorized the award of feasibility assessment grants by the Department of Energy to assist potentially interested jurisdictions to consider the possibility of hosting an MRS. This paper addresses the experience with MRS feasibility assessment grants to date, reviewing the current status of grant applications and presenting observations on the grant program and the voluntary siting approach, which it supports. The authors note that although the voluntary siting process has yet to identify an MRS host, the feasibility assessment grants have been successful in generating interest and active consideration and debate regarding MRS siting among States, Indian Tribes, and affected units of local government. Continued information efforts about the grant process and more proactive DOE support for and participation in the voluntary siting process are among the recommendations offered

  15. Preoperational baseline and site characterization report for the Environmental Restoration Disposal Facility. Volume 2, Revision 2

    International Nuclear Information System (INIS)

    Weekes, D.C.; Lindsey, K.A.; Ford, B.H.; Jaeger, G.K.

    1996-12-01

    This document is Volume 2 in a two-volume series that comprise the site characterization report, the Preoperational Baseline and Site Characterization Report for the Environmental Restoration Disposal Facility. Volume 1 contains data interpretation and information supporting the conclusions in the main text. This document presents original data in support of Volume 1 of the report. The following types of data are presented: well construction reports; borehole logs; borehole geophysical data; well development and pump installation; survey reports; preoperational baseline chemical data and aquifer test data. Five groundwater monitoring wells, six deep characterization boreholes, and two shallow characterization boreholes were drilled at the Environmental Restoration Disposal Facility (ERDF) site to directly investigate site-specific hydrogeologic conditions

  16. RCRA and CERCLA requirements affecting cleanup activities at a federal facility superfund site

    International Nuclear Information System (INIS)

    Walsh, T.J.

    1994-01-01

    The Fernald Environmental Management Project (FEMP) achieved success on an integrated groundwater monitoring program which addressed both RCRA and CERCLA requirements. The integrated plan resulted in a cost savings of approximately $2.6 million. At present, the FEMP is also working on an integrated closure process to address Hazardous Waste Management Units (HWMUs) at the site. To date, Ohio EPA seems willing to discuss an integrated program with some stipulations. If an integrated program is implemented, a cost savings of several million dollars will be realized since the CERCLA documents can be used in place of a RCRA closure plan. The success of an integrated program at the FEMP is impossible without the support of DOE and the regulators. Since DOE is an owner/operator of the facility and Ohio EPA regulates hazardous waste management activities at the FEMP, both parties must be satisfied with the proposed integration activities. Similarly, US EPA retains CERCLA authority over the site along with a signed consent agreement with DOE, which dictates the schedule of the CERCLA activities. Another federal facility used RCRA closure plans to satisfy CERCLA activities. This federal facility was in a different US EPA Region than the FEMP. While this approach was successful for this site, an integrated approach was required at the FEMP because of the signed Consent Agreement and Consent Decree. For federal facilities which have a large number of HWMUs along with OUs, an integrated approach may result in a timely and cost-effective cleanup

  17. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method

    Science.gov (United States)

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-06-01

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134-57.500 gr ethanol kg-1 Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis.

  18. Waste biorefineries - integrating anaerobic digestion and microalgae cultivation for bioenergy production.

    Science.gov (United States)

    Chen, Yi-di; Ho, Shih-Hsin; Nagarajan, Dillirani; Ren, Nan-Qi; Chang, Jo-Shu

    2018-04-01

    Commercialization of microalgal cultivation has been well realized in recent decades with the use of effective strains that can yield the target products, but it is still challenged by the high costs arising from mass production, harvesting, and further processing. Recently, more interest has been directed towards the utilization of waste resources, such as sludge digestate, to enhance the economic feasibility and sustainability of microalgae production. Anaerobic digestion for waste disposal and phototrophic microalgal cultivation are well-characterized technologies in both fields. However, integration of anaerobic digestion and microalgal cultivation to achieve substantial economic and environmental benefits is extremely limited, and thus deserves more attention and research effort. In particular, combining these two makes possible an ideal 'waste biorefinery' model, as the C/N/P content in the anaerobic digestate can be used to produce microalgal biomass that serves as feedstock for biofuels, while biogas upgrading can simultaneously be performed by phototrophic CO 2 fixation during microalgal growth. This review is thus aimed at elucidating recent advances as well as challenges and future directions with regard to waste biorefineries associated with the integration of anaerobic waste treatment and microalgal cultivation for bioenergy production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method.

    Science.gov (United States)

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-06-13

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134-57.500 gr ethanol kg(-1) Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis.

  20. Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products.

    Science.gov (United States)

    De Bhowmick, Goldy; Sarmah, Ajit K; Sen, Ramkrishna

    2018-01-01

    A constant shift of society's dependence from petroleum-based energy resources towards renewable biomass-based has been the key to tackle the greenhouse gas emissions. Effective use of biomass feedstock, particularly lignocellulosic, has gained worldwide attention lately. Lignocellulosic biomass as a potent bioresource, however, cannot be a sustainable alternative if the production cost is too high and/ or the availability is limited. Recycling the lignocellulosic biomass from various sources into value added products such as bio-oil, biochar or other biobased chemicals in a bio-refinery model is a sensible idea. Combination of integrated conversion techniques along with process integration is suggested as a sustainable approach. Introducing 'series concept' accompanying intermittent dark/photo fermentation with co-cultivation of microalgae is conceptualised. While the cost of downstream processing for a single type of feedstock would be high, combining different feedstocks and integrating them in a bio-refinery model would lessen the production cost and reduce CO 2 emission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Multi-product biorefineries from lignocelluloses: a pathway to revitalisation of the sugar industry?

    Science.gov (United States)

    Farzad, Somayeh; Mandegari, Mohsen Ali; Guo, Miao; Haigh, Kathleen F; Shah, Nilay; Görgens, Johann F

    2017-01-01

    Driven by a range of sustainability challenges, e.g. climate change, resource depletion and expanding populations, a circular bioeconomy is emerging and expected to evolve progressively in the coming decades. South Africa along with other BRICS countries (Brazil, Russia, India and China) represents the emerging bioeconomy and contributes significantly to global sugar market. In our research, South Africa is used as a case study to demonstrate the sustainable design for the future biorefineries annexed to existing sugar industry. Detailed techno-economic evaluation and Life Cycle Assessment (LCA) were applied to model alternative routes for converting sugarcane residues (bagasse and trash) to selected biofuel and/or biochemicals (ethanol, ethanol and lactic acid, ethanol and furfural, butanol, methanol and Fischer-Tropsch synthesis, with co-production of surplus electricity) in an energy self-sufficient biorefinery system. Economic assessment indicated that methanol synthesis with an internal rate of return (IRR) of 16.7% and ethanol-lactic acid co-production (20.5%) met the minimum investment criteria of 15%, while the latter had the lowest sensitivity to market price amongst all the scenarios. LCA results demonstrated that sugarcane cultivation was the most significant contributor to environmental impacts in all of the scenarios, other than the furfural production scenario in which a key step, a biphasic process with tetrahydrofuran solvent, had the most significant contribution. Overall, the thermochemical routes presented environmental advantages over biochemical pathways on most of the impact categories, except for acidification and eutrophication. Of the investigated scenarios, furfural production delivered the inferior environmental performance, while methanol production performed best due to its low reagent consumption. The combined techno-economic and environmental assessments identified the performance-limiting steps in the 2G biorefinery design for

  2. Design and analysis of biorefineries based on raw glycerol: addressing the glycerol problem.

    Science.gov (United States)

    Posada, John A; Rincón, Luis E; Cardona, Carlos A

    2012-05-01

    Glycerol as a low-cost by-product of the biodiesel industry can be considered a renewable building block for biorefineries. In this work, the conversion of raw glycerol to nine added-value products obtained by chemical (syn-gas, acrolein, and 1,2-propanediol) or bio-chemical (ethanol, 1,3-propanediol, d-lactic acid, succinic acid, propionic acid, and poly-3-hydroxybutyrate) routes were considered. The technological schemes for these synthesis routes were designed, simulated, and economically assessed using Aspen Plus and Aspen Icarus Process Evaluator, respectively. The techno-economic potential of a glycerol-based biorefinery system for the production of fuels, chemicals, and plastics was analyzed using the commercial Commercial Sale Price/Production Cost ratio criteria, under different production scenarios. More income can be earned from 1,3-propanediol and 1,2-propanediol production, while less income would be obtained from hydrogen and succinic acid. This analysis may be useful mainly for biodiesel producers since several profitable alternatives are presented and discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Conflict resolution in low-level waste facility siting

    International Nuclear Information System (INIS)

    English, M.R.

    1989-01-01

    Siting a low-level waste facility is only one part of the low-level waste management process. But it is a crucial part, a prism that focuses many of the other issues in low-level waste management. And, as the 1990 and 1992 milestones approach, siting has a urgency that makes the use of alternative dispute resolution (ADR) techniques especially appropriate, to avoid protracted and expensive litigation and to reach creative and durable solutions. Drawing upon literature in the ADR field, this paper discusses ADR techniques as they apply to low-level waste management and the groundwork that must be laid before they can be applied. It also discusses questions that can arise concerning the terms under which negotiations are carried out. The paper then give suggestions for achieving win/win negotiations. Potential objections to negotiated agreements and potential answers to those objections are reviewed, and some requisites for negotiation are given

  4. Carbon Fiber Manufacturing Facility Siting and Policy Considerations: International Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booth, Samuel [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-06-21

    Carbon fiber is increasingly used in a wide variety of applications due largely to its superior material properties such as high strength-to-weight ratio. The current global carbon fiber manufacturing industry is predominately located in China, Europe, Japan, and the United States. The carbon fiber market is expected to expand significantly through 2024 and to require additional manufacturing capacity to meet demand. Carbon fiber manufacturing facilities can offer significant economic development and employment opportunities as exemplified by the $1 billion investment and 500 jobs expected at a new Toray plant in Moore, South Carolina. Though the market is expected to expand, it is unclear where new manufacturing facilities will locate to meet demand. This uncertainty stems from the lack of research evaluating how different nations with significant carbon fiber manufacturing capacity compare as it relates to certain manufacturing facility siting factors such as costs of labor and energy as well as policy directed at supporting carbon fiber development, domestic deployment, and exports. This report fills these gaps by evaluating the top carbon fiber manufacturing countries, including China, European Union countries, Japan, Mexico, South Korea, Taiwan, and the United States. The report documents how the United States compares to these countries based on a range of manufacturing siting considerations and existing policies related to carbon fiber. It concludes with a discussion of various policy options the United States could adopt to both (1) increase the competitiveness of the United States as it relates to attracting new carbon fiber manufacturing and (2) foster broader end-use markets for deployment.

  5. On-site habitability in the event of an accident at a nuclear facility

    International Nuclear Information System (INIS)

    1989-01-01

    This publication is intended to provide technical guidance and a methodology for regulatory bodies, designers, constructors and operators of nuclear facilities to assist them in assessing the current situation as regards on-site habitability for their specific nuclear facilities. Initially, the aim will be to ensure that the ''vital areas'' of the facility which are necessary for the safe operation and shutdown of the facility will remain habitable, in some cases continuously and in others transiently, in the event of an accident inside or outside the installation. The assessment procedure can be used not only for potential radiation accidents but also to consider the effects on habitability of those probable non-radiological events which, if not correctly and effectively countered, could lead to the development of potentially unsafe conditions in the facility itself. 30 refs, 4 figs, 8 tabs

  6. Impact of intermodal facilities to the design of supply chains for biorefineries.

    Science.gov (United States)

    2009-08-15

    This paper analyzes the impact that an intermodal facility has on location and transportation decisions for biofuel production plants. Location decisions impact the management of the in-bound and out-bound logistics of a plant. We model this supply c...

  7. Uncertainty analysis in raw material and utility cost of biorefinery synthesis and design

    DEFF Research Database (Denmark)

    Cheali, Peam; Quaglia, Alberto; Gernaey, Krist

    2014-01-01

    are characterized by considerable uncertainty. These uncertainties might have significant impact on the results of the design problem, and therefore need to be carefully evaluated and managed, in order to generate candidates for robust design. In this contribution, we study the effect of data uncertainty (raw...... material price and utility cost) on the design of a biorefinery process network....

  8. Characterization and remediation of soil prior to construction of an on-site disposal facility at Fernald

    International Nuclear Information System (INIS)

    Hunt, A.; Jones, G.; Nelson, K.

    1998-03-01

    During the production years at the Feed Materials Production Center (FMPC), the soil of the site and the surrounding areas was surficially impacted by airborne contamination. The volume of impacted soil is estimated at 2.2 million cubic yards. During site remediation, this contamination will be excavated, characterized, and disposed of. In 1986 the US Environmental Protection Agency (EPA) and the Department of Energy (DOE) entered into a Federal Facility Compliance Agreement (FFCA) covering environmental impacts associated with the FMPC. A site wide Remedial Investigation/Feasibility Study (RI/FS) was initiated pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended by the Superfund Amendments and Reauthorization Act (CERCLA). The DOE has completed the RI/FS process and has received approval of the final Records of Decision. The name of the facility was changed to the Fernald Environmental Management Project (FEMP) to emphasize the change in mission to environmental restoration. Remedial actions which address similar scopes of work or types of contaminated media have been grouped into remedial projects for the purpose of managing the remediation of the FEMP. The Soil Characterization and Excavation Project (SCEP) will address the remediation of FEMP soils, certain waste units, at- and below-grade material, and will certify attainment of the final remedial limits (FRLs) for the FEMP. The FEMP will be using an on-site facility for low level radioactive waste disposal. The facility will be an above-ground engineered structure constructed of geological material. The area designated for construction of the base of the on-site disposal facility (OSDF) is referred to as the footprint. Contaminated soil within the footprint must be identified and remediated. Excavation of Phase 1, the first of seven remediation areas, is complete

  9. Facilities and medical care for on-site nuclear power plant radiological emergencies

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The operation of a nuclear power plant introduces risks of injury or accidents that could also result in the exposure of personnel to radiation or radioactive materials. It is important in such an event to have adequate first aid and medical facilities, supplies, equipment, transportation capabilities and trained personnel available to provide necessary care. This standard provides guidance for first aid during an emergency and for initial medical care of those overexposed to penetrating radiation or contaminated with radioactive material or radionuclides. Recommendations cover facilities, supplies, equipment and the extent of care on-site, where first aid and initial care may be provided, and off-site at a local hospital, where further medical and surgical care may be provided. Additional recommendations are also provided for the transportation of patients and the training of personnel. A brief discussion of specialized care is provided in an appendix

  10. Directions in low-level radioactive waste management. The siting process: establishing a low-level waste-disposal facility

    International Nuclear Information System (INIS)

    1982-11-01

    The siting of a low-level radioactive waste disposal facility encompasses many interrelated activities and, therefore, is inherently complex. The purpose of this publication is to assist state policymakers in understanding the nature of the siting process. Initial discussion focuses on the primary activities that require coordination during a siting effort. Available options for determining site development, licensing, regulating, and operating responsibilities are then considered. Additionally, the document calls attention to technical services available from federal agencies to assist states in the siting process; responsibilities of such agencies are also explained. The appendices include a conceptual plan for scheduling siting activities and an explanation of the process for acquiring agreement state status. An agreement state takes responsibility for licensing and regulating a low-level waste facility within its borders

  11. A New Automated Instrument Calibration Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Polz, E.; Rushton, R.O.; Wilkie, W.H.; Hancock, R.C.

    1998-01-01

    The Health Physics Instrument Calibration Facility at the Savannah River Site in Aiken, SC was expressly designed and built to calibrate portable radiation survey instruments. The facility incorporates recent advances in automation technology, building layout and construction, and computer software to improve the calibration process. Nine new calibration systems automate instrument calibration and data collection. The building is laid out so that instruments are moved from one area to another in a logical, efficient manner. New software and hardware integrate all functions such as shipping/receiving, work flow, calibration, testing, and report generation. Benefits include a streamlined and integrated program, improved efficiency, reduced errors, and better accuracy

  12. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste

    Directory of Open Access Journals (Sweden)

    Almeida João R M

    2012-07-01

    Full Text Available Abstract The considerable increase in biodiesel production worldwide in the last 5 years resulted in a stoichiometric increased coproduction of crude glycerol. As an excess of crude glycerol has been produced, its value on market was reduced and it is becoming a “waste-stream” instead of a valuable “coproduct”. The development of biorefineries, i.e. production of chemicals and power integrated with conversion processes of biomass into biofuels, has been singled out as a way to achieve economically viable production chains, valorize residues and coproducts, and reduce industrial waste disposal. In this sense, several alternatives aimed at the use of crude glycerol to produce fuels and chemicals by microbial fermentation have been evaluated. This review summarizes different strategies employed to produce biofuels and chemicals (1,3-propanediol, 2,3-butanediol, ethanol, n-butanol, organic acids, polyols and others by microbial fermentation of glycerol. Initially, the industrial use of each chemical is briefly presented; then we systematically summarize and discuss the different strategies to produce each chemical, including selection and genetic engineering of producers, and optimization of process conditions to improve yield and productivity. Finally, the impact of the developments obtained until now are placed in perspective and opportunities and challenges for using crude glycerol to the development of biodiesel-based biorefineries are considered. In conclusion, the microbial fermentation of glycerol represents a remarkable alternative to add value to the biodiesel production chain helping the development of biorefineries, which will allow this biofuel to be more competitive.

  13. Facility Closure Report for T-Tunnel (U12T), Area 12, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    This Facility Closure Report (FCR) has been prepared to document the actions taken to permanently close the remaining accessible areas of U12t-Tunnel (T-Tunnel) in Area 12 of the Nevada Test Site (NTS). The closure of T-Tunnel was a prerequisite to transfer facility ownership from the Defense Threat Reduction Agency (DTRA) to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Closure of the facility was accomplished with the cooperation and concurrence of both NNSA/NSO and the Nevada Division of Environmental Protection (NDEP). The purpose of this FCR is to document that the closure of T-Tunnel complied with the closure requirements specified in the Facility Closure Plan for N- and T-Tunnels Area 12, Nevada Test Site (Appendix D) and that the facility is ready for transfer to NNSA/NSO. The Facility Closure Plan (FCP) is provided in Appendix D. T-Tunnel is located approximately 42 miles north of Mercury in Area 12 of the NTS (Figure 1). Between 1970 and 1987, T-Tunnel was used for six Nuclear Weapons Effects Tests (NWETs). The tunnel was excavated horizontally into the volcanic tuffs of Rainier Mesa. The T-Tunnel complex consists of a main access drift with two NWET containment structures, a Gas Seal Plug (GSP), and a Gas Seal Door (GSD) (Figure 2). The T-Tunnel complex was mothballed in 1993 to preserve the tunnel for resumption of testing, should it happen in the future, to stop the discharge of tunnel effluent, and to prevent unauthorized access. This was accomplished by sealing the main drift GSD

  14. Solving the multifunctionality dilemma in biorefineries with a novel hybrid mass–energy allocation method

    DEFF Research Database (Denmark)

    Djomo, Sylvestre Njakou; Knudsen, Marie Trydeman; Parajuli, Ranjan

    2017-01-01

    . The reductions in energy use and GHG emissions from using the biorefinery’s biofuels were also quantified. HMEN fairly distributed impacts among biorefinery products and did not change the order of the products in terms of the level of the pollution caused. The allocation factors for HMEN fell between mass...

  15. Process Intensification for Cellulosic Biorefineries.

    Science.gov (United States)

    Sadula, Sunitha; Athaley, Abhay; Zheng, Weiqing; Ierapetritou, Marianthi; Saha, Basudeb

    2017-06-22

    Utilization of renewable carbon source, especially non-food biomass is critical to address the climate change and future energy challenge. Current chemical and enzymatic processes for producing cellulosic sugars are multistep, and energy- and water-intensive. Techno-economic analysis (TEA) suggests that upstream lignocellulose processing is a major hurdle to the economic viability of the cellulosic biorefineries. Process intensification, which integrates processes and uses less water and energy, has the potential to overcome the aforementioned challenges. Here, we demonstrate a one-pot depolymerization and saccharification process of woody biomass, energy crops, and agricultural residues to produce soluble sugars with high yields. Lignin is separated as a solid for selective upgrading. Further integration of our upstream process with a reactive extraction step makes energy-efficient separation of sugars in the form of furans. TEA reveals that the process efficiency and integration enable, for the first time, economic production of feed streams that could profoundly improve process economics for downstream cellulosic bioproducts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 4

    International Nuclear Information System (INIS)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Faust, R.A.

    1983-09-01

    This bibliography of 657 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fourth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic documents of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - have been references in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; and (6) Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author, or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. Appendix A lists 264 bibliographic references to literature identified during this reporting period but not abstracted due to time constraints. Title and publication description indexes are given for this appendix. Appendix B defines frequently used acronyms, and Appendix C lists the recipients of this report according to their corporate affiliation

  17. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Faust, R.A.

    1983-09-01

    This bibliography of 657 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fourth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic documents of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - have been references in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; and (6) Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author, or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. Appendix A lists 264 bibliographic references to literature identified during this reporting period but not abstracted due to time constraints. Title and publication description indexes are given for this appendix. Appendix B defines frequently used acronyms, and Appendix C lists the recipients of this report according to their corporate affiliation.

  18. Environmental and economic sustainability of integrated production in bio-refineries : The thistle case in Sardinia

    NARCIS (Netherlands)

    Yazan, Devrim; Mandras, Giovanni; Garau, Giorgio

    2016-01-01

    This paper aims at evaluating the environmental and economic sustainability of bio-refineries that produce multiple products through their supply chains (SCs). A physical enterprise input-output (EIO) model is used to quantify the material/energy/waste flows and integrated to the monetary EIO model

  19. Radiological safety evaluation for a Waste Transfer Facility at Savannah River Site

    International Nuclear Information System (INIS)

    Ades, M.J.

    1993-01-01

    This paper provides a review of the radiological safety evaluation performed for a Waste Transfer Facility (WTF) located at the Savannah River Site (SRS). This facility transfers liquid radioactive waste between various waste processing facilities and waste storage facilities. The WTF includes functional components such as the diversion box and the pump pits, waste transfer lines, and the outside yard service piping and electrical services. The WSRC methodology is used to evaluate the consequences of postulated accidents that result in the release of radioactive material. Such accidents include transfer line breaks, underground liquid pathway release, fire in pump tank cells and HEPA filters, accidents due to natural phenomena, and externally induced events. Chemical hazards accidents are not considered. The analysis results indicate that the calculated mean onsite and offsite radiological consequences are bounded by the corresponding WSRC dose limits for each accident considered. Moreover, the results show that the maximum onsite and offsite doses calculated for the WTF are lower than the maximum doses determined for the whole radioactive waste facility where the WTF is located

  20. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii

    International Nuclear Information System (INIS)

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-01-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b)

  1. Opting for cooperation: A case study in siting a low level radioactive waste management facility

    International Nuclear Information System (INIS)

    Armour, A.

    1991-01-01

    In 1976, the Canadian federal government called a halt to efforts by a crown corporation to site a low-level radioactive waste management facility when it became apparent that continuation of the siting process would likely result in significant social disruption and political conflict. It established an independent six-person Task Force to advise it on how to proceed. Twelve months later, the Task Force put forward a radically different siting process based on the voluntary participation of communities and collaborative, joint problem-solving and decision making. Cabinet endorsed the approach and in September 1988 authorized the Task Force to begin implementing the recommended process. The first three phases of the process have been implemented and so far it appears to be achieving its desired objective -- to encourage less confrontation and more cooperation in the siting of the low-level radioactive waste management facility

  2. Site selection and design basis of the National Disposal Facility for LILW. Geological and engineering barriers

    International Nuclear Information System (INIS)

    Boyanov, S.

    2010-01-01

    Content of the presentation: Site selection; Characteristics of the “Radiana” site (location, geological structure, physical and mechanical properties, hydro-geological conditions); Design basis of the Disposal Facility; Migration analysis; Safety assessment approach

  3. D ampersand D Characterization of the 232-F Old Tritium Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Scallon, K.L.; England, J.L.

    1995-01-01

    The 232-F ''Old Tritium Facility'' operated in the 1950s as the first tritium production facility at the Savannah River Site (SRS). In 1957, the 232-F operation ceased with tritium production turned over to a larger, technologically improved facility at SRS. The 232-F Facility was abandoned in 1958 and the process areas have remained contaminated with radiological, hazardous and mixed constituents. Decontamination and decommissioning (D ampersand D) of the 232-F Facility is scheduled to occur in the years 1995-1996. This paper presents the D ampersand D characterization efforts for the 232-F Facility

  4. Federal Facilities Compliance Act, Draft Site Treatment Plan: Background Volume, Part 2, Volume 1

    International Nuclear Information System (INIS)

    1994-01-01

    This Draft Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed include: purpose and scope of the plan; site history and mission; draft plant organization; waste minimization; waste characterization; preferred option selection process; technology for treating low-level radioactive wastes and TRU wastes; future generation of mixed waste streams; funding; and process for evaluating disposal issues in support of the site treatment plan

  5. Accident simulation in a chemical process facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Hope, E.P.

    1993-01-01

    The US Department of Energy requires Westinghouse Savannah River Company to safely operate the chemical separations facilities at the Savannah River Site (SRS). As part of the safety analysis program, simulation of a proposed frame waste recovery (FWR) system is needed to determine the possible accident consequences that may affect public safety. This paper details the simulation process for the proposed frame waste recovery process and describes the analytical tools used in order to make estimates of accident consequences. Since the process in question has been operated, historical data and statistics about its operation are available. Software tools have been developed to allow analysis of the frame waste recovery system, including the generation of system specific dose conversion factors for a number of unique situations. Accident scenarios involving spilled liquid material are analyzed and account for the specific floor geometry of the facility. Confinement and filtration systems are considered. Analysis of source terms is a limiting factor which affects the entire evaluation process. In the past, facility source terms were generally constant with occasional variations from established patterns. As new site missions unfold, significant variations in source terms can be expected. The impact of these variations on the safety analysis is discussed

  6. Environmental restoration contractor facility safety plan -- MO-561 100-D site remediation project

    International Nuclear Information System (INIS)

    Donahoe, R.L.

    1996-11-01

    This safety plan is applicable to Environmental Restoration Contractor personnel who are permanently assigned to MO-561 or regularly work in the facility. The MO-561 Facility is located in the 100-D Area at the Hanford Site in Richland, Washington. This plan will: (a) identify hazards potentially to be encountered by occupants of MO-561; (b) provide requirements and safeguards to ensure personnel safety and regulatory compliance; (c) provide information and actions necessary for proper emergency response

  7. Optimal design of microalgae-based biorefinery: Economics, opportunities and challenges

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2015-01-01

    Microalgae have great potential as a feedstock for the production of a wide range of end-products under the broad concept of biorefinery. In an earlier work, we proposed a superstructure based optimization model to find the optimal processing pathway for the production of biodiesel from microalgal...... biomass, and identified several challenges with the focus being on utilizing lipids extracted microalgal biomass for economic and environmentally friendly production of useful energy products. In this paper, we expand the previous optimization framework by considering the processing of microalgae residue...

  8. Overview of the spent nuclear fuel storage facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Conatser, E.R.; Thomas, J.E.

    2000-01-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy concerning Foreign Research Reactor Spent Nuclear Fuel initiated a 13 year campaign renewing a policy to support the return of spent nuclear fuel containing uranium of U.S. origin from foreign research reactors to the United States. As of December 1999, over 22% of the approximately 13,000 spent nuclear fuel assemblies from participating countries have been returned to the Savannah River Site (SRS). These ∼2650 assemblies are currently stored in two dedicated SRS wet storage facilities. One is the Receiving Basin for Off-site Fuels (RBOF) and the other as L-Basin. RBOF, built in the early 60's to support the 'Atoms for Peace' program, has been receiving off-site fuel for over 35 years. RBOF has received approximately 1950 casks since startup and has the capability of handling all of the casks currently used in the FRR program. However, RBOF is 90% filled to capacity and is not capable of storing all of the fuel to be received in the program. L-Basin was originally used as temporary storage for materials irradiated in SRS's L-Reactor. New storage racks and other modifications were completed in 1996 that improved water quality and allowed the L-Basin to receive, handle and store spent nuclear fuel assemblies and components from off-site. The first foreign cask was received into the L-Area in April 1997 and approximately 105 foreign and domestic casks have been received since that time. This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels (RBOF) and L-Basin facilities. It will illustrate each step of the fuel receipt program from arrival of casks at SRS through cask unloading and decontamination. It will follow the fuel handling process, from fuel unloading, through the cropping and bundling stages, and final placement in the wet storage rack. Decontamination methods and equipment will be explained to show

  9. Overview of the spent nuclear fuel storage facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Thomas, Jay

    1999-01-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy concerning Foreign Research Reactor Spent Nuclear Fuel initiated a 13 year campaign renewing a policy to support the return of spent nuclear fuel containing uranium of U.S.-origin from foreign research reactors to the United States. As of July 1999, over 18% of the approximately 13,000 spent nuclear fuel assemblies from participating countries have been returned to the Savannah River Site (SRS). These 2400 assemblies are currently stored in two dedicated SRS wet storage facilities. One is the Receiving Basin for Off-site Fuels (RBOF) and the other as L-Basin. RBOF, built in the early 60's to support the 'Atoms for Peace' program, has been receiving off-site fuel for over 35 years. RBOF has received approximately 1950 casks since startup and has the capability of handling all of the casks currently used in the FRR program. However, RBOF is 90% filled to capacity and is not capable of storing all of the fuel to be received in the program. L-Basin was originally used as temporary storage for materials irradiated in SRS's L-Reactor. New storage racks and other modifications were completed in 1996 that improved water quality and allowed L-Basin to receive, handle and store spent nuclear fuel assemblies and components from off-site. The first foreign cask was received into L-Area in April 1997 and approximately 86 foreign and domestic casks have been received since that time. This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels (RBOF) and L-Basin facilities. It will illustrate each step of the fuel receipt program from arrival of casks at SRS through cask unloading and decontamination. It will follow the fuel handling process, from fuel unloading, through the cropping and bundling stages, and final placement in the wet storage rack. Decontamination methods and equipment will be explained to show how the empty

  10. Overview of the spent nuclear fuel storage facilities at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Conatser, E.R.; Thomas, J.E. [Westinghouse Savannah River Company, Aiken, SC 29808 (United States)

    2000-07-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy concerning Foreign Research Reactor Spent Nuclear Fuel initiated a 13 year campaign renewing a policy to support the return of spent nuclear fuel containing uranium of U.S. origin from foreign research reactors to the United States. As of December 1999, over 22% of the approximately 13,000 spent nuclear fuel assemblies from participating countries have been returned to the Savannah River Site (SRS). These {approx}2650 assemblies are currently stored in two dedicated SRS wet storage facilities. One is the Receiving Basin for Off-site Fuels (RBOF) and the other as L-Basin. RBOF, built in the early 60's to support the 'Atoms for Peace' program, has been receiving off-site fuel for over 35 years. RBOF has received approximately 1950 casks since startup and has the capability of handling all of the casks currently used in the FRR program. However, RBOF is 90% filled to capacity and is not capable of storing all of the fuel to be received in the program. L-Basin was originally used as temporary storage for materials irradiated in SRS's L-Reactor. New storage racks and other modifications were completed in 1996 that improved water quality and allowed the L-Basin to receive, handle and store spent nuclear fuel assemblies and components from off-site. The first foreign cask was received into the L-Area in April 1997 and approximately 105 foreign and domestic casks have been received since that time. This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels (RBOF) and L-Basin facilities. It will illustrate each step of the fuel receipt program from arrival of casks at SRS through cask unloading and decontamination. It will follow the fuel handling process, from fuel unloading, through the cropping and bundling stages, and final placement in the wet storage rack. Decontamination methods and equipment

  11. Fuel Assemblies Thermal Analysis in the New Spent Fuel Storage Facility at Inshass Site

    International Nuclear Information System (INIS)

    Khattab, M.; Mariy, Ahmed

    1999-01-01

    New Wet Storage Facility (NSF) is constructed at Inshass site to solve the problem of spent fuel storage capacity of ETRR-1 reactor . The Engineering Safety Heat Transfer Features t hat characterize the new facility are presented. Thermal analysis including different scenarios of pool heat load and safety limits are discussed . Cladding temperature limit during handling and storage process are specified for safe transfer of fuel

  12. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept.

    Science.gov (United States)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar; Angelidaki, Irini

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery (>95%) as well as significant hemicelluloses solubilization (49-59%) after acid-based method and lignin solubilization (35-41%) after alkaline H2O2 method were registered. Alkaline pretreatment showed to be superior over the acid-based method with respect to the rate of enzymatic hydrolysis and ethanol productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149kg of EtOH and 115kg of succinic acid can be obtained per 1ton of dry hemp. Results obtained in this study clearly document the potential of industrial hemp for a biorefinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Critical Protection Item classification for a waste processing facility at Savannah River Site

    International Nuclear Information System (INIS)

    Ades, M.J.; Garrett, R.J.

    1993-01-01

    This paper describes the methodology for Critical Protection Item (CPI) classification and its application to the Structures, Systems and Components (SSC) of a waste processing facility at the Savannah River Site (SRS). The WSRC methodology for CPI classification includes the evaluation of the radiological and non-radiological consequences resulting from postulated accidents at the waste processing facility and comparison of these consequences with allowable limits. The types of accidents considered include explosions and fire in the facility and postulated accidents due to natural phenomena, including earthquakes, tornadoes, and high velocity straight winds. The radiological analysis results indicate that CPIs are not required at the waste processing facility to mitigate the consequences of radiological release. The non-radiological analysis, however, shows that the Waste Storage Tank (WST) and the dike spill containment structures around the formic acid tanks in the cold chemical feed area and waste treatment area of the facility should be identified as CPIs. Accident mitigation options are provided and discussed

  14. 10 CFR 61.52 - Land disposal facility operation and disposal site closure.

    Science.gov (United States)

    2010-01-01

    ... DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.52 Land disposal... wastes by placing in disposal units which are sufficiently separated from disposal units for the other... between any buried waste and the disposal site boundary and beneath the disposed waste. The buffer zone...

  15. Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process.

    Science.gov (United States)

    Masarin, Fernando; Cedeno, Fernando Roberto Paz; Chavez, Eddyn Gabriel Solorzano; de Oliveira, Levi Ezequiel; Gelli, Valéria Cress; Monti, Rubens

    2016-01-01

    Biorefineries serve to efficiently utilize biomass and their by-products. Algal biorefineries are designed to generate bioproducts for commercial use. Due to the high carbohydrate content of algal biomass, biorefinery to generate biofuels, such as bioethanol, is of great interest. Carrageenan is a predominant polysaccharide hydrocolloid found in red macroalgae and is widely used in food, cosmetics, and pharmaceuticals. In this study, we report the biorefinery of carrageenan derived from processing of experimental strains of the red macroalgae Kappaphycus alvarezii. Specifically, the chemical composition and enzymatic hydrolysis of the residue produced from carrageenan extraction were evaluated to determine the conditions for efficient generation of carbohydrate bioproducts. The productivity and growth rates of K. alvarezii strains were assessed along with the chemical composition (total carbohydrates, ash, sulfate groups, proteins, insoluble aromatics, galacturonic acid, and lipids) of each strain. Two strains, brown and red, were selected based on their high growth rates and productivity and were treated with 6 % KOH for extraction of carrageenan. The yields of biomass from treatment with 6 % KOH solution of the brown and red strains were 89.3 and 89.5 %, respectively. The yields of carrageenan and its residue were 63.5 and 23 %, respectively, for the brown strain and 60 and 27.8 %, respectively, for the red strain. The residues from the brown and red strains were assessed to detect any potential bioproducts. The galactan, ash, protein, insoluble aromatics, and sulfate groups of the residue were reduced to comparable extents for the two strains. However, KOH treatment did not reduce the content of glucan in the residue from either strain. Glucose was produced by enzymatic hydrolysis for 72 h using both strains. The glucan conversion was 100 % for both strains, and the concentrations of glucose from the brown and red strains were 13.7 and 11.5 g L(-1

  16. Chemical conversion of hemicellulose coproducts from forest biorefineries to polymers and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Boluk, Y.; Jost, R. [Alberta Research Council, Edmonton, AB (Canada)

    2009-07-01

    Raw material is the basis of the chemical industry. This presentation discussed the chemical conversion of hemicellulose coproducts from forest biorefineries to polymers and chemicals. Biorefining pretreatment processes open up the biomass structure, release hemicelluloses and overcome the resistance to enzymatic hydrolysis. Although hemicellulose is the second most abundant carbohydrate, it does not have many industrial applications. The state of released hemicellulose whether polymeric, oligomeric or monosaccharides depends primarily on the pretreatment process conditions. Physical pretreatment methods include high-pressure steaming and steam explosion; milling and grinding; extrusion; and high-energy radiation. The chemical pretreatment methods involve the use of alkali, acid, gas and oxidizing agents as well as solvents. The biological pretreatment methods involve the use of lignin consuming fungi and cellulose consuming fungi. A profitable use of C5 sugars in monomeric, oligomeric and polymeric forms is necessary for a viable wood to bioethanol process. Hemicellulose composition varies depending on the biomass source. It usually has a lower molecular weight than cellulose, contains branching, and is comprised of several different monosaccharides. The existing commercial chemical products include xylitol, mannitol, and furfural. The hemicellulose coproducts from a lignocellulosic biorefinery have the potential to become a feasible replacement for their fossil-based equivalents. tabs., figs.

  17. Cooking with Active Oxygen and Solid Alkali: A Promising Alternative Approach for Lignocellulosic Biorefineries.

    Science.gov (United States)

    Jiang, Yetao; Zeng, Xianhai; Luque, Rafael; Tang, Xing; Sun, Yong; Lei, Tingzhou; Liu, Shijie; Lin, Lu

    2017-10-23

    Lignocellulosic biomass, a matrix of biopolymers including cellulose, hemicellulose, and lignin, has gathered increasing attention in recent years for the production of chemicals, fuels, and materials through biorefinery processes owing to its renewability and availability. The fractionation of lignocellulose is considered to be the fundamental step to establish an economical and sustainable lignocellulosic biorefinery. In this Minireview, we summarize a newly developed oxygen delignification for lignocellulose fractionation called cooking with active oxygen and solid alkali (CAOSA), which can fractionate lignocellulose into its constituents and maintain its processable form. In the CAOSA approach, environmentally friendly chemicals are applied instead of undesirable chemicals such as strong alkalis and sulfides. Notably, the alkali recovery for this process promises to be relatively simple and does not require causticizing or sintering. These features make the CAOSA process an alternative for both lignocellulose fractionation and biomass pretreatment. The advantages and challenges of CAOSA are also discussed to provide a comprehensive perspective with respect to existing strategies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Site safety progress review of spent fuel central interim storage facility. Final report

    International Nuclear Information System (INIS)

    Gurpinar, A.; Serva, L.; Giuliani

    1995-01-01

    Following the request of the Czech Power Board (CEZ) and within the scope of the Technical Cooperation Project CZR/9/003, a progress review of the site safety of the Spent Fuel Central Interim Storage Facility (SFCISF) was performed. The review involved the first two stages of the works comprising the regional survey and identification of candidate sites for the underground and surface storage options. Five sites have been identified as a result of the previous works. The following two stages will involved the identification of the preferred candidate sites for the two options and the final site qualification. The present review had the purpose of assessing the work already performed and making recommendations for the next two stages of works

  19. The Mixed Waste Management Facility closure and expansion at the Savannah River Site

    International Nuclear Information System (INIS)

    Bittner, M.F.; Frye-O'Bryant, R.C.

    1992-01-01

    Process wastes containing radioactive and hazardous constituents have been generated throughout the operational history of the Savannah River Site. Solid wastes containing low level radionuclides were buried in Low Level Radioactive Disposal Facility (LLRWDF). Until 1986, waste containing lead and cadmium was disposed of in the Mixed Waste Management Facility (MWMF) portion of LLRWDF. Between 1986 and 1990, waste containing F-listed hazardous rags were buried. Current Resource Conservation and Recovery Act (RCRA) regulations prohibit the disposal of these hazardous wastes at nonpermitted facilities. This paper describes the closure activities for the MWMF, completed in 1990 and plans proposed for the expansion of this closure to include the LLRWDF suspect solvent rag trenches

  20. Site selection process for radioactive waste repository (radioactive facility) in Cuba as a fundamental safety criteria

    International Nuclear Information System (INIS)

    Vital, Jose Luis Peralta; Castillo, Reinaldo Gil; Chales Suarez, Gustavo; Rodriguez Reyes, Aymee

    1999-01-01

    The paper show the process of search carried out for the selection of the safest site in the National territory, in order to sitting the Facility (Repository) that will disposal the low and intermediate level radioactive wastes, as well as the possible Storage Facility for nuclear spent Fuel (radioactive wastes of high activity). We summarize the obtained Methodology and the Criterions of exclusion adopted for the development of the Process of site selection, as well as the current condition of the researches that will permit the obtaining of the nominative objectives. (author)

  1. Preoperational baseline and site characterization report for the Environmental Restoration Disposal Facility

    International Nuclear Information System (INIS)

    Weekes, D.C.; Ford, B.H.; Jaeger, G.K.

    1996-09-01

    This document Volume 2 in a two-volume series that comprise the site characterization report for the Environmental Restoration Disposal Facility. Volume 1 contains data interpretation and information supporting the conclusions in the main text. This document presents original data in support of Volume 1 of the report. The following types of data are presented: well construction reports; borehole logs; borehole geophysical data; well development and pump installation; survey reports; and preoperational baseline chemical data and aquifer test data. This does not represent the entire body of data available. Other types of information are archived at BHI Document Control. Five ground water monitoring wells were drilled at the Environmental Restoration Disposal Facility site to directly investigate site- specific hydrogeologic conditions. Well and borehole activity summaries are presented in Volume 1. Field borehole logs and geophysical data from the drilling are presented in this document. Well development and pump installation sheets are presented for the groundwater monitoring wells. Other data presented in this document include borehole geophysical logs from existing wells; chemical data from the sampling of soil, vegetation, and mammals from the ERDF to support the preoperational baseline; ERDF surface radiation surveys;a nd aquifer testing data for well 699-32-72B

  2. Umatilla Satellite and Release Sites Project : Final Siting Report.

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, James M.

    1992-04-01

    This report presents the results of site analysis for the Umatilla Satellite and Release Sites Project. The purpose of this project is to provide engineering services for the siting and conceptual design of satellite and release facilities for the Umatilla Basin hatchery program. The Umatilla Basin hatchery program consists of artificial production facilities for salmon and steelhead to enhance production in the Umatilla River as defined in the Umatilla master plan approved in 1989 by the Northwest Power Planning Council. Facilities identified in the master plan include adult salmon broodstock holding and spawning facilities, facilities for recovery, acclimation, and/or extended rearing of salmon juveniles, and development of river sites for release of hatchery salmon and steelhead. The historic and current distribution of fall chinook, summer chinook, and coho salmon and steelhead trout was summarized for the Umatilla River basin. Current and future production and release objectives were reviewed. Twenty seven sites were evaluated for the potential and development of facilities. Engineering and environmental attributes of the sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  3. Microwave assisted step-by-step process for the production of fucoidan, alginate sodium, sugars and biochar from Ascophyllum nodosum through a biorefinery concept.

    Science.gov (United States)

    Yuan, Yuan; Macquarrie, Duncan J

    2015-12-01

    The biorefinery is an important concept for the development of alternative routes to a range of interesting and important materials from renewable resources. It ensures that the resources are used fully and that all parts of them are valorized. This paper develops this concept, using brown macroalgae Ascophyllum nodosum as an example, by assistance of microwave technology. A step-by-step process was designed to obtain fucoidan, alginates, sugars and biochar (alga residue) consecutively. The yields of fucoidan, alginates, sugars and biochar were 14.09%, 18.24%, 10.87% and 21.44%, respectively. To make an evaluation of the biorefinery process, seaweed sample was also treated for fucoidan extraction only, alginate extraction only and hydrothermal treatment for sugars and biochar only. The chemical composition and properties of each product were also analyzed. The results indicated that A. nodosum could be potentially used as feedstock for a biorefinery process to produce valuable chemicals and fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Community dynamics in the siting process for a low to intermediate level nuclear waste facility in Kincardine, Ontario

    International Nuclear Information System (INIS)

    Al-Haydari, D.

    2007-01-01

    The use of nuclear technology to generate electricity inevitably produces waste that is detrimental to the environment and human health. Finding communities that will accept nuclear waste disposal facilities is extremely challenging. Furthermore, the siting of a nuclear waste disposal facility is more than a technological analysis, but a matter that includes a variety of social, ethical and political considerations. This study is aimed to assess the role of the place-based community, communities of interest and communities of identity involved in the voluntary siting process for a low to intermediate level nuclear waste disposal facility in Ontario. To accomplish this, a framework was developed and applied though a case study evaluation of the siting process for the Deep Geologic Repository in Kincardine, Ontario. The framework highlights four key procedural principles that were used to analyze the siting process: trust, public participation, equity and risk. The data revealed that the positions of the communities involved in the siting process varied depending on the meaningful fulfillment the four key procedural principles. (author)

  5. Savannah River Site RCRA Facility Investigation plan: Road A Chemical Basin

    International Nuclear Information System (INIS)

    1989-06-01

    The nature of wastes disposed of at the Road A Chemical Basin (RACB) is such that some degree of soil contamination is probable. Lead has also been detected in site monitoring wells at concentrations above SRS background levels. A RCRA Facility Investigation (RFI) is proposed for the RACB and will include a ground penetrating radar (GPR) survey, collection and chemical and radiological analyses of soil cores, installation of groundwater monitoring wells, collection and chemical and radiological analyses of groundwater samples, and collection of chemical and radiological analyses of surface water and sediment samples. Upon completion of the proposed RFI field work and chemical and radiological analyses, and RFI report should be prepared to present conclusions on the nature and extent of contamination at the site, and to make recommendations for site remediation. If contamination is detected at concentrations above SRS background levels, a receptor analysis should be done to evaluate potential impacts of site contamination on nearby populations

  6. Summary environmental site assessment report for the U.S. Department of Energy Oxnard Facility, Oxnard, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    This report summarizes the investigations conducted by Rust Geotech at the U.S. Department of Energy (DOE) Oxnard facility, 1235 East Wooley Road, Oxnard, California. These investigations were designed to locate, identify, and characterize any regulated contaminated media on the site. The effort included site visits; research of ownership, historical uses of the Oxnard facility and adjacent properties, incidences of and investigations for contaminants on adjacent properties, and the physical setting of the site; sampling and analysis; and reporting. These investigations identified two friable asbestos gaskets on the site, which were removed, and nonfriable asbestos, which will be managed through the implementation of an asbestos management plan. The California primary drinking water standards were exceeded for aluminum on two groundwater samples and for lead in one sample collected from the shallow aquifer underlying the site; remediation of the groundwater in this aquifer is not warranted because it is not used. Treated water is available from a municipal water system. Three sludge samples indicated elevated heavy metals concentrations; the sludge must be handled as a hazardous waste if disposed. Polychlorinated biphenyls (PCBs) were detected at concentrations below remediation criteria in facility soils at two locations. In accordance with U.S. Environmental Protection Agency (EPA) and State of California guidance, remediation of the PCBs is not required. No other hazardous substances were detected in concentrations exceeding regulatory limits.

  7. Federal Facilities Compliance Act, Conceptual Site Treatment Plan. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-29

    This Conceptual Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed in this document include: general discussion of the plan, including the purpose and scope; technical aspects of preparing plans, including the rationale behind the treatability groupings and a discussion of characterization issues; treatment technology needs and treatment options for specific waste streams; low-level mixed waste options; TRU waste options; and future waste generation from restoration activities.

  8. Subcontracting strategy for the decontamination and decommissioning of Savannah River Site's First Tritium Extraction Facility, 232-F

    International Nuclear Information System (INIS)

    Smith, C.W. Jr.; Dowd, A.S. Jr.; Hinds, S.S.; Johnson, S.V.

    1994-01-01

    The Savannah River Site (SRS) has been actively proceeding with the decontamination and decommissioning (D and D) of various facilities and structures which were instrumental in the success of past missions at the site. The most ambitious of these efforts involves the subcontracting of the complete D and D of the first SRS Tritium Extraction Facility, identified as building 232-F. This facility operated in the mid 1950's and discontinued operations permanently in 1958. The approach utilized for this effort attempts to invoke the novel principle of open-quotes As Commercial As Reasonably Achievableclose quotes or open-quotes ACARAclose quotes. This concept of ACARA applies only the minimum essential requirements necessary to successfully perform the D and D task. Integral to this approach is the subcontractor provision for maximum flexibility in the identification of and adherence to the requirements of applicable DOE Orders, federal, state and local laws and regulations, as well as site specific procedures without violating the site contractual requirements. The technical specification prepared for this effort provides the basis for a competitively bid contract to perform the entire D and D evolution, including initial facility characterization, waste stream characterization and certification, D and D and waste disposal. Preparation and development of this specification and the subsequent Request For Proposal (RFP) was a successful team oriented endeavor. The schedule for this fast-track undertaking took three months to complete. Successful initiation of this task will be the first D and D of a facility containing both radioactive and hazardous material at an operating site within the DOE Weapons Complex. The strategy for preparing the D and D subcontract for the 232-F structure was facilitated by applying the ACARA principle. This approach resulted in the accelerated development of the specification and RFP documents, as well as minimized the complexities of

  9. Design report for the interim waste containment facility at the Niagara Falls Storage Site

    International Nuclear Information System (INIS)

    1986-05-01

    Low-level radioactive residues from pitchblende processing and thorium- and radium-contaminated sand, soil, and building rubble are presently stored at the Niagara Falls Storage Site (NFSS) in Lewiston, New York. These residues and wastes derive from past NFSS operations and from similar operations at other sites in the United States conducted during the 1940s by the Manhattan Engineer District (MED) and subsequently by the Atomic Energy Commission (AEC). The US Department of Energy (DOE), successor to MED/AEC, is conducting remedial action at the NFSS under two programs: on-site work under the Surplus Facilities Managemnt Program and off-site cleanup of vicinity properties under the Formerly Utilized Sites Remedial Action Program. On-site remedial action consists of consolidating the residues and wastes within a designated waste containment area and constructing a waste containment facility to prevent contaminant migration. The service life of the system is 25 to 50 years. Near-term remedial action construction activities will not jeopardize or preclude implementation of any other remedial action alternative at a later date. Should DOE decide to extend the service life of the system, the waste containment area would be upgraded to provide a minimum service life of 200 years. This report describes the design for the containment system. Pertinent information on site geology and hydrology and on regional seismicity and meteorology is also provided. Engineering calculations and validated computer modeling studies based on site-specific and conservative parameters confirm the adequacy of the design for its intended purposes of waste containment and environmental protection

  10. NIMBY, CLAMP, and the location of new nuclear-related facilities: U.S. national and 11 site-specific surveys.

    Science.gov (United States)

    Greenberg, Michael R

    2009-09-01

    Public and political opposition have made finding locations for new nuclear power plants, waste management, and nuclear research and development facilities a challenge for the U.S. government and the nuclear industry. U.S. government-owned properties that already have nuclear-related activities and commercial nuclear power generating stations are logical locations. Several studies and utility applications to the Nuclear Regulatory Commission suggest that concentrating locations at major plants (CLAMP) has become an implicit siting policy. We surveyed 2,101 people who lived within 50 miles of 11 existing major nuclear sites and 600 who lived elsewhere in the United States. Thirty-four percent favored CLAMP for new nuclear power plants, 52% for waste management facilities, and 50% for new nuclear laboratories. College educated, relatively affluent male whites were the strongest CLAMP supporters. They disproportionately trusted those responsible for the facilities and were not worried about existing nuclear facilities or other local environmental issues. Notably, they were concerned about continuing coal use. Not surprisingly, CLAMP proponents tended to be familiar with their existing local nuclear site. In short, likely CLAMP sites have a large and politically powerful core group to support a CLAMP policy. The challenge to proponents of nuclear technologies will be to sustain this support and expand the base among those who clearly are less connected and receptive to new nearby sites.

  11. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12

    International Nuclear Information System (INIS)

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764

  12. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P. T.; Webb, J. R.; Knox, N. P.; Goins, L. F.; Harrell, R. E.; Mallory, P. K.; Cravens, C. D.

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  13. Environmental life cycle assessments of producing maize, grass-clover, ryegrass and winter wheat straw for biorefinery

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Kristensen, Ib Sillebak; Knudsen, Marie Trydeman

    2017-01-01

    The aim of this study is to assess the potential environmental impacts of producing maize, grass-clover, ryegrass, and straw from winter wheat as biomass feedstocks for biorefinery. The Life Cycle Assessment (LCA) method included the following impact categories: Global Warming Potential (GWP100),...

  14. National Low-Level Radioactive Waste Management Program. Use of compensation and incentives in siting Low-Level Radioactive Waste Disposal Facilities. Revision 1

    International Nuclear Information System (INIS)

    1985-10-01

    This document was prepared to increase understanding of compensation and incentives as they pertain to the siting of Low-Level Radioactive Waste Disposal Facilities. Compensation and incentives are discussed as methods to facilitate siting Low-Level Radioactive Waste Facilities. Compensations may be in the form of grants to enable host communities to evaluate potential impacts of the proposed facility. Compensations may also include reimbursements to the host community for costs incurred during facility construction, operation and closure. These may include required improvements to local roads, new equipment, and payments for revenue losses in local property taxes when disposal sites are removed from the tax base. Incentives provide benefits to the community beyond the costs directly related to the operation of the facility. Greater local control over waste facilities can be a powerful incentive. Local officials may be more willing to accept a facility if they have some control over the operation and monitoring associated with the facility. Failure to secure new disposal sites may cause such problems as illegal dumping which would create public health hazards. Also, lack of disposal capacity may restrict research and medical use of radioactive materials. The use of compensation and incentives may increase acceptance of communities for hosting a low-level waste disposal facility

  15. Savannah River Site: Canyons and associated facilities utilization study

    International Nuclear Information System (INIS)

    Ellison, D.; Dickenson, J.

    1995-01-01

    The Westinghouse Savannah River Company was asked by the U.S. Department of Energy (DOE) to study options for utilization of Savannah River Site (SRS) Canyons and Associated Facilities to support existing and potential future material stabilization and/or disposition missions. This report is WSRC's response to that request. It includes: (1) A compilation of pending DOE material stabilization and/or disposition decisions involving utilization of SRS canyons and associated facilities, including discussion of quantities and expected availability of materials for which SRS handling and/or processing capability is a reasonable alternative under consideration. (2) A description of SRS canyons and associated facilities affected by pending DOE material stabilization and/or disposition decisions, including discussion of material handling and/or processing capabilities and capacities. (3) A comparative evaluation of three proposed scenarios for SRS canyon utilization with respect to startup and operating schedules; annual and life cycle costs; impacts on completion of commitments in the DOE Implementation Plan (IP) for Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1; SRS ability to support alternatives under consideration in pending DOE materials stabilization and/or disposition decisions; and timing for potential transition to deactivation. (4) The sensitivity of the comparative evaluation of the three canyon utilization scenarios to the effect of the selection of other alternatives for individual stabilization missions or individual new missions. Briefings on the scope of this study have been presented to key representatives of several SRS public stakeholder groups. Briefings on the major conclusions from this study have been presented to WSRC Management, DOE-SR, EM-60, EM-1, and the DNFSB

  16. Calendar year 2007 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii,

    Energy Technology Data Exchange (ETDEWEB)

    Agogino, Karen [Department of Energy, Albuquerque, NM (United States). National Nuclear Security Administration (NNSA); Sanchez, Rebecca [Sandia Corp., Albuquerque, NM (United States)

    2008-09-30

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE)/National Nuclear Security Administration (NNSA), through the Sandia Site Offi ce (SSO), in Albuquerque, NM, administers the contract and oversees contractor operations at TTR and KTF. Sandia manages and conducts operations at TTR in support of the DOE/NNSA’s Weapons Ordnance Program and has operated the site since 1957. Washington Group International subcontracts to Sandia in administering most of the environmental programs at TTR. Sandia operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2007. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia is responsible only for those environmental program activities related to its operations. The DOE/NNSA/Nevada Site Offi ce (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting Manual (DOE 2007).

  17. Calendar year 2002 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2003-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, oversees TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2002. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

  18. Sustainable intensification and extensification of cropping system for biorefinery in Denmark-what does the nitrogen balance say?

    DEFF Research Database (Denmark)

    Manevski, Kiril; Lærke, Poul Erik; Jørgensen, Uffe

    Establishing an environment-friendly industrial biorefinery production requires resource efficient agroecosystems with low losses to the environment, especially of nitrogen (N). This work reports the first field-based N losses and balances for agro-ecosystems optimised for biomass production...

  19. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    2013-01-11

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy’s (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE’s mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team’s successful integration of the project’s core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE’s mission objective, as well as attainment of LEED GOLD certification, which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award.

  20. Tritium confinement in a new tritium processing facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Heung, L.K.; Owen, J.H.; Hsu, R.H.; Hashinger, R.F.; Ward, D.E.; Bandola, P.E.

    1991-01-01

    A new tritium processing facility, named the Replacement Tritium Facility (RTF), has been completed and is being prepared for startup at the Savannah River Site (SRS). The RTF has the capability to recover, purify and separate hydrogen isotopes from recycled gas containers. A multilayered confinement system is designed to reduce tritium losses to the environment. This confinement system is expected to confine and recover any tritium that might escape the process equipment, and to maintain the tritium concentration in the nitrogen glovebox atmosphere to less than 10 -2 μCi/cc tritium