WorldWideScience

Sample records for biophysical climate services

  1. The biophysical link between climate, water, and vegetation in bioenergy agro-ecosystems

    International Nuclear Information System (INIS)

    Bagley, Justin E.; Davis, Sarah C.; Georgescu, Matei; Hussain, Mir Zaman; Miller, Jesse; Nesbitt, Stephen W.; VanLoocke, Andy; Bernacchi, Carl J.

    2014-01-01

    Land use change for bioenergy feedstocks is likely to intensify as energy demand rises simultaneously with increased pressure to minimize greenhouse gas emissions. Initial assessments of the impact of adopting bioenergy crops as a significant energy source have largely focused on the potential for bioenergy agroecosystems to provide global-scale climate regulating ecosystem services via biogeochemical processes. Such as those processes associated with carbon uptake, conversion, and storage that have the potential to reduce global greenhouse gas emissions (GHG). However, the expansion of bioenergy crops can also lead to direct biophysical impacts on climate through water regulating services. Perturbations of processes influencing terrestrial energy fluxes can result in impacts on climate and water across a spectrum of spatial and temporal scales. Here, we review the current state of knowledge about biophysical feedbacks between vegetation, water, and climate that would be affected by bioenergy-related land use change. The physical mechanisms involved in biophysical feedbacks are detailed, and interactions at leaf, field, regional, and global spatial scales are described. Locally, impacts on climate of biophysical changes associated with land use change for bioenergy crops can meet or exceed the biogeochemical changes in climate associated with rising GHG's, but these impacts have received far less attention. Realization of the importance of ecosystems in providing services that extend beyond biogeochemical GHG regulation and harvestable yields has led to significant debate regarding the viability of various feedstocks in many locations. The lack of data, and in some cases gaps in knowledge associated with biophysical and biochemical influences on land–atmosphere interactions, can lead to premature policy decisions. - Highlights: • The physical basis for biophysical impacts of expanding bioenergy agroecosystems on climate and water is described. • We

  2. Climate Regulation Services of Natural and Managed Ecosystems of the Americas

    Science.gov (United States)

    Anderson-Teixeira, K. J.; Snyder, P. K.; Twine, T. E.; Costa, M. H.; Cuadra, S.; DeLucia, E. H.

    2011-12-01

    Terrestrial ecosystems regulate climate through both biogeochemical mechanisms (greenhouse gas regulation) and biophysical mechanisms (regulation of water and energy). Land management therefore provides some of the most effective strategies for climate change mitigation. However, most policies aimed at climate protection through land management, including UNFCCC mechanisms and bioenergy sustainability standards, account only for biogeochemical climate services. By ignoring biophysical climate regulation services that in some cases offset the biogeochemical regulation services, these policies run the risk of failing to advance the best climate solutions. Quantifying the combined value of biogeochemical and biophysical climate regulation services remains an important challenge. Here, we use a combination of data synthesis and modeling to quantify how biogeochemical and biophysical effects combine to shape the climate regulation value (CRV) of 18 natural and managed ecosystem types across the Western Hemisphere. Natural ecosystems generally had higher CRVs than agroecosystems, largely driven by differences in biogeochemical services. Biophysical contributions ranged from minimal to dominant. They were highly variable in space and across ecosystem types, and their relative importance varied strongly with the spatio-temporal scale of analysis. Our findings pertain to current efforts to protect climate through land management. Specifically, they reinforce the importance of protecting tropical forests and recent findings that the climatic effects of bioenergy production may be somewhat more positive than previously estimated. Given that biophysical effects in some cases dominate, ensuring effective climate protection through land management requires consideration of combined biogeochemical and biophysical climate regulation services. While quantification of ecosystem climate services is necessarily complex, our CRV index serves as one potential approach to measure the

  3. Biophysical impacts of climate-smart agriculture in the Midwest United States.

    Science.gov (United States)

    Bagley, Justin E; Miller, Jesse; Bernacchi, Carl J

    2015-09-01

    The potential impacts of climate change in the Midwest United States present unprecedented challenges to regional agriculture. In response to these challenges, a variety of climate-smart agricultural methodologies have been proposed to retain or improve crop yields, reduce agricultural greenhouse gas emissions, retain soil quality and increase climate resilience of agricultural systems. One component that is commonly neglected when assessing the environmental impacts of climate-smart agriculture is the biophysical impacts, where changes in ecosystem fluxes and storage of moisture and energy lead to perturbations in local climate and water availability. Using a combination of observational data and an agroecosystem model, a series of climate-smart agricultural scenarios were assessed to determine the biophysical impacts these techniques have in the Midwest United States. The first scenario extended the growing season for existing crops using future temperature and CO2 concentrations. The second scenario examined the biophysical impacts of no-till agriculture and the impacts of annually retaining crop debris. Finally, the third scenario evaluated the potential impacts that the adoption of perennial cultivars had on biophysical quantities. Each of these scenarios was found to have significant biophysical impacts. However, the timing and magnitude of the biophysical impacts differed between scenarios. © 2014 John Wiley & Sons Ltd.

  4. Quantifying the Climate Impacts of Land Use Change (Invited)

    Science.gov (United States)

    Anderson-Teixeira, K. J.; Snyder, P. K.; Twine, T. E.

    2010-12-01

    Climate change mitigation efforts that involve land use decisions call for comprehensive quantification of the climate services of terrestrial ecosystems. This is particularly imperative for analyses of the climate impact of bioenergy production, as land use change is often the single most important factor in determining bioenergy’s sustainability. However, current metrics of the climate services of terrestrial ecosystems used for policy applications—including biofuels life cycle analyses—account only for biogeochemical climate services (greenhouse gas regulation), ignoring biophysical climate regulation services (regulation of water and energy balances). Policies thereby run the risk of failing to advance the best climate solutions. Here, we present a quantitative metric that combines biogeochemical and biophysical climate services of terrestrial ecosystems, the ‘climate regulation value’ (CRV), which characterizes the climate benefit of maintaining an ecosystem over a multiple-year time frame. Using a combination of data synthesis and modeling, we calculate the CRV for a variety of natural and managed ecosystem types within the western hemisphere. Biogeochemical climate services are generally positive in unmanaged ecosystems (clearing the ecosystem has a warming effect), and may be positive or negative (clearing the ecosystem has a cooling effect) for managed ecosystems. Biophysical climate services may be either positive (e.g., tropical forests) or negative (e.g., high latitude forests). When averaged on a global scale, biogeochemical services usually outweigh biophysical services; however, biophysical climate services are not negligible. This implies that effective analysis of the climate impacts of bioenergy production must consider the integrated effects of biogeochemical and biophysical ecosystem climate services.

  5. Climate Change Effects on Agriculture: Economic Responses to Biophysical Shocks

    Science.gov (United States)

    Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina

    2014-01-01

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(sup 2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  6. Developing spatial biophysical accounting for multiple ecosystem services

    NARCIS (Netherlands)

    Remme, R.P.; Schroter, M.; Hein, L.G.

    2014-01-01

    Ecosystem accounting is receiving increasing interest as a way to systematically monitor the conditions of ecosystems and the ecosystem services they provide. A critical element of ecosystem accounting is understanding spatially explicit flows of ecosystem services. We developed spatial biophysical

  7. Developing A Transdisciplinary Process and Community Partnerships to Anticipate Climate Change at the Local Level: The Role of Biophysical and Sociocultural Calendars

    Science.gov (United States)

    Kassam, K. A.; Samimi, C.; Trabucco, A.

    2017-12-01

    Difference is essential to solving the most complex problems faced by humanity. Anthropogenic climate change is one such "wicked problem" that demands cognitive diversity. Biophysical and social scientists must collaborate with scholars from the humanities to address practical issues of concern to local communities, which are at the forefront of impacts of climatic variation. As such, communities of inquirers (e.g. biophysical and social sciences, humanities) must work in tandem with communities of practice (e.g. farmers, fishers, gatherers, herders, hunters). This leads to co-generated knowledge where an adaptation strategy to climatic variation is locally grounded in the biophysical and sociocultural context of the communities where the impacts of climatic variation are most felt. We will present an innovative and `real time' example participatory and transdisciplinary research from an international project where we are developing integrated biophysical and sociocultural calendars, in short, ecological calendars, which are ecologically and culturally grounded in the local context to develop anticipatory capacity to anthropogenic climate change.

  8. Biophysical and sociocultural factors underlying spatial trade-offs of ecosystem services in semiarid watersheds

    Directory of Open Access Journals (Sweden)

    Marina García-Llorente

    2015-09-01

    Full Text Available Biophysical and social systems are linked to form social-ecological systems whose sustainability depends on their capacity to absorb uncertainty and cope with disturbances. In this study, we explored the key biophysical and socio-cultural factors underlying ecosystem service supply in two semiarid watersheds of southern Spain. These included variables associated with the role that freshwater flows and biodiversity play in securing the system's capacity to sustain essential ecosystem services and their relationship with social demand for services, local water governance, and land-use intensification. Our results reveal the importance of considering the invisible dimensions of water and biodiversity, i.e. green freshwater flows and trait-based indicators, because of their relevance to the supply of ecosystem services. Furthermore, they uncover the importance of traditional irrigation canals, a local water governance system, in maintaining the ecosystems' capacity to supply services. The study also highlights the complex trade-offs that occur because of the spatial mismatch between ecosystem service supply (upstream and ecosystem service demand (downstream in watersheds. Finally, we found that land-use intensification generally resulted in losses of the biophysical factors that underpin the supply of some ecosystem services, increases in social demand for less diversified services, and the abandonment of local governance practices. Attempts to manage social-ecological systems toward sustainability at the local scale should identify the key biophysical and socio-cultural factors that are essential for maintaining ecosystem services and should recognize existing interrelationships between them. Land-use management should also take into account ecosystem service trade-offs and the consequences resulting from land-use intensification.

  9. Linking biophysical models and public preferences for ecosystem service assessments: a case study for the Southern Rocky Mountains

    Science.gov (United States)

    Bagstad, Kenneth J.; Reed, James; Semmens, Darius J.; Sherrouse, Ben C.; Troy, Austin

    2016-01-01

    Through extensive research, ecosystem services have been mapped using both survey-based and biophysical approaches, but comparative mapping of public values and those quantified using models has been lacking. In this paper, we mapped hot and cold spots for perceived and modeled ecosystem services by synthesizing results from a social-values mapping study of residents living near the Pike–San Isabel National Forest (PSI), located in the Southern Rocky Mountains, with corresponding biophysically modeled ecosystem services. Social-value maps for the PSI were developed using the Social Values for Ecosystem Services tool, providing statistically modeled continuous value surfaces for 12 value types, including aesthetic, biodiversity, and life-sustaining values. Biophysically modeled maps of carbon sequestration and storage, scenic viewsheds, sediment regulation, and water yield were generated using the Artificial Intelligence for Ecosystem Services tool. Hotspots for both perceived and modeled services were disproportionately located within the PSI’s wilderness areas. Additionally, we used regression analysis to evaluate spatial relationships between perceived biodiversity and cultural ecosystem services and corresponding biophysical model outputs. Our goal was to determine whether publicly valued locations for aesthetic, biodiversity, and life-sustaining values relate meaningfully to results from corresponding biophysical ecosystem service models. We found weak relationships between perceived and biophysically modeled services, indicating that public perception of ecosystem service provisioning regions is limited. We believe that biophysical and social approaches to ecosystem service mapping can serve as methodological complements that can advance ecosystem services-based resource management, benefitting resource managers by showing potential locations of synergy or conflict between areas supplying ecosystem services and those valued by the public.

  10. Ecosystem biophysical memory in the southwestern North America climate system

    International Nuclear Information System (INIS)

    Forzieri, G; Feyen, L; Vivoni, E R

    2013-01-01

    To elucidate the potential role of vegetation to act as a memory source in the southwestern North America climate system, we explore correlation structures of remotely sensed vegetation dynamics with precipitation, temperature and teleconnection indices over 1982–2006 for six ecoregions. We found that lagged correlations between vegetation dynamics and climate variables are modulated by the dominance of monsoonal or Mediterranean regimes and ecosystem-specific physiological processes. Subtropical and tropical ecosystems exhibit a one month lag positive correlation with precipitation, a zero- to one-month lag negative correlation with temperature, and modest negative effects of sea surface temperature (SST). Mountain forests have a zero month lag negative correlation with precipitation, a zero–one month lag negative correlation with temperature, and no significant correlation with SSTs. Deserts show a strong one–four month lag positive correlation with precipitation, a low zero–two month lag negative correlation with temperature, and a high four–eight month lag positive correlation with SSTs. The ecoregion-specific biophysical memories identified offer an opportunity to improve the predictability of land–atmosphere interactions and vegetation feedbacks onto climate. (letter)

  11. The Climate Services Partnership (CSP): Working Together to Improve Climate Services Worldwide

    Science.gov (United States)

    Zebiak, S.; Brasseur, G.; Members of the CSP Coordinating Group

    2012-04-01

    Throughout the world, climate services are required to address urgent needs for climate-informed decision-making, policy and planning. These needs were explored in detail at the first International Conference on Climate Services (ICCS), held in New York in October 2011. After lengthy discussions of needs and capabilities, the conference culminated in the creation of the Climate Services Partnership (CSP). The CSP is an informal interdisciplinary network of climate information users, providers, donors and researchers interested in improving the provision and development of climate services worldwide. Members of the Climate Services Partnership work together to share knowledge, accelerate learning, develop new capacities, and establish good practices. These collaborative efforts will inform and support the evolution and implementation of the Global Framework for Climate Services. The Climate Services Partnership focuses its efforts on three levels. These include: 1. encouraging and sustaining connections between climate information providers, users, donors, and researchers 2. gathering, synthesizing and disseminating current knowledge on climate services by way of an online knowledge management platform 3. generating new knowledge on critical topics in climate service development and provision, through the creation of focused working groups on specific topics To date, the Climate Services Partnership has made progress on all three fronts. Connections have been fostered through outreach at major international conferences and professional societies. The CSP also maintains a website and a monthly newsletter, which serves as a resource for those interested in climate services. The second International Conference on Climate Services (ICCS2) will be held in Berlin in September. The CSP has also created a knowledge capture system that gathers and disseminates a wide range of information related to the development and provision of climate services. This includes an online

  12. Indigenous community health and climate change: integrating biophysical and social science indicators

    Science.gov (United States)

    Donatuto, Jamie; Grossman, Eric E.; Konovsky, John; Grossman, Sarah; Campbell, Larry W.

    2014-01-01

    This article describes a pilot study evaluating the sensitivity of Indigenous community health to climate change impacts on Salish Sea shorelines (Washington State, United States and British Columbia, Canada). Current climate change assessments omit key community health concerns, which are vital to successful adaptation plans, particularly for Indigenous communities. Descriptive scaling techniques, employed in facilitated workshops with two Indigenous communities, tested the efficacy of ranking six key indicators of community health in relation to projected impacts to shellfish habitat and shoreline archaeological sites stemming from changes in the biophysical environment. Findings demonstrate that: when shellfish habitat and archaeological resources are impacted, so is Indigenous community health; not all community health indicators are equally impacted; and, the community health indicators of highest concern are not necessarily the same indicators most likely to be impacted. Based on the findings and feedback from community participants, exploratory trials were successful; Indigenous-specific health indicators may be useful to Indigenous communities who are assessing climate change sensitivities and creating adaptation plans.

  13. Climate Services for Development Planning and Implementation: A Framework for Assessing and Valuing Climate Services

    Science.gov (United States)

    Anderson, G.

    2012-04-01

    Climate Services for Development Planning and Implementation: A Framework for Assessing and Valuing Climate Services Anderson, Glen D. While weather forecasting products have been available globally for decades, the full suite of climate services - including historical and real time observational meteorological data, daily, weekly, and seasonal forecasts, and longer-term climate projections - has only been under development in the last 15 to 20 years. Climate services have been developed and implemented quite quickly in developed countries for public and private sector users. However, diffusion of these tools in developing countries has been slower for several reasons related to 1) lack of awareness of the opportunities and benefits of climate services; 2) spotty record of managing local weather and climate data; and 3) limited resources to build and sustain capacity in providing climate services. The Climate Services Partnership (CSP) was formed during the International Conference on Climate Services (ICCS) in October 2011. The CSP seeks to improve the provision and development of climate services worldwide. During the ICCS, three working groups were formed to carry out the work program of the CSP leading up to the second ICCS in Berlin in September 2012. The Economic Valuation of Climate Services Working Group, chaired by John Zillman and myself, is collaborating on several activities to demonstrate the benefits of climate services and help providers prioritize opportunities for expanding the use of climate services. The proposed paper will provide an overview of the Working Group's activities leading up to the next ICCS and describe specific work that is underway and expected to be completed prior to the EGU meetings. The focal point of the Working Group's activities is the development of matrix to help identify and value the best opportunities for using climate services. Different categories of climate services will be listed in rows and potential users of

  14. A dataset mapping the potential biophysical effects of vegetation cover change

    Science.gov (United States)

    Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro

    2018-02-01

    Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.

  15. Competencies Framework for Climate Services.

    Science.gov (United States)

    Aguilar, Enric

    2016-04-01

    The World Climate Conference-3 (Geneva, 2009) established the Global Framework for Climate Services (GFCS) to enable better management of the risks of climate variability and change and adaptation to climate change at all levels, through development and incorporation of science-based climate information and prediction into planning, policy and practice. The GFCS defines Climate Services as the result of transforming climate data into climate information in a way that responds to user needs and assists decision-making by individuals and organizations. Capacity Development is a cross-cutting pillar of the GFCS to ensure that services are provided by institutions with professionals whom achieved the adequate set of competencies recommended by WMO, which are yet to be fully defined. The WMO-Commission for Climatology Expert Team on Education and Training, ET-ETR, has been working to define a Competencies Framework for Climate Services to help the institutions to deliver high quality climate services in compliance with WMO standards and regulations, specifically those defined by WMO's Commission for Climatology and the GFCS. This framework is based in 5 areas or competence, closely associated to the areas of work of climate services providers: create and manage climate data sets; derive products from climate data; create and/or interpret climate forecasts and model output; ensure the quality of climate information and services; communicate climatological information with users. With this contribution, we intend to introduce to a wider audience the rationale behind these 5 top-level competency statements and the performance criteria associated with them, as well as the plans of the ET-ETR for further developing them into an instrument to support education and training within the WMO members, specially the National Meteorological and Hydrological Services.

  16. Contribution of ecosystem services to air quality and climate change mitigation policies: the case of urban forests in Barcelona, Spain.

    Science.gov (United States)

    Baró, Francesc; Chaparro, Lydia; Gómez-Baggethun, Erik; Langemeyer, Johannes; Nowak, David J; Terradas, Jaume

    2014-05-01

    Mounting research highlights the contribution of ecosystem services provided by urban forests to quality of life in cities, yet these services are rarely explicitly considered in environmental policy targets. We quantify regulating services provided by urban forests and evaluate their contribution to comply with policy targets of air quality and climate change mitigation in the municipality of Barcelona, Spain. We apply the i-Tree Eco model to quantify in biophysical and monetary terms the ecosystem services "air purification," "global climate regulation," and the ecosystem disservice "air pollution" associated with biogenic emissions. Our results show that the contribution of urban forests regulating services to abate pollution is substantial in absolute terms, yet modest when compared to overall city levels of air pollution and GHG emissions. We conclude that in order to be effective, green infrastructure-based efforts to offset urban pollution at the municipal level have to be coordinated with territorial policies at broader spatial scales.

  17. Climate change trends and environmental impacts in the Makonde Communal Lands, Zimbabwe

    Directory of Open Access Journals (Sweden)

    Ishumael Sango

    2015-07-01

    Full Text Available During the last century, climate has increasingly become variable and changeable, with significant deviations from the observed normal averages, which often leads to disruptive consequences to ecosystems and livelihoods. Climate change induced environmental challenges are viewed to be particularly severe to economically challenged tropical societies including the Zimbabwean rural communities. We sought to determine local level climate change trends and associated biophysical implications in the Makonde Communal Lands of Zimbabwe. Our findings suggest that there has been significant climate change in the Makonde Communal Lands since 1962. The climate change observed has induced the deterioration of ecosystem productivity, diversity and services, to the detriment of human livelihoods. We provide insights into how to better understand local level dynamics between climate change and local ecosystem goods and services as the basis of livelihood in marginalised rural communities. Among the key reasons for concern about impacts of anthropogenic activities on climate is the fact that changing climate has direct impacts on the biophysical world, which in turn is a vital asset for human livelihoods, economies and general well-being.

  18. Invertebrates, ecosystem services and climate change.

    Science.gov (United States)

    Prather, Chelse M; Pelini, Shannon L; Laws, Angela; Rivest, Emily; Woltz, Megan; Bloch, Christopher P; Del Toro, Israel; Ho, Chuan-Kai; Kominoski, John; Newbold, T A Scott; Parsons, Sheena; Joern, A

    2013-05-01

    The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate-mediated services under a changing climate. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  19. Climate Services Information System Activities in Support of The Global Framework for Climate Services Implementation

    Science.gov (United States)

    Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Pulwarty, R. S.; Klein-Tank, A.; Kolli, R. K.; Hechler, P.; Dilley, M.; Ceron, J. P.; Goodess, C.

    2017-12-01

    The WMO Commission on Climatology (CCl) supports the implementation of the Global Framework for Climate Services (GFCS) with a particular focus on the Climate Services Information System (CSIS), which is the core operational component of GFCS at the global, regional, and national level. CSIS is designed for producing, packaging and operationally delivering authoritative climate information data and products through appropriate operational systems, practices, data exchange, technical standards, authentication, communication, and product delivery. Its functions include climate analysis and monitoring, assessment and attribution, prediction (monthly, seasonal, decadal), and projection (centennial scale) as well as tailoring the associated products tUEAo suit user requirements. A central, enabling piece of implementation of CSIS is a Climate Services Toolkit (CST). In its development phase, CST exists as a prototype (www.wmo.int/cst) as a compilation of tools for generating tailored data and products for decision-making, with a special focus on national requirements in developing countries. WMO provides a server to house the CST prototype as well as support operations and maintenance. WMO members provide technical expertise and other in-kind support, including leadership of the CSIS development team. Several recent WMO events have helped with the deployment of CST within the eight countries that have been recognized by GFCS as illustrative for developing their climate services at national levels. Currently these countries are developing climate services projects focusing service development and delivery for selected economic sectors, such as for health, agriculture, energy, water resources, and hydrometeorological disaster risk reduction. These countries are working together with their respective WMO Regional Climate Centers (RCCs), which provide technical assistance with implementation of climate services projects at the country level and facilitate development of

  20. Service employees give as they get: internal service as a moderator of the service climate-service outcomes link.

    Science.gov (United States)

    Ehrhart, Karen Holcombe; Witt, L A; Schneider, Benjamin; Perry, Sara Jansen

    2011-03-01

    We lend theoretical insight to the service climate literature by exploring the joint effects of branch service climate and the internal service provided to the branch (the service received from corporate units to support external service delivery) on customer-rated service quality. We hypothesized that service climate is related to service quality most strongly when the internal service quality received is high, providing front-line employees with the capability to deliver what the service climate motivates them to do. We studied 619 employees and 1,973 customers in 36 retail branches of a bank. We aggregated employee perceptions of the internal service quality received from corporate units and the local service climate and external customer perceptions of service quality to the branch level of analysis. Findings were consistent with the hypothesis that high-quality internal service is necessary for branch service climate to yield superior external customer service quality. PsycINFO Database Record (c) 2011 APA, all rights reserved.

  1. Climate Services - Innovation for Smart Solutions

    Science.gov (United States)

    Jacob, Daniela

    2015-04-01

    Living in a changing climate is becoming an increasing challenge for all kinds of human activities. Mitigation of global warming is of utmost importance to avoid further and stronger changes in our climate. At the same time, adaptation to today's and future changes is needed. To address both, a new field of activity developed within the last couple of years: climate services. They develop and deliver easy understandable and useful information for decision makers in public and private business and society as a whole. The German Climate Service Center 2.0 was one of the first institutions worldwide bridging the gap between scientific climate change knowledge and user needs. Developing prototype products and services, the Climate Service Center 2.0 orients its activities toward consultation of climate change topics and adaptation to climate change impacts. It prepares high quality and state of the art information for decision makers. What have we learned and where are we heading to? What are the roles of partners and networks? And how might a new field of expertise like climate services develop and stimulate the job market? These questions will be discussed and examples will be given.

  2. Strengthening Climate Services Capabilities and Regional Engagement at NOAA's National Climatic Data Center

    Science.gov (United States)

    Shea, E.

    2008-12-01

    The demand for sector-based climate information is rapidly expanding. In order to support this demand, it is crucial that climate information is managed in an effective, efficient, and user-conscious manner. NOAA's National Climatic Data Center is working closely with numerous partners to develop a comprehensive interface that is authoritative, accessible, and responsive to a variety of sectors, stakeholders, and other users. This talk will explore these dynamics and activities, with additional perspectives on climate services derived from the regional and global experiences of the NOAA Integrated Data and Environmental Applications (IDEA) Center in the Pacific. The author will explore the importance of engaging partners and customers in the development, implementation and emergence of a national climate service program. The presentation will draw on the author's experience in climate science and risk management programs in the Pacific, development of regional and national climate services programs and insights emerging from climate services development efforts in NCDC. In this context, the author will briefly discuss some of guiding principles for effective climate services and applications including: - Early and continuous dialogue, partnership and collaboration with users/customers; - Establishing and sustaining trust and credibility through a program of shared learning and joint problem- solving; - Understanding the societal context for climate risk management and using a problem-focused approach to the development of products and services; - Addressing information needs along a continuum of timescales from extreme events to long-term change; and - Embedding education, outreach and communications activities as critical program elements in effective climate services. By way of examples, the author will reference lessons learned from: early Pacific Island climate forecast applications and climate assessment activities; the implementation of the Pacific Climate

  3. Protecting climate with forests

    International Nuclear Information System (INIS)

    Jackson, Robert B; Randerson, James T; Anderson, Ray G; Pataki, Diane E; Canadell, Josep G; Avissar, Roni; Baldocchi, Dennis D; Bonan, Gordon B; Caldeira, Ken; Field, Christopher B; Diffenbaugh, Noah S; Hungate, Bruce A; Jobbagy, Esteban G; Nosetto, Marcelo D; Kueppers, Lara M

    2008-01-01

    Policies for climate mitigation on land rarely acknowledge biophysical factors, such as reflectivity, evaporation, and surface roughness. Yet such factors can alter temperatures much more than carbon sequestration does, and often in a conflicting way. We outline a framework for examining biophysical factors in mitigation policies and provide some best-practice recommendations based on that framework. Tropical projects-avoided deforestation, forest restoration, and afforestation-provide the greatest climate value, because carbon storage and biophysics align to cool the Earth. In contrast, the climate benefits of carbon storage are often counteracted in boreal and other snow-covered regions, where darker trees trap more heat than snow does. Managers can increase the climate benefit of some forest projects by using more reflective and deciduous species and through urban forestry projects that reduce energy use. Ignoring biophysical interactions could result in millions of dollars being invested in some mitigation projects that provide little climate benefit or, worse, are counter-productive.

  4. Protecting climate with forests

    Science.gov (United States)

    Jackson, Robert B.; Randerson, James T.; Canadell, Josep G.; Anderson, Ray G.; Avissar, Roni; Baldocchi, Dennis D.; Bonan, Gordon B.; Caldeira, Ken; Diffenbaugh, Noah S.; Field, Christopher B.; Hungate, Bruce A.; Jobbágy, Esteban G.; Kueppers, Lara M.; Nosetto, Marcelo D.; Pataki, Diane E.

    2008-10-01

    Policies for climate mitigation on land rarely acknowledge biophysical factors, such as reflectivity, evaporation, and surface roughness. Yet such factors can alter temperatures much more than carbon sequestration does, and often in a conflicting way. We outline a framework for examining biophysical factors in mitigation policies and provide some best-practice recommendations based on that framework. Tropical projects—avoided deforestation, forest restoration, and afforestation—provide the greatest climate value, because carbon storage and biophysics align to cool the Earth. In contrast, the climate benefits of carbon storage are often counteracted in boreal and other snow-covered regions, where darker trees trap more heat than snow does. Managers can increase the climate benefit of some forest projects by using more reflective and deciduous species and through urban forestry projects that reduce energy use. Ignoring biophysical interactions could result in millions of dollars being invested in some mitigation projects that provide little climate benefit or, worse, are counter-productive.

  5. Toward an Ethical Framework for Climate Services

    Science.gov (United States)

    Wilby, R.; Adams, P.; Eitland, E.; Hewitson, B.; Shumake, J.; Vaughan, C.; Zebiak, S. E.

    2015-12-01

    Climate services offer information and tools to help stakeholders anticipate and/or manage risks posed by climate change. However, climate services lack a cohesive ethical framework to govern their development and application. This paper describes a prototype, open-ended process to form a set of ethical principles to ensure that climate services are effectively deployed to manage climate risks, realize opportunities, and advance human security.We begin by acknowledging the multiplicity of competing interests and motivations across individuals and institutions. Growing awareness of potential climate impacts has raised interest and investments in climate services and led to the entrance of new providers. User demand for climate services is also rising, as are calls for new types of services. Meanwhile, there is growing pressure from funders to operationalize climate research.Our proposed ethical framework applies reference points founded on diverse experiences in western and developing countries, fundamental and applied climate research, different sectors, gender, and professional practice (academia, private sector, government). We assert that climate service providers should be accountable for both their practices and products by upholding values of integrity, transparency, humility, and collaboration.Principles of practice include: communicating all value judgements; eschewing climate change as a singular threat; engaging in the co-exploration of knowledge; establishing mechanisms for monitoring/evaluating procedures and products; declaring any conflicts of interest. Examples of principles of products include: clear and defensible provenance of information; descriptions of the extent and character of uncertainties using terms that are meaningful to intended users; tools and information that are tailored to the context of the user; and thorough documentation of methods and meta-data.We invite the community to test and refine these points.

  6. Climate Services to Improve Public Health

    Science.gov (United States)

    Jancloes, Michel; Thomson, Madeleine; Costa, María Máñez; Hewitt, Chris; Corvalan, Carlos; Dinku, Tufa; Lowe, Rachel; Hayden, Mary

    2014-01-01

    A high level expert panel discussed how climate and health services could best collaborate to improve public health. This was on the agenda of the recent Third International Climate Services Conference, held in Montego Bay, Jamaica, 4–6 December 2013. Issues and challenges concerning a demand led approach to serve the health sector needs, were identified and analysed. Important recommendations emerged to ensure that innovative collaboration between climate and health services assist decision-making processes and the management of climate-sensitive health risk. Key recommendations included: a move from risk assessment towards risk management; the engagement of the public health community with both the climate sector and development sectors, whose decisions impact on health, particularly the most vulnerable; to increase operational research on the use of policy-relevant climate information to manage climate- sensitive health risks; and to develop in-country capacities to improve local knowledge (including collection of epidemiological, climate and socio-economic data), along with institutional interaction with policy makers. PMID:24776719

  7. Global Framework for Climate Services (GFCS)

    Science.gov (United States)

    Lúcio, F.

    2012-04-01

    Climate information at global, regional and national levels and in timeframes ranging from the past, present and future climate is fundamental for planning, sustainable development and to help organizations, countries and individuals adopt appropriate strategies to adapt to climate variability and change. Based on this recognition, in 2009, the Heads of States and Governments, Ministers and Heads of Delegation representing more than 150 countries, 34 United Nations Organizations and 36 Governmental and non-Governmental international organizations, and more than 2500 experts present at the Third World Climate Conference (WCC - 3) unanimously agreed to develop the Global Framework for Climate Services (GFCS) to strengthen the production, availability, delivery and application of science-based climate prediction and services. They requested that a taskforce of high-level independent advisors be appointed to prepare a report, including recommendations on the proposed elements of the Framework and the next steps for its implementation. The high-level taskforce produced a report which was endorsed by the Sixteeth World Meteorological Congress XVI in May 2011. A process for the development of the implementation plan and the governance structure of the Global Framework for Climate Services (GFCS) is well under way being led by the World Meteorological Organization within the UN system. This process involves consultations that engage a broad range of stakeholders including governments, UN and international agencies, regional organizations and specific communities of practitioners. These consultations are being conducted to facilitate discussions of key issues related to the production, availability, delivery and application of climate services in the four priority sectors of the framework (agriculture, water, health and disaster risk reduction) so that the implementation plan of the Framework is a true reflection of the aspirations of stakeholders. The GFCS is envisaged as

  8. Climate Analytics-As-a-Service (CAaas), Advanced Information Systems, and Services to Accelerate the Climate Sciences.

    Science.gov (United States)

    McInerney, M.; Schnase, J. L.; Duffy, D.; Tamkin, G.; Nadeau, D.; Strong, S.; Thompson, J. H.; Sinno, S.; Lazar, D.

    2014-12-01

    The climate sciences represent a big data domain that is experiencing unprecedented growth. In our efforts to address the big data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS). We focus on analytics, because it is the knowledge gained from our interactions with big data that ultimately product societal benefits. We focus on CAaaS because we believe it provides a useful way of thinking about the problem: a specialization of the concept of business process-as-a-service, which is an evolving extension of IaaS, PaaS, and SaaS enabled by cloud computing. Within this framework, cloud computing plays an important role; however, we see it as only one element in a constellation of capabilities that are essential to delivering climate analytics-as-a-service. These elements are essential because in the aggregate they lead to generativity, a capacity for self-assembly that we feel is the key to solving many of the big data challenges in this domain. This poster will highlight specific examples of CAaaS using climate reanalysis data, high-performance cloud computing, map reduce, and the Climate Data Services API.

  9. Tools for Climate Services

    Science.gov (United States)

    Hartmann, H. C.

    2007-05-01

    Full realization of socio-economic benefits of from public investments in climate services remains incomplete because decision makers have difficulty: 1) interpreting individual products, 2) appropriately judging information credibility, and 3) linking different types of information, both conceptually and practically. Addressing these barriers is as important as improving the science leading to improved information. The challenge is creating flexible climate information products and tools that can accommodate unique user needs; the goal is a systemic change in the nature of information delivery and use. The underlying assumption is not that climate information is good and useful, and simply needs to be communicated effectively. Rather, a number of conditions must be met before decision makers can make informed choices about whether to use particular information in a specific situation. Several case studies, of varying success, illustrate user-centric strategies for developing decision support tools: a forecast evaluation tool, a climate information management system, and a hydrologic alert system. However, tools alone will not bridge the barriers in climate services, with training and other capacity- building activities remaining important activities.

  10. Ecological mechanisms underpinning climate adaptation services.

    Science.gov (United States)

    Lavorel, Sandra; Colloff, Matthew J; McIntyre, Sue; Doherty, Michael D; Murphy, Helen T; Metcalfe, Daniel J; Dunlop, Michael; Williams, Richard J; Wise, Russell M; Williams, Kristen J

    2015-01-01

    Ecosystem services are typically valued for their immediate material or cultural benefits to human wellbeing, supported by regulating and supporting services. Under climate change, with more frequent stresses and novel shocks, 'climate adaptation services', are defined as the benefits to people from increased social ability to respond to change, provided by the capability of ecosystems to moderate and adapt to climate change and variability. They broaden the ecosystem services framework to assist decision makers in planning for an uncertain future with new choices and options. We present a generic framework for operationalising the adaptation services concept. Four steps guide the identification of intrinsic ecological mechanisms that facilitate the maintenance and emergence of ecosystem services during periods of change, and so materialise as adaptation services. We applied this framework for four contrasted Australian ecosystems. Comparative analyses enabled by the operational framework suggest that adaptation services that emerge during trajectories of ecological change are supported by common mechanisms: vegetation structural diversity, the role of keystone species or functional groups, response diversity and landscape connectivity, which underpin the persistence of function and the reassembly of ecological communities under severe climate change and variability. Such understanding should guide ecosystem management towards adaptation planning. © 2014 John Wiley & Sons Ltd.

  11. Advances of NOAA Training Program in Climate Services

    Science.gov (United States)

    Timofeyeva, M. M.

    2012-12-01

    Since 2002, NOAA's National Weather Service (NWS) Climate Services Division (CSD) has offered numerous training opportunities to NWS staff. After eight-years of development, the training program offers three instructor-led courses and roughly 25 online (distance learning) modules covering various climate topics, such as: climate data and observations, climate variability and change, and NWS national / local climate products (tools, skill, and interpretation). Leveraging climate information and expertise available at all NOAA line offices and partners allows for the delivery of the most advanced knowledge and is a very critical aspect of the training program. The emerging NOAA Climate Service (NCS) requires a well-trained, climate-literate workforce at the local level capable of delivering NOAA's climate products and services as well as providing climate-sensitive decision support. NWS Weather Forecast Offices and River Forecast Centers presently serve as local outlets for the NCS climate services. Trained NWS climate service personnel use proactive and reactive approaches and professional education methods in communicating climate variability and change information to local users. Both scientifically-sound messages and amiable communication techniques are important in developing an engaged dialog between the climate service providers and users. Several pilot projects have been conducted by the NWS CSD this past year that apply the program's training lessons and expertise to specialized external user group training. The technical user groups included natural resources managers, engineers, hydrologists, and planners for transportation infrastructure. Training of professional user groups required tailoring instructions to the potential applications for each group of users. Training technical users identified the following critical issues: (1) knowledge of target audience expectations, initial knowledge status, and potential use of climate information; (2) leveraging

  12. Climate Prediction - NOAA's National Weather Service

    Science.gov (United States)

    Statistical Models... MOS Prod GFS-LAMP Prod Climate Past Weather Predictions Weather Safety Weather Radio National Weather Service on FaceBook NWS on Facebook NWS Director Home > Climate > Predictions Climate Prediction Long range forecasts across the U.S. Climate Prediction Web Sites Climate Prediction

  13. Climate services: Lessons learned and future prospects

    Science.gov (United States)

    Brasseur, Guy P.; Gallardo, Laura

    2016-03-01

    This perspective paper reviews progress made in the last decades to enhance the communication and use of climate information relevant to the political and economic decision process. It focuses, specifically, on the creation and development of climate services, and highlights a number of difficulties that have limited the success of these services. Among them are the insufficient awareness by societal actors of their vulnerability to climate change, the lack of relevant products and services offered by the scientific community, the inappropriate format in which the information is provided, and the inadequate business model adopted by climate services. The authors suggest that, to be effective, centers should host within the same center a diversity of staff including experts in climate science, specialists in impact, adaptation, and vulnerability, representatives of the corporate world, agents of the public service as well as social managers and communication specialists. The role and importance of environmental engineering is emphasized.

  14. Improving user engagement and uptake of climate services in China

    Directory of Open Access Journals (Sweden)

    Nicola Golding

    2017-01-01

    Full Text Available The needs of decision makers in China are being used to develop climate science and climate services through the Climate Science for Services Partnership. Focusing on examples of work for the energy and urban sectors, this paper outlines the approach taken and gives case studies of climate service development. We find that there is great opportunity for climate service development within the existing China Framework for Climate Services, and for enhancing the science that underpins such services. We also find challenges unique to the socio-economic and cultural environment in China, which must be taken into account when developing climate services here, as well as challenges common to all climate service development.

  15. Embedding Climate Services

    Science.gov (United States)

    Shafer, M.; Boone, M.; Keim, B. D.

    2015-12-01

    With the rapidly-increasing number of climate services providers, the landscape for putting climate into practice is getting both easier to access and more confusing. Each provider serves a different clientele, and in so doing draws more stakeholder organizations into the sphere of those using climate information in decision-making. The challenge has been in connecting these new stakeholders with expertise that may reside within a different provider organization. To help close the gap, the Southern Climate Impacts Planning Program (SCIPP; http://www.southernclimate.org), a NOAA RISA Team, initiated a summer internship program, where students with expertise in meteorology or climatology would work for an organization more closely aligned with another climate services provider network. The format was patterned after the successful NSF-funded Research Experience for Undergraduates (REU) program at the National Weather Center, where students are selected from undergraduate programs across the nation to spend a summer conducting research under a scientific mentor. The SCIPP initiative flipped this model, instead sending students to organizations with operational needs for climate information to work under their mentorship in partnership with SCIPP scientists. Over the past two summers, SCIPP has recruited students to work at landscape-based (Gulf Coast Joint Venture and National Wetlands Research Center) and community-based (Tulsa Partners) organizations. Students worked alongside the organizations' staff on a daily basis and were supported through periodic calls with the SCIPP team to help identify appropriate datasets and work through methodological issues. This presentation will discuss how these relationships were created, the expertise of each of the organizations involved, and outcomes from the projects.

  16. What have we learnt from EUPORIAS climate service prototypes?

    Directory of Open Access Journals (Sweden)

    Carlo Buontempo

    2018-01-01

    Full Text Available The international effort toward climate services, epitomised by the development of the Global Framework for Climate Services and, more recently the launch of Copernicus Climate Change Service has renewed interest in the users and the role they can play in shaping the services they will eventually use. Here we critically analyse the results of the five climate service prototypes that were developed as part of the EU funded project EUPORIAS.Starting from the experience acquired in each of the projects we attempt to distil a few key lessons which, we believe, will be relevant to the wider community of climate service developers.

  17. A synthesized biophysical and social vulnerability assessment for Taiwan

    Science.gov (United States)

    Lee, Yung-Jaan

    2017-11-01

    Taiwan, located in the Western Pacific, is a country that is one of the most vulnerable to disasters that are associated with the changing climate; it is located within the Ring of Fire, which is the most geologically active region in the world. The environmental and geological conditions in Taiwan are sensitive and vulnerable to such disasters. Owing to increasing urbanization in Taiwan, floods and climate-related disasters have taken an increasing toll on human lives. As global warming accelerates the rising of sea levels and increasing of the frequency of extreme weather events, disasters will continue to affect socioeconomic development and human conditions. Under such circumstances, researchers and policymakers alike must recognize the importance of providing useful knowledge concerning vulnerability, disaster recovery and resilience. Strategies for reducing vulnerability and climate-related disaster risks and for increasing resilience involve preparedness, mitigation and adaptation. In the last two decades, extreme climate events have caused severe flash floods, debris flows, landslides, and other disasters and have had negative effects of many sectors, including agriculture, infrastructure and health. Since climate change is expected to have a continued impact on socio-economic development, this work develops a vulnerability assessment framework that integrates both biophysical and social vulnerability and supports synthesized vulnerability analyses to identify vulnerable areas in Taiwan. Owing to its geographical, geological and climatic features, Taiwan is susceptible to earthquakes, typhoons, droughts and various induced disasters. Therefore, Taiwan has the urgent task of establishing a framework for assessing vulnerability as a planning and policy tool that can be used to identify not only the regions that require special attention but also hotspots in which efforts should be made to reduce vulnerability and the risk of climate-related disaster. To

  18. Global Framework for Climate Services (GFCS): status of implementation

    Science.gov (United States)

    Lucio, Filipe

    2014-05-01

    The GFCS is a global partnership of governments and UN and international agencies that produce and use climate information and services. WMO, which is leading the initiative in collaboration with UN ISDR, WHO, WFP, FAO, UNESCO, UNDP and other UN and international partners are pooling their expertise and resources in order to co-design and co-produce knowledge, information and services to support effective decision making in response to climate variability and change in four priority areas (agriculture and fod security, water, health and disaster risk reduction). To address the entire value chain for the effective production and application of climate services the GFCS main components or pillars are being implemented, namely: • User Interface Platform — to provide ways for climate service users and providers to interact to identify needs and capacities and improve the effectiveness of the Framework and its climate services; • Climate Services Information System — to produce and distribute climate data, products and information according to the needs of users and to agreed standards; • Observations and Monitoring - to generate the necessary data for climate services according to agreed standards; • Research, Modelling and Prediction — to harness science capabilities and results and develop appropriate tools to meet the needs of climate services; • Capacity Building — to support the systematic development of the institutions, infrastructure and human resources needed for effective climate services. Activities are being implemented in various countries in Africa, the Caribbean and South pacific Islands. This paper will provide details on the status of implementation of the GFCS worldwider.

  19. Developing collective customer knowledge and service climate: The interaction between service-oriented high-performance work systems and service leadership.

    Science.gov (United States)

    Jiang, Kaifeng; Chuang, Chih-Hsun; Chiao, Yu-Ching

    2015-07-01

    This study theorized and examined the influence of the interaction between Service-Oriented high-performance work systems (HPWSs) and service leadership on collective customer knowledge and service climate. Using a sample of 569 employees and 142 managers in footwear retail stores, we found that Service-Oriented HPWSs and service leadership reduced the influences of one another on collective customer knowledge and service climate, such that the positive influence of service leadership on collective customer knowledge and service climate was stronger when Service-Oriented HPWSs were lower than when they were higher or the positive influence of Service-Oriented HPWSs on collective customer knowledge and service climate was stronger when service leadership was lower than when it was higher. We further proposed and found that collective customer knowledge and service climate were positively related to objective financial outcomes through service performance. Implications for the literature and managerial practices are discussed. (c) 2015 APA, all rights reserved).

  20. Assessing customer satisfaction for improving NOAA's climate products and services

    Science.gov (United States)

    Meyers, J. C.; Hawkins, M. D.; Timofeyeva, M. M.

    2009-12-01

    NOAA's National Weather Service (NWS) Climate Services Division (CSD) is developing a comprehensive climate user requirements process with the ultimate goal of producing climate services that meet the needs of NWS climate information users. An important part of this effort includes engaging users through periodical surveys conducted by the Claes Fornell International (CFI) Group using the American Customer Satisfaction Index (ACSI). The CFI Group conducted a Climate Services Satisfaction (CSS) Survey in May of 2009 to measure customer satisfaction with current products and services and to gain insight on areas for improvement. The CSS Survey rates customer satisfaction on a range of NWS climate services data and products, including Climate Prediction Center (CPC) outlooks, drought monitoring, and ENSO monitoring and forecasts, as well as NWS local climate data services. In addition, the survey assesses the users of the products to give the NWS insight into its climate customer base. The survey also addresses specific topics such as NWS forecast category names, probabilistic nature of climate products, and interpretation issues. The survey results identify user requirements for improving existing NWS climate services and introducing new ones. CSD will merge the survey recommendations with available scientific methodologies and operational capabilities to develop requirements for improved climate products and services. An overview of the 2009 survey results will be presented, such as users' satisfaction with the accuracy, reliability, display and functionality of products and services.

  1. Challenges for developing national climate services – Poland and Norway

    Directory of Open Access Journals (Sweden)

    Zbigniew W. Kundzewicz

    2017-12-01

    Full Text Available This contribution discusses the challenges for developing national climate services in two countries with high fossil fuel production – Poland (coal and Norway (oil and gas. Both countries, Poland and Norway, have highly developed weather services, but largely differ on climate services. Since empirical and dynamical downscaling of climate models started in Norway over 20 years ago and meteorological and hydrological institutions in Oslo and Bergen have been collaborating on tailoring and disseminating downscaled climate projections to the Norwegian society, climate services are now well developed in Norway. The Norwegian Centre for Climate Services (NCCS was established in 2011. In contrast, climate services in Poland, in the international understanding, do not exist. Actually, Poland is not an exception, as compared to other Central and Eastern European countries, many of which neither have their national climate services, nor are really interested in European climate services disseminated via common EU initiatives. It is worth posing a question – can Poland learn from Norway as regards climate services? This contribution is based on results of the CHASE-PL (Climate change impact assessment for selected sectors in Poland project, carried out in the framework of the Polish – Norwegian Research Programme. The information generated within the Polish-Norwegian CHASE-PL project that is being broadly disseminated in Poland can be considered as a substitute for information delivered in other countries by climate services.

  2. Health and climate related ecosystem services provided by street trees in the urban environment.

    Science.gov (United States)

    Salmond, Jennifer A; Tadaki, Marc; Vardoulakis, Sotiris; Arbuthnott, Katherine; Coutts, Andrew; Demuzere, Matthias; Dirks, Kim N; Heaviside, Clare; Lim, Shanon; Macintyre, Helen; McInnes, Rachel N; Wheeler, Benedict W

    2016-03-08

    Urban tree planting initiatives are being actively promoted as a planning tool to enable urban areas to adapt to and mitigate against climate change, enhance urban sustainability and improve human health and well-being. However, opportunities for creating new areas of green space within cities are often limited and tree planting initiatives may be constrained to kerbside locations. At this scale, the net impact of trees on human health and the local environment is less clear, and generalised approaches for evaluating their impact are not well developed.In this review, we use an urban ecosystems services framework to evaluate the direct, and locally-generated, ecosystems services and disservices provided by street trees. We focus our review on the services of major importance to human health and well-being which include 'climate regulation', 'air quality regulation' and 'aesthetics and cultural services'. These are themes that are commonly used to justify new street tree or street tree retention initiatives. We argue that current scientific understanding of the impact of street trees on human health and the urban environment has been limited by predominantly regional-scale reductionist approaches which consider vegetation generally and/or single out individual services or impacts without considering the wider synergistic impacts of street trees on urban ecosystems. This can lead planners and policymakers towards decision making based on single parameter optimisation strategies which may be problematic when a single intervention offers different outcomes and has multiple effects and potential trade-offs in different places.We suggest that a holistic approach is required to evaluate the services and disservices provided by street trees at different scales. We provide information to guide decision makers and planners in their attempts to evaluate the value of vegetation in their local setting. We show that by ensuring that the specific aim of the intervention, the

  3. Rural health service managers' perspectives on preparing rural health services for climate change.

    Science.gov (United States)

    Purcell, Rachael; McGirr, Joe

    2018-02-01

    To determine health service managers' (HSMs) recommendations on strengthening the health service response to climate change. Self-administered survey in paper or electronic format. Rural south-west of New South Wales. Health service managers working in rural remote metropolitan areas 3-7. Proportion of respondents identifying preferred strategies for preparation of rural health services for climate change. There were 43 participants (53% response rate). Most respondents agreed that there is scepticism regarding climate change among health professionals (70%, n = 30) and community members (72%, n = 31). Over 90% thought that climate change would impact the health of rural populations in the future with regard to heat-related illnesses, mental health, skin cancer and water security. Health professionals and government were identified as having key leadership roles on climate change and health in rural communities. Over 90% of the respondents believed that staff and community in local health districts (LHDs) should be educated about the health impacts of climate change. Public health education facilitated by State or Federal Government was the preferred method of educating community members, and education facilitated by the LHD was the preferred method for educating health professionals. Health service managers hold important health leadership roles within rural communities and their health services. The study highlights the scepticism towards climate change among health professionals and community members in rural Australia. It identifies the important role of rural health services in education and advocacy on the health impacts of climate change and identifies recommended methods of public health education for community members and health professionals. © 2017 National Rural Health Alliance Inc.

  4. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.

    2015-12-01

    Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the

  5. NOAA Climate Information and Tools for Decision Support Services

    Science.gov (United States)

    Timofeyeva, M. M.; Higgins, W.; Strager, C.; Horsfall, F. M.

    2013-12-01

    NOAA is an active participant of the Global Framework for Climate Services (GFCS) contributing data, information, analytical capabilities, forecasts, and decision support services to the Climate Services Partnership (CSP). These contributions emerge from NOAA's own climate services, which have evolved to respond to the urgent and growing need for reliable, trusted, transparent, and timely climate information across all sectors of the U.S. economy. Climate services not only enhance development opportunities in many regions, but also reduce vulnerability to climate change around the world. The NOAA contribution lies within the NOAA Climate Goal mission, which is focusing its efforts on four key climate priority areas: water, extremes, coastal inundation, and marine ecosystems. In order to make progress in these areas, NOAA is exploiting its fundamental capabilities, including foundational research to advance understanding of the Earth system, observations to preserve and build the climate data record and monitor changes in climate conditions, climate models to predict and project future climate across space and time scales, and the development and delivery of decision support services focused on risk management. NOAA's National Weather Services (NWS) is moving toward provision of Decision Support Services (DSS) as a part of the Roadmap on the way to achieving a Weather Ready National (WRN) strategy. Both short-term and long-term weather, water, and climate information are critical for DSS and emergency services and have been integrated into NWS in the form of pilot projects run by National and Regional Operations Centers (NOC and ROCs respectively) as well as several local offices. Local offices with pilot projects have been focusing their efforts on provision of timely and actionable guidance for specific tasks such as DSS in support of Coastal Environments and Integrated Environmental Studies. Climate information in DSS extends the concept of climate services to

  6. Climate mitigation from vegetation biophysical feedbacks during the past three decades

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Zhenzhong [Peking Univ., Beijing (China); Piao, Shilong [Peking Univ., Beijing (China); Chinese Academy of Sciences (CAS), Beijing (China); Li, Laurent Z. X. [Sorbonne Univ. Paris (France); Zhou, Liming [State Univ. of New York (SUNY), Albany, NY (United States); Ciais, Philippe [Alternative Energies and Atomic Energy Commission (CEA), Gif-sur-Yvette (France); Wang, Tao [Chinese Academy of Sciences (CAS), Beijing (China); Li, Yue [Peking Univ., Beijing (China); Lian, Xu [Peking Univ., Beijing (China); Wood, Eric F. [Princeton Univ., NJ (United States); Friedlingstein, Pierre [Univ. of Exeter (United Kingdom); Mao, Jiafu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Estes, Lyndon D. [Princeton Univ., NJ (United States); Clark Univ., Worcester, MA (United States); Myneni, Ranga B. [Boston Univ., MA (United States); Peng, Shushi [Peking Univ., Beijing (China); Shi, Xiaoying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Seneviratne, Sonia I. [ETH Zurich (Switzerland); Wang, Yingping [Commonwealth Scientific and Industrial Research Organization (CSIRO), Aspendale, VIC (Australia)

    2017-05-22

    The surface air temperature response to vegetation changes has been studied for the extreme case of land-cover change; yet, it has never been quantified for the slow but persistent increase in leaf area index (LAI) observed over the past 30 years (Earth greening). We isolate the fingerprint of increasing LAI on surface air temperature using a coupled land–atmosphere global climate model prescribed with satellite LAI observations. Furthermore, we found that the global greening has slowed down the rise in global land-surface air temperature by 0.09 ± 0.02 °C since 1982. This net cooling effect is the sum of cooling from increased evapotranspiration (70%), changed atmospheric circulation (44%), decreased shortwave transmissivity (21%), and warming from increased longwave air emissivity (-29%) and decreased albedo (-6%). The global cooling originated from the regions where LAI has increased, including boreal Eurasia, Europe, India, northwest Amazonia, and the Sahel. Increasing LAI did not, but, significantly change surface air temperature in eastern North America and East Asia, where the effects of large-scale atmospheric circulation changes mask local vegetation feedbacks. Overall, the sum of biophysical feedbacks related to the greening of the Earth mitigated 12% of global land-surface warming for the past 30 years.

  7. Manager personality, manager service quality orientation, and service climate: test of a model.

    Science.gov (United States)

    Salvaggio, Amy Nicole; Schneider, Benjamin; Nishii, Lisa H; Mayer, David M; Ramesh, Anuradha; Lyon, Julie S

    2007-11-01

    This article conceptually and empirically explores the relationships among manager personality, manager service quality orientation, and climate for customer service. Data were collected from 1,486 employees and 145 managers in grocery store departments (N = 145) to test the authors' theoretical model. Largely consistent with hypotheses, results revealed that core self-evaluations were positively related to managers' service quality orientation, even after dimensions of the Big Five model of personality were controlled, and that service quality orientation fully mediated the relationship between personality and global service climate. Implications for personality and organizational climate research are discussed. (c) 2007 APA

  8. Biophysics of protein evolution and evolutionary protein biophysics

    Science.gov (United States)

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  9. Soil functional types: surveying the biophysical dimensions of soil security

    Science.gov (United States)

    Cécillon, Lauric; Barré, Pierre

    2015-04-01

    Soil is a natural capital that can deliver key ecosystem services (ES) to humans through the realization of a series of soil processes controlling ecosystem functioning. Soil is also a diverse and endangered natural resource. A huge pedodiversity has been described at all scales, which is strongly altered by global change. The multidimensional concept soil security, encompassing biophysical, economic, social, policy and legal frameworks of soils has recently been proposed, recognizing the role of soils in global environmental sustainability challenges. The biophysical dimensions of soil security focus on the functionality of a given soil that can be viewed as the combination of its capability and its condition [1]. Indeed, all soils are not equal in term of functionality. They show different processes, provide different ES to humans and respond specifically to global change. Knowledge of soil functionality in space and time is thus a crucial step towards the achievement soil security. All soil classification systems incorporate some functional information, but soil taxonomy alone cannot fully describe the functioning, limitations, resistance and resilience of soils. Droogers and Bouma [2] introduced functional variants (phenoforms) for each soil type (genoform) so as to fit more closely to soil functionality. However, different genoforms can have the same functionality. As stated by McBratney and colleagues [1], there is a great need of an agreed methodology for defining the reference state of soil functionality. Here, we propose soil functional types (SFT) as a relevant classification system for the biophysical dimensions of soil security. Following the definition of plant functional types widely used in ecology, we define a soil functional type as "a set of soil taxons or phenoforms sharing similar processes (e.g. soil respiration), similar effects on ecosystem functioning (e.g. primary productivity) and similar responses to global change (land-use, management or

  10. Assessing Effects of Climate Change on Access to Ecosystem Services in Rural Alaska: Enhancing the Science through Community Engagement

    Science.gov (United States)

    Brinkman, T. J.; Cold, H.; Brown, D. N.; Brown, C.; Hollingsworth, T. N.; Verbyla, D.

    2017-12-01

    In Arctic-Boreal regions, studies quantifying the characteristics and prevalence of environmental disruptions to access to ecosystem services are lacking. Empirical investigations are needed to assess the vulnerability of rural communities to climate change. We integrated community-based local observation (9 Interior Alaska Communities), field-based ground measurements, and remote sensing data to: 1) identify and prioritize the relative importance of different environmental changes affecting access, 2) characterize the biophysical causes and mechanisms related to access, and 3) evaluate long-term (30 year) trends in the environment that are challenging access. Dynamic winter ice and snow conditions (e.g., dangerous ice travel; n =147) were the most commonly reported cause of disturbance to access, followed by changes in summer hydrology (e.g., river navigability; n = 77) and seasonal shifts in freeze/thaw cycles (n = 31). Supporting local observations, our remote-sensing analysis indicated a trend toward environmental conditions that hinder or disrupt traditional uses of ecosystem services. For example, we found that the window of safe travel on ice has narrowed by approximately 2 weeks since the 1980s. Shifts in travel have implications on the effectiveness of subsistence activities, such as winter trapping and spring waterfowl hunting. From a methods perspective, we implemented a study design that generated novel science while also addressing locally relevant issues. Our approach and findings highlight opportunities for connecting biophysical science with societal concerns.

  11. The National Oceanic and Atmospheric Administration (NOAA) Climate Services Portal: A New Centralized Resource for Distributed Climate Information

    Science.gov (United States)

    Burroughs, J.; Baldwin, R.; Herring, D.; Lott, N.; Boyd, J.; Handel, S.; Niepold, F.; Shea, E.

    2010-09-01

    With the rapid rise in the development of Web technologies and climate services across NOAA, there has been an increasing need for greater collaboration regarding NOAA's online climate services. The drivers include the need to enhance NOAA's Web presence in response to customer requirements, emerging needs for improved decision-making capabilities across all sectors of society facing impacts from climate variability and change, and the importance of leveraging climate data and services to support research and public education. To address these needs, NOAA (during fiscal year 2009) embarked upon an ambitious program to develop a NOAA Climate Services Portal (NCS Portal). Four NOAA offices are leading the effort: 1) the NOAA Climate Program Office (CPO), 2) the National Ocean Service's Coastal Services Center (CSC), 3) the National Weather Service's Climate Prediction Center (CPC), and 4) the National Environmental Satellite, Data, and Information Service's (NESDIS) National Climatic Data Center (NCDC). Other offices and programs are also contributing in many ways to the effort. A prototype NCS Portal is being placed online for public access in January 2010, http://www.climate.gov. This website only scratches the surface of the many climate services across NOAA, but this effort, via direct user engagement, will gradually expand the scope and breadth of the NCS Portal to greatly enhance the accessibility and usefulness of NOAA's climate data and services.

  12. Experimental climate information services in support of risk management

    Science.gov (United States)

    Webb, R. S.; Pulwarty, R. S.; Davidson, M. A.; Shea, E. E.; Nierenberg, C.; Dole, R. M.

    2009-12-01

    Climate variability and change impact national and local economies and environments. Developing and communicating climate and climate impacts information to inform decision making requires an understanding of context, societal objectives, and identification of factors important to the management of risk. Information sensitive to changing baselines or extremes is a critical emergent need. Meeting this need requires timely production and delivery of useful climate data, information and knowledge within familiar pathways. We identify key attributes for a climate service , and the network and infrastructure to develop and coordinate the resulting services based on lessons learned in experimental implementations of climate services. "Service-type" activities already exist in many settings within federal, state, academic, and private sectors. The challenge for a climate service is to find effective implementation strategies for improving decision quality (not just meeting user needs). These strategies include upfront infrastructure investments, learning from event to event, coordinated innovation and diffusion, and highlighting common adaptation interests. Common to these strategies is the production of reliable and accessible data, analyses of emergent conditions and needs, and deliberative processes to identify appropriate entry points and uses for improved knowledge. Experimental climate services show that the development of well-structured paths among observations, projections, risk assessments and usable information requires sustained participation in “knowledge management systems” for early warning across temporal and spatial scales. Central to these systems is a collaborative framework between research and management to ensure anticipatory coordination between decision makers and information providers, allowing for emerging research findings and their attendant uncertainties to be considered. Early warnings in this context are not simply forecasts or

  13. Service climate as a mediator of organizational empowerment in customer-service employees.

    Science.gov (United States)

    Mendoza-Sierra, Maria Isabel; Orgambídez-Ramos, Alejandro; Carrasco-González, Ana María; León-Jariego, José Carlos

    2014-01-01

    The aim of this study is to examine the mediating role of the service climate between organizational empowerment (i.e., dynamic structural framework, control of workplace decisions, fluidity in information sharing) and service quality (functional and relational). 428 contact employees from 46 hotels participated in the survey. Correlations demonstrated that dynamic structural framework, control decisions, and fluidity in information sharing are related to both functional and relational service quality. Regression analyses and Sobel tests revealed that service climate totally mediated the relationship between all three dimensions of organizational empowerment and relational service quality. Implications for practice and future research are discussed.

  14. Implementing Climate Services in Peru: CLIMANDES Project

    Science.gov (United States)

    Lavado-Casimiro, Waldo; Mauchle, Fabian; Diaz, Amelia; Seiz, Gabriela; Rubli, Alex; Rossa, Andrea; Rosas, Gabriela; Ita, Niceforo; Calle, Victoria; Villegas, Esequiel; Ambrosetti, Paolo; Brönnimann, Stefan; Hunziker, Stefan; Jacques, Martin; Croci-Maspoli, Mischa; Konzelmann, Thomas; Gubler, Stefanie; Rohrer, Mario

    2014-05-01

    The climate variability and change will have increasing influence on the economic and social development of all countries and regions, such as the Andes in Latin America. The CLIMANDES project (Climate services to support decision-making in the Andean Region) will address these issues in Peru. CLIMANDES supports the WMO Regional Training Centre (RTC) in Lima, which is responsible for the training of specialized human resources in meteorology and climatology in the South American Andes (Module 1). Furthermore, CLIMANDES will provide high-quality climate services to inform policy makers in the Andean region (Module 2). It is coordinated by the World Meteorological Organization (WMO) and constitutes a pilot project under the umbrella of the WMO-led Global Framework for Climate Services (GFCS). The project is funded by the Swiss Agency for Development and Cooperation (SDC) and runs from August 2012 - July 2015. Module 1 focuses on restructuring the curricula of Meteorology at the La Molina Agraria University (UNALM) and applied training of meteorologists of the Peruvian National Service of Meteorology and Hydrology (SENAMHI). In Module 2, the skills will be shared and developed in the production and delivery of high-quality climate products and services tailored to the needs of the decision makers in the pilot regions Cusco and Junín. Such services will benefit numerous sectors including agriculture, education, health, tourism, energy, transport and others. The goals of the modules 1 and 2 will be achieved through the collaboration of the UNALM, SENAMHI and the Federal Office of Meteorology and Climatology MeteoSwiss, with the support of the University of Bern (UNIBE), Meteodat and WMO.

  15. Antecedents and consequences of the service climate in boundary-spanning self-managing service teams

    NARCIS (Netherlands)

    Jong, de A.; Ruyter, de J.C.; Lemmink, J.G.A.M.

    2004-01-01

    In this article, the authors examine antecedents and consequences of the service climate in boundary-spanning self-managing teams (SMTs) that deliver financial services. Using data from members of 61 SMTs and their customers, the authors show a differential impact of the SMT service climate on

  16. System and Method for Providing a Climate Data Persistence Service

    Science.gov (United States)

    Schnase, John L. (Inventor); Ripley, III, William David (Inventor); Duffy, Daniel Q. (Inventor); Thompson, John H. (Inventor); Strong, Savannah L. (Inventor); McInerney, Mark (Inventor); Sinno, Scott (Inventor); Tamkin, Glenn S. (Inventor); Nadeau, Denis (Inventor)

    2018-01-01

    A system, method and computer-readable storage devices for providing a climate data persistence service. A system configured to provide the service can include a climate data server that performs data and metadata storage and management functions for climate data objects, a compute-storage platform that provides the resources needed to support a climate data server, provisioning software that allows climate data server instances to be deployed as virtual climate data servers in a cloud computing environment, and a service interface, wherein persistence service capabilities are invoked by software applications running on a client device. The climate data objects can be in various formats, such as International Organization for Standards (ISO) Open Archival Information System (OAIS) Reference Model Submission Information Packages, Archive Information Packages, and Dissemination Information Packages. The climate data server can enable scalable, federated storage, management, discovery, and access, and can be tailored for particular use cases.

  17. The Copernicus Climate Change Service (C3S): Open Access to a Climate Data Store

    Science.gov (United States)

    Thepaut, Jean-Noel; Dee, Dick

    2016-04-01

    In November 2014, The European Centre for Medium-range Weather Forecasts (ECMWF) signed an agreement with the European Commission to deliver two of the Copernicus Earth Observation Programme Services on the Commission's behalf. The ECMWF delivered services - the Copernicus Climate Change Service (C3S) and Atmosphere Monitoring Service (CAMS) - will bring a consistent standard to how we monitor and predict atmospheric conditions and climate change. They will maximise the potential of past, current and future earth observations - ground, ocean, airborne, satellite - and analyse these to monitor and predict atmospheric conditions and in the future, climate change. With the wealth of free and open data that the services provide, they will help business users to assess the impact of their business decisions and make informed choices, delivering a more energy efficient and climate aware economy. These sound investment decisions now will not only stimulate growth in the short term, but reduce the impact of climate change on the economy and society in the future. C3S is in its proof of concept phase and through its Climate Data Store will provide • global and regional climate data reanalyses; • multi-model seasonal forecasts; • customisable visual data to enable examination of wide range of scenarios and model the impact of changes; • access to all the underlying data, including climate data records from various satellite and in-situ observations. In addition, C3S will provide key indicators on climate change drivers (such as carbon dioxide) and impacts (such as reducing glaciers). The aim of these indicators will be to support European adaptation and mitigation policies in a number of economic sectors. At the heart of the Service is the provision of open access to a one stop shop (the Climate Data Store) of climate data and modelling, analysing more than 20 Essential Climate Variables to build a global picture of our past, present and future climate and developing

  18. Recent progress towards climate services in France

    International Nuclear Information System (INIS)

    Deandreis, C.; Lemond, J.; Dandin, P.; Braconnot, P.

    2013-01-01

    Important efforts have been made in recent years to develop climate services in France. Many initiatives have emerged to build an adapted System of information. This development is consistent with legislative and regulatory obligations, with a concern for economic advance, or a citizen questioning related to global change. The web portal 'DRIAS, les futurs du climat' provides an easy access to climate scenarios for France, opened to everyone concerned by impact and adaptation to climate change. This achievement results of a close co-operation between the major French climate modelling groups and the operational services of Meteo-France. It has been benefiting from the support of the Ministry in charge of Sustainable Development namely through its GICC program. The next steps with DRIAS will be defined both by a strong consistency with the scientific community work and by the requirements and expectations of users. In this, it is a real service. Following a different approach more focused on the specific and advanced needs of particular users, the French projects INVULNERABLe and SECIF sought to create a relevant and tailored to the industrial sector. This kind of products requires a support to educate operational users to climate change issue, and then to enhance the interface between climatologists and skilled users within the concerned companies. Both approaches are representative of current efforts of the French national scientific community to provide a useful part of the knowledge developed by the Academia and Meteo-France. The various initiatives are carried out with the wish to share and be consistent with research community work. They are mutually enriching, and with all stakeholders involved, they gradually build a real climate service in France. (authors)

  19. Monitoring Users' Satisfactions of the NOAA NWS Climate Products and Services

    Science.gov (United States)

    Horsfall, F. M.; Timofeyeva, M. M.; Dixon, S.; Meyers, J. C.

    2011-12-01

    The NOAA's National Weather Service (NWS) Climate Services Division (CSD) ensures the relevance of NWS climate products and services. There are several ongoing efforts to identify the level of user satisfaction. One of these efforts includes periodical surveys conducted by Claes Fornell International (CFI) Group using the American Customer Satisfaction Index (ACSI), which is "the only uniform, national, cross-industry measure of satisfaction with the quality of goods and services available in the United States" (http://www.cfigroup.com/acsi/overview.asp). The CFI Group conducted NWS Climate Products and Services surveys in 2004 and 2009. In 2010, a prominent routine was established for a periodical assessment of the customer satisfaction. From 2010 onward, yearly surveys will cover major climate services products and services. An expanded suite of climate products will be surveyed every other year. Each survey evaluated customer satisfaction with a range of NWS climate services, data, and products, including Climate Prediction Center (CPC) outlooks, drought monitoring, and ENSO monitoring and forecasts, as well as NWS local climate data and forecast products and services. The survey results provide insight into the NWS climate customer base and their requirements for climate services. They also evaluate whether we are meeting the needs of customers and the ease of their understanding for routine climate services, forecasts, and outlooks. In addition, the evaluation of specific topics, such as NWS forecast product category names, probabilistic nature of climate products, interpretation issues, etc., were addressed to assess how our users interpret prediction terminology. This paper provides an analysis of the following products: hazards, extended-range, long-lead and drought outlooks, El Nino Southern Oscillation monitoring and predictions as well as local climate data products. Two key issues make comparing the different surveys challenging, including the

  20. Biophysics conference 1978

    International Nuclear Information System (INIS)

    1978-01-01

    The main subject on the biophysics meeting was the biophysics of membranes with practical subjects from photosynthesis and the transfer processes on membranes. In radiation biophysics, problems of radiation sensitisation, immunological problems after radiation exposure, the oxygen effect and inhibitory processes in RNS synthesis after radiation exposure were discussed with a view to tumour therapy. (AJ) [de

  1. Biophysics An Introduction

    CERN Document Server

    Glaser, Roland

    2012-01-01

    Biophysics is the science of physical principles underlying all processes of life, including the dynamics and kinetics of biological systems. This fully revised 2nd English edition is an introductory text that spans all steps of biological organization, from the molecular, to the organism level, as well as influences of environmental factors. In response to the enormous progress recently made, especially in theoretical and molecular biophysics, the author has updated the text, integrating new results and developments concerning protein folding and dynamics, molecular aspects of membrane assembly and transport, noise-enhanced processes, and photo-biophysics. The advances made in theoretical biology in the last decade call for a fully new conception of the corresponding sections. Thus, the book provides the background needed for fundamental training in biophysics and, in addition, offers a great deal of advanced biophysical knowledge.

  2. Mitigating and adapting to climate change: multi-functional and multi-scale assessment of green urban infrastructure.

    Science.gov (United States)

    Demuzere, M; Orru, K; Heidrich, O; Olazabal, E; Geneletti, D; Orru, H; Bhave, A G; Mittal, N; Feliu, E; Faehnle, M

    2014-12-15

    In order to develop climate resilient urban areas and reduce emissions, several opportunities exist starting from conscious planning and design of green (and blue) spaces in these landscapes. Green urban infrastructure has been regarded as beneficial, e.g. by balancing water flows, providing thermal comfort. This article explores the existing evidence on the contribution of green spaces to climate change mitigation and adaptation services. We suggest a framework of ecosystem services for systematizing the evidence on the provision of bio-physical benefits (e.g. CO2 sequestration) as well as social and psychological benefits (e.g. improved health) that enable coping with (adaptation) or reducing the adverse effects (mitigation) of climate change. The multi-functional and multi-scale nature of green urban infrastructure complicates the categorization of services and benefits, since in reality the interactions between various benefits are manifold and appear on different scales. We will show the relevance of the benefits from green urban infrastructures on three spatial scales (i.e. city, neighborhood and site specific scales). We will further report on co-benefits and trade-offs between the various services indicating that a benefit could in turn be detrimental in relation to other functions. The manuscript identifies avenues for further research on the role of green urban infrastructure, in different types of cities, climates and social contexts. Our systematic understanding of the bio-physical and social processes defining various services allows targeting stressors that may hamper the provision of green urban infrastructure services in individual behavior as well as in wider planning and environmental management in urban areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Farm service agency employee intentions to use weather and climate data in professional services

    Science.gov (United States)

    Rachel E. Schattman; Gabrielle Roesch-McNally; Sarah Wiener; Meredith T. Niles; David Y. Hollinger

    2018-01-01

    Agricultural service providers often work closely with producers, and are well positioned to include weather and climate change information in the services they provide. By doing so, they can help producers reduce risks due to climate variability and change. A national survey of United States Department of Agriculture Farm Service Agency (FSA) field staff (n...

  4. Sea Level Change and Coastal Climate Services: The Way Forward

    NARCIS (Netherlands)

    le Cozannet, G.; Nicholls, R.J.; Hinkel, J.; Sweet, W.V.; McInnes, K.L.; Van de Wal, R.S.E.; Slangen, A.B.A.; Lowe, J.A.; White, K.D.

    2017-01-01

    For many climate change impacts such as drought and heat waves, global and nationalframeworks for climate services are providing ever more critical support to adaptation activities.Coastal zones are especially in need of climate services for adaptation, as they are increasinglythreatened by sea

  5. Biophysics

    CERN Document Server

    Glaser, Roland

    1999-01-01

    The message of this book is that biophysics is the science of physical principles underlying the "phenomenon life" on all levels of organization. Rather than teaching "physics for biologists" or "physical methods applied to biology", it regards its subject as a defined discipline with its own network of ideas and approaches. The book starts by explaining molecular structures of biological systems, various kinds of atomic, molecular and ionic interactions, movements, energy transfer, self organization of supramolecular structures and dynamic properties of biological membranes. It then goes on to introduce the biological organism as a non-equilibrium system, before treating thermodynamic concepts of osmotic and electrolyte equilibria as well as currents and potential profiles. It continues with topics of environmental biophysics and such medical aspects as the influence of electromagnetic fields or radiation on living systems and the biophysics of hearing and noice protection. The book concludes with a discussi...

  6. New perspectives for European climate services: HORIZON2020

    Science.gov (United States)

    Bruning, Claus; Tilche, Andrea

    2014-05-01

    The developing of new end-to-end climate services was one of the core priorities of 7th Framework for Research and Technological Development of the European Commission and will become one of the key strategic priorities of Societal Challenge 5 of HORIZON2020 (the new EU Framework Programme for Research and Innovation 2014-2020). Results should increase the competitiveness of European businesses, and the ability of regional and national authorities to make effective decisions in climate-sensitive sectors. In parallel, the production of new tailored climate information should strengthen the resilience of the European society to climate change. In this perspective the strategy to support and foster the underpinning science for climate services in HORIZON2020 will be presented.

  7. Methods in Modern Biophysics

    CERN Document Server

    Nölting, Bengt

    2006-01-01

    Incorporating recent dramatic advances, this textbook presents a fresh and timely introduction to modern biophysical methods. An array of new, faster and higher-power biophysical methods now enables scientists to examine the mysteries of life at a molecular level. This innovative text surveys and explains the ten key biophysical methods, including those related to biophysical nanotechnology, scanning probe microscopy, X-ray crystallography, ion mobility spectrometry, mass spectrometry, proteomics, and protein folding and structure. Incorporating much information previously unavailable in tutorial form, Nölting employs worked examples and 267 illustrations to fully detail the techniques and their underlying mechanisms. Methods in Modern Biophysics is written for advanced undergraduate and graduate students, postdocs, researchers, lecturers and professors in biophysics, biochemistry and related fields. Special features in the 2nd edition: • Illustrates the high-resolution methods for ultrashort-living protei...

  8. Methods in Modern Biophysics

    CERN Document Server

    Nölting, Bengt

    2010-01-01

    Incorporating recent dramatic advances, this textbook presents a fresh and timely introduction to modern biophysical methods. An array of new, faster and higher-power biophysical methods now enables scientists to examine the mysteries of life at a molecular level. This innovative text surveys and explains the ten key biophysical methods, including those related to biophysical nanotechnology, scanning probe microscopy, X-ray crystallography, ion mobility spectrometry, mass spectrometry, proteomics, and protein folding and structure. Incorporating much information previously unavailable in tutorial form, Nölting employs worked examples and about 270 illustrations to fully detail the techniques and their underlying mechanisms. Methods in Modern Biophysics is written for advanced undergraduate and graduate students, postdocs, researchers, lecturers, and professors in biophysics, biochemistry and related fields. Special features in the 3rd edition: Introduces rapid partial protein ladder sequencing - an important...

  9. Sea level change and coastal climate services : The way forward

    NARCIS (Netherlands)

    Le Cozannet, Gonéri; Nicholls, Robert J.; Hinkel, Jochen; Sweet, William V.; McInnes, Kathleen L.; Van de Wal, Roderik S.W.; Slangen, Aimée B.A.; Lowe, Jason A.; White, Kathleen D.

    2017-01-01

    For many climate change impacts such as drought and heat waves, global and national frameworks for climate services are providing ever more critical support to adaptation activities. Coastal zones are especially in need of climate services for adaptation, as they are increasingly threatened by sea

  10. Readying Health Services for Climate Change: A Policy Framework for Regional Development

    Science.gov (United States)

    2011-01-01

    Climate change presents the biggest threat to human health in the 21st century. However, many public health leaders feel ill equipped to face the challenges of climate change and have been unable to make climate change a priority in service development. I explore how to achieve a regionally responsive whole-of-systems approach to climate change in the key operational areas of a health service: service governance and culture, service delivery, workforce development, asset management, and financing. The relative neglect of implementation science means that policymakers need to be proactive about sourcing and developing models and processes to make health services ready for climate change. Health research funding agencies should urgently prioritize applied, regionally responsive health services research for a future of climate change. PMID:21421953

  11. Readying health services for climate change: a policy framework for regional development.

    Science.gov (United States)

    Bell, Erica

    2011-05-01

    Climate change presents the biggest threat to human health in the 21st century. However, many public health leaders feel ill equipped to face the challenges of climate change and have been unable to make climate change a priority in service development. I explore how to achieve a regionally responsive whole-of-systems approach to climate change in the key operational areas of a health service: service governance and culture, service delivery, workforce development, asset management, and financing. The relative neglect of implementation science means that policymakers need to be proactive about sourcing and developing models and processes to make health services ready for climate change. Health research funding agencies should urgently prioritize applied, regionally responsive health services research for a future of climate change.

  12. The Copernicus programme and its Climate Change Service (C3S): a European answer to Climate Change

    Science.gov (United States)

    Pinty, Bernard; Thepaut, Jean-Noel; Dee, Dick

    2016-07-01

    In November 2014, The European Centre for Medium-range Weather Forecasts (ECMWF) signed an agreement with the European Commission to deliver two of the Copernicus Earth Observation Programme Services on the Commission's behalf. The ECMWF delivered services - the Copernicus Climate Change Service (C3S) and Atmosphere Monitoring Service (CAMS) - will bring a consistent standard to how we measure and predict atmospheric conditions and climate change. They will maximise the potential of past, current and future earth observations - ground, ocean, airborne, satellite - and analyse these to monitor and predict atmospheric conditions and in the future, climate change. With the wealth of free and open data that the services provide, they will help business users to assess the impact of their business decisions and make informed choices, delivering a more energy efficient and climate aware economy. These sound investment decisions now will not only stimulate growth in the short term, but reduce the impact of climate change on the economy and society in the future. C3S is in its proof of concept phase and through its climate data store will provide global and regional climate data reanalyses; multi-model seasonal forecasts; customisable visual data to enable examination of wide range of scenarios and model the impact of changes; access to all the underlying data, including climate data records from various satellite and in-situ observations. In addition, C3S will provide key indicators on climate change drivers (such as carbon dioxide) and impacts (such as reducing glaciers). The aim of these indicators will be to support European adaptation and mitigation policies in a number of economic sectors. The presentation will provide an overview of this newly created Service, its various components and activities, and a roadmap towards achieving a fully operational European Climate Service at the horizon 2019-2020. It will focus on the requirements for quality-assured Observation

  13. The relationship between perceptions of wilderness character and attitudes toward management intervention to adapt biophysical resources to a changing climate and nature restoration at Sequoia and Kings Canyon National Parks

    Science.gov (United States)

    Alan Watson; Steve Martin; Neal Christensen; Gregg Fauth; Dan Williams

    2015-01-01

    In a recent national survey of federal wilderness managers, respondents identified the high priority need for scientific information about public attitudes toward biophysical intervention to adapt to climate change and attitudes of the public toward restoration of natural conditions. In a survey of visitors to one National Park wilderness in California, visitors...

  14. Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions.

    Science.gov (United States)

    Briner, Simon; Elkin, Ché; Huber, Robert

    2013-11-15

    Provisioning of ecosystem services (ES) in mountainous regions is predicted to be influenced by i) the direct biophysical impacts of climate change, ii) climate mediated land use change, and iii) socioeconomic driven changes in land use. The relative importance and the spatial distribution of these factors on forest and agricultural derived ES, however, is unclear, making the implementation of ES management schemes difficult. Using an integrated economic-ecological modeling framework, we evaluated the impact of these driving forces on the provision of forest and agricultural ES in a mountain region of southern Switzerland. Results imply that forest ES will be strongly influenced by the direct impact of climate change, but that changes in land use will have a comparatively small impact. The simulation of direct impacts of climate change affects forest ES at all elevations, while land use changes can only be found at high elevations. In contrast, changes to agricultural ES were found to be primarily due to shifts in economic conditions that alter land use and land management. The direct influence of climate change on agriculture is only predicted to be substantial at high elevations, while socioeconomic driven shifts in land use are projected to affect agricultural ES at all elevations. Our simulation results suggest that policy schemes designed to mitigate the negative impact of climate change on forests should focus on suitable adaptive management plans, accelerating adaptation processes for currently forested areas. To maintain provision of agricultural ES policy needs to focus on economic conditions rather than on supporting adaptation to new climate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Climate services in the tourism sector - examples and market research

    Science.gov (United States)

    Damm, Andrea; Köberl, Judith; Prettenthaler, Franz; Kortschak, Dominik; Hofer, Marianne; Winkler, Claudia

    2017-04-01

    Tourism is one of the most weather-sensitive sectors. Hence, dealing with weather and climate risks is an important part of operational risk management. WEDDA® (WEather Driven Demand Analysis), developed by Joanneum Research, represents a comprehensive and flexible toolbox for managing weather and climate risks. Modelling the demand for products or services of a particular economic sector or company and its weather and climate sensitivity usually forms the starting and central point of WEDDA®. Coupling the calibrated demand models to either long-term climate scenarios or short-term weather forecasts enables the use of WEDDA® for the following areas of application: (i) implementing short-term forecasting systems for the prediction of the considered indicator; (ii) quantifying the weather risk of a particular economic sector or company using parameters from finance (e.g. Value-at-Risk); (iii) assessing the potential impacts of changing climatic conditions on a particular economic sector or company. WEDDA® for short-term forecasts on the demand for products or services is currently used by various tourism businesses, such as open-air swimming pools, ski areas, and restaurants. It supports tourism and recreation facilities to better cope with (increasing) weather variability by optimizing the disposability of staff, resources and merchandise according to expected demand. Since coping with increasing weather variability forms one of the challenges with respect to climate change, WEDDA® may become an important component within a whole pool of weather and climate services designed to support tourism and recreation facilities to adapt to climate change. Climate change impact assessments at European scale, as conducted in the EU-FP7 project IMPACT2C, provide basic information of climate change impacts on tourism demand not only for individual tourism businesses, but also for regional and national tourism planners and policy makers interested in benchmarks for the

  16. DESYCO: a Decision Support System to provide climate services for coastal stakeholders dealing with climate change impacts.

    Science.gov (United States)

    Torresan, S.; Gallina, V.; Giannini, V.; Rizzi, J.; Zabeo, A.; Critto, A.; Marcomini, A.

    2012-04-01

    At the international level climate services are recognized as innovative tools aimed at providing and distributing climate data and information according to the needs of end-users. Furthermore, needs-based climate services are extremely effective to manage climate risks and take advantage of the opportunities associated with climate change impacts. To date, climate services are mainly related to climate models that supply climate data (e.g. temperature, precipitations) at different spatial and time scales. However, there is a significant gap of tools aimed at providing information about risks and impacts induced by climate change and allowing non-expert stakeholders to use both climate-model and climate-impact data. DESYCO is a GIS-Decision Support System aimed at the integrated assessment of multiple climate change impacts on vulnerable coastal systems (e.g. beaches, river deltas, estuaries and lagoons, wetlands, agricultural and urban areas). It is an open source software that manages different input data (e.g. raster or shapefiles) coming from climate models (e.g. global and regional climate projections) and high resolution impact models (e.g. hydrodynamic, hydrological and biogeochemical simulations) in order to provide hazard, exposure, susceptibility, risk and damage maps for the identification and prioritization of hot-spot areas and to provide a basis for the definition of coastal adaptation and management strategies. Within the CLIM-RUN project (FP7) DESYCO is proposed as an helpful tool to bridge the gap between climate data and stakeholder needs and will be applied to the coastal area of the North Adriatic Sea (Italy) in order to provide climate services for local authorities involved in coastal zone management. Accordingly, a first workshop was held in Venice (Italy) with coastal authorities, climate experts and climate change risk experts, in order to start an iterative exchange of information about the knowledge related to climate change, climate

  17. Nonlinear ecosystem services response to groundwater availability under climate extremes

    Science.gov (United States)

    Qiu, J.; Zipper, S. C.; Motew, M.; Booth, E.; Kucharik, C. J.; Steven, L. I.

    2017-12-01

    Depletion of groundwater has been accelerating at regional to global scales. Besides serving domestic, industrial and agricultural needs, in situ groundwater is also a key control on biological, physical and chemical processes across the critical zone, all of which underpin supply of ecosystem services essential for humanity. While there is a rich history of research on groundwater effects on subsurface and surface processes, understanding interactions, nonlinearity and feedbacks between groundwater and ecosystem services remain limited, and almost absent in the ecosystem service literature. Moreover, how climate extremes may alter groundwater effects on services is underexplored. In this research, we used a process-based ecosystem model (Agro-IBIS) to quantify groundwater effects on eight ecosystem services related to food, water and biogeochemical processes in an urbanizing agricultural watershed in the Midwest, USA. We asked: (1) Which ecosystem services are more susceptible to shallow groundwater influences? (2) Do effects of groundwater on ecosystem services vary under contrasting climate conditions (i.e., dry, wet and average)? (3) Where on the landscape are groundwater effects on ecosystem services most pronounced? (4) How do groundwater effects depend on water table depth? Overall, groundwater significantly impacted all services studied, with the largest effects on food production, water quality and quantity, and flood regulation services. Climate also mediated groundwater effects with the strongest effects occurring under dry climatic conditions. There was substantial spatial heterogeneity in groundwater effects across the landscape that is driven in part by spatial variations in water table depth. Most ecosystem services responded nonlinearly to groundwater availability, with most apparent groundwater effects occurring when the water table is shallower than a critical depth of 2.5-m. Our findings provide compelling evidence that groundwater plays a vital

  18. Climate Services for Development

    Science.gov (United States)

    Saunby, M.; Bhaskaran, B.; Buontempo, C.; Willett, K.

    2010-09-01

    Working to improve the lives of the poorest people in the world is a huge challenge that has cost 2.3 trillion over the last 50 years. The work is far from done. Now there is also the challenge of adapting to changes in climate that threaten the very land on which the poorest live and work. There can be no simple plan to solve these problems, but those with information, knowledge or skills that could make a difference have a vital role to play. In this presentation we explore recent developments in communications technologies, the use of these technologies in assisting development in poorer countries, and how "open data" is enabling the rapid flow of information to those who need it most. Examples of recent Met Office projects and collaborations illustrate challenges faced and technical approaches already available. We pay particular attention to "feedback" - gathering information from end users throughout the entire lifetime of a service in order to best allocate resources and make rapid improvements in the quality, reach and benefits of climate services.

  19. Biophysical and Socioeconomic State and Links of Deltaic Areas Vulnerable to Climate Change: Volta (Ghana, Mahanadi (India and Ganges-Brahmaputra-Meghna (India and Bangladesh

    Directory of Open Access Journals (Sweden)

    Ignacio Cazcarro

    2018-03-01

    Full Text Available We examine the similarities and differences of specific deltaic areas in parallel, under the project DEltas, vulnerability and Climate Change: Migration and Adaptation (DECCMA. The main reason for studying Deltas is their potential vulnerability to climate change and sea level rise, which generates important challenges for livelihoods. We provide insights into the current socioeconomic and biophysical states of the Volta Delta (Ghana, Mahanadi Delta (India and Ganges-Brahmaputra-Meghna (India and Bangladesh. Hybrid methods of input-output (IO construction are used to develop environmentally extended IO models for comparing the economic characteristics of these delta regions with the rest of the country. The main sources of data for regionalization were country level census data, statistics and economic surveys and data on consumption, trade, agricultural production and fishing harvests. The Leontief demand-driven model is used to analyze land use in the agricultural sector of the Delta and to track the links with final demand. In addition, the Hypothetical Extraction Method is used to evaluate the importance of the hypothetical disappearance of a sector (e.g., agriculture. The results show that, in the case of the Indian deltas, more than 60% of the cropland and pasture land is devoted to satisfying demands from regions outside the delta. While in the case of the Bangladeshi and Ghanaian deltas, close to 70% of the area harvested is linked to internal demand. The results also indicate that the services, trade and transportation sectors represent 50% of the GDP in the deltas. Still, agriculture, an activity directly exposed to climate change, plays a relevant role in the deltas’ economies—we have estimated that the complete disappearance of this activity would entail GDP losses ranging from 18 to 32%.

  20. Seasonal and decadal information towards climate services: EUPORIAS

    Science.gov (United States)

    Buontempo, Carlo; Hewitt, Chris

    2013-04-01

    Societies have always faced challenges and opportunities arising from variations in climate, and have often flourished or collapsed depending on their ability to adapt to such changes. Recent advances in our understanding and ability to forecast climate variability and climate change have meant that skilful predictions are beginning to be routinely made on seasonal to decadal (s2d) timescales. Such forecasts have the potential to be of great value to a wide range of decision-making, where outcomes are strongly influenced by variations in the climate. The European Commission have recently commissioned a major four year long project (EUPORIAS) to develop prototype end-to-end climate impact prediction services operating on a seasonal to decadal timescale, and assess their value in informing decision-making. EUPORIAS commenced on 1 November 2012, coordinated by the UK Met Office leading a consortium of 24 organisations representing world-class European climate research and climate service centres, expertise in impacts assessments and seasonal predictions, two United Nations agencies, specialists in new media, and commercial companies in climate-vulnerable sectors such as energy, water and tourism. The paper describes the setup of the project, its main outcome and some of the very preliminary results.

  1. Climate services for society: origins, institutional arrangements, and design elements for an evaluation framework

    Science.gov (United States)

    Vaughan, Catherine; Dessai, Suraje

    2014-01-01

    Climate services involve the generation, provision, and contextualization of information and knowledge derived from climate research for decision making at all levels of society. These services are mainly targeted at informing adaptation to climate variability and change, widely recognized as an important challenge for sustainable development. This paper reviews the development of climate services, beginning with a historical overview, a short summary of improvements in climate information, and a description of the recent surge of interest in climate service development including, for example, the Global Framework for Climate Services, implemented by the World Meteorological Organization in October 2012. It also reviews institutional arrangements of selected emerging climate services across local, national, regional, and international scales. By synthesizing existing literature, the paper proposes four design elements of a climate services evaluation framework. These design elements include: problem identification and the decision-making context; the characteristics, tailoring, and dissemination of the climate information; the governance and structure of the service, including the process by which it is developed; and the socioeconomic value of the service. The design elements are intended to serve as a guide to organize future work regarding the evaluation of when and whether climate services are more or less successful. The paper concludes by identifying future research questions regarding the institutional arrangements that support climate services and nascent efforts to evaluate them. PMID:25798197

  2. Tales from the Jungle: The Evolving Climate Services Ecosystem

    Science.gov (United States)

    Redmond, K. T.

    2015-12-01

    In 2001 the NRC Report "A Climate Services Vision: First Steps Toward the Future" examined the state and trends of climate services. That report included a definition of this term that has lost no relevance: "The timely production and delivery of useful climate data, information, and knowledge to decision makers." The original entities delivering such services, at the state level, are represented by the American Association of State Climatologists (AASC). In 1986 the NOAA Regional Climate Center program was initiated, followed in 1994 by the NOAA Regional Climate Sciences and Assessments. Since 2010 we have seen the establishment of the USDI Climate Science Centers and the Landscape Conservation Cooperatives, the NOAA Regional Climate Service Directors, and the USDA Regional Climate Hubs. The recent expansion of formal programs has essentially filled out the agency "niche space." Other non-governmental and private entities are also expanding into this space. The present profusion runs a risk of creating a perception of excessive duplication in some quarters, including those funding these enterprises. Collectively these activities form what can be thought of as an ecosystem of climate services. A certain amount of replication is desirable, healthy, and necessary, but beyond some point can be excessive unless the total capacity remains insufficient. Each component has come into existence for a different set of reasons. Since these components were invented by human beings, their subsequent evolution can in theory be guided by humans. The history and purpose of each component needs to be borne in mind, with capsule descriptions suitable for rapid delivery to the decision-makers who approve the support for the various components. Good communication among the components is therefore essential for a healthy and functional overall system. This in turn calls for the ability to adequately represent the role of each of those components, a purpose best informed through actual

  3. MERRA Analytic Services: Meeting the Big Data Challenges of Climate Science through Cloud-Enabled Climate Analytics-as-a-Service

    Science.gov (United States)

    Schnase, J. L.; Duffy, D.; Tamkin, G. S.; Nadeau, D.; Thompson, J. H.; Grieg, C. M.; McInerney, M.; Webster, W. P.

    2013-12-01

    Climate science is a Big Data domain that is experiencing unprecedented growth. In our efforts to address the Big Data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS). We focus on analytics, because it is the knowledge gained from our interactions with Big Data that ultimately produce societal benefits. We focus on CAaaS because we believe it provides a useful way of thinking about the problem: a specialization of the concept of business process-as-a-service, which is an evolving extension of IaaS, PaaS, and SaaS enabled by Cloud Computing. Within this framework, Cloud Computing plays an important role; however, we see it as only one element in a constellation of capabilities that are essential to delivering climate analytics as a service. These elements are essential because in the aggregate they lead to generativity, a capacity for self-assembly that we feel is the key to solving many of the Big Data challenges in this domain. MERRA Analytic Services (MERRA/AS) is an example of cloud-enabled CAaaS built on this principle. MERRA/AS enables MapReduce analytics over NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) data collection. The MERRA reanalysis integrates observational data with numerical models to produce a global temporally and spatially consistent synthesis of 26 key climate variables. It represents a type of data product that is of growing importance to scientists doing climate change research and a wide range of decision support applications. MERRA/AS brings together the following generative elements in a full, end-to-end demonstration of CAaaS capabilities: (1) high-performance, data proximal analytics, (2) scalable data management, (3) software appliance virtualization, (4) adaptive analytics, and (5) a domain-harmonized API. The effectiveness of MERRA/AS has been demonstrated in several applications. In our experience, Cloud Computing lowers the barriers and risk to

  4. MERRA Analytic Services: Meeting the Big Data Challenges of Climate Science Through Cloud-enabled Climate Analytics-as-a-service

    Science.gov (United States)

    Schnase, John L.; Duffy, Daniel Quinn; Tamkin, Glenn S.; Nadeau, Denis; Thompson, John H.; Grieg, Christina M.; McInerney, Mark A.; Webster, William P.

    2014-01-01

    Climate science is a Big Data domain that is experiencing unprecedented growth. In our efforts to address the Big Data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS). We focus on analytics, because it is the knowledge gained from our interactions with Big Data that ultimately produce societal benefits. We focus on CAaaS because we believe it provides a useful way of thinking about the problem: a specialization of the concept of business process-as-a-service, which is an evolving extension of IaaS, PaaS, and SaaS enabled by Cloud Computing. Within this framework, Cloud Computing plays an important role; however, we it see it as only one element in a constellation of capabilities that are essential to delivering climate analytics as a service. These elements are essential because in the aggregate they lead to generativity, a capacity for self-assembly that we feel is the key to solving many of the Big Data challenges in this domain. MERRA Analytic Services (MERRAAS) is an example of cloud-enabled CAaaS built on this principle. MERRAAS enables MapReduce analytics over NASAs Modern-Era Retrospective Analysis for Research and Applications (MERRA) data collection. The MERRA reanalysis integrates observational data with numerical models to produce a global temporally and spatially consistent synthesis of 26 key climate variables. It represents a type of data product that is of growing importance to scientists doing climate change research and a wide range of decision support applications. MERRAAS brings together the following generative elements in a full, end-to-end demonstration of CAaaS capabilities: (1) high-performance, data proximal analytics, (2) scalable data management, (3) software appliance virtualization, (4) adaptive analytics, and (5) a domain-harmonized API. The effectiveness of MERRAAS has been demonstrated in several applications. In our experience, Cloud Computing lowers the barriers and risk to

  5. 2. biophysical work meeting

    International Nuclear Information System (INIS)

    1992-11-01

    The report comprises 18 papers held at the 2nd Biophysical Work Meeting, 11 - 13 September 1991 in Schlema, Germany. The history of biophysics in Germany particularly of radiation biophysics and radon research, measurements of the radiation effects of radon and the derivation of limits, radon balneotherapy and consequences of uranium ore mining are dealt with. (orig.) [de

  6. Benchmarking sensitivity of biophysical processes to leaf area changes in land surface models

    Science.gov (United States)

    Forzieri, Giovanni; Duveiller, Gregory; Georgievski, Goran; Li, Wei; Robestson, Eddy; Kautz, Markus; Lawrence, Peter; Ciais, Philippe; Pongratz, Julia; Sitch, Stephen; Wiltshire, Andy; Arneth, Almut; Cescatti, Alessandro

    2017-04-01

    Land surface models (LSM) are widely applied as supporting tools for policy-relevant assessment of climate change and its impact on terrestrial ecosystems, yet knowledge of their performance skills in representing the sensitivity of biophysical processes to changes in vegetation density is still limited. This is particularly relevant in light of the substantial impacts on regional climate associated with the changes in leaf area index (LAI) following the observed global greening. Benchmarking LSMs on the sensitivity of the simulated processes to vegetation density is essential to reduce their uncertainty and improve the representation of these effects. Here we present a novel benchmark system to assess model capacity in reproducing land surface-atmosphere energy exchanges modulated by vegetation density. Through a collaborative effort of different modeling groups, a consistent set of land surface energy fluxes and LAI dynamics has been generated from multiple LSMs, including JSBACH, JULES, ORCHIDEE, CLM4.5 and LPJ-GUESS. Relationships of interannual variations of modeled surface fluxes to LAI changes have been analyzed at global scale across different climatological gradients and compared with satellite-based products. A set of scoring metrics has been used to assess the overall model performances and a detailed analysis in the climate space has been provided to diagnose possible model errors associated to background conditions. Results have enabled us to identify model-specific strengths and deficiencies. An overall best performing model does not emerge from the analyses. However, the comparison with other models that work better under certain metrics and conditions indicates that improvements are expected to be potentially achievable. A general amplification of the biophysical processes mediated by vegetation is found across the different land surface schemes. Grasslands are characterized by an underestimated year-to-year variability of LAI in cold climates

  7. iRODS-Based Climate Data Services and Virtualization-as-a-Service in the NASA Center for Climate Simulation

    Science.gov (United States)

    Schnase, J. L.; Duffy, D. Q.; Tamkin, G. S.; Strong, S.; Ripley, D.; Gill, R.; Sinno, S. S.; Shen, Y.; Carriere, L. E.; Brieger, L.; Moore, R.; Rajasekar, A.; Schroeder, W.; Wan, M.

    2011-12-01

    Scientific data services are becoming an important part of the NASA Center for Climate Simulation's mission. Our technological response to this expanding role is built around the concept of specialized virtual climate data servers, repetitive cloud provisioning, image-based deployment and distribution, and virtualization-as-a-service. A virtual climate data server is an OAIS-compliant, iRODS-based data server designed to support a particular type of scientific data collection. iRODS is data grid middleware that provides policy-based control over collection-building, managing, querying, accessing, and preserving large scientific data sets. We have developed prototype vCDSs to manage NetCDF, HDF, and GeoTIF data products. We use RPM scripts to build vCDS images in our local computing environment, our local Virtual Machine Environment, NASA's Nebula Cloud Services, and Amazon's Elastic Compute Cloud. Once provisioned into these virtualized resources, multiple vCDSs can use iRODS's federation and realized object capabilities to create an integrated ecosystem of data servers that can scale and adapt to changing requirements. This approach enables platform- or software-as-a-service deployment of the vCDSs and allows the NCCS to offer virtualization-as-a-service, a capacity to respond in an agile way to new customer requests for data services, and a path for migrating existing services into the cloud. We have registered MODIS Atmosphere data products in a vCDS that contains 54 million registered files, 630TB of data, and over 300 million metadata values. We are now assembling IPCC AR5 data into a production vCDS that will provide the platform upon which NCCS's Earth System Grid (ESG) node publishes to the extended science community. In this talk, we describe our approach, experiences, lessons learned, and plans for the future.

  8. New horizons in Biophysics

    Science.gov (United States)

    2011-01-01

    This editorial celebrates the re-launch of PMC Biophysics previously published by PhysMath Central, in its new format as BMC Biophysics published by BioMed Central with an expanded scope and Editorial Board. BMC Biophysics will fill its own niche in the BMC series alongside complementary companion journals including BMC Bioinformatics, BMC Medical Physics, BMC Structural Biology and BMC Systems Biology. PMID:21595996

  9. Fundamental Concepts in Biophysics Volume 1

    CERN Document Server

    Jue, Thomas

    2009-01-01

    HANDBOOK OF MODERN BIOPHYSICS Series Editor Thomas Jue, PhD Handbook of Modern Biophysics brings current biophysics topics into focus, so that biology, medical, engineering, mathematics, and physical-science students or researchers can learn fundamental concepts and the application of new techniques in addressing biomedical challenges. Chapters explicate the conceptual framework of the physics formalism and illustrate the biomedical applications. With the addition of problem sets, guides to further study, and references, the interested reader can continue to explore independently the ideas presented. Volume I: Fundamental Concepts in Biophysics Editor Thomas Jue, PhD In Fundamental Concepts in Biophysics, prominent professors have established a foundation for the study of biophysics related to the following topics: Mathematical Methods in Biophysics Quantum Mechanics Basic to Biophysical Methods Computational Modeling of Receptor–Ligand Binding and Cellular Signaling Processes Fluorescence Spectroscopy Elec...

  10. Do it well and do it right: The impact of service climate and ethical climate on business performance and the boundary conditions.

    Science.gov (United States)

    Jiang, Kaifeng; Hu, Jia; Hong, Ying; Liao, Hui; Liu, Songbo

    2016-11-01

    Prior research has demonstrated that service climate can enhance unit performance by guiding employees' service behavior to satisfy customers. Extending this literature, we identified ethical climate toward customers as another indispensable organizational climate in service contexts and examined how and when service climate operates in conjunction with ethical climate to enhance business performance of service units. Based on data collected in 2 phases over 6 months from multiple sources of 196 movie theaters, we found that service climate and ethical climate had disparate impacts on business performance, operationalized as an index of customer attendance rate and operating income per labor hour, by enhancing service behavior and reducing unethical behavior, respectively. Furthermore, we found that service behavior and unethical behavior interacted to affect business performance, in such a way that service behavior was more positively related to business performance when unethical behavior was low than when it was high. This interactive effect between service and unethical behaviors was further strengthened by high market turbulence and competitive intensity. These findings provide new insight into theoretical development of service management and offer practical implications about how to maximize business performance of service units by managing organizational climates and employee behaviors synergistically. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Prototype development of user specific climate services

    Science.gov (United States)

    Jacob, Daniela

    2017-04-01

    Systematic consultations in the last years with representatives from sectors particularly affected by climate change have helped the Climate Service Center Germany (GERICS) to identify the most pressing needs of stakeholders from public and private sectors. Besides the development of innovative climate service products and methods, areas are also identified, for which intensive research activities have to be initiated. An example is the demand of decision makers for high-resolution climate change information needed at regional to local levels for their activities towards climate change adaptation. For questions concerning adaptation to climate change, no standard solutions can be provided. Different from mitigation measures, adaptation measures must be framed in accordance with the specific circumstances prevailing in the local situation. Here, individual solutions, which satisfy the individual requirements and needs, are necessary. They have to be developed in close co-operation with the customers and users. For example, the implications of climate change on strategic and operative decisions, e.g. in enterprises and urban planning, are becoming increasingly important. Therefore, high-quality consultancy for businesses and public administration is needed, in order to support decision makers in identifying associated risks and opportunities. For the development of prototype products, GERICS has framed a general methodological approach, including the idea generation, the iterative development, and the prototype testing in co-development with the user. High process transparency and high product quality are prerequisite for the success of a product. The co-development process ensures the best possible communication of user tailored climate change information for different target groups.

  12. Data records of biophysical products in the Copernicus Global Land Service

    Science.gov (United States)

    Bydekerke, L.; Smets, B.; Swinnen, E.; Lacaze, R. N.; Calvet, J. C.; Baret, F.; camacho De Coca, F.; Roujean, J. L.; Tansey, K.; Coelho, S.; Jann, A.; Paulik, C.; Verger, A.

    2014-12-01

    From 1stJanuary 2013, the Copernicus Global Land service provides continuously a set of bio-geophysical variables describing, over the whole globe, the vegetation dynamic, the energy budget at the continental surface and some components of the water cycle. These generic products serve numerous applications such as agriculture and food security monitoring, weather forecast, climate change impact studies, water, forest and natural resources management. The portfolio contains Essential Climate Variables like Leaf Area Index (LAI), the Fraction of PAR absorbed by the vegetation (FAPAR), surface albedo, Land Surface Temperature, soil moisture, burnt areas, areas of water bodies, and additional vegetation indices. They are generated daily on a reliable and automatic basis from Earth Observation satellite data. Beside this timely production, the available historical archives, up to 16 years for SPOT-VEGETATION, have been processed using the same innovative algorithms. For a number of ECVs, the algorithms are adapted to work with NOAA-AVHRR as input to extend the time series up to 1982. The service continuity is provided in two parallel paths. On one hand, the existing retrieval methodologies are adapted to use the new PROBA-V sensor, fully consistent with SPOT-VEGETATION, and as such extends the time-series at 1km spatial resolution. On the other hand, the operation is moving to the finer resolution of PROBA-V (300m), while maintaining consistency with the 1km series. The data records are documented in terms of the physical methodologies, the technical properties, and the results of validation exercises. The service performs a continuous quality monitoring on three levels: technical, scientific and cross-cutting, following where possible the rules of CEOS/LPV and comparing with both in-situ and other datasets, e.g. MODIS. The service is improved through feedback from an independent expert team performing regular independent reviews and providing user feedback. All

  13. Encyclopedia of biophysics

    CERN Document Server

    2013-01-01

    The Encyclopedia of Biophysics is envisioned both as an easily accessible source of information and as an introductory guide to the scientific literature. It includes entries describing both Techniques and Systems.  In the Techniques entries, each of the wide range of methods which fall under the heading of Biophysics are explained in detail, together with the value and the limitations of the information each provides. Techniques covered range from diffraction (X-ray, electron and neutron) through a wide range of spectroscopic methods (X-ray, optical, EPR, NMR) to imaging (from electron microscopy to live cell imaging and MRI), as well as computational and simulation approaches. In the Systems entries, biophysical approaches to specific biological systems or problems – from protein and nucleic acid structure to membranes, ion channels and receptors – are described. These sections, which place emphasis on the integration of the different techniques, therefore provide an inroad into Biophysics from a biolo...

  14. Sea Level Change and Coastal Climate Services: The Way Forward

    Directory of Open Access Journals (Sweden)

    Gonéri Le Cozannet

    2017-10-01

    Full Text Available For many climate change impacts such as drought and heat waves, global and national frameworks for climate services are providing ever more critical support to adaptation activities. Coastal zones are especially in need of climate services for adaptation, as they are increasingly threatened by sea level rise and its impacts, such as submergence, flooding, shoreline erosion, salinization and wetland change. In this paper, we examine how annual to multi-decadal sea level projections can be used within coastal climate services (CCS. To this end, we review the current state-of-the art of coastal climate services in the US, Australia and France, and identify lessons learned. More broadly, we also review current barriers in the development of CCS, and identify research and development efforts for overcoming barriers and facilitating their continued growth. The latter includes: (1 research in the field of sea level, coastal and adaptation science and (2 cross-cutting research in the area of user interactions, decision making, propagation of uncertainties and overall service architecture design. We suggest that standard approaches are required to translate relative sea level information into the forms required to inform the wide range of relevant decisions across coastal management, including coastal adaptation.

  15. NASA Cloud-Based Climate Data Services

    Science.gov (United States)

    McInerney, M. A.; Schnase, J. L.; Duffy, D. Q.; Tamkin, G. S.; Strong, S.; Ripley, W. D., III; Thompson, J. H.; Gill, R.; Jasen, J. E.; Samowich, B.; Pobre, Z.; Salmon, E. M.; Rumney, G.; Schardt, T. D.

    2012-12-01

    Cloud-based scientific data services are becoming an important part of NASA's mission. Our technological response is built around the concept of specialized virtual climate data servers, repetitive cloud provisioning, image-based deployment and distribution, and virtualization-as-a-service (VaaS). A virtual climate data server (vCDS) is an Open Archive Information System (OAIS) compliant, iRODS-based data server designed to support a particular type of scientific data collection. iRODS is data grid middleware that provides policy-based control over collection-building, managing, querying, accessing, and preserving large scientific data sets. We have deployed vCDS Version 1.0 in the Amazon EC2 cloud using S3 object storage and are using the system to deliver a subset of NASA's Intergovernmental Panel on Climate Change (IPCC) data products to the latest CentOS federated version of Earth System Grid Federation (ESGF), which is also running in the Amazon cloud. vCDS-managed objects are exposed to ESGF through FUSE (Filesystem in User Space), which presents a POSIX-compliant filesystem abstraction to applications such as the ESGF server that require such an interface. A vCDS manages data as a distinguished collection for a person, project, lab, or other logical unit. A vCDS can manage a collection across multiple storage resources using rules and microservices to enforce collection policies. And a vCDS can federate with other vCDSs to manage multiple collections over multiple resources, thereby creating what can be thought of as an ecosystem of managed collections. With the vCDS approach, we are trying to enable the full information lifecycle management of scientific data collections and make tractable the task of providing diverse climate data services. In this presentation, we describe our approach, experiences, lessons learned, and plans for the future.; (A) vCDS/ESG system stack. (B) Conceptual architecture for NASA cloud-based data services.

  16. Vulnerability to climate-induced changes in ecosystem services of boreal forests

    Science.gov (United States)

    Holmberg, Maria; Rankinen, Katri; Aalto, Tuula; Akujärvi, Anu; Nadir Arslan, Ali; Liski, Jari; Markkanen, Tiina; Mäkelä, Annikki; Peltoniemi, Mikko

    2016-04-01

    Boreal forests provide an array of ecosystem services. They regulate climate, and carbon, water and nutrient fluxes, and provide renewable raw material, food, and recreational possibilities. Rapid climate warming is projected for the boreal zone, and has already been observed in Finland, which sets these services at risk. MONIMET (LIFE12 ENV/FI/000409, 2.9.2013 - 1.9.2017) is a project funded by EU Life programme about Climate Change Indicators and Vulnerability of Boreal Zone Applying Innovative Observation and Modeling Techniques. The coordinating beneficiary of the project is the Finnish Meteorological Institute. Associated beneficiaries are the Natural Resources Institute Finland, the Finnish Environment Institute and the University of Helsinki. In the MONIMET project, we use state-of-the-art models and new monitoring methods to investigate the impacts of a warming climate on the provision of ecosystem services of boreal forests. This poster presents results on carbon storage in soil and assessment of drought indices, as a preparation for assessing the vulnerability of society to climate-induced changes in ecosystem services. The risk of decreasing provision of ecosystem services depends on the sensitivity of the ecosystem as well as its exposure to climate stress. The vulnerability of society, in turn, depends on the risk of decreasing provision of a certain service in combination with society's demand for that service. In the next phase, we will look for solutions to challenges relating to the quantification of the demand for ecosystem services and differences in spatial extent and resolution of the information on future supply and demand.

  17. Servant leadership, procedural justice climate, service climate, employee attitudes, and organizational citizenship behavior: a cross-level investigation.

    Science.gov (United States)

    Walumbwa, Fred O; Hartnell, Chad A; Oke, Adegoke

    2010-05-01

    This study tests the influence of servant leadership on 2 group climates, employee attitudes, and organizational citizenship behavior. Results from a sample of 815 employees and 123 immediate supervisors revealed that commitment to the supervisor, self-efficacy, procedural justice climate, and service climate partially mediated the relationship between servant leadership and organizational citizenship behavior. Cross-level interaction results revealed that procedural justice climate and positive service climate amplified the influence of commitment to the supervisor on organizational citizenship behavior. Implications of these results for theory and practice and directions for future research are discussed. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  18. Impacts of climate change on biodiversity, ecosystems, and ecosystem services: technical input to the 2013 National Climate Assessment

    Science.gov (United States)

    Staudinger, Michelle D.; Grimm, Nancy B.; Staudt, Amanda; Carter, Shawn L.; Stuart, F. Stuart; Kareiva, Peter; Ruckelshaus, Mary; Stein, Bruce A.

    2012-01-01

    Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This technical input to the National Climate Assessment synthesizes our scientific understanding of the way climate change is affecting biodiversity, ecosystems, ecosystem services, and what strategies might be employed to decrease current and future risks. Building on past assessments of how climate change and other stressors are affecting ecosystems in the United States and around the world, we approach the subject from several different perspectives. First, we review the observed and projected impacts on biodiversity, with a focus on genes, species, and assemblages of species. Next, we examine how climate change is affecting ecosystem structural elements—such as biomass, architecture, and heterogeneity—and functions—specifically, as related to the fluxes of energy and matter. People experience climate change impacts on biodiversity and ecosystems as changes in ecosystem services; people depend on ecosystems for resources that are harvested, their role in regulating the movement of materials and disturbances, and their recreational, cultural, and aesthetic value. Thus, we review newly emerging research to determine how human activities and a changing climate are likely to alter the delivery of these ecosystem services. This technical input also examines two cross-cutting topics. First, we recognize that climate change is happening against the backdrop of a wide range of other environmental and anthropogenic stressors, many of which have caused dramatic ecosystem degradation already. This broader range of stressors interacts with climate change, and complicates our abilities to predict and manage the impacts on biodiversity, ecosystems, and the services they support. The

  19. Evidence and implications of recent and projected climate change in Alaska's forest ecosystems

    Science.gov (United States)

    Wolken, Jane M.; Hollingsworth, Teresa N.; Rupp, T. Scott; Chapin, Stuart III; Trainor, Sarah F.; Barrett, Tara M.; Sullivan, Patrick F.; McGuire, A. David; Euskirchen, Eugénie S.; Hennon, Paul E.; Beever, Erik A.; Conn, Jeff S.; Crone, Lisa K.; D'Amore, David V.; Fresco, Nancy; Hanley, Thomas A.; Kielland, Knut; Kruse, James J.; Patterson, Trista; Schuur, Edward A.G.; Verbyla, David L.; Yarie, John

    2011-01-01

    The structure and function of Alaska's forests have changed significantly in response to a changing climate, including alterations in species composition and climate feedbacks (e.g., carbon, radiation budgets) that have important regional societal consequences and human feedbacks to forest ecosystems. In this paper we present the first comprehensive synthesis of climate-change impacts on all forested ecosystems of Alaska, highlighting changes in the most critical biophysical factors of each region. We developed a conceptual framework describing climate drivers, biophysical factors and types of change to illustrate how the biophysical and social subsystems of Alaskan forests interact and respond directly and indirectly to a changing climate. We then identify the regional and global implications to the climate system and associated socio-economic impacts, as presented in the current literature. Projections of temperature and precipitation suggest wildfire will continue to be the dominant biophysical factor in the Interior-boreal forest, leading to shifts from conifer- to deciduous-dominated forests. Based on existing research, projected increases in temperature in the Southcentral- and Kenai-boreal forests will likely increase the frequency and severity of insect outbreaks and associated wildfires, and increase the probability of establishment by invasive plant species. In the Coastal-temperate forest region snow and ice is regarded as the dominant biophysical factor. With continued warming, hydrologic changes related to more rapidly melting glaciers and rising elevation of the winter snowline will alter discharge in many rivers, which will have important consequences for terrestrial and marine ecosystem productivity. These climate-related changes will affect plant species distribution and wildlife habitat, which have regional societal consequences, and trace-gas emissions and radiation budgets, which are globally important. Our conceptual framework facilitates

  20. A Climate Information Portal for Copernicus: a central portal for European climate services?

    Science.gov (United States)

    Juckes, Martin; Swart, Rob; Thysse, Peter; Som de Cerff, Wim; Groot, Annemarie; Bennett, Victoria; Costa, Luis; Lückenkötter, Johannes; Callaghan, Sarah

    2015-04-01

    The FP7 project "Climate Information Portal for Copernicus" (CLIPC) is developing a demonstration portal for the Copernicus Climate Change Service (C3S). This project is one of a suite of FP7 research activities which are administratively independent of Copernicus, focussed on creating the technical and scientific building blocks needed for the service. It is to be expected that at EGU 2015 there will be many presentations describing portals delivering new and innovative ranges of services. It would be unwise to seek to replace all this creative activity with a single portal -- instead CLIPC is designing a portal to make distributed resources more accessible through flexible discovery systems. CLIPC needs to deliver more than a directory of resources: resources need to be presented in common protocols so that users can access multiple datasets. More information about the project objectives is available at www.clipc.eu. The gulf between the climate science communities and the end user communities is a central challenge being addressed in the project. It is important to understand that there is significant diversity and multiple communication barriers within these two sets of communities as well as between them. The CLIPC services must presentation will provide a review of progress towards this ambitious goal, through a discussion of user requirements activities, an overview of the proposed architecture, work on assessing and adjusting model biasses, and a discussion of the climate impact indicators which will be provided through the portal. When looking at the usability of data for the various users, CLIPC will implement a set of services functioning as a "knowledge base" supplying information to users about the data, including definitions of terminology used, quality of datasets, versioning, and user annotations.

  1. Global Framework for Climate Services (GFCS): status of implementation

    Science.gov (United States)

    Lucio, Filipe

    2015-04-01

    The World Climate Conference-3 (Geneva 2009) unanimously decided to establish the Global Framework for Climate Services (GFCS), a UN-led initiative spearheaded by WMO to guide the development and application of science-based climate information and services in support of decision-making in climate sensitive sectors. By promoting science-based decision-making, the GFCS is empowering governments, communities and companies to build climate resilience, reduce vulnerabilities and adapt to impacts. The initial priority areas of GFCS are Agriculture and Food Security; Disaster Risk Reduction; Health; and Water Resources. The implementation of GFCS is well underway with a governance structure now fully established. The governance structure of GFCS includes the Partner Advisory Committee (PAC), which is GFCS's stakeholder engagement mechanism. The membership of the PAC allows for a broad participation of stakeholders. The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the European Commission (EC), the Food and Agriculture Organization of the UN (FAO), the Global Water Partnership (GWP), the International Federation of Red Cross and Red Crescent Societies (IFRC), the International Union of Geodesy and Geophysics (IUGG), United Nations Environment Programme (UNEP), the United Nations Institute for Training and Research (UNITAR), the World Business Council for Sustainable Development (WBCSD), the World Food Programme (WFP) and WMO have already joined the PAC. Activities are being implemented in various countries in Africa, the Caribbean, Asia and Pacific Small Islands Developing States through flagship projects and activities in the four priority areas of GFCS to enable the development of a Proof of Concept. The focus at national level is on strengthening institutional capacities needed for development of capacities for co-design and co-production of climate services and their application in support of decision-making in climate sensitive

  2. The land management tool: Developing a climate service in Southwest UK

    Directory of Open Access Journals (Sweden)

    Pete Falloon

    2018-01-01

    Full Text Available Seasonal climate forecasts (SCFs have significant potential to support shorter-term agricultural decisions and longer-term climate adaptation plans, but uptake in Europe has to date been low. Under the European Union funded project, European Provision Of Regional Impacts Assessments on Seasonal and Decadal Timescales (EUPORIAS we have developed the Land Management Tool (LMTool, a prototype seasonal climate service for land managers, working closely in collaboration with two stakeholder organizations, Clinton Devon Estates (CDE and the National Farmers Union (NFU. LMTool was one of several prototype climate services selected for development within EUPORIAS, including those for the UK transport network, food security in Ethiopia, renewable energy production, hydroelectric energy production in Sweden, and river management in two French basins. The LMTool provides SCFs (1–3 months ahead to farmers in the Southwest UK, alongside 14-day site specific weather forecasts during the winter months when the skill of seasonal forecasts is greatest.We describe the processes through which the LMTool was co-designed and developed with the farmers, its technical development and key features; critically examine the lessons learned and their implications for providing future climate services for land managers; and finally assess the feasibility of delivering an operational winter seasonal climate service for UK land managers.A number of key learning points from developing the prototype may benefit future work in climate services for the land management and agriculture sector; many of these points are also valid for climate services in other sectors. Prototype development strongly benefitted from; working with intermediaries to identify representative, engaged land managers; an iterative and flexible process of co-design with the farmer group; and from an interdisciplinary project team. Further work is needed to develop a better understanding of the role of

  3. Assessment of the biophysical impacts of utility-scale photovoltaics through observations and modelling

    Science.gov (United States)

    Broadbent, A. M.; Georgescu, M.; Krayenhoff, E. S.; Sailor, D.

    2017-12-01

    Utility-scale solar power plants are a rapidly growing component of the solar energy sector. Utility-scale photovoltaic (PV) solar power generation in the United States has increased by 867% since 2012 (EIA, 2016). This expansion is likely to continue as the cost PV technologies decrease. While most agree that solar power can decrease greenhouse gas emissions, the biophysical effects of PV systems on surface energy balance (SEB), and implications for surface climate, are not well understood. To our knowledge, there has never been a detailed observational study of SEB at a utility-scale solar array. This study presents data from an eddy covariance observational tower, temporarily placed above a utility-scale PV array in Southern Arizona. Comparison of PV SEB with a reference (unmodified) site, shows that solar panels can alter the SEB and near surface climate. SEB observations are used to develop and validate a new and more complete SEB PV model. In addition, the PV model is compared to simpler PV modelling methods. The simpler PV models produce differing results to our newly developed model and cannot capture the more complex processes that influence PV SEB. Finally, hypothetical scenarios of PV expansion across the continental United States (CONUS) were developed using various spatial mapping criteria. CONUS simulations of PV expansion reveal regional variability in biophysical effects of PV expansion. The study presents the first rigorous and validated simulations of the biophysical effects of utility-scale PV arrays.

  4. Implementing climate change mitigation in health services: the importance of context.

    Science.gov (United States)

    Desmond, Sharon

    2016-10-01

    Academic interest in strategies to reduce the impact of health services on climate change is quickening. Research has largely focused on local innovations with little consideration of the contextual and systemic elements that influence sustainable development across health systems. A realistic framework specifically to guide decision-making by health care providers is still needed. To address this deficit, the literature is explored in relation to health services and climate change mitigation strategies, and the contextual factors that influence efforts to mitigate climate effects in health service delivery environments are highlighted. A conceptual framework is proposed that offers a model for the pursuit of sustainable development practice in health services. A set of propositions is advanced to provide a systems approach to assist decision-making by decoding the challenges faced in implementing sustainable health services. This has important implications for health care providers, funders and legislators since the financial, policy and regulatory environment of health care, along with its leadership and models of care generally conflict with carbon literacy and climate change mitigation strategies. © The Author(s) 2016.

  5. Conditions for a market uptake of climate services for adaptation in France

    Directory of Open Access Journals (Sweden)

    Romain Cavelier

    2017-04-01

    Full Text Available This perspective paper reports the results of a collaborative survey of French research institutes concerned with environmental issues, which examined the potential for a market uptake of climate services for adaptation in France. The study is based on a review of existing reports on the market of climate services, and on interviews of 68 climate service providers and users in public and private organizations. Although the study does not allow to provide quantified estimations regarding the present and future size of the market, its results offer new perspectives with implications extending far beyond the sole case of France: first, while the market is still in its infancy, significant opportunities exist in sectors such as flooding risks, and, to a slightly lesser extent, hydro and nuclear energy and viticulture. In addition, the study identifies critical conditions for the uptake in climate services: (1 a coordinated delivery of data, information, expertise and training by public research institutes concerned with climate change and its impacts; (2 the inclusion of adaptation in the regulation and in public and private tenders. Finally, (3 uncertainties in climate projections appear as a major barrier to the uptake of climate services. However, ambitious greenhouse gas emission reduction as planned by the COP-21 Paris Agreement contribute to reducing this uncertainties by allowing users to select a subset of climate change projections, avoiding those for which adaptation is most problematic.

  6. Chief, Structural Biophysics Laboratory | Center for Cancer Research

    Science.gov (United States)

    The SBL Chief is expected to establish a strong research program in structural biology/biophysics in addition to providing leadership of the SBL and the structural biology community in the NCI Intramural Program.  Applicants should hold a Ph.D., M.D./Ph.D., or equivalent doctoral degree in a relevant discipline, and should possess outstanding communication skills and documented leadership experience.  Tenured faculty or industrial scientists of equivalent rank with a demonstrated commitment to structural biophysics should apply.  Salary will be commensurate with experience and accomplishments.  This position is not restricted to U.S. citizens. A full civil service package of benefits (including health insurance, life insurance, and retirement) is available. This position is subject to a background investigation.  The NIH is dedicated to building a diverse community in its training and employment programs.

  7. Advanced Techniques in Biophysics

    CERN Document Server

    Arrondo, José Luis R

    2006-01-01

    Technical advancements are basic elements in our life. In biophysical studies, new applications and improvements in well-established techniques are being implemented every day. This book deals with advancements produced not only from a technical point of view, but also from new approaches that are being taken in the study of biophysical samples, such as nanotechniques or single-cell measurements. This book constitutes a privileged observatory for reviewing novel applications of biophysical techniques that can help the reader enter an area where the technology is progressing quickly and where a comprehensive explanation is not always to be found.

  8. European scale climate information services for water use sectors

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Donnelly, Chantal; Strömbäck, Lena; Capell, René; Ludwig, Fulco

    2015-01-01

    This study demonstrates a climate information service for pan-European water use sectors that are vulnerable to climate change induced hydrological changes, including risk and safety (disaster preparedness), agriculture, energy (hydropower and cooling water use for thermoelectric power) and

  9. Balancing trade-offs between ecosystem services in Germany’s forests under climate change

    Science.gov (United States)

    Gutsch, Martin; Lasch-Born, Petra; Kollas, Chris; Suckow, Felicitas; Reyer, Christopher P. O.

    2018-04-01

    Germany’s forests provide a variety of ecosystem services. Sustainable forest management aims to optimize the provision of these services at regional level. However, climate change will impact forest ecosystems and subsequently ecosystem services. The objective of this study is to quantify the effects of two alternative management scenarios and climate impacts on forest variables indicative of ecosystem services related to timber, habitat, water, and carbon. The ecosystem services are represented through nine model output variables (timber harvest, above and belowground biomass, net ecosystem production, soil carbon, percolation, nitrogen leaching, deadwood, tree dimension, broadleaf tree proportion) from the process-based forest model 4C. We simulated forest growth, carbon and water cycling until 2045 with 4C set-up for the whole German forest area based on National Forest Inventory data and driven by three management strategies (nature protection, biomass production and a baseline management) and an ensemble of regional climate scenarios (RCP2.6, RCP 4.5, RCP 8.5). We provide results as relative changes compared to the baseline management and observed climate. Forest management measures have the strongest effects on ecosystem services inducing positive or negative changes of up to 40% depending on the ecosystem service in question, whereas climate change only slightly alters ecosystem services averaged over the whole forest area. The ecosystem services ‘carbon’ and ‘timber’ benefit from climate change, while ‘water’ and ‘habitat’ lose. We detect clear trade-offs between ‘timber’ and all other ecosystem services, as well as synergies between ‘habitat’ and ‘carbon’. When evaluating all ecosystem services simultaneously, our results reveal certain interrelations between climate and management scenarios. North-eastern and western forest regions are more suitable to provide timber (while minimizing the negative impacts on remaining

  10. Overview of climate change adaptation platforms/services in Europe

    DEFF Research Database (Denmark)

    Street, Roger; Sanderson, Hans; Clare, Downing

    2015-01-01

    information on the nature and scope of the links between adaptation services, and climate services and disaster risk management services. The information provided covers the status and drivers for these links, how respective roles can be defined and relationships established, and how to enhance the quality...

  11. Open access to Water Indicators for Climate Change Adaptation: proof-of-concept for the Copernicus Climate Change Service (C3S)

    Science.gov (United States)

    Lottle, Lorna; Arheimer, Berit; Gyllensvärd, Frida; Dejong, Fokke; Ludwig, Fulco; Hutjes, Ronald; Martinez, Bernat

    2017-04-01

    Copernicus Climate Change Service (C3S) is still in the development phase and will combine observations of the climate system with the latest science to develop authoritative, quality-assured information about the past, current and future states of the climate and climate dependent sectors in Europe and worldwide. C3S will provide key indicators on climate change drivers and selected sectorial impacts. The aim of these indicators will be to support adaptation and mitigation. This presentation will show one service already operational as a proof-of-concept of this future climate service. The project "Service for Water Indicators in Climate Change Adaptation" (SWICCA) has developed a sectorial information service for water management. It offers readily available climate-impact data, for open access from the web-site http://swicca.climate.copernicus.eu/. The development is user-driven with the overall goal to speed up the workflow in climate-change adaptation of water management across Europe. The service is co-designed by consultant engineers and agencies in 15 case-studies spread out over the continent. SWICCA has an interactive user-interface, which shows maps and graphs, and facilitates data download in user-friendly formats. In total, more than 900 open dataset are given for various hydrometeorological (and a few socioeconomical) variables, model ensembles, resolutions, time-periods and RCPs. The service offers more than 40 precomputed climate impact indicators (CIIs) and transient time-series of 4 essential climate variables ECVs) with high spatial and temporal resolution. To facilitate both near future and far future assessments, SWICCA provides the indicators for different time ranges; normally, absolute values are given for a reference period (e.g. 1971-2000) and the expected future changes for different 30-year periods, such as early century (2011-2040), mid-century (2041-2070) and end-century (2071-2100). An ensemble of model results is always given to

  12. Projecting supply and demand of hydrologic ecosystem services under future climate conditions

    Science.gov (United States)

    Chiang, Li-Chi; Huang, Tao; Lee, Tsung-Yu

    2014-05-01

    Ecosystems provide essential goods and services, such as food, clean water, water purification, soil conservation and cultural services for human being. In a watershed, these water-related ecosystem goods and services can directly or indirectly benefit both local people and downstream beneficiaries through a reservoir. Water quality and quantity in a reservoir are of importance for agricultural, industrial and domestic uses. Under the impacts of climate and land use changes, both ecosystem service supply and demand will be affected by changes in precipitation patterns, temperature, urbanization and agricultural activities. However, the linkage between ecosystem service provisioning (ESP) and ecosystem service beneficiary (ESB), and scales of supply and demand of ecosystem services are not clear yet. Therefore, to investigate water-related ecosystem service supply under climate and land use change, we took the Xindian river watershed (303 km2) as a case study, where the Feitsui Reservoir provides hydro-power and daily domestic water use of 3,450,000 m3 for 3.46 million people in Taipei, Taiwan. We integrated a hydrological model (Soil and Water Assessment Tool, SWAT) and a land use change model (Conversion of Land Use and its Effects, CLUE-s) with future climate change scenarios derived from General Circulation Models (GCMs), to assess the changes in ecosystem service supply and demand at different hydrologic scales. The results will provide useful information for decision-making on future land use management and climate change adaptation strategies in the watersheds. Keywords: climate change, land use change, ecosystem service, watershed, scale

  13. Towards a climate service for the Tunisian tourism industry

    Science.gov (United States)

    Henia, Latifa; Hlaoui, Zouhaier

    2013-04-01

    Until today's Tunisia, there is little communication between generators of meteorological or climatological data and stakeholders in the tourism sector. However: - A recent survey shows that professionals in the tourism sector are aware of the importance of integrating relevant climate information in their tourism management and development strategies. - Tunisia has expertise in the field of meteorology and climatology which meets the demand of the tourism sector in relevant climate information. The program CLIM RUN has created a framework allowing the introduction of a climate service in the Tunisian tourism sector. It identified the needs of the sector in climate information as well as examined together with specialized services and trained researchers the possibility of responding to these needs. The "GREVACHOT" research unit based at the University of Tunis and partner of the CLIM RUN program has developed one of the products for which great demand was formulated by tourism stakeholders: this is climate-tourism comfort indices (ICT) at regional and local scales. We here present: - The Tunisian experience in identifying climate information needs of the tourism sector, - The approach method to the development, study, mapping of ICT and results.

  14. Using Copernicus earth observation services to monitor climate change impacts and adaptations

    Science.gov (United States)

    Becker, Daniel; Zebisch, Marc; Sonnenschein, Ruth; Schönthaler, Konstanze; von Andrian-Werburg, Stefan

    2016-04-01

    In the last years, earth observation made a big leap towards an operational monitoring of the state of environment. Remote sensing provides for instance information on the dynamics, trends and anomalies of snow and glaciers, vegetation, soil moisture or water temperature. In particular, the European Copernicus initiative offers new opportunities through new satellites with a higher temporal and spatial resolution, operational services for environmental monitoring and an open data access policy. With the Copernicus climate change service and the ESA climate change initiative, specific earth observation programs are in place to address the impacts of climate change. However, such products and services are until now rarely picked up in the field of policy or decision making oriented climate impact or climate risk assessments. In this talk, we will present results of a study, which focus on the question, if and how remote sensing approaches could be integrated into operational monitoring activities of climate impacts and response measures on a national and subnational scale. We assessed all existing and planned Copernicus services regarding their relevance for climate impact monitoring by comparing them against the indication fields from an indicator system for climate impact and response monitoring in Germany, which has lately been developed in the framework of the German national adaptation strategy. For several climate impact or response indicators, an immediate integration of remote sensing data could be identified and been recommended. For these cases, we will show practical examples on the benefit of remote sensing data. For other indication fields, promising approaches were found, which need further development. We argue that remote sensing is a very valuable complement to the existing indicator schemes by contributing with spatial explicit, timely information but not always easy to integrate with classical approaches, which are oriented towards consistent long

  15. Climate change and developing country interests

    DEFF Research Database (Denmark)

    Arndt, Channing; Chinowsky, Paul; Fant, Charles

    We consider the interplay of climate change impacts, global mitigation policies, and the interests of developing countries to 2050. Focusing on Malawi, Mozambique, and Zambia, we employ a structural approach to biophysical and economic modeling that incorporates climate uncertainty and allows for...

  16. Regional climate services: A regional partnership between NOAA and USDA

    Science.gov (United States)

    Climate services in the Midwest and Northern Plains regions have been enhanced by a recent addition of the USDA Climate Hubs to NOAA’s existing network of partners. This new partnership stems from the intrinsic variability of intra and inter-annual climatic conditions, which makes decision-making fo...

  17. Quantify the Biophysical and Socioeconomic Drivers of Changes in Forest and Agricultural Land in South and Southeast Asia

    Science.gov (United States)

    Xu, X.; Jain, A. K.; Calvin, K. V.

    2017-12-01

    Due to the rapid socioeconomic development and biophysical factors, South and Southeast Asia (SSEA) has become a hotspot region of land use and land cover changes (LULCCs) in past few decades. Uncovering the drivers of LULCC is crucial for improving the understanding of LULCC processes. Due to the differences from spatiotemporal scales, methods and data sources in previous studies, the quantitative relationships between the LULCC activities and biophysical and socioeconomic drivers at the regional scale of SSEA have not been established. Here we present a comprehensive estimation of the biophysical and socioeconomic drivers of the major LULCC activities in SSEA: changes in forest and agricultural land. We used the Climate Change Initiative land cover data developed by European Space Agency to reveal the dynamics of forest and agricultural land from 1992 to 2015. Then we synthesized 200 publications about LULCC drivers at different spatial scales in SSEA to identify the major drivers of these LULCC activities. Corresponding representative variables of the major drivers were collected. The geographically weighted regression was employed to assess the spatiotemporally heterogeneous drivers of LULCC. Moreover, we validated our results with some national level case studies in SSEA. The results showed that both biophysical conditions such as terrain, soil, and climate, and socioeconomic factors such as migration, poverty, and economy played important roles in driving the changes of forest and agricultural land. The major drivers varied in different locations and periods. Our study integrated the bottom-up knowledge from local scale case studies with the top-down estimation of LULCC drivers, therefore generated more accurate and credible results. The identified biophysical and socioeconomic components could be used to improve the LULCC modelling and projection.

  18. Drought propagation and its relation with catchment biophysical characteristics

    Science.gov (United States)

    Alvarez-Garreton, C. D.; Lara, A.; Garreaud, R. D.

    2016-12-01

    Droughts propagate in the hydrological cycle from meteorological to soil moisture to hydrological droughts. To understand the drivers of this process is of paramount importance since the economic and societal impacts in water resources are directly related with hydrological droughts (and not with meteorological droughts, which have been most studied). This research analyses drought characteristics over a large region and identify its main exogenous (climate forcing) and endogenous (biophysical characteristics such as land cover type and topography) explanatory factors. The study region is Chile, which covers seven major climatic subtypes according to Köppen system, it has unique geographic characteristics, very sharp topography and a wide range of landscapes and vegetation conditions. Meteorological and hydrological droughts (deficit in precipitation and streamflow, respectively) are characterized by their durations and standardized deficit volumes using a variable threshold method, over 300 representative catchments (located between 27°S and 50°S). To quantify the propagation from meteorological to hydrological drought, we propose a novel drought attenuation index (DAI), calculated as the ratio between the meteorological drought severity slope and the hydrological drought severity slope. DAI varies from zero (catchment that attenuates completely a meteorological drought) to one (the meteorological drought is fully propagated through the hydrological cycle). This novel index provides key (and comparable) information about drought propagation over a wide range of different catchments, which has been highlighted as a major research gap. Similar drought indicators across the wide range of catchments are then linked with catchment biophysical characteristics. A thorough compilation of land cover information (including the percentage of native forests, grass land, urban and industrial areas, glaciers, water bodies and no vegetated areas), catchment physical

  19. The foundation for climate services in Belgium: CORDEX.be

    Science.gov (United States)

    Van Schaeybroeck, Bert; Termonia, Piet; De Ridder, Koen; Fettweis, Xavier; Gobin, Anne; Luyten, Patrick; Marbaix, Philippe; Pottiaux, Eric; Stavrakou, Trissevgeni; Van Lipzig, Nicole; van Ypersele, Jean-Pascal; Willems, Patrick

    2017-04-01

    According to the Global Framework for Climate Services (GFCS) there are four pillars required to build climate services. As the first step towards the realization of a climate center in Belgium, the national project CORDEX.be focused on one pillar: research modelling and projection. By bringing together the Belgian climate and impact modeling research of nine groups a data-driven capacity development and community building in Belgium based on interactions with users. The project is based on the international CORDEX ("COordinated Regional Climate Downscaling Experiment") project where ".be" indicates it will go beyond for Belgium. Our national effort links to the regional climate initiatives through the contribution of multiple high-resolution climate simulations over Europe following the EURO-CORDEX guidelines. Additionally the same climate simulations were repeated at convection-permitting resolutions over Belgium (3 to 5 km). These were used to drive different local impact models to investigate the impact of climate change on urban effects, storm surges and waves, crop production and changes in emissions from vegetation. Akin to international frameworks such as CMIP and CORDEX a multi-model approach is adopted allowing for uncertainty estimation, a crucial aspect of climate projections for policy-making purposes. However, due to the lack of a large set of high resolution model runs, a combination of all available climate information is supplemented with the statistical downscaling approach. The organization of the project, together with its main results will be outlined. The proposed coordination framework could serve as a demonstration case for regions or countries where the climate-research capacity is present but a structure is required to assemble it coherently. Based on interactions and feedback with stakeholders different applications are planned, demonstrating the use of the climate data.

  20. Towards implementing climate services in Peru – The project CLIMANDES

    Directory of Open Access Journals (Sweden)

    G. Rosas

    2016-12-01

    The efforts accomplished within CLIMANDES improved the quality of the climate services provided by SENAMHI. The project hence contributed successfully to higher awareness and higher confidence in the climate information by SENAMHI.

  1. Academic Service Climate as a Source of Competitive Advantage: Leverage for University Administrators

    Science.gov (United States)

    Martin, Angela; Kennedy, Barbara; Stocks, Belinda

    2006-01-01

    The psychological climate literature examines links between facets of climate, such as service orientation and a range of individual and organisational outcomes including work attitudes and performance. This study investigated the relationship between the service climate of an Australian university and outcomes important to its key stakeholders. A…

  2. NOAA's Regional Climate Services Program: Building Relationships with Partners and Customers to Deliver Trusted Climate Information at Usable Scales

    Science.gov (United States)

    Mecray, E. L.; Dissen, J.

    2016-12-01

    Federal agencies across multiple sectors from transportation to health, emergency management and agriculture, are now requiring their key stakeholders to identify and plan for climate-related impacts. Responding to the drumbeat for climate services at the regional and local scale, the National Oceanic and Atmospheric Administration (NOAA) formed its Regional Climate Services (RCS) program to include Regional Climate Services Directors (RCSD), Regional Climate Centers, and state climatologists in a partnership. Since 2010, the RCS program has engaged customers across the country and amongst many of the nation's key economic sectors to compile information requirements, deliver climate-related products and services, and build partnerships among federal agencies and their regional climate entities. The talk will include a sketch from the Eastern Region that may shed light on the interaction of the multiple entities working at the regional scale. Additionally, we will show examples of our interagency work with the Department of Interior, the Department of Agriculture, and others in NOAA to deliver usable and trusted climate information and resources. These include webinars, print material, and face-to-face customer engagements to gather and respond to information requirements. NOAA/National Centers for Environmental Information's RCSDs work on-the-ground to learn from customers about their information needs and their use of existing tools and resources. As regional leads, the RCSDs work within NOAA and with our regional partners to ensure the customer receives a broad picture of the tools and information from across the nation.

  3. Combining satellite derived phenology with climate data for climate change impact assessment

    Science.gov (United States)

    Ivits, E.; Cherlet, M.; Tóth, G.; Sommer, S.; Mehl, W.; Vogt, J.; Micale, F.

    2012-05-01

    The projected influence of climate change on the timing and volume of phytomass production is expected to affect a number of ecosystem services. In order to develop coherent and locally effective adaptation and mitigation strategies, spatially explicit information on the observed changes is needed. Long-term variations of the vegetative growing season in different environmental zones of Europe for 1982-2006 have been derived by analysing time series of GIMMS NDVI data. The associations of phenologically homogenous spatial clusters to time series of temperature and precipitation data were evaluated. North-east Europe showed a trend to an earlier and longer growing season, particularly in the northern Baltic areas. Despite the earlier greening up large areas of Europe exhibited rather stable season length indicating the shift of the entire growing season to an earlier period. The northern Mediterranean displayed a growing season shift towards later dates while some agglomerations of earlier and shorter growing season were also seen. The correlation of phenological time series with climate data shows a cause-and-effect relationship over the semi natural areas consistent with results in literature. Managed ecosystems however appear to have heterogeneous change pattern with less or no correlation to climatic trends. Over these areas climatic trends seemed to overlap in a complex manner with more pronounced effects of local biophysical conditions and/or land management practices. Our results underline the importance of satellite derived phenological observations to explain local nonconformities to climatic trends for climate change impact assessment.

  4. Ecosystem service impacts of future changes in CO2, climate, and land use as simulated by a coupled vegetation/land-use model system

    Science.gov (United States)

    Rabin, S. S.; Alexander, P.; Henry, R.; Anthoni, P.; Pugh, T.; Rounsevell, M.; Arneth, A.

    2017-12-01

    In a future of increasing atmospheric carbon dioxide (CO2) concentrations, changing climate, increasing human populations, and changing socioeconomic dynamics, the global agricultural system will need to adapt in order to feed the world. Global modeling can help to explore what these adaptations will look like, and their potential impacts on ecosystem services. To do so, however, the complex interconnections among the atmosphere, terrestrial ecosystems, and society mean that these various parts of the Earth system must be examined as an interconnected whole. With the goal of answering these questions, a model system has been developed that couples a biologically-representative global vegetation model, LPJ-GUESS, with the PLUMv2 land use model. LPJ-GUESS first simulates—at 0.5º resolution across the world—the potential yield of various crops and pasture under a range of management intensities for a time step given its atmospheric CO2 level and climatic forcings. These potential yield simulations are fed into PLUMv2, which uses them in conjunction with endogenous agricultural commodity demand and prices to produce land use and management inputs (fertilizer and irrigation water) at a sub-national level for the next time step. This process is performed through 2100 for a range of future climate and societal scenarios—the Representative Concentration Pathways (RCPs) and the Shared Socioeconomic Pathways (SSPs), respectively—providing a thorough exploration of possible trajectories of land use and land cover change. The land use projections produced by PLUMv2 are fed back into LPJ-GUESS to simulate the future impacts of land use change, along with increasing CO2 and climate change, on terrestrial ecosystems. This integrated analysis examines the resulting impacts on regulating and provisioning ecosystem services affecting biophysics (albedo); carbon, nitrogen, and water cycling; and the emission of biogenic volatile organic compounds (BVOCs).

  5. Impact of bio-physical feedbacks on the tropical climate in coupled and uncoupled GCMs

    Science.gov (United States)

    Park, Jong-Yeon; Kug, Jong-Seong; Seo, Hyodae; Bader, Jürgen

    2014-10-01

    The bio-physical feedback process between the marine ecosystem and the tropical climate system is investigated using both an ocean circulation model and a fully-coupled ocean-atmosphere circulation model, which interact with a biogeochemical model. We found that the presence of chlorophyll can have significant impact on the characteristics of the El Niño-Southern Oscillation (ENSO), including its amplitude and asymmetry, as well as on the mean state. That is, chlorophyll generally increases mean sea surface temperature (SST) due to the direct biological heating. However, SST in the eastern equatorial Pacific decreases due to the stronger indirect dynamical response to the biological effects outweighing the direct thermal response. It is demonstrated that this biologically-induced SST cooling is intensified and conveyed to other tropical-ocean basins when atmosphere-ocean coupling is taken into account. It is also found that the presence of chlorophyll affects the magnitude of ENSO by two different mechanisms; one is an amplifying effect by the mean chlorophyll, which is associated with shoaling of the mean thermocline depth, and the other is a damping effect derived from the interactively-varying chlorophyll coupled with the physical model. The atmosphere-ocean coupling reduces the biologically-induced ENSO amplifying effect through the weakening of atmospheric feedback. Lastly, there is also a biological impact on ENSO which enhances the positive skewness. This skewness change is presumably caused by the phase dependency of thermocline feedback which affects the ENSO magnitude.

  6. Balancing tradeoffs: Reconciling multiple environmental goals when ecosystem services vary regionally

    Science.gov (United States)

    O’Connell, Christine S.; Carlson, Kimberly M.; Cuadra, Santiago; Feeley, Kenneth J.; Gerber, James; West, Paul C.; Polasky, Stephen

    2018-06-01

    As the planet’s dominant land use, agriculture often competes with the preservation of natural systems that provide globally and regionally important ecosystem services. How agriculture impacts ecosystem service delivery varies regionally, among services being considered, and across spatial scales. Here, we assess the tradeoffs between four ecosystem services—agricultural production, carbon storage, biophysical climate regulation, and biodiversity—using as a case study the Amazon, an active frontier of agricultural expansion. We find that the highest values for each of the ecosystem services are concentrated in different regions. Agricultural production potential and carbon storage are highest in the north and west, biodiversity greatest in the west, and climate regulation services most vulnerable to disruption in the south and east. Using a simple optimization model, we find that under scenarios of agricultural expansion that optimize total production across ecosystem services, small increases in priority for one ecosystem service can lead to reductions in other services by as much as 140%. Our results highlight the difficulty of managing landscapes for multiple environmental goals; the approach presented here can be adapted to guide value-laden conservation decisions and identify potential solutions that balance priorities.

  7. Organizational Climate, Services, and Outcomes in Child Welfare Systems

    Science.gov (United States)

    Glisson, Charles; Green, Philip

    2011-01-01

    Objective: This study examines the association of organizational climate, casework services, and youth outcomes in child welfare systems. Building on preliminary findings linking organizational climate to youth outcomes over a 3-year follow-up period, the current study extends the follow-up period to 7 years and tests main, moderating and…

  8. Leadership, organizational climate, and working alliance in a children's mental health service system.

    Science.gov (United States)

    Green, Amy E; Albanese, Brian J; Cafri, Guy; Aarons, Gregory A

    2014-10-01

    The goal of this study was to examine the relationships of transformational leadership and organizational climate with working alliance, in a children's mental health service system. Using multilevel structural equation modeling, the effect of leadership on working alliance was mediated by organizational climate. These results suggest that supervisors may be able to impact quality of care through improving workplace climate. Organizational factors should be considered in efforts to improve public sector services. Understanding these issues is important for program leaders, mental health service providers, and consumers because they can affect both the way services are delivered and ultimately, clinical outcomes.

  9. Minority Pre-service Teachers' and Faculty Training on Climate Change Education in Delaware State University

    Science.gov (United States)

    Ozbay, G.; Fox-Lykens, R.; Veron, D. E.; Rogers, M.; Merrill, J.; Harcourt, P.; Mead, H.

    2015-12-01

    Delaware State University is working toward infusing undergraduate education with climate change science and enhancing the climate change learning content of pre-service teacher preparation programs as part of the MADE-CLEAR project (www.madeclear.org). Faculty development workshops have been conducted to prepare and educate a cadre of faculty from different disciplines in global climate science literacy. Following the workshops, the faculty participants have integrated climate literacy tenets into their existing curriculum. Follow up meetings have helped the faculty members to use specific content in their curriculum such as greenhouse gases, atmospheric CO2, sea level rise, etc. Additional training provided to the faculty participants in pedagogical methods of climate change instruction to identify common misconceptions and barriers to student understanding. Some pre-service teachers were engaged in summer internships and learned how to become messenger of climate change science by the state parks staff during the summer. Workshops were offered to other pre-service teachers to teach them specific climate change topics with enhanced hands-on laboratory activities. The participants were provided examples of lesson plans and guided to develop their own lesson plans and present them. Various pedagogical methods have been explored for teaching climate change content to the participants. The pre-service teachers found the climate content very challenging and confusing. Training activities were modified to focus on targeted topics and modeling of pedagogical techniques for the faculty and pre-service teachers. Program evaluation confirms that the workshop participant show improved understanding of the workshop materials by the participants if they were introduced few climate topics. Learning how to use hands-on learning tools and preparing lesson plans are two of the challenges successfully implemented by the pre-service teachers. Our next activity includes pre-service

  10. Pre-Service Teachers and Climate Change: A Stalemate?

    Science.gov (United States)

    Boon, Helen J.

    2016-01-01

    Findings from the second phase of a study of pre-service teachers' attitudes to environmental education and knowledge of climate change are reported in this paper. A sample of 87 pre-service teachers participated in a survey study in the last year of their Bachelor of Education degree to examine developments to their attitudes to environmental…

  11. Climate Change and Socio-Hydrological Dynamics: Adaptations and Feedbacks

    Science.gov (United States)

    Woyessa, Yali E.; Welderufael, Worku A.

    2012-10-01

    A functioning ecological system results in ecosystem goods and services which are of direct value to human beings. Ecosystem services are the conditions and processes which sustain and fulfil human life, and maintain biodiversity and the production of ecosystem goods. However, human actions affect ecological systems and the services they provide through various activities, such as land use, water use, pollution and climate change. Climate change is perhaps one of the most important sustainable development challenges that threatens to undo many of the development efforts being made to reach the targets set for the Millennium Development Goals. Understanding the provision of ecosystem services and how they change under different scenarios of climate and biophysical conditions could assist in bringing the issue of ecosystem services into decision making process. Similarly, the impacts of land use change on ecosystems and biodiversity have received considerable attention from ecologists and hydrologists alike. Land use change in a catchment can impact on water supply by altering hydrological processes, such as infiltration, groundwater recharge, base flow and direct runoff. In the past a variety of models were used for predicting landuse changes. Recently, the focus has shifted away from using mathematically oriented models to agent-based modeling (ABM) approach to simulate land use scenarios. The agent-based perspective, with regard to land-use cover change, is centered on the general nature and rules of land-use decision making by individuals. A conceptual framework is developed to investigate the possibility of incorporating the human dimension of land use decision and climate change model into a hydrological model in order to assess the impact of future land use scenario and climate change on the ecological system in general and water resources in particular.

  12. Climate Products and Services to Meet the Challenges of Extreme Events

    Science.gov (United States)

    McCalla, M. R.

    2008-12-01

    The 2002 Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM1)-sponsored report, Weather Information for Surface Transportation: National Needs Assessment Report, addressed meteorological needs for six core modes of surface transportation: roadway, railway, transit, marine transportation/operations, pipeline, and airport ground operations. The report's goal was to articulate the weather information needs and attendant surface transportation weather products and services for those entities that use, operate, and manage America's surface transportation infrastructure. The report documented weather thresholds and associated impacts which are critical for decision-making in surface transportation. More recently, the 2008 Climate Change Science Program's (CCSP) Synthesis and Assessment Product (SAP) 4.7 entitled, Impacts of Climate Change and Variability on Transportation Systems and Infrastructure: Gulf Coast Study, Phase I, included many of the impacts from the OFCM- sponsored report in Table 1.1 of this SAP.2 The Intergovernmental Panel on Climate Change (IPCC) reported that since 1950, there has been an increase in the number of heat waves, heavy precipitation events, and areas of drought. Moreover, the IPCC indicated that greater wind speeds could accompany more severe tropical cyclones.3 Taken together, the OFCM, CCSP, and IPCC reports indicate not only the significance of extreme events, but also the potential increasing significance of many of the weather thresholds and associated impacts which are critical for decision-making in surface transportation. Accordingly, there is a real and urgent need to understand what climate products and services are available now to address the weather thresholds within the surface transportation arena. It is equally urgent to understand what new climate products and services are needed to address these weather thresholds, and articulate what can be done to fill the gap between the

  13. Towards a next generation of climate services scientists : The EUPORIAS Masterclass experience

    Science.gov (United States)

    Dell'Aquila, Alessandro; Buontempo, Carlo; Liggins, Felicity; Soares, Marta Bruno; De Felice, Matteo

    2017-04-01

    Climate service development require a new framework for the interaction between users and provider of climate information subverting the standard top down approach from academia to application. In the framework of EUPORIAS project two summer schools have been organized with the ambition to be a first step in the direction of co-production where new prototypes could be developed but, more importantly , where new protocol for interactions could be explain and presented in a hands-on fashion In this perspective, in May 2015 and May 2016 two climate service masterclass of EUPORIAS took place at EURAC's headquarters in Bolzano, Italy. The schools , aimed at professional and early career climate scientists, hosted students from 15 different countries. This first masterclass of the project focused on three key sectors: agriculture, tourism and energy, while the second one focused on health, water and food security. Alongside lectures delivered by speakers on disciplines as diverse as climate modelling, data visualisation and psychology from across Europe, Africa and Australia, the students were tasked with creating prototype climate services, in answer to real-life end-user requirements. The teams worked on case-studies from real end-users who were also at the school. It was tough going for some of the groups but we feel there is nothing more instructive than real end-user interactions to fully understand the complexity of climate service development. The quality of the students and by the insightful questions they asked has been really impressive. Whilst some mirrored discussions already active within the climate service community others were novel and revealed an interesting junior perspective to the field. Such a hands-on a formula worked well and suggests some possible new methodologies potentially transportable to other similar events.

  14. Representing climate change on public service television: A case study.

    Science.gov (United States)

    Debrett, Mary

    2017-05-01

    Publicly funded broadcasters with a track record in science programming would appear ideally placed to represent climate change to the lay public. Free from the constraints of vested interests and the economic imperative, public service providers are better equipped to represent the scientific, social and economic aspects of climate change than commercial media, where ownership conglomeration, corporate lobbyists and online competition have driven increasingly tabloid coverage with an emphasis on controversy. This prime-time snapshot of the Australian Broadcasting Corporation's main television channel explores how the structural/rhetorical conventions of three established public service genres - a science programme, a documentary and a live public affairs talk show - impact on the representation of anthropogenic climate change. The study findings note implications for public trust, and discuss possibilities for innovation in the interests of better public understanding of climate change.

  15. Biophysical pathology in cancer transformation

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jiří; Pokorný, Jan

    S1, Nov (2013), s. 1-9 ISSN 2324-9110 R&D Projects: GA ČR(CZ) GAP102/11/0649 Institutional support: RVO:68378271 ; RVO:67985882 Keywords : cancer biophysics * Warburg effect * reverse Warburg effect * biological electrodynamics * coherent states Subject RIV: BO - Biophysics

  16. Complementary or competing climates? Examining the interactive effect of service and ethical climates on company-level financial performance.

    Science.gov (United States)

    Myer, Adam T; Thoroughgood, Christian N; Mohammed, Susan

    2016-08-01

    By bending rules to please their customers, companies with high service climates may be less ethical but ultimately more profitable. In this article, we pose the question of whether being ethical comes at a cost to profits in customer-oriented firms. Despite the organizational reality that multiple climates coexist at a given time, research has largely ignored these types of questions, and the simultaneous analysis of multiple climate dimensions has received little empirical attention to date. Given their scientific and practical importance, this study tested complementary and conflicting perspectives regarding interactions between service (outcome-focused) and ethical (process-focused) climates on company-level financial performance. Drawing on a sample of 16,862 medical sales representatives spread across 77 subsidiary companies of a large multinational corporation in the health care product industry, we found support for a complementary view. More precisely, results revealed that profitability was enhanced, not diminished, in service-oriented firms that also stressed the importance of ethics. Results suggest studying the interactive effects of multiple climates is a more fruitful approach than examining main effects alone. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. The Regional Integrated Sciences and Assessments (RISA) Program, Climate Services, and Meeting the National Climate Change Adaptation Challenge

    Science.gov (United States)

    Overpeck, J. T.; Udall, B.; Miles, E.; Dow, K.; Anderson, C.; Cayan, D.; Dettinger, M.; Hartmann, H.; Jones, J.; Mote, P.; Ray, A.; Shafer, M.; White, D.

    2008-12-01

    The NOAA-led RISA Program has grown steadily to nine regions and a focus that includes both natural climate variability and human-driven climate change. The RISAs are, at their core, university-based and heavily invested in partnerships, particularly with stakeholders, NOAA, and other federal agencies. RISA research, assessment and partnerships have led to new operational climate services within NOAA and other agencies, and have become important foundations in the development of local, state and regional climate change adaptation initiatives. The RISA experience indicates that a national climate service is needed, and must include: (1) services prioritized based on stakeholder needs; (2) sustained, ongoing regional interactions with users, (3) a commitment to improve climate literacy; (4) support for assessment as an ongoing, iterative process; (5) full recognition that stakeholder decisions are seldom made using climate information alone; (6) strong interagency partnership; (7) national implementation and regional in focus; (8) capability spanning local, state, tribal, regional, national and international space scales, and weeks to millennia time scales; and (9) institutional design and scientific support flexible enough to assure the effort is nimble enough to respond to rapidly-changing stakeholder needs. The RISA experience also highlights the central role that universities must play in national climate change adaptation programs. Universities have a tradition of trusted regional stakeholder partnerships, as well as the interdisciplinary expertise - including social science, ecosystem science, law, and economics - required to meet stakeholder climate-related needs; project workforce can also shift rapidly in universities. Universities have a proven ability to build and sustain interagency partnerships. Universities excel in most forms of education and training. And universities often have proven entrepreneurship, technology transfer and private sector

  18. Emotional climate of a pre-service science teacher education class in Bhutan

    Science.gov (United States)

    Rinchen, Sonam; Ritchie, Stephen M.; Bellocchi, Alberto

    2016-09-01

    This study explored pre-service secondary science teachers' perceptions of classroom emotional climate in the context of the Bhutanese macro-social policy of Gross National Happiness. Drawing upon sociological perspectives of human emotions and using Interaction Ritual Theory this study investigated how pre-service science teachers may be supported in their professional development. It was a multi-method study involving video and audio recordings of teaching episodes supported by interviews and the researcher's diary. Students also registered their perceptions of the emotional climate of their classroom at 3-minute intervals using audience response technology. In this way, emotional events were identified for video analysis. The findings of this study highlighted that the activities pre-service teachers engaged in matter to them. Positive emotional climate was identified in activities involving students' presentations using video clips and models, coteaching, and interactive whole class discussions. Decreases in emotional climate were identified during formal lectures and when unprepared presenters led presentations. Emotions such as frustration and disappointment characterized classes with negative emotional climate. The enabling conditions to sustain a positive emotional climate are identified. Implications for sustaining macro-social policy about Gross National Happiness are considered in light of the climate that develops in science teacher education classes.

  19. Towards a Local-Scale Climate Service for Colombian Agriculture: Findings and Future Perspectives

    Science.gov (United States)

    Ramirez-Villegas, J.; Prager, S.; Llanos, L.; Agudelo, D.; Esquivel, A.; Sotelo, S.; Guevara, E.; Howland, F. C.; Munoz, A.; Rodriguez, J.; Ordonez, L.; Fernandes, K.

    2017-12-01

    Globally, interannual climate variability explains roughly a third of the yield variation for major crops. In Colombia, interannual climate variations and specially those driven by ENSO can disrupt production, lower farmers' incomes and increase market prices for both urban and rural consumers alike. Farmers in Colombia, however, often plan for the cropping season based on the immediately prior year's experience, which is unlikely to result in successful crops under high climate variability events. Critical decisions for avoiding total investment loss or to ensure successful harvests, including issues related to planting date, what variety to plant, or whether to plant, are made, at best, intuitively. Here, we demonstrate that the combination of better data, skillful seasonal climate forecasts, calibrated crop models, and a web-based climate services platform tailored to users' needs can prove successful in establishing a sustained climate service for agriculture. Rainfall predictability analyses indicate that statistical seasonal climate forecasts are skillful enough for issuing forecasts reliably in virtually all areas, with dry periods generally showing greater predictability than wet periods. Importantly, we find that a better specification of predictor regions significantly enhances seasonal forecast skill. Rice and maize crop models capture well the growth and development of rice and maize crops in experimental settings, and ably simulate historical (1980-2014) variations in productivity. With skillful climate and crop models, we developed a climate services platform that produces seasonal climate forecasts, and connects these with crop models. A usability study of the forecast platform revealed that, from a population of ca. 200 farmers and professionals, roughly two thirds correctly interpreted information and felt both confident and encouraged to use the platform. Nevertheless, capacity strengthening on key agro-climatology concepts was highlighted by

  20. eSACP - a new Nordic initiative towards developing statistical climate services

    Science.gov (United States)

    Thorarinsdottir, Thordis; Thejll, Peter; Drews, Martin; Guttorp, Peter; Venälainen, Ari; Uotila, Petteri; Benestad, Rasmus; Mesquita, Michel d. S.; Madsen, Henrik; Fox Maule, Cathrine

    2015-04-01

    The Nordic research council NordForsk has recently announced its support for a new 3-year research initiative on "statistical analysis of climate projections" (eSACP). eSACP will focus on developing e-science tools and services based on statistical analysis of climate projections for the purpose of helping decision-makers and planners in the face of expected future challenges in regional climate change. The motivation behind the project is the growing recognition in our society that forecasts of future climate change is associated with various sources of uncertainty, and that any long-term planning and decision-making dependent on a changing climate must account for this. At the same time there is an obvious gap between scientists from different fields and between practitioners in terms of understanding how climate information relates to different parts of the "uncertainty cascade". In eSACP we will develop generic e-science tools and statistical climate services to facilitate the use of climate projections by decision-makers and scientists from all fields for climate impact analyses and for the development of robust adaptation strategies, which properly (in a statistical sense) account for the inherent uncertainty. The new tool will be publically available and include functionality to utilize the extensive and dynamically growing repositories of data and use state-of-the-art statistical techniques to quantify the uncertainty and innovative approaches to visualize the results. Such a tool will not only be valuable for future assessments and underpin the development of dedicated climate services, but will also assist the scientific community in making more clearly its case on the consequences of our changing climate to policy makers and the general public. The eSACP project is led by Thordis Thorarinsdottir, Norwegian Computing Center, and also includes the Finnish Meteorological Institute, the Norwegian Meteorological Institute, the Technical University of Denmark

  1. The Virtual Climate Data Server (vCDS): An iRODS-Based Data Management Software Appliance Supporting Climate Data Services and Virtualization-as-a-Service in the NASA Center for Climate Simulation

    Science.gov (United States)

    Schnase, John L.; Tamkin, Glenn S.; Ripley, W. David III; Stong, Savannah; Gill, Roger; Duffy, Daniel Q.

    2012-01-01

    Scientific data services are becoming an important part of the NASA Center for Climate Simulation's mission. Our technological response to this expanding role is built around the concept of a Virtual Climate Data Server (vCDS), repetitive provisioning, image-based deployment and distribution, and virtualization-as-a-service. The vCDS is an iRODS-based data server specialized to the needs of a particular data-centric application. We use RPM scripts to build vCDS images in our local computing environment, our local Virtual Machine Environment, NASA s Nebula Cloud Services, and Amazon's Elastic Compute Cloud. Once provisioned into one or more of these virtualized resource classes, vCDSs can use iRODS s federation capabilities to create an integrated ecosystem of managed collections that is scalable and adaptable to changing resource requirements. This approach enables platform- or software-asa- service deployment of vCDS and allows the NCCS to offer virtualization-as-a-service: a capacity to respond in an agile way to new customer requests for data services.

  2. Modelling benthic biophysical drivers of ecosystem structure and biogeochemical response

    Science.gov (United States)

    Stephens, Nicholas; Bruggeman, Jorn; Lessin, Gennadi; Allen, Icarus

    2016-04-01

    The fate of carbon deposited at the sea floor is ultimately decided by biophysical drivers that control the efficiency of remineralisation and timescale of carbon burial in sediments. Specifically, these drivers include bioturbation through ingestion and movement, burrow-flushing and sediment reworking, which enhance vertical particulate transport and solute diffusion. Unfortunately, these processes are rarely satisfactorily resolved in models. To address this, a benthic model that explicitly describes the vertical position of biology (e.g., habitats) and biogeochemical processes is presented that includes biological functionality and biogeochemical response capturing changes in ecosystem structure, benthic-pelagic fluxes and biodiversity on inter-annual timescales. This is demonstrated by the model's ability to reproduce temporal variability in benthic infauna, vertical pore water nutrients and pelagic-benthic solute fluxes compared to in-situ data. A key advance is the replacement of bulk parameterisation of bioturbation by explicit description of the bio-physical processes responsible. This permits direct comparison with observations and determination of key parameters in experiments. Crucially, the model resolves the two-way interaction between sediment biogeochemistry and ecology, allowing exploration of the benthic response to changing environmental conditions, the importance of infaunal functional traits in shaping benthic ecological structure and the feedback the resulting bio-physical processes exert on pore water nutrient profiles. The model is actively being used to understand shelf sea carbon cycling, the response of the benthos to climatic change, food provision and other societal benefits.

  3. Critical Studies on Integrating Land-Use Induced Effects on Climate Regulation Services into Impact Assessment for Human Well-Being

    Directory of Open Access Journals (Sweden)

    Zhihui Li

    2013-01-01

    Full Text Available It is commonly acknowledged that land use changes (LUC and climate changes have exerted significant effects on ecosystem services which are essential and vital to human well-being. Among all the services provided by ecosystem, climate regulation services are relatively sensitive to LUC and climate changes. This study aims to comprehensively review studies on the complex effects of LUC and climate changes on climate regulation services and further integrates the effects on climate regulation services into impact assessment for human well-being. In this study, we firstly introduced research efforts in which the drivers of and their corresponding effects on climate regulation services are briefly identified. Then, we explicitly reviewed the researches on the effects of LUC and climate changes on climate regulation services, especially focused on the certain methods and models used to quantify the effects on the major drivers of climate regulation services. After that, the effects of LUC and climate changes on human well-being via climate regulation services were revisited and commented accordingly. Finally, this paper discussed the current research gaps and proposed some research prospects in future studies.

  4. Simulated Local and Remote Biophysical Effects of Afforestation over the Southeast United States in Boreal Summer

    Science.gov (United States)

    Guang-Shan Chen; Michael Notaro; Zhengyu Liu; Yongqiang Liu

    2012-01-01

    Afforestation has been proposed as a climate change mitigation strategy by sequestrating atmospheric carbon dioxide. With the goal of increasing carbon sequestration, a Congressional project has been planned to afforest about 18 million acres by 2020 in the Southeast United States (SEUS), the Great Lake states, and the Corn Belt states. However, biophysical feedbacks...

  5. Replacing natural wetlands with stormwater management facilities: Biophysical and perceived social values.

    Science.gov (United States)

    Rooney, R C; Foote, L; Krogman, N; Pattison, J K; Wilson, M J; Bayley, S E

    2015-04-15

    Urban expansion replaces wetlands of natural origin with artificial stormwater management facilities. The literature suggests that efforts to mimic natural wetlands in the design of stormwater facilities can expand the provision of ecosystem services. Policy developments seek to capitalize on these improvements, encouraging developers to build stormwater wetlands in place of stormwater ponds; however, few have compared the biophysical values and social perceptions of these created wetlands to those of the natural wetlands they are replacing. We compared four types of wetlands: natural references sites, natural wetlands impacted by agriculture, created stormwater wetlands, and created stormwater ponds. We anticipated that they would exhibit a gradient in biodiversity, ecological integrity, chemical and hydrologic stress. We further anticipated that perceived values would mirror measured biophysical values. We found higher biophysical values associated with wetlands of natural origin (both reference and agriculturally impacted). The biophysical values of stormwater wetlands and stormwater ponds were lower and indistinguishable from one another. The perceived wetland values assessed by the public differed from the observed biophysical values. This has important policy implications, as the public are not likely to perceive the loss of values associated with the replacement of natural wetlands with created stormwater management facilities. We conclude that 1) agriculturally impacted wetlands provide biophysical values equivalent to those of natural wetlands, meaning that land use alone is not a great predictor of wetland value; 2) stormwater wetlands are not a substantive improvement over stormwater ponds, relative to wetlands of natural origin; 3) stormwater wetlands are poor mimics of natural wetlands, likely due to fundamental distinctions in terms of basin morphology, temporal variation in hydrology, ground water connectivity, and landscape position; 4) these

  6. New Strategies in the New Millennium: Servant Leadership As Enhancer of Service Climate and Customer Service Performance

    Directory of Open Access Journals (Sweden)

    Jorge Linuesa-Langreo

    2017-05-01

    Full Text Available In a world in which customers are increasingly looking for solutions to their own concerns on how to make a better globalized world, new organizational strategies are emerging to approach the customer in the current third millennium. Servant leadership, which involves putting employees’ needs first and serving the broader society, is emerging as a new strategic mechanism to approach the customer in line with the new social values-driven Marketing 3.0 era. Yet research has ignored the role and the various mechanisms servant leadership might utilize to improve customer service performance of their service units. Spanning 185 hotels located in Spain, a sample of 247 service units –in close contact with customers– was used to investigate whether servant leadership enhances customer service performance through shaping a service climate within the service unit. Results revealed that service climate mediates the positive influence of servant leadership on customer service performance. Managers can use these findings to note the value of leading the service unit in a servant friendly direction, which is better aligned with the new aspirations of customers today.

  7. New Strategies in the New Millennium: Servant Leadership As Enhancer of Service Climate and Customer Service Performance.

    Science.gov (United States)

    Linuesa-Langreo, Jorge; Ruiz-Palomino, Pablo; Elche-Hortelano, Dioni

    2017-01-01

    In a world in which customers are increasingly looking for solutions to their own concerns on how to make a better globalized world, new organizational strategies are emerging to approach the customer in the current third millennium. Servant leadership, which involves putting employees' needs first and serving the broader society, is emerging as a new strategic mechanism to approach the customer in line with the new social values-driven Marketing 3.0 era. Yet research has ignored the role and the various mechanisms servant leadership might utilize to improve customer service performance of their service units. Spanning 185 hotels located in Spain, a sample of 247 service units -in close contact with customers- was used to investigate whether servant leadership enhances customer service performance through shaping a service climate within the service unit. Results revealed that service climate mediates the positive influence of servant leadership on customer service performance. Managers can use these findings to note the value of leading the service unit in a servant friendly direction, which is better aligned with the new aspirations of customers today.

  8. New Strategies in the New Millennium: Servant Leadership As Enhancer of Service Climate and Customer Service Performance

    Science.gov (United States)

    Linuesa-Langreo, Jorge; Ruiz-Palomino, Pablo; Elche-Hortelano, Dioni

    2017-01-01

    In a world in which customers are increasingly looking for solutions to their own concerns on how to make a better globalized world, new organizational strategies are emerging to approach the customer in the current third millennium. Servant leadership, which involves putting employees’ needs first and serving the broader society, is emerging as a new strategic mechanism to approach the customer in line with the new social values-driven Marketing 3.0 era. Yet research has ignored the role and the various mechanisms servant leadership might utilize to improve customer service performance of their service units. Spanning 185 hotels located in Spain, a sample of 247 service units –in close contact with customers– was used to investigate whether servant leadership enhances customer service performance through shaping a service climate within the service unit. Results revealed that service climate mediates the positive influence of servant leadership on customer service performance. Managers can use these findings to note the value of leading the service unit in a servant friendly direction, which is better aligned with the new aspirations of customers today. PMID:28559873

  9. Evaluating impacts of climate change on future water scarcity in an intensively managed semi-arid region using a coupled model of biophysical processes and water rights

    Science.gov (United States)

    Han, B.; Flores, A. N.; Benner, S. G.

    2017-12-01

    In semiarid and arid regions where water supply is intensively managed, future water scarcity is a product of complex interactions between climate change and human activities. Evaluating future water scarcity under alternative scenarios of climate change, therefore, necessitates modeling approaches that explicitly represent the coupled biophysical and social processes responsible for the redistribution of water in these regions. At regional scales a particular challenge lies in adequately capturing not only the central tendencies of change in projections of climate change, but also the associated plausible range of variability in those projections. This study develops a framework that combines a stochastic weather generator, historical climate observations, and statistically downscaled General Circulation Model (GCM) projections. The method generates a large ensemble of daily climate realizations, avoiding deficiencies of using a few or mean values of individual GCM realizations. Three climate change scenario groups reflecting the historical, RCP4.5, and RCP8.5 future projections are developed. Importantly, the model explicitly captures the spatiotemporally varying irrigation activities as constrained by local water rights in a rapidly growing, semi-arid human-environment system in southwest Idaho. We use this modeling framework to project water use and scarcity patterns under the three future climate change scenarios. The model is built using the Envision alternative futures modeling framework. Climate projections for the region show future increases in both precipitation and temperature, especially under the RCP8.5 scenario. The increase of temperature has a direct influence on the increase of the irrigation water use and water scarcity, while the influence of increased precipitation on water use is less clear. The predicted changes are potentially useful in identifying areas in the watershed particularly sensitive to water scarcity, the relative importance of

  10. Cooperation on Climate Services in the Binational Rio Grande/Bravo Basin

    Science.gov (United States)

    Garfin, G. M.; Shafer, M. A.; Brown, D. P.

    2013-12-01

    The Rio Grande/Bravo River Basin (RGB) of the United States and México is exposed to tornadoes, severe storms, hurricanes, winter storms, wildfire, and drought. The combination of these weather and climate-related hazards has resulted in impacts, such as wildfire, crop loss, water supply reduction, and flooding, with exceedingly high economic costs ($13 billion in 2011). In order to contribute to increased binational information flow and knowledge exchange in the region, we have developed a prototype quarterly bilingual RGB Climate Outlook, in PDF, supplemented by Twitter messages and Facebook posts. The goal of the project is to improve coordination between institutions in the U.S. and Mexico, increase awareness about climate variations, their impacts and costs to society, and build capacity for enhanced hazard preparedness. The RGB Outlook features a synthesis of climate products, impact data and analysis, is expressed in user-friendly language, and relies substantially on visual communication in contrast to text. The RGB Outlook is co-produced with colleagues in the U.S. and Mexico, in conjunction with the North American Climate Services Partnership (NACSP) and NOAA's regional climate services program. NACSP is a tri-national initiative to develop and deliver drought-based climate services in order to assist water resource managers, agricultural interests, and other constituents as they prepare for future drought events and build capacity to respond to other climate extremes. The RGB Climate Outlook builds on lessons learned from the Climate Assessment for the Southwest (CLIMAS) Southwest Climate Outlook (PDF, html), La Niña Drought Tracker (PDF, html), the Southern Climate Impacts Policy Program (SCIPP) Managing Drought in the Southern Plains webinar series, the Border Climate Summary (PDF), and Transborder Climate newsletter (PDF) and webinar series. The latter two have been the only regularly occurring bilingual climate information products in the U

  11. Climate Change Impacts on Ecosystem Services in High Mountain Areas: A Literature Review

    Directory of Open Access Journals (Sweden)

    Ignacio Palomo

    2017-05-01

    Full Text Available High mountain areas are experiencing some of the earliest and greatest impacts of climate change. However, knowledge on how climate change impacts multiple ecosystem services that benefit different stakeholder groups remains scattered in the literature. This article presents a review of the literature on climate change impacts on ecosystem services benefiting local communities and tourists in high mountain areas. Results show a lack of studies focused on the global South, especially where there are tropical glaciers, which are likely to be the first to disappear. Climate change impacts can be classified as impacts on food and feed, water availability, natural hazards regulation, spirituality and cultural identity, aesthetics, and recreation. In turn, climate change impacts on infrastructure and accessibility also affect ecosystem services. Several of these impacts are a direct threat to the lives of mountain peoples, their livelihoods and their culture. Mountain tourism is experiencing abrupt changes too. The magnitude of impacts make it necessary to strengthen measures to adapt to climate change in high mountain areas.

  12. Biophysical applications of satellite remote sensing

    CERN Document Server

    Hanes, Jonathan

    2014-01-01

    Including an introduction and historical overview of the field, this comprehensive synthesis of the major biophysical applications of satellite remote sensing includes in-depth discussion of satellite-sourced biophysical metrics such as leaf area index.

  13. Mathematical biophysics

    CERN Document Server

    Rubin, Andrew

    2014-01-01

    This book presents concise descriptions and analysis of the classical and modern models used in mathematical biophysics. The authors ask the question "what new information can be provided by the models that cannot be obtained directly from experimental data?" Actively developing fields such as regulatory mechanisms in cells and subcellular systems and electron transport and energy transport in membranes are addressed together with more classical topics such as metabolic processes, nerve conduction and heart activity, chemical kinetics, population dynamics, and photosynthesis. The main approach is to describe biological processes using different mathematical approaches necessary to reveal characteristic features and properties of simulated systems. With the emergence of powerful mathematics software packages such as MAPLE, Mathematica, Mathcad, and MatLab, these methodologies are now accessible to a wide audience. Provides succinct but authoritative coverage of a broad array of biophysical topics and models Wr...

  14. Historical and Critical Review on Biophysical Economics

    Science.gov (United States)

    Adigüzel, Yekbun

    2016-07-01

    Biophysical economics is initiated with the long history of the relation of economics with ecological basis and biophysical perspectives of the physiocrats. It inherently has social, economic, biological, environmental, natural, physical, and scientific grounds. Biological entities in economy like the resources, consumers, populations, and parts of production systems, etc. could all be dealt by biophysical economics. Considering this wide scope, current work is a “biophysical economics at a glance” rather than a comprehensive review of the full range of topics that may just be adequately covered in a book-length work. However, the sense of its wide range of applications is aimed to be provided to the reader in this work. Here, modern approaches and biophysical growth theory are presented after the long history and an overview of the concepts in biophysical economics. Examples of the recent studies are provided at the end with discussions. This review is also related to the work by Cleveland, “Biophysical Economics: From Physiocracy to Ecological Economics and Industrial Ecology” [C. J. Cleveland, in Advances in Bioeconomics and Sustainability: Essay in Honor of Nicholas Gerogescu-Roegen, eds. J. Gowdy and K. Mayumi (Edward Elgar Publishing, Cheltenham, England, 1999), pp. 125-154.]. Relevant parts include critics and comments on the presented concepts in a parallelized fashion with the Cleveland’s work.

  15. System and Method for Providing a Climate Data Analytic Services Application Programming Interface Distribution Package

    Science.gov (United States)

    Schnase, John L. (Inventor); Duffy, Daniel Q. (Inventor); Tamkin, Glenn S. (Inventor)

    2016-01-01

    A system, method and computer-readable storage devices for providing a climate data analytic services application programming interface distribution package. The example system can provide various components. The system provides a climate data analytic services application programming interface library that enables software applications running on a client device to invoke the capabilities of a climate data analytic service. The system provides a command-line interface that provides a means of interacting with a climate data analytic service by issuing commands directly to the system's server interface. The system provides sample programs that call on the capabilities of the application programming interface library and can be used as templates for the construction of new client applications. The system can also provide test utilities, build utilities, service integration utilities, and documentation.

  16. OpenClimateGIS - A Web Service Providing Climate Model Data in Commonly Used Geospatial Formats

    Science.gov (United States)

    Erickson, T. A.; Koziol, B. W.; Rood, R. B.

    2011-12-01

    The goal of the OpenClimateGIS project is to make climate model datasets readily available in commonly used, modern geospatial formats used by GIS software, browser-based mapping tools, and virtual globes.The climate modeling community typically stores climate data in multidimensional gridded formats capable of efficiently storing large volumes of data (such as netCDF, grib) while the geospatial community typically uses flexible vector and raster formats that are capable of storing small volumes of data (relative to the multidimensional gridded formats). OpenClimateGIS seeks to address this difference in data formats by clipping climate data to user-specified vector geometries (i.e. areas of interest) and translating the gridded data on-the-fly into multiple vector formats. The OpenClimateGIS system does not store climate data archives locally, but rather works in conjunction with external climate archives that expose climate data via the OPeNDAP protocol. OpenClimateGIS provides a RESTful API web service for accessing climate data resources via HTTP, allowing a wide range of applications to access the climate data.The OpenClimateGIS system has been developed using open source development practices and the source code is publicly available. The project integrates libraries from several other open source projects (including Django, PostGIS, numpy, Shapely, and netcdf4-python).OpenClimateGIS development is supported by a grant from NOAA's Climate Program Office.

  17. Representing biophysical landscape interactions in soil models by bridging disciplines and scales.

    Science.gov (United States)

    van der Ploeg, M. J.; Carranza, C.; Teixeira da Silva, R.; te Brake, B.; Baartman, J.; Robinson, D.

    2017-12-01

    The combination of climate change, population growth and soil threats including carbon loss, biodiversity decline and erosion, increasingly confront the global community (Schwilch et al., 2016). One major challenge in studying processes involved in soil threats, landscape resilience, ecosystem stability, sustainable land management and resulting economic consequences, is that it is an interdisciplinary field (Pelletier et al., 2012). Less stringent scientific disciplinary boundaries are therefore important (Liu et al., 2007), because as a result of disciplinary focus, ambiguity may arise on the understanding of landscape interactions. This is especially true in the interaction between a landscape's physical and biological processes (van der Ploeg et al. 2012). Biophysical landscape interactions are those biotic and abiotic processes in a landscape that have an influence on the developments within and evolution of a landscape. An important aspect in biophysical landscape interactions is the differences in scale related to the various processes that play a role in these systems. Moreover, the interplay between the physical landscape and the occurring vegetation, which often co-evolve, and the resulting heterogeneity and emerging patterns are the reason why it is so challenging to establish a theoretical basis to describe biophysical processes in landscapes (e.g. te Brake et al. 2013, Robinson et al. 2016). Another complicating factor is the response of vegetation to changing environmental conditions, including a possible, and often unknown, time-lag (e.g. Metzger et al., 2009). An integrative description for modelling biophysical interactions has been a long standing goal in soil science (Vereecken et al., 2016). We need the development of soil models that are more focused on networks, connectivity and feedbacks incorporating the most important aspects of our detailed mechanistic modelling (Paola & Leeder, 2011). Additionally, remote sensing measurement techniques

  18. Employees as Customers: Exploring Service Climate, Employee Patronage, and Turnover

    Science.gov (United States)

    Abston, Kristie A.; Kupritz, Virginia W.

    2011-01-01

    The role of retail employees as customers was explored by quantitatively examining the influence of service climate and employee patronage on employee turnover intentions. Employees representing all shifts in two stores of a national retailer participated. Results indicated that employee patronage partially mediates the effects of service climate…

  19. Biophysical landscape interactions: Bridging disciplines and scale with connectivity

    Science.gov (United States)

    van der Ploeg, Martine; Baartman, Jantiene; Robinson, David

    2017-04-01

    concepts of biophysical landscape interactions are needed to evaluate soil water availability in relation to the stability of natural vegetation, especially in the perspective of soil threats, population growth, climate change, and global water scarcity. An integrated concept can only be established by bridging the gap between several disciplines, but needs to be appealing to those disciplines at the same time. As evidence suggests interdisciplinary work is more challenging to get funded [6]. The key aspect of the connectivity concept is that it can create pathways for feedbacks which are so often missing in soil and water models. Connectivity could thus play an important role in bridging disciplines and scales. [1] Schwilch G, Bernet L. Fleskens L, Giannakis E, Leventon J, Marañón T, Mills J, Short C, Stolte J, van Delden H, Verzandvoort S. 2016. Operationalizing ecosystem services for the mitigation of soil threats: A proposed framework. Ecological Indicators 67: 586-597,doi:10.1016/j.ecolind.2016.03.016 [2] Pelletier JD, DeLong SB, Orem CA, Becerra P, Compton K, Gressett K, Lyons-Baral J, McGuire LA, Molaro JL, Spinler JCCF. 2012. How do vegetation bands form in dry lands? Insights from numerical modeling and field studies in southern Nevada, USA. Journal of Geophysical Research: Earth Surface 117: F04026,doi:10.1029/2012JF002465 [3] Liu J, Dietz T, Carpenter SR, Alberti M, Folke C, Moran E, ..., Ostrom E. 2007. Complexity of coupled human and natural systems. Science 317.5844: 1513-1516,doi:10.1126/science.1144004 [4] Cook BJ, Hauer FR. 2007. Effects of hydrologic connectivity on water chemistry, soils, and vegetation structure and function in an intermontane depressional wetland landscape. Wetlands 27.3: 719-738,doi:10.1672/0277-5212(2007)27 [5] Roth K. 2008. Scaling of water flow through porous media and soils. European journal of soil science, 59(1), 125-130, doi: 10.1111/j.1365-2389.2007.00986.x [6] Bromham, L, Dinnage R, Hua X. 2016. Interdisciplinary research

  20. Pre-service teacher professional development on climate change: Assessment of workshop success and influence of prior knowledge

    Science.gov (United States)

    Veron, D. E.; Ad-Marbach, G.; Fox-Lykens, R.; Ozbay, G.; Sezen-Barrie, A.; Wolfson, J.

    2017-12-01

    As states move to adopt the next generation science standards, in-service teachers are being provided with professional development that introduces climate change content and best practices for teaching climate change in the classroom. However, research has shown that it is challenging to bring this information into the higher education curriculum in education courses for pre-service teachers due to curricular and programming constraints. Over two years, the Maryland and Delaware Climate Change Assessment and Research (MADE-CLEAR) project explored a professional development approach for pre-service teachers which employed paired workshops that resulted in participant-developed lesson plans based on climate change content. The workshops were designed to provide pre-service teachers with climate change content related to the carbon cycle and to model a variety of techniques and activities for presenting this information in the classroom. Lesson plans were developed between the first and second workshop, presented at the second workshop and discussed with peers and in-service teachers, and then revised in response to feedback from the second workshop. Participant climate change content knowledge was assessed before the first workshop, and after the final revision of the lesson plan was submitted to the MADE-CLEAR team. Climate content knowledge was also assessed using the same survey for additional pre-service teacher groups who did not participate in the professional development. Results show that while the paired workshop approach increased climate content knowledge, the amount of improvement varied depending on the participants' prior knowledge in climate change content. In addition, some alternate conceptions of climate change were not altered by participant involvement in the professional development approach. Revised lesson plans showed understanding of underlying climate change impacts and demonstrated awareness of appropriate techniques for introducing this

  1. Multi-agent agro-economic simulation of irrigation water demand with climate services for climate change adaptation

    Directory of Open Access Journals (Sweden)

    Stefano Balbi

    2013-09-01

    Full Text Available Farmers’ irrigation practices play a crucial role in the sustainability of crop production and water consumption, and in the way they deal with the current and future effects of climate change. In this study, a system dynamic multi-agent model adopting the soil water balance provided by the Food and Agriculture Organization (FAO Irrigation and Drainage Paper 56 was developed to explore how farmers’ decision making may affect future water needs and use with a focus on the role of climate services, i.e. forecasts and insurance. A climatic projection record representing the down-scaled A1B market scenario (a balance across all sources of the assessment report of the Intergovernmental Panel on Climate Change (IPCC is used to produce future daily data about relative humidity, precipitation, temperature and wind speed. Two types of meteorological services are made available: i a bi-weekly bulletin; and ii seasonal forecasts. The precision of these services was altered to represent different conditions, from perfect knowledge to poor forecasts. Using the available forecasts, farming agents take adaptation decisions concerning crop allocation and irrigation management on the basis of their own risk attitudes. Farmers’ attitudes are characterized by fuzzy classifications depending on age, relative income and crop profitability. Farming agents’ adaptation decisions directly affect the crop and irrigation parameters, which in turn affect future water needs on a territorial level. By incorporating available and future meteorological services, the model allows the farmer’s decision making-process to be explored together with the consequent future irrigation water demand for the period 2015 to 2030. The model prototype is applied to a data set of the Venice Lagoon Watershed, an area of 2038 km2 in north-east Italy, for a preliminary test of its performance and to design future development objectives.

  2. Adapting to Climate Change through Improved Watershed ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    With greater demand for water in agriculture, industry, and tourism, the country must ... and climate change impacts, are compromising water quality and availability, ... affecting socio-economic and biophysical vulnerability in the watershed.

  3. Social justice in climate services: Engaging African American farmers in the American South

    Directory of Open Access Journals (Sweden)

    C. Furman

    2014-01-01

    Full Text Available This article contributes to efforts to develop more inclusive climate services, understood as institutional arrangements and processes that generate and disseminate science-based climate information to promote improved preparedness to climate impacts. Discussion on equity in climate services tends to focus on the specific challenges of women and the poor in developing countries. We seek to broaden this scope by considering a farming population in the southern United States, whose particular circumstances are shaped by rural poverty as well as by racial discrimination, namely African American farmers. The research is based on a phone survey, in-depth interviews, and a workshop, and was conducted in collaboration with a civil right organization that helped the research team gain trust and entry to this community. The findings show that farmers in this study are vulnerable to drought given their relatively limited access to resources and risk management mechanisms. Climate forecasts can help these farmers move from coping strategies to deal with the effects of climate anomalies to proactive planning to anticipate and mitigate those effects. Research participants were able to identify a range of options for using such information in risk management decisions. Provision of climate services to African American farmers, however, must be consistent with existing patterns of knowledge management. These patterns are shaped by major trends stemming from the transformation of rural Southern life. Social networks of mutual assistance and knowledge transmission have been eroded by the outmigration of African American farmers from rural areas. Additionally, their relationship with public agencies is marred by a legacy of racial inequities, which makes it difficult for well-meaning projects involving the same agencies to establish legitimacy in this community. We discuss how insights from research findings and research process have guided programmatic efforts

  4. Climate change adaptation planning for the Skeena region of British Columbia, Canada: A combined biophysical modelling, social science, and community engagement approach

    Science.gov (United States)

    Melton, J. R.; Kaplan, J. O.; Matthews, R.; Sydneysmith, R.; Tesluk, J.; Piggot, G.; Robinson, D. C.; Brinkman, D.; Marmorek, D.; Cohen, S.; McPherson, K.

    2011-12-01

    The Skeena region of British Columbia, Canada is among the world's most important commercial forest production areas, a key transportation corridor, and provides critical habitat for salmon and other wildlife. Climate change compounds threats to the region from other local environmental and social challenges. To aid local communities in adaptive planning for future climate change impacts, our project combined biophysical modelling, social science, and community engagement in a participatory approach to build regional capacity to prepare and respond to climate change. The sociological aspect of our study interviewed local leaders and resource managers (both First Nations and settlers groups in three communities) to examine how perceptions of environmental and socioeconomic issues have changed in the recent past, and the values placed on diverse natural resources at the present. The three communities differed in their perception of the relative value and condition of community resources, such as small business, natural resource trade, education and local government. However, all three communities regarded salmon as their most important and threatened resource. The most important future drivers of change in the study region were perceived to be: "aboriginal rights, title and treaty settlements", "availability of natural resources", "natural resource policies", and the "global economy". Climate change, as a potential driver of change in the region, was perceived as less important than other socio-economic factors; even though climate records for the region already demonstrate warmer winters, decreased snowfall, and decreased spring precipitation over the last half century. The natural science component of our project applies a regional-scale dynamic vegetation model (LPJ-GUESS) to simulate the potential future of forest ecosystems, with a focus on how climate change and management strategy interact to influence forest productivity, disturbance frequency, species

  5. Theoretical Molecular Biophysics

    CERN Document Server

    Scherer, Philipp

    2010-01-01

    "Theoretical Molecular Biophysics" is an advanced study book for students, shortly before or after completing undergraduate studies, in physics, chemistry or biology. It provides the tools for an understanding of elementary processes in biology, such as photosynthesis on a molecular level. A basic knowledge in mechanics, electrostatics, quantum theory and statistical physics is desirable. The reader will be exposed to basic concepts in modern biophysics such as entropic forces, phase separation, potentials of mean force, proton and electron transfer, heterogeneous reactions coherent and incoherent energy transfer as well as molecular motors. Basic concepts such as phase transitions of biopolymers, electrostatics, protonation equilibria, ion transport, radiationless transitions as well as energy- and electron transfer are discussed within the frame of simple models.

  6. Biophysics an introduction

    CERN Document Server

    Cotteril, Rodney

    2002-01-01

    Biophysics: An Introduction, is a concise balanced introduction to this subject. Written in an accessible and readable style, the book takes a fresh, modern approach with the author successfully combining key concepts and theory with relevant applications and examples drawn from the field as a whole. Beginning with a brief introduction to the origins of biophysics, the book takes the reader through successive levels of complexity, from atoms to molecules, structures, systems and ultimately to the behaviour of organisms. The book also includes extensive coverage of biopolymers, biomembranes, biological energy, and nervous systems. The text not only explores basic ideas, but also discusses recent developments, such as protein folding, DNA/RNA conformations, molecular motors, optical tweezers and the biological origins of consciousness and intelligence.

  7. Transforming Service Employees and Climate: A Multilevel, Multisource Examination of Transformational Leadership in Building Long-Term Service Relationships

    Science.gov (United States)

    Liao, Hui; Chuang, Aichia

    2007-01-01

    This longitudinal field study integrates the theories of transformational leadership (TFL) and relationship marketing to examine how TFL influences employee service performance and customer relationship outcomes by transforming both (at the micro level) the service employees' attitudes and (at the macro level) the work unit's service climate.…

  8. Remote sensing of the Canadian Arctic: Modelling biophysical variables

    Science.gov (United States)

    Liu, Nanfeng

    It is anticipated that Arctic vegetation will respond in a variety of ways to altered temperature and precipitation patterns expected with climate change, including changes in phenology, productivity, biomass, cover and net ecosystem exchange. Remote sensing provides data and data processing methodologies for monitoring and assessing Arctic vegetation over large areas. The goal of this research was to explore the potential of hyperspectral and high spatial resolution multispectral remote sensing data for modelling two important Arctic biophysical variables: Percent Vegetation Cover (PVC) and the fraction of Absorbed Photosynthetically Active Radiation (fAPAR). A series of field experiments were conducted to collect PVC and fAPAR at three Canadian Arctic sites: (1) Sabine Peninsula, Melville Island, NU; (2) Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, NU; and (3) Apex River Watershed (ARW), Baffin Island, NU. Linear relationships between biophysical variables and Vegetation Indices (VIs) were examined at different spatial scales using field spectra (for the Sabine Peninsula site) and high spatial resolution satellite data (for the CBAWO and ARW sites). At the Sabine Peninsula site, hyperspectral VIs exhibited a better performance for modelling PVC than multispectral VIs due to their capacity for sampling fine spectral features. The optimal hyperspectral bands were located at important spectral features observed in Arctic vegetation spectra, including leaf pigment absorption in the red wavelengths and at the red-edge, leaf water absorption in the near infrared, and leaf cellulose and lignin absorption in the shortwave infrared. At the CBAWO and ARW sites, field PVC and fAPAR exhibited strong correlations (R2 > 0.70) with the NDVI (Normalized Difference Vegetation Index) derived from high-resolution WorldView-2 data. Similarly, high spatial resolution satellite-derived fAPAR was correlated to MODIS fAPAR (R2 = 0.68), with a systematic

  9. Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape.

    Science.gov (United States)

    Qiu, Jiangxiao; Carpenter, Stephen R; Booth, Eric G; Motew, Melissa; Zipper, Samuel C; Kucharik, Christopher J; Chen, Xi; Loheide, Steven P; Seifert, Jenny; Turner, Monica G

    2018-01-01

    Sustaining food production, water quality, soil retention, flood, and climate regulation in agricultural landscapes is a pressing global challenge given accelerating environmental changes. Scenarios are stories about plausible futures, and scenarios can be integrated with biophysical simulation models to explore quantitatively how the future might unfold. However, few studies have incorporated a wide range of drivers (e.g., climate, land-use, management, population, human diet) in spatially explicit, process-based models to investigate spatial-temporal dynamics and relationships of a portfolio of ecosystem services. Here, we simulated nine ecosystem services (three provisioning and six regulating services) at 220 × 220 m from 2010 to 2070 under four contrasting scenarios in the 1,345-km 2 Yahara Watershed (Wisconsin, USA) using Agro-IBIS, a dynamic model of terrestrial ecosystem processes, biogeochemistry, water, and energy balance. We asked (1) How does ecosystem service supply vary among alternative future scenarios? (2) Where on the landscape is the provision of ecosystem services most susceptible to future social-ecological changes? (3) Among alternative future scenarios, are relationships (i.e., trade-offs, synergies) among food production, water, and biogeochemical services consistent over time? Our results showed that food production varied substantially with future land-use choices and management, and its trade-offs with water quality and soil retention persisted under most scenarios. However, pathways to mitigate or even reverse such trade-offs through technological advances and sustainable agricultural practices were apparent. Consistent relationships among regulating services were identified across scenarios (e.g., trade-offs of freshwater supply vs. flood and climate regulation, and synergies among water quality, soil retention, and climate regulation), suggesting opportunities and challenges to sustaining these services. In particular, proactive

  10. Many-objective robust decision making for water allocation under climate change

    NARCIS (Netherlands)

    Yan, Dan; Ludwig, Fulco; Huang, He Qing; Werners, Saskia E.

    2017-01-01

    Water allocation is facing profound challenges due to climate change uncertainties. To identify adaptive water allocation strategies that are robust to climate change uncertainties, a model framework combining many-objective robust decision making and biophysical modeling is developed for large

  11. Irrigation Requirement Estimation Using Vegetation Indices and Inverse Biophysical Modeling

    Science.gov (United States)

    Bounoua, Lahouari; Imhoff, Marc L.; Franks, Shannon

    2010-01-01

    We explore an inverse biophysical modeling process forced by satellite and climatological data to quantify irrigation requirements in semi-arid agricultural areas. We constrain the carbon and water cycles modeled under both equilibrium, balance between vegetation and climate, and non-equilibrium, water added through irrigation. We postulate that the degree to which irrigated dry lands vary from equilibrium climate conditions is related to the amount of irrigation. The amount of water required over and above precipitation is considered as an irrigation requirement. For July, results show that spray irrigation resulted in an additional amount of water of 1.3 mm per occurrence with a frequency of 24.6 hours. In contrast, the drip irrigation required only 0.6 mm every 45.6 hours or 46% of that simulated by the spray irrigation. The modeled estimates account for 87% of the total reported irrigation water use, when soil salinity is not important and 66% in saline lands.

  12. Creating an enabling environment for investment in climate services: The case of Uruguay’s National Agricultural Information System

    Directory of Open Access Journals (Sweden)

    Catherine Vaughan

    2017-12-01

    Full Text Available Increasingly challenged by climate variability and change, many of the world’s governments have turned to climate services as a means to improve decision making and mitigate climate-related risk. While there have been some efforts to evaluate the economic impact of climate services, little is known about the contexts in which investments in climate services have taken place. An understanding of the factors that enable climate service investment is important for the development of climate services at local, national and international levels. This paper addresses this gap by investigating the context in which Uruguay’s Ministry of Livestock, Agriculture and Fisheries invested in and developed its National System of Agriculture Information (SNIA, a national-level climate service for the agriculture sector. Using qualitative research methods, the paper uses key documents and 43 interviews to identify six factors that have shaped the decision to invest in the SNIA: (1 Uruguay’s focus on sustainable agricultural intensification; (2 previous work on climate change adaptation; (3 the modernization of the meteorological service; (4 the country’s open data policy; (5 the government’s decision to focus the SNIA on near-term (e.g., seasonal rather than long-term climate risk; and (6 the participation of key individuals. While the context in which these enablers emerged is unique to Uruguay, it is likely that some factors are generalizable to other countries. Social science research needed to confirm the wider applicability of innovation systems, groundwork, data access and champion is discussed.

  13. The role of bio-physical cohesive substrates on sediment winnowing and bedform development

    Science.gov (United States)

    Ye, Leiping; Parsons, Daniel; Manning, Andrew

    2017-04-01

    Existing sediment transport and bedform size predictions for natural open-channel flows in many environments are seriously impeded by a lack of process-based knowledge concerning the dynamics of complex bed sediment mixtures comprising cohesionless sand and biologically-active cohesive muds. A series of flume experiments (14 experimental runs) with different substrate mixtures of sand-clay-EPS (Extracellular Polymeric Substance) are combined with a detailed estuarine field survey (Dee estuary, NW England) to investigate the development of bedform morphologies and characteristics of suspended sediment over bio-physical cohesive substrates. The experimental results indicate that winnowing and sediment sorting can occur pervasively in bio-physical cohesive sediment - flow systems. Importantly however, the evolution of the bed and bedform dynamics, and hence turbulence production, is significantly reduced as bed substrate cohesivity increases. The estuarine subtidal zone survey also revealed that the bio-physical cohesion provided by both the clay and microorganism fractions in the bed plays a significant role in controlling the interactions between bed substrate and sediment suspension, deposition and bedform generation. The work will be presented here concludes by outlining the need to extend and revisit the effects of cohesivity in morphodynamic systems and the sets of parameters presently used in numerical modelling, particularly in the context of the impact of climate change on estuarine and coastal systems.

  14. Linking organizational resources and work engagement to employee performance and customer loyalty: the mediation of service climate.

    Science.gov (United States)

    Salanova, Marisa; Agut, Sonia; Peiró, José María

    2005-11-01

    This study examined the mediating role of service climate in the prediction of employee performance and customer loyalty. Contact employees (N=342) from 114 service units (58 hotel front desks and 56 restaurants) provided information about organizational resources, engagement, and service climate. Furthermore, customers (N=1,140) from these units provided information on employee performance and customer loyalty. Structural equation modeling analyses were consistent with a full mediation model in which organizational resources and work engagement predict service climate, which in turn predicts employee performance and then customer loyalty. Further analyses revealed a potential reciprocal effect between service climate and customer loyalty. Implications of the study are discussed, together with limitations and suggestions for future research. ((c) 2005 APA, all rights reserved).

  15. Development of climate risk services under climate change scenarios in the North Adriatic coast (Italy).

    Science.gov (United States)

    Valentina, Gallina; Silvia, Torresan; Anna, Sperotto; Elisa, Furlan; Andrea, Critto; Antonio, Marcomini

    2014-05-01

    Nowadays, the challenge for coastal stakeholders and decision makers is to incorporate climate change in land and policy planning in order to ensure a sustainable integrated coastal zone management aimed at preserve coastal environments and socio-economic activities. Consequently, an increasing amount of information on climate variability and its impact on human and natural ecosystem is requested. Climate risk services allows to bridge the gap between climate experts and decision makers communicating timely science-based information about impacts and risks related to climate change that could be incorporated into land planning, policy and practice. Within the CLIM-RUN project (FP7), a participatory Regional Risk Assessment (RRA) methodology was applied for the evaluation of water-related hazards in coastal areas (i.e. pluvial flood and sea-level rise inundation risks) taking into consideration future climate change scenarios in the case study of the North Adriatic Sea for the period 2040-2050. Specifically, through the analysis of hazard, exposure, vulnerability and risk and the application of Multi-Criteria Decision Analysis (MCDA), the RRA methodology allowed to identify and prioritize targets (i.e. residential and commercial-industrial areas, beaches, infrastructures, wetlands, agricultural typology) and sub-areas that are more likely to be affected by pluvial flood and sea-level rise impacts in the same region. From the early stages of the climate risk services development and application, the RRA followed a bottom-up approach taking into account the needs, knowledge and perspectives of local stakeholders dealing with the Integrated Coastal Zone Management (ICZM), by means of questionnaires, workshops and focus groups organized within the project. Specifically, stakeholders were asked to provide their needs in terms of time scenarios, geographical scale and resolution, choice of receptors, vulnerability factors and thresholds that were considered in the

  16. Why Interfaces are the Key for Developing Climate Services

    Science.gov (United States)

    Cortekar, Jörg; Bender, Steffen; Groth, Markus

    2015-04-01

    Responding to climate change today involves both mitigation to address the cause and adaptation as a response to already on-going and expected changes. But to what exactly do we have to adapt? And what happens, when environmental, economical or administrative boundary conditions changes? In recent years the concept of climate services has evolved to provide user tailored information to meet individual adaptation needs. According to the Global Framework for Climate Services, climate services involve high-quality data e.g. on temperature, rainfall, wind, etc., as well as maps, risk and vulnerability analyses, assessments, and long-term projections and scenarios. Depending on specific user's needs, these data and information products may be combined with non-meteorological sector-specific data, such as agricultural production, flood risk maps or health trends, and other socio-economic variables to support decision-making of stakeholders who are affected by climate change. This, still non-exhaustive list already indicates that many different scientific disciplines are involved in the development and provision of climate services. Integrating different and equally important scientific approaches to contribute to the solution of one specific problem is challenging. In economics, for instance, many different and promising methods and tools such as cost-benefit-analyses are available which play a key role in providing policy makers and other stakeholders with data and information in order to create a robust decision-making basis for efficiently using scarce budgets. Cost-benefit-analysis is a well-established method in economic theory, its application in the field of climate change adaptation, however, is still new. The bulk of cost and benefit assessments currently pursues a top-down-approach. That is, the required data is generated by downscaling cost and benefit estimations of global impact assessment models to a specific region. In many cases global information are not

  17. Integrated Molecular and Cellular Biophysics

    CERN Document Server

    Raicu, Valerica

    2008-01-01

    This book integrates concepts and methods from physics, biology, biochemistry and physical chemistry into a standalone, unitary text of biophysics that aims to provide a quantitative description of structures and processes occurring in living matter. The book introduces graduate physics students and physicists interested in biophysics research to 'classical' as well as emerging areas of biophysics. The advanced undergraduate physics students and the life scientists are also invited to join in, by building on their knowledge of basic physics. Essential notions of biochemistry and biology are introduced, as necessary, throughout the book, while the reader's familiarity with basic knowledge of physics is assumed. Topics covered include interactions between biological molecules, physical chemistry of phospholipids association into bilayer membranes, DNA and protein structure and folding, passive and active electrical properties of the cell membrane, classical as well as fractal aspects of reaction kinetics and di...

  18. Climate Change Consequences for Iowa'S Economy, Infrastructure, and Emergency Services

    OpenAIRE

    Swenson, David A.

    2011-01-01

    This is Chapter 6 in the state-mandated Regent's institution collaborative report, "Climate Change Impacts on Iowa, 2010: Report to the Governor and the Iowa General Assembly."Iowa's climate is changing, and that means Iowa's economy is changing. A changing Iowa economy will have consequences for agriculture, food production, Iowa's vaunted insurance agency, general energy use, Iowa's households, Iowa governments, and disaster services. This chapter profiles near and longer term consequences ...

  19. Past and Present Biophysical Redundancy of Countries as a Buffer to Changes in Food Supply

    Science.gov (United States)

    Fader, Marianela; Rulli, Maria Cristina; Carr, Joel; Dell' Angelo, Jampel; D' Odorico, Paolo; Gephart, Jessica A.; Kummu, Matti; Magliocca, Nicholas; Porkka, Miina; Prell, Christina; hide

    2016-01-01

    Spatially diverse trends in population growth, climate change, industrialization, urbanization and economic development are expected to change future food supply and demand. These changes may affect the suitability of land for food production, implying elevated risks especially for resource constrained, food-importing countries. We present the evolution of biophysical redundancy for agricultural production at country level, from 1992 to 2012. Biophysical redundancy, defined as unused biotic and abiotic environmental resources, is represented by the potential food production of 'spare land', available water resources (i.e., not already used for human activities), as well as production increases through yield gap closure on cultivated areas and potential agricultural areas. In 2012, the biophysical redundancy of 75 (48) countries, mainly in North Africa, Western Europe, the Middle East and Asia, was insufficient to produce the caloric nutritional needs for at least 50% (25%) of their population during a year. Biophysical redundancy has decreased in the last two decades in 102 out of 155 countries, 11 of these went from high to limited redundancy, and nine of these from limited to very low redundancy. Although the variability of the drivers of change across different countries is high, improvements in yield and population growth have a clear impact on the decreases of redundancy towards the very low redundancy category. We took a more detailed look at countries classified as 'Low Income Economies (LIEs)' since they are particularly vulnerable to domestic or external food supply changes, due to their limited capacity to offset for food supply decreases with higher purchasing power on the international market. Currently, nine LIEs have limited or very low biophysical redundancy. Many of these showed a decrease in redundancy over the last two decades, which is not always linked with improvements in per capita food availability.

  20. Past and present biophysical redundancy of countries as a buffer to changes in food supply

    Science.gov (United States)

    Fader, Marianela; Rulli, Maria Cristina; Carr, Joel; Dell'Angelo, Jampel; D'Odorico, Paolo; Gephart, Jessica A.; Kummu, Matti; Magliocca, Nicholas; Porkka, Miina; Prell, Christina; Puma, Michael J.; Ratajczak, Zak; Seekell, David A.; Suweis, Samir; Tavoni, Alessandro

    2016-05-01

    Spatially diverse trends in population growth, climate change, industrialization, urbanization and economic development are expected to change future food supply and demand. These changes may affect the suitability of land for food production, implying elevated risks especially for resource-constrained, food-importing countries. We present the evolution of biophysical redundancy for agricultural production at country level, from 1992 to 2012. Biophysical redundancy, defined as unused biotic and abiotic environmental resources, is represented by the potential food production of ‘spare land’, available water resources (i.e., not already used for human activities), as well as production increases through yield gap closure on cultivated areas and potential agricultural areas. In 2012, the biophysical redundancy of 75 (48) countries, mainly in North Africa, Western Europe, the Middle East and Asia, was insufficient to produce the caloric nutritional needs for at least 50% (25%) of their population during a year. Biophysical redundancy has decreased in the last two decades in 102 out of 155 countries, 11 of these went from high to limited redundancy, and nine of these from limited to very low redundancy. Although the variability of the drivers of change across different countries is high, improvements in yield and population growth have a clear impact on the decreases of redundancy towards the very low redundancy category. We took a more detailed look at countries classified as ‘Low Income Economies (LIEs)’ since they are particularly vulnerable to domestic or external food supply changes, due to their limited capacity to offset for food supply decreases with higher purchasing power on the international market. Currently, nine LIEs have limited or very low biophysical redundancy. Many of these showed a decrease in redundancy over the last two decades, which is not always linked with improvements in per capita food availability.

  1. The CAMI Project - Weather and Climate Services for Caribbean Food Security

    Science.gov (United States)

    Trotman, Adrian; Van Meerbeeck, Cedric

    2013-04-01

    Food security is major focus of Caribbean governments, with production being of particular concern. For the past three decades, Caribbean agriculture has been declining in relative importance, both in terms of its contribution to GDP and its share of the labour force. One of the problems Caribbean agriculture faces is the destructive impacts from weather and climate extremes. These include flood, drought, extreme temperatures, and strong winds from tropical cyclones. Other potential disasters, such as from pests and diseases attacks, are also weather and climate driven. These make weather and climate information critically important to decision-making in agriculture in the Caribbean region. In an effort to help reduce weather and climate related risks to the food security sector, The Caribbean Institute for Meteorology and Hydrology, along with its partners the Caribbean Agricultural Research and Development Institute, the World Meteorological Organization (WMO) and ten National Meteorological Services from within the Caribbean Community launched and implemented the Caribbean Agrometeorological Initiative (CAMI). From 2010 to 2013, CAMI set out to provide relevant information to farmers, and the industry in general, for decision and policy making. The project is funded by the European Union through the Science and Technology Programme of the African, Caribbean and Pacific Group of Countries' (ACP). The overarching objective of CAMI was to increase and sustain agricultural productivity at the farm level in the Caribbean region through improved applications of weather and climate information, using an integrated and coordinated approach. Currently, this is done through (i) provision of relevant climate information appropriately disseminated, (ii) predictions on seasonal rainfall and temperature, (iii) support for improved irrigation management, (iv) the development of strategically selected weather-driven pest and disease models, (v) use of crop simulation models

  2. Climate change, fire management, and ecological services in the southwestern US

    Science.gov (United States)

    Hurteau, Matthew D.; Bradford, John B.; Fulé, Peter Z.; Taylor, Alan H.; Martin, Katherine L.

    2014-01-01

    The diverse forest types of the southwestern US are inseparable from fire. Across climate zones in California, Nevada, Arizona, and New Mexico, fire suppression has left many forest types out of sync with their historic fire regimes. As a result, high fuel loads place them at risk of severe fire, particularly as fire activity increases due to climate change. A legacy of fire exclusion coupled with a warming climate has led to increasingly large and severe wildfires in many southwest forest types. Climate change projections include an extended fire season length due to earlier snowmelt and a general drying trend due to rising temperatures. This suggests the future will be warmer and drier regardless of changes in precipitation. Hotter, drier conditions are likely to increase forest flammability, at least initially. Changes in climate alone have the potential to alter the distribution of vegetation types within the region, and climate-driven shifts in vegetation distribution are likely to be accelerated when coupled with stand-replacing fire. Regardless of the rate of change, the interaction of climate and fire and their effects on Southwest ecosystems will alter the provisioning of ecosystem services, including carbon storage and biodiversity. Interactions between climate, fire, and vegetation growth provide a source of great uncertainty in projecting future fire activity in the region, as post-fire forest recovery is strongly influenced by climate and subsequent fire frequency. Severe fire can be mitigated with fuels management including prescribed fire, thinning, and wildfire management, but new strategies are needed to ensure the effectiveness of treatments across landscapes. We review the current understanding of the relationship between fire and climate in the Southwest, both historical and projected. We then discuss the potential implications of climate change for fire management and examine the potential effects of climate change and fire on ecosystem

  3. The Colorado Plateau II: biophysical, socioeconomic, and cultural research

    Science.gov (United States)

    Mattson, David J.; van Riper, Charles

    2005-01-01

    The publication of The Colorado Plateau: Cultural, Biological, and Physical Research in 2004 marked a timely summation of current research in the Four Corners states. This new volume, derived from the seventh Biennial Conference on the Colorado Plateau in 2003, complements the previous book by focusing on the integration of science into resource management issues. The 32 chapters range in content from measuring human impacts on cultural resources, through grazing and the wildland-urban interface issues, to parameters of climate change on the Plateau. The book also introduces economic perspectives by considering shifting patterns and regional disparities in the Colorado Plateau economy. A series of chapters on mountain lions explores the human-wildland interface. These chapters deal with the entire spectrum of challenges associated with managing this large mammal species in Arizona and on the Colorado Plateau, conveying a wealth of timely information of interest to wildlife managers and enthusiasts. Another provocative set of chapters on biophysical resources explores the management of forest restoration, from the micro scale all the way up to large-scale GIS analyses of ponderosa pine ecosystems on the Colorado Plateau. Given recent concerns for forest health in the wake of fires, severe drought, and bark-beetle infestation, these chapters will prove enlightening for forest service, park service, and land management professionals at both the federal and state level, as well as general readers interested in how forest management practices will ultimately affect their recreation activities. With broad coverage that touches on topics as diverse as movement patterns of rattlesnakes, calculating watersheds, and rescuing looted rockshelters, this volume stands as a compendium of cutting-edge research on the Colorado Plateau that offers a wealth of insights for many scholars.

  4. Potential influences of climate and nest structure on spotted owl reproductive success: a biophysical approach.

    Directory of Open Access Journals (Sweden)

    Jeremy T Rockweit

    Full Text Available Many bird species do not make their own nests; therefore, selection of existing sites that provide adequate microclimates is critical. This is particularly true for owls in north temperate climates that often nest early in the year when inclement weather is common. Spotted owls use three main types of nest structures, each of which are structurally distinct and may provide varying levels of protection to the eggs or young. We tested the hypothesis that spotted owl nest configuration influences nest microclimate using both experimental and observational data. We used a wind tunnel to estimate the convective heat transfer coefficient (h(c of eggs in 25 potential nest configurations that mimicked 2 nest types (top-cavity and platform nests, at 3 different wind speeds. We then used the estimates of h(c in a biophysical heat transfer model to estimate how long it would take unattended eggs to cool from incubation temperature (~36 °C to physiological zero temperature (PZT; ~26 °C under natural environmental conditions. Our results indicated that the structural configuration of nests influences the cooling time of the eggs inside those nests, and hence, influences the nest microclimate. Estimates of time to PZT ranged from 10.6 minutes to 33.3 minutes. Nest configurations that were most similar to platform nests always had the fastest egg cooling times, suggesting that platform nests were the least protective of those nests we tested. Our field data coupled with our experimental results suggested that nest choice is important for the reproductive success of owls during years of inclement weather or in regions characterized by inclement weather during the nesting season.

  5. Suitable landscape classification systems for quantifying spatiotemporal development of riverine ecosystem services

    NARCIS (Netherlands)

    Koopman, K.R.; Augustijn, Dionysius C.M.; Breure, A.M.; Lenders, H.J.R.; Leuven, R.S.E.W.

    River systems provide numerous ecosystem services that contribute to human well-being. Biophysical quantification of spatiotemporal development of ecosystem services is useful for environmental impact assessments or scenario analyses of river management and could be done by linking biophysical

  6. Effects of land use and climate change on ecosystem services in Central Asia's arid regions: A case study in Altay Prefecture, China.

    Science.gov (United States)

    Fu, Qi; Li, Bo; Hou, Ying; Bi, Xu; Zhang, Xinshi

    2017-12-31

    The sustainable use of ecosystem services (ES) can contribute to enhancing human well-being. Understanding the effects of land use and climate change on ES can provide scientific and targeted guidance for the sustainable use of ES. The objective of this study was to reveal the way in which land use and climate change influence the spatial and temporal variations of ES in the mountain-oasis-desert system (MODS). In this study, we assessed water yield, soil conservation, crop production, and sand fixation in 1990, 2000, and 2010 in Altay Prefecture, which is representative of the MODS, based on widely used biophysical models. Moreover, we analyzed the effects of different land use and climate change conditions on ES. The results show that the area of forest and bare land decreased in Altay Prefecture. In contrast, the area of grassland with low coverage and cropland increased. The climate of this area presented an overall warming-wetting trend, with warming-drying and cooling-wetting phenomena in some areas. Soil conservation in the mountain zone, water yield in the oasis zone, and sand fixation in the desert zone all decreased under the influence of land use change alone. The warming-drying trend led to decreased water yield in the oasis zone and increased wind erosion in the desert zone. Based on the results, we recommend that local governments achieve sustainable use of ES by planting grasslands with high coverage in the oasis zone, increasing investment in agricultural science and technology, and establishing protected areas in the mountain and desert zones. The methodology in our study can also be applied to other regions with a MODS structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation

    International Nuclear Information System (INIS)

    Fujimori, S.; Kainuma, M.; Masui, T.; Hasegawa, T.; Dai, H.

    2014-01-01

    A reduction of energy service demand is a climate mitigation option, but its effectiveness has never been quantified. We quantify the effectiveness of energy service demand reduction in the building, transport, and industry sectors using the Asia-Pacific Integrated Assessment/Computable General Equilibrium (AIM/CGE) model for the period 2015–2050 under various scenarios. There were two major findings. First, a 25% energy service demand reduction in the building, transport, and basic material industry sectors would reduce the GDP loss induced by climate mitigation from 4.0% to 3.0% and from 1.2% to 0.7% in 2050 under the 450 ppm and 550 ppm CO 2 equivalent concentration stabilization scenarios, respectively. Second, the effectiveness of a reduction in the building sector's energy service demand would be higher than those of the other sectors at the same rate of the energy service demand reduction. Furthermore, we also conducted a sensitivity analysis of different socioeconomic conditions, and the climate mitigation target was found to be a key determinant of the effectiveness of energy service demand reduction measures. Therefore, more certain climate mitigation targets would be useful for the decision makers who design energy service demand reduction measures. - Highlights: • The effectiveness of a reduction in energy service demand is quantified. • A 25% reduction in energy service demand would be equivalent to 1% of GDP in 2050. • Stringent mitigation increases the effectiveness of energy service demand reduction. • Effectiveness of a reduction in energy demand service is higher in the building sector

  8. Ecosystem services and livelihoods - Vulnerability and adaption to a changing climate. VACCIA Synthesis Report

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, I.; Mattson, T.; Niemelae, E.; Vuorenmaa, J.; Forsius, M. (eds.)

    2011-12-15

    This report is a summary of results from the project Vulnerability Assessment of Ecosystem Services for Climate Change Impacts and Adaptation (VACCIA), funded by the European Union's LIFE+ programme. Partners in the extensive three-year (2009-2011) project, coordinated by the Finnish Environment Institute (SYKE), included the Finnish Meteorological Institute, the University of Helsinki, the University of Jyvaeskylae and the University of Oulu. Key results from the 13 VACCIA Actions are compiled in the summary. The Actions assessed the threats and challenges posed by climate change to ecosystem services and livelihoods, and suggested methods for adapting to changing conditions. The report also highlights further research needs. The publication's introduction describes the ecosystem service concept and provides an insight into policy processes for handling ecosystem services and their adaptation to a changing climate. Results of the Actions are assembled in the following three chapters, the first presenting key methods used in the project for monitoring changes and predicting future changes, the second describing the change in ecosystem services, and the third reviewing vulnerability and adaptation. An extensive summary section is also included. Annexed tables present the project's key results and conclusions compactly, alongside the resulting adaptation challenges and needs for further research. Monitoring and prediction of changes is based, e.g. on climate and air quality scenarios produced by the project, and remote sensing and geographic information materials. Of ecosystem services, those produced by catchments and water bodies are examined, alongside changes in the biodiversity of coastal, water and forest environments, studied with the help of sample species. Ecosystem services needed by urban areas are examined from the viewpoint of climate change and changes in land use. Among livelihoods, agriculture, forestry, fisheries and tourism are

  9. Extending Climate Analytics as a Service to the Earth System Grid Federation Progress Report on the Reanalysis Ensemble Service

    Science.gov (United States)

    Tamkin, G.; Schnase, J. L.; Duffy, D.; Li, J.; Strong, S.; Thompson, J. H.

    2016-12-01

    We are extending climate analytics-as-a-service, including: (1) A high-performance Virtual Real-Time Analytics Testbed supporting six major reanalysis data sets using advanced technologies like the Cloudera Impala-based SQL and Hadoop-based MapReduce analytics over native NetCDF files. (2) A Reanalysis Ensemble Service (RES) that offers a basic set of commonly used operations over the reanalysis collections that are accessible through NASA's climate data analytics Web services and our client-side Climate Data Services Python library, CDSlib. (3) An Open Geospatial Consortium (OGC) WPS-compliant Web service interface to CDSLib to accommodate ESGF's Web service endpoints. This presentation will report on the overall progress of this effort, with special attention to recent enhancements that have been made to the Reanalysis Ensemble Service, including the following: - An CDSlib Python library that supports full temporal, spatial, and grid-based resolution services - A new reanalysis collections reference model to enable operator design and implementation - An enhanced library of sample queries to demonstrate and develop use case scenarios - Extended operators that enable single- and multiple reanalysis area average, vertical average, re-gridding, and trend, climatology, and anomaly computations - Full support for the MERRA-2 reanalysis and the initial integration of two additional reanalyses - A prototype Jupyter notebook-based distribution mechanism that combines CDSlib documentation with interactive use case scenarios and personalized project management - Prototyped uncertainty quantification services that combine ensemble products with comparative observational products - Convenient, one-stop shopping for commonly used data products from multiple reanalyses, including basic subsetting and arithmetic operations over the data and extractions of trends, climatologies, and anomalies - The ability to compute and visualize multiple reanalysis intercomparisons

  10. Is enough attention given to climate change in health service planning? An Australian perspective

    Directory of Open Access Journals (Sweden)

    Anthony J. Burton

    2014-06-01

    Full Text Available Background: Within an Australian context, the medium to long-term health impacts of climate change are likely to be wide, varied and amplify many existing disorders and health inequities. How the health system responds to these challenges will be best considered in the context of existing health facilities and services. This paper provides a snapshot of the understanding that Australian health planners have of the potential health impacts of climate change. Methods: The first author interviewed (n=16 health service planners from five Australian states and territories using an interpretivist paradigm. All interviews were digitally recorded, key components transcribed and thematically analysed. Results: Results indicate that the majority of participants were aware of climate change but not of its potential health impacts. Despite this, most planners were of the opinion that they would need to plan for the health impacts of climate change on the community. Conclusion: With the best available evidence pointing towards there being significant health impacts as a result of climate change, now is the time to undertake proactive service planning that address market failures within the health system. If considered planning is not undertaken then Australian health system can only deal with climate change in an expensive ad hoc, crisis management manner. Without meeting the challenges of climate change to the health system head on, Australia will remain unprepared for the health impacts of climate change with negative consequences for the health of the Australian population.

  11. Developing a robust methodology for assessing the value of weather/climate services

    Science.gov (United States)

    Krijnen, Justin; Golding, Nicola; Buontempo, Carlo

    2016-04-01

    Increasingly, scientists involved in providing weather and climate services are expected to demonstrate the value of their work for end users in order to justify the costs of developing and delivering these services. This talk will outline different approaches that can be used to assess the socio-economic benefits of weather and climate services, including, among others, willingness to pay and avoided costs. The advantages and limitations of these methods will be discussed and relevant case-studies will be used to illustrate each approach. The choice of valuation method may be influenced by different factors, such as resource and time constraints and the end purposes of the study. In addition, there are important methodological differences which will affect the value assessed. For instance the ultimate value of a weather/climate forecast to a decision-maker will not only depend on forecast accuracy but also on other factors, such as how the forecast is communicated to and consequently interpreted by the end-user. Thus, excluding these additional factors may result in inaccurate socio-economic value estimates. In order to reduce the inaccuracies in this valuation process we propose an approach that assesses how the initial weather/climate forecast information can be incorporated within the value chain of a given sector, taking into account value gains and losses at each stage of the delivery process. By this we aim to more accurately depict the socio-economic benefits of a weather/climate forecast to decision-makers.

  12. Understanding Climate Change Perceptions, Attitudes, and Needs of Forest Service Resource Managers

    Science.gov (United States)

    Carlos Rodriguez-Franco; Tara J. Haan

    2015-01-01

    Surveys were collected to assess Forest Service (FS) resource managers' perceptions, attitudes, and informational needs related to climate change and its potential impacts on forests and grasslands. Resource managers with three background types were surveyed. All participants generally considered themselves to be well-informed on climate change issues, although...

  13. State-of-the-Art Climate Predictions for Energy Climate Services

    Science.gov (United States)

    Torralba-Fernandez, Veronica; Davis, Melanie; Doblas-Reyes, Francisco J.; Gonzalez-Reviriego, Nube

    2015-04-01

    for climate services, this comes at a price in terms of forecast quality.

  14. A review on vegetation models and applicability to climate simulations at regional scale

    Science.gov (United States)

    Myoung, Boksoon; Choi, Yong-Sang; Park, Seon Ki

    2011-11-01

    The lack of accurate representations of biospheric components and their biophysical and biogeochemical processes is a great source of uncertainty in current climate models. The interactions between terrestrial ecosystems and the climate include exchanges not only of energy, water and momentum, but also of carbon and nitrogen. Reliable simulations of these interactions are crucial for predicting the potential impacts of future climate change and anthropogenic intervention on terrestrial ecosystems. In this paper, two biogeographical (Neilson's rule-based model and BIOME), two biogeochemical (BIOME-BGC and PnET-BGC), and three dynamic global vegetation models (Hybrid, LPJ, and MC1) were reviewed and compared in terms of their biophysical and physiological processes. The advantages and limitations of the models were also addressed. Lastly, the applications of the dynamic global vegetation models to regional climate simulations have been discussed.

  15. Climate limits across space and time on European forest structure

    Science.gov (United States)

    Moreno, A. L. S.; Neumann, M.; Hasenauer, H.

    2017-12-01

    The impact climate has on forests has been extensively studied. However, the large scale effect climate has on forest structures, such as average diameters, heights and basal area are understudied in a spatially explicit manner. The limits, tipping points and thresholds that climate places on forest structures dictate the services a forest may provide, the vulnerability of a forest to mortality and the potential value of the timber there within. The majority of current research either investigates climate impacts on forest pools and fluxes, on a tree physiological scale or on case studies that are used to extrapolate results and potential impacts. A spatially explicit study on how climate affects forest structure over a large region would give valuable information to stakeholders who are more concerned with ecosystem services that cannot be described by pools and fluxes but require spatially explicit information - such as biodiversity, habitat suitability, and market values. In this study, we quantified the limits that climate (maximum, minimum temperature and precipitation) places on 3 forest structures, diameter at breast height, height, and basal area throughout Europe. Our results show clear climatic zones of high and low upper limits for each forest structure variable studied. We also spatially analyzed how climate restricts the potential bio-physical upper limits and creates tipping points of each forest structure variable and which climate factors are most limiting. Further, we demonstrated how the climate change has affected 8 individual forests across Europe and then the continent as a whole. We find that diameter, height and basal area are limited by climate in different ways and that areas may have high upper limits in one structure and low upper limits in another limitted by different climate variables. We also found that even though individual forests may have increased their potential upper limit forest structure values, European forests as a whole

  16. The Perceptions of Pre-Service Science Teachers and Science Teachers About Climate Change

    OpenAIRE

    Meilinda, M; Rustaman, N. Y; Tjasyono, B

    2017-01-01

    The global climate phenomenon in the context of climate change is the impact of both the dynamic complex climate system and human behaviors that affect environmental sustainability. Human is an important component that should be considered in science teaching that is believed to improve human attitudes towards the environmental sustainability. The research aims to investigate the perceptions of pre-service science teachers and science teachers in South Sumatra who teach climate change and glo...

  17. Smoothing of, and parameter estimation from, noisy biophysical recordings.

    Directory of Open Access Journals (Sweden)

    Quentin J M Huys

    2009-05-01

    Full Text Available Biophysically detailed models of single cells are difficult to fit to real data. Recent advances in imaging techniques allow simultaneous access to various intracellular variables, and these data can be used to significantly facilitate the modelling task. These data, however, are noisy, and current approaches to building biophysically detailed models are not designed to deal with this. We extend previous techniques to take the noisy nature of the measurements into account. Sequential Monte Carlo ("particle filtering" methods, in combination with a detailed biophysical description of a cell, are used for principled, model-based smoothing of noisy recording data. We also provide an alternative formulation of smoothing where the neural nonlinearities are estimated in a non-parametric manner. Biophysically important parameters of detailed models (such as channel densities, intercompartmental conductances, input resistances, and observation noise are inferred automatically from noisy data via expectation-maximization. Overall, we find that model-based smoothing is a powerful, robust technique for smoothing of noisy biophysical data and for inference of biophysical parameters in the face of recording noise.

  18. Partition of some key regulating services in terrestrial ecosystems: Meta-analysis and review

    Energy Technology Data Exchange (ETDEWEB)

    Viglizzo, E.F., E-mail: evigliz@cpenet.com.ar [INTA, EEA Anguil, Grupo de Investigaciones en Gestión Ambiental (GIGA), Av. Spinetto 785, 6300 Santa Rosa, La Pampa (Argentina); INCITAP-CONICET, Ruta 35, km 335, 6300 Santa Rosa, La Pampa (Argentina); UNLPam, Facultad de Ciencias Exactas y Naturales, Av. Uruguay 151, 6300 Santa Rosa, La Pampa (Argentina); Jobbágy, E.G. [CONICET, Andes 950, 5700 San Luis, San Luis (Argentina); Grupo de Estudios Ambientales IMASL, Ejército de los, Andes 950, 5700 San Luis, San Luis (Argentina); Ricard, M.F. [INCITAP-CONICET, Ruta 35, km 335, 6300 Santa Rosa, La Pampa (Argentina); UNLPam, Facultad de Ciencias Exactas y Naturales, Av. Uruguay 151, 6300 Santa Rosa, La Pampa (Argentina); Paruelo, J.M. [Laboratorio de Análisis Regional y Teledetección, Departamento de Métodos Cuantitativos Sistemas de información, Facultad de Agronomía and IFEVA, Universidad de Buenos Aires and CONICET, Av. San Martín 4453, 1417 Buenos Aires (Argentina)

    2016-08-15

    Our knowledge about the functional foundations of ecosystem service (ES) provision is still limited and more research is needed to elucidate key functional mechanisms. Using a simplified eco-hydrological scheme, in this work we analyzed how land-use decisions modify the partition of some essential regulatory ES by altering basic relationships between biomass stocks and water flows. A comprehensive meta-analysis and review was conducted based on global, regional and local data from peer-reviewed publications. We analyzed five datasets comprising 1348 studies and 3948 records on precipitation (PPT), aboveground biomass (AGB), AGB change, evapotranspiration (ET), water yield (WY), WY change, runoff (R) and infiltration (I). The conceptual framework was focused on ES that are associated with the ecological functions (e.g., intermediate ES) of ET, WY, R and I. ES included soil protection, carbon sequestration, local climate regulation, water-flow regulation and water recharge. To address the problem of data normality, the analysis included both parametric and non-parametric regression analysis. Results demonstrate that PPT is a first-order biophysical factor that controls ES release at the broader scales. At decreasing scales, ES are partitioned as result of PPT interactions with other biophysical and anthropogenic factors. At intermediate scales, land-use change interacts with PPT modifying ES partition as it the case of afforestation in dry regions, where ET and climate regulation may be enhanced at the expense of R and water-flow regulation. At smaller scales, site-specific conditions such as topography interact with PPT and AGB displaying different ES partition formats. The probable implications of future land-use and climate change on some key ES production and partition are discussed. - Highlights: • The partition of regulatory services in ecosystems poses a major policy challenge. • We examined how partitions occur at the hydrosphere

  19. Partition of some key regulating services in terrestrial ecosystems: Meta-analysis and review

    International Nuclear Information System (INIS)

    Viglizzo, E.F.; Jobbágy, E.G.; Ricard, M.F.; Paruelo, J.M.

    2016-01-01

    Our knowledge about the functional foundations of ecosystem service (ES) provision is still limited and more research is needed to elucidate key functional mechanisms. Using a simplified eco-hydrological scheme, in this work we analyzed how land-use decisions modify the partition of some essential regulatory ES by altering basic relationships between biomass stocks and water flows. A comprehensive meta-analysis and review was conducted based on global, regional and local data from peer-reviewed publications. We analyzed five datasets comprising 1348 studies and 3948 records on precipitation (PPT), aboveground biomass (AGB), AGB change, evapotranspiration (ET), water yield (WY), WY change, runoff (R) and infiltration (I). The conceptual framework was focused on ES that are associated with the ecological functions (e.g., intermediate ES) of ET, WY, R and I. ES included soil protection, carbon sequestration, local climate regulation, water-flow regulation and water recharge. To address the problem of data normality, the analysis included both parametric and non-parametric regression analysis. Results demonstrate that PPT is a first-order biophysical factor that controls ES release at the broader scales. At decreasing scales, ES are partitioned as result of PPT interactions with other biophysical and anthropogenic factors. At intermediate scales, land-use change interacts with PPT modifying ES partition as it the case of afforestation in dry regions, where ET and climate regulation may be enhanced at the expense of R and water-flow regulation. At smaller scales, site-specific conditions such as topography interact with PPT and AGB displaying different ES partition formats. The probable implications of future land-use and climate change on some key ES production and partition are discussed. - Highlights: • The partition of regulatory services in ecosystems poses a major policy challenge. • We examined how partitions occur at the hydrosphere

  20. Advocating for Safe Schools, Positive School Climate, and Comprehensive Mental Health Services

    Science.gov (United States)

    Cowan, Katherine C.; Vaillancourt, Kelly

    2013-01-01

    The tragedy at Sandy Hook Elementary School, Newtown, CT (USA) has brought the conversation about how to reduce violence, make schools safer, improve school climate, and increase access to mental health services to the forefront of the national conversation. Advocating for comprehensive initiatives to address school safety, school climate, and…

  1. Structure and biophysics

    CERN Document Server

    Puglisi, Joseph D

    2007-01-01

    This volume is a collection of articles from the proceedings of the ISSBMR 7th Course: Structure and Biophysics - New Technologies for Current Challenges in Biology and Beyond. This NATO Advanced Institute (ASI) was held in Erice at the Ettore Majorana Foundation and Centre for Scientific Culture on 22 June through 3 July 2005. The ASI brought together a diverse group of experts in the fields of Structural Biology, Biophysics and Physics. Prominent lecturers, from seven different countries, and students from around the world participated in the NATO ASI organized by Professors Joseph Puglisi (Stanford University, USA) and Alexander Arseniev (Moscow, RU). Advances in nuclear magnetic resonance spectroscopy (NMR) and x-ray crystallography have allowed the three-dimensional structures of many biological macromolecules and their complexes, including the ribosome and RNA polymerase to be solved. Fundamental principles of NMR spectroscopy and dynamics, x-ray crystallography, computation and experimental dynamics we...

  2. Turkish Pre-Service Science Teachers' Awareness, Beliefs, Values, and Behaviours Pertinent to Climate Change

    Science.gov (United States)

    Higde, Emrah; Oztekin, Ceren; Sahin, Elvan

    2017-01-01

    This study examined Turkish pre-service science teachers' awareness, uncertainty beliefs, values, and behaviours pertinent to climate change. It aimed to determine significant predictors of climate change-related behaviours and uncertainty beliefs about the reality of climate change. A Turkish-adapted survey was administered to 1277 pre-service…

  3. An interoperable research data infrastructure to support climate service development

    Science.gov (United States)

    De Filippis, Tiziana; Rocchi, Leandro; Rapisardi, Elena

    2018-02-01

    Accessibility, availability, re-use and re-distribution of scientific data are prerequisites to build climate services across Europe. From this perspective the Institute of Biometeorology of the National Research Council (IBIMET-CNR), aiming at contributing to the sharing and integration of research data, has developed a research data infrastructure to support the scientific activities conducted in several national and international research projects. The proposed architecture uses open-source tools to ensure sustainability in the development and deployment of Web applications with geographic features and data analysis functionalities. The spatial data infrastructure components are organized in typical client-server architecture and interact from the data provider download data process to representation of the results to end users. The availability of structured raw data as customized information paves the way for building climate service purveyors to support adaptation, mitigation and risk management at different scales.This work is a bottom-up collaborative initiative between different IBIMET-CNR research units (e.g. geomatics and information and communication technology - ICT; agricultural sustainability; international cooperation in least developed countries - LDCs) that embrace the same approach for sharing and re-use of research data and informatics solutions based on co-design, co-development and co-evaluation among different actors to support the production and application of climate services. During the development phase of Web applications, different users (internal and external) were involved in the whole process so as to better define user needs and suggest the implementation of specific custom functionalities. Indeed, the services are addressed to researchers, academics, public institutions and agencies - practitioners who can access data and findings from recent research in the field of applied meteorology and climatology.

  4. Forests, fire, floods and fish: nonlinear biophysical responses to changing climate

    Science.gov (United States)

    Pierce, J. L.; Baxter, C.; Yager, E. M.; Fremier, A. K.; Crosby, B. T.; Smith, A. M.; Kennedy, B.; Hicke, J. A.; Feris, K.

    2009-12-01

    One goal of interdisciplinarity is to develop a more holistic understanding of a set of interlinked, complex system processes. Studies rarely couple both a mechanistic understanding of individual processes with their coupled influence on the entire system structure, yet the prospects for climate driven changes in western river systems provide justification for such an effort. We apply such a mechanistic and systems approach to understanding the effects of climate on fire frequency, plant-soil infiltration, sediment transport and stream community and ecosystem dynamics in a large wilderness setting that is likely to experience shifts in the timing or intensity of physical forces if projected climate change scenarios are realized. The Middle Fork Salmon River in central Idaho runs through the Frank Church Wilderness area and is the largest roadless area in the conterminous United States. The relatively southern continental position, complex mountain terrain and wealth of long-term landscape and ecological data in this region make it a tractable system to study the multifaceted and potentially non-linear processes of system change. This presents a unique opportunity to study the effects of climate change in the absence of substantial management effects in a system on the cusp of change. This collection of studies investigates the effects of climate-driven changes in hillslope processes on stream geomorphic and ecologic processes. We investigate 1) how wildfire alters the magnitude, timing and size of sediment delivered to stream channels, 2) how climate-driven changes in the proportion of rain vs. snow dominated basins alter stream hydrology, 3) how wildfire and insect disturbances modify aquatic ecosystems through inputs of nutrients and changes to habitat, 4) how paleo-records of drought, fire, and fire-related debris flows compare with recent data, 5) how fire-related inputs of sediment and wood influence the structure and dynamics of aquatic habitats, and their

  5. Climate Change Vulnerability of Agro-Ecosystems: Does socio-economic factors matters?

    Science.gov (United States)

    Surendran Nair, S.; Preston, B. L.; King, A. W.; Mei, R.; Post, W. M.

    2013-12-01

    Climate variability and change has direct impacts on agriculture. Despite continual adaptation to climate as well as gains in technology innovation and adoption, agriculture is still vulnerable to changes in temperature and precipitation expected in coming decades. Generally, researchers use two major methodologies to understand the vulnerability of agro-ecosystems to climate change: process-based crop models and empirical models. However, these models are not yet designed to capture the influence of socioeconomic systems on agro-ecosystem processes and outcomes.. However, socioeconomic processes are an important factor driving agro-ecological responses to biophysical processes (climate, topography and soil), because of the role of human agency in mediating the response of agro-ecosystems to climate. We have developed a framework that integrates socioeconomic and biophysical characteristics of agro-ecosystems using cluster analysis and GIS tools. This framework has been applied to the U.S. Southeast to define unique socio-ecological domains for agriculture. The results demonstrate that socioeconomic characteristics are an important factor influencing agriculture production. These results suggest that the lack of attention to socioeconomic conditions and human agency in agro-ecological modeling creates a potential bias with respect to the representation of climate change impacts.

  6. Coastal Zone Ecosystem Services: from science to values and decision making; a case study.

    Science.gov (United States)

    Luisetti, T; Turner, R K; Jickells, T; Andrews, J; Elliott, M; Schaafsma, M; Beaumont, N; Malcolm, S; Burdon, D; Adams, C; Watts, W

    2014-09-15

    This research is concerned with the following environmental research questions: socio-ecological system complexity, especially when valuing ecosystem services; ecosystems stock and services flow sustainability and valuation; the incorporation of scale issues when valuing ecosystem services; and the integration of knowledge from diverse disciplines for governance and decision making. In this case study, we focused on ecosystem services that can be jointly supplied but independently valued in economic terms: healthy climate (via carbon sequestration and storage), food (via fisheries production in nursery grounds), and nature recreation (nature watching and enjoyment). We also explored the issue of ecosystem stock and services flow, and we provide recommendations on how to value stock and flows of ecosystem services via accounting and economic values respectively. We considered broadly comparable estuarine systems located on the English North Sea coast: the Blackwater estuary and the Humber estuary. In the past, these two estuaries have undergone major land-claim. Managed realignment is a policy through which previously claimed intertidal habitats are recreated allowing the enhancement of the ecosystem services provided by saltmarshes. In this context, we investigated ecosystem service values, through biophysical estimates and welfare value estimates. Using an optimistic (extended conservation of coastal ecosystems) and a pessimistic (loss of coastal ecosystems because of, for example, European policy reversal) scenario, we find that context dependency, and hence value transfer possibilities, vary among ecosystem services and benefits. As a result, careful consideration in the use and application of value transfer, both in biophysical estimates and welfare value estimates, is advocated to supply reliable information for policy making. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  7. Biophysics: for HTS hit validation, chemical lead optimization, and beyond.

    Science.gov (United States)

    Genick, Christine C; Wright, S Kirk

    2017-09-01

    There are many challenges to the drug discovery process, including the complexity of the target, its interactions, and how these factors play a role in causing the disease. Traditionally, biophysics has been used for hit validation and chemical lead optimization. With its increased throughput and sensitivity, biophysics is now being applied earlier in this process to empower target characterization and hit finding. Areas covered: In this article, the authors provide an overview of how biophysics can be utilized to assess the quality of the reagents used in screening assays, to validate potential tool compounds, to test the integrity of screening assays, and to create follow-up strategies for compound characterization. They also briefly discuss the utilization of different biophysical methods in hit validation to help avoid the resource consuming pitfalls caused by the lack of hit overlap between biophysical methods. Expert opinion: The use of biophysics early on in the drug discovery process has proven crucial to identifying and characterizing targets of complex nature. It also has enabled the identification and classification of small molecules which interact in an allosteric or covalent manner with the target. By applying biophysics in this manner and at the early stages of this process, the chances of finding chemical leads with novel mechanisms of action are increased. In the future, focused screens with biophysics as a primary readout will become increasingly common.

  8. Studies of land-cover, land-use, and biophysical properties of vegetation in the Large Scale Biosphere Atmosphere experiment in Amazonia.

    Science.gov (United States)

    Dar A. Robertsa; Michael Keller; Joao Vianei Soares

    2003-01-01

    We summarize early research on land-cover, land-use, and biophysical properties of vegetation from the Large Scale Biosphere Atmosphere (LBA) experiment in Amazoˆnia. LBA is an international research program developed to evaluate regional function and to determine how land-use and climate modify biological, chemical and physical processes there. Remote sensing has...

  9. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn

    2011-01-01

    Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modeling...... framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7...

  10. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2014-12-01

    We have developed a cloud-enabled web-service system that empowers physics-based, multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks. The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the observational datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation, (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs, and (3) ECMWF reanalysis outputs for several environmental variables in order to supplement observational datasets. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, (4) the calculation of difference between two variables, and (5) the conditional sampling of one physical variable with respect to another variable. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use, avoiding the hassle of local software installation and environment incompatibility. CMDA will be used as an educational tool for the summer school organized by JPL's Center for Climate Science in 2014. In order to support 30+ simultaneous users during the school, we have deployed CMDA to the Amazon cloud environment. The cloud-enabled CMDA will provide each student with a virtual machine while the user interaction with the system will remain the same

  11. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with the design and measurement of physical parameters used in theory or to support biological experiments. The radiation biophysics program tests and uses the theoretical developments for experimental design, and provides information for further theoretical development through experiments on cellular systems

  12. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with design and measurement of those physical parameters used in the theory or to support biological experiments. The radiation biophysics program tests and makes use of the theoretical developments for experimental design. Also, this program provides information for further theoretical development through experiments on cellular systems

  13. Stakeholder-based evaluation categories for regional climate services - a case study at the German Baltic Sea coast

    Science.gov (United States)

    Meinke, Insa

    2017-08-01

    In this study, categories, dimensions, and criteria for evaluating regional climate services are derived by a participatory approach with potential service users at the German Baltic Sea coast. The development is carried out within nine face-to-face interviews conducted with decision makers, working in climate sensitive sectors at the German Baltic Sea coast. Three main groups of categories were localized which seem to matter most to the considered stakeholders and which seem to be crucial evaluation categories for regional climate services: (1) credibility, (2) relevance, and (3) appropriateness. For each of these evaluation categories several dimensions emerged, indicating certain perspectives of stakeholder demands. When summarizing these evaluation categories and their dimensions, 13 evaluation criteria for regional climate services can be derived (see Table 1). The results show that stakeholders do mainly address components other than those found in the literature (e.g. inputs, process, outputs, outcomes, and impacts). This might indicate that an evaluation, following solely literature-based (non-participative) components, is not sufficient to localize deficiencies or efficiencies within a regional climate service, since it might lead to results which are not relevant for potential users.

  14. Mapping Ecosystem Services: An Integrated Biophysical and Economic Evaluation

    OpenAIRE

    Hayha, T.

    2014-01-01

    Forests provide a wide range of ecosystem services, from timber and non-wood products (provisioning services) to carbon sequestration, hydrogeological protection (regulating services), and recreation and aesthetic experiences (cultural services). Nonmarketed forest ecosystem services tend to be undervalued due to the lack of a market price and a clear understanding of their vital support to socio-economic systems. Ecosystem services are interlinked, and therefore the optimization of one typol...

  15. An interoperable research data infrastructure to support climate service development

    Directory of Open Access Journals (Sweden)

    T. De Filippis

    2018-02-01

    Full Text Available Accessibility, availability, re-use and re-distribution of scientific data are prerequisites to build climate services across Europe. From this perspective the Institute of Biometeorology of the National Research Council (IBIMET-CNR, aiming at contributing to the sharing and integration of research data, has developed a research data infrastructure to support the scientific activities conducted in several national and international research projects. The proposed architecture uses open-source tools to ensure sustainability in the development and deployment of Web applications with geographic features and data analysis functionalities. The spatial data infrastructure components are organized in typical client–server architecture and interact from the data provider download data process to representation of the results to end users. The availability of structured raw data as customized information paves the way for building climate service purveyors to support adaptation, mitigation and risk management at different scales.This work is a bottom-up collaborative initiative between different IBIMET-CNR research units (e.g. geomatics and information and communication technology – ICT; agricultural sustainability; international cooperation in least developed countries – LDCs that embrace the same approach for sharing and re-use of research data and informatics solutions based on co-design, co-development and co-evaluation among different actors to support the production and application of climate services. During the development phase of Web applications, different users (internal and external were involved in the whole process so as to better define user needs and suggest the implementation of specific custom functionalities. Indeed, the services are addressed to researchers, academics, public institutions and agencies – practitioners who can access data and findings from recent research in the field of applied meteorology and climatology.

  16. Climate change impacts on food system

    Science.gov (United States)

    Zhang, X.; Cai, X.; Zhu, T.

    2014-12-01

    Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.

  17. Climate services for an urban area (Baia Mare City, Romania) with a focus on climate extremes

    Science.gov (United States)

    Sima, Mihaela; Micu, Dana; Dragota, Carmen-Sofia; Mihalache, Sorin

    2013-04-01

    undertaken with key institutions focusing on environmental, health and urban development issues. The survey was conducted in order to identify the local authorities' perception and needs on climate change information and the importance of climate services for the city and institution's activity. Generally, the results suggest that the selected institutions are poorly aware of the potential impacts of climate change and associated extremes in the area, but they showed a real interest for future climate estimations necessary to undertake reliable adaptation measures. At institutional level, do not exist specialized departments (job positions) to tackle or manage climate information and climate-related aspects, this not being a pressing or priority issue for the city. The climate services aspects are seen with interest mainly in supplying climate scenarios and models for a relatively short term (next 10 or 15 years), the climate information being in this way included in the local planning strategies.

  18. Statistical and Biophysical Models for Predicting Total and Outdoor Water Use in Los Angeles

    Science.gov (United States)

    Mini, C.; Hogue, T. S.; Pincetl, S.

    2012-04-01

    Modeling water demand is a complex exercise in the choice of the functional form, techniques and variables to integrate in the model. The goal of the current research is to identify the determinants that control total and outdoor residential water use in semi-arid cities and to utilize that information in the development of statistical and biophysical models that can forecast spatial and temporal urban water use. The City of Los Angeles is unique in its highly diverse socio-demographic, economic and cultural characteristics across neighborhoods, which introduces significant challenges in modeling water use. Increasing climate variability also contributes to uncertainties in water use predictions in urban areas. Monthly individual water use records were acquired from the Los Angeles Department of Water and Power (LADWP) for the 2000 to 2010 period. Study predictors of residential water use include socio-demographic, economic, climate and landscaping variables at the zip code level collected from US Census database. Climate variables are estimated from ground-based observations and calculated at the centroid of each zip code by inverse-distance weighting method. Remotely-sensed products of vegetation biomass and landscape land cover are also utilized. Two linear regression models were developed based on the panel data and variables described: a pooled-OLS regression model and a linear mixed effects model. Both models show income per capita and the percentage of landscape areas in each zip code as being statistically significant predictors. The pooled-OLS model tends to over-estimate higher water use zip codes and both models provide similar RMSE values.Outdoor water use was estimated at the census tract level as the residual between total water use and indoor use. This residual is being compared with the output from a biophysical model including tree and grass cover areas, climate variables and estimates of evapotranspiration at very high spatial resolution. A

  19. Challenges for Ecosystem Services Provided by Coral Reefs In the Face of Climate Change

    Science.gov (United States)

    Kikuchi, R. K.; Elliff, C. I.

    2014-12-01

    Coral reefs provide many ecosystem services of which coastal populations are especially dependent upon, both in cases of extreme events and in daily life. However, adaptation to climate change is still relatively unknown territory regarding the ecosystem services provided by coastal environments, such as coral reefs. Management strategies usually consider climate change as a distant issue and rarely include ecosystem services in decision-making. Coral reefs are among the most vulnerable environments to climate change, considering the impact that increased ocean temperature and acidity have on the organisms that compose this ecosystem. If no actions are taken, the most likely scenario to occur will be of extreme decline in the ecosystem services provided by coral reefs. Loss of biodiversity due to the pressures of ocean warming and acidification will lead to increased price of seafood products, negative impact on food security, and ecological imbalances. Also, sea-level rise and fragile structures due to carbonate dissolution will increase vulnerability to storms, which can lead to shoreline erosion and ultimately threaten coastal communities. Both these conditions will undoubtedly affect recreation and tourism, which are often the most important use values in the case of coral reef systems. Adaptation strategies to climate change must take on an ecosystem-based approach with continuous monitoring programs, so that multiple ecosystem services are considered and not only retrospective trends are analyzed. Brazilian coral reefs have been monitored on a regular basis since 2000 and, considering that these marginal coral reefs of the eastern Atlantic are naturally under stressful conditions (e.g. high sedimentation rates), inshore reefs of Brazil, such as those in Tinharé-Boipeba, have shown lower vitality rates due to greater impacts from the proximity to the coastal area (e.g. pollution, overfishing, sediment run-off). This chronic negative impact must be addressed

  20. Contribution of human, climate and biophysical drivers to the spatial distribution of wildfires in a French Mediterranean area: where do wildfires start and spread?

    Science.gov (United States)

    Ruffault, Julien; Mouillot, Florent; Moebius, Flavia

    2013-04-01

    Understanding the contribution of biophysical and human drivers to the spatial distribution of fires at regional scale has many ecological and economical implications in a context of on-going global changes. However these fire drivers often interact in complex ways, such that disentangling and assessing the relative contribution of human vs. biophysical factors remains a major challenge. Indeed, the identification of biophysical conditions that promote fires are confused by the inherent stochasticity in fire occurrences and fire spread on the one hand and, by the influence of human factors -through both fire ignition and suppression - on the other. Moreover, different factors may drive fire ignition and fire spread, in such a way that the areas with the highest density of ignitions may not coincide with those where large fires occur. In the present study, we investigated the drivers of fires ignition and spread in a Mediterranean area of southern France. We used a 17 years fire database (the PROMETHEE database from 1989-2006) combined with a set of 8 explanatory variables describing the spatial pattern in ignitions, vegetation and fire weather. We first isolated the weather conditions affecting the fire occurrence and their spread using a statistical model of the weather/fuel water status for each fire event.. The results of these statistical models were used to map the fire weather in terms of average number of days with suitable conditions for burning. Then, we used Boosted regression trees (BRT) models to assess the relative importance of the different variables on the distribution of wildfire with different sizes and to assess the relationship between each variables and fire occurrence and spread probabilities. We found that human activities explained up to 50 % of the spatial distribution of fire ignitions (SDI). The distribution of large fire was chiefly explained by fuel characteristics (about 40%). Surprisingly, the weather indices explained only 20 % of

  1. In Pursuit of a Multi-lateral Dialogue - the Swiss National Centre for Climate Services (NCCS)

    Science.gov (United States)

    Michiko Hama, Angela; Croci-Maspoli, Mischa; Liniger, Mark; Schwierz, Cornelia; Stöckli, Reto; Fischer, Andreas; Gubler, Stefanie; Kotlarski, Sven; Rossa, Andrea; Zubler, Elias; Appenzeller, Christof

    2017-04-01

    Kick-starting, fostering and maintaining a dialogue between primarily public and academic actors involved in the co-design, co-delivery and use of climate services is at the core of Switzerland's National Centre for Climate Services (NCCS), which was founded in late 2015 in recognition of the Global Framework for Climate Services (GFCS). This coordination and innovation mechanism is a concerted national effort comprised of seven Federal Agencies and Institutes and further partners from academia committed to implementing the Framework at national to subnational level and creating synergies the world over. The NCCS is to be regarded as vital alongside the Swiss National Adaptation Strategy, and it also contributes to putting words into action with respect to the UN's Sustainable Development Goals, the UNFCCC and the Sendai Framework for Disaster Risk Reduction. The services of the Centre provide information to support policy-makers from national to local level as well as the private sector and society at large in minimising their risks, maximising opportunities and optimising costs in the context of climate change and variability. They are indispensable for setting effective mitigation and adaptation measures and for instigating societal transformation. Hence, the goals of the NCCS are to bundle the existing climate services of the Swiss Federation, co-create new tailored solutions with users, act as a network agent and knowledge broker - to boost climate literacy and enable climate-sensitive decision-making leading to increased resilience. The services reflect the specificities and requirements of the Alpine region and its particular challenges and vulnerabilities. Pursuing a participatory approach, the NCCS has brought together essential key players, acted as a sounding board for governmental stakeholders and their needs, and accordingly defined and populated six priority themes in line with the priority areas of the GFCS. These themes are: natural hazards, health

  2. The biophysics of neuronal growth

    International Nuclear Information System (INIS)

    Franze, Kristian; Guck, Jochen

    2010-01-01

    For a long time, neuroscience has focused on biochemical, molecular biological and electrophysiological aspects of neuronal physiology and pathology. However, there is a growing body of evidence indicating the importance of physical stimuli for neuronal growth and development. In this review we briefly summarize the historical background of neurobiophysics and give an overview over the current understanding of neuronal growth from a physics perspective. We show how biophysics has so far contributed to a better understanding of neuronal growth and discuss current inconsistencies. Finally, we speculate how biophysics may contribute to the successful treatment of lesions to the central nervous system, which have been considered incurable until very recently.

  3. Biophysical regulation of stem cell differentiation.

    Science.gov (United States)

    Govey, Peter M; Loiselle, Alayna E; Donahue, Henry J

    2013-06-01

    Bone adaptation to its mechanical environment, from embryonic through adult life, is thought to be the product of increased osteoblastic differentiation from mesenchymal stem cells. In parallel with tissue-scale loading, these heterogeneous populations of multipotent stem cells are subject to a variety of biophysical cues within their native microenvironments. Bone marrow-derived mesenchymal stem cells-the most broadly studied source of osteoblastic progenitors-undergo osteoblastic differentiation in vitro in response to biophysical signals, including hydrostatic pressure, fluid flow and accompanying shear stress, substrate strain and stiffness, substrate topography, and electromagnetic fields. Furthermore, stem cells may be subject to indirect regulation by mechano-sensing osteocytes positioned to more readily detect these same loading-induced signals within the bone matrix. Such paracrine and juxtacrine regulation of differentiation by osteocytes occurs in vitro. Further studies are needed to confirm both direct and indirect mechanisms of biophysical regulation within the in vivo stem cell niche.

  4. MAPPING ECOSYSTEM SERVICES SUPPLY IN MOUNTAIN REGIONS: A CASE STUDY FROM SOUTH TYROL (ITALY

    Directory of Open Access Journals (Sweden)

    U. Schirpke

    2014-04-01

    Full Text Available Mountain regions provide many ecosystem services and spatially explicit assessments have to account for their specific topographic and climatic conditions. Moreover, it is fundamental to understand synergies and trade-offs of multiple ecosystem services. In this study, ecosystem services supply, including forage production, timber production, water supply, carbon sequestration, soil stability, soil quality, and the aesthetic value, was quantified in bio-physical terms on the landscape scale for South Tyrol. Mean ecosystem services values of the 116 municipalities were grouped in 5 clusters. The results indicate that carbon stock is the prevailing ecosystem service of valley municipalities. On contrast, they suffer from water deficit and depend on water supply from high mountain municipalities. Trade-offs can be also found between the aesthetic value on one hand and timber production, carbon sequestration and soil stability on the other hand. The latter are characteristic for municipalities dominated by forest. The resulting maps can support landscape planning, ecosystem management and conservation of biodiversity.

  5. Implications of Climate Mitigation for Future Agricultural Production

    Science.gov (United States)

    Mueller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A. M.; Schmid, Erwin

    2015-01-01

    Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate approximately 81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many

  6. Implications of climate mitigation for future agricultural production

    International Nuclear Information System (INIS)

    Müller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A M; Schmid, Erwin

    2015-01-01

    Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate ∼81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure

  7. The relationship between fetal biophysical profile and cord blood PH

    Directory of Open Access Journals (Sweden)

    Valadan M

    2009-02-01

    Full Text Available "nBackground: The Biophysical Profile (BPP is a noninvasive test that predicts the presence or absence of fetal asphyxia and, ultimately, the risk of fetal death in the antenatal period. Intervention on the basis of an abnormal biophysical profile result has been reported to yield a significant reduction in prenatal mortality, and an association exists between biophysical profile scoring and a decreased cerebral palsy rate in a given population. The BPP evaluates five characteristics: fetal movement, tone, breathing, heart reactivity, and amniotic fluid (AF volume estimation. The purpose of study was to determine whether there are different degree of acidosis at which the biophysical activity (acute marker are affected. "nMethods: In a prospective study of 140 patients undergoing cesarean section before onset of labor, the fetal biophysical profile was performed 24h before the time of cesarean and was matched with cord arterial PH that was obtained from a cord segment (10-20cm that was double clamped after delivery of newborn. (using cord arterial PH less than 7.20 for the diagnosis of acidosis. "nResults: The fetal biophysical profile was found to have a significant relationship with umbilical blood PH. The sensitivity, specificity, positive predictive value, negative predictive value of fetal biophysical profile score were: 88.9%, 88.6%, 50%, 98.1%. "nConclusion: The first manifestations of fetal acidosis are nonreactive nonstress testing and fetal breathing loss; in advanced acidemia fetal movements and fetal tone are compromised. A protocol of antepartum fetal evaluation is suggested based upon the individual biophysical components rather than the score alone.

  8. Biophysical Evaluation of SonoSteam®:

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Duelund, Lars; Brewer, Jonathan R.

    and safety evaluations. Our results show that there are no contradictions between data obtained by either approach. However, the biophysical methods draw a much more nuanced picture of the effects and efficiency of the investigated decontamination method, revealing e.g. an exponential dose/response...... relationship between SonoSteam treatment time and changes in collagen I, and a depth dependency in bacterial reduction, which points toward CFU counts overestimating total bacterial reduction. In conclusion the biophysical methods provide a less biased, reproducible and highly detailed system description...

  9. Biophysical Cancer Transformation Pathway

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jiří

    2009-01-01

    Roč. 28, č. 2 (2009), s. 105-123 ISSN 1536-8378 Institutional research plan: CEZ:AV0Z20670512 Keywords : Biophysics * Cancer * Electromagnetic fields Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.729, year: 2009

  10. Challenges to the Transdisciplinarity of Climate Services: A Coffee Farming Case from Jamaica's Blue Mountains

    Science.gov (United States)

    Guido, Z.

    2017-12-01

    Climate information is heralded as helping to build adaptive capacity, improve resource management, and contribute to more effective risk management. However, decision makers often find it challenging to use climate information for reasons attributed to a disconnect between technical experts who produce the information and end users. Consequently, many climate service projects are now applying an end-to-end approach that links information users and producers in the design, development, and delivery of services. This collaboration confronts obstacles that can undermine the objectives of the project. Despite this, few studies in the burgeoning field of climate services have assessed the challenges. To address this gap, I provide a reflective account and analysis of the collaborative challenges experienced in an ongoing, complex four-year project developing climate services for small-scale coffee producers in Jamaica. The project has involved diverse activities, including social data collection, research and development of information tools, periodic engagement with coffee sector representatives, and community-based trainings. Contributions to the project were made routinely by 18 individuals who represent 9 institutions located in three countries. These individuals work for academic and governmental organizations and bring expertise in anthropology, plant pathology, and climatology, among others. In spanning diverse disciplines, large geographic distances, and different cultures, the project team has navigated challenges in communication, problem framing, organizational agendas, disciplinary integration, and project management. I contextualize these experiences within research on transdisciplinary and team science, and share some perspectives on strategies to lessen their impact.

  11. Supporting UK adaptation: building services for the next set of UK climate projections

    Science.gov (United States)

    Fung, Fai; Lowe, Jason

    2016-04-01

    As part of the Climate Change Act 2008, the UK Government sets out a national adaptation programme to address the risks and opportunities identified in a national climate change risk assessment (CCRA) every five years. The last risk assessment in 2012 was based on the probabilistic projections for the UK published in 2009 (UKCP09). The second risk assessment will also use information from UKCP09 alongside other evidence on climate projections. However, developments in the science of climate projeciton, and evolving user needs (based partly on what has been learnt about the diverse user requirements of the UK adaptation community from the seven years of delivering and managing UKCP09 products, market research and the peer-reviewed literature) suggest now is an appropriate time to update the projections and how they are delivered. A new set of UK climate projections are now being produced to upgrade UKCP09 to reflect the latest developments in climate science, the first phase of which will be delivered in 2018 to support the third CCRA. A major component of the work is the building of a tailored service to support users of the new projections during their development and to involve users in key decisions so that the projections are of most use. We will set out the plan for the new climate projections that seek to address the evolving user need. We will also present a framework which aims to (i) facilitate the dialogue between users, boundary organisations and producers, reflecting their different decision-making roles (ii) produce scientifically robust, user-relevant climate information (iii) provide the building blocks for developing further climate services to support adaptation activities in the UK.

  12. CEMS: Building a Cloud-Based Infrastructure to Support Climate and Environmental Data Services

    Science.gov (United States)

    Kershaw, P. J.; Curtis, M.; Pechorro, E.

    2012-04-01

    CEMS, the facility for Climate and Environmental Monitoring from Space, is a new joint collaboration between academia and industry to bring together their collective expertise to support research into climate change and provide a catalyst for growth in related Earth Observation (EO) technologies and services in the commercial sector. A recent major investment by the UK Space Agency has made possible the development of a dedicated facility at ISIC, the International Space Innovation Centre at Harwell in the UK. CEMS has a number of key elements: the provision of access to large-volume EO and climate datasets co-located with high performance computing facilities; a flexible infrastructure to support the needs of research projects in the academic community and new business opportunities for commercial companies. Expertise and tools for scientific data quality and integrity are another essential component, giving users confidence and transparency in its data, services and products. Central to the development of this infrastructure is the utilisation of cloud-based technology: multi-tenancy and the dynamic provision of resources are key characteristics to exploit in order to support the range of organisations using the facilities and the varied use cases. The hosting of processing services and applications next to the data within the CEMS facility is another important capability. With the expected exponential increase in data volumes within the climate science and EO domains it is becoming increasingly impracticable for organisations to retrieve this data over networks and provide the necessary storage. Consider for example, the factor of o20 increase in data volumes expected for the ESA Sentinel missions over the equivalent Envisat instruments. We explore the options for the provision of a hybrid community/private cloud looking at offerings from the commercial sector and developments in the Open Source community. Building on this virtualisation layer, a further core

  13. Incorporating Prognostic Marine Nitrogen Fixers and Related Bio-Physical Feedbacks in an Earth System Model

    Science.gov (United States)

    Paulsen, H.; Ilyina, T.; Six, K. D.

    2016-02-01

    Marine nitrogen fixers play a fundamental role in the oceanic nitrogen and carbon cycles by providing a major source of `new' nitrogen to the euphotic zone that supports biological carbon export and sequestration. Furthermore, nitrogen fixers may regionally have a direct impact on ocean physics and hence the climate system as they form extensive surface mats which can increase light absorption and surface albedo and reduce the momentum input by wind. Resulting alterations in temperature and stratification may feed back on nitrogen fixers' growth itself.We incorporate nitrogen fixers as a prognostic 3D tracer in the ocean biogeochemical component (HAMOCC) of the Max Planck Institute Earth system model and assess for the first time the impact of related bio-physical feedbacks on biogeochemistry and the climate system.The model successfully reproduces recent estimates of global nitrogen fixation rates, as well as the observed distribution of nitrogen fixers, covering large parts of the tropical and subtropical oceans. First results indicate that including bio-physical feedbacks has considerable effects on the upper ocean physics in this region. Light absorption by nitrogen fixers leads locally to surface heating, subsurface cooling, and mixed layer depth shoaling in the subtropical gyres. As a result, equatorial upwelling is increased, leading to surface cooling at the equator. This signal is damped by the effect of the reduced wind stress due to the presence of cyanobacteria mats, which causes a reduction in the wind-driven circulation, and hence a reduction in equatorial upwelling. The increase in surface albedo due to nitrogen fixers has only inconsiderable effects. The response of nitrogen fixers' growth to the alterations in temperature and stratification varies regionally. Simulations with the fully coupled Earth system model are in progress to assess the implications of the biologically induced changes in upper ocean physics for the global climate system.

  14. Covariance of biophysical data with digital topograpic and land use maps over the FIFE site

    Science.gov (United States)

    Davis, F. W.; Schimel, D. S.; Friedl, M. A.; Michaelsen, J. C.; Kittel, T. G. F.; Dubayah, R.; Dozier, J.

    1992-01-01

    This paper discusses the biophysical stratification of the FIFE site, implementation of the stratification utilizing geographic information system methods, and validation of the stratification with respect to field measurements of biomass, Bowen ratio, soil moisture, and the greenness vegetation index (GVI) derived from TM satellite data. Maps of burning and topographic position were significantly associated with variation in GVI, biomass, and Bowen ratio. The stratified design did not significantly alter the estimated site-wide means for surface climate parameters but accounted for between 25 and 45 percent of the sample variance depending on the variable.

  15. Divergence of ecosystem services in U.S. National Forests and Grasslands under a changing climate.

    Science.gov (United States)

    Duan, Kai; Sun, Ge; Sun, Shanlei; Caldwell, Peter V; Cohen, Erika C; McNulty, Steven G; Aldridge, Heather D; Zhang, Yang

    2016-04-21

    The 170 National Forests and Grasslands (NFs) in the conterminous United States are public lands that provide important ecosystem services such as clean water and timber supply to the American people. This study investigates the potential impacts of climate change on two key ecosystem functions (i.e., water yield and ecosystem productivity) using the most recent climate projections derived from 20 Global Climate Models (GCMs) of the Coupled Model Intercomparison Project phase 5 (CMIP5). We find that future climate change may result in a significant reduction in water yield but an increase in ecosystem productivity in NFs. On average, gross ecosystem productivity is projected to increase by 76 ~ 229 g C m(-2) yr(-1) (8% ~ 24%) while water yield is projected to decrease by 18 ~ 31 mm yr(-1) (4% ~ 7%) by 2100 as a result of the combination of increased air temperature (+1.8 ~ +5.2 °C) and precipitation (+17 ~ +51 mm yr(-1)). The notable divergence in ecosystem services of water supply and carbon sequestration is expected to intensify under higher greenhouse gas emission and associated climate change in the future, posing greater challenges to managing NFs for both ecosystem services.

  16. Can Payments for Ecosystem Services Contribute to Adaptation to Climate Change? Insights from a Watershed in Kenya

    Directory of Open Access Journals (Sweden)

    Isabel van de Sand

    2014-03-01

    Full Text Available Climate change presents new challenges for the management of social-ecological systems and the ecosystem services they provide. Although the instrument of payments for ecosystem services (PES has emerged as a promising tool to safeguard or enhance the provision of ecosystem services (ES, little attention has been paid to the potential role of PES in climate change adaptation. As an external stressor climate change has an impact on the social-ecological system in which PES takes place, including the various actors taking part in the PES scheme. Following a short description of the conceptual link between PES and adaptation to climate change, we provide practical insights into the relationship between PES and adaptation to climate change by presenting results from a case study of a rural watershed in Kenya. Drawing upon the results of a participatory vulnerability assessment among potential ecosystem service providers in Sasumua watershed north of Nairobi, we show that PES can play a role in enhancing adaptation to climate change by influencing certain elements of adaptive capacity and incentivizing adaptation measures. In addition, trade-offs and synergies between proposed measures under PES and adaptation to climate change are identified. Results show that although it may not be possible to establish PES schemes based on water utilities as the sole source of financing, embedding PES in a wider adaptation framework creates an opportunity for the development of watershed PES schemes in Africa and ensures their sustainability. We conclude that there is a need to embed PES in a wider institutional framework and that extra financial resources are needed to foster greater integration between PES and adaptation to climate change. This can be achieved through scaling up PES by bringing in other buyers and additional ecosystem services. PES can achieve important coadaptation benefits, but for more effective adaptation outcomes it needs to be combined

  17. The physical basis of biochemistry the foundations of molecular biophysics

    CERN Document Server

    Bergethon, Peter R

    1998-01-01

    The objective of this book is to provide a unifying approach to the study of biophysical chemistry for the advanced undergraduate who has had a year of physics, organic chem­ istry, calculus, and biology. This book began as a revised edition of Biophysical Chemistry: Molecules to Membranes, which Elizabeth Simons and I coauthored. That short volume was written in an attempt to provide a concise text for a one-semester course in biophysical chemistry at the graduate level. The experience of teaching biophysical chemistry to bi­ ologically oriented students over the last decade has made it clear that the subject requires a more fundamental text that unifies the many threads of modem science: physics, chem­ istry, biology, mathematics, and statistics. This book represents that effort. This volume is not a treatment of modem biophysical chemistry with its rich history and many contro­ versies, although a book on that topic is also needed. The Physical Basis of Biochemistry is an introduction to the philosophy...

  18. Global energy modeling - A biophysical approach

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Michael

    2010-09-15

    This paper contrasts the standard economic approach to energy modelling with energy models using a biophysical approach. Neither of these approaches includes changing energy-returns-on-investment (EROI) due to declining resource quality or the capital intensive nature of renewable energy sources. Both of these factors will become increasingly important in the future. An extension to the biophysical approach is outlined which encompasses a dynamic EROI function that explicitly incorporates technological learning. The model is used to explore several scenarios of long-term future energy supply especially concerning the global transition to renewable energy sources in the quest for a sustainable energy system.

  19. Risks of adverse impacts from climate change in Southern Africa

    CSIR Research Space (South Africa)

    Vincent, K

    2011-11-01

    Full Text Available In this chapter, the terms hazard exposure, sensitivity (or biophysical vulnerability), adaptive capacity (or its opposite - social vulnerability) and risk are introduced (see Box 4.1 for key definitions). Whether or not climate change is likely...

  20. Climate science information needs among natural resource decision-makers in the Northwest US

    Directory of Open Access Journals (Sweden)

    Elizabeth Allen

    2017-01-01

    Full Text Available Managing water resources, air quality, forests, rangelands and agricultural systems in the context of climate change requires a new level of integrated knowledge. In order to articulate a role for university-based research teams as providers of climate services, this paper analyzes environmental change concerns and expectations about climate models among natural resources decision-makers in the Northwest US. Data were collected during a series of workshops organized by researchers from BioEarth, a regional earth systems modeling initiative. Eighty-three stakeholders from industry, government agencies and non-governmental organizations engaged with a team of academic researchers developing integrated biophysical and economic climate modeling tools. Analysis of transcripts of workshop discussions, surveys, and questionnaires reveals diverse attitudes among stakeholders about: 1 preferred modes of engaging in climate science research, 2 specific concerns and questions about climate change impacts, and 3 the most relevant and usable scope and scale of climate change impacts projections. Diverse concerns and information needs among natural resource decision-makers highlight the need for research teams to define clear and precise goals for stakeholder engagement. Utilizing the skills of research team members who have communication and extension expertise is pivotally important. We suggest impactful opportunities for research teams and natural resource decision-makers to interface and learn from one another. Effective approaches include structuring group discussions to identify gaps in existing climate change impacts information, explicitly considering changing policies, technologies and management practices, and exploring possible unintended consequences of decisions.

  1. Ecosystem services and livelihoods in deltaic environments

    Science.gov (United States)

    Nicholls, R. J.; Rahman, M. M.; Salehin, M.; Hutton, C.

    2015-12-01

    While overall, deltas account for only 1% of global land area, they are home to more than a half billion people or ca. 7% of the world's population. In many deltas, livelihoods and food security are strongly dependent on ecosystem services, which in turn are affected by various environmental change factors, including climate variability and change, modifications to upstream river, sediment and nutrient fluxes, evolving nearshore ecosystems, and delta-level change factors such as subsidence, changing land use and management interventions such as polders. Key limits include scarcity of fresh water, saline water intrusion and the impacts of extreme events (e.g. river floods, cyclones and storm surges), which constrain land use choices and livelihood opportunities for the deltaic populations. The ESPA Deltas project takes a systemic perspective of the interaction between the coupled bio-physical environment and the livelihoods of rural delta residents. The methods emphasise poverty reduction and use coastal Bangladesh as an example. This includes a set of consistent biophysical analyses of the delta and the upstream catchments and the downstream Bay of Bengal, as well as governance and policy analysis and socio-demographic analysis, including an innovative household survey on ecosystem utilization. These results are encapsulated in an integrated model that analyses ecosystem services and livelihood implications. This integrated approach is designed to support delta-level policy formulation. It allows the exploration of contrasting development trajectories, including issues such as robustness of different governance options on ecosystem services and livelihoods. The method is strongly participatory including an ongoing series of stakeholder workshops addressing issue identification, scenario development and consideration of policy responses. The methods presented are generic and transferable to other deltas. The paper will consider the overall ESPA Deltas project and

  2. Biophysical Regulation of Vascular Differentiation and Assembly

    CERN Document Server

    Gerecht, Sharon

    2011-01-01

    The ability to grow stem cells in the laboratory and to guide their maturation to functional cells allows us to study the underlying mechanisms that govern vasculature differentiation and assembly in health and disease. Accumulating evidence suggests that early stages of vascular growth are exquisitely tuned by biophysical cues from the microenvironment, yet the scientific understanding of such cellular environments is still in its infancy. Comprehending these processes sufficiently to manipulate them would pave the way to controlling blood vessel growth in therapeutic applications. This book assembles the works and views of experts from various disciplines to provide a unique perspective on how different aspects of its microenvironment regulate the differentiation and assembly of the vasculature. In particular, it describes recent efforts to exploit modern engineering techniques to study and manipulate various biophysical cues. Biophysical Regulation of Vascular Differentiation and Assembly provides an inter...

  3. NOAA/NCEI/Regional Climate Services: Working with Partners and Stakeholders across a Wide Network

    Science.gov (United States)

    Mecray, E. L.

    2015-12-01

    Federal agencies all require plans to be prepared at the state level that outline the implementation of funding to address wildlife habitat, human health, transportation infrastructure, coastal zone management, environmental management, emergency management, and others. These plans are now requiring the consideration of changing climate conditions. So where does a state turn to discuss lessons learned, obtain tools and information to assess climate conditions, and to work with other states in their region? Regional networks and collaboratives are working to deliver this sector by sector. How do these networks work? Do they fit together in any way? What similarities and differences exist? Is anyone talking across these lines to find common climate information requirements? A sketch is forming that links these efforts, not by blending the sectors, but by finding the areas where coordination is critical, where information needs are common, and where delivery mechanisms can be streamlined. NOAA/National Centers for Environmental Information's Regional Climate Services Directors have been working at the interface of stakeholder-driven information delivery since 2010. This talk will outline the regional climate services delivery framework for the Eastern Region, with examples of regional products and information.

  4. Biophysics and systems biology.

    Science.gov (United States)

    Noble, Denis

    2010-03-13

    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights.

  5. Large-scale biophysical evaluation of protein PEGylation effects

    DEFF Research Database (Denmark)

    Vernet, Erik; Popa, Gina; Pozdnyakova, Irina

    2016-01-01

    PEGylation is the most widely used method to chemically modify protein biopharmaceuticals, but surprisingly limited public data is available on the biophysical effects of protein PEGylation. Here we report the first large-scale study, with site-specific mono-PEGylation of 15 different proteins...... of PEGylation on the thermal stability of a protein based on data generated by circular dichroism (CD), differential scanning calorimetry (DSC), or differential scanning fluorimetry (DSF). In addition, DSF was validated as a fast and inexpensive screening method for thermal unfolding studies of PEGylated...... proteins. Multivariate data analysis revealed clear trends in biophysical properties upon PEGylation for a subset of proteins, although no universal trends were found. Taken together, these findings are important in the consideration of biophysical methods and evaluation of second...

  6. The US Forest Service Framework for Climate Adaptation (Invited)

    Science.gov (United States)

    Cleaves, D.

    2013-12-01

    Public lands are changing in response to climate change and related stressors such that resilience-based management plans that integrate climate-smart adaptation are needed. The goal of these plans is to facilitate land managers' consideration of a range of potential futures while simplifying the complex array of choices and assumptions in a rigorous, defensible manner. The foundation for climate response has been built into recent Forest Service policies, guidance, and strategies like the climate change Roadmap and Scorecard; 2012 Planning Rule; Cohesive Wildland Fire Management strategy; and Inventory, Monitoring & Assessment strategy. This has driven the need for information that is relevant, timely, and accessible to support vulnerability assessments and risk management to aid in designing and choosing alternatives and ranking actions. Managers must also consider carbon and greenhouse gas implications as well as understand the nature and level of uncertainties. The major adjustments that need to be made involve: improving risk-based decision making and working with predictive models and information; evaluating underlying assumptions against new realities and possibilities being revealed by climate science; integrating carbon cycle science and a new ethic of carbon stewardship into management practices; and preparing systems for inevitable changes to ameliorate negative effects, capture opportunities, or accept different and perhaps novel ecosystem configurations. We need to avoid waiting for complete science that never arrives and take actions that blend science and experience to boost learning, reduce costs and irreversible losses, and buy lead time.

  7. Guidance for Large-scale Implementation of Alternate Wetting and Drying: A Biophysical Suitability Assessment

    Science.gov (United States)

    Sander, B. O.; Wassmann, R.; Nelson, A.; Palao, L.; Wollenberg, E.; Ishitani, M.

    2014-12-01

    The alternate wetting and drying (AWD) technology for rice production does not only save 15-30% of irrigation water, it also reduces methane emissions by up to 70%. AWD is defined by periodic drying and re-flooding of a rice field. Due to its high mitigation potential and its simplicity to execute this practice AWD has gained a lot of attention in recent years. The Climate and Clean Air Coalition (CCAC) has put AWD high on its agenda and funds a project to guide implementation of this technology in Vietnam, Bangladesh and Colombia. One crucial activity is a biophysical suitability assessment for AWD in the three countries. For this, we analyzed rainfall and soil data as well as potential evapotranspiration to assess if the water balance allows practicing AWD or if precipitation is too high for rice fields to fall dry. In my talk I will outline key factors for a successful large-scale implementation of AWD with a focus on the biophysical suitability assessment. The seasonal suitability maps that we generated highlight priority areas for AWD implementation and guide policy makers to informed decisions about meaningful investments in infrastructure and extension work.

  8. Doing the right thing without being told: joint effects of initiative climate and general self-efficacy on employee proactive customer service performance.

    Science.gov (United States)

    Raub, Steffen; Liao, Hui

    2012-05-01

    We developed and tested a cross-level model of the antecedents and outcomes of proactive customer service performance. Results from a field study of 900 frontline service employees and their supervisors in 74 establishments of a multinational hotel chain located in Europe, the Middle East, Africa, and Asia demonstrated measurement equivalence and suggested that, after controlling for service climate, initiative climate at the establishment level and general self-efficacy at the individual level predicted employee proactive customer service performance and interacted in a synergistic way. Results also showed that at the establishment level, controlling for service climate and collective general service performance, initiative climate was positively and indirectly associated with customer service satisfaction through the mediation of aggregated proactive customer service performance. We discuss important theoretical and practical implications of these findings. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  9. Climate Extremes and Land-Use Change: Effects on Ecosystem Processes and Services

    Science.gov (United States)

    Bahn, Michael; Erb, Karlheinz; Hasibeder, Roland; Mayr, Stefan; Niedertscheider, Maria; Oberhuber, Walter; Tappeiner, Ulrike; Tasser, Erich; Viovy, Nicolas; Wieser, Gerhard

    2016-04-01

    Extreme climatic events, in particular droughts and heatwaves, have significant impacts on ecosystem carbon and water cycles and a range of related ecosystem services. It is expected that in the coming decades the return intervals and severities of extreme droughts will increase substantially and may result in the passing of thresholds of ecosystem functioning, potentially causing legacy effects, which are so far poorly understood. Observational evidence suggests that different land cover types (forest, grassland) are differently influenced by extreme drought, but there is a lack of knowledge whether and how future, increasingly severe climate extremes will affect their concurrent and lagged responses, as well as land-use decisions determining future shifts in land cover. The ClimLUC project aims to understand how extreme summer drought affects carbon and water dynamics of mountain ecosystems under different land uses, and to analyse implications for ecosystem service provisioning. Overall, we hypothesize that land-use change alters the effects of extreme summer drought on ecosystem processes and the related services, grassland responding more rapidly and strongly but being more resilient to extreme drought than forest. To address the aims and hypotheses, we will 1) test experimentally how (a) a managed, (b) an abandoned mountain grassland and (c) an adjacent subalpine forest respond to a progressive extreme drought and will analyse threshold responses of carbon and water dynamics and their implications for ecosystem services (timber and fodder production, carbon sequestration, water provisioning); 2) quantify carry-over effects of the extreme event on ecosystem processes and services; 3) project and attribute future carbon and water cycle responses to extreme drought and related socio-economic changes, based on a process-based dynamic general vegetation model; 4) analyse the interrelation between land-use changes and the occurrence and severity of past and future

  10. The Vulnerability, Impacts, Adaptation and Climate Services Advisory Board (VIACS AB V1.0) Contribution to CMIP6

    Science.gov (United States)

    Ruane, Alex C.; Teichmann, Claas; Arnell, Nigel W.; Carter, Timothy R.; Ebi, Kristie L.; Frieler, Katja; Goodess, Clare M.; Hewitson, Bruce; Horton, Radley; Kovats, R. Sari; hide

    2016-01-01

    This paper describes the motivation for the creation of the Vulnerability, Impacts, Adaptation and Climate Services (VIACS) Advisory Board for the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6), its initial activities, and its plans to serve as a bridge between climate change applications experts and climate modelers. The climate change application community comprises researchers and other specialists who use climate information (alongside socioeconomic and other environmental information) to analyze vulnerability, impacts, and adaptation of natural systems and society in relation to past, ongoing, and projected future climate change. Much of this activity is directed toward the co-development of information needed by decisionmakers for managing projected risks. CMIP6 provides a unique opportunity to facilitate a two-way dialog between climate modelers and VIACS experts who are looking to apply CMIP6 results for a wide array of research and climate services objectives. The VIACS Advisory Board convenes leaders of major impact sectors, international programs, and climate services to solicit community feedback that increases the applications relevance of the CMIP6-Endorsed Model Intercomparison Projects (MIPs). As an illustration of its potential, the VIACS community provided CMIP6 leadership with a list of prioritized climate model variables and MIP experiments of the greatest interest to the climate model applications community, indicating the applicability and societal relevance of climate model simulation outputs. The VIACS Advisory Board also recommended an impacts version of Obs4MIPs (observational datasets) and indicated user needs for the gridding and processing of model output.

  11. Climate change impacts on ecosystems and ecosystem services in the United States: Process and prospects for sustained assessment

    Science.gov (United States)

    Grimm, Nancy B.; Groffman, Peter M; Staudinger, Michelle D.; Tallis, Heather

    2016-01-01

    The third United States National Climate Assessment emphasized an evaluation of not just the impacts of climate change on species and ecosystems, but also the impacts of climate change on the benefits that people derive from nature, known as ecosystem services. The ecosystems, biodiversity, and ecosystem services component of the assessment largely drew upon the findings of a transdisciplinary workshop aimed at developing technical input for the assessment, involving participants from diverse sectors. A small author team distilled and synthesized this and hundreds of other technical input to develop the key findings of the assessment. The process of developing and ranking key findings hinged on identifying impacts that had particular, demonstrable effects on the U.S. public via changes in national ecosystem services. Findings showed that ecosystem services are threatened by the impacts of climate change on water supplies, species distributions and phenology, as well as multiple assaults on ecosystem integrity that, when compounded by climate change, reduce the capacity of ecosystems to buffer against extreme events. As ecosystems change, such benefits as water sustainability and protection from storms that are afforded by intact ecosystems are projected to decline across the continent due to climate change. An ongoing, sustained assessment that focuses on the co-production of actionable climate science will allow scientists from a range of disciplines to ascertain the capability of their forecasting models to project environmental and ecological change and link it to ecosystem services; additionally, an iterative process of evaluation, development of management strategies, monitoring, and reevaluation will increase the applicability and usability of the science by the U.S. public.

  12. Biophysical models of larval dispersal in the Benguela Current ...

    African Journals Online (AJOL)

    We synthesise and update results from the suite of biophysical, larval-dispersal models developed in the Benguela Current ecosystem. Biophysical models of larval dispersal use outputs of physical hydrodynamic models as inputs to individual-based models in which biological processes acting during the larval life are ...

  13. How Students Rate the Quality Service Climate on Campus. National Research Report, 2012

    Science.gov (United States)

    Noel-Levitz, Inc, 2012

    2012-01-01

    How satisfied are students with the service they receive--and how important is it to them? This report documents significant strides that colleges and universities have made in recent years to improve service quality and their overall campus climate, yet also finds that campuses still have room for improvement. A few highlights: (1) While progress…

  14. How Students Rate the Quality Service Climate on Campus. National Research Report, 2011

    Science.gov (United States)

    Noel-Levitz, Inc, 2011

    2011-01-01

    How satisfied are students with the service they receive--and how important is it to them? This report documents significant strides that colleges and universities have made in recent years to improve service quality and their overall campus climate, yet also finds that campuses still have room for improvement. A few highlights: (1) While progress…

  15. Delineating Biophysical Environments of the Sunda Banda Seascape, Indonesia

    Directory of Open Access Journals (Sweden)

    Mingshu Wang

    2015-01-01

    Full Text Available The Sunda Banda Seascape (SBS, located in the center of the Coral Triangle, is a global center of marine biodiversity and a conservation priority. We proposed the first biophysical environmental delineation of the SBS using globally available satellite remote sensing and model-assimilated data to categorize this area into unique and meaningful biophysical classes. Specifically, the SBS was partitioned into eight biophysical classes characterized by similar sea surface temperature, chlorophyll a concentration, currents, and salinity patterns. Areas within each class were expected to have similar habitat types and ecosystem functions. Our work supplemented prevailing global marine management schemes by focusing in on a regional scale with finer spatial resolution. It also provided a baseline for academic research, ecological assessments and will facilitate marine spatial planning and conservation activities in the area. In addition, the framework and methods of delineating biophysical environments we presented can be expanded throughout the whole Coral Triangle to support research and conservation activities in this important region.

  16. Structural biophysics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Summaries of research projects conducted during 1978 and 1979 are presented. The structural biophysics group explores the high-resolution structure of biological macromolecules and cell organelles. Specific subject areas include: the basic characteristics of photosynthesis in plants; the chemical composition of individual fly ash particles at the site of their damaging action in tissues; direct analysis of frozen-hydrated biological samples by scanning electron microscopy; yeast genetics; the optical activity of DNA aggregates; measurement and characterization of lipoproteins; function of lipoproteins; and the effect of radiation and pollutants on mammalian cells

  17. The economic value of the climate regulation ecosystem service provided by the Amazon rainforest

    Science.gov (United States)

    Heil Costa, Marcos; Pires, Gabrielle; Fontes, Vitor; Brumatti, Livia

    2017-04-01

    The rainy Amazon climate allowed important activities to develop in the region as large rainfed agricultural lands and hydropower plants. The Amazon rainforest is an important source of moisture to the regional atmosphere and helps regulate the local climate. The replacement of forest by agricultural lands decreases the flux of water vapor into the atmosphere and changes the precipitation patterns, which may severely affect such economic activities. Assign an economic value to this ecosystem service may emphasize the significance to preserve the Amazon rainforest. In this work, we provide a first approximation of the quantification of the climate regulation ecosystem service provided by the Amazon rainforest using the marginal production method. We use climate scenarios derived from Amazon deforestation scenarios as input to crop and runoff models to assess how land use change would affect agriculture and hydropower generation. The effects of forest removal on soybean production and on cattle beef production can both be as high as US 16 per year per ha deforested, and the effects on hydropower generation can be as high as US 8 per year per ha deforested. We consider this as a conservative estimate of a permanent service provided by the rainforest. Policy makers and other Amazon agriculture and energy businesses must be aware of these numbers, and consider them while planning their activities.

  18. Architecture of a spatial data service system for statistical analysis and visualization of regional climate changes

    Science.gov (United States)

    Titov, A. G.; Okladnikov, I. G.; Gordov, E. P.

    2017-11-01

    The use of large geospatial datasets in climate change studies requires the development of a set of Spatial Data Infrastructure (SDI) elements, including geoprocessing and cartographical visualization web services. This paper presents the architecture of a geospatial OGC web service system as an integral part of a virtual research environment (VRE) general architecture for statistical processing and visualization of meteorological and climatic data. The architecture is a set of interconnected standalone SDI nodes with corresponding data storage systems. Each node runs a specialized software, such as a geoportal, cartographical web services (WMS/WFS), a metadata catalog, and a MySQL database of technical metadata describing geospatial datasets available for the node. It also contains geospatial data processing services (WPS) based on a modular computing backend realizing statistical processing functionality and, thus, providing analysis of large datasets with the results of visualization and export into files of standard formats (XML, binary, etc.). Some cartographical web services have been developed in a system’s prototype to provide capabilities to work with raster and vector geospatial data based on OGC web services. The distributed architecture presented allows easy addition of new nodes, computing and data storage systems, and provides a solid computational infrastructure for regional climate change studies based on modern Web and GIS technologies.

  19. Handling preference heterogeneity for river services' adaptation to climate change.

    Science.gov (United States)

    Andreopoulos, Dimitrios; Damigos, Dimitrios; Comiti, Francesco; Fischer, Christian

    2015-09-01

    Climate projection models for the Southern Mediterranean basin indicate a strong drought trend. This pattern is anticipated to affect a range of services derived from river ecosystems and consecutively deteriorate the sectoral outputs and household welfare. This paper aims to evaluate local residents' adaptation preferences for the Piave River basin in Italy. A Discrete Choice Experiment accounting for adaptation scenarios of the Piave River services was conducted and the collected data were econometrically analyzed using Random Parameters Logit, Latent Class and Covariance Heterogeneity models. In terms of policy-relevant outcomes, the analysis indicates that respondents are willing to pay for adaptation plans. This attitude is reflected on the compensating surplus to sustain the current state of the Piave, which corresponds to a monthly contribution of 80€ per household. From an econometric point of view, the results show that it is not sufficient to take solely into account general heterogeneity, provided that distinct treatment of the heterogeneity produces rather different welfare estimates. This implies that analysts should examine a set of criteria when deciding on how to better approach heterogeneity for each empirical data set. Overall, non-market values of environmental services should be considered when formulating cost-effective adaptation measures for river systems undergoing climate change effects and appropriate heterogeneity approximation could render these values unbiased and accurate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Recent progress in Biophysics

    International Nuclear Information System (INIS)

    Bemski, G.

    1980-03-01

    Recent progress in biophysics is reviewed, and three examples of the use of physical techniques and ideas in biological research are given. The first one deals with the oxygen transporting protein-hemoglobin, the second one with photosynthesis, and the third one with image formation, using nuclear magnetic resonance. (Author) [pt

  1. Assessing Climate Risk on Agricultural Production: Insights Using Retrospective Analysis of Crop Insurance and Climatic Trends

    Science.gov (United States)

    Reyes, J. J.; Elias, E.; Eischens, A.; Shilts, M.; Rango, A.; Steele, R.

    2017-12-01

    The collaborative synthesis of existing datasets, such as long-term climate observations and farmers' crop insurance payments, can increase their overall collective value and societal application. The U.S. Department of Agriculture (USDA) Climate Hubs were created to develop and deliver science-based information and technologies to agricultural and natural resource managers to enable climate-informed decision-making. As part of this mission, Hubs work across USDA and other climate service agencies to synthesize existing information. The USDA Risk Management Agency (RMA) is responsible for overseeing the Federal crop insurance program which currently insures over $100 billion in crops annually. RMA hosts data describing the cause for loss (e.g. drought, wind, irrigation failure) and indemnity amount (i.e. total cost of loss) at multiple spatio-temporal scales (i.e. state, county, year, month). The objective of this paper is to link climate information with indemnities, and their associated cause of loss, to assess climate risk on agricultural production and provide regionally-relevant information to stakeholders to promote resilient working landscapes. We performed a retrospective trend analysis at the state-level for the American Southwest (SW). First, we assessed indemnity-only trends by cause of loss and crop type at varying temporal scales. Historical monthly weather data (i.e. precipitation and temperature) and long-term drought indices (e.g. Palmer Drought Severity Index) were then linked with indemnities and grouped by different causes of loss. Climatological ranks were used to integrate historical comparative intensity of acute and long-term climatic events. Heat and drought as causes of loss were most correlated with temperature and drought indicators, respectively. Across all SW states increasing indemnities were correlated with warmer conditions. Multiple statistical trend analyses suggest a framework is necessary to appropriately measure the biophysical

  2. Risk management perspective for climate service development - Results from a study on Finnish organizations

    Science.gov (United States)

    Harjanne, Atte; Haavisto, Riina; Tuomenvirta, Heikki; Gregow, Hilppa

    2017-10-01

    Weather, climate and climate change can cause significant risks to businesses and public administration. However, understanding these processes can also create opportunities. Information can help to manage these risks and opportunities, but in order to do so, it must be in line with how risk management and decision making works. To better understand how climate risks and opportunities are reflected in different organizational processes and what types of information is needed and used, we conducted a study on the perceptions and management of weather and climate risks in Finnish organizations and on their use of weather and climate information. In addition, we collected feedback on how the existing climate information tools should be developed. Data on climate risk management was collected in an online survey and in one full-day workshop. The survey was aimed to the Finnish public and private organizations who use weather and climate data and altogether 118 responses were collected. The workshop consisted of two parts: weather and climate risk management processes in general and the development of the current information tools to further address user needs.We found that climate risk management in organizations is quite diverse and often de-centralized and that external experts are considered the most useful sources of information. Consequently, users emphasize the need for networks of expertise and sector-specific information tools. Creating such services requires input and information sharing from the user side as well. Better temporal and spatial accuracy is naturally asked for, but users also stressed the need for transparency when it comes to communicating uncertainties, and the availability and up-to-datedness of information. Our results illustrate that weather and climate risks compete and blend in with other risks and changes perceived by the organizations and supporting information is sought from different types of sources. Thus the design and evaluation of

  3. Are You Being Served? The Relationship between School Climate for Service and Teachers' Engagement, Satisfaction, and Intention to Leave: A Moderated Mediation Model.

    Science.gov (United States)

    Eldor, Liat; Shoshani, Anat

    2017-05-19

    The notion of service has been receiving increasing attention in organizational psychology literature in recent years, due to the client-oriented managerial movement. Yet, little to no attention has been paid to the service notion in educational psychology despite its high relevance to educational settings, given the pressure to be more service-oriented and possess a client-focused state of mind. The present study explores the notion of service in school domains by examining the joint effects of climate for service and the internal service in schools on teachers' work attitudes: work engagement, job satisfaction, and intention to leave their work. The notion of climate for service emphasizes the school's attitude of teachers as service providers to its clients (students and their parents); internal climate emphasizes the school's attitude of providing service to its teaching staff. The study was conducted via a sample of 423 teachers from 30 different schools in Israel. We hypothesized that the indirect relationship between the climate for service and teachers' job satisfaction and intention to leave work would be mediated by teacher work engagement. Our findings supported this hypothesis. Moreover, this indirect relationship via teacher work engagement was demonstrated most strongly when the internal service quality received was high, providing teachers with the capability to deliver what the service climate motivates them to do. Therefore, service-oriented resources-both climate for service and internal service-may be crucial in affecting teachers work attitudes and should be specifically targeted by principals and other educational decision makers.

  4. MODELLING BIOPHYSICAL PARAMETERS OF MAIZE USING LANDSAT 8 TIME SERIES

    Directory of Open Access Journals (Sweden)

    T. Dahms

    2016-06-01

    Full Text Available Open and free access to multi-frequent high-resolution data (e.g. Sentinel – 2 will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR, the leaf area index (LAI and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD: R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing

  5. Modelling Biophysical Parameters of Maize Using Landsat 8 Time Series

    Science.gov (United States)

    Dahms, Thorsten; Seissiger, Sylvia; Conrad, Christopher; Borg, Erik

    2016-06-01

    Open and free access to multi-frequent high-resolution data (e.g. Sentinel - 2) will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR), the leaf area index (LAI) and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD): R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing datasets to model

  6. Climate Prediction Center - Outlooks: CFS Forecast of Seasonal Climate

    Science.gov (United States)

    National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site government Web resources and services. CFS Seasonal Climate Forecasts CFS Forecast of Seasonal Climate discontinued after October 2012. This page displays seasonal climate anomalies from the NCEP coupled forecast

  7. Handbook of Single-Molecule Biophysics

    CERN Document Server

    Hinterdorfer, Peter

    2009-01-01

    The last decade has seen the development of a number of novel biophysical methods that allow the manipulation and study of individual biomolecules. The ability to monitor biological processes at this fundamental level of sensitivity has given rise to an improved understanding of the underlying molecular mechanisms. Through the removal of ensemble averaging, distributions and fluctuations of molecular properties can be characterized, transient intermediates identified, and catalytic mechanisms elucidated. By applying forces on biomolecules while monitoring their activity, important information can be obtained on how proteins couple function to structure. The Handbook of Single-Molecule Biophysics provides an introduction to these techniques and presents an extensive discussion of the new biological insights obtained from them. Coverage includes: Experimental techniques to monitor and manipulate individual biomolecules The use of single-molecule techniques in super-resolution and functional imaging Single-molec...

  8. Role of Membrane Biophysics in Alzheimer's - related cell pathways

    Directory of Open Access Journals (Sweden)

    Donghui eZhu

    2015-05-01

    Full Text Available Cellular membrane alterations are commonly observed in many diseases, including Alzheimer’s disease (AD. Membrane biophysical properties, such as membrane molecular order, membrane fluidity, organization of lipid rafts, and adhesion between membrane and cytoskeleton, play an important role in various cellular activities and functions. While membrane biophysics impacts a broad range of cellular pathways, this review addresses the role of membrane biophysics in amyloid-β peptide aggregation, Aβ-induced oxidative pathways, amyloid precursor protein processing, and cerebral endothelial functions in AD. Understanding the mechanism(s underlying the effects of cell membrane properties on cellular processes should shed light on the development of new preventive and therapeutic strategies for this devastating disease.

  9. Non-market forest ecosystem services and decision support in Nordic countries

    DEFF Research Database (Denmark)

    Filyushkina, Anna; Strange, Niels; Löf, Magnus

    2016-01-01

    The need to integrate non-market ecosystem services into decision-making is widely acknowledged. Despite the exponentially growing body of literature, trade-offs between services are still poorly understood. We conducted a systematic review of published literature in the Nordic countries (Denmark......, Norway, Sweden and Finland) on the integration of non-market forest ecosystem services into decision-making. The aim of the review was two-fold: (1) to provide an overview of coverage of biophysical and socio-economic assessments of non-market ecosystem services in relation to forest management; (2......) to determine the extent of the integration of biophysical and socio-economic models of these services into decision support models. Our findings reveal the need for wider coverage of non-market ecosystem services and evidence-based modelling of how forest management regimes affect ecosystem services...

  10. The Amazon rainforest, climate change, and drought: How will what is below the surface affect the climate of tropical South America?

    Science.gov (United States)

    Harper, A.; Denning, A. S.; Baker, I.; Randall, D.; Dazlich, D.

    2008-12-01

    Several climate models have predicted an increase in long-term droughts in tropical South America due to increased greenhouse gases in the atmosphere. Although the Amazon rainforest is resilient to seasonal drought, multi-year droughts pose a definite problem for the ecosystem's health. Furthermore, drought- stressed vegetation participates in feedbacks with the atmosphere that can exacerbate drought. Namely, reduced evapotranspiration further dries out the atmosphere and affects the regional climate. Trees in the rainforest survive seasonal drought by using deep roots to access adequate stores of soil moisture. We investigate the climatic impacts of deep roots and soil moisture by coupling the Simple Biosphere (SiB3) model to Colorado State University's general circulation model (BUGS5). We compare two versions of SiB3 in the GCM during years with anomalously low rainfall. The first has strong vegetative stress due to soil moisture limitations. The second experiences less stress and has more realistic representations of surface biophysics. In the model, basin-wide reductions in soil moisture stress result in increased evapotranspiration, precipitation, and moisture recycling in the Amazon basin. In the savannah region of southeastern Brazil, the unstressed version of SiB3 produces decreased precipitation and weaker moisture flux, which is more in-line with observations. The improved simulation of precipitation and evaporation also produces a more realistic Bolivian high and Nordeste low. These changes highlight the importance of subsurface biophysics for the Amazonian climate. The presence of deep roots and soil moisture will become even more important if climate change brings more frequent droughts to this region in the future.

  11. NASA's Global Change Master Directory: Discover and Access Earth Science Data Sets, Related Data Services, and Climate Diagnostics

    Science.gov (United States)

    Aleman, Alicia; Olsen, Lola; Ritz, Scott; Morahan, Michael; Cepero, Laurel; Stevens, Tyler

    2011-01-01

    NASA's Global Change Master Directory provides the scientific community with the ability to discover, access, and use Earth science data, data-related services, and climate diagnostics worldwide. The GCMD offers descriptions of Earth science data sets using the Directory Interchange Format (DIF) metadata standard; Earth science related data services are described using the Service Entry Resource Format (SERF); and climate visualizations are described using the Climate Diagnostic (CD) standard. The DIF, SERF and CD standards each capture data attributes used to determine whether a data set, service, or climate visualization is relevant to a user's needs. Metadata fields include: title, summary, science keywords, service keywords, data center, data set citation, personnel, instrument, platform, quality, related URL, temporal and spatial coverage, data resolution and distribution information. In addition, nine valuable sets of controlled vocabularies have been developed to assist users in normalizing the search for data descriptions. An update to the GCMD's search functionality is planned to further capitalize on the controlled vocabularies during database queries. By implementing a dynamic keyword "tree", users will have the ability to search for data sets by combining keywords in new ways. This will allow users to conduct more relevant and efficient database searches to support the free exchange and re-use of Earth science data. http://gcmd.nasa.gov/

  12. Biophysics of molecular gastronomy.

    Science.gov (United States)

    Brenner, Michael P; Sörensen, Pia M

    2015-03-26

    Chefs and scientists exploring biophysical processes have given rise to molecular gastronomy. In this Commentary, we describe how a scientific understanding of recipes and techniques facilitates the development of new textures and expands the flavor palette. The new dishes that result engage our senses in unexpected ways. PAPERCLIP. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Service climate in self-managing teams: Mapping the linkage of team member perceptions and service performance outcomes in a business-to-business setting

    NARCIS (Netherlands)

    Jong, de A.; Ruyter, de J.C.; Lemmink, J.G.A.M.

    2005-01-01

    Drawing from the organizational behaviour and services marketing literature, we develop a conceptual model of self-managing team (SMT) service climate, taking into account characteristics of the organizational context, the SMT, and the individual employee. In order to assess the impact of SMT

  14. Understanding and Managing the Effects of Climate Change on Ecosystem Services in the Rocky Mountains

    Directory of Open Access Journals (Sweden)

    Jessica E. Halofsky

    2017-08-01

    Full Text Available Public lands in the US Rocky Mountains provide critical ecosystem services, especially to rural communities that rely on these lands for fuel, food, water, and recreation. Climate change will likely affect the ability of these lands to provide ecosystem services. We describe 2 efforts to assess climate change vulnerabilities and develop adaptation options on federal lands in the Rocky Mountains. We specifically focus on aspects that affect community economic security and livelihood security, including water quality and quantity, timber, livestock grazing, and recreation. Headwaters of the Rocky Mountains serve as the primary source of water for large populations, and these headwaters are located primarily on public land. Thus, federal agencies will play a key role in helping to protect water quantity and quality by promoting watershed function and water conservation. Although increased temperatures and atmospheric concentration of CO2 have the potential to increase timber and forage production in the Rocky Mountains, those gains may be offset by wildfires, droughts, insect outbreaks, non-native species, and altered species composition. Our assessment identified ways in which federal land managers can help sustain forest and range productivity, primarily by increasing ecosystem resilience and minimizing current stressors, such as invasive species. Climate change will likely increase recreation participation. However, recreation managers will need more flexibility to adjust practices, provide recreation opportunities, and sustain economic benefits to communities. Federal agencies are now transitioning from the planning phase of climate change adaptation to implementation to ensure that ecosystem services will continue to be provided from federal lands in a changing climate.

  15. Regional climate service in Southern Germany

    Science.gov (United States)

    Schipper, Janus; Hackenbruch, Julia

    2013-04-01

    Climate change challenges science, politics, business and society at the international, national and regional level. The South German Climate Office at the Karlsruhe Institute of Technology (KIT) is a contact for the structuring and dissemination of information on climate and climate change in the South German region. It provides scientifically based and user-oriented climate information. Thereby it builds a bridge between the climate sciences and society and provides scientific information on climate change in an understandable way. The expertise of KIT, in which several institutions operate on fundamental and applied climate research, and of partner institutions is the basis for the work in the climate office. The regional focus is on the south of Germany. Thematic focuses are e.g. regional climate modeling, trends in extreme weather events such as heavy rain and hail event, and issues for energy and water management. The South German Climate Office is one of four Regional Helmholtz Climate Offices, of which each has a regional and thematic focus. The users of the Climate Office can be summarized into three categories. First, there is the general public. This category consists mainly of non-professionals. Here, special attention is on an understandable translation of climate information. Attention is paid to application-related aspects, because each individual is affected in a different way by climate change. Typical examples of this category are school groups, citizens and the media. The second category consists of experts of other disciplines. Unlike the first category they are mainly interested in the exchange of results and data. It is important to the climate office to provide support for the use of climatological results. Typical representatives of this category are ministries, state offices, and companies. In the third and final category are scientists. In addition to the climatologists, this category also holds representatives from other scientific

  16. Biotic games and cloud experimentation as novel media for biophysics education

    Science.gov (United States)

    Riedel-Kruse, Ingmar; Blikstein, Paulo

    2014-03-01

    First-hand, open-ended experimentation is key for effective formal and informal biophysics education. We developed, tested and assessed multiple new platforms that enable students and children to directly interact with and learn about microscopic biophysical processes: (1) Biotic games that enable local and online play using galvano- and photo-tactic stimulation of micro-swimmers, illustrating concepts such as biased random walks, Low Reynolds number hydrodynamics, and Brownian motion; (2) an undergraduate course where students learn optics, electronics, micro-fluidics, real time image analysis, and instrument control by building biotic games; and (3) a graduate class on the biophysics of multi-cellular systems that contains a cloud experimentation lab enabling students to execute open-ended chemotaxis experiments on slimemolds online, analyze their data, and build biophysical models. Our work aims to generate the equivalent excitement and educational impact for biophysics as robotics and video games have had for mechatronics and computer science, respectively. We also discuss how scaled-up cloud experimentation systems can support MOOCs with true lab components and life-science research in general.

  17. Preface: Special Topic on Single-Molecule Biophysics.

    Science.gov (United States)

    Makarov, Dmitrii E; Schuler, Benjamin

    2018-03-28

    Single-molecule measurements are now almost routinely used to study biological systems and processes. The scope of this special topic emphasizes the physics side of single-molecule observations, with the goal of highlighting new developments in physical techniques as well as conceptual insights that single-molecule measurements bring to biophysics. This issue also comprises recent advances in theoretical physical models of single-molecule phenomena, interpretation of single-molecule signals, and fundamental areas of statistical mechanics that are related to single-molecule observations. A particular goal is to illustrate the increasing synergy between theory, simulation, and experiment in single-molecule biophysics.

  18. Biophysical shunt theory for neuropsychopathology: Part I.

    Science.gov (United States)

    Naisberg, Y; Avnon, M; Weizman, A

    1995-11-01

    We present a new model of the origin of schizophrenia based on biophysical ionic shunts in neuronal (electrical) pathways. Microstructural and molecular evidence is presented for the way in which changes in the neuronal membrane ionic channels may facilitate membrane property rearrangement, leading to a change in the density and composition of the ion channel charge which in turn causes a change in ionic flow orientation and distribution. We suggest that, under abnormal conditions, ionic flow shunts are created which redirect the biophysical collateral neuronal (electrical) pathways, resulting in psychiatric signs and symptoms. This model is complementary to the biological basis of schizophrenia.

  19. 2. biophysical work meeting. Papers; 2. Biophysikalische Arbeitstagung; Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The report comprises 18 papers held at the 2nd Biophysical Work Meeting, 11 - 13 September 1991 in Schlema, Germany. The history of biophysics in Germany particularly of radiation biophysics and radon research, measurements of the radiation effects of radon and the derivation of limits, radon balneotherapy and consequences of uranium ore mining are dealt with. (orig.) [Deutsch] Der Report enthaelt 18 Vortraege, die auf der 2. Biophysikalischen Arbeitstagung in Schlema vom 11. bis 13. September 1991 gehalten wurden. Es werden die Geschichte der Biophysik in Deutschland, speziell der Strahlenbiophysik und Radonforschung, Messungen von Radon und seinen Folgeprodukten, Epidemiologie und Strahlenbiologie zur Bestimmung der Strahlenwirkung des Radons und die Ableitung entsprechender Grenzwerte, Radon-Balneotherapie und Folgen des Uranerzbergbaus behandelt. (orig.)

  20. Effects of Crack and Climate Change on Service Life of Concrete Subjected to Carbonation

    Directory of Open Access Journals (Sweden)

    Xiao-Yong Wang

    2018-04-01

    Full Text Available Carbonation is among the primary reasons for the initiation of the corrosion of steel rebar in reinforced concrete (RC structures. Due to structural loading effects and environmental actions, inevitable cracks have frequently occurred in concrete structures since the early ages. Additionally, climate change, which entails increases in CO2 concentration and environmental temperature, will also accelerate the carbonation of concrete. This article presents an analytical way of predicting the service life of cracked concrete structures considering influences of carbonation and climate change. First, using a hydration model, the quantity of carbonatable materials and concrete porosity were calculated. Carbonation depth was evaluated considering properties of concrete materials and environmental conditions. Second, the influence of cracks on CO2 diffusivity was examined. Carbonation depth for cracked concrete was evaluated using equivalent CO2 diffusivity. The effects of climate change, for example, growing CO2 concentration and environmental temperature, were considered using different schemes of carbonation models. Third, different climate change scenarios (such as Representative Concentration Pathways (RCP 2.6, RCP 4.5, RCP 8.5 and upper 90% confidence interval of RCP 8.5 and time slices (such as 2000 and 2050 were used for case studies. By utilizing the Monte Carlo method, the influences of various climate change scenarios on the service life loss of concrete structures were highlighted.

  1. Towards an integrated economic assessment of climate change impacts on agriculture

    Science.gov (United States)

    Lotze-Campen, H.; Piontek, F.; Stevanovic, M.; Popp, A.; Bauer, N.; Dietrich, J.; Mueller, C.; Schmitz, C.

    2012-12-01

    For a detailed understanding of the effects of climate change on global agricultural production systems, it is essential to consider the variability of climate change patterns as projected by General Circulation Models (GCMs), their bio-physical impact on crops and the response in land-use patterns and markets. So far, approaches that account for the interaction of bio-physical and economic impacts are largely lacking. We present an integrative analysis by using a soft-coupled system of a biophysical impact model (LPJmL, Bondeau et al. 2007), an economically driven land use model (MAgPIE, Lotze-Campen et al. 2008) and an integrated assessment model (ReMIND-R, Leimbach et al. 2010) to study climate change impacts and economic damages in the agricultural sector. First, the dynamic global vegetation and hydrology model LPJmL is used to derive climate change impacts on crop yields for wheat, maize, soy, rice and other major crops. A range of different climate projections is used, taken from the dataset provided by the Intersectoral Impact Model Intercomparison Project (ISI-MIP, www.isi-mip.org), which bias-corrected the latest CMIP5 climate data (Taylor et al. 2011). Crop yield impacts cover scenarios with and without CO2 fertilization as well as different Representative Concentration Pathways (RCPs) and different GCMs. With increasing temperature towards the end of the century yields generally decrease in tropical and subtropical regions, while they tend to benefit in higher latitudes. LPJmL results have been compared to other global crop models in the Agricultural Model Intercomparison and Improvement Project (AgMIP, www.agmip.org). Second, changes in crop yields are analysed with the spatially explicit agro-economic model MAgPIE, which covers their interaction with economic development and changes in food demand. Changes in prices as well as welfare changes of producer and consumer surplus are taken as economic indicators. Due to climate-change related reductions in

  2. Mass spectrometry in structural biology and biophysics architecture, dynamics, and interaction of biomolecules

    CERN Document Server

    Kaltashov, Igor A; Desiderio, Dominic M; Nibbering, Nico M

    2012-01-01

    The definitive guide to mass spectrometry techniques in biology and biophysics The use of mass spectrometry (MS) to study the architecture and dynamics of proteins is increasingly common within the biophysical community, and Mass Spectrometry in Structural Biology and Biophysics: Architecture, Dynamics, and Interaction of Biomolecules, Second Edition provides readers with detailed, systematic coverage of the current state of the art. Offering an unrivalled overview of modern MS-based armamentarium that can be used to solve the most challenging problems in biophysics, structural biol

  3. The climate4impact platform: Providing, tailoring and facilitating climate model data access

    Science.gov (United States)

    Pagé, Christian; Pagani, Andrea; Plieger, Maarten; Som de Cerff, Wim; Mihajlovski, Andrej; de Vreede, Ernst; Spinuso, Alessandro; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Vega, Manuel; Cofiño, Antonio; d'Anca, Alessandro; Fiore, Sandro; Kolax, Michael

    2017-04-01

    One of the main objectives of climate4impact is to provide standardized web services and tools that are reusable in other portals. These services include web processing services, web coverage services and web mapping services (WPS, WCS and WMS). Tailored portals can be targeted to specific communities and/or countries/regions while making use of those services. Easier access to climate data is very important for the climate change impact communities. To fulfill this objective, the climate4impact (http://climate4impact.eu/) web portal and services has been developed, targeting climate change impact modellers, impact and adaptation consultants, as well as other experts using climate change data. It provides to users harmonized access to climate model data through tailored services. It features static and dynamic documentation, Use Cases and best practice examples, an advanced search interface, an integrated authentication and authorization system with the Earth System Grid Federation (ESGF), a visualization interface with ADAGUC web mapping tools. In the latest version, statistical downscaling services, provided by the Santander Meteorology Group Downscaling Portal, were integrated. An innovative interface to integrate statistical downscaling services will be released in the upcoming version. The latter will be a big step in bridging the gap between climate scientists and the climate change impact communities. The climate4impact portal builds on the infrastructure of an international distributed database that has been set to disseminate the results from the global climate model results of the Coupled Model Intercomparison project Phase 5 (CMIP5). This database, the ESGF, is an international collaboration that develops, deploys and maintains software infrastructure for the management, dissemination, and analysis of climate model data. The European FP7 project IS-ENES, Infrastructure for the European Network for Earth System modelling, supports the European

  4. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services.

    Science.gov (United States)

    Lamarque, Pénélope; Lavorel, Sandra; Mouchet, Maud; Quétier, Fabien

    2014-09-23

    Land use and climate change are primary causes of changes in the supply of ecosystem services (ESs). Although the consequences of climate change on ecosystem properties and associated services are well documented, the cascading impacts of climate change on ESs through changes in land use are largely overlooked. We present a trait-based framework based on an empirical model to elucidate how climate change affects tradeoffs among ESs. Using alternative scenarios for mountain grasslands, we predicted how direct effects of climate change on ecosystems and indirect effects through farmers' adaptations are likely to affect ES bundles through changes in plant functional properties. ES supply was overall more sensitive to climate than to induced management change, and ES bundles remained stable across scenarios. These responses largely reflected the restricted extent of management change in this constrained system, which was incorporated when scaling up plot level climate and management effects on ecosystem properties to the entire landscape. The trait-based approach revealed how the combination of common driving traits and common responses to changed fertility determined interactions and tradeoffs among ESs.

  5. Comparison of biophysical factors influencing on emphysema quantification with low-dose CT

    Science.gov (United States)

    Heo, Chang Yong; Kim, Jong Hyo

    2014-03-01

    Emphysema Index(EI) measurements in MDCT is known to be influenced by various biophysical factors such as total lung volume, and body size. We investigated the association of the four biophysical factors with emphysema index in low-dose MDCT. In particular, we attempted to identify a potentially stronger biophysical factor than total lung volume. A total of 400 low-dose MDCT volumes taken at 120kVp, 40mAs, 1mm thickness, and B30f reconstruction kernel were used. The lungs, airways, and pulmonary vessels were automatically segmented, and two Emphysema Indices, relative area below -950HU(RA950) and 15th percentile(Perc15), were extracted from the segmented lungs. The biophysical factors such as total lung volume(TLV), mode of lung attenuation(ModLA), effective body diameter(EBD), and the water equivalent body diameter(WBD) were estimated from the segmented lung and body area. The association of biophysical factors with emphysema indices were evaluated by correlation coefficients. The mean emphysema indices were 8.3±5.5(%) in RA950, and -930±18(HU) in Perc15. The estimates of biophysical factors were 4.7±1.0(L) in TLV, -901±21(HU) in ModLA, 26.9±2.2(cm) in EBD, and 25.9±2.6(cm) in WBD. The correlation coefficients of biophysical factors with RA950 were 0.73 in TLV, 0.94 in ModLA, 0.31 in EBD, and 0.18 WBD, the ones with Perc15 were 0.74 in TLV, 0.98 in ModLA, 0.29 in EBD, and 0.15 WBD. Study results revealed that two biophysical factors, TLV and ModLA, mostly affects the emphysema indices. In particular, the ModLA exhibited strongest correlation of 0.98 with Perc15, which indicating the ModLA is the most significant confounding biophysical factor in emphysema indices measurement.

  6. Adaptation approaches for conserving ecosystems services and biodiversity in dynamic landscapes caused by climate change

    Science.gov (United States)

    Oswald J. Schmitz; Anne M. Trainor

    2014-01-01

    Climate change stands to cause animal species to shift their geographic ranges. This will cause ecosystems to become reorganized across landscapes as species migrate into and out of specific locations with attendant impacts on values and services that ecosystems provide to humans. Conservation in an era of climate change needs to ensure that landscapes are resilient by...

  7. Radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Summaries of research projects conducted during 1978 and 1979 are presented. The overall thrust of the research is aimed at understanding the effects of radiation on organisms. Specific subject areas include: the effects of heavy-particle beam nuclear interactions in tissue on dosimetry; tracer studies with radioactive fragments of heavy-ion beams; the effects of heavy/ions on human kidney cells and Chinese hamster cells; the response of a rhabdomyosarcoma tumor system in rats to heavy-ion beams; the use of heavy charged particles in radiotherapy of human cancer; heavy-ion radiography; the biological effects of high magnetic fields; central nervous system neurotoxicity; and biophysical studies on cell membranes

  8. [Emotional climate and internal communication in a clinical management unit compared with two traditional hospital services].

    Science.gov (United States)

    Alonso, E; Rubio, A; March, J C; Danet, A

    2011-01-01

    The aim of this study is to compare the emotional climate, quality of communication and performance indicators in a clinical management unit and two traditional hospital services. Quantitative study. questionnaire of 94 questions. 83 health professionals (63 responders) from the clinical management unit of breast pathology and the hospital services of medical oncology and radiation oncology. descriptive statistics, comparison of means, correlation and linear regression models. The clinical management unit reaches higher values compared with the hospital services about: performance indicators, emotional climate, internal communication and evaluation of the leadership. An important gap between existing and desired sources, channels, media and subjects of communication appear, in both clinical management unit and traditional services. The clinical management organization promotes better internal communication and interpersonal relations, leading to improved performance indicators. Copyright © 2011 SECA. Published by Elsevier Espana. All rights reserved.

  9. Facilitating a stakeholder-led approach to the development of Mediterranean climate services: co-ordinating the CLIM-RUN case studies

    Science.gov (United States)

    Goodess, C. M.

    2012-04-01

    The CLIM-RUN case studies provide a real-world context for bringing together experts on the demand and supply side of climate services. They are essential to the CLIM-RUN objective of using iterative and bottom-up (i.e., stakeholder led) approaches for optimizing the two-way information transfer between climate experts and stakeholders. The region of interest for CLIM-RUN is the Mediterranean, which is a recognised climate change hotspot (i.e., a region particularly sensitive and vulnerable to global warming) and which does not currently have developed climate service networks such as exist in a number of Central and Northern European countries. The case studies focus on the energy and tourism sectors, but also include a cross-cutting study on wild fires (an issue of increasing concern in the Mediterranean) as well as a cross-sectorial integrated case study for the Venice lagoon. They span coastal (e.g., Tunisia and Croatia), island (e.g., Cyprus) and mountain (e.g., Savoie) environments, the eastern (e.g., Greece) to western (e.g., Spain, Morocco) Mediterranean regions, and regional to local foci. Stakeholder involvement has been critical from the start of the project in March 2011, with a series of targeted workshops helping to define the framework for each case study. Two specific workshop objectives were to (i) better understand who are the climate services stakeholders and (ii) what they need/want from climate services (both in terms of data products and broader knowledge). Many of the workshops were held in local languages to maximise stakeholder participation, with expert knowledge provided by the CLIM-RUN climate and stakeholder expert teams (the CET and SET). Following the workshops, CET members are 'translating' the user needs into specific requirements from climate observations and models and identifying areas where additional modelling and analysis are required. As part of the central co-ordination of the case studies, a perception and data needs

  10. Ecosystem services and urban heat riskscape moderation: water, green spaces, and social inequality in Phoenix, USA.

    Science.gov (United States)

    Jenerette, G Darrel; Harlan, Sharon L; Stefanov, William L; Martin, Chris A

    2011-10-01

    Urban ecosystems are subjected to high temperatures--extreme heat events, chronically hot weather, or both-through interactions between local and global climate processes. Urban vegetation may provide a cooling ecosystem service, although many knowledge gaps exist in the biophysical and social dynamics of using this service to reduce climate extremes. To better understand patterns of urban vegetated cooling, the potential water requirements to supply these services, and differential access to these services between residential neighborhoods, we evaluated three decades (1970-2000) of land surface characteristics and residential segregation by income in the Phoenix, Arizona, USA metropolitan region. We developed an ecosystem service trade-offs approach to assess the urban heat riskscape, defined as the spatial variation in risk exposure and potential human vulnerability to extreme heat. In this region, vegetation provided nearly a 25 degrees C surface cooling compared to bare soil on low-humidity summer days; the magnitude of this service was strongly coupled to air temperature and vapor pressure deficits. To estimate the water loss associated with land-surface cooling, we applied a surface energy balance model. Our initial estimates suggest 2.7 mm/d of water may be used in supplying cooling ecosystem services in the Phoenix region on a summer day. The availability and corresponding resource use requirements of these ecosystem services had a strongly positive relationship with neighborhood income in the year 2000. However, economic stratification in access to services is a recent development: no vegetation-income relationship was observed in 1970, and a clear trend of increasing correlation was evident through 2000. To alleviate neighborhood inequality in risks from extreme heat through increased vegetation and evaporative cooling, large increases in regional water use would be required. Together, these results suggest the need for a systems evaluation of the

  11. Illustrating the Interaction of Nature and People in Ecosystem Services: The Case of Terroir in Wine

    Science.gov (United States)

    Nicholas, K. A.

    2014-12-01

    The ecosystem services (ES) approach is increasingly used in research and policy, with the Common International Framework on Ecosystem Services (CICES) "cascade" gaining traction as a framework for conceptualizing the production of ecosystem services by the natural environment, and then people consuming these services and obtaining benefits depending on their values. However, uptake of the ES concept on the ground by ecosystem managers, and understanding by everyday citizens, is still limited. One barrier is the challenge of providing tangible, examples of everyday benefits and values that people can readily connect with the biophysical structures and functions that underlie their provision. Winegrowing offers one promising case to illustrate the linkages all along the chain of production and consumption of ecosystem services. The sensitive winegrape has long been known for its properties of terroir, where the taste of wine reflects the environmental conditions of the place where it is grown, a feature valued by consumers. Here the CICES framework is illustrated with the case of winegrowing, demonstrating that the current linear model of natural production and human consumption of ES needs to be modified for this case because people influence each of the five stages by shaping and responding to their environment, producing a two-way interaction between people and the environment throughout. For example, while natural drivers such as climate and soils are key to the provision of the service of winegrape yields, landowners modify the biophysical environment through site selection and growers modify plant ecophysiological function through farming practices such as pruning and irrigation in order to influence the final service. Similarly, winemakers' expertise is needed to transform the service of winegrape yields into the product of wine that can be enjoyed and valued by consumers, whose preferences shape wine styles as well. This case illustrates how incorporating

  12. Climate Prediction Center - Monitoring and Data - Regional Climate Maps:

    Science.gov (United States)

    National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site government Web resources and services. HOME > Monitoring and Data > U.S. Climate Data > ; Precipitation & Temperature > Regional Climate Maps: USA Menu Weekly 1-Month 3-Month 12-Month Weekly

  13. Climate Prediction Center - Outlooks

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Web resources and services. HOME > Outreach > Publications > Climate Diagnostics Bulletin Climate Diagnostics Bulletin - Tropics Climate Diagnostics Bulletin - Forecast Climate Diagnostics

  14. Climate-driven range shifts of the king penguin in a fragmented ecosystem

    Science.gov (United States)

    Cristofari, Robin; Liu, Xiaoming; Bonadonna, Francesco; Cherel, Yves; Pistorius, Pierre; Le Maho, Yvon; Raybaud, Virginie; Stenseth, Nils Christian; Le Bohec, Céline; Trucchi, Emiliano

    2018-03-01

    Range shift is the primary short-term species response to rapid climate change, but it is often hampered by natural or anthropogenic habitat fragmentation. Different critical areas of a species' niche may be exposed to heterogeneous environmental changes and modelling species response under such complex spatial and ecological scenarios presents well-known challenges. Here, we use a biophysical ecological niche model validated through population genomics and palaeodemography to reconstruct past range shifts and identify future vulnerable areas and potential refugia of the king penguin in the Southern Ocean. Integrating genomic and demographic data at the whole-species level with specific biophysical constraints, we present a refined framework for predicting the effect of climate change on species relying on spatially and ecologically distinct areas to complete their life cycle (for example, migratory animals, marine pelagic organisms and central-place foragers) and, in general, on species living in fragmented ecosystems.

  15. Organizational climate partially mediates the effect of culture on work attitudes and staff turnover in mental health services.

    Science.gov (United States)

    Aarons, Gregory A; Sawitzky, Angelina C

    2006-05-01

    Staff turnover in mental health service organizations is an ongoing problem with implications for staff morale, productivity, organizational effectiveness, and implementation of innovation. Recent studies in public sector services have examined the impact of organizational culture and climate on work attitudes (i.e., job satisfaction and organizational commitment) and, ultimately, staff turnover. However, mediational models of the impact of culture and climate on work attitudes have not been examined. The present study examined full and partial mediation models of the effects of culture and climate on work attitudes and the subsequent impact of work attitudes on staff turnover. Multilevel structural equation models supported a partial mediation model in which organizational culture had both direct influence on work attitudes and indirect influence through organizational climate. Work attitudes significantly predicted one-year staff turnover rates. These findings support the contention that both culture and climate impact work attitudes and subsequent staff turnover.

  16. Adapting to climate variability: the views of peasant farmers in Nepal

    NARCIS (Netherlands)

    Chalise, S.; Maraseni, T.; Maroulis, J.

    2015-01-01

    There are growing concerns, especially from farmers in rural mid-east Nepal, about main-streaming locally-led climate adaptation strategies. Using a bottom-up approach, we analysed the bio-physical and socio-economic impacts on Nepalese agriculture from three focus group discussions and a survey of

  17. Therapist turnover and new program sustainability in mental health clinics as a function of organizational culture, climate, and service structure.

    Science.gov (United States)

    Glisson, Charles; Schoenwald, Sonja K; Kelleher, Kelly; Landsverk, John; Hoagwood, Kimberly Eaton; Mayberg, Stephen; Green, Philip

    2008-03-01

    The present study incorporates organizational theory and organizational characteristics in examining issues related to the successful implementation of mental health services. Following the theoretical foundations of socio-technical and cultural models of organizational effectiveness, organizational climate, culture, legal and service structures, and workforce characteristics are examined as correlates of therapist turnover and new program sustainability in a nationwide sample of mental health clinics. Results of General Linear Modeling (GLM) with the organization as the unit of analysis revealed that organizations with the best climates as measured by the Organizational Social Context (OSC) profiling system, had annual turnover rates (10%) that were less than half the rates found in organizations with the worst climates (22%). In addition, organizations with the best culture profiles sustained new treatment or service programs over twice as long (50 vs. 24 months) as organizations with the worst cultures. Finally, clinics with separate children's services units had higher turnover rates than clinics that served adults and children within the same unit. The findings suggest that strategies to support the implementation of new mental health treatments and services should attend to organizational culture and climate, and to the compatibility of organizational service structures with the demand characteristics of treatments.

  18. Biophysics of Human Hair Structural, Nanomechanical, and Nanotribological Studies

    CERN Document Server

    Bhushan, Bharat

    2010-01-01

    This book presents the biophysics of hair. It deals with the structure of hair, its mechanical properties, the nanomechanical characterization, tensile deformation, tribological characterization, the thickness distribution and binding interactions on hair surface. Another important topic of the book is the health of hair, human hair and skin, hair care, cleaning and conditioning treatments and damaging processes. It is the first book on the biophysical properties of hair.

  19. A protocol for the development of Mediterranean climate services based on the experiences of the CLIM-RUN case studies

    Science.gov (United States)

    Goodess, Clare; Ruti, Paolo; Rousset, Nathalie

    2014-05-01

    During the closing stages of the CLIM-RUN EU FP7 project on Climate Local Information in the Mediterranean region Responding to User Needs, the real-world experiences encountered by the case-study teams are being assessed and synthesised to identify examples of good practice and, in particular, to produce the CLIM-RUN protocol for the development of Mediterranean climate services. The specific case studies have focused on renewable energy (Morocco, Spain, Croatia, Cyprus), tourism (Savoie, Tunisia, Croatia, Cyprus) and wild fires (Greece) as well as one cross-cutting case study (Veneto region). They have been implemented following a common programme of local workshops, questionnaires and interviews, with Climate Expert Team and Stakeholder Expert Team members collaborating to identify and translate user needs and subsequently develop climate products and information. Feedback from stakeholders has been essential in assessing and refining these products. The protocol covers the following issues: the overall process and methodological key stages; identification and selection of stakeholders; communication with stakeholders; identification of user needs; translation of needs; producing products; assessing and refining products; methodologies for evaluating the economic value of climate services; and beyond CLIM-RUN - the lessons learnt. Particular emphasis is given to stakeholder analysis in the context of the participatory, bottom-up approach promoted by CLIM-RUN and to the iterative approach taken in the development of climate products. Recommendations are also made for an envisioned three-tier business model for the development of climate services involving climate, intermediary and stakeholder tiers.

  20. Applications of synchrotron radiation in Biophysics

    International Nuclear Information System (INIS)

    Bemski, G.

    1983-01-01

    A short introduction to the generation of the synchrotron radiation is made. Following, the applications of such a radiation in biophysics with emphasis to the study of the hemoglobin molecule are presented. (L.C.) [pt

  1. Climate change impacts in the Middle East and Northern Africa (MENA) region and their implications for vulnerable population groups

    NARCIS (Netherlands)

    Waha, Katharina; Krummenauer, Linda; Adams, Sophie; Aich, Valentin; Baarsch, Florent; Coumou, Dim; Fader, Marianela; Hoff, Holger; Jobbins, Guy; Marcus, Rachel; Mengel, Matthias; Otto, Ilona M.; Perrette, Mahé; Rocha, Marcia; Robinson, Alexander; Schleussner, Carl Friedrich

    2017-01-01

    The Middle East and North Africa (MENA) region emerges as one of the hot spots for worsening extreme heat, drought and aridity conditions under climate change. A synthesis of peer-reviewed literature from 2010 to date and own modeling work on biophysical impacts of climate change on selected sectors

  2. Vulnerability of water supply from the Oregon Cascades to changing climate: linking science to users and policy

    Science.gov (United States)

    Kathleen A. Farley; Christina Tague; Gordon E. Grant

    2011-01-01

    Despite improvements in understanding biophysical response to climate change, a better understanding of how such changes will affect societies is still needed. We evaluated effects of climate change on the coupled human-environmental system of the McKenzie River watershed in the Oregon Cascades in order to assess its vulnerability. Published empirical and modeling...

  3. Software architecture and design of the web services facilitating climate model diagnostic analysis

    Science.gov (United States)

    Pan, L.; Lee, S.; Zhang, J.; Tang, B.; Zhai, C.; Jiang, J. H.; Wang, W.; Bao, Q.; Qi, M.; Kubar, T. L.; Teixeira, J.

    2015-12-01

    Climate model diagnostic analysis is a computationally- and data-intensive task because it involves multiple numerical model outputs and satellite observation data that can both be high resolution. We have built an online tool that facilitates this process. The tool is called Climate Model Diagnostic Analyzer (CMDA). It employs the web service technology and provides a web-based user interface. The benefits of these choices include: (1) No installation of any software other than a browser, hence it is platform compatable; (2) Co-location of computation and big data on the server side, and small results and plots to be downloaded on the client side, hence high data efficiency; (3) multi-threaded implementation to achieve parallel performance on multi-core servers; and (4) cloud deployment so each user has a dedicated virtual machine. In this presentation, we will focus on the computer science aspects of this tool, namely the architectural design, the infrastructure of the web services, the implementation of the web-based user interface, the mechanism of provenance collection, the approach to virtualization, and the Amazon Cloud deployment. As an example, We will describe our methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). Another example is the use of Docker, a light-weight virtualization container, to distribute and deploy CMDA onto an Amazon EC2 instance. Our tool of CMDA has been successfully used in the 2014 Summer School hosted by the JPL Center for Climate Science. Students had positive feedbacks in general and we will report their comments. An enhanced version of CMDA with several new features, some requested by the 2014 students, will be used in the 2015 Summer School soon.

  4. Vulnerability and adaptation to climate-related fire impacts in rural and urban interior Alaska

    Science.gov (United States)

    Trainor, Sarah F.; Calef, Monika; Natcher, David; Chapin, F. Stuart; McGuire, A. David; Huntington, Orville; Duffy, Paul A.; Rupp, T. Scott; DeWilde, La'Ona; Kwart, Mary; Fresco, Nancy; Lovecraft, Amy Lauren

    2009-01-01

    This paper explores whether fundamental differences exist between urban and rural vulnerability to climate-induced changes in the fire regime of interior Alaska. We further examine how communities and fire managers have responded to these changes and what additional adaptations could be put in place. We engage a variety of social science methods, including demographic analysis, semi-structured interviews, surveys, workshops and observations of public meetings. This work is part of an interdisciplinary study of feedback and interactions between climate, vegetation, fire and human components of the Boreal forest social–ecological system of interior Alaska. We have learned that although urban and rural communities in interior Alaska face similar increased exposure to wildfire as a result of climate change, important differences exist in their sensitivity to these biophysical, climate-induced changes. In particular, reliance on wild foods, delayed suppression response, financial resources and institutional connections vary between urban and rural communities. These differences depend largely on social, economic and institutional factors, and are not necessarily related to biophysical climate impacts per se. Fire management and suppression action motivated by political, economic or other pressures can serve as unintentional or indirect adaptation to climate change. However, this indirect response alone may not sufficiently reduce vulnerability to a changing fire regime. More deliberate and strategic responses may be required, given the magnitude of the expected climate change and the likelihood of an intensification of the fire regime in interior Alaska.

  5. Ecosystem service provision in a changing Europe: adapting to the impacts of combined climate and socio-economic change.

    Science.gov (United States)

    Dunford, Robert W; Smith, Alison C; Harrison, Paula A; Hanganu, Diana

    Future patterns of European ecosystem services provision are likely to vary significantly as a result of climatic and socio-economic change and the implementation of adaptation strategies. However, there is little research in mapping future ecosystem services and no integrated assessment approach to map the combined impacts of these drivers. Map changing patterns in ecosystem services for different European futures and (a) identify the role of driving forces; (b) explore the potential influence of different adaptation options. The CLIMSAVE integrated assessment platform is used to map spatial patterns in services (food, water and timber provision, atmospheric regulation, biodiversity existence/bequest, landscape experience and land use diversity) for a number of combined climatic and socio-economic scenarios. Eight adaptation strategies are explored within each scenario. Future service provision (particularly water provision) will be significantly impacted by climate change. Socio-economic changes shift patterns of service provision: more dystopian societies focus on food provision at the expense of other services. Adaptation options offer significant opportunities, but may necessitate trade-offs between services, particularly between agriculture- and forestry-related services. Unavoidable trade-offs between regions (particularly South-North) are also identified in some scenarios. Coordinating adaptation across regions and sectors will be essential to ensure that all needs are met: a factor that will become increasingly pressing under dystopian futures where inter-regional cooperation breaks down. Integrated assessment enables exploration of interactions and trade-offs between ecosystem services, highlighting the importance of taking account of complex cross-sectoral interactions under different future scenarios of planning adaptation responses.

  6. Assessing Ecosystem Service Provision Under Climate Change to Support Conservation and Development Planning in Myanmar

    Science.gov (United States)

    Mandle, Lisa; Wolny, Stacie; Bhagabati, Nirmal; Helsingen, Hanna; Hamel, Perrine; Bartlett, Ryan; Dixon, Adam; Horton, Radley M.; Lesk, Corey; Manley, Danielle; hide

    2017-01-01

    Inclusion of ecosystem services (ES) information into national-scale development and climate adaptation planning has yet to become common practice, despite demand from decision makers. Identifying where ES originate and to whom the benefits flowunder current and future climate conditionsis especially critical in rapidly developing countries, where the risk of ES loss is high. Here, using Myanmar as a case study, we assess where and how ecosystems provide key benefits to the countrys people and infrastructure. We model the supply of and demand for sediment retention, dry-season baseflows, flood risk reduction and coastal storm protection from multiple beneficiaries. We find that locations currently providing the greatest amount of services are likely to remain important under the range of climate conditions considered, demonstrating their importance in planning for climate resilience. Overlap between priority areas for ES provision and biodiversity conservation is higher than expected by chance overall, but the areas important for multiple ES are underrepresented in currently designated protected areas and Key Biodiversity Areas. Our results are contributing to development planning in Myanmar, and our approach could be extended to other contexts where there is demand for national-scale natural capital information to shape development plans and policies

  7. The influence of human activity in the Arctic on climate and climate impacts

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, H.P. [23834 The Clearing Dr., Eagle River, AK 99577 (United States); Boyle, M. [Institute for Resources, Environment and Sustainability, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6S 1K4 (Canada); Flowers, G.E. [Department of Earth Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6 (Canada); Weatherly, J.W. [Snow and Ice Division, Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, NH 03755 (United States); Hamilton, L.C. [Department of Sociology, University of New Hampshire, 20 College Road, Durham, NH 03824 (United States); Hinzman, L. [Water and Environment Research Center, University of Alaska Fairbanks, P.O. Box 755860, Fairbanks, AK 99775 (United States); Gerlach, C. [Department of Anthropology, University of Alaska Fairbanks, P.O. Box 757720, Fairbanks, AK 99775 (United States); Zulueta, R. [Department of Biology, Global Change Research Group, San Diego State University, 5500 Campanile Drive, PS-240, San Diego, CA 92182 (United States); Nicolson, C. [Department of Natural Resources Conservation, University of Massachusetts, 160 Holdsworth Way, Amherst, MA , 01003 (United States); Overpeck, J. [Institute for the Study of Planet Earth, University of Arizona, 715 North Park Avenue, 2nd Floor, Tucson, AZ, 85721 (United States)

    2007-05-15

    Human activities in the Arctic are often mentioned as recipients of climate-change impacts. In this paper we consider the more complicated but more likely possibility that human activities themselves can interact with climate or environmental change in ways that either mitigate or exacerbate the human impacts. Although human activities in the Arctic are generally assumed to be modest, our analysis suggests that those activities may have larger influences on the arctic system than previously thought. Moreover, human influences could increase substantially in the near future. First, we illustrate how past human activities in the Arctic have combined with climatic variations to alter biophysical systems upon which fisheries and livestock depend. Second, we describe how current and future human activities could precipitate or affect the timing of major transitions in the arctic system. Past and future analyses both point to ways in which human activities in the Arctic can substantially influence the trajectory of arctic system change.

  8. Improving evapotranspiration in a land surface model using biophysical variables derived from MSG/SEVIRI satellite

    Directory of Open Access Journals (Sweden)

    N. Ghilain

    2012-08-01

    Full Text Available Monitoring evapotranspiration over land is highly dependent on the surface state and vegetation dynamics. Data from spaceborn platforms are desirable to complement estimations from land surface models. The success of daily evapotranspiration monitoring at continental scale relies on the availability, quality and continuity of such data. The biophysical variables derived from SEVIRI on board the geostationary satellite Meteosat Second Generation (MSG and distributed by the Satellite Application Facility on Land surface Analysis (LSA-SAF are particularly interesting for such applications, as they aimed at providing continuous and consistent daily time series in near-real time over Africa, Europe and South America. In this paper, we compare them to monthly vegetation parameters from a database commonly used in numerical weather predictions (ECOCLIMAP-I, showing the benefits of the new daily products in detecting the spatial and temporal (seasonal and inter-annual variability of the vegetation, especially relevant over Africa. We propose a method to handle Leaf Area Index (LAI and Fractional Vegetation Cover (FVC products for evapotranspiration monitoring with a land surface model at 3–5 km spatial resolution. The method is conceived to be applicable for near-real time processes at continental scale and relies on the use of a land cover map. We assess the impact of using LSA-SAF biophysical variables compared to ECOCLIMAP-I on evapotranspiration estimated by the land surface model H-TESSEL. Comparison with in-situ observations in Europe and Africa shows an improved estimation of the evapotranspiration, especially in semi-arid climates. Finally, the impact on the land surface modelled evapotranspiration is compared over a north–south transect with a large gradient of vegetation and climate in Western Africa using LSA-SAF radiation forcing derived from remote sensing. Differences are highlighted. An evaluation against remote sensing derived land

  9. Organizational performance focused on users' quality of life: The role of service climate and "contribution-to-others" wellbeing beliefs.

    Science.gov (United States)

    Pătraș, Luminița; Martínez-Tur, Vicente; Estreder, Yolanda; Gracia, Esther; Moliner, Carolina; Peiró, José María

    2018-06-01

    The investigation of organizational factors as precursors of the quality of life (QoL) of service users in organizations for individuals with intellectual disability has been relatively neglected.With this in mind, this study tests the mediation of service climate between employee's "contribution-to-others" wellbeing beliefs (COWBs) and organizational performance focused on the QoL of individuals with intellectual disability. A total of 104 organizations participated in the study. Data were collected from 885 employees and 809 family members of individuals with intellectual disability. The results of the multilevel mediation model supported the hypotheses. When employees believe that their own wellbeing depends on helping others (COWBs) service climate reported by employees is stimulated. Service climate in turn was associated with organizational performance focused on QoL of people with intellectual disability, assessed by family members. The manuscript concludes with theoretical and practical implications of the study. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Canadian climate impacts program. Programme Canadien des incidences climatologiques

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    In recognition of the impact of climate and climatic fluctuations on society, a Canadian Climate Program was established in 1978 to integrate the efforts of various federal and provincial agencies, as well as the universities and private sector, in the field of climatology. One of the program's main components since 1984 has been research to assess and identify the potential social and economic impacts of climate warming expected under a doubled carbon dioxide scenario. These and other studies over the last several years have clearly shown that increasing greenhouse gas concentrations have the potential for profound impacts on Canada's physical environment. However, they also show that there is considerable uncertainty associated with the magnitude of the expected climate warming and with understanding the relationships between climate, the biophysical environment, and socioeconomic systems. This report summarizes the program and specific studies including those on the impact of climate change on navigation and power generation, agriculture, tourism and recreation, and the marine environment.

  11. Climate change adaptation via targeted ecosystem service provision: a sustainable land management strategy for the Segura catchment (SE Spain)

    Science.gov (United States)

    Zagaria, Cecilia; de Vente, Joris; Perez-Cutillas, Pedro

    2014-05-01

    Topical research investigating climate, land-use and management scenarios in the Segura catchment (SE Spain), depicts a landscape at high-risk of, quite literally, deserting agriculture. Land degradation in the semi-arid region of SE Spain is characterized by water shortage, high erosion rates and salinization, increasingly exacerbated by climatic changes, scarce vegetation cover and detrimental farming practices. Future climate scenarios predict increases in aridity, variability and intensity of rainfall events, leading to increasing pressure on scarce soil and water resources. This study conceptualized the impending crisis of agro-ecological systems of the Segura basin (18800 km2) as a crisis of ecosystem service deterioration. In light of existing land degradation drivers and future climate scenarios, the potential of Sustainable Land Management (SLM) strategies was evaluated to target three priority ecosystem services (water provision, sediment retention and carbon sequestration) as a means to achieve climate change adaptation and mitigation. A preceding thorough process of stakeholder engagement (as part of the EU funded DESIRE project) indicated five SLM technologies for potential implementation, all with a focus upon reducing soil erosion, increasing soil water holding capacity and soil organic matter content. These technologies have been tested for over four years in local experimental field plots, and have provided results on the local effects upon individual environmental parameters. Despite the growing emphasis witnessed in literature upon the context-specificity which characterizes adaptation solutions, the frequent analysis at the field scale is limited in both scope and utility. There is a need to investigate the effects of adaptive SLM solutions at wider, regional scales. Thus, this study modeled the cumulative effect of each of the five selected SLM technologies with InVEST, a spatial analyst tool designed for ecosystem service quantification and

  12. Biophysical constraints to sustainable agricultural intensification in West African drylands: an example of the WASCAL Research Action Plan (WRAP 2.0) Flagship Strategy

    Science.gov (United States)

    Tondoh, E. J.; Forkuor, G.; Adegoke, J. O.

    2017-12-01

    The West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL) is an intergovernmental research organization established in 2012 as result of multilateral collaborations between the Republic of Germany and Governments of 10 West African countries. Its new research program termed WASCAL Research Action Plan (WRAP 2.0) aims to deploy first-class, demand-driven, and impact-oriented research to achieve development outcomes and deliver key science-based climate and environmental services. It's therefore structured around key flagships, including "Sustainable Agriculture and Food Security" with a focus on enhancing the adaptive capacity of socio-ecological landscapes through increased agricultural productivity. However, as land degradation is one of the major obstacles to sustainable agricultural production and food security in sub Saharan African, it's imperative to mitigate this complex multifaceted process which is particularly acute in West African drylands. This case study aims to diagnose the main constraints to sustainable agricultural intensification at landscape scale and derive best bet soil management practices. The methodological approach is built around biophysical survey at sites of 100 km2 organized around 16 clusters each composed of 10 georeferenced sampling plots in three semi-arid agro-ecological landscapes located in upper-west region of Ghana (Lambussie), southwestern Burkina Faso (Bondigui) and southwestern Mali (Finkolo). Soil samples were collected in both the topsoil (0-20cm) and subsoil (20-50) and key soil physical constraints were measured at each sampling point. Remote Sensing (RS) variables representing biomass, climate and topography were correlated with soil organic carbon (SOC) to determine the influence of these variables on soil health. Results revealed within and between site variations in SOC concentration, soil pH, soil fertility index (SFI), erosion prevalence and root depth restriction. Different RS

  13. Economic losses from US hurricanes consistent with an influence from climate change

    NARCIS (Netherlands)

    Estrada Porrua, F.; Botzen, W.J.W.; Tol, R.S.J.

    2015-01-01

    Warming of the climate system and its impacts on biophysical and human systems have been widely documented. The frequency and intensity of extreme weather events have also changed, but the observed increases in natural disaster losses are often thought to result solely from societal change, such as

  14. Safeguarding Ecosystem Services: A Methodological Framework to Buffer the Joint Effect of Habitat Configuration and Climate Change.

    Directory of Open Access Journals (Sweden)

    Tereza C Giannini

    Full Text Available Ecosystem services provided by mobile agents are increasingly threatened by the loss and modification of natural habitats and by climate change, risking the maintenance of biodiversity, ecosystem functions, and human welfare. Research oriented towards a better understanding of the joint effects of land use and climate change over the provision of specific ecosystem services is therefore essential to safeguard such services. Here we propose a methodological framework, which integrates species distribution forecasts and graph theory to identify key conservation areas, which if protected or restored could improve habitat connectivity and safeguard ecosystem services. We applied the proposed framework to the provision of pollination services by a tropical stingless bee (Melipona quadrifasciata, a key pollinator of native flora from the Brazilian Atlantic Forest and important agricultural crops. Based on the current distribution of this bee and that of the plant species used to feed and nest, we projected the joint distribution of bees and plants in the future, considering a moderate climate change scenario (following IPPC. We then used this information, the bee's flight range, and the current mapping of Atlantic Forest remnants to infer habitat suitability and quantify local and regional habitat connectivity for 2030, 2050 and 2080. Our results revealed north to south and coastal to inland shifts in the pollinator distribution during the next 70 years. Current and future connectivity maps unraveled the most important corridors, which if protected or restored, could facilitate the dispersal and establishment of bees during distribution shifts. Our results also suggest that coffee plantations from eastern São Paulo and southern Minas Gerais States could suffer a pollinator deficit in the future, whereas pollination services seem to be secured in southern Brazil. Landowners and governmental agencies could use this information to implement new land use

  15. Safeguarding Ecosystem Services: A Methodological Framework to Buffer the Joint Effect of Habitat Configuration and Climate Change

    Science.gov (United States)

    Giannini, Tereza C.; Tambosi, Leandro R.; Acosta, André L.; Jaffé, Rodolfo; Saraiva, Antonio M.; Imperatriz-Fonseca, Vera L.; Metzger, Jean Paul

    2015-01-01

    Ecosystem services provided by mobile agents are increasingly threatened by the loss and modification of natural habitats and by climate change, risking the maintenance of biodiversity, ecosystem functions, and human welfare. Research oriented towards a better understanding of the joint effects of land use and climate change over the provision of specific ecosystem services is therefore essential to safeguard such services. Here we propose a methodological framework, which integrates species distribution forecasts and graph theory to identify key conservation areas, which if protected or restored could improve habitat connectivity and safeguard ecosystem services. We applied the proposed framework to the provision of pollination services by a tropical stingless bee (Melipona quadrifasciata), a key pollinator of native flora from the Brazilian Atlantic Forest and important agricultural crops. Based on the current distribution of this bee and that of the plant species used to feed and nest, we projected the joint distribution of bees and plants in the future, considering a moderate climate change scenario (following IPPC). We then used this information, the bee’s flight range, and the current mapping of Atlantic Forest remnants to infer habitat suitability and quantify local and regional habitat connectivity for 2030, 2050 and 2080. Our results revealed north to south and coastal to inland shifts in the pollinator distribution during the next 70 years. Current and future connectivity maps unraveled the most important corridors, which if protected or restored, could facilitate the dispersal and establishment of bees during distribution shifts. Our results also suggest that coffee plantations from eastern São Paulo and southern Minas Gerais States could suffer a pollinator deficit in the future, whereas pollination services seem to be secured in southern Brazil. Landowners and governmental agencies could use this information to implement new land use schemes

  16. Safeguarding Ecosystem Services: A Methodological Framework to Buffer the Joint Effect of Habitat Configuration and Climate Change.

    Science.gov (United States)

    Giannini, Tereza C; Tambosi, Leandro R; Acosta, André L; Jaffé, Rodolfo; Saraiva, Antonio M; Imperatriz-Fonseca, Vera L; Metzger, Jean Paul

    2015-01-01

    Ecosystem services provided by mobile agents are increasingly threatened by the loss and modification of natural habitats and by climate change, risking the maintenance of biodiversity, ecosystem functions, and human welfare. Research oriented towards a better understanding of the joint effects of land use and climate change over the provision of specific ecosystem services is therefore essential to safeguard such services. Here we propose a methodological framework, which integrates species distribution forecasts and graph theory to identify key conservation areas, which if protected or restored could improve habitat connectivity and safeguard ecosystem services. We applied the proposed framework to the provision of pollination services by a tropical stingless bee (Melipona quadrifasciata), a key pollinator of native flora from the Brazilian Atlantic Forest and important agricultural crops. Based on the current distribution of this bee and that of the plant species used to feed and nest, we projected the joint distribution of bees and plants in the future, considering a moderate climate change scenario (following IPPC). We then used this information, the bee's flight range, and the current mapping of Atlantic Forest remnants to infer habitat suitability and quantify local and regional habitat connectivity for 2030, 2050 and 2080. Our results revealed north to south and coastal to inland shifts in the pollinator distribution during the next 70 years. Current and future connectivity maps unraveled the most important corridors, which if protected or restored, could facilitate the dispersal and establishment of bees during distribution shifts. Our results also suggest that coffee plantations from eastern São Paulo and southern Minas Gerais States could suffer a pollinator deficit in the future, whereas pollination services seem to be secured in southern Brazil. Landowners and governmental agencies could use this information to implement new land use schemes. Overall

  17. A Climate Change Board Game for Interdisciplinary Communication and Education

    Science.gov (United States)

    Eisenack, Klaus

    2013-01-01

    This article reports and reflects on the design and use of the board game KEEP COOL on climate change. The game covers and integrates central biophysical, economic, and political aspects of the issue. By using a board game as common language between students and scientists from different scientific cultures, knowledge of different disciplines can…

  18. Biophysical aspects of photodynamic therapy.

    Science.gov (United States)

    Juzeniene, Asta; Nielsen, Kristian Pagh; Moan, Johan

    2006-01-01

    Over the last three decades photodynamic therapy (PDT) has been developed to a useful clinical tool, a viable alternative in the treatment of cancer and other diseases. Several disciplines have contributed to this development: chemistry in the development of new photosensitizing agents, biology in the elucidation of cellular processes involved in PDT, pharmacology and physiology in identifying the mechanisms of distribution of photosensitizers in an organism, and, last but not least, physics in the development of better light sources, dosimetric concepts and construction of imaging devices, optical sensors and spectroscopic methods for determining sensitizer concentrations in different tissues. Physics and biophysics have also helped to focus on the role of pH for sensitizer accumulation, dose rate effects, oxygen depletion, temperature, and optical penetration of light of different wavelengths into various types of tissue. These are all important parameters for optimally effective PDT. The present review will give a brief, physically based, overview of PDT and then discuss some of the main biophysical aspects of this therapeutic modality.

  19. The Human Appropriation of Ecosystem Service Values (HAESV) in the Sundarban Biosphere Region Using Biophysical Quantification Approach

    Science.gov (United States)

    Sannigrahi, S.; Paul, S. K.; Sen, S.

    2017-12-01

    Human appropriation, especially unusual changes in land-use and land cover, significantly affects ecosystem services and functions. Driven by the growth of the population and the economy, human demands on earth's land surface have increased dramatically in the past 50 - 100 years. The area studied was divided into six major categories; cropland, mangrove forest, sparse vegetation, built-up urban area, water bodies and sandy coast, and the land coverage was calculated for the years 1973, 1988, 2002 and 2013. The spatial explicit value of the primary regulatory and supporting ecosystem services (climate regulation, raw material production, water regulation) were quantified through the indirect market valuation approach. A light use efficiency based ecosystem model, i.e. Carnegie- Ames-Stanford-Approach (CASA) was employed to estimate the carbon sequestration and oxygen production services of the ecosystem. The ArcGIS matrix transform approach calculated LULC dynamics among the classes. Investigation revealed that the built-up urban area increased from 42.9 km2 in 1973 to 308 km2 in 2013 with a 6.6 km2 yr-1 expansion rate. Similarly, water bodies (especially inland water bodies increased dramatically in the north central region) increased from 3392.1 sq.km in 1973 to 5420 sq.km in 2013 at the expense of semi-natural and natural land resulting in significant changes of ecological and ecosystem services. However, the area occupied by dense mangrove forest decreased substantially during the 40 years (1973 -2013); it was recorded to cover 2294 km2 in 1973 and 1820 km2 in 2013. The results showed that the estimated regulatory and supporting ecosystem services respond quite differently to human appropriation across the regions in both the economic and ecological dimensions. While evaluating the trade-of between human appropriation and ecosystem service changes, it has been estimated that the ecosystem service value of organic matter provision services decreased from 755 US

  20. An estimated cost of lost climate regulation services caused by thawing of the Arctic cryosphere.

    Science.gov (United States)

    Euskirchen, Eugénie S; Goodstein, Eban S; Huntington, Henry P

    2013-12-01

    Recent and expected changes in Arctic sea ice cover, snow cover, and methane emissions from permafrost thaw are likely to result in large positive feedbacks to climate warming. There is little recognition of the significant loss in economic value that the disappearance of Arctic sea ice, snow, and permafrost will impose on humans. Here, we examine how sea ice and snow cover, as well as methane emissions due to changes in permafrost, may potentially change in the future, to year 2100, and how these changes may feed back to influence the climate. Between 2010 and 2100, the annual costs from the extra warming due to a decline in albedo related to losses of sea ice and snow, plus each year's methane emissions, cumulate to a present value cost to society ranging from US$7.5 trillion to US$91.3 trillion. The estimated range reflects uncertainty associated with (1) the extent of warming-driven positive climate feedbacks from the thawing cryosphere and (2) the expected economic damages per metric ton of CO2 equivalents that will be imposed by added warming, which depend, especially, on the choice of discount rate. The economic uncertainty is much larger than the uncertainty in possible future feedback effects. Nonetheless, the frozen Arctic provides immense services to all nations by cooling the earth's temperature: the cryosphere is an air conditioner for the planet. As the Arctic thaws, this critical, climate-stabilizing ecosystem service is being lost. This paper provides a first attempt to monetize the cost of some of those lost services.

  1. Developing services for climate impact and adaptation baseline information and methodologies for the Andes

    Science.gov (United States)

    Huggel, C.

    2012-04-01

    Impacts of climate change are observed and projected across a range of ecosystems and economic sectors, and mountain regions thereby rank among the hotspots of climate change. The Andes are considered particularly vulnerable to climate change, not only due to fragile ecosystems but also due to the high vulnerability of the population. Natural resources such as water systems play a critical role and are observed and projected to be seriously affected. Adaptation to climate change impacts is therefore crucial to contain the negative effects on the population. Adaptation projects require information on the climate and affected socio-environmental systems. There is, however, generally a lack of methodological guidelines how to generate the necessary scientific information and how to communicate to implementing governmental and non-governmental institutions. This is particularly important in view of the international funds for adaptation such as the Green Climate Fund established and set into process at the UNFCCC Conferences of the Parties in Cancun 2010 and Durban 2011. To facilitate this process international and regional organizations (World Bank and Andean Community) and a consortium of research institutions have joined forces to develop and define comprehensive methodologies for baseline and climate change impact assessments for the Andes, with an application potential to other mountain regions (AndesPlus project). Considered are the climatological baseline of a region, and the assessment of trends based on ground meteorological stations, reanalysis data, and satellite information. A challenge is the scarcity of climate information in the Andes, and the complex climatology of the mountain terrain. A climate data platform has been developed for the southern Peruvian Andes and is a key element for climate data service and exchange. Water resources are among the key livelihood components for the Andean population, and local and national economy, in particular for

  2. Building biophysics in mid-century China: the University of Science and Technology of China.

    Science.gov (United States)

    Luk, Yi Lai Christine

    2015-01-01

    Biophysics has been either an independent discipline or an element of another discipline in the United States, but it has always been recognized as a stand-alone discipline in the People's Republic of China (PRC) since 1949. To inquire into this apparent divergence, this paper investigates the formational history of biophysics in China by examining the early institutional history of one of the best-known and prestigious science and technology universities in the PRC, the University of Science and Technology of China (USTC). By showing how the university and its biophysics program co-evolved with national priorities from the school's founding in 1958 to the eve of the Cultural Revolution in 1966, the purpose of this paper is to assess the development of a scientific discipline in the context of national demands and institutional politics. Specific materials for analysis include the school's admission policies, curricula, students' dissertations, and research program. To further contextualize the institutional setting of Chinese biophysics, this paper begins with a general history of proto-biophysical institutions in China during the Nationalist-Communist transitional years. This paper could be of interest to historians wanting to know more about the origin of the biophysics profession in China, and in particular how research areas that constitute biophysics changed in tandem with socio-political contingencies.

  3. Data and Data Products for Climate Research: Web Services at the Asia-Pacific Data-Research Center (APDRC)

    Science.gov (United States)

    DeCarlo, S.; Potemra, J. T.; Wang, K.

    2012-12-01

    The International Pacific Research Center (IPRC) at the University of Hawaii maintains a data center for climate studies called the Asia-Pacific Data-Research Center (APDRC). This data center was designed within a center of excellence in climate research with the intention of serving the needs of the research scientist. The APDRC provides easy access to a wide collection of climate data and data products for a wide variety of users. The data center maintains an archive of approximately 100 data sets including in-situ and remote data, as well as a range of model-based output. All data are available via on-line browsing tools such as a Live Access Server (LAS) and DChart, and direct binary access is available through OPeNDAP services. On-line tutorials on how to use these services are now available. Users can keep up-to-date with new data and product announcements via the APDRC facebook page. The main focus of the APDRC has been climate scientists, and the services are therefore streamlined to such users, both in the number and types of data served, but also in the way data are served. In addition, due to the integration of the APDRC within the IPRC, several value-added data products (see figure for an example using Argo floats) have been developed via a variety of research activities. The APDRC, therefore, has three main foci: 1. acquisition of climate-related data, 2. maintenance of integrated data servers, and 3. development and distribution of data products The APDRC can be found at http://apdrc.soest.hawaii.edu. The presentation will provide an overview along with specific examples of the data, data products and data services available at the APDRC.; APDRC product example: gridded field from Argo profiling floats

  4. Climate, Agriculture, Energy and the Optimal Allocation of Global Land Use

    Science.gov (United States)

    Steinbuks, J.; Hertel, T. W.

    2011-12-01

    The allocation of the world's land resources over the course of the next century has become a pressing research question. Continuing population increases, improving, land-intensive diets amongst the poorest populations in the world, increasing production of biofuels and rapid urbanization in developing countries are all competing for land even as the world looks to land resources to supply more environmental services. The latter include biodiversity and natural lands, as well as forests and grasslands devoted to carbon sequestration. And all of this is taking place in the context of faster than expected climate change which is altering the biophysical environment for land-related activities. The goal of the paper is to determine the optimal profile for global land use in the context of growing commercial demands for food and forest products, increasing non-market demands for ecosystem services, and more stringent GHG mitigation targets. We then seek to assess how the uncertainty associated with the underlying biophysical and economic processes influences this optimal profile of land use, in light of potential irreversibility in these decisions. We develop a dynamic long-run, forward-looking partial equilibrium framework in which the societal objective function being maximized places value on food production, liquid fuels (including biofuels), timber production, forest carbon and biodiversity. Given the importance of land-based emissions to any GHG mitigation strategy, as well as the potential impacts of climate change itself on the productivity of land in agriculture, forestry and ecosystem services, we aim to identify the optimal allocation of the world's land resources, over the course of the next century, in the face of alternative GHG constraints. The forestry sector is characterized by multiple forest vintages which add considerable computational complexity in the context of this dynamic analysis. In order to solve this model efficiently, we have employed the

  5. Crop modelling for integrated assessment of risk to food production from climate change

    NARCIS (Netherlands)

    Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, Heidi; Trnka, M.; Kersebaum, K.C.; Olesen, J.E.; Ittersum, van M.K.; Janssen, S.J.C.; Rivington, M.; Semenov, M.A.; Wallach, D.; Porter, J.R.; Stewart, D.; Verhagen, J.; Gaiser, T.; Palosuo, T.; Tao, F.; Nendel, C.; Roggero, P.P.; Bartosová, L.; Asseng, S.

    2015-01-01

    The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess

  6. Climate simulations and services on HPC, Cloud and Grid infrastructures

    Science.gov (United States)

    Cofino, Antonio S.; Blanco, Carlos; Minondo Tshuma, Antonio

    2017-04-01

    Cloud, Grid and High Performance Computing have changed the accessibility and availability of computing resources for Earth Science research communities, specially for Climate community. These paradigms are modifying the way how climate applications are being executed. By using these technologies the number, variety and complexity of experiments and resources are increasing substantially. But, although computational capacity is increasing, traditional applications and tools used by the community are not good enough to manage this large volume and variety of experiments and computing resources. In this contribution, we evaluate the challenges to run climate simulations and services on Grid, Cloud and HPC infrestructures and how to tackle them. The Grid and Cloud infrastructures provided by EGI's VOs ( esr , earth.vo.ibergrid and fedcloud.egi.eu) will be evaluated, as well as HPC resources from PRACE infrastructure and institutional clusters. To solve those challenges, solutions using DRM4G framework will be shown. DRM4G provides a good framework to manage big volume and variety of computing resources for climate experiments. This work has been supported by the Spanish National R&D Plan under projects WRF4G (CGL2011-28864), INSIGNIA (CGL2016-79210-R) and MULTI-SDM (CGL2015-66583-R) ; the IS-ENES2 project from the 7FP of the European Commission (grant agreement no. 312979); the European Regional Development Fund—ERDF and the Programa de Personal Investigador en Formación Predoctoral from Universidad de Cantabria and Government of Cantabria.

  7. Biophysical aspects of cancer - Electromagnetic mechanism

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jiří; Hašek, Jiří; Vaniš, Jan; Jelínek, František

    2008-01-01

    Roč. 46, č. 5 (2008), s. 310-321 ISSN 0019-5189 Institutional research plan: CEZ:AV0Z20670512; CEZ:AV0Z50200510 Keywords : Electromagnetic Fields * Biophysics * Cancer Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.599, year: 2008

  8. Greenhouse gas policy influences climate via direct effects of land-use change

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Andrew D.; Collins, William D.; Edmonds, James A.; Torn, Margaret S.; Janetos, Anthony C.; Calvin, Katherine V.; Thomson, Allison M.; Chini, Louise M.; Mao, Jiafu; Shi, Xiaoying; Thornton, Peter; Hurtt, George; Wise, Marshall A.

    2013-06-01

    Proposed climate mitigation measures do not account for direct biophysical climate impacts of land-use change (LUC), nor do the stabilization targets modeled for the 5th Climate Model Intercomparison Project (CMIP5) Representative Concentration Pathways (RCPs). To examine the significance of such effects on global and regional patterns of climate change, a baseline and alternative scenario of future anthropogenic activity are simulated within the Integrated Earth System Model, which couples the Global Change Assessment Model, Global Land-use Model, and Community Earth System Model. The alternative scenario has high biofuel utilization and approximately 50% less global forest cover compared to the baseline, standard RCP4.5 scenario. Both scenarios stabilize radiative forcing from atmospheric constituents at 4.5 W/m2 by 2100. Thus, differences between their climate predictions quantify the biophysical effects of LUC. Offline radiative transfer and land model simulations are also utilized to identify forcing and feedback mechanisms driving the coupled response. Boreal deforestation is found to strongly influence climate due to increased albedo coupled with a regional-scale water vapor feedback. Globally, the alternative scenario yields a 21st century warming trend that is 0.5 °C cooler than baseline, driven by a 1 W/m2 mean decrease in radiative forcing that is distributed unevenly around the globe. Some regions are cooler in the alternative scenario than in 2005. These results demonstrate that neither climate change nor actual radiative forcing are uniquely related to atmospheric forcing targets such as those found in the RCP’s, but rather depend on particulars of the socioeconomic pathways followed to meet each target.

  9. Climate implications of including albedo effects in terrestrial carbon policy

    Science.gov (United States)

    Jones, A. D.; Collins, W.; Torn, M. S.; Calvin, K. V.

    2012-12-01

    Proposed strategies for managing terrestrial carbon in order to mitigate anthropogenic climate change, such as financial incentives for afforestation, soil carbon sequestration, or biofuel production, largely ignore the direct effects of land use change on climate via biophysical processes that alter surface energy and water budgets. Subsequent influences on temperature, hydrology, and atmospheric circulation at regional and global scales could potentially help or hinder climate stabilization efforts. Because these policies often rely on payments or credits expressed in units of CO2-equivalents, accounting for biophysical effects would require a metric for comparing the strength of biophysical climate perturbation from land use change to that of emitting CO2. One such candidate metric that has been suggested in the literature on land use impacts is radiative forcing, which underlies the global warming potential metric used to compare the climate effects of various greenhouse gases with one another. Expressing land use change in units of radiative forcing is possible because albedo change results in a net top-of-atmosphere radiative flux change. However, this approach has also been critiqued on theoretical grounds because not all climatic changes associated with land use change are principally radiative in nature, e.g. changes in hydrology or the vertical distribution of heat within the atmosphere, and because the spatial scale of land use change forcing differs from that of well-mixed greenhouse gases. To explore the potential magnitude of this discrepancy in the context of plausible scenarios of future land use change, we conduct three simulations with the Community Climate System Model 4 (CCSM4) utilizing a slab ocean model. Each simulation examines the effect of a stepwise change in forcing relative to a pre-industrial control simulation: 1) widespread conversion of forest land to crops resulting in approximately 1 W/m2 global-mean radiative forcing from albedo

  10. Climate Forecast System

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Forecast System Home News Organization Web portal to all Federal, state and local government Web resources and services. The NCEP Climate when using the CFS Reanalysis (CFSR) data. Saha, Suranjana, and Coauthors, 2010: The NCEP Climate

  11. Web processing service for climate impact and extreme weather event analyses. Flyingpigeon (Version 1.0)

    Science.gov (United States)

    Hempelmann, Nils; Ehbrecht, Carsten; Alvarez-Castro, Carmen; Brockmann, Patrick; Falk, Wolfgang; Hoffmann, Jörg; Kindermann, Stephan; Koziol, Ben; Nangini, Cathy; Radanovics, Sabine; Vautard, Robert; Yiou, Pascal

    2018-01-01

    Analyses of extreme weather events and their impacts often requires big data processing of ensembles of climate model simulations. Researchers generally proceed by downloading the data from the providers and processing the data files ;at home; with their own analysis processes. However, the growing amount of available climate model and observation data makes this procedure quite awkward. In addition, data processing knowledge is kept local, instead of being consolidated into a common resource of reusable code. These drawbacks can be mitigated by using a web processing service (WPS). A WPS hosts services such as data analysis processes that are accessible over the web, and can be installed close to the data archives. We developed a WPS named 'flyingpigeon' that communicates over an HTTP network protocol based on standards defined by the Open Geospatial Consortium (OGC), to be used by climatologists and impact modelers as a tool for analyzing large datasets remotely. Here, we present the current processes we developed in flyingpigeon relating to commonly-used processes (preprocessing steps, spatial subsets at continent, country or region level, and climate indices) as well as methods for specific climate data analysis (weather regimes, analogues of circulation, segetal flora distribution, and species distribution models). We also developed a novel, browser-based interactive data visualization for circulation analogues, illustrating the flexibility of WPS in designing custom outputs. Bringing the software to the data instead of transferring the data to the code is becoming increasingly necessary, especially with the upcoming massive climate datasets.

  12. Essential climatic variables estimation with satellite imagery

    Science.gov (United States)

    Kolotii, A.; Kussul, N.; Shelestov, A.; Lavreniuk, M. S.

    2016-12-01

    According to Sendai Framework for Disaster Risk Reduction 2015 - 2030 Leaf Area Index (LAI) is considered as one of essential climatic variables. This variable represents the amount of leaf material in ecosystems and controls the links between biosphere and atmosphere through various processes and enables monitoring and quantitative assessment of vegetation state. LAI has added value for such important global resources monitoring tasks as drought mapping and crop yield forecasting with use of data from different sources [1-2]. Remote sensing data from space can be used to estimate such biophysical parameter at regional and national scale. High temporal satellite imagery is usually required to capture main parameters of crop growth [3]. Sentinel-2 mission launched in 2015 be ESA is a source of high spatial and temporal resolution satellite imagery for mapping biophysical parameters. Products created with use of automated Sen2-Agri system deployed during Sen2-Agri country level demonstration project for Ukraine will be compared with our independent results of biophysical parameters mapping. References Shelestov, A., Kolotii, A., Camacho, F., Skakun, S., Kussul, O., Lavreniuk, M., & Kostetsky, O. (2015, July). Mapping of biophysical parameters based on high resolution EO imagery for JECAM test site in Ukraine. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 1733-1736 Kolotii, A., Kussul, N., Shelestov, A., Skakun, S., Yailymov, B., Basarab, R., ... & Ostapenko, V. (2015). Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(7), 39-44. Kussul, N., Lemoine, G., Gallego, F. J., Skakun, S. V., Lavreniuk, M., & Shelestov, A. Y. Parcel-Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 9 (6), 2500-2508.

  13. The features of the formation of the socio-psychological climate in the institution of social services

    Directory of Open Access Journals (Sweden)

    Balakhtar Valentina Vizitorіvna

    2017-04-01

    Full Text Available The article reveals the essence of the concepts “socio-psychological climate”, “climate” and “organizational culture”. The author analyses approaches to understanding the socio-psychological climate: the socio-psychological phenomenon, the general emotional and psychological mood, the style of people's relationships with direct contact with each other, the social and psychological compatibility of the members of the group. The features of the formation of the socio-psychological climate in the establishment of the social service, factors affecting the state of the socio-psychological climate in the team are considered.

  14. Employees' perception of the organizational climate: Its effect on service quality

    Directory of Open Access Journals (Sweden)

    K. K. Govender

    1999-06-01

    Full Text Available From a survey of a matched sample of bank employees and customers, it was ascertained that the employees' perception of the organizational climate [OCLIM] is positively associated with the customers' perception of the overall service quality [SQUAL] but not with the customers' perception of the employee service quality [EQUAL]. This implies that service firm managers should regularly survey their employees to determine their perceptions of the organization, and take necessary remedial measures to correct any misperceptions. Opsomming 'n Steekproef onder bankamptenare en kliente toon dat amptenare se persepsie van die organisatoriese klimaat (OCLIM positief korreleer met kliente se persepsie van algehele diensgehalte (SQUAL, maar me met kliente se persepsie van die amptenare se diensgehalte (EQUAL nie. Dit impliseer dat diensfirma-bestuurders hul amptenare se persepsies van organisasie gereeld moot monitor, en die nodige regstellende stappe meet neem om wanpersepsies reg te stel.

  15. Ecosystem services in Mediterranean river basin: climate change impact on water provisioning and erosion control.

    Science.gov (United States)

    Bangash, Rubab F; Passuello, Ana; Sanchez-Canales, María; Terrado, Marta; López, Alfredo; Elorza, F Javier; Ziv, Guy; Acuña, Vicenç; Schuhmacher, Marta

    2013-08-01

    The Mediterranean basin is considered one of the most vulnerable regions of the world to climate change and such changes impact the capacity of ecosystems to provide goods and services to human society. The predicted future scenarios for this region present an increased frequency of floods and extended droughts, especially at the Iberian Peninsula. This paper evaluates the impacts of climate change on the water provisioning and erosion control services in the densely populated Mediterranean Llobregat river basin of. The assessment of ecosystem services and their mapping at the basin scale identify the current pressures on the river basin including the source area in the Pyrenees Mountains. Drinking water provisioning is expected to decrease between 3 and 49%, while total hydropower production will decrease between 5 and 43%. Erosion control will be reduced by up to 23%, indicating that costs for dredging the reservoirs as well as for treating drinking water will also increase. Based on these data, the concept for an appropriate quantification and related spatial visualization of ecosystem service is elaborated and discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Climate change on arctic environment, ecosystem services and society (CLICHE)

    Science.gov (United States)

    Weckström, J.; Korhola, A.; Väliranta, M.; Seppä, H.; Luoto, M.; Tuittila, E.-S.; Leppäranta, M.; Kahilainen, K.; Saarinen, J.; Heikkinen, H.

    2012-04-01

    The predicted climate warming has raised many questions and concerns about its impacts on the environment and society. As a respond to the need of holistic studies comprising both of these areas, The Academy of Finland launched The Finnish Research Programme on Climate Change (FICCA 2011-2014) in spring 2010 with the main aim to focus on the interaction between the environment and society. Ultimately 11 national consortium projects were funded (total budget 12 million EUR). Here we shortly present the main objectives of the largest consortium project "Climate change on arctic environment, ecosystem services and society" (CLICHE). The CLICHE consortium comprises eight interrelated work packages (treeline, diversity, peatlands, snow, lakes, fish, tourism, and traditional livelihoods), each led by a prominent research group and a team leader. The research consortium has three main overall objectives: 1) Investigate, map and model the past, present and future climate change-induced changes in central ecosystems of the European Arctic with unprecedented precision 2) Deepen our understanding of the basic principles of ecosystem and social resilience and dynamics; identify key taxa, structures or processes that clearly indicate impending or realised global change through their loss, occurrence or behaviour, using analogues from the past (e.g. Holocene Thermal Maximum, Medieval Warm Period), experiments, observations and models 3) Develop adaptation and mitigation strategies to minimize the adverse effects of climate change on local communities, traditional livelihoods, fisheries, and tourism industry, and promote sustainable development of local community structures and enhance the quality of life of local human populations. As the project has started only recently no final results are available yet. However, the fieldwork as well as the co-operation between the research teams has thus far been very successful. Thus, the expectations for the final outcome of the project

  17. Regional Approach for Linking Ecosystem Services and Livelihood Strategies Under Climate Change of Pastoral Communities in the Mongolian Steppe Ecosystem

    Science.gov (United States)

    Ojima, D. S.; Galvin, K.; Togtohyn, C.

    2012-12-01

    Dramatic changes due to climate and land use dynamics in the Mongolian Plateau affecting ecosystem services and agro-pastoral systems in Mongolia. Recently, market forces and development strategies are affecting land and water resources of the pastoral communities which are being further stressed due to climatic changes. Evaluation of pastoral systems, where humans depend on livestock and grassland ecosystem services, have demonstrated the vulnerability of the social-ecological system to climate change. Current social-ecological changes in ecosystem services are affecting land productivity and carrying capacity, land-atmosphere interactions, water resources, and livelihood strategies. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. Thus we expect climate-land use-land cover relationships to be crucially modified by the social-economic forces. The analysis incorporates information about the social-economic transitions taking place in the region which affect land-use, food security, and ecosystem dynamics. The region of study extends from the Mongolian plateau in Mongolia. Our research indicate that sustainability of pastoral systems in the region needs to integrate the impact of climate change on ecosystem services with socio-economic changes shaping the livelihood strategies of pastoral systems in the region. Adaptation strategies which incorporate integrated analysis of landscape management and livelihood strategies provides a framework which links ecosystem services to critical resource assets. Analysis of the available livelihood assets provides insights to the adaptive capacity of various agents in a region or in a community. Sustainable development pathways which enable the development of these adaptive capacity elements will lead to more effective adaptive management strategies for pastoral land use and herder's living standards. Pastoralists will have the

  18. Climateurope: a network to support Europe's research and innovation activities in the fields of Earth-System modeling and climate services

    Science.gov (United States)

    Bessembinder, Janette; Kotova, Lola; Manez, Maria; Jacob, Daniela; Hewitt, Chris; Garrett, Natalie; Monfray, Patrick; Doescher, Ralf; Doblas Reyes, Francisco; Joussaume, Sylvie; Toumi, Ralf; Buonocore, Mauro; Gualdi, Silvio; Nickovic, Slobodan

    2017-04-01

    Changes in the climate are affecting many sectors but the audience of decision- and policy-makers is so wide and varied that the requirements from each application can be quite different. There are a growing number of initiatives at the international and European level, from research networks of data providers, operational services, impact assessments, to coordination of government initiatives and provision of policy relevant recommendations; all provided on a wide range of timescales. The landscape of activities is very diverse. Users and providers of climate information currently face significant challenges in understanding this complex landscape. If we are to maximize the benefits of the investments and provide European citizens with the information and technology to develop a climate-smart society, then a mechanism is needed to coordinate the impressive and varied research and innovation effort. The overall concept behind the EU-project Climateurope is to create and manage a framework to coordinate, integrate and support Europe's research and innovation activities in the fields of Earth-System modeling and climate services. The purpose of this concept is to create greater social and economic value for Europe through improved preparation for, and management of, climate-related risks and opportunities arising from making European world-class knowledge more useable and thus more applicable to policy- and decision-making. This value will be felt by a range of actors including the public sector, governments, business and industry. Climateurope will provide a comprehensive overview of all the relevant activities to ensure the society at large can take full advantage of the investment Europe is making in research and innovation and associated development of services. The Climateurope network will facilitate dialog among climate science communities, funding bodies, climate service providers and users. Through the communication and dissemination activities, Climateurope

  19. A mathematical approach to protein biophysics

    CERN Document Server

    Scott, L Ridgway

    2017-01-01

    This book explores quantitative aspects of protein biophysics and attempts to delineate certain rules of molecular behavior that make atomic scale objects behave in a digital way.  This book will help readers to understand how certain biological systems involving proteins function as digital information systems despite the fact that underlying processes are analog in nature. The in-depth explanation of proteins from a quantitative point of view and the variety of level of exercises (including physical experiments) at the end of each chapter will appeal to graduate and senior undergraduate students in mathematics, computer science, mechanical engineering, and physics, wanting to learn about the biophysics of proteins.  L. Ridgway Scott has been Professor of Computer Science and of Mathematics at the University of Chicago since 1998, and the Louis Block Professor since 2001.  He obtained a B.S. degree (Magna Cum Laude) from Tulane University in 1969 and a PhD degree in Mathematics from the Massachusetts Ins...

  20. Mapping and modelling ecosystem services for science, policy and practice

    NARCIS (Netherlands)

    Burkhard, B.; Crossman, N.; Nedkov, S.; Petz, K.; Alkemade, R.

    2013-01-01

    Ecosystem services are a significant research and policy topic and there are many modelling and mapping approaches aimed at understanding the stocks, demands and flows of ecosystem services on different spatial and temporal scales. The integration of geo-biophysical processes and structure

  1. Institute of Biochemistry and Biophysics. Research Report 1996-1997

    International Nuclear Information System (INIS)

    1998-01-01

    Scientific interests of the Institute of Biochemistry and Biophysics of the Polish Academy of Sciences have evolved from classical biochemistry, biophysics and physiological chemistry to up-to-date molecular biology. Research interests are focussed on replication, mutagenesis and repair of DNA; regulation of gene expression at various levels; biosynthesis and post-translational modifications of proteins; gene sequencing and functional analysis of open reading frames; structure, function and regulation of enzymes; conformation of proteins and peptides; modelling of structures and prediction of functions of proteins; mechanisms of electron transfer in polypeptides

  2. Institute of Biochemistry and Biophysics. Research Report 1996-1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    Scientific interests of the Institute of Biochemistry and Biophysics of the Polish Academy of Sciences have evolved from classical biochemistry, biophysics and physiological chemistry to up-to-date molecular biology. Research interests are focussed on replication, mutagenesis and repair of DNA; regulation of gene expression at various levels; biosynthesis and post-translational modifications of proteins; gene sequencing and functional analysis of open reading frames; structure, function and regulation of enzymes; conformation of proteins and peptides; modelling of structures and prediction of functions of proteins; mechanisms of electron transfer in polypeptides.

  3. Integrating ecosystem services and climate change responses in coastal wetlands development plans for Bangladesh

    NARCIS (Netherlands)

    Sarwar, M.H.; Hein, L.G.; Rip, F.I.; Dearing, J.A.

    2015-01-01

    This study explores the integration of ecosystem services and climate change adaptation in development plans for coastal wetlands in Bangladesh. A new response framework for adaptation is proposed, based on an empirical analysis and consultations with stakeholders, using a modified version of the

  4. Biophysical Influence of Airborne Carbon Nanomaterials on Natural Pulmonary Surfactant

    OpenAIRE

    Valle, Russell P.; Wu, Tony; Zuo, Yi Y.

    2015-01-01

    Inhalation of nanoparticles (NP), including lightweight airborne carbonaceous nanomaterials (CNM), poses a direct and systemic health threat to those who handle them. Inhaled NP penetrate deep pulmonary structures in which they first interact with the pulmonary surfactant (PS) lining at the alveolar air–water interface. In spite of many research efforts, there is a gap of knowledge between in vitro biophysical study and in vivo inhalation toxicology since all existing biophysical models handl...

  5. Research Institute for Medical Biophysics

    International Nuclear Information System (INIS)

    Wynchank, S.

    1989-01-01

    The effects of ionising and non-ionising radiation on rodent tumours and normal tissue were studied in terms of cellular repair and the relevant biochemical and biophysical changes following radiation. Rodent tumours investigated in vivo were the CaNT adenocarcinoma and a chemically induced transplantable rhabdomyosarcoma. Radiations used were 100KVp of X-Rays, neutron beams, various magnetic fields, and microwave radiation of 2450MHz. The biochemical parameters measured were, inter alia, levels of adenosine-5'-triphoshate (ATP) and the specific activity of hexokinase (HK). Metabolic changes in ATP levels and the activity of HK were observed in tumour and normal tissues following ionising and non-ionising radiation in normoxia and hypoxia. The observation that the effect of radiation and chemotherapeutic treatment of some tumours may be size dependent can possibly now be explained by the variation of ATP content with tumour size. The enhanced tumour HK specific activity implies increased metabolism, possibly a consequence of cellular requirements to maintain homeostasis during repair processes. Other research projects of the Research Institute for Medical Biophysics involved, inter alia, gastroesophageal scintigraphies to evaluate the results of new forms of therapy. 1 ill

  6. Projecting climate change in the United States: A technical document supporting the Forest Service RPA 2010 Assessment

    Science.gov (United States)

    Linda A. Joyce; David T. Price; David P. Coulson; Daniel W. McKenney; R. Martin Siltanen; Pia Papadopol; Kevin. Lawrence

    2014-01-01

    A set of climate change projections for the United States was developed for use in the 2010 USDA Forest Service RPA Assessment. These climate projections, along with projections for population dynamics, economic growth, and land use change in the United States, comprise the RPA scenarios and are used in the RPA Assessment to project future renewable resource conditions...

  7. Enhancing Students' Scientific and Quantitative Literacies through an Inquiry-Based Learning Project on Climate Change

    Science.gov (United States)

    McCright, Aaron M.

    2012-01-01

    Promoting sustainability and dealing with complex environmental problems like climate change demand a citizenry with considerable scientific and quantitative literacy. In particular, students in the STEM disciplines of (biophysical) science, technology, engineering, and mathematics need to develop interdisciplinary skills that help them understand…

  8. Biophysics of Hair Cell Sensory Systems

    NARCIS (Netherlands)

    Duifhuis, Hendrikus; Horst, Johannes; van Dijk, Pim; van Netten, Sietse

    1993-01-01

    The last decade revealed to auditory researchers that hair cells can not only detect and process mechanical energy, but are also able to produce it. Thanks to the active hair cell, ears can produce otoacoustic emissions. This book gives the newest insights into the biophysics and physiology of

  9. Increasing Knowledge and Self-Efficacy through a Pre-Service Course on Promoting Positive School Climate: The Crucial Role of Reducing Moral Disengagement

    Science.gov (United States)

    Crooks, Claire V.; Jaffe, Peter G.; Rodriguez, Arely

    2017-01-01

    Teachers play an important role in promoting a positive school climate, which in turns supports academic achievement and positive mental health among students. This study evaluated the impact of a pre-service teacher education course addressing a range of contributors to school climate. Participants included a cohort of 212 pre-service teachers…

  10. Vegetation-climate feedbacks modulate rainfall patterns in Africa under future climate change

    Science.gov (United States)

    Wu, Minchao; Schurgers, Guy; Rummukainen, Markku; Smith, Benjamin; Samuelsson, Patrick; Jansson, Christer; Siltberg, Joe; May, Wilhelm

    2016-07-01

    Africa has been undergoing significant changes in climate and vegetation in recent decades, and continued changes may be expected over this century. Vegetation cover and composition impose important influences on the regional climate in Africa. Climate-driven changes in vegetation structure and the distribution of forests versus savannah and grassland may feed back to climate via shifts in the surface energy balance, hydrological cycle and resultant effects on surface pressure and larger-scale atmospheric circulation. We used a regional Earth system model incorporating interactive vegetation-atmosphere coupling to investigate the potential role of vegetation-mediated biophysical feedbacks on climate dynamics in Africa in an RCP8.5-based future climate scenario. The model was applied at high resolution (0.44 × 0.44°) for the CORDEX-Africa domain with boundary conditions from the CanESM2 general circulation model. We found that increased tree cover and leaf-area index (LAI) associated with a CO2 and climate-driven increase in net primary productivity, particularly over subtropical savannah areas, not only imposed important local effect on the regional climate by altering surface energy fluxes but also resulted in remote effects over central Africa by modulating the land-ocean temperature contrast, Atlantic Walker circulation and moisture inflow feeding the central African tropical rainforest region with precipitation. The vegetation-mediated feedbacks were in general negative with respect to temperature, dampening the warming trend simulated in the absence of feedbacks, and positive with respect to precipitation, enhancing rainfall reduction over the rainforest areas. Our results highlight the importance of accounting for vegetation-atmosphere interactions in climate projections for tropical and subtropical Africa.

  11. Uncertainty Analysis of Coupled Socioeconomic-Cropping Models: Building Confidence in Climate Change Decision-Support Tools for Local Stakeholders

    Science.gov (United States)

    Malard, J. J.; Rojas, M.; Adamowski, J. F.; Gálvez, J.; Tuy, H. A.; Melgar-Quiñonez, H.

    2015-12-01

    While cropping models represent the biophysical aspects of agricultural systems, system dynamics modelling offers the possibility of representing the socioeconomic (including social and cultural) aspects of these systems. The two types of models can then be coupled in order to include the socioeconomic dimensions of climate change adaptation in the predictions of cropping models.We develop a dynamically coupled socioeconomic-biophysical model of agricultural production and its repercussions on food security in two case studies from Guatemala (a market-based, intensive agricultural system and a low-input, subsistence crop-based system). Through the specification of the climate inputs to the cropping model, the impacts of climate change on the entire system can be analysed, and the participatory nature of the system dynamics model-building process, in which stakeholders from NGOs to local governmental extension workers were included, helps ensure local trust in and use of the model.However, the analysis of climate variability's impacts on agroecosystems includes uncertainty, especially in the case of joint physical-socioeconomic modelling, and the explicit representation of this uncertainty in the participatory development of the models is important to ensure appropriate use of the models by the end users. In addition, standard model calibration, validation, and uncertainty interval estimation techniques used for physically-based models are impractical in the case of socioeconomic modelling. We present a methodology for the calibration and uncertainty analysis of coupled biophysical (cropping) and system dynamics (socioeconomic) agricultural models, using survey data and expert input to calibrate and evaluate the uncertainty of the system dynamics as well as of the overall coupled model. This approach offers an important tool for local decision makers to evaluate the potential impacts of climate change and their feedbacks through the associated socioeconomic system.

  12. Tropical and Highland Temperate Forest Plantations in Mexico: Pathways for Climate Change Mitigation and Ecosystem Services Delivery

    Directory of Open Access Journals (Sweden)

    Vidal Guerra-De la Cruz

    2017-12-01

    Full Text Available Forest plantations are a possible way of increasing forest productivity in temperate and tropical forests, and therefore also increasing above- and belowground carbon pools. In the context of climate change, monospecific plantations might become an alternative to mitigate global warming; however, their contribution to the structural complexity, complementarity, and biodiversity of forests has not been addressed. Mixed forest plantations can ensure that objectives of climate change mitigation are met through carbon sequestration, while also delivering anticipated ecosystem services (e.g., nutrient cycling, erosion control, and wildlife habitat. However, mixed forest plantations pose considerable operational challenges and research opportunities. For example, it is essential to know how many species or functional traits are necessary to deliver a set of benefits, or what mixture of species and densities are key to maintaining productive plantations and delivering multiple ecosystem services. At the same time, the establishment of forest plantations in Mexico should not be motivated solely by timber production. Forest plantations should also increase carbon sequestration, maintain biodiversity, and provide other ecosystem services. This article analyzes some matters that affect the development of planted forests in the Mexican national context, and presents alternatives for forest resources management through the recommendation of mixed forest plantations as a means of contributing to climate change mitigation and the delivery of ecosystem services.

  13. Economic Valuation of Ecosystem Goods and Services in a Melting Arctic

    Science.gov (United States)

    O'Garra, T.

    2014-12-01

    The Arctic region is composed of unique ecosystems that provide a range of goods and services to local and global populations. However, Arctic sea-ice is melting at an unprecedented rate, threatening many of these ecosystems and the services they provide. Yet as the ice melts and certain goods and services are lost, other resources such as oil and minerals will become accessible. The question is: how do the losses compare with the opportunities? And how are the losses and potential gains likely to be distributed? To address these questions, this study provides a preliminary assessment of the quantity, distribution and economic value of the ecosystem services (ES) provided by Arctic ecosystems, both now and in the future given a scenario of sure climate change. Using biophysical and economic data from existing studies (and some primary data), preliminary estimates indicate that the Arctic currently provides 357m/yr (in 2014 US) in subsistence hunting value to local communities, of which reindeer/caribou comprise 83%. Reindeer herding provides 110m/yr to Arctic communities. Interestingly, 'non-use (existence/cultural) values' associated with Arctic species are very high at 11bn/yr to members of Arctic states. The Arctic also provides ES that accrue to the global community: oil resources (North Slope; 5bn profits in 2013), commercial fisheries ( 515mn/yr) and most importantly, climate regulation services. Recent models (Whiteman; Euskirchen) estimate that the loss of climate regulation services provided by Arctic ice will cost 200 - 500bn/yr, a value which dwarfs all others. Assuming no change in atmospheric temperature compared to 2014, the net present value of the Arctic by 2050 (1.4% discount rate) comes to over $9 trillion. However, given Wang and Overland (2009) predictions of ice-free summers by 2037, we expect many of these benefits will be lost. For example, it is fairly well-established that endemic species, such as polar bears, will decline with sea-ice melt

  14. The political ecology of climate change adaptation livelihoods, agrarian change and the conflicts of development

    CERN Document Server

    Taylor, Marcus

    2014-01-01

    This book provides the first systematic critique of the concept of climate change adaptation within the field of international development. Drawing on a reworked political ecology framework, it argues that climate is not something 'out there' that we adapt to. Instead, it is part of the social and biophysical forces through which our lived environments are actively yet unevenly produced. From this original foundation, the book challenges us to rethink the concepts of climate change, vulnerability, resilience and adaptive capacity in transformed ways. With case studies drawn from Pakistan, Indi

  15. Leadership drivers of organizational creativity: a path model of creative climate in a professional service firm

    OpenAIRE

    Sandvik Madsen, Alexander; Espedal, Bjarne; Selart, Marcus

    2015-01-01

    The purpose of this study was to explore how and under what conditions two different leadership roles are able to facilitate an organizational climate that supports creativity. The study was conducted in a leading professional service firm. The introduced hypotheses were tested by means of a structural equation model. Findings indicate that the leadership roles are conceptually different and that organizational structure is important for leaders’ ability to create a climate ...

  16. Mapping health outcomes from ecosystem services

    NARCIS (Netherlands)

    Keune, Hans; Oosterbroek, Bram; Derkzen, Marthe; Subramanian, Suneetha; Payyappalimana, Unnikrishnan; Martens, Pim; Huynen, Maud; Burkhard, Benjamin; Maes, Joachim

    The practice of mapping ecosystem services (ES) in relation to health outcomes is only in its early developing phases. Examples are provided of health outcomes, health proxies and related biophysical indicators. This chapter also covers main health mapping challenges, design options and

  17. Learning to love the rain in Bergen (Norway) and other lessons from a Climate Services neophyte

    Science.gov (United States)

    Sobolowski, Stefan; Wakker, Joyce

    2014-05-01

    A question that is often asked of regional climate modelers generally, and Climate Service providers specifically, is: "What is the added-value of regional climate simulations and how can I use this information?" The answer is, unsurprisingly, not straightforward and depends greatly on what one needs to know. In particular it is important for scientist to communicate directly with the users of this information to determine what kind of information is important for them to do their jobs. This study is part of the ECLISE project (Enabling Climate Information Services for Europe) and involves a user at the municipality of Bergen's (Norway) water and drainage administration and a provider from Uni Research and the Bjerknes Center for Climate Research. The water and drain administration is responsible for communicating potential future changes in extreme precipitation, particularly short-term high-intensity rainfall, which is common in Bergen and making recommendations to the engineering department for changes in design criteria. Thus, information that enables better decision-making is crucial. This study then actually has two relevant components for climate services: 1) is a scientific exercise to evaluate the performance of high resolution regional climate simulations and their ability to reproduce high intensity short duration precipitation and 2) an exercise in communication between a provider community and user community with different concerns, mandates, methodological approaches and even vocabularies. A set of Weather Research and Forecasting (WRF) simulations was run at high resolution (8km) over a large domain covering much of Scandinavia and Northern Europe. One simulation was driven by so-called "perfect" boundary conditions taken from reanalysis data (ERA-interim, 1989-2010) the second and third simulations used Norway's global climate model as boundary forcing (NorESM) and were run for a historical period (1950-2005) and a 30yr. end of the century time

  18. Polish Academy of Sciences Institute of Biochemistry and Biophysics research report 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Scientific interests of Institute of Biochemistry and Biophysics Polish Academy of Sciences are focused on DNA replication and repair, gene expression, gene sequencing and molecular biophysics. The work reviews research projects of the Institute in 1994-1995.

  19. Polish Academy of Sciences Institute of Biochemistry and Biophysics research report 1994-1995

    International Nuclear Information System (INIS)

    1996-01-01

    Scientific interests of Institute of Biochemistry and Biophysics Polish Academy of Sciences are focused on DNA replication and repair, gene expression, gene sequencing and molecular biophysics. The work reviews research projects of the Institute in 1994-1995

  20. Polish Academy of Sciences Institute of Biochemistry and Biophysics research report 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Scientific interests of Institute of Biochemistry and Biophysics Polish Academy of Sciences are focused on DNA replication and repair, gene expression, gene sequencing and molecular biophysics. The work reviews research projects of the Institute in 1994-1995.

  1. Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine

    DEFF Research Database (Denmark)

    Kneipp, J.; Wittig, B.; Bohr, Henrik

    2010-01-01

    Sensitive and detailed molecular structural information plays an increasing role in molecular biophysics and molecular medicine. Therefore, vibrational spectroscopic techniques, such as Raman scattering, which provide high structural information content are of growing interest in biophysical and ...

  2. Climate-dependence of ecosystem services in a nature reserve in northern China.

    Science.gov (United States)

    Fang, Jiaohui; Song, Huali; Zhang, Yiran; Li, Yanran; Liu, Jian

    2018-01-01

    Evaluation of ecosystem services has become a hotspot in terms of research focus, but uncertainties over appropriate methods remain. Evaluation can be based on the unit price of services (services value method) or the unit price of the area (area value method). The former takes meteorological factors into account, while the latter does not. This study uses Kunyu Mountain Nature Reserve as a study site at which to test the effects of climate on the ecosystem services. Measured data and remote sensing imagery processed in a geographic information system were combined to evaluate gas regulation and soil conservation, and the influence of meteorological factors on ecosystem services. Results were used to analyze the appropriateness of the area value method. Our results show that the value of ecosystem services is significantly affected by meteorological factors, especially precipitation. Use of the area value method (which ignores the impacts of meteorological factors) could considerably impede the accuracy of ecosystem services evaluation. Results were also compared with the valuation obtained using the modified equivalent value factor (MEVF) method, which is a modified area value method that considers changes in meteorological conditions. We found that MEVF still underestimates the value of ecosystem services, although it can reflect to some extent the annual variation in meteorological factors. Our findings contribute to increasing the accuracy of evaluation of ecosystem services.

  3. Climate Prediction Center - Outreach: 41st Annual Climate Diagnostics &

    Science.gov (United States)

    home page National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Annual Climate Diagnostics & Prediction Workshop NOAA's 41st Climate Diagnostics and Prediction Climate Diagnostics Prediction Workshop (CDPW) news, visit the CDPW list server Abstract Submission Has

  4. Climate change impacts: an Ontario perspective

    International Nuclear Information System (INIS)

    Mortsch, L.

    1995-11-01

    Significant changes in the climate system which are likely to affect biophysical, social and economic systems in various ways, were discussed. Trends in greenhouse gas levels show that during the 20. century, human activity has changed the make-up of the atmosphere and its greenhouse effect properties. A pilot study on the impacts of climate change identified changes in the water regime such as declines in net basin supply, lake levels and outflows, as important concerns. These changes would have impacts on water quality, wetlands, municipal water supply, hydroelectric power generation, commercial shipping, tourism and recreation, and to a lesser extent, on food productions. Climate impact assessments suggest that world conditions will change significantly as a result. Those with less resources are likely to be most affected by climate change, and the impacts on other regions of the world will be more significant to Ontario than the direct impacts on Ontario itself. In an effort to keep pace with global changes, Ontario will have to limit emissions, conduct research in innovative technology and develop greater awareness of the risk of climate change. refs., tabs., figs

  5. [Biophysical methods in assessment of the skin microcirculation system].

    Science.gov (United States)

    Dynnik, O B; Mostovoĭ, S E; Berezovskiĭ, V A

    2008-01-01

    In this work has been analyzed the potential of biophysics methods in estimations of the microcirculatory system. Capillaroresistometry, Computer capillaroscopy and Laser Doppler Flowmetry can to detect of the endothelial dysfunction in the patients with chronic hepatic diseases. This instrumentals biophysics methods may be used in clinical investigations for screening early pathological conditions with dysfunction of the microcirculatory system. The methods Laser Doppler Flowmetry is important for investigations the patients with others diseases and for dynamical monitoring by quality of the treatment. The purpose of these methods an objective estimation of disorders in the microcirculatory system.

  6. How trees uptake carbon, release water and cool themselves in air: a marriage between biophysics and turbulent fluid dynamics

    Science.gov (United States)

    Banerjee, Tirtha; Linn, Rodman

    2017-11-01

    Resolving the role of the biosphere as a terrestrial carbon sink and the nature of nonlinear couplings between carbon and water cycles across a very wide range of spatiotemporal scales constitute the scope of this work. To achieve this goal, plant physiology models are coupled with atmospheric turbulence simulations. The plant biophysics code is based on the following principles: (1) a model for photosynthesis; (2) a mass transfer model through the laminar boundary layer on leaves; (3) an optimal leaf water use strategy regulated by stomatal aperture variation; (4) a leaf-level energy balance to accommodate evaporative cooling. Leaf-level outputs are upscaled to plant, canopy and landscape scales using HIGRAD/FIRETEC, a high fidelity large eddy simulation (LES) framework developed at LANL. The coupled biophysics-CFD code can take inputs such as wind speed, light availability, ambient CO2 concentration, air temperature, site characteristics etc. and can deliver predictions for leaf temperature, transpiration, carbon assimilation, sensible and latent heat flux, which is used to illustrate the complex the complex interaction between trees and their surrounding environments. These simulation capabilities are being used to study climate feedbacks of forests and agroecosystems.

  7. Climate change impacts in Latin America and the Caribbean and their implications for development

    NARCIS (Netherlands)

    Reyer, Christopher P.O.; Adams, Sophie; Albrecht, Torsten; Baarsch, Florent; Boit, Alice; Canales Trujillo, Nella; Cartsburg, Matti; Coumou, Dim; Eden, Alexander; Fernandes, Erick; Langerwisch, Fanny; Marcus, Rachel; Mengel, Matthias; Mira-Salama, Daniel; Perette, Mahé; Pereznieto, Paola; Rammig, Anja; Reinhardt, Julia; Robinson, Alexander; Rocha, Marcia; Sakschewski, Boris; Schaeffer, Michiel; Schleussner, Carl Friedrich; Serdeczny, Olivia; Thonicke, Kirsten

    2017-01-01

    This paper synthesizes what is known about the physical and biophysical impacts of climate change and their consequences for societies and development under different levels of global warming in Latin America and the Caribbean (LAC). Projections show increasing mean temperatures by up to 4.5 °C

  8. Climatic Changes Effects On Spectral Vegetation Indices For Forested Areas Analysis From Satellite Data

    International Nuclear Information System (INIS)

    Zoran, M.; Stefan, S.

    2007-01-01

    Climate-induced changes at the land surface may in turn feed back on the climate itself through changes in soil moisture, vegetation, radiative characteristics, and surface-atmosphere exchanges of water vapor. Thresholding based on biophysical variables derived from time trajectories of satellite data is a new approach to classifying forest land cover via remote . sensing .The input data are composite values of the Normalized Difference Vegetation Index (NDVI). Classification accuracies are function of the class, comparison method and season of the year. The aim of the paper is forest biomass assessment and land-cover changes analysis due to climatic effects

  9. Roughing in Human Replumbing of the Water Cycle: Challenges, Opportunities, and Progress in Capturing the Influence of Water Management in Regional Models of Hydrology and Climate

    Science.gov (United States)

    Flores, A. N.; Kaiser, K. E.; Steimke, A.; Leonard, A.; FitzGerald, K.; Benner, S. G.; Vache, K. B.; Hillis, V.; Bolte, J.; Han, B.

    2017-12-01

    Humans exert tremendous influence on the redistribution of water in space and time. Humans have developed substantial infrastructure to provide water in adequate quantity and quality for production of food and energy, while seeking to maintain landscape processes and properties giving rise to ecosystem services on which humans rely (even when and if they are not well understood). Cyber-physical infrastructure includes dams, distributary canal networks, ditches to manage return flow, and networks of sensors to monitor environmental conditions. Social infrastructure includes legal frameworks for water rights, governance networks, and land management policies aimed at maintaining water quality. Changes in regional climate, land use and its intensity, and land cover in source areas exert pressures on this infrastructure, requiring models to characterize system-wide vulnerability and resilience. Here we present a synthesis of several ongoing and completed studies aimed at advancing our fundamental understanding of and ability to numerically model a system in which biophysical and human components cannot be separated. These studies are set within the Boise and Snake River Basin in the US Pacific Northwest and are organized around the aims of: (1) developing improved understanding and models of the ways that humans interact with each other and with biophysical processes at a range of spatiotemporal scales, and (2) using those models to predict how changes in climate and societal drivers, including in-migration and shifts in agricultural practices, will impact regional hydroclimate and associated ecosystem services. Key findings indicate differential pressures on water availability based on water rights seniority within the Lower Boise River basin under historical conditions, the potential for significantly earlier curtailment of water rights in future decades, and potential changes in agricultural practices in anticipation of future climate changes. This ongoing suite of

  10. An integrated approach to monitoring ecosystem services and agriculture: implications for sustainable agricultural intensification in Rwanda.

    Science.gov (United States)

    Rosa, Melissa F; Bonham, Curan A; Dempewolf, Jan; Arakwiye, Bernadette

    2017-01-01

    Maintaining the long-term sustainability of human and natural systems across agricultural landscapes requires an integrated, systematic monitoring system that can track crop productivity and the impacts of agricultural intensification on natural resources. This study presents the design and practical implementation of a monitoring framework that combines satellite observations with ground-based biophysical measurements and household surveys to provide metrics on ecosystem services and agricultural production at multiple spatial scales, reaching from individual households and plots owned by smallholder farmers to 100-km 2 landscapes. We developed a set of protocols for monitoring and analyzing ecological and agricultural household parameters within two 10 × 10-km landscapes in Rwanda, including soil fertility, crop yield, water availability, and fuelwood sustainability. Initial results suggest providing households that rely on rainfall for crop irrigation with timely climate information and improved technical inputs pre-harvest could help increase crop productivity in the short term. The value of the monitoring system is discussed as an effective tool for establishing a baseline of ecosystem services and agriculture before further change in land use and climate, identifying limitations in crop production and soil fertility, and evaluating food security, economic development, and environmental sustainability goals set forth by the Rwandan government.

  11. Planning for sustainable tourism in southern Pulau Banggi: an assessment of biophysical conditions and their implications for future tourism development.

    Science.gov (United States)

    Teh, Lydia; Cabanban, Annadel S

    2007-12-01

    A priori assessments of a site's biophysical and socio-economic capacity for accommodating tourism are less common than tourism impact studies. A priori evaluations can provide a contextual understanding of ecological, economic and socio-cultural forces, which shape the prospects for sustainable tourism development at the host destination, and can avert adverse impacts of tourism. We conduct an a priori assessment of the biophysical environment of Pulau Banggi, in the Malaysian state of Sabah for sustainable tourism development. We characterise baseline conditions of the island's marine biodiversity, seasonality, and infrastructure. We then evaluate how existing biophysical conditions will influence options for sustainable tourism development. In particular, we suggest conditions, if there are any, which constitute a limit to future tourism development in terms of compatibility for recreation and resilience to visitor impacts. We find that the biggest constraint is the lack of adequate water and sanitation infrastructure. Blast fishing, although occurring less than once per hour, can potentially destroy the major attraction for tourists. We conclude that while Pulau Banggi possesses natural qualities that are attractive for ecotourism, financial and institutional support must be made available to provide facilities and services that will enable local participation in environmental protection and enhance prospects for future sustainable tourism.

  12. Relationship between organizational climate and burnout syndrome in the emergency service of a hospital Category III-2. Lima, Peru 2015

    Directory of Open Access Journals (Sweden)

    Zenaida Solís Chuquiyaur

    2016-04-01

    Full Text Available Objective: To determine the relationship between organizational climate and Burnout Syndrome among nursing professionals of the Emergency Service in a Hospital Category III-2. Material and methods: quantitative, prospective, correlational cross-sectional study. The sample consisted of 43 nurses, using a non-probability sampling for convenience. For analysis and study of the variables, Rensis Likert scale and Maslach Burnout Inventory were used. Results: The organizational climate was average level (81.4% followed by a high level (18.6% and the Burnout Syndrome corresponds to low level (86% and medium (14% level. The relationship between organizational climate and Burnout Syndrome was low (rho = -0.11. Conclusions: In the Emergency Service, the level of organizational climate was fairly favorable with absence of Burnout Syndrome among nursing professionals. There is not significant relationship between the two variables.

  13. Joint Research Centre Copernicus Climate Change Service (C3S) Fitness-for-Purpose (F4P) Platform

    Science.gov (United States)

    Gobron, N.; Adams, J. S.; Cappucci, F.; Lanconelli, C.; Mota, B.; Melin, F.

    2016-08-01

    This paper presents the concept and first results of the Copernicus Climate Change Service Fitness-for-Purpose (C3S F4P) project. The main goal aims at evaluating the efficiency and overall performance of the service, mainly with regard to users information needs and high level requirements. This project will also assess the fitness- for-purpose of the C3S with a specific emphasis on the needs of European Union (EU) Policies and translate these recommendations into programmatic and technical requirements. The C3S Climate Data Records (CDS) include various Essential Climate Variables (ECVs) that are derived from space sensors, including from Copernicus Sentinels sensors. One module of the F4P platform focuses on the benchmarking of data sets and algorithms, in addition to radiative transfer models used towards understanding potential discrepancies between CDS records. Methods and preliminary results of the benchmark platform are presented in this contribution.

  14. Carbon sequestration and water flow regulation services in mature Mediterranean Forest

    Science.gov (United States)

    Beguería, S.; Ovando, P.

    2015-12-01

    We develop a forestland use and management model that integrates spatially-explicit biophysical and economic data, to estimate the expected pattern of climate regulation services through carbon dioxide (CO2) sequestration in tree and shrubs biomass, and water flow regulation. We apply this model to examine the potential trade-offs and synergies in the supply of CO2 sequestration and water flow services in mature Mediterranean forest, considering two alternative forest management settings. A forest restoration scenario through investments in facilitating forest regeneration, and a forestry activity abandonment scenario as result of unprofitable forest regeneration investment. The analysis is performed for different discount rates and price settings for carbon and water. The model is applied at the farm level in a group of 567 private silvopastoral farms across Andalusia (Spain), considering the main forest species in this region: Quercus ilex, Q. suber, Pinus pinea, P. halepensis, P. pinaster and Eucalyptus sp., as well as for tree-less shrubland and pastures. The results of this research are provided by forest land unit, vegetation, farm and for the group of municipalities where the farms are located. Our results draw attention to the spatial variability of CO2 and water flow regulation services, and point towards a trade-off between those services. The pattern of economic benefits associated to water and carbon services fluctuates according to the assumptions regarding price levels and discounting rates, as well as in connection to the expected forest management and tree growth models, and to spatially-explicit forest attributes such as existing tree and shrubs inventories, the quality of the sites for growing different tree species, soil structure or the climatic characteristics. The assumptions made regarding the inter-temporal preferences and relative prices have a large effect on the estimated economic value of carbon and water services. These results

  15. Engineered biomaterial and biophysical stimulation as combinatorial strategies to address prosthetic infection by pathogenic bacteria.

    Science.gov (United States)

    Boda, Sunil Kumar; Basu, Bikramjit

    2017-10-01

    A plethora of antimicrobial strategies are being developed to address prosthetic infection. The currently available methods for implant infection treatment include the use of antibiotics and revision surgery. Among the bacterial strains, Staphylococcus species pose significant challenges particularly, with regard to hospital acquired infections. In order to combat such life threatening infectious diseases, researchers have developed implantable biomaterials incorporating nanoparticles, antimicrobial reinforcements, surface coatings, slippery/non-adhesive and contact killing surfaces. This review discusses a few of the biomaterial and biophysical antimicrobial strategies, which are in the developmental stage and actively being pursued by several research groups. The clinical efficacy of biophysical stimulation methods such as ultrasound, electric and magnetic field treatments against prosthetic infection depends critically on the stimulation protocol and parameters of the treatment modality. A common thread among the three biophysical stimulation methods is the mechanism of bactericidal action, which is centered on biophysical rupture of bacterial membranes, the generation of reactive oxygen species (ROS) and bacterial membrane depolarization evoked by the interference of essential ion-transport. Although the extent of antimicrobial effect, normally achieved through biophysical stimulation protocol is insufficient to warrant therapeutic application, a combination of antibiotic/ROS inducing agents and biophysical stimulation methods can elicit a clinically relevant reduction in viable bacterial numbers. In this review, we present a detailed account of both the biomaterial and biophysical approaches for achieving maximum bacterial inactivation. Summarizing, the biophysical stimulation methods in a combinatorial manner with material based strategies can be a more potent solution to control bacterial infections. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B

  16. Anticipative management for coral reef ecosystem services in the 21st century.

    Science.gov (United States)

    Rogers, Alice; Harborne, Alastair R; Brown, Christopher J; Bozec, Yves-Marie; Castro, Carolina; Chollett, Iliana; Hock, Karlo; Knowland, Cheryl A; Marshell, Alyssa; Ortiz, Juan C; Razak, Tries; Roff, George; Samper-Villarreal, Jimena; Saunders, Megan I; Wolff, Nicholas H; Mumby, Peter J

    2015-02-01

    Under projections of global climate change and other stressors, significant changes in the ecology, structure and function of coral reefs are predicted. Current management strategies tend to look to the past to set goals, focusing on halting declines and restoring baseline conditions. Here, we explore a complementary approach to decision making that is based on the anticipation of future changes in ecosystem state, function and services. Reviewing the existing literature and utilizing a scenario planning approach, we explore how the structure of coral reef communities might change in the future in response to global climate change and overfishing. We incorporate uncertainties in our predictions by considering heterogeneity in reef types in relation to structural complexity and primary productivity. We examine 14 ecosystem services provided by reefs, and rate their sensitivity to a range of future scenarios and management options. Our predictions suggest that the efficacy of management is highly dependent on biophysical characteristics and reef state. Reserves are currently widely used and are predicted to remain effective for reefs with high structural complexity. However, when complexity is lost, maximizing service provision requires a broader portfolio of management approaches, including the provision of artificial complexity, coral restoration, fish aggregation devices and herbivore management. Increased use of such management tools will require capacity building and technique refinement and we therefore conclude that diversification of our management toolbox should be considered urgently to prepare for the challenges of managing reefs into the 21st century. © 2014 John Wiley & Sons Ltd.

  17. Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease

    OpenAIRE

    Hosseini, Poorya; Abidi, Sabia Z.; Du, E; Papageorgiou, Dimitrios P.; Choi, Youngwoon; Park, YongKeun; Higgins, John M.; Kato, Gregory J.; Suresh, Subra; Dao, Ming; Yaqoob, Zahid; So, Peter T. C.

    2016-01-01

    There exists a critical need for developing biomarkers reflecting clinical outcomes and for evaluating the effectiveness of treatments for sickle cell disease patients. Prior attempts to find such patient-specific markers have mostly relied upon chemical biomarkers or biophysical properties at hypoxia with limited success. We introduce unique biomarkers based on characterization of cellular biophysical properties at normoxia and show that these markers correlate sensitively with treatment usi...

  18. The Potential Impacts of a Scenario of C02-Induced Climatic Change on Ontafio, Canada.

    Science.gov (United States)

    Cohen, S. J.; Allsopp, T. R.

    1988-07-01

    In 1984, Environment Canada, Ontario Region, with financial and expert support from the Canadian Climate Program, initiated an interdisciplinary pilot study to investigate the potential impact, on Ontario, of a climate scenario which might be anticipated under doubling of atmospheric C02 conditions.There were many uncertainties involved in the climate scenario development and the impacts modeling. Time and resource constraints restricted this study to one climate scenario and to the selection of several available models that could be adapted to these impact studies. The pilot study emphasized the approach and process required to investigate potential regional impacts in an interdisciplinary manner, rather than to produce a forecast of the future.The climate scenario chosen was adapted from experimental model results produced by the Goddard Institute for Space Studies (GISS), coupled with current climate normals. Gridded monthly mean temperatures and precipitation were then used to develop projected biophysical effects. For example, existing physical and/or statistical models were adapted to determine impacts on the Great Lakes net basin supplies, levels and outflows, streamflow subbasin, snowfall and length of snow season.The second phase of the study addressed the impacts of the climate system scenario on natural resources and resource dependent activities. For example, the impacts of projected decreased lake levels and outflows on commercial navigation and hydroelectric generation were assessed. The impacts of the climate scenario on municipal water use, residential beating and cooling energy requirements opportunities and constraints for food production and tourism and recreation were determined quantitatively where models and methodologies were available, otherwise, qualitatively.First order interdependencies of the biophysical effects of the climate scenario and resource dependent activities were evaluated qualitatively in a workshop format culminating in a

  19. Applications of the BIOPHYS Algorithm for Physically-Based Retrieval of Biophysical, Structural and Forest Disturbance Information

    Science.gov (United States)

    Peddle, Derek R.; Huemmrich, K. Fred; Hall, Forrest G.; Masek, Jeffrey G.; Soenen, Scott A.; Jackson, Chris D.

    2011-01-01

    Canopy reflectance model inversion using look-up table approaches provides powerful and flexible options for deriving improved forest biophysical structural information (BSI) compared with traditional statistical empirical methods. The BIOPHYS algorithm is an improved, physically-based inversion approach for deriving BSI for independent use and validation and for monitoring, inventory and quantifying forest disturbance as well as input to ecosystem, climate and carbon models. Based on the multiple-forward mode (MFM) inversion approach, BIOPHYS results were summarized from different studies (Minnesota/NASA COVER; Virginia/LEDAPS; Saskatchewan/BOREAS), sensors (airborne MMR; Landsat; MODIS) and models (GeoSail; GOMS). Applications output included forest density, height, crown dimension, branch and green leaf area, canopy cover, disturbance estimates based on multi-temporal chronosequences, and structural change following recovery from forest fires over the last century. Good correspondences with validation field data were obtained. Integrated analyses of multiple solar and view angle imagery further improved retrievals compared with single pass data. Quantifying ecosystem dynamics such as the area and percent of forest disturbance, early regrowth and succession provide essential inputs to process-driven models of carbon flux. BIOPHYS is well suited for large-area, multi-temporal applications involving multiple image sets and mosaics for assessing vegetation disturbance and quantifying biophysical structural dynamics and change. It is also suitable for integration with forest inventory, monitoring, updating, and other programs.

  20. Biophysical behavior of Scomberoides commersonianus skin collagen.

    Science.gov (United States)

    Kolli, Nagamalleswari; Joseph, K Thomas; Ramasami, T

    2002-06-01

    Some biophysical characteristics of the skin collagen from Scomberoides commersonianus were measured and compared to those of rat tail tendon. Stress-strain data indicate that the strain at break as well as the tensile strength of the fish skin without scales increased significantly. The maximum tension in case of rat skin is at least a factor of two higher than that observed in fish skin. The much lower hydrothermal isometric tension measurements observed in fish skin are attributable to a lesser number of heat stable crosslinks. Stress relaxation measurements in the fish skin indicate that more than one relaxation process may be involved in the stabilization of collagenous matrix. The observed differences in the biophysical behavior of fish skin may well arise from combination of changes in extent of hydroxylation of proline in collagen synthesis, hydrogen bond network and fibril orientation as compared to rat tail tendon.

  1. Assessing the implications of human land-use change for the transient climate response to cumulative carbon emissions

    International Nuclear Information System (INIS)

    Simmons, C T; Matthews, H D

    2016-01-01

    Recent research has shown evidence of a linear climate response to cumulative CO 2 emissions, which implies that the source, timing, and amount of emissions does not significantly influence the climate response per unit emission. Furthermore, these analyses have generally assumed that the climate response to land-use CO 2 emissions is equivalent to that of fossil fuels under the assumption that, once in the atmosphere, the radiative forcing induced by CO 2 is not sensitive to the emissions source. However, land-cover change also affects surface albedo and the strength of terrestrial carbon sinks, both of which have an additional climate effect. In this study, we use a coupled climate-carbon cycle model to assess the climate response to historical and future cumulative land-use CO 2 emissions, in order to compare it to the response to fossil fuel CO 2 . We find that when we isolate the CO 2 -induced (biogeochemical) temperature changes associated with land-use change, then the climate response to cumulative land-use emissions is equivalent to that of fossil fuel CO 2 . We show further that the globally-averaged albedo-induced biophysical cooling from land-use change is non-negligible and may be of comparable magnitude to the biogeochemical warming, with the result that the net climate response to land-use change is substantially different from a linear response to cumulative emissions. However, our new simulations suggest that the biophysical cooling from land-use change follows its own independent (negative) linear response to cumulative net land-use CO 2 emissions, which may provide a useful scaling factor for certain applications when evaluating the full transient climate response to emissions. (letter)

  2. Change in Vegetation Growth and Its Feedback to Climate in the Tibet Plateau

    Science.gov (United States)

    Piao, S.

    2015-12-01

    Vegetation growth is strongly influenced by climate and climate change and can affect the climate system through a number of bio-physical processes. As a result, monitoring, understanding and predicting the response of vegetation growth to global change has been a central activity in Earth system science during the past two decades. The Tibetan Plateau (TP) has experienced a pronounced warming over recent decades. The warming rate of the TP over the period 1960-2009 was about twice the global average warming rate, yet with heterogeneous patterns. In this study, we use satellite derived NDVI data to investigate spatio-temporal change in vegetation growth over the last three decades.

  3. Land Use, Climate Change and Ecosystem Services

    OpenAIRE

    Attavanich, Witsanu; Rashford, Benjamin S.; Adams, Richard M.; McCarl, Bruce A.

    2011-01-01

    The combination of shifts in crop production and a reduction in wetland ecosystems associated with climate change are forecast to reduce native grasslands and associated obligate species. Most estimates of climate change impacts to wildlife, however, do not account for how humans are likely to alter land use in response to climate changes. We examine the joint effect of climate change and the resulting land use response of farmers on waterfowl production in the Prairie Pothole Region of Nor...

  4. How pre-service elementary teachers express emotions about climate change and related disciplinary ideas

    Science.gov (United States)

    Hufnagel, Elizabeth J.

    As we face the challenges of serious environmental issues, science education has made a commitment to improving environmental literacy, in particular climate literacy (NRC, 2012; 2013). With an increased focus on climate change education in the United States, more research on the teaching and learning of this problem in science classrooms is occurring (e.g. Arslan, Cigdemoglu, & Moseley, 2012; Svihla & Linn, 2012). However, even though people experience a range of emotions about global problems like climate change (Hicks & Holden, 2007; Ojala, 2012; Rickinson, 2001), little attention is given to their emotions about the problem in science classrooms. Because emotions are evaluative (Boler, 1999; Keltner & Gross, 1999), they provided a lens for understanding how students engage personally with climate change. In this study, I drew from sociolinguistics, social psychology, and the sociology of emotions to examine a) the social interactions that allowed for emotional expressions to be constructed and b) the ways in which pre-service elementary teachers constructed emotional expressions about climate change in a science course. Three overall findings emerged: 1) emotions provided a means of understanding how students' conceptualized climate to be relevant to their lives, 2) emotional expressions and the aboutness of these expressions indicated that the students conceptualized climate change as distanced, both temporally and spatially, and 3) although most emotional constructions were distanced, there were multiple instances of emotional expressions in which students took climate change personally. Following a discussion of the findings, implications, limitations, and directions for future research are also described.

  5. Cell biology, biophysics, and mechanobiology: From the basics to Clinics.

    Science.gov (United States)

    Zeng, Y

    2017-04-29

    Cell biology, biomechanics and biophysics are the key subjects that guide our understanding in diverse areas of tissue growth, development, remodeling and homeostasis. Novel discoveries such as molecular mechanism, and mechanobiological mechanism in cell biology, biomechanics and biophysics play essential roles in our understanding of the pathogenesis of various human diseases, as well as in designing the treatment of these diseases. In addition, studies in these areas will also facilitate early diagnostics of human diseases, such as cardiovascular diseases and cancer. In this special issue, we collected 10 original research articles and 1 review...

  6. The Resilient Schools Consortium (RiSC): Linking Climate Literacy, Resilience Thinking and Service Learning

    Science.gov (United States)

    Branco, B. F.; Fano, E.; Adams, J.; Shon, L.; Zimmermann, A.; Sioux, H.; Gillis, A.

    2017-12-01

    Public schools and youth voices are largely absent from climate resilience planning and projects in New York City. Additionally, research shows that U.S. science teachers' understanding of climate science is lacking, hence there is not only an urgent need to train and support teachers on both the science and pedagogy of climate change, but to link climate literacy, resilience thinking and service learning in K-12 education. However, research on participation of students and teachers in authentic, civic-oriented experiences points to increased engagement and learning outcomes in science. The Resilient Schools Consortium (RiSC) Project will address all these needs through an afterschool program in six coastal Brooklyn schools that engages teachers and urban youth (grades 6-12), in school and community climate resilience assessment and project design. The RiSC climate curriculum, co-designed by New York City school teachers with Brooklyn College, the National Wildlife Federation, New York Sea Grant and the Science and Resilience Institute at Jamaica Bay, will begin by helping students to understand the difference between climate and weather. The curriculum makes extensive use of existing resources such as NOAA's Digital Coast and the Coastal Resilience Mapping Portal. Through a series of four modules over two school years, the six RiSC teams will; 1. explore and understand the human-induced drivers of climate change and, particularly, the significant climate and extreme weather related risks to their schools and surrounding communities; 2. complete a climate vulnerability assessment within the school and the community that is aligned to OneNYC - the city's resilience planning document; 3. design and execute a school-based resilience project; and 4. propose resilience guidelines for NYC Department of Education schools. At the end of each school year, the six RiSC teams will convene a RiSC summit with city officials and resilience practitioners to share ideas and

  7. Sonographic biophysical profile in detection of foetal hypoxia in 100 cases of suspected high risk pregnancy

    International Nuclear Information System (INIS)

    Ullah, N.; Khan, A.R.; Usman, M.

    2010-01-01

    Background: The foetus has become increasingly accessible and visible as a patient over the last two decades. Ultrasound imaging has broadened the scope of foetal assessment. Dynamic real time B-Mode ultrasound is used to monitor cluster of biophysical variables, both dynamic and static collectively termed as biophysical profile. The purpose of this study was to determine the effect of sonographic biophysical profile score on perinatal outcome in terms of mortality and morbidity. Methods: This descriptive study was carried on 100 randomly select ed high risk pregnant patients in Radiology Department PGMI, Government Lady Reading Hospital, Peshawar from December 2007 to June 2008. Manning biophysical profile including non-stress was employed for foetal screening, using Toshiba ultrasound machine model Nemio SSA-550A and 7.5 MHZ probe. Results: Out of 100 cases 79 (79%) had a normal biophysical profile in the last scan of 10/10 and had a normal perinatal outcome with 5 minutes Apgar score >7/10. In 13 (13%) cases Apgar score at 5 minute was < 7/10 and babies were shifted to nursery. There were 2 (2%) false positive cases that showed abnormal biophysical profile scores of 6/10 but babies were born with an Apgar score of 8/10 at 5 minutes. There were 2 (2%) neonatal deaths in this study group. The sensitivity of biophysical profile was 79.1%, specificity 92.9%. Predictive value for a positive test was 98.55%; predictive value for a negative test was 41.93%. Conclusion: Biophysical profile is highly accurate and reliable test of diagnosing foetal hypoxia. (author)

  8. Effect of ambient light on the time needed to complete a fetal biophysical profile: A randomized controlled trial.

    Science.gov (United States)

    Said, Heather M; Gupta, Shweta; Vricella, Laura K; Wand, Katy; Nguyen, Thinh; Gross, Gilad

    2017-10-01

    The objective of this study is to determine whether ambient light serves as a fetal stimulus to decrease the amount of time needed to complete a biophysical profile. This is a randomized controlled trial of singleton gestations undergoing a biophysical profile. Patients were randomized to either ambient light or a darkened room. The primary outcome was the time needed to complete the biophysical profile. Secondary outcomes included total and individual component biophysical profile scores and scores less than 8. A subgroup analysis of different maternal body mass indices was also performed. 357 biophysical profile studies were analyzed. 182 studies were performed with ambient light and 175 were performed in a darkened room. There was no difference in the median time needed to complete the biophysical profile based on exposure to ambient light (6.1min in darkened room versus 6.6min with ambient light; P=0.73). No difference was found in total or individual component biophysical profile scores. Subgroup analysis by maternal body mass index did not demonstrate shorter study times with ambient light exposure in women who were normal weight, overweight or obese. Ambient light exposure did not decrease the time needed to complete the biophysical profile. There was no evidence that ambient light altered fetal behavior observed during the biophysical profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Sensitivity of health sector indicators' response to climate change in Ghana.

    Science.gov (United States)

    Dovie, Delali B K; Dzodzomenyo, Mawuli; Ogunseitan, Oladele A

    2017-01-01

    There is accumulating evidence that the emerging burden of global climate change threatens the fidelity of routine indicators for disease detection and management of risks to public health. The threat partially reflects the conservative character of the health sector and the reluctance to adopt new indicators, despite the growing awareness that existing environmental health indicators were developed to respond to risks that may no longer be relevant, and are too simplistic to also act as indicators for newer global-scale risk factors. This study sought to understand the scope of existing health indicators, while aiming to discover new indicators for building resilience against three climate sensitive diseases (cerebro spinal meningitis, malaria and diarrhea). Therefore, new potential indicators derived from human and biophysical origins were developed to complement existing health indicators, thereby creating climate-sensitive battery of robust composite indices of resilience in health planning. Using Ghana's health sector as a case study systematic international literature review, national expert consultation, and focus group outcomes yielded insights into the relevance, sensitivity and impacts of 45 indicators in 11 categories in responding to climate change. In total, 65% of the indicators were sensitive to health impacts of climate change; 24% acted directly; 31% synergistically; and 45% indirectly, with indicator relevance strongly associated with type of health response. Epidemiological indicators (e.g. morbidity) and health demographic indicators (e.g. population structure) require adjustments with external indicators (e.g. biophysical, policy) to be resilient to climate change. Therefore, selective integration of social and ecological indicators with existing public health indicators improves the fidelity of the health sector to adopt more robust planning of interdependent systems to build resilience. The study highlights growing uncertainties in

  10. Synthetic Biology: Engineering Living Systems from Biophysical Principles.

    Science.gov (United States)

    Bartley, Bryan A; Kim, Kyung; Medley, J Kyle; Sauro, Herbert M

    2017-03-28

    Synthetic biology was founded as a biophysical discipline that sought explanations for the origins of life from chemical and physical first principles. Modern synthetic biology has been reinvented as an engineering discipline to design new organisms as well as to better understand fundamental biological mechanisms. However, success is still largely limited to the laboratory and transformative applications of synthetic biology are still in their infancy. Here, we review six principles of living systems and how they compare and contrast with engineered systems. We cite specific examples from the synthetic biology literature that illustrate these principles and speculate on their implications for further study. To fully realize the promise of synthetic biology, we must be aware of life's unique properties. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Climate variability slows evolutionary responses of Colias butterflies to recent climate change.

    Science.gov (United States)

    Kingsolver, Joel G; Buckley, Lauren B

    2015-03-07

    How does recent climate warming and climate variability alter fitness, phenotypic selection and evolution in natural populations? We combine biophysical, demographic and evolutionary models with recent climate data to address this question for the subalpine and alpine butterfly, Colias meadii, in the southern Rocky Mountains. We focus on predicting patterns of selection and evolution for a key thermoregulatory trait, melanin (solar absorptivity) on the posterior ventral hindwings, which affects patterns of body temperature, flight activity, adult and egg survival, and reproductive success in Colias. Both mean annual summer temperatures and thermal variability within summers have increased during the past 60 years at subalpine and alpine sites. At the subalpine site, predicted directional selection on wing absorptivity has shifted from generally positive (favouring increased wing melanin) to generally negative during the past 60 years, but there is substantial variation among years in the predicted magnitude and direction of selection and the optimal absorptivity. The predicted magnitude of directional selection at the alpine site declined during the past 60 years and varies substantially among years, but selection has generally been positive at this site. Predicted evolutionary responses to mean climate warming at the subalpine site since 1980 is small, because of the variability in selection and asymmetry of the fitness function. At both sites, the predicted effects of adaptive evolution on mean population fitness are much smaller than the fluctuations in mean fitness due to climate variability among years. Our analyses suggest that variation in climate within and among years may strongly limit evolutionary responses of ectotherms to mean climate warming in these habitats. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Climate Prediction Center - monthly Outlook

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News Outlooks monthly Climate Outlooks Banner OFFICIAL Forecasts June 2018 [UPDATED MONTHLY FORECASTS SERVICE ) Canonical Correlation Analysis ECCA - Ensemble Canonical Correlation Analysis Optimal Climate Normals

  13. Building Climate Service Capacities in Eastern Africa with CHIRP and GeoCLIM

    Science.gov (United States)

    Pedreros, D. H.; Magadzire, T.; Funk, C. C.; Verdin, J. P.; Peterson, P.; Landsfeld, M.; Husak, G. J.

    2013-12-01

    In developing countries there is a great need for capacity building within national and regional climate agencies to develop and analyze historical and real time gridded rainfall datasets. These datasets are of key importance for monitoring climate and agricultural food production at decadal and seasonal time scales, and for informing local decision makers. The Famine Early Warning Systems Network (FEWS NET), working together with the U.S. Geological Survey (USGS) and the Climate Hazards Group (CHG) of the University of California Santa Barbara, has developed an integrated set of data products and tools to support the development of African climate services. The core data product is the Climate Hazards Group Infrared Precipitation (CHIRP) dataset. The CHIRP is a new rainfall dataset resulting from the blending of satellite estimated precipitation with high resolution precipitation climatology. The CHIRP depicts rainfall on five day totals at 5km spatial resolution from 1981 to present. The CHG is developing and deploying a standalone tool - the GeoCLIM - which will allow national and regional meteorological agencies to blend the CHIRP with station observations, run simple crop water balance models, and conduct climatological, trend, and time series analysis. Blending satellite estimates and gauge data helps overcome limited in situ observing networks. Furthermore, the GeoCLIM combines rainfall, soil, and evapotranspiration data with crop hydrological requirements to calculate agricultural water balance, presented as the Water Requirement Satisfaction Index (WRSI). The WRSI is a measurement of the degree in which a crop's hydrological requirements have been satisfied by rainfall. We present the results of a training session for personnel of the East African Intergovernmental Authority on Development Climate Prediction and Applications Center. The two week training program included the use of the GeoCLIM to improve CHIRP using station data, and to calculate and

  14. Biophysics and the Challenges of Emerging Threats

    CERN Document Server

    Puglisi, Joseph D

    2009-01-01

    This volume is a collection of articles from the proceedings of the International School of Structural Biology and Magnetic Resonance 8th Course: Biophysics and the Challenges of Emerging Threats. This NATO Advance Study Institute (ASI) was held in Erice at the Ettore Majorana Foundation and Centre for Scientific Culture on 19 through 30 June 2007. The ASI brought together a diverse group of experts who bridged the fields of virology and biology, biophysics, chemistry and physics. Prominent lecturers and students from around the world representant a total of 24 countries participated in the NATO ASI organized by Professors Joseph Puglisi (Stanford University, USA) and Alexander Arseniev (Moscow, RU). The central hypothesis underlying this ASI was that interdisciplinary research, merging principles of physics, chemistry and biology, can drive new discovery in detecting and fighting bioterrorism agents, lead to cleaner environments, and help propel development in NATO partner countries. The ASI merged the relat...

  15. Utilizing the NASA Data-enhanced Investigations for Climate Change Education Resource for Elementary Pre-service Teachers in a Technology Integration Education Course.

    Science.gov (United States)

    Howard, E. M.; Moore, T.; Hale, S. R.; Hayden, L. B.; Johnson, D.

    2014-12-01

    The preservice teachers enrolled in the EDUC 203 Introduction to Computer Instructional Technology course, primarily for elementary-level had created climate change educational lessons based upon their use of the NASA Data-enhanced Investigations for Climate Change Education (DICCE). NASA climate education datasets and tools were introduced to faculty of Minority Serving Institutions through a grant from the NASA Innovations in Climate Education program. These lessons were developed to study various ocean processes involving phytoplankton's chlorophyll production over time for specific geographic areas using the Giovanni NASA software tool. The pre-service teachers had designed the climate change content that will assist K-4 learners to identify and predict phytoplankton sources attributed to sea surface temperatures, nutrient levels, sunlight, and atmospheric carbon dioxide associated with annual chlorophyll production. From the EDUC 203 course content, the preservice teachers applied the three phases of the technology integration planning (TIP) model in developing their lessons. The Zunal website (http://www.zunal.com) served as a hypermedia tool for online instructional delivery in presenting the climate change content, the NASA climate datasets, and the visualization tools used for the production of elementary learning units. A rubric was developed to assess students' development of their webquests to meet the overall learning objectives and specific climate education objectives. Accompanying each webquest is a rubric with a defined table of criteria, for a teacher to assess students completing each of the required tasks for each lesson. Two primary challenges of technology integration for elementary pre-service teachers were 1) motivating pre-service teachers to be interested in climate education and 2) aligning elementary learning objectives with the Next Generation science standards of climate education that are non-existent in the Common Core State

  16. Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease.

    Science.gov (United States)

    Hosseini, Poorya; Abidi, Sabia Z; Du, E; Papageorgiou, Dimitrios P; Choi, Youngwoon; Park, YongKeun; Higgins, John M; Kato, Gregory J; Suresh, Subra; Dao, Ming; Yaqoob, Zahid; So, Peter T C

    2016-08-23

    Hydroxyurea (HU) has been used clinically to reduce the frequency of painful crisis and the need for blood transfusion in sickle cell disease (SCD) patients. However, the mechanisms underlying such beneficial effects of HU treatment are still not fully understood. Studies have indicated a weak correlation between clinical outcome and molecular markers, and the scientific quest to develop companion biophysical markers have mostly targeted studies of blood properties under hypoxia. Using a common-path interferometric technique, we measure biomechanical and morphological properties of individual red blood cells in SCD patients as a function of cell density, and investigate the correlation of these biophysical properties with drug intake as well as other clinically measured parameters. Our results show that patient-specific HU effects on the cellular biophysical properties are detectable at normoxia, and that these properties are strongly correlated with the clinically measured mean cellular volume rather than fetal hemoglobin level.

  17. Biophysical radiosensitization

    International Nuclear Information System (INIS)

    Vladescu, C.; Apetroae, M.

    1983-01-01

    Experimental studies on normal and tumor-bearing rats revealed that chronic treatment with hydroquinone (5 mg/kg/day) inhibited catalase activity in liver, spleen, blood, and H 18R tumor. 3 H-hydroquinone (1.5 μCi/g body weight) showed tumor specificity, with maximum radioactivity in the tumor at 1 h after administration. The biological half-time of 3 H-hydroquinone in the tumor was 2 h, but there seems to exist a longer component, since 24 h after administration, some 30% of the maximum radioactivity could be detected in the tumor. Hydroquinone treatment produces a specific inhibition of catalase in the tumor and a higher degree of oxygenation at this level. These findings support the assumption that the mechanism of action of hydroquinone as an anticancer agent is achieved mainly via peroxide production. The oxygenation of the hypoxic tumoral tissue is done at non-toxic levels of hydroquinone, through a natural and specific biophysical pathway, recommanding hydroquinone for combined anticancer treatment (radiotherapy and chemotherapy). (orig.)

  18. Climate Prediction Center - Expert Assessments Index

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Web resources and services. HOME > Monitoring and Data > Global Climate Data & Maps > ; Global Regional Climate Maps Regional Climate Maps Banner The Monthly regional analyses products are

  19. Contribution of ecosystem services to air quality and climate change mitigation policies: The case of urban forests in Barcelona, Spain

    Science.gov (United States)

    Francesc Baró; Lydia Chaparro; Erik Gómez-Baggethun; Johannes Langemeyer; David J. Nowak; Jaume. Terradas

    2014-01-01

    Mounting research highlights the contribution of ecosystem services provided by urban forests to quality of life in cities, yet these services are rarely explicitly considered in environmental policy targets. We quantify regulating services provided by urban forests and evaluate their contribution to comply with policy targets of air quality and climate change...

  20. The biophysics of renal sympathetic denervation using radiofrequency energy.

    Science.gov (United States)

    Patel, Hitesh C; Dhillon, Paramdeep S; Mahfoud, Felix; Lindsay, Alistair C; Hayward, Carl; Ernst, Sabine; Lyon, Alexander R; Rosen, Stuart D; di Mario, Carlo

    2014-05-01

    Renal sympathetic denervation is currently performed in the treatment of resistant hypertension by interventionists who otherwise do not typically use radiofrequency (RF) energy ablation in their clinical practice. Adequate RF lesion formation is dependent upon good electrode-tissue contact, power delivery, electrode-tissue interface temperature, target-tissue impedance and the size of the catheter's active electrode. There is significant interplay between these variables and hence an appreciation of the biophysical determinants of RF lesion formation is required to provide effective and safe clinical care to our patients. In this review article, we summarize the biophysics of RF ablation and explain why and how complications of renal sympathetic denervation may occur and discuss methods to minimise them.

  1. Raman spectroscopy reveals biophysical markers in skin cancer surgical margins

    Science.gov (United States)

    Feng, Xu; Moy, Austin J.; Nguyen, Hieu T. M.; Zhang, Yao; Fox, Matthew C.; Sebastian, Katherine R.; Reichenberg, Jason S.; Markey, Mia K.; Tunnell, James W.

    2018-02-01

    The recurrence rate of nonmelanoma skin cancer is highly related to the residual tumor after surgery. Although tissueconserving surgery, such as Mohs surgery, is a standard method for the treatment of nonmelanoma skin cancer, they are limited by lengthy and costly frozen-section histopathology. Raman spectroscopy (RS) is proving to be an objective, sensitive, and non-destructive tool for detecting skin cancer. Previous studies demonstrated the high sensitivity of RS in detecting tumor margins of basal cell carcinoma (BCC). However, those studies rely on statistical classification models and do not elucidate the skin biophysical composition. As a result, we aim to discover the biophysical differences between BCC and primary normal skin structures (including epidermis, dermis, hair follicle, sebaceous gland and fat). We obtained freshly resected ex vivo skin samples from fresh resection specimens from 14 patients undergoing Mohs surgery. Raman images were acquired from regions containing one or more structures using a custom built 830nm confocal Raman microscope. The spectra were grouped using K-means clustering analysis and annotated as either BCC or each of the five normal structures by comparing with the histopathology image of the serial section. The spectral data were then fit by a previously established biophysical model with eight primary skin constituents. Our results show that BCC has significant differences in the fit coefficients of nucleus, collagen, triolein, keratin and elastin compared with normal structures. Our study reveals RS has the potential to detect biophysical changes in resection margins, and supports the development of diagnostic algorithms for future intraoperative implementation of RS during Mohs surgery.

  2. What we know, do not know, and need to know about climate change vulnerability in the western Canadian Arctic: a systematic literature review

    International Nuclear Information System (INIS)

    Ford, James D; Pearce, Tristan

    2010-01-01

    This letter systematically reviews and synthesizes scientific and gray literature publications (n = 420) to identify and characterize the nature of climate change vulnerability in the Inuvialuit Settlement Region of the western Canadian Arctic and identify gaps in understanding. The literature documents widespread evidence of climate change, with implications for human and biophysical systems. Adaptations are being employed to manage changing conditions and are indicative of a high adaptive capacity. However, barriers to adaptation are evident and are expected to constrain adaptive capacity to future climate change. Continued climate change is predicted for the region, with differential exposure sensitivity for communities, groups and sectors: a function of social-economic-biophysical characteristics and projected future climatic conditions. Existing climate risks are expected to increase in magnitude and frequency, although the interaction between projected changes and socio-economic-demographic trends has not been assessed. The capacity for adapting to future climate change has also not been studied. The review identifies the importance of targeted vulnerability research that works closely with community members and other stakeholders to address research needs. Importantly, the fully categorized list of reviewed references accompanying this letter will be a valuable resource for those working or planning to work in the region, capturing climate change research published since 1990. At a broader level, the systematic review methodology offers a promising tool for climate/environmental change studies in general where there is a large and emerging body of research but limited understanding of research gaps and needs.

  3. Development of a Work Climate Scale in Emergency Health Services.

    Science.gov (United States)

    Sanduvete-Chaves, Susana; Lozano-Lozano, José A; Chacón-Moscoso, Salvador; Holgado-Tello, Francisco P

    2018-01-01

    An adequate work climate fosters productivity in organizations and increases employee satisfaction. Workers in emergency health services (EHS) have an extremely high degree of responsibility and consequent stress. Therefore, it is essential to foster a good work climate in this context. Despite this, scales with a full study of their psychometric properties (i.e., validity evidence based on test content, internal structure and relations to other variables, and reliability) are not available to measure work climate in EHS specifically. For this reason, our objective was to develop a scale to measure the quality of work climates in EHS. We carried out three studies. In Study 1, we used a mixed-method approach to identify the latent conceptual structure of the construct work climate . Thus, we integrated the results found in (a) a previous study, where a content analysis of seven in-depth interviews obtained from EHS professionals in two hospitals in Gibraltar Countryside County was carried out; and (b) the factor analysis of the responses given by 113 EHS professionals from these same centers to 18 items that measured the work climate in health organizations. As a result, we obtained 56 items grouped into four factors (work satisfaction, productivity/achievement of aims, interpersonal relationships, and performance at work). In Study 2, we presented validity evidence based on test content through experts' judgment. Fourteen experts from the methodology and health fields evaluated the representativeness, utility, and feasibility of each of the 56 items with respect to their factor (theoretical dimension). Forty items met the inclusion criterion, which was to obtain an Osterlind index value greater than or equal to 0.5 in the three aspects assessed. In Study 3, 201 EHS professionals from the same centers completed the resulting 40-item scale. This new instrument produced validity evidence based on the internal structure in a second-order factor model with four

  4. Development of a Work Climate Scale in Emergency Health Services

    Directory of Open Access Journals (Sweden)

    Susana Sanduvete-Chaves

    2018-01-01

    Full Text Available An adequate work climate fosters productivity in organizations and increases employee satisfaction. Workers in emergency health services (EHS have an extremely high degree of responsibility and consequent stress. Therefore, it is essential to foster a good work climate in this context. Despite this, scales with a full study of their psychometric properties (i.e., validity evidence based on test content, internal structure and relations to other variables, and reliability are not available to measure work climate in EHS specifically. For this reason, our objective was to develop a scale to measure the quality of work climates in EHS. We carried out three studies. In Study 1, we used a mixed-method approach to identify the latent conceptual structure of the construct work climate. Thus, we integrated the results found in (a a previous study, where a content analysis of seven in-depth interviews obtained from EHS professionals in two hospitals in Gibraltar Countryside County was carried out; and (b the factor analysis of the responses given by 113 EHS professionals from these same centers to 18 items that measured the work climate in health organizations. As a result, we obtained 56 items grouped into four factors (work satisfaction, productivity/achievement of aims, interpersonal relationships, and performance at work. In Study 2, we presented validity evidence based on test content through experts' judgment. Fourteen experts from the methodology and health fields evaluated the representativeness, utility, and feasibility of each of the 56 items with respect to their factor (theoretical dimension. Forty items met the inclusion criterion, which was to obtain an Osterlind index value greater than or equal to 0.5 in the three aspects assessed. In Study 3, 201 EHS professionals from the same centers completed the resulting 40-item scale. This new instrument produced validity evidence based on the internal structure in a second-order factor model with

  5. Assessing and comparing risk to climate changes among forested locations: implications for ecosystem services

    Science.gov (United States)

    Stephen N. Matthews; Louis R. Iverson; Matthew P. Peters; Anantha M. Prasad; Sakthi. Subburayalu

    2014-01-01

    Forests provide key ecosystem services (ES) and the extent to which the ES are realized varies spatially, with forest composition and cultural context, and in breadth, depending on the dominant tree species inhabiting an area. We address the question of how climate change may impact ES within the temperate and diverse forests of the eastern United States. We quantify...

  6. X-Ray structure and biophysical properties of rabbit fibroblast growth factor 1

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jihun; Blaber, Sachiko I.; Irsigler, Andre; Aspinwall, Eric; Blaber, Michael; (FSU)

    2010-01-14

    The rabbit is an important and de facto animal model in the study of ischemic disease and angiogenic therapy. Additionally, fibroblast growth factor 1 (FGF-1) is emerging as one of the most important growth factors for novel pro-angiogenic and pro-arteriogenic therapy. However, despite its significance, the fundamental biophysical properties of rabbit FGF-1, including its X-ray structure, have never been reported. Here, the cloning, crystallization, X-ray structure and determination of the biophysical properties of rabbit FGF-1 are described. The X-ray structure shows that the amino-acid differences between human and rabbit FGF-1 are solvent-exposed and therefore potentially immunogenic, while the biophysical studies identify differences in thermostability and receptor-binding affinity that distinguish rabbit FGF-1 from human FGF-1.

  7. Localizing drought monitoring products to support agricultural climate service advisories in South Asia

    Science.gov (United States)

    Qamer, F. M.; Matin, M. A.; Yadav, N. K.; Bajracharya, B.; Zaitchik, B. F.; Ellenburg, W. L.; Krupnik, T. J.; Hussain, G.

    2017-12-01

    The Fifth Assessment Report of the Intergovernmental Panel on Climate Change identifies drought as one of the major climate risks in South Asia. During past two decades, a large amount of climate data have been made available by the scientific community, but the deployment of climate information for local level and agricultural decision making remains less than optimal. The provisioning of locally calibrated, easily accessible, decision-relevant and user-oriented information, in the form of drought advisory service could help to prepare communities to reduce climate vulnerability and increase resilience. A collaborative effort is now underway to strengthen existing and/or establish new drought monitoring and early warning systems in Afghanistan, Bangladesh, Nepal and Pakistan by incorporating standard ground-based observations, earth observation datasets, and numerical forecast models. ICT-based agriculture drought monitoring platforms, hosted at national agricultural and meteorological institutions, are being developed and coupled with communications and information deployment strategies to enable the rapid and efficient deployment of information that farmers can understand, interpret, and act on to adapt to anticipated droughts. Particular emphasis is being placed on the calibration and validation of data products through retrospective analysis of time series data, in addition to the installation of automatic weather station networks. In order to contextualize monitoring products to that they may be relevant for farmers' primary cropping systems, district level farming practices calendars are being compiled and validated through focus groups and surveys to identify the most important times and situations during which farmers can adapt to drought. High-resolution satellite crop distribution maps are under development and validation to add value to these efforts. This programme also aims to enhance capacity of agricultural extension staff to better understand

  8. Indicators of climate change in Idaho: An assessment framework for coupling biophysical change and social perception

    Science.gov (United States)

    Climate change is well documented at the global scale, but local and regional changes are not as well understood. Finer, local-to-regional scale information is needed for creating specific, place-based planning and adaption efforts. Here we detail the development of an indicator-focused climate chan...

  9. Refocusing and Evolving Subseasonal-to-Seasonal Services in NOAA's National Weather Service

    Science.gov (United States)

    Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Silva, V.; Mangan, M. R.; Meyers, J. C.; Zdrojewski, J.

    2017-12-01

    NOAA's National Weather Service (NWS) recently completed a reorganization to better support its goal to build a Weather-Ready Nation. As part of the reorganization, NWS streamlined its 11 national service programs, including climate services, to provide a more structured approach to supporting service delivery needs. As the American public increasingly requests information at sub-seasonal and seasonal time scales for decision making, the NWS Climate Services Program is striving to meet those needs by accelerating transition of research to operations, improving delivery of products and services, and enhancing partnerships to facilitate provision of seamless weather, water, and climate products and services at regional and local scales. Additionally, NWS forecasters are requesting more tools to be able to put severe weather and water events into a climate context to provide more effective impact-based decision support services (IDSS). This paper will describe the activities to more effectively integrate climate services into the NWS suite of environmental information, the roles of the NWS offices supporting or delivering sub-seasonal and seasonal information to the US public, and engaging NWS core and deep-core partners in provision of information on climatological risks and preparedness as a part of IDSS. We will discuss the process by which we collect user requests and/or needs and the NWS process that allows us to move these requests and needs through a formal requirements validation process and thus place the requirement on a path to identify a potential solution for implementation. The validation of a NWS climate-related requirement is also key to identify research, development, and transition mission delivery needs that are supported through the Office of Oceanic and Atmospheric Research (OAR) Climate Program Office (CPO). In addition, we will present the outcomes of key actions of the first ever NWS National Climate Services Meeting (NCSM) that was held in May

  10. Beyond Knowledge: Service Learning and Local Climate Change Research Engagement Activities that Foster Action and Behavior Change

    Science.gov (United States)

    Low, R.; Mandryk, C.; Gosselin, D. C.; Haney, C.

    2013-12-01

    environment and support teachers in the creation of lessons and units that promote both inquiry science and service learning in the community. Course participants connect the dots from their newly acquired theoretical science knowledge to concrete examples of change taking place locally, and see the value of promoting awareness as well as behavioral changes that contribute to adaptation and mitigation of local climate change impacts. We describe the assessments used and the research outcomes associated with NRES 832, Human Dimensions of Climate Change, where participants conduct archival research to create a climate change chronicle for their community, and NRES 830 Climate Research Applications, where teachers lead and evaluate the impacts of student-designed service learning activities as a capstone project for a unit on climate change. We also showcase community-based initiatives resulting from this work that seed the behavioral changes we need to live sustainably in our communities and on our planet.

  11. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change

    Science.gov (United States)

    Wen J. Wang; Hong S. He; Frank R. Thompson; Martin A. Spetich; Jacob S. Fraser

    2018-01-01

    Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are notwell represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts.We investigate how species biological...

  12. IMPACTS OF CLIMATE CHANGE ON EU AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Shailesh Shrestha

    2013-09-01

    Full Text Available The current paper investigates the medium term economic impact of climate changes on the EU agriculture. The yield change data under climate change scenarios are taken from the BIOMA (Biophysical Models Application simulation environment. We employ CAPRI modelling framework to identify the EU aggregate economic effects as well as regional impacts. We take into account supply and market price adjustments of the EU agricultural sector as well as technical adaptation of crops to climate change. Overall results indicate an increase in yields and production level in the EU agricultural sector due to the climate change. In general, there are relatively small effects at the EU aggregate. For example, the value of land use and welfare change by approximately between -2% and 0.2%. However, there is a stronger impact at regional level with some stronger effects prevailing particularly in the Central and Northern EU and smaller impacts are observed in Southern Europe. Regional impacts of climate change vary by a factor higher up to 10 relative to the aggregate EU impacts. The price adjustments reduce the response of agricultural sector to climate change in particular with respect to production and income changes. The technical adaption of crops to climate change may result in a change production and land use by a factor between 1.4 and 6 relative to no-adaptation situation.

  13. Seasonality and Management Affect Land Surface Temperature Differences Between Loblolly Pine and Switchgrass Ecosystems in Central Virginia

    Science.gov (United States)

    Ahlswede, B.; Thomas, R. Q.; O'Halloran, T. L.; Rady, J.; LeMoine, J.

    2017-12-01

    Changes in land-use and land management can have biogeochemical and biophysical effects on local and global climate. While managed ecosystems provide known food and fiber benefits, their influence on climate is less well quantified. In the southeastern United States, there are numerous types of intensely managed ecosystems but pine plantations and switchgrass fields represent two biogeochemical and biophysical extremes; a tall, low albedo forest with trees harvested after multiple decades vs. a short, higher albedo C4 grass field that is harvested annually. Despite the wide spread use of these ecosystems for timber and bioenergy, a quantitative, empirical evaluation of the net influence of these ecosystems on climate is lacking because it requires measuring both the greenhouse gas and energy balance of the ecosystems while controlling for the background weather and soil environment. To address this need, we established a pair of eddy flux towers in these ecosystems that are co-located (1.5 km apart) in Central Virginia and measured the radiative energy, non-radiative energy and carbon fluxes, along with associated biometeorology variables; the paired site has run since April 2016. During the first 1.5 years (two growing seasons), we found strong seasonality in the difference in surface temperature between the two ecosystems. In the growing seasons, both sites had similar surface temperature despite higher net radiation in pine. Following harvest of the switchgrass in September, the switchgrass temperatures increased relative to pine. In the winter, the pine ecosystem was warmer. We evaluate the drivers of these intra-annual dynamics and compare the climate influence of these biophysical differences to the differences in carbon fluxes between the sites using a suite of established climate regulation services metrics. Overall, our results show tradeoffs exist between the biogeochemical and biophysical climate services in managed ecosystems in the southeastern United

  14. Mapping potential carbon and timber losses from hurricanes using a decision tree and ecosystem services driver model.

    Science.gov (United States)

    Delphin, S; Escobedo, F J; Abd-Elrahman, A; Cropper, W

    2013-11-15

    Information on the effect of direct drivers such as hurricanes on ecosystem services is relevant to landowners and policy makers due to predicted effects from climate change. We identified forest damage risk zones due to hurricanes and estimated the potential loss of 2 key ecosystem services: aboveground carbon storage and timber volume. Using land cover, plot-level forest inventory data, the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, and a decision tree-based framework; we determined potential damage to subtropical forests from hurricanes in the Lower Suwannee River (LS) and Pensacola Bay (PB) watersheds in Florida, US. We used biophysical factors identified in previous studies as being influential in forest damage in our decision tree and hurricane wind risk maps. Results show that 31% and 0.5% of the total aboveground carbon storage in the LS and PB, respectively was located in high forest damage risk (HR) zones. Overall 15% and 0.7% of the total timber net volume in the LS and PB, respectively, was in HR zones. This model can also be used for identifying timber salvage areas, developing ecosystem service provision and management scenarios, and assessing the effect of other drivers on ecosystem services and goods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Satellite mapping of surface biophysical parameters at the biome scale over the North American grasslands: A case study

    Science.gov (United States)

    Wylie, B.K.; Meyer, D.J.; Tieszen, L.L.; Mannel, S.

    2002-01-01

    Quantification of biophysical parameters is needed by terrestrial process modeling and other applications. A study testing the role of multispectral data for monitoring biophysical parameters was conducted over a network of grassland field sites in the Great Plains of North America. Grassland biophysical parameters [leaf area index (LAI), fraction of absorbed photosynthetically active radiation (fPAR), and biomass] and their relationships with ground radiometer normalized difference vegetation index (NDVI) were established in this study (r2=.66–.85) from data collected across the central and northern Great Plains in 1995. These spectral/biophysical relationships were compared to 1996 field data from the Tallgrass Prairie Preserve in northeastern Oklahoma and showed no consistent biases, with most regression estimates falling within the respective 95% confidence intervals. Biophysical parameters were estimated for 21 “ground pixels” (grids) at the Tallgrass Prairie Preserve in 1996, representing three grazing/burning treatments. Each grid was 30×30 m in size and was systematically sampled with ground radiometer readings. The radiometric measurements were then converted to biophysical parameters and spatially interpolated using geostatistical kriging. Grid-based biophysical parameters were monitored through the growing season and regressed against Landsat Thematic Mapper (TM) NDVI (r2=.92–.94). These regression equations were used to estimate biophysical parameters for grassland TM pixels over the Tallgrass Prairie Preserve in 1996. This method maintained consistent regression development and prediction scales and attempted to minimize scaling problems associated with mixed land cover pixels. A method for scaling Landsat biophysical parameters to coarser resolution satellite data sets (1 km2) was also investigated.

  16. Understanding Climate Variability of Urban Ecosystems Through the Lens of Citizen Science

    Science.gov (United States)

    Ripplinger, J.; Jenerette, D.; Wang, J.; Chandler, M.; Ge, C.; Koutzoukis, S.

    2017-12-01

    The Los Angeles megacity is vulnerable to climate warming - a process that locally exacerbates the urban heat island effect as it intensifies with size and density of the built-up area. We know that large-scale drivers play a role, but in order to understand local-scale climate variation, more research is needed on the biophysical and sociocultural processes driving the urban climate system. In this study, we work with citizen scientists to deploy a high-density network of microsensors across a climate gradient to characterize geographic variation in neighborhood meso- and micro-climates. This research asks: How do urbanization, global climate, and vegetation interact across multiple scales to affect local-scale experiences of temperature? Additionally, citizen scientist-led efforts generated research questions focused on examining microclimatic differences among yard groundcover types (rock mulch vs. lawn vs. artificial turf) and also on variation in temperature related to tree cover. Combining sensor measurements with Weather Research and Forecasting (WRF) spatial models and satellite-based temperature, we estimate spatially-explicit maps of land surface temperature and air temperature to illustrate the substantial difference between surface and air urban heat island intensities and the variable degree of coupling between land surface and air temperature in urban areas. Our results show a strong coupling between air temperature variation and landcover for neighborhoods, with significant detectable signatures from tree cover and impervious surface. Temperature covaried most strongly with urbanization intensity at nighttime during peak summer season, when daily mean air temperature ranged from 12.8C to 30.4C across all groundcover types. The combined effects of neighborhood geography and vegetation determine where and how temperature and tree canopy vary within a city. This citizen science-enabled research shows how large-scale climate drivers and urbanization

  17. What are the legal dimensions to climate change in the Torres Strait?

    International Nuclear Information System (INIS)

    Green, Donna

    2007-01-01

    Full text: Full text: Climate change projections suggest that the Torres Strait Islands are one of the most vulnerable regions in Australia. This is due, in part, because several of the islands are only a metre or two above local mean sea level. Social and economic disadvantage further reduces the capacity to adapt to rapid environmental change, and so this problem is compounded on many of the Islands which lack adequate infrastructure, health services and employment opportunities. Consequently, considering the biophysical impacts in the socio-economic context is highly significant in order to understand - and hopefully improve - these communities' resilience to climate change. Cultural issues, not normally considered by natural scientists working on identifying climate impacts in human settlements, add increasing complexity to comprehending the full impacts of climate change in this location. Many Islanders connect the health of their land and sea country to their mental and physical wellbeing and, more broadly, their cultural integrity. In the longer term, the very existence of Ailan Kastom (Island Custom) may be threatened if projected sea level rise in combination with extreme weather events increases the frequency and/or severity of inundation incidents and necessitates relocation from the Islands. One other significant concern that has not been given appropriate consideration relates to the legal status of land (and sea) ownership. Over the last 15 years, the Torres Strait Islanders have successfully fought to obtain native title rights. Some Islanders are now concerned that these rights may disappear due to the impacts of climate change. In order to explore these issues, this paper provides: 1. a background to the climate change projections and likely direct and indirect impacts on the islands; and 2. a discussion of the legal dimension of the potential for climate change to impact on the native title rights of Torres Strait Islanders. We use the Torres

  18. Achievements and challenges in structural bioinformatics and computational biophysics.

    Science.gov (United States)

    Samish, Ilan; Bourne, Philip E; Najmanovich, Rafael J

    2015-01-01

    The field of structural bioinformatics and computational biophysics has undergone a revolution in the last 10 years. Developments that are captured annually through the 3DSIG meeting, upon which this article reflects. An increase in the accessible data, computational resources and methodology has resulted in an increase in the size and resolution of studied systems and the complexity of the questions amenable to research. Concomitantly, the parameterization and efficiency of the methods have markedly improved along with their cross-validation with other computational and experimental results. The field exhibits an ever-increasing integration with biochemistry, biophysics and other disciplines. In this article, we discuss recent achievements along with current challenges within the field. © The Author 2014. Published by Oxford University Press.

  19. Evolution and Biophysics of the Escherichia coli lac Operon

    Science.gov (United States)

    Ray, J. Christian; Igoshin, Oleg; Quan, Selwyn; Monds, Russell; Cooper, Tim; Balázsi, Gábor

    2011-03-01

    To understand, predict, and control the evolution of living organisms, we consider biophysical effects and molecular network architectures. The lactose utilization system of E. coli is among the most well-studied molecular networks in biology, making it an ideal candidate for such studies. Simulations show how the genetic architecture of the wild-type operon attenuates large metabolic intermediate fluctuations that are predicted to occur in an equivalent system with the component genes on separate operons. Quantification of gene expression in the lac operon evolved in growth conditions containing constant lactose, alternating with glucose, or constant glucose, shows characteristic gene expression patterns depending on conditions. We are simulating these conditions to show context-dependent biophysical sources and costs of different lac operon architectures.

  20. Sustainable land management contribution to successful land-based climate change adaptation and mitigation : a report of the Science-Policy Interface

    OpenAIRE

    Sanz, M.J.; De Vente, J.L.; Chotte, Jean-Luc; Bernoux, Martial; Kust, G.; Ruiz, I.; Almagro, M.; Alloza, J.A.; Vallejo, R.; Castillo, V.; Hebel, A.; Akhtar-Schuster, M.

    2017-01-01

    Sustainable Land Management (SLM) represents a holistic approach to achieving long-term productive ecosystems by integrating biophysical, socio-cultural and economic needs and values. SLM is one of the main mechanisms to achieve Land Degradation Neutrality (LDN).To foster and facilitate the adoption of SLM practices that address DLDD while mitigating climate change and enhancing climate change adaptation, this report assesses the synergistic potential of SLM practices while als...

  1. Climate Prediction Center - The ENSO Cycle

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Web resources and services. HOME > El Niño/La Niña > The ENSO Cycle ENSO Cycle Banner Climate for Weather and Climate Prediction Climate Prediction Center 5830 University Research Court College

  2. Ecosystem services and climate change: Understanding the differences and identifying opportunities for forest carbon

    Science.gov (United States)

    Robert L. Deal; Crystal Raymond; David L. Peterson; Cindy. Glick

    2010-01-01

    There are a number of misunderstandings about “ecosystem services” and “climate change” and these terms are often used incorrectly to describe different concepts. These concepts address different issues and objectives but have some important integrating themes relating to carbon and carbon sequestration. In this paper, we provide definitions and distinctions between...

  3. Small changes in climate can profoundly alter the dynamics and ecosystem services of tropical crater lakes.

    Science.gov (United States)

    Saulnier-Talbot, Émilie; Gregory-Eaves, Irene; Simpson, Kyle G; Efitre, Jackson; Nowlan, Tobias E; Taranu, Zofia E; Chapman, Lauren J

    2014-01-01

    African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years) and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R(2) adj  = 0.23, e.d.f. = 7, pdeterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions.

  4. Direct Scaling of Leaf-Resolving Biophysical Models from Leaves to Canopies

    Science.gov (United States)

    Bailey, B.; Mahaffee, W.; Hernandez Ochoa, M.

    2017-12-01

    Recent advances in the development of biophysical models and high-performance computing have enabled rapid increases in the level of detail that can be represented by simulations of plant systems. However, increasingly detailed models typically require increasingly detailed inputs, which can be a challenge to accurately specify. In this work, we explore the use of terrestrial LiDAR scanning data to accurately specify geometric inputs for high-resolution biophysical models that enables direct up-scaling of leaf-level biophysical processes. Terrestrial LiDAR scans generate "clouds" of millions of points that map out the geometric structure of the area of interest. However, points alone are often not particularly useful in generating geometric model inputs, as additional data processing techniques are required to provide necessary information regarding vegetation structure. A new method was developed that directly reconstructs as many leaves as possible that are in view of the LiDAR instrument, and uses a statistical backfilling technique to ensure that the overall leaf area and orientation distribution matches that of the actual vegetation being measured. This detailed structural data is used to provide inputs for leaf-resolving models of radiation, microclimate, evapotranspiration, and photosynthesis. Model complexity is afforded by utilizing graphics processing units (GPUs), which allows for simulations that resolve scales ranging from leaves to canopies. The model system was used to explore how heterogeneity in canopy architecture at various scales affects scaling of biophysical processes from leaves to canopies.

  5. Climate Change and Agricultural Vulnerability

    International Nuclear Information System (INIS)

    Fischer, G.; Shah, M.; Van Velthuizen, H.

    2002-08-01

    After the introduction Chapter 2 presents details of the ecological-economic analysis based on the FAO/IIASA agro-ecological zones (AEZ) approach for evaluation of biophysical limitations and agricultural production potentials, and IIASA's Basic Linked System (BLS) for analyzing the world's food economy and trade system. The BLS is a global general equilibrium model system for analyzing agricultural policies and food system prospects in an international setting. BLS views national agricultural systems as embedded in national economies, which interact with each other through trade at the international level. The combination of AEZ and BLS provides an integrated ecological-economic framework for the assessment of the impact of climate change. We consider climate scenarios based on experiments with four General Circulation Models (GCM), and we assess the four basic socioeconomic development pathways and emission scenarios as formulated by the Intergovernmental Panel on Climate Change (IPCC) in its Third Assessment Report. Chapter 3 presents the main AEZ results of the impact of climate change on agriculture. Results comprise environmental constraints to crop agriculture; climate variability and the variability of rain-fed cereal production; changes in potential agricultural land; changes in crop-production patterns; and the impact of climate change on cereal-production potential. Chapter 4 discusses the AEZ-BLS integrated ecological-economic analysis of climate change on the world food system. This includes quantification of scale and location of hunger, international agricultural trade, prices, production, land use, etc. It assesses trends in food production, trade, and consumption, and the impact on poverty and hunger of alternative development pathways and varying levels of climate change. Chapter 5 presents the main conclusions and policy implications of this study

  6. Green spaces are not all the same for the provision of air purification and climate regulation services: The case of urban parks.

    Science.gov (United States)

    Vieira, Joana; Matos, Paula; Mexia, Teresa; Silva, Patrícia; Lopes, Nuno; Freitas, Catarina; Correia, Otília; Santos-Reis, Margarida; Branquinho, Cristina; Pinho, Pedro

    2018-01-01

    The growing human population concentrated in urban areas lead to the increase of road traffic and artificial areas, consequently enhancing air pollution and urban heat island effects, among others. These environmental changes affect citizen's health, causing a high number of premature deaths, with considerable social and economic costs. Nature-based solutions are essential to ameliorate those impacts in urban areas. While the mere presence of urban green spaces is pointed as an overarching solution, the relative importance of specific vegetation structure, composition and management to improve the ecosystem services of air purification and climate regulation are overlooked. This avoids the establishment of optimized planning and management procedures for urban green spaces with high spatial resolution and detail. Our aim was to understand the relative contribution of vegetation structure, composition and management for the provision of ecosystem services of air purification and climate regulation in urban green spaces, in particular the case of urban parks. This work was done in a large urban park with different types of vegetation surrounded by urban areas. As indicators of microclimatic effects and of air pollution levels we selected different metrics: lichen diversity and pollutants accumulation in lichens. Among lichen diversity, functional traits related to nutrient and water requirements were used as surrogates of the capacity of vegetation to filter air pollution and to regulate climate, and provide air purification and climate regulation ecosystem services, respectively. This was also obtained with very high spatial resolution which allows detailed spatial planning for optimization of ecosystem services. We found that vegetation type characterized by a more complex structure (trees, shrubs and herbaceous layers) and by the absence of management (pruning, irrigation and fertilization) had a higher capacity to provide the ecosystems services of air

  7. Matching Social and Biophysical Scales in Extensive Livestock Production as a Basis for Adaptation to Global Change

    Science.gov (United States)

    Sayre, N. F.; Bestelmeyer, B.

    2015-12-01

    Global livestock production is heterogeneous, and its benefits and costs vary widely across global contexts. Extensive grazing lands (or rangelands) constitute the vast majority of the land dedicated to livestock production globally, but they are relatively minor contributors to livestock-related environmental impacts. Indeed, the greatest potential for environmental damage in these lands lies in their potential for conversion to other uses, including agriculture, mining, energy production and urban development. Managing such conversion requires improving the sustainability of livestock production in the face of fragmentation, ecological and economic marginality and climate change. We present research from Mongolia and the United States demonstrating methods of improving outcomes on rangelands by improving the fit between the scales of social and biophysical processes. Especially in arid and semi-arid settings, rangelands exhibit highly variable productivity over space and time and non-linear or threshold dynamics in vegetation; climate change is projected to exacerbate these challenges and, in some cases, diminish overall productivity. Policy and governance frameworks that enable landscape-scale management and administration enable range livestock producers to adapt to these conditions. Similarly, livestock breeds that have evolved to withstand climate and vegetation change improve producers' prospects in the face of increasing variability and declining productivity. A focus on the relationships among primary production, animal production, spatial connectivity, and scale must underpin adaptation strategies in rangelands.

  8. A quantitative overview of biophysical forces impinging on neural function

    International Nuclear Information System (INIS)

    Mueller, Jerel K; Tyler, William J

    2014-01-01

    The fundamentals of neuronal membrane excitability are globally described using the Hodgkin-Huxley (HH) model. The HH model, however, does not account for a number of biophysical phenomena associated with action potentials or propagating nerve impulses. Physical mechanisms underlying these processes, such as reversible heat transfer and axonal swelling, have been compartmentalized and separately investigated to reveal neuronal activity is not solely influenced by electrical or biochemical factors. Instead, mechanical forces and thermodynamics also govern neuronal excitability and signaling. To advance our understanding of neuronal function and dysfunction, compartmentalized analyses of electrical, chemical, and mechanical processes need to be revaluated and integrated into more comprehensive theories. The present perspective is intended to provide a broad overview of biophysical forces that can influence neural function, but which have been traditionally underappreciated in neuroscience. Further, several examples where mechanical forces have been shown to exert their actions on nervous system development, signaling, and plasticity are highlighted to underscore their importance in sculpting neural function. By considering the collective actions of biophysical forces influencing neuronal activity, our working models can be expanded and new paradigms can be applied to the investigation and characterization of brain function and dysfunction. (topical review)

  9. Promoting Climate Literacy and Conceptual Understanding among In-service Secondary Science Teachers requires an Epistemological Perspective

    Science.gov (United States)

    Bhattacharya, D.; Forbes, C.; Roehrig, G.; Chandler, M. A.

    2017-12-01

    Promoting climate literacy among in-service science teachers necessitates an understanding of fundamental concepts about the Earth's climate System (USGCRP, 2009). Very few teachers report having any formal instruction in climate science (Plutzer et al., 2016), therefore, rather simple conceptions of climate systems and their variability exist, which has implications for students' science learning (Francies et al., 1993; Libarkin, 2005; Rebich, 2005). This study uses the inferences from a NASA Innovations in Climate Education (NICE) teacher professional development program (CYCLES) to establish the necessity for developing an epistemological perspective among teachers. In CYCLES, 19 middle and high school (male=8, female=11) teachers were assessed for their understanding of global climate change (GCC). A qualitative analysis of their concept maps and an alignment of their conceptions with the Essential Principles of Climate Literacy (NOAA, 2009) demonstrated that participants emphasized on EPCL 1, 3, 6, 7 focusing on the Earth system, atmospheric, social and ecological impacts of GCC. However, EPCL 4 (variability in climate) and 5 (data-based observations and modeling) were least represented and emphasized upon. Thus, participants' descriptions about global climatic patterns were often factual rather than incorporating causation (why the temperatures are increasing) and/or correlation (describing what other factors might influence global temperatures). Therefore, engaging with epistemic dimensions of climate science to understand the processes, tools, and norms through which climate scientists study the Earth's climate system (Huxter et al., 2013) is critical for developing an in-depth conceptual understanding of climate. CLiMES (Climate Modeling and Epistemology of Science), a NSF initiative proposes to use EzGCM (EzGlobal Climate Model) to engage students and teachers in designing and running simulations, performing data processing activities, and analyzing

  10. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts

    Science.gov (United States)

    Rutherford, William A.; Painter, Thomas H.; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S.; Flagg, Cody B.; Reed, Sasha C.

    2017-01-01

    Drylands represent the planet’s largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness—changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.

  11. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts

    Science.gov (United States)

    Rutherford, William A.; Painter, Thomas H.; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S.; Flagg, Cody; Reed, Sasha C.

    2017-03-01

    Drylands represent the planet’s largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness—changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.

  12. Climate change and ecosystem services: The contribution of and impacts on federal public lands in the United States

    Science.gov (United States)

    Valerie Esposito; Spencer Phillips; Roelof Boumans; Azur Moulaert; Jennifer Boggs

    2011-01-01

    The Intergovernmental Panel on Climate Change (IPCC) (2007) reports a likely 2 °C to 4.5 °C temperature rise in the upcoming decades. This warming is likely to affect ecosystems and their ability to provide services that benefit human well-being. Ecosystem services valuation (ESV), meanwhile, has emerged as a way to recognize the economic value embodied in these...

  13. Biophysical characteristics reveal neural stem cell differentiation potential.

    Directory of Open Access Journals (Sweden)

    Fatima H Labeed

    Full Text Available Distinguishing human neural stem/progenitor cell (huNSPC populations that will predominantly generate neurons from those that produce glia is currently hampered by a lack of sufficient cell type-specific surface markers predictive of fate potential. This limits investigation of lineage-biased progenitors and their potential use as therapeutic agents. A live-cell biophysical and label-free measure of fate potential would solve this problem by obviating the need for specific cell surface markers.We used dielectrophoresis (DEP to analyze the biophysical, specifically electrophysiological, properties of cortical human and mouse NSPCs that vary in differentiation potential. Our data demonstrate that the electrophysiological property membrane capacitance inversely correlates with the neurogenic potential of NSPCs. Furthermore, as huNSPCs are continually passaged they decrease neuron generation and increase membrane capacitance, confirming that this parameter dynamically predicts and negatively correlates with neurogenic potential. In contrast, differences in membrane conductance between NSPCs do not consistently correlate with the ability of the cells to generate neurons. DEP crossover frequency, which is a quantitative measure of cell behavior in DEP, directly correlates with neuron generation of NSPCs, indicating a potential mechanism to separate stem cells biased to particular differentiated cell fates.We show here that whole cell membrane capacitance, but not membrane conductance, reflects and predicts the neurogenic potential of human and mouse NSPCs. Stem cell biophysical characteristics therefore provide a completely novel and quantitative measure of stem cell fate potential and a label-free means to identify neuron- or glial-biased progenitors.

  14. How does a servant leader fuel the service fire? A multilevel model of servant leadership, individual self identity, group competition climate, and customer service performance.

    Science.gov (United States)

    Chen, Zhijun; Zhu, Jing; Zhou, Mingjian

    2015-03-01

    Building on a social identity framework, our cross-level process model explains how a manager's servant leadership affects frontline employees' service performance, measured as service quality, customer-focused citizenship behavior, and customer-oriented prosocial behavior. Among a sample of 238 hairstylists in 30 salons and 470 of their customers, we found that hair stylists' self-identity embedded in the group, namely, self-efficacy and group identification, partially mediated the positive effect of salon managers' servant leadership on stylists' service performance as rated by the customers, after taking into account the positive influence of transformational leadership. Moreover, group competition climate strengthened the positive relationship between self-efficacy and service performance. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  15. Improving Climate Literacy of NOAA Staff and Users

    Science.gov (United States)

    Timofeyeva, M. M.; Bair, A.; Staudenmaier, M.; Meyers, J. C.; Mayes, B.; Zdrojewski, J.

    2010-12-01

    Since 2002, NOAA’s National Weather Service (NWS) Climate Services Division (CSD) has offered numerous training opportunities to NWS staff. After eight-years of development, the training program offers three instructor-led courses and roughly 25 online (distance learning) modules covering various climate topics, such as: climate data and observations, climate variability and change, and NWS national / local climate products (tools, skill, and interpretation). Leveraging climate information and expertise available at all NOAA line offices and partners allows for the delivery of the most advanced knowledge and is a very critical aspect of the training program. The emerging NOAA Climate Service (NCS) requires a well-trained, climate-literate workforce at the local level capable of delivering NOAA’s climate products and services as well as providing climate-sensitive decision support. NWS Weather Forecast Offices and River Forecast Centers presently serve as local outlets for the NCS climate services. Trained NWS climate service personnel use proactive and reactive approaches and professional education methods in communicating climate variability and change information to local users. Both scientifically-sound messages and amiable communication techniques are important in developing an engaged dialog between the climate service providers and users. Several pilot projects have been conducted by the NWS CSD this past year that apply the program’s training lessons and expertise to specialized external user group training. The technical user groups included natural resources managers, engineers, hydrologists, and planners for transportation infrastructure. Training of professional user groups required tailoring instructions to the potential applications for each group of users. Training technical users identified the following critical issues: (1) knowledge of target audience expectations, initial knowledge status, and potential use of climate information; (2

  16. Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment.

    Science.gov (United States)

    Xiao, Yun; Ahadian, Samad; Radisic, Milica

    2017-02-01

    Progress in biomaterial science and engineering and increasing knowledge in cell biology have enabled us to develop functional biomaterials providing appropriate biochemical and biophysical cues for tissue regeneration applications. Tissue regeneration is particularly important to treat chronic wounds of people with diabetes. Understanding and controlling the cellular microenvironment of the wound tissue are important to improve the wound healing process. In this study, we review different biochemical (e.g., growth factors, peptides, DNA, and RNA) and biophysical (e.g., topographical guidance, pressure, electrical stimulation, and pulsed electromagnetic field) cues providing a functional and instructive acellular matrix to heal diabetic chronic wounds. The biochemical and biophysical signals generally regulate cell-matrix interactions and cell behavior and function inducing the tissue regeneration for chronic wounds. Some technologies and devices have already been developed and used in the clinic employing biochemical and biophysical cues for wound healing applications. These technologies can be integrated with smart biomaterials to deliver therapeutic agents to the wound tissue in a precise and controllable manner. This review provides useful guidance in understanding molecular mechanisms and signals in the healing of diabetic chronic wounds and in designing instructive biomaterials to treat them.

  17. Biophysical models of radiobiological effects

    International Nuclear Information System (INIS)

    Obaturov, G.M.

    1987-01-01

    Radiobiological effect models at different organization levels, developed by the author, are presented. Classification and analysis of concepts and biophysical models at molecular, genetic and cellular levels, developed by Soviet and foreign authors in comparison to inherent models, are conducted from the viewpoint of system approach to radiobiological processes and of modelling principles. Models are compared with each other, limits of their applicability and drawbacks are determined. Evaluation of the model truthfulness is conducted according to a number of criteria, ways of further investigations and experimental examination of some models are proposed

  18. Biophysics of DNA

    CERN Document Server

    Vologodskii, Alexander

    2015-01-01

    Surveying the last sixty years of research, this book describes the physical properties of DNA in the context of its biological functioning. It is designed to enable both students and researchers of molecular biology, biochemistry and physics to better understand the biophysics of DNA, addressing key questions and facilitating further research. The chapters integrate theoretical and experimental approaches, emphasising throughout the importance of a quantitative knowledge of physical properties in building and analysing models of DNA functioning. For example, the book shows how the relationship between DNA mechanical properties and the sequence specificity of DNA-protein binding can be analyzed quantitatively by using our current knowledge of the physical and structural properties of DNA. Theoretical models and experimental methods in the field are critically considered to enable the reader to engage effectively with the current scientific literature on the physical properties of DNA.

  19. Psychosocial safety climate: a multilevel theory of work stress in the health and community service sector.

    Science.gov (United States)

    Dollard, M F; McTernan, W

    2011-12-01

    Work stress is widely thought to be a significant problem in the health and community services sector. We reviewed evidence from a range of different data sources that confirms this belief. High levels of psychosocial risk factors, psychological health problems and workers compensation claims for stress are found in the sector. We propose a multilevel theoretical model of work stress to account for the results. Psychosocial safety climate (PSC) refers to a climate for psychological health and safety. It reflects the balance of concern by management about psychological health v. productivity. By extending the health erosion and motivational paths of the Job Demands-Resources model we propose that PSC within work organisations predicts work conditions and in turn psychological health and engagement. Over and above this, however, we expect that the external environment of the sector particularly government policies, driven by economic rationalist ideology, is increasing work pressure and exhaustion. These conditions are likely to lead to a reduced quality of service, errors and mistakes.

  20. Conservation of soil organic carbon, biodiversity and the provision of other ecosystem services along climatic gradients in West Africa

    Directory of Open Access Journals (Sweden)

    E. Marks

    2009-08-01

    Full Text Available Terrestrial carbon resources are major drivers of development in West Africa. The distribution of these resources co-varies with ecosystem type and rainfall along a strong Northeast-Southwest climatic gradient. Soil organic carbon, a strong indicator of soil quality, has been severely depleted in some areas by human activities, which leads to issues of soil erosion and desertification, but this trend can be altered with appropriate management. There is significant potential to enhance existing soil carbon stores in West Africa, with benefits at the global and local scale, for atmospheric CO2 mitigation as well as supporting and provisioning ecosystem services. Three key factors impacting carbon stocks are addressed in this review: climate, biotic factors, and human activities. Climate risks must be considered in a framework of global change, especially in West Africa, where landscape managers have few resources available to adapt to climatic perturbations. Among biotic factors, biodiversity conservation paired with carbon conservation may provide a pathway to sustainable development, and biodiversity conservation is also a global priority with local benefits for ecosystem resilience, biomass productivity, and provisioning services such as foodstuffs. Finally, human management has largely been responsible for reduced carbon stocks, but this trend can be reversed through the implementation of appropriate carbon conservation strategies in the agricultural sector, as shown by multiple studies. Owing to the strong regional climatic gradient, country-level initiatives will need to consider carbon sequestration approaches for multiple ecosystem types. Given the diversity of environments, global policies must be adapted and strategies developed at the national or sub-national levels to improve carbon storage above and belowground. Initiatives of this sort must act locally at farmer scale, and focus on ecosystem services rather than on carbon

  1. Farmers’ Willingness to Pay for Climate Information Services: Evidence from Cowpea and Sesame Producers in Northern Burkina Faso

    Directory of Open Access Journals (Sweden)

    Mathieu Ouédraogo

    2018-02-01

    Full Text Available Climate information is recognized as a powerful tool to reduce the effect of climate risk and uncertainty on crop production and increase the resilience and the adaptive capacity of farmers in semi-arid zones. This paper estimates farmers’ willingness to pay (WTP for climate information within cowpea and sesame value chains in Northern Burkina Faso. The study used the contingent valuation method for a monetary valuation of farmers’ preferences for climate information. Data were collected using a structured questionnaire from 170 farmers. The study found that 63% of respondents were willing to pay for climate information services (CIS such as seasonal climate forecast (SCF, decadal climate information (10-DCI, daily climate information (1-DCI and agro-advisories. The predicted value for the WTP was XOF 3496 for SCF, XOF 1066 for 10-DCI, XOF 1985 for 1-DCI and XOF 1628 for agro-advisories. The study also showed that several socioeconomic and motivation factors have greater influence on farmers’ WTP for CIS. These included the gender, age, education of the farm head and the awareness of farm head to climate information. The outcomes of this paper should support policy makers to better design an efficient mechanism for the dissemination of climate information to improve the adaptive capacity of farmers to climate risks in Burkina Faso.

  2. Predicting effects of climate and land use change on human well-being via changes in ecosystem services

    Science.gov (United States)

    Landuse and climate change have affected biological systems in many parts of the world, and are projected to further adversely affect associated ecosystem goods and services, including provisioning of clean air, clean water, food, and biodiversity. Such adverse effects on ecosyst...

  3. Contextualizing Emotional Exhaustion and Positive Emotional Display : The Signaling Effects of Supervisors' Emotional Exhaustion and Service Climate

    NARCIS (Netherlands)

    Lam, Catherine K.; Huang, Xu; Janssen, Onne; Lam, K.C.

    In this study, we investigated how supervisors' emotional exhaustion and service climate jointly influence the relationship between subordinates' emotional exhaustion and their display of positive emotions at work. Using data from frontline sales employees and their immediate supervisors in a

  4. Supporting the Establishment of Climate-Resilient Rural Livelihoods in Mongolia with EO Services

    Science.gov (United States)

    Grosso, Nuno; Patinha, Carla; Sainkhuu, Tserendash; Bataa, Mendbayar; Doljinsuren, Nyamdorj

    2016-08-01

    The work presented here shows the results from the project "Climate-Resilient Rural Livelihoods in Mongolia", included in the EOTAP (Earth Observation for a Transforming Asia Pacific) initiative, a collaboration between the European Space Agency (ESA) and the Asian Development Bank (ADB), developed in cooperation with the Ministry of Food and Agriculture of Mongolia.The EO services developed within this EOTAP project primarily aimed at enriching the existing environmental database maintained by the National Remote Sensing Center (NRSC) in Mongolia and sustaining the collaborative pasture management practices introduced by the teams within the Ministry of Food and Agriculture of Mongolia. The geographic area covered by the EOTAP services is Bayankhongor province, in western Mongolia region, with two main services: drought monitoring at the provincial level for the year 2014 and Land Use/Land Cover (LULC) and changes mapping for three districts of this province (Buutsagaan, Dzag and Khureemaral) for the years 2013, 2014.

  5. The new WMO RA VI Regional Climate Centre on Climate Monitoring

    Science.gov (United States)

    Rapp, J.; Nitsche, H.

    2010-09-01

    Regional Climate Centres (RCCs) are institutions with the capacity and mandate by WMO to develop high quality regional-scale products using global products and incorporating regional information. Recently a pilot network of three RCC consortia was established for the WMO region RA VI (Europe and Middle East): • RCC node on climate data, • RCC node on climate monitoring, • RCC node on long-range forecasting. DWD/Germany has taken the responsibility of the RCC node on climate monitoring (RRC-CM). Further consortium members are Armstatehydromet/Armenia, Météo-France/France, KNMI/The Netherlands, RHMS/Serbia, and TSMS/Turkey. RCCs provide online access to their products and services to national meteorological and hydrological services and to other regional users. Vice versa, RCCs receive data, products, know-how and feedbacks from the meteorological services as a main source for regional information. By the same time, they provide regional data, products and feedbacks to Global Production Centres and Lead Centres for respective verification and product optimisation of the global-scale information. The RCC-CM will perform basic functions covering the domain of climate monitoring: • Annual and monthly climate diagnostic bulletins, • Monthly monitoring maps: global, RAVI, Eastern Mediterranean, South Caucasus, • Reference climatologies and trend maps, • RA VI climate monitoring WebPortal, • Climate watches, • Training; Research and Development (R&D). The poster shows the current stage of development of the RCC-CM by means of example products.

  6. Plant-climate interactions over historical and geological time

    Energy Technology Data Exchange (ETDEWEB)

    Cowling, Sharon A.

    2000-04-01

    Data-model comparisons are a useful approach to elucidating the relative influence of past climate change on vegetation dynamics over various spatial (global, regional, stand) and temporal (historical, geological) scales. Comparisons between changes in tree species abundance reconstructed from pollen and simulated from a forest gap model, for example, indicate that based solely on climate change over the past 1500 years, southern Scandinavian forests should be co-dominated by Tilia and Fagus. Picea has begun to more closely track changes in climate since 1000 years ago, however in the last few centuries the realised range limit of Picea has overshot the potential limit because of planting and establishment during favourable years. Not only can palaeodata-model comparisons provide practical information for forest managers, but they can help further our appreciation of the climatic catalysts underlying evolution of terrestrial ecosystems. Past changes in atmospheric CO{sub 2}, independently or in combination with changes in climate, may have altered vegetation form and function such that palaeoplant assemblages were much different than today, speciation may have been promoted via biological vicariance, and some species may have been pushed to extinction. A thorough understanding of modern plant-climate interactions requires consideration of how past climate and atmospheric CO{sub 2} events could have shaped physiological, biochemical and biophysical functioning of existing vegetation.

  7. Plant-climate interactions over historical and geological time

    International Nuclear Information System (INIS)

    Cowling, Sharon A.

    2000-04-01

    Data-model comparisons are a useful approach to elucidating the relative influence of past climate change on vegetation dynamics over various spatial (global, regional, stand) and temporal (historical, geological) scales. Comparisons between changes in tree species abundance reconstructed from pollen and simulated from a forest gap model, for example, indicate that based solely on climate change over the past 1500 years, southern Scandinavian forests should be co-dominated by Tilia and Fagus. Picea has begun to more closely track changes in climate since 1000 years ago, however in the last few centuries the realised range limit of Picea has overshot the potential limit because of planting and establishment during favourable years. Not only can palaeodata-model comparisons provide practical information for forest managers, but they can help further our appreciation of the climatic catalysts underlying evolution of terrestrial ecosystems. Past changes in atmospheric CO 2 , independently or in combination with changes in climate, may have altered vegetation form and function such that palaeoplant assemblages were much different than today, speciation may have been promoted via biological vicariance, and some species may have been pushed to extinction. A thorough understanding of modern plant-climate interactions requires consideration of how past climate and atmospheric CO 2 events could have shaped physiological, biochemical and biophysical functioning of existing vegetation

  8. Biophysical approach to low back pain: a pilot report

    Czech Academy of Sciences Publication Activity Database

    Foletti, A.; Pokorný, Jiří

    2015-01-01

    Roč. 34, č. 2 (2015), s. 156-159 ISSN 1536-8378 Institutional support: RVO:67985882 Keywords : Bioelectromagnetic medicine * Biophysical therapy * Coherence domains Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.208, year: 2015

  9. Small changes in climate can profoundly alter the dynamics and ecosystem services of tropical crater lakes.

    Directory of Open Access Journals (Sweden)

    Émilie Saulnier-Talbot

    Full Text Available African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R(2 adj  = 0.23, e.d.f. = 7, p<0.0001 in thermal stability over the past 20 years. This resulted in the expansion of anoxic waters and consequent deterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions.

  10. Adaptation and promotion of emergency medical service transportation for climate change.

    Science.gov (United States)

    Pan, Chih-Long; Chiu, Chun-Wen; Wen, Jet-Chau

    2014-12-01

    The purpose of this study is to find a proper prehospital transportation scenario planning of an emergency medical service (EMS) system for possible burdensome casualties resulting from extreme climate events. This project focuses on one of the worst natural catastrophic events in Taiwan, the 88 Wind-caused Disasters, caused by the Typhoon Morakot; the case of the EMS transportation in the Xiaolin village is reviewed and analyzed. The sequential-conveyance method is designed to promote the efficiency of all the ambulance services related to transportation time and distance. Initially, a proposed mobile emergency medical center (MEMC) is constructed in a safe location near the area of the disaster. The ambulances are classified into 2 categories: the first-line ambulances, which reciprocate between the MEMC and the disaster area to save time and shorten the working distances and the second-line ambulances, which transfer patients in critical condition from the MEMC to the requested hospitals for further treatment. According to the results, the sequential-conveyance method is more efficient than the conventional method for EMS transportation in a mass-casualty incident (MCI). This method improves the time efficiency by 52.15% and the distance efficiency by 56.02%. This case study concentrates on Xiaolin, a mountain village, which was heavily destroyed by a devastating mudslide during the Typhoon Morakot. The sequential-conveyance method for the EMS transportation in this research is not only more advantageous but also more rational in adaptation to climate change. Therefore, the findings are also important to all the decision-making with respect to a promoted EMS transportation, especially in an MCI.

  11. CryoClim: A new system and service for climate monitoring of the cryosphere

    International Nuclear Information System (INIS)

    Solberg, R; Killie, M A; Andreassen, L M; König, M

    2014-01-01

    The CryoClim project has developed a new operational and permanent service for long-term systematic climate monitoring of the cryosphere. The product production and the product repositories are hosted by mandated organisations, and the service is delivered through a state-of-the-art web service and web portal. The service provides sea ice and snow products of global coverage and glacier products covering Norway (mainland and Svalbard). The sea ice sub-service is based on data from passive microwave radiometers (SMMR and SSM/I). The same period is covered by snow cover extent products based on passive microwave radiometers (SMMR and SSM/I) and optical (AVHRR from 1982). Glacier maps, including glacier area outline and glacier lakes have been generated from Landsat TM, ETM+ and historic topographic maps for all glaciers in mainland Norway starting the time series from 1952. For Svalbard, glacier products are based on optical data (SPOT and MODIS) for glacier area outline and glacier snow line, and SAR data (ERS-1, ERS-2, Envisat ASAR and Radarsat) for glacier surface type. The period covered with satellite data starts in the early 1990s. The glacier area outline time series has in Svalbard also been extended with map data and aerial images from earlier days

  12. Landscape Hazards in Yukon Communities: Geological Mapping for Climate Change Adaptation Planning

    Science.gov (United States)

    Kennedy, K.; Kinnear, L.

    2010-12-01

    Climate change is considered to be a significant challenge for northern communities where the effects of increased temperature and climate variability are beginning to affect infrastructure and livelihoods (Arctic Climate Impact Assessment, 2004). Planning for and adapting to ongoing and future changes in climate will require the identification and characterization of social, economic, cultural, political and biophysical vulnerabilities. This pilot project addresses physical landscape vulnerabilities in two communities in the Yukon Territory through community-scale landscape hazard mapping and focused investigations of community permafrost conditions. Landscape hazards are identified by combining pre-existing data from public utilities and private-sector consultants with new geophysical techniques (ground penetrating radar and electrical resistivity), shallow drilling, surficial geological mapping, and permafrost characterization. Existing landscape vulnerabilities are evaluated based on their potential for hazard (low, medium or high) under current climate conditions, as well as under future climate scenarios. Detailed hazard maps and landscape characterizations for both communities will contribute to overall adaptation plans and allow for informed development, planning and mitigation of potentially threatening hazards in and around the communities.

  13. Links between the built environment, climate and population health: interdisciplinary environmental change research in New York City.

    Science.gov (United States)

    Rosenthal, Joyce Klein; Sclar, Elliott D; Kinney, Patrick L; Knowlton, Kim; Crauderueff, Robert; Brandt-Rauf, Paul W

    2007-10-01

    Global climate change is expected to pose increasing challenges for cities in the following decades, placing greater stress and impacts on multiple social and biophysical systems, including population health, coastal development, urban infrastructure, energy demand, and water supplies. Simultaneously, a strong global trend towards urbanisation of poverty exists, with increased challenges for urban populations and local governance to protect and sustain the wellbeing of growing cities. In the context of these 2 overarching trends, interdisciplinary research at the city scale is prioritised for understanding the social impacts of climate change and variability and for the evaluation of strategies in the built environment that might serve as adaptive responses to climate change. This article discusses 2 recent initiatives of The Earth Institute at Columbia University (EI) as examples of research that integrates the methods and objectives of several disciplines, including environmental health science and urban planning, to understand the potential public health impacts of global climate change and mitigative measures for the more localised effects of the urban heat island in the New York City metropolitan region. These efforts embody 2 distinct research approaches. The New York Climate & Health Project created a new integrated modeling system to assess the public health impacts of climate and land use change in the metropolitan region. The Cool City Project aims for more applied policy-oriented research that incorporates the local knowledge of community residents to understand the costs and benefits of interventions in the built environment that might serve to mitigate the harmful impacts of climate change and variability, and protect urban populations from health stressors associated with summertime heat. Both types of research are potentially useful for understanding the impacts of environmental change at the urban scale, the policies needed to address these

  14. Linking ecosystem characteristics to final ecosystem services for public policy

    Science.gov (United States)

    Wong, Christina P; Jiang, Bo; Kinzig, Ann P; Lee, Kai N; Ouyang, Zhiyun

    2015-01-01

    Governments worldwide are recognising ecosystem services as an approach to address sustainability challenges. Decision-makers need credible and legitimate measurements of ecosystem services to evaluate decisions for trade-offs to make wise choices. Managers lack these measurements because of a data gap linking ecosystem characteristics to final ecosystem services. The dominant method to address the data gap is benefit transfer using ecological data from one location to estimate ecosystem services at other locations with similar land cover. However, benefit transfer is only valid once the data gap is adequately resolved. Disciplinary frames separating ecology from economics and policy have resulted in confusion on concepts and methods preventing progress on the data gap. In this study, we present a 10-step approach to unify concepts, methods and data from the disparate disciplines to offer guidance on overcoming the data gap. We suggest: (1) estimate ecosystem characteristics using biophysical models, (2) identify final ecosystem services using endpoints and (3) connect them using ecological production functions to quantify biophysical trade-offs. The guidance is strategic for public policy because analysts need to be: (1) realistic when setting priorities, (2) attentive to timelines to acquire relevant data, given resources and (3) responsive to the needs of decision-makers. PMID:25394857

  15. Quantifying and qualifying terroir: Empirical evidence linking climate, vineyards, and people across scales

    Science.gov (United States)

    Nicholas, Kimberly

    2014-05-01

    Climate affects the geographic range, yield, price, and biochemical composition of winegrapes. At the regional scale, historical climate and yield data were successfully used to develop simple models of crop yields using two or three monthly climate parameters for twelve major California crops, including winegrapes. These crop models were used to project the impact of future climate change on crop yields, showing that greater warming would increasingly push highly suitable areas for viticulture outside of their current range. Correlating temperature with price for Pinot noir throughout its growing range in California demonstrated higher prices for grapes grown in cooler climates, whereas prices dropped off rapidly above a ripening temperature threshold, indicating the vulnerability of grape price to climate change. At the vineyard scale, a three-year field study of eleven Pinot noir vineyards in California's North Coast showed that warm temperatures early in the growing season were correlated with increased phenolic compounds (anthocyanins and tannins), which likely benefits wine quality, but warmer periods later in the ripening process appeared to offset these effects. At the microclimate scale, high light intensities were measured on Pinot noir fruit in vertically shoot positioned vineyards, indicating a potential for changing canopy management to provide more optimal ripening conditions. Vineyards are highly managed, and there are many opportunities for viticulturists to shape the micro- and meso-climate that vines experience, thereby influencing the biophysical drivers of terroir through their site selection and vineyard planting and farming choices. An analysis of the precision agriculture and management strategies used by winegrowers in California and Australia showed that growers tend to rely more on short-term farming actions for adapting to environmental stresses; these may have considerable potential to enhance adaptive capacity, and are easier to

  16. ClimateSpark: An In-memory Distributed Computing Framework for Big Climate Data Analytics

    Science.gov (United States)

    Hu, F.; Yang, C. P.; Duffy, D.; Schnase, J. L.; Li, Z.

    2016-12-01

    Massive array-based climate data is being generated from global surveillance systems and model simulations. They are widely used to analyze the environment problems, such as climate changes, natural hazards, and public health. However, knowing the underlying information from these big climate datasets is challenging due to both data- and computing- intensive issues in data processing and analyzing. To tackle the challenges, this paper proposes ClimateSpark, an in-memory distributed computing framework to support big climate data processing. In ClimateSpark, the spatiotemporal index is developed to enable Apache Spark to treat the array-based climate data (e.g. netCDF4, HDF4) as native formats, which are stored in Hadoop Distributed File System (HDFS) without any preprocessing. Based on the index, the spatiotemporal query services are provided to retrieve dataset according to a defined geospatial and temporal bounding box. The data subsets will be read out, and a data partition strategy will be applied to equally split the queried data to each computing node, and store them in memory as climateRDDs for processing. By leveraging Spark SQL and User Defined Function (UDFs), the climate data analysis operations can be conducted by the intuitive SQL language. ClimateSpark is evaluated by two use cases using the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate reanalysis dataset. One use case is to conduct the spatiotemporal query and visualize the subset results in animation; the other one is to compare different climate model outputs using Taylor-diagram service. Experimental results show that ClimateSpark can significantly accelerate data query and processing, and enable the complex analysis services served in the SQL-style fashion.

  17. Theoretical molecular biophysics

    CERN Document Server

    Scherer, Philipp O J

    2017-01-01

    This book gives an introduction to molecular biophysics. It starts from material properties at equilibrium related to polymers, dielectrics and membranes. Electronic spectra are developed for the understanding of elementary dynamic processes in photosynthesis including proton transfer and dynamics of molecular motors. Since the molecular structures of functional groups of bio-systems were resolved, it has become feasible to develop a theory based on the quantum theory and statistical physics with emphasis on the specifics of the high complexity of bio-systems. This introduction to molecular aspects of the field focuses on solvable models. Elementary biological processes provide as special challenge the presence of partial disorder in the structure which does not destroy the basic reproducibility of the processes. Apparently the elementary molecular processes are organized in a way to optimize the efficiency. Learning from nature by means exploring the relation between structure and function may even help to b...

  18. Biophysical dosimetry using electron paramagnetic resonance in human tooth

    International Nuclear Information System (INIS)

    Khan, R.F.H.; Boreham, D.R.; Rink, W.J.

    2002-01-01

    Accidental dosimetry utilizing radiation induced paramagnetic species in biophysical tissues like teeth is a technique; that can measure the amount of radiation exposure to an individual. The major problem in implementing this technique at low doses is the presence of native organic signal, and various other artifacts produced as a result of sample processing. After a series of experimental trials, we developed an optimum set of rules, which uses high temperature ultrasonic treatment of enamel in KOH, multiple sample rotation during in-cavity measurement of natural and calibrated added irradiations, and dose construction using a backward extrapolation method. By using this we report the successful dose reconstruction in a few of our laboratory samples in 100 mGy range (76.29 ± 30.14) mGy with reasonably low uncertainty. Keywords: biophysical dosimetry, human tooth enamel, low dose measurements, accidental dosimetry (author)

  19. Radiobiology, biochemistry and radiation biophysics at CYLAB

    International Nuclear Information System (INIS)

    Ftacnikova, S.

    1998-01-01

    The Cyclotron Laboratory (CYLAB) should fill the gap in the field of nuclear medicine, radiotherapy, basic research, metrology of ionizing radiation, education and implications of accelerator technology existing today in Slovak Republic. The main planned activities of this facility are in the fields of nuclear medicine (production of radioisotopes for Positron Emission Tomography - PET and for oncology) and radiotherapy (neutron capture therapy, fast neutron therapy and proton therapy). The radiobiological and biophysical research will be closely connected with medical applications, particularly with radiotherapy. Problems to be addressed include the determination of the values of Relative Biological Effectiveness (RBE) for different types of ionizing radiation involved in the therapy, microdosimetric measurements and calculations, which are indispensable in the calculation of the absorbed dose (lineal and specific energy spectra) at the cellular and macromolecular level. Radiation biophysics and medical physics help in creating therapeutic plans for radiotherapy (NCT and fast neutron therapy). In nuclear medicine, in diagnostic and therapeutical procedures it is necessary to assess the biodistribution of radiopharmaceuticals and to calculate doses in target and critical organs and to determine whole body burden - effective equivalent dose for newly developed radiopharmaceuticals

  20. Dynamic Agroecological Zones for the Inland Pacific Northwest, USA

    Science.gov (United States)

    Huggins, D. R.; Rupp, R.; Gessler, P.; Pan, W.; Brown, D. J.; Machado, S.; Walden, V. P.; Eigenbrode, S.; Abatzoglou, J. T.

    2011-12-01

    Agroecological zones (AEZ's) have traditionally been defined by integrating multiple layers of biophysical (e.g. climate, soil, terrain) and occasionally socioeconomic data to create unique zones with specific ranges of land use constraints and potentials. Our approach to defining AEZ's assumes that current agricultural land uses have emerged as a consequence of biophysical and socioeconomic drivers. Therefore, we explore the concept that AEZ's can be derived from classifying the geographic distribution of current agricultural systems (e.g. the wheat-fallow cropping system zone) based on spatially geo-referenced annual cropland use data that is currently available through the National Agricultural Statistical Service (NASS). By defining AEZ's in this way, we expect to: (1) provide baseline information that geographically delineates the boundaries of current AEZ's and subzones and therefore the capacity to evaluate shifts in AEZ boundaries over time; (2) assess the biophysical (e.g. climate, soils, terrain) and socioeconomic factors (e.g. commodity prices) that are most useful for predicting and correctly classifying current AEZ's, subzones or future shifts in AEZ boundaries; (3) identify and develop AEZ-relevant climate mitigation and adaptation strategies; and (4) integrate biophysical and socioeconomic data sources to pursue a transdisciplinary examination of climate-driven AEZ futures. Achieving these goals will aid in realizing major objectives for a USDA National Institute of Food and Agriculture, Agriculture and Food Research Initiative, Cooperative Agricultural Project entitled "Regional Approaches to Climate Change (REACCH) for Pacific Northwest Agriculture". REACCH is a research, education and extension project under the leadership of the University of Idaho with significant collaboration from Washington State University, Oregon State University and the USDA Agricultural Research Service that is working towards increasing the capacity of Inland Pacific

  1. Ultrasound assessment of the fetal biophysical profile: What does an radiologist need to know?

    International Nuclear Information System (INIS)

    Guimaraes Filho, Helio Antonio; Araujo Junior, Edward; Marcondes Machado Nardozza, Luciano; Linhares Dias da Costa, Lavoisier; Fernandes Moron, Antonio; Mattar, Rosiane

    2008-01-01

    Proposed by Frank Manning about 26 years ago, fetal biophysical profile has been incorporated to the propaedeutics of non-invasive fetal well being assessment in high-risk gestations. Despite the existence of other methods for assessing fetal vitality, as Doppler flowmetry, the biophysical profile continues to be important in estimating the risk of hypoxia and perinatal morbimortality for those fetuses. In the present article, the authors review the regulatory mechanisms of fetal biophysical activities, as well as physiological and pathological factors that interfere with them. The main objective of the study is to discuss the present and important aspects of the method, and the practical applications and interpretation of its findings, in order to help radiologists improve their knowledge in this specific area of fetal ultrasonography

  2. Climate Prediction Center - Site Index

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Means Bulletins Annual Winter Stratospheric Ozone Climate Diagnostics Bulletin (Most Recent) Climate (Hazards Outlook) Climate Assessment: Dec. 1999-Feb. 2000 (Seasonal) Climate Assessment: Mar-May 2000

  3. Scientific knowledge at the service of the COP21. A collection of research projects 2008-2015 from the 'Management and impacts of Climate Change' programme

    International Nuclear Information System (INIS)

    Maljean-Dubois, Sandrine; Quenol, Herve; Glachant, Matthieu; Haurie, Alain; Braconnot, Pascal; Dandin, Philippe; Sauquet, Eric; Salles, Denis; Le Hir, Pierre; Bossini, Serge; Imbard, Maurice; Tabau, Anne-Sophie

    2015-11-01

    After a presentation of the GICC research programme (a programme on the Management and Impacts of Climate Change), presentations of various researches are proposed. They deal with climate change mitigation as an aid to decision (a legal interpretation of major stakes; study of the industrial economy of sector-based agreements, ETEM-AR or modelling mitigation and adaptation of the energy system in a local climate plan), with climate services as support to decision (INVULNERABLE, a study of the vulnerability of enterprises; DRIAS to give access to French regionalized climate simulations and scenarios), and with the adaptation to climate change to the service of the territory (R2D2 2050, study of risk, water resource and sustainable management of the Durance river in 2050; C3E2, study of the consequences of climate change on the eco-morphology of estuaries; TERADCLIM, study of the adaptation to climate change at the scale of wine growing territories)

  4. Assessment of vulnerability of forest ecosystems to climate change and adaptation planning in Nepal

    Science.gov (United States)

    Matin, M. A.; Chitale, V. S.

    2016-12-01

    Understanding ecosystem level vulnerability of forests and dependence of local communities on these ecosystems is a first step towards developing effective adaptation strategies. As forests are important components of livelihoods system for a large percentage of the population in the Himalayan region, they offer an important basis for creating and safeguarding more climate-resilient communities. Increased frequency, duration, and/or severity of drought and heat stress, changes in winter ecology, and pest and fire outbreaksunder climate change scenarios could fundamentally alter the composition, productivity and biogeography of forests affecting the potential ecosystem services offered and forest-based livelihoods. Hence, forest ecosystem vulnerability assessment to climate change and the development of a knowledgebase to identify and support relevant adaptation strategies is identified as an urgent need. Climate change vulnerability is measured as a function of exposure, sensitivity and the adaptive capacity of the system towards climate variability and extreme events. Effective adaptation to climate change depends on the availability of two important prerequisites: a) information on what, where, and how to adapt, and b) availability of resources to implement the adaptation measures. In the present study, we introduce the concept of two way multitier approach, which can support effective identification and implementation of adaptation measures in Nepal and the framework can be replicated in other countries in the HKH region. The assessment of overall vulnerability of forests comprises of two components: 1) understanding the relationship between exposure and sensitivity and positive feedback from adaptive capacity of forests; 2) quantifying the dependence of local communities on these ecosystems. We use climate datasets from Bioclim and biophysical products from MODIS, alongwith field datasets. We report that most of the forests along the high altitude areas and few

  5. The Copernicus Global Land Service: present and future

    Science.gov (United States)

    Lacaze, Roselyne; Smets, Bruno; Trigo, Isabel; Calvet, Jean-Christophe; Jann, Alexander; Camacho, Fernando; Baret, Frédéric; Kidd, Richard; Defourny, Pierre; Tansey, Kevin; Pacholczyk, Philippe; Balsamo, Gianpaolo; Szintai, Balazs

    2013-04-01

    From 1st January 2013, the Copernicus Global Land Service is operational, providing continuously to European, African and International users a set of biophysical variables describing the vegetation conditions, the energy budget at the continental surface and the water cycle over the whole globe at one kilometer resolution. These generic products can serve numerous applications such as agriculture and food security monitoring, weather forecast, climate change impact studies, water, forest and natural resources management. The Copernicus Global Land Service is built on the achievements of the BioPar component of the FP7 geoland2 project. Essential Climate Variables like the Leaf Area Index (LAI), the Fraction of PAR absorbed by the vegetation (FAPAR), the surface albedo, the Land Surface Temperature, the soil moisture, the burnt areas, the areas of water bodies, and additional vegetation indices, are generated every hour, every day or every 10 days on a reliable and automatic basis from Earth Observation satellite data. Beside this timely production, the available historical archives have been processed, using the same innovative algorithms, to get consistent time series as long as possible. As an example, more than 30 years of LAI and FAPAR relying on NOAA/AVHRR sensors (from 1981 to 2000) and SPOT/VGT sensors (from 1999 to the present) are now available. All products are accessible, free of charge and after registration, at the following address: http://www.geoland2.eu/core-mapping-services/biopar.html. Documentation describing the physical methodologies, the technical properties of products, and the results of validation exercises can also be downloaded. In view of service continuity, research and development are performed on two parallel ways. On one hand, the existing retrieval methodologies will be adapted to new input data sets (e.g. Proba-V and Sentinel-3 at 1km resolution) that will be used in replacement of current sensor (SPOT/VGT) which reached the end

  6. A biophysical approach to the optimisation of dendritic-tumour cell electrofusion

    International Nuclear Information System (INIS)

    Sukhorukov, Vladimir L.; Reuss, Randolph; Endter, Joerg M.; Fehrmann, Steffen; Katsen-Globa, Alisa; Gessner, Petra; Steinbach, Andrea; Mueller, Kilian J.; Karpas, Abraham; Zimmermann, Ulrich; Zimmermann, Heiko

    2006-01-01

    Electrofusion of tumour and dendritic cells (DCs) is a promising approach for production of DC-based anti-tumour vaccines. Although human DCs are well characterised immunologically, little is known about their biophysical properties, including dielectric and osmotic parameters, both of which are essential for the development of efficient electrofusion protocols. In the present study, human DCs from the peripheral blood along with a tumour cell line used as a model fusion partner were examined by means of time-resolved cell volumetry and electrorotation. Based on the biophysical cell data, the electrofusion protocol could be rapidly optimised with respect to the sugar composition of the fusion medium, duration of hypotonic treatment, frequency range for stable cell alignment, and field strengths of breakdown pulses triggering membrane fusion. The hypotonic electrofusion consistently gave a tumour-DC hybrid rate of up to 19%, as determined by counting dually labelled fluorescent hybrids in a microscope. This fusion rate is nearly twice as high as that usually reported in the literature for isotonic media. The experimental findings and biophysical approach presented here are generally useful for the development of efficient electrofusion protocols, especially for rare and valuable human cells

  7. Seminal Fluid Analysis And Biophysical Profile: Findings And ...

    African Journals Online (AJOL)

    Seminal Fluid Analysis And Biophysical Profile: Findings And Relevance In Infertile Males In Ilorin, Nigeria. EK Oghagbon, AAG Jimoh, SA Adebisi. Abstract. To determine if there was a bearing of body mass index (BMI) on male infertility, a cross-sectional study of males of infertile couples, attending our infertility clinic was ...

  8. Building the Capacity for Climate Services: Thoughts on Training Next Generation Climate Science Integrators

    Science.gov (United States)

    Garfin, G. M.; Brugger, J.; Gordon, E. S.; Barsugli, J. J.; Rangwala, I.; Travis, W.

    2015-12-01

    For more than a decade, stakeholder needs assessments and reports, including the recent National Climate Assessment, have pointed out the need for climate "science translators" or "science integrators" who can help bridge the gap between the cultures and contexts of researchers and decision-makers. Integration is important for exchanging and enhancing knowledge, building capacity to use climate information in decision making, and fostering more robust planning for decision-making in the context of climate change. This talk will report on the characteristics of successful climate science integrators, and a variety of models for training the upcoming generation of climate science integrators. Science integration characteristics identified by an experienced vanguard in the U.S. include maintaining credibility in both the scientific and stakeholder communities, a basic respect for stakeholders demonstrated through active listening, and a deep understanding of the decision-making context. Drawing upon the lessons of training programs for Cooperative Extension, public health professionals, and natural resource managers, we offer ideas about training next generation climate science integrators. Our model combines training and development of skills in interpersonal relations, communication of science, project implementation, education techniques and practices - integrated with a strong foundation in disciplinary knowledge.

  9. Climate Change Impacts on the Built Environment in the United States and Implications for Sustainability

    Science.gov (United States)

    Quattrochi, Dale A.

    2012-01-01

    As an integral part of the National Climate Assessment (NCA), technical assessment reports for 13 regions in the U.S. that describe the scientific rationale to support climate change impacts within the purview of these regions, and provide adaptation or mitigation measures in response to these impacts. These technical assessments focus on climate change impacts on sectors that are important environmental, biophysical, and social and economic aspects of sustainability within the U.S.: Climate change science, Ecosystems and biodiversity, Water resources, Human health, Energy supply and use, Water/energy/land use, Transportation, Urban/infrastructure/vulnerability, Agriculture, Impacts of climate change on tribal/indigenous and native lands and resources, Forestry, Land use/land cover change, Rural communities development, and Impacts on biogeochemical cycles, with implications for ecosystems and biodiversity. There is a critical and timely need for the development of mitigation and adaptation strategies in response to climate change by the policy and decision making communities, to insure resiliency and sustainability of the built environment in the future.

  10. An ethnographic study: Becoming a physics expert in a biophysics research group

    Science.gov (United States)

    Rodriguez, Idaykis

    Expertise in physics has been traditionally studied in cognitive science, where physics expertise is understood through the difference between novice and expert problem solving skills. The cognitive perspective of physics experts only create a partial model of physics expertise and does not take into account the development of physics experts in the natural context of research. This dissertation takes a social and cultural perspective of learning through apprenticeship to model the development of physics expertise of physics graduate students in a research group. I use a qualitative methodological approach of an ethnographic case study to observe and video record the common practices of graduate students in their biophysics weekly research group meetings. I recorded notes on observations and conduct interviews with all participants of the biophysics research group for a period of eight months. I apply the theoretical framework of Communities of Practice to distinguish the cultural norms of the group that cultivate physics expert practices. Results indicate that physics expertise is specific to a topic or subfield and it is established through effectively publishing research in the larger biophysics research community. The participant biophysics research group follows a learning trajectory for its students to contribute to research and learn to communicate their research in the larger biophysics community. In this learning trajectory students develop expert member competencies to learn to communicate their research and to learn the standards and trends of research in the larger research community. Findings from this dissertation expand the model of physics expertise beyond the cognitive realm and add the social and cultural nature of physics expertise development. This research also addresses ways to increase physics graduate student success towards their PhD. and decrease the 48% attrition rate of physics graduate students. Cultivating effective research

  11. Climate Model Diagnostic Analyzer

    Science.gov (United States)

    Lee, Seungwon; Pan, Lei; Zhai, Chengxing; Tang, Benyang; Kubar, Terry; Zhang, Zia; Wang, Wei

    2015-01-01

    The comprehensive and innovative evaluation of climate models with newly available global observations is critically needed for the improvement of climate model current-state representation and future-state predictability. A climate model diagnostic evaluation process requires physics-based multi-variable analyses that typically involve large-volume and heterogeneous datasets, making them both computation- and data-intensive. With an exploratory nature of climate data analyses and an explosive growth of datasets and service tools, scientists are struggling to keep track of their datasets, tools, and execution/study history, let alone sharing them with others. In response, we have developed a cloud-enabled, provenance-supported, web-service system called Climate Model Diagnostic Analyzer (CMDA). CMDA enables the physics-based, multivariable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. At the same time, CMDA provides a crowd-sourcing space where scientists can organize their work efficiently and share their work with others. CMDA is empowered by many current state-of-the-art software packages in web service, provenance, and semantic search.

  12. Exploring Student Service Members/Veterans Social Support and Campus Climate in the Context of Recovery

    Directory of Open Access Journals (Sweden)

    Susan M. Love

    2015-09-01

    Full Text Available Now that the financial needs of post 9/11 student service members/veterans have begun to be addressed, the attention has shifted to disabilities and recovery strategies of student service members/veterans. Therefore, in a cross sectional design, this study electronically surveyed 189 enrolled student service members/veterans attending a large urban state university about their experiences of returning to school. Specifically, this study described the students’ rates of Post-Traumatic Stress Disorder (PTSD and alcohol abuse, perceived stress, adaptive and non-adaptive coping strategies, social support, participation in campus activities, and perceived campus climate. Moreover, correlates of recovery were examined. Although the majority of the returning students were doing well, 36.1% reported a high level of stress, 15.1% reported a high level of anger, 17.3% reported active symptoms of PTSD, and 27.1% screened positive for alcohol problems. Social networks were found to be the most salient factor in recovery. The study’s limitations are discussed and specific support strategies are presented that can be employed by disability services, counseling services and college administrators.

  13. Practice and progress in integrated assessments of climate change

    International Nuclear Information System (INIS)

    Toth, F.L.

    1995-01-01

    This paper is intended to provide an overview of the state of the art integrated socioeconomic-biophysical assessments of climate change as presented at the IIASA workshop in October 1993. The paper seeks to tally the major improvements facilitated by integrated assessments in understanding the global warming problem and the crucial unresolved problems they currently face. The basic conclusion is that, as a result of a healthy diversity in practice, integrated assessments show significant progress in structuring the economic issues of climate change and providing the first broad insights into policy options. But, as some of the simple and traditional cases seem to be solved, more complex and difficult contingencies come to the fore. This suggests a long way to go to develop skills that will be required to address the numerous open issues. (author)

  14. Biophysical constraints on leaf expansion in a tall conifer.

    Science.gov (United States)

    Fredrick C. Meinzer; Barbara J. Bond; Jennifer A. Karanian

    2008-01-01

    The physiological mechanisms responsible for reduced extension growth as trees increase in height remain elusive. We evaluated biophysical constraints on leaf expansion in old-growth Douglas-fir (Psuedotsuga menziesii (Mirb.) Franco) trees. Needle elongation rates, plastic and elastic extensibility, bulk leaf water, (L...

  15. Ecosystem services sustainability in the Mediterranean Sea: assessment of status and trends using multiple modelling approaches

    Science.gov (United States)

    Liquete, Camino; Piroddi, Chiara; Macías, Diego; Druon, Jean-Noël; Zulian, Grazia

    2016-09-01

    Mediterranean ecosystems support important processes and functions that bring direct benefits to human society. Yet, marine ecosystem services are usually overlooked due to the challenges in identifying and quantifying them. This paper proposes the application of several biophysical and ecosystem modelling approaches to assess spatially and temporally the sustainable use and supply of selected marine ecosystem services. Such services include food provision, water purification, coastal protection, lifecycle maintenance and recreation, focusing on the Mediterranean region. Overall, our study found a higher number of decreasing than increasing trends in the natural capacity of the ecosystems to provide marine and coastal services, while in contrast the opposite was observed to be true for the realised flow of services to humans. Such a study paves the way towards an effective support for Blue Growth and the European maritime policies, although little attention is paid to the quantification of marine ecosystem services in this context. We identify a key challenge of integrating biophysical and socio-economic models as a necessary step to further this research.

  16. Varying geospatial analyses to assess climate risk and adaptive capacity in a hotter, drier Southwestern United States

    Science.gov (United States)

    Elias, E.; Reyes, J. J.; Steele, C. M.; Rango, A.

    2017-12-01

    Assessing vulnerability of agricultural systems to climate variability and change is vital in securing food systems and sustaining rural livelihoods. Farmers, ranchers, and forest landowners rely on science-based, decision-relevant, and localized information to maintain production, ecological viability, and economic returns. This contribution synthesizes a collection of research on the future of agricultural production in the American Southwest (SW). Research was based on a variety of geospatial methodologies and datasets to assess the vulnerability of rangelands and livestock, field crops, specialty crops, and forests in the SW to climate-risk and change. This collection emerged from the development of regional vulnerability assessments for agricultural climate-risk by the U.S. Department of Agriculture (USDA) Climate Hub Network, established to deliver science-based information and technologies to enable climate-informed decision-making. Authors defined vulnerability differently based on their agricultural system of interest, although each primarily focuses on biophysical systems. We found that an inconsistent framework for vulnerability and climate risk was necessary to adequately capture the diversity, variability, and heterogeneity of SW landscapes, peoples, and agriculture. Through the diversity of research questions and methodologies, this collection of articles provides valuable information on various aspects of SW vulnerability. All articles relied on geographic information systems technology, with highly variable levels of complexity. Agricultural articles used National Agricultural Statistics Service data, either as tabular county level summaries or through the CropScape cropland raster datasets. Most relied on modeled historic and future climate information, but with differing assumptions regarding spatial resolution and temporal framework. We assert that it is essential to evaluate climate risk using a variety of complementary methodologies and

  17. Impact of anthropogenic climate change and human activities on environment and ecosystem services in arid regions.

    Science.gov (United States)

    Mahmoud, Shereif H; Gan, Thian Y

    2018-08-15

    The implications of anthropogenic climate change, human activities and land use change (LUC) on the environment and ecosystem services in the coastal regions of Saudi Arabia were analyzed. Earth observations data was used to drive land use categories between 1970 and 2014. Next, a Markov-CA model was developed to characterize the dynamic of LUC between 2014 and 2100 and their impacts on regions' climate and environment. Non-parametric change point and trend detection algorithms were applied to temperature, precipitation and greenhouse gases data to investigate the presence of anthropogenic climate change. Lastly, climate models were used to project future climate change between 2014 and 2100. The analysis of LUC revealed that between 1970 and 2014, built up areas experienced the greatest growth during the study period, leading to a significant monotonic trend. Urban areas increased by 2349.61km 2 between 1970 and 2014, an average increase of >53.4km 2 /yr. The projected LUC between 2014 and 2100 indicate a continued increase in urban areas and irrigated cropland. Human alteration of land use from natural vegetation and forests to other uses after 1970, resulted in a loss, degradation, and fragmentation, all of which usually have devastating effects on the biodiversity of the region. Resulting in a statistically significant change point in temperature anomaly after 1968 with a warming trend of 0.24°C/decade and a downward trend in precipitation anomaly of 12.2mm/decade. Total greenhouse gas emissions including all anthropogenic sources showed a statistically significant positive trend of 78,090Kt/decade after 1991. This is reflected in the future projection of temperature anomaly between 1900 and 2100 with a future warming trend of 0.19°C/decade. In conclusion, human activities, industrial revelation, deforestation, land use transformation and increase in greenhouse gases had significant implications on the environment and ecosystem services of the study area

  18. Biophysics and cancer

    CERN Document Server

    Nicolini, Claudio

    1986-01-01

    Since the early times of the Greek philosophers Leucippus and Democritus, and later of the Roman philosopher Lucretius, a simple, fundamental idea emerged that brought the life sciences into the realm of the physical sciences. Atoms, after various interactions, were assumed to acquire stable configurations that corresponded either to the living or to the inanimate world. This simple and unitary theory, which has evolved in successive steps to our present time, remarkably maintained its validity despite several centuries of alternative vicissitudes, and is the foundation of modern biophysics. Some of the recent developments of this ancient idea are the discovery of the direct relationship between spatial structures and chemical activity of such molecules as methane and benzene, and the later discovery of the three-dimensional structure of double-helical DNA, and of its relationship with biological activity. The relationship between the structure of various macromolecules and the function of living cells was on...

  19. Biophysical aspects of using liposomes as delivery vehicles.

    Science.gov (United States)

    Ulrich, Anne S

    2002-04-01

    Liposomes are used as biocompatible carriers of drugs, peptides, proteins, plasmic DNA, antisense oligonucleotides or ribozymes, for pharmaceutical, cosmetic, and biochemical purposes. The enormous versatility in particle size and in the physical parameters of the lipids affords an attractive potential for constructing tailor-made vehicles for a wide range of applications. Some of the recent literature will be reviewed here and presented from a biophysical point of view, thus providing a background for the more specialized articles in this special issue on liposome technology. Different properties (size, colloidal behavior, phase transitions, and polymorphism) of diverse lipid formulations (liposomes, lipoplexes, cubic phases, emulsions, and solid lipid nanoparticles) for distinct applications (parenteral, transdermal, pulmonary, and oral administration) will be rationalized in terms of common structural, thermodynamic and kinetic parameters of the lipids. This general biophysical basis helps to understand pharmaceutically relevant aspects such as liposome stability during storage and towards serum, the biodistribution and specific targeting of cargo, and how to trigger drug release and membrane fusion. Methods for the preparation and characterization of liposomal formulations in vitro will be outlined, too.

  20. Vegetation response to climate change : implications for Canada's conservation lands

    International Nuclear Information System (INIS)

    Scott, D.; Lemieux, C.

    2003-01-01

    Studies have shown that Canada's national parks are vulnerable to the impacts of climate change. A wide range of biophysical climate change impacts could affect the integrity of conservation lands in each region of Canada. This report examines the potential impact of climate change on landscape alterations and vegetation distribution in Canada's wide network of conservation lands. It also presents several ways to integrate climate change into existing conservation policy and adaptation strategies. Canada's conservation lands include provincial parks, migratory bird sanctuaries, national wildlife areas and wildlife protected areas. This is the first study to examine biome changes by applying an equilibrium Global Vegetation Model (GVM) to Canada's network of national park systems. Some of the policy and planning challenges posed by changes in landscape level vegetation were also addressed. The report indicates that in terms of potential changes to the biome classification of Canada's national forests, more northern biomes are projected to decrease. These northern biomes include the tundra, taiga and boreal conifer forests. 56 refs., 8 tabs., 6 figs

  1. Evaluating the contribution of Sustainable Land Management to climate change adaptation and mitigation, and its impacts on Mediterranean ecosystem services.

    Science.gov (United States)

    de Vente, Joris; Zagaria, Cecilia; Pérez-Cutillas, Pedro; Almagro, Maria; Martínez-Mena, Maria; Baartman, Jantiene; Boix-Fayos, Carolina

    2015-04-01

    Changing climate and land management have strong implications for soil and water resources and for many essential ecosystem services (ES), such as provision of drinking and irrigation water, soil erosion control, and carbon sequestration. Large impacts of climate change are expected in the Mediterranean, characterized by a high dependence on scarce soil and water resources. On the other hand, well designed Sustainable Land Management (SLM) strategies can reduce the risks associated with climate change, but their design requires knowledge of their multiple effects on ecosystem services under present and future climate scenarios and of possible tradeoffs. Moreover, strategies are only viable if suited to local environmental, socio-economic and cultural conditions, so stakeholder engagement is crucial during their selection, evaluation and implementation. We present preliminary results of a catchment wide assessment of the expected impacts of climate change on water availability in the Segura basin (18800 km2) southeastern Spain. Furthermore, we evaluated the impacts of past land use changes and the benefits of catchment wide implementation of SLM practices to protect soil and water resources, prevent sedimentation of reservoirs and increase carbon sequestration in soil and vegetation. We used the InVEST modeling framework to simulate the water availability and sediment export under different climate, land use and land management scenarios, and quantified carbon stocks in soil and vegetation. Realistic scenarios of implementation of SLM practices were prepared based on an extensive process of stakeholder engagement and using latest climate change predictions from Regional Climate Models for different emission scenarios. Results indicate a strong decrease in water availability in the Segura catchment under expected climate change, with average reductions of upto 60% and large spatial variability. Land use changes (1990 - 2006) resulted in a slight increase in water

  2. Epigenetic modulation of the biophysical properties of drug-resistant cell lipids to restore drug transport and endocytic functions.

    Science.gov (United States)

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-09-04

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g., DNA hypermethylation) are essential to maintain this drug-resistant phenotype. Thus, altered lipid synthesis may be linked to epigenetic mechanisms of drug resistance. We hypothesize that reversing DNA hypermethylation in resistant cells with an epigenetic drug could alter lipid synthesis, changing the cell membrane's biophysical properties to facilitate drug delivery to overcome drug resistance. Herein we show that treating drug-resistant breast cancer cells (MCF-7/ADR) with the epigenetic drug 5-aza-2'-deoxycytidine (decitabine) significantly alters cell lipid composition and biophysical properties, causing the resistant cells to acquire biophysical characteristics similar to those of sensitive cell (MCF-7) lipids. Following decitabine treatment, resistant cells demonstrated increased sphingomyelinase activity, resulting in a decreased sphingomyelin level that influenced lipid domain structures, increased membrane fluidity, and reduced P-glycoprotein expression. Changes in the biophysical characteristics of resistant cell lipids facilitated doxorubicin transport and restored endocytic function for drug delivery with a lipid-encapsulated form of doxorubicin, enhancing the drug efficacy. In conclusion, we have established a new mechanism for efficacy of an epigenetic drug, mediated through changes in lipid composition and biophysical properties, in reversing cancer drug resistance.

  3. Plasma membrane--cortical cytoskeleton interactions: a cell biology approach with biophysical considerations.

    Science.gov (United States)

    Kapus, András; Janmey, Paul

    2013-07-01

    From a biophysical standpoint, the interface between the cell membrane and the cytoskeleton is an intriguing site where a "two-dimensional fluid" interacts with an exceedingly complex three-dimensional protein meshwork. The membrane is a key regulator of the cytoskeleton, which not only provides docking sites for cytoskeletal elements through transmembrane proteins, lipid binding-based, and electrostatic interactions, but also serves as the source of the signaling events and molecules that control cytoskeletal organization and remolding. Conversely, the cytoskeleton is a key determinant of the biophysical and biochemical properties of the membrane, including its shape, tension, movement, composition, as well as the mobility, partitioning, and recycling of its constituents. From a cell biological standpoint, the membrane-cytoskeleton interplay underlies--as a central executor and/or regulator--a multitude of complex processes including chemical and mechanical signal transduction, motility/migration, endo-/exo-/phagocytosis, and other forms of membrane traffic, cell-cell, and cell-matrix adhesion. The aim of this article is to provide an overview of the tight structural and functional coupling between the membrane and the cytoskeleton. As biophysical approaches, both theoretical and experimental, proved to be instrumental for our understanding of the membrane/cytoskeleton interplay, this review will "oscillate" between the cell biological phenomena and the corresponding biophysical principles and considerations. After describing the types of connections between the membrane and the cytoskeleton, we will focus on a few key physical parameters and processes (force generation, curvature, tension, and surface charge) and will discuss how these contribute to a variety of fundamental cell biological functions. © 2013 American Physiological Society.

  4. Biophysical Evaluation of Food Decontamination Effects on Tissue and Bacteria

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Duelund, Lars; Brewer, Jonathan

    2011-01-01

    Traditionally, the effects and efficiency of food surface decontamination processes, such as chlorine washing, radiation, or heating, have been evaluated by sensoric analysis and colony-forming unit (CFU) counts of surface swabs or carcass rinses. These methods suffice when determining probable...... consumer responses or meeting legislative contamination limits. However, in the often very costly, optimization process of a new method, more quantitative and unbiased results are invaluable. In this study, we employed a biophysical approach for the investigation of qualitative and quantitative changes...... that there are no contradictions between data obtained by either approach. However, the biophysical methods draw a much more nuanced picture of the effects and efficiency of the investigated decontamination method, revealing, e.g., an exponential dose/response relationship between SonoSteam® treatment time and changes in collagen...

  5. Enhancing Irreversible Electroporation by Manipulating Cellular Biophysics with a Molecular Adjuvant.

    Science.gov (United States)

    Ivey, Jill W; Latouche, Eduardo L; Richards, Megan L; Lesser, Glenn J; Debinski, Waldemar; Davalos, Rafael V; Verbridge, Scott S

    2017-07-25

    Pulsed electric fields applied to cells have been used as an invaluable research tool to enhance delivery of genes or other intracellular cargo, as well as for tumor treatment via electrochemotherapy or tissue ablation. These processes involve the buildup of charge across the cell membrane, with subsequent alteration of transmembrane potential that is a function of cell biophysics and geometry. For traditional electroporation parameters, larger cells experience a greater degree of membrane potential alteration. However, we have recently demonstrated that the nuclear/cytoplasm ratio (NCR), rather than cell size, is a key predictor of response for cells treated with high-frequency irreversible electroporation (IRE). In this study, we leverage a targeted molecular therapy, ephrinA1, known to markedly collapse the cytoplasm of cells expressing the EphA2 receptor, to investigate how biophysical cellular changes resulting from NCR manipulation affect the response to IRE at varying frequencies. We present evidence that the increase in the NCR mitigates the cell death response to conventional electroporation pulsed-electric fields (∼100 μs), consistent with the previously noted size dependence. However, this same molecular treatment enhanced the cell death response to high-frequency electric fields (∼1 μs). This finding demonstrates the importance of considering cellular biophysics and frequency-dependent effects in developing electroporation protocols, and our approach provides, to our knowledge, a novel and direct experimental methodology to quantify the relationship between cell morphology, pulse frequency, and electroporation response. Finally, this novel, to our knowledge, combinatorial approach may provide a paradigm to enhance in vivo tumor ablation through a molecular manipulation of cellular morphology before IRE application. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Climate Prediction Center

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Organization Enter Search Term(s): Search Search the CPC Go NCEP Quarterly Newsletter Climate Highlights U.S Climate-Weather El Niño/La Niña MJO Blocking AAO, AO, NAO, PNA Climatology Global Monsoons Expert

  7. A biotic video game smart phone kit for formal and informal biophysics education

    Science.gov (United States)

    Kim, Honesty; Lee, Seung Ah; Riedel-Kruse, Ingmar

    2015-03-01

    Novel ways for formal and informal biophysics education are important. We present a low-cost biotic game design kit that incorporates microbial organisms into an interactive gaming experience: A 3D-printable microscope containing four LEDs controlled by a joystick enable human players to provide directional light stimuli to the motile single-celled organism Euglena gracilis. These cellular behaviors are displayed on the integrated smart phone. Real time cell-tracking couples these cells into interactive biotic video game play, i.e., the human player steers Euglena to play soccer with virtual balls and goals. The player's learning curve in mastering this fun game is intrinsically coupled to develop a deeper knowledge about Euglena's cell morphology and the biophysics of its phototactic behavior. This kit is dual educational - via construction and via play - and it provides an engaging theme for a formal biophysics devices class as well as to be presented in informal outreach activities; its low cost and open soft- and hardware should enable wide adoption.

  8. An assessment of the impact of climate adaptation measures to reduce flood risk on ecosystem services.

    Science.gov (United States)

    Verburg, Peter H; Koomen, Eric; Hilferink, Maarten; Pérez-Soba, Marta; Lesschen, Jan Peter

    Measures of climate change adaptation often involve modification of land use and land use planning practices. Such changes in land use affect the provision of various ecosystem goods and services. Therefore, it is likely that adaptation measures may result in synergies and trade-offs between a range of ecosystems goods and services. An integrative land use modelling approach is presented to assess such impacts for the European Union. A reference scenario accounts for current trends in global drivers and includes a number of important policy developments that correspond to on-going changes in European policies. The reference scenario is compared to a policy scenario in which a range of measures is implemented to regulate flood risk and protect soils under conditions of climate change. The impacts of the simulated land use dynamics are assessed for four key indicators of ecosystem service provision: flood risk, carbon sequestration, habitat connectivity and biodiversity. The results indicate a large spatial variation in the consequences of the adaptation measures on the provisioning of ecosystem services. Synergies are frequently observed at the location of the measures itself, whereas trade-offs are found at other locations. Reducing land use intensity in specific parts of the catchment may lead to increased pressure in other regions, resulting in trade-offs. Consequently, when aggregating the results to larger spatial scales the positive and negative impacts may be off-set, indicating the need for detailed spatial assessments. The modelled results indicate that for a careful planning and evaluation of adaptation measures it is needed to consider the trade-offs accounting for the negative effects of a measure at locations distant from the actual measure. Integrated land use modelling can help land use planning in such complex trade-off evaluation by providing evidence on synergies and trade-offs between ecosystem services, different policy fields and societal

  9. Climate impacts on palm oil yields in the Nigerian Niger Delta

    Science.gov (United States)

    Okoro, Stanley U.; Schickhoff, Udo; Boehner, Juergen; Schneider, Uwe A.; Huth, Neil

    2016-04-01

    Palm oil production has increased in recent decades and is estimated to increase further. The optimal role of palm oil production, however, is controversial because of resource conflicts with alternative land uses. Local conditions and climate change affect resource competition and the desirability of palm oil production. Based on this, crop yield simulations using different climate model output under different climate scenarios could be important tool in addressing the problem of uncertainty quantification among different climate model outputs. Previous studies on this region have focused mostly on single experimental fields, not considering variations in Agro-Ecological Zones, climatic conditions, varieties and management practices and, in most cases not extending to various IPCC climate scenarios and were mostly based on single climate model output. Furthermore, the uncertainty quantification of the climate- impact model has rarely been investigated on this region. To this end we use the biophysical simulation model APSIM (Agricultural Production Systems Simulator) to simulate the regional climate impact on oil palm yield over the Nigerian Niger Delta. We also examine whether the use of crop yield model output ensemble reduces the uncertainty rather than the use of climate model output ensemble. The results could serve as a baseline for policy makers in this region in understanding the interaction between potentials of energy crop production of the region as well as its food security and other negative feedbacks that could be associated with bioenergy from oil palm. Keywords: Climate Change, Climate impacts, Land use and Crop yields.

  10. Multi-year coupled biogeochemical and biophysical impacts of restoring drained agricultural peatlands to wetlands across the Sacramento-San Joaquin Delta, California, USA.

    Science.gov (United States)

    Hemes, K. S.; Eichelmann, E.; Chamberlain, S.; Knox, S. H.; Oikawa, P.; Sturtevant, C.; Verfaillie, J. G.; Baldocchi, D. D.

    2017-12-01

    Globally, delta ecosystems are critical for human livelihoods, but are at increasingly greater risk of degradation. The Sacramento-San Joaquin River Delta (`Delta') has been subsiding dramatically, losing close to 100 Tg of carbon since the mid 19th century due in large part to agriculture-induced oxidation of the peat soils through drainage and cultivation. Efforts to re-wet the peat soils through wetland restoration are attractive as climate mitigation activities. While flooded wetland systems have the potential to sequester significant amounts of carbon as photosynthesis outpaces aerobic respiration, the highly-reduced conditions can result in significant methane emissions. This study will utilize three years (2014-2016) of continuous, gap-filled, CO2 and CH4 flux data from a mesonetwork of seven eddy covariance towers in the Delta to compute GHG budgets for the restored wetlands and agricultural baseline sites measured. Along with biogeochemical impacts of wetland restoration, biophysical impacts such as changes in reflectance, energy partitioning, and surface roughness, can have significant local to regional impacts on air temperature and heat fluxes. We hypothesize that despite flooded wetlands reducing albedo, wetland land cover will cool the near-surface air temperature due to increased net radiation being preferentially partitioned into latent heat flux and rougher canopy conditions allowing for more turbulent mixing with the atmosphere. This study will investigate the seasonal and diurnal patterns of turbulent energy fluxes and the surface properties that drive them. With nascent policy mechanisms set to compensate landowners and farmers for low emission land use practices beyond reforestation, it is essential that policy mechanisms take into consideration how the biophysical impacts of land use change could drive local to regional-scale climatic perturbations, enhancing or attenuating the biogeochemical impacts.

  11. Biophysical and lipofection studies of DOTAP analogs.

    Science.gov (United States)

    Regelin, A E; Fankhaenel, S; Gürtesch, L; Prinz, C; von Kiedrowski, G; Massing, U

    2000-03-15

    In order to investigate the relationship between lipid structure and liposome-mediated gene transfer, we have studied biophysical parameters and transfection properties of monocationic DOTAP analogs, systematically modified in their non-polar hydrocarbon chains. Stability, size and (by means of anisotropy profiles) membrane fluidity of liposomes and lipoplexes were determined, and lipofection efficiency was tested in a luciferase reporter gene assay. DOTAP analogs were used as single components or combined with a helper lipid, either DOPE or cholesterol. Stability of liposomes was a precondition for formation of temporarily stable lipoplexes. Addition of DOPE or cholesterol improved liposome and lipoplex stability. Transfection efficiencies of lipoplexes based on pure DOTAP analogs could be correlated with stability data and membrane fluidity at transfection temperature. Inclusion of DOPE led to rather uniform transfection and anisotropy profiles, corresponding to lipoplex stability. Cholesterol-containing lipoplexes were generally stable, showing high transfection efficiency at low relative fluidity. Our results demonstrate that the efficiency of gene transfer mediated by monocationic lipids is greatly influenced by lipoplex biophysics due to lipid composition. The measurement of fluorescence anisotropy is an appropriate method to characterize membrane fluidity within a defined system of liposomes or lipoplexes and may be helpful to elucidate structure-activity relationships.

  12. Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California.

    Science.gov (United States)

    Mann, Michael L; Batllori, Enric; Moritz, Max A; Waller, Eric K; Berck, Peter; Flint, Alan L; Flint, Lorraine E; Dolfi, Emmalee

    2016-01-01

    The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state's fire regimes from 1975 to 2050. We develop an empirical model that integrates estimates of biophysical indicators relevant to plant communities and anthropogenic influences at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of explanatory power in the model. We also find that the total area burned is likely to increase, with burned area expected to increase by 2.2 and 5.0 percent by 2050 under climatic bookends (PCM and GFDL climate models, respectively). Our two climate models show considerable agreement, but due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid inland deserts and coastal areas of the south. Given the strength of human-related variables in some regions, however, it is clear that comprehensive projections of future fire activity should include both anthropogenic and biophysical influences. Previous findings of substantially increased numbers of fires and burned area for California may be tied to omitted variable bias from the exclusion of human influences. The omission of anthropogenic variables in our model would overstate the importance of climatic ones by at least 24%. As such, the failure to include anthropogenic effects in many models likely overstates the response of wildfire to climatic change.

  13. Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California.

    Directory of Open Access Journals (Sweden)

    Michael L Mann

    Full Text Available The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state's fire regimes from 1975 to 2050. We develop an empirical model that integrates estimates of biophysical indicators relevant to plant communities and anthropogenic influences at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of explanatory power in the model. We also find that the total area burned is likely to increase, with burned area expected to increase by 2.2 and 5.0 percent by 2050 under climatic bookends (PCM and GFDL climate models, respectively. Our two climate models show considerable agreement, but due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid inland deserts and coastal areas of the south. Given the strength of human-related variables in some regions, however, it is clear that comprehensive projections of future fire activity should include both anthropogenic and biophysical influences. Previous findings of substantially increased numbers of fires and burned area for California may be tied to omitted variable bias from the exclusion of human influences. The omission of anthropogenic variables in our model would overstate the importance of climatic ones by at least 24%. As such, the failure to include anthropogenic effects in many models likely overstates the response of wildfire to climatic change.

  14. Methodologies for assessing socio-economic impacts of climate change

    International Nuclear Information System (INIS)

    Smit, B.

    1993-01-01

    Much of the studies on climate change impacts have focused on physical and biological impacts, yet a knowledge of the social and economic impacts of climate change is likely to have a greater impact on the public and on policymakers. A conventional assessment of the impacts of climate change begins with scenarios of future climate, commonly derived from global climate models translated to a regional scale. Estimates of biophysical conditions provided by such scenarios provide a basis for analyses of human impacts, usually considered sector by sector. The scenario approach, although having considerable merit and appeal, has some noteworthy limitations. It encourages consideration of only a small set of scenarios, requires bold assumptions to be made about adjustments in human systems, provides little direct analysis of sensitivities of human social and economic systems to climate perturbations, and usually invokes the assumption that all factors other than climate are stable and have no synergistic effects on human systems. Conventional studies concentrate on average climate, yet climate is inherently variable. A common response to this situation is to propose further development of climate models, but this is not a sufficient or necessary condition for good and useful assessments of impacts on human activities. Different approaches to socioeconomic impact analysis are needed, and approaches should be considered that include identification of sensitivities in a social or ecological system, identification of critical threshold levels or critical speeds of change in variables, and exploration of alternative methodologies such as process studies, spatial and temporal analogues, and socio-economic systems modelling. 5 refs., 3 figs

  15. Climate Prediction Center - Monitoring & Data: Seasonal ENSO Impacts on

    Science.gov (United States)

    page National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center , state and local government Web resources and services. HOME > Monitoring and Data > U.S. Climate and Climate Prediction Climate Prediction Center 5830 University Research Court College Park, Maryland

  16. Biophysical approach to low back pain: a pilot report.

    Science.gov (United States)

    Foletti, Alberto; Pokorný, Jiry

    2015-01-01

    Since biophysical treatment has been reported to be effective in the general management of pain, we decided to assess the specific effect and treatment duration of this therapeutic strategy in low back pain. We were interested in verifying the possibility that a single clinical procedure could reduce pain and improve patients' quality of life within a period of three months. An Electromagnetic Information Transfer Through Aqueous System was employed to record endogenous therapeutic signals from each individual using an electromagnetic recording device (Med Select 729). A highly significant reduction in the Roland Morris low back pain and disability questionnaire score was observed after 3 months following a single biophysical intervention (11.83 ± 6 at baseline versus 2.3 ± 3.25 at 3 months, p < 0.0001). This preliminary report provides further evidence of the theoretical implications and clinical applications of Quantum Electro Dynamic concepts in biology and medicine.

  17. Quantum-Sequencing: Biophysics of quantum tunneling through nucleic acids

    Science.gov (United States)

    Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant

    2014-03-01

    Tunneling microscopy and spectroscopy has extensively been used in physical surface sciences to study quantum tunneling to measure electronic local density of states of nanomaterials and to characterize adsorbed species. Quantum-Sequencing (Q-Seq) is a new method based on tunneling microscopy for electronic sequencing of single molecule of nucleic acids. A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free single-molecule sequencing method. Here, we present the unique ``electronic fingerprints'' for all nucleotides on DNA and RNA using Q-Seq along their intrinsic biophysical parameters. We have analyzed tunneling spectra for the nucleotides at different pH conditions and analyzed the HOMO, LUMO and energy gap for all of them. In addition we show a number of biophysical parameters to further characterize all nucleobases (electron and hole transition voltage and energy barriers). These results highlight the robustness of Q-Seq as a technique for next-generation sequencing.

  18. Mapping monetary values of ecosystem services in support of developing ecosystem accounts

    NARCIS (Netherlands)

    Sumarga, Elham; Hein, Lars; Edens, Bram; Suwarno, Aritta

    2015-01-01

    Ecosystem accounting has been proposed as a comprehensive, innovative approach to natural capital accounting, and basically involves the biophysical and monetary analysis of ecosystem services in a national accounting framework. Characteristic for ecosystem accounting is the spatial approach

  19. A note on the roles of quantum and mechanical models in social biophysics.

    Science.gov (United States)

    Takahashi, Taiki; Kim, Song-Ju; Naruse, Makoto

    2017-11-01

    Recent advances in the applications of quantum models into various disciplines such as cognitive science, social sciences, economics, and biology witnessed enormous achievements and possible future progress. In this paper, we propose one of the most promising directions in the applications of quantum models: the combination of quantum and mechanical models in social biophysics. The possible resulting discipline may be called as experimental quantum social biophysics and could foster our understandings of the relationships between the society and individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Biophysical processes in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mc; Murtugudde, R.; Vialard, J.; Vinayachandran, P.N.; Wiggert, J.D.; Hood, R.R.; Shankar, D.; Shetye, S.R.

    Ocean Biogeochemical Processes and Ecological Variability Geophysical Monograph Series 185 Copyright 200� by the American Geophysical Union. 10.102�/2008GM000768 Biophysical Processes in the Indian Ocean J. P. McCreary, 1 R. Murtugudde, 2 J. Vialard, 3...) also plots the upper-layer thickness, h 1 , from the model of McCreary et al. [1��3] (hereinafter referred to as MKM); h 1 simulates the structure of the top of the actual thermocline reasonably well, except that it is somewhat too thin from 5...