WorldWideScience

Sample records for biomorphic ceramics sintese

  1. Synthesis and characterization of biomorphic ceramics; Sintese e caracterizacao de ceramicas biomorficas

    Energy Technology Data Exchange (ETDEWEB)

    Rambo, Carlos Renato

    2001-07-01

    Biotemplating represents a recently developed technology for manufacturing of biomorphous ceramics from naturally grown plant structures. This approach allows the production of ceramic materials with cellular structure, where the microstructural features of the ceramic product are similar to the native plant. After processing, the biomorphic ceramic exhibits directed pore morphology in the micrometer range. Biomorphic SiC fibers were produced from bamboo by carbothermal reduction of SiO{sub 2} originally present in the bamboo structure. Bamboo pieces were heated up to 1500 deg C in argon to promote the reaction between carbon and silica. Biomorphic alumina, mullite and zirconia ceramics were manufactured via the sol-gel route by repeated infiltration of low viscous oxide precursors (sols) into rattan, pine and bamboo structures. The raw samples were pyrolyzed at 800 deg C in nitrogen for 1h and subsequently annealed at 1550 deg C in air. The microstructure and physical properties of the biomorphic ceramics were characterized by X-ray diffraction (XRD) and high temperature-XRD, scanning electron microscopy (SEM), porosimetry and picnometry. Thermal analysis (TGA/DTA) was performed on the infiltrated samples in order to evaluate the reactions and the total weight loss during the thermal process. The mechanical properties were evaluated by compressive strength tests. In contrast to conventional processed ceramic foam of similar porosity, the microstructure highly porous biomorphic ceramics shows uniaxial pore morphology with anisotropic properties. These properties are favorable for applications in catalyst support, filters or low-density heat insulation structures, or as biomaterials. (author)

  2. Synthesis and characterization of biomorphic ceramics

    International Nuclear Information System (INIS)

    Rambo, Carlos Renato

    2001-01-01

    Biotemplating represents a recently developed technology for manufacturing of biomorphous ceramics from naturally grown plant structures. This approach allows the production of ceramic materials with cellular structure, where the microstructural features of the ceramic product are similar to the native plant. After processing, the biomorphic ceramic exhibits directed pore morphology in the micrometer range. Biomorphic SiC fibers were produced from bamboo by carbothermal reduction of SiO 2 originally present in the bamboo structure. Bamboo pieces were heated up to 1500 deg C in argon to promote the reaction between carbon and silica. Biomorphic alumina, mullite and zirconia ceramics were manufactured via the sol-gel route by repeated infiltration of low viscous oxide precursors (sols) into rattan, pine and bamboo structures. The raw samples were pyrolyzed at 800 deg C in nitrogen for 1h and subsequently annealed at 1550 deg C in air. The microstructure and physical properties of the biomorphic ceramics were characterized by X-ray diffraction (XRD) and high temperature-XRD, scanning electron microscopy (SEM), porosimetry and picnometry. Thermal analysis (TGA/DTA) was performed on the infiltrated samples in order to evaluate the reactions and the total weight loss during the thermal process. The mechanical properties were evaluated by compressive strength tests. In contrast to conventional processed ceramic foam of similar porosity, the microstructure highly porous biomorphic ceramics shows uniaxial pore morphology with anisotropic properties. These properties are favorable for applications in catalyst support, filters or low-density heat insulation structures, or as biomaterials. (author)

  3. Preparation and properties of highly porous, biomorphic YSZ ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Rambo, C.R.; Cao, J.; Sieber, H

    2004-10-15

    Highly porous, biomorphic YSZ (yttria-stabilized zirconia) ceramics were manufactured by infiltration of zirconium-oxychloride (ZrOCl{sub 2}{center_dot}8H{sub 2}O) sol into biological template structures derived from rattan and pine wood. 3-5 mol% yttrium nitrate (Y(NO{sub 3}){sub 3}{center_dot}5H{sub 2}O) was added to the sol to stabilize the tetragonal ZrO{sub 2} phase. After vacuum-assisted infiltration, the specimens were pyrolysed at 800 deg. C in N{sub 2} atmosphere. Repeated infiltrations and subsequent annealing in air at temperatures up to 1550 deg. C yields the burn out of the biocarbon template and resulted in the formation of biomorphous YSZ ceramics, which maintained the microstructural features of the biological preform. Depending on the type of the biological template as well as the processing parameters, biomorphic ZrO{sub 2} ceramics with an unidirected pore morphology and a large variety of microstructures can be obtained.

  4. Preparation of biomorphic SiC ceramics

    Directory of Open Access Journals (Sweden)

    Egelja A.

    2008-01-01

    Full Text Available This paper deals with a new method for producing non-oxide ceramic using wood as a template. SiC with a woodlike microstructure has been prepared by carbothermal reduction reactions of Tilia wood/TEOS composite at 1873K. The porous carbon preform was infiltrated with TEOS (Si(OC2H54, as a source of silica, without pressure at 298K. The morphology of resulting porous SiC ceramics, as well as the conversion mechanism of wood to SiC ceramics, have been investigated by scanning electron microscopy (SEM/EDS and X-ray diffraction analysis (XRD. Obtained SiC ceramics consists of β-SiC with traces of α-SiC.

  5. Biomorphous porous hydroxyapatite-ceramics from rattan (Calamus Rotang).

    Science.gov (United States)

    Eichenseer, Christiane; Will, Julia; Rampf, Markus; Wend, Süsen; Greil, Peter

    2010-01-01

    The three-dimensional, highly oriented pore channel anatomy of native rattan (Calamus rotang) was used as a template to fabricate biomorphous hydroxyapatite (Ca(5)(PO(4))(3)OH) ceramics designed for bone regeneration scaffolds. A low viscous hydroxyapatite-sol was prepared from triethyl phosphite and calcium nitrate tetrahydrate and repeatedly vacuum infiltrated into the native template. The template was subsequently pyrolysed at 800 degrees C to form a biocarbon replica of the native tissue. Heat treatment at 1,300 degrees C in air atmosphere caused oxidation of the carbon skeleton and sintering of the hydroxyapatite. SEM analysis confirmed detailed replication of rattan anatomy. Porosity of the samples measured by mercury porosimetry showed a multimodal pore size distribution in the range of 300 nm to 300 microm. Phase composition was determined by XRD and FT-IR revealing hydroxyapatite as the dominant phase with minimum fractions of CaO and Ca(3)(PO(4))(2). The biomorphous scaffolds with a total porosity of 70-80% obtained a compressive strength of 3-5 MPa in axial direction and 1-2 MPa in radial direction of the pore channel orientation. Bending strength was determined in a coaxial double ring test resulting in a maximum bending strength of approximately 2 MPa.

  6. Mechanical Properties and Microstructure of Biomorphic Silicon Carbide Ceramics Fabricated from Wood Precursors

    Science.gov (United States)

    Singh, Mrityunjay; Salem, J. A.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Silicon carbide based, environment friendly, biomorphic ceramics have been fabricated by the pyrolysis and infiltration of natural wood (maple and mahogany) precursors. This technology provides an eco-friendly route to advanced ceramic materials. These biomorphic silicon carbide ceramics have tailorable properties and behave like silicon carbide based materials manufactured by conventional approaches. The elastic moduli and fracture toughness of biomorphic ceramics strongly depend on the properties of starting wood preforms and the degree of molten silicon infiltration. Mechanical properties of silicon carbide ceramics fabricated from maple wood precursors indicate the flexural strengths of 3441+/-58 MPa at room temperature and 230136 MPa at 1350C. Room temperature fracture toughness of the maple based material is 2.6 +/- 0.2 MPa(square root of)m while the mahogany precursor derived ceramics show a fracture toughness of 2.0 +/- 0.2 Mpa(square root of)m. The fracture toughness and the strength increase as the density of final material increases. Fractographic characterization indicates the failure origins to be pores and chipped pockets of silicon.

  7. Use of spectroscopic techniques for the chemical analysis of biomorphic silicon carbide ceramics

    International Nuclear Information System (INIS)

    Pavon, J.M. Cano; Alonso, E. Vereda; Cordero, M.T. Siles; Torres, A. Garcia de; Lopez-Cepero, J.M.

    2005-01-01

    Biomorphic silicon carbide ceramics are a new class of materials prepared by several complex processing steps including pre-processing (shaping, drying, high-temperature pyrolysis in an inert atmosphere) and reaction with liquid silicon to obtain silicon-carbide. The results of industrial process of synthesis (measured by the SiC content) must be evaluated by means of fast analytical methods. In the present work, diverse samples of biomorphic ceramics derived from wood are studied for to evaluate the capability of the different analytical techniques (XPS, LIBS, FT-IR and also atomic spectroscopy applied to previously dissolved samples) for the analysis of these materials. XPS and LIBS gives information about the major components, whereas XPS and FT-IR can be used to evaluate the content of SiC. On the other hand, .the use of atomic techniques (as ICP-MS and ETA-AAS) is more adequate for the analysis of metal ions, specially at trace level. The properties of ceramics depend decisively of the content of chemical elements. Major components found were C, Si, Al, S, B and Na in all cases. Previous dissolution of the samples was optimised by acid attack in an oven under microwave irradiation

  8. CVI-R gas phase processing of porous, biomorphic SiC-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sieber, H.; Vogli, E.; Mueller, F.; Greil, P. [Erlangen-Nuernberg Univ., Erlangen (DE). Dept. of Materials Science (III) Glass and Ceramics; Popovska, N.; Gerhard, H. [Univ. of Erlangen-Nuremberg, Dept. of Industrial Chemistry I, Erlangen (Germany)

    2002-07-01

    Natural pine wood was converted into biomorphic SiC-ceramics by CVI-R processing (chemical vapour infiltration - reaction). The wood samples were first pyrolyzed in inert atmosphere at temperatures of 800 C to yield biocarbon-derived template structures. Subsequently, the biocarbon preforms were infiltrated with silicon by isothermal CVI processing with MTS (methyltrichlorosilane) in excess of hydrogen at temperatures between 800 and 850 C, then converted into SiC-ceramic by annealing in inert atmosphere at temperatures between 1200-1600 C. During processing, the inherent open porous structure of the pine wood is retained down to the submicrometer level, yielding a highly porous SiC-ceramic with a unique microcellular morphology. (orig.)

  9. Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Qian Junmin; Wang Jiping; Jin Zhihao

    2004-04-25

    Highly porous silicon carbide (SiC) ceramic with woodlike microstructure has been prepared at 1400-1600 deg. C by carbothermal reduction reaction of charcoal/silica composites in static argon atmosphere. These composites were fabricated by infiltrating silica sol into a porous biocarbon template from oak wood using a vacuum/pressure infiltration process. The morphology of resulting porous SiC ceramic, as well as the conversion mechanism of wood to porous SiC ceramic, have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. Experimental results show that the biomorphic cellular morphology of oak wood charcoal is remained in the porous SiC ceramic with high precision that consists of {beta}-SiC with traces of {alpha}-SiC. Silica in the charcoal/silica composites exists in the cellular pores in form of fibers and rods. The SiC strut material is formed by gas-solid reaction between SiO (g) and C (s) during the charcoal-to-ceramic conversion. The densification of SiC strut material may occur at moderate temperatures and holding time.

  10. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    Science.gov (United States)

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Precursor Selection for Property Optimization in Biomorphic SiC Ceramics

    Science.gov (United States)

    Varela-Feria, F. M.; Lopez-Robledo, M. J.; Martinez-Fernandez, J.; deArellano-Lopez, A. R.; Singh, M.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Biomorphic SiC ceramics have been fabricated using different wood precursors. The evolution of volume, density and microstructure of the woods, carbon performs, and final SiC products are systematically studied in order to establish experimental guidelines that allow materials selection. The wood density is a critical characteristic, which results in a particular final SiC density, and the level of anisotropy in mechanical properties in directions parallel (axial) and perpendicular (radial) to the growth of the wood. The purpose of this work is to explore experimental laws that can help choose a type of wood as precursor for a final SiC product, with a given microstructure, density and level of anisotropy. Preliminary studies of physical properties suggest that not only mechanical properties are strongly anisotropic, but also electrical conductivity and gas permeability, which have great technological importance.

  12. Biomorphous SiSiC/Al-Si ceramic composites manufactured by squeeze casting: microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zollfrank, C.; Travitzky, N.; Sieber, H.; Greil, P. [Department of Materials Science, Glass and Ceramics, University of Erlangen-Nuernberg (Germany); Selchert, T. [Advanced Ceramics Group, Technical University of Hamburg-Harburg (Germany)

    2005-08-01

    SiSiC/Al-Si composites were fabricated by pressure-assisted infiltration of an Al-Si alloy into porous biocarbon preforms derived from the rattan palm. Al-Si alloy was found in the pore channels of the biomorphous SiSiC preform, whereas SiC and carbon were present in the struts. The formation of a detrimental Al{sub 4}C{sub 3}-phase was not observed in the composites. A bending strength of 200 MPa was measured. The fractured surfaces showed pull-out of the Al-alloy. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  13. Synthesis and characterization of tungsten or calcium doped PZT ceramics; Sintese e caracterizacao do PZT dopado com W ou Ca

    Energy Technology Data Exchange (ETDEWEB)

    Santos, D.M.; Caracas, L.B.; Noronha, R.G.; Santos, M.M.T. dos [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Dept. de Desenho e Tecnologia. Curso de Desenho Industrial; Paiva-Santos, C.O., E-mail: denilson@ufma.b [Universidade Estadual Paulista (IQ/UNESP), Araraquara, SP (Brazil). Inst. de Quimica

    2009-07-01

    Pure and doped (tungsten or calcium) PZT ceramics were prepared by association of the polymeric precursor and partial oxalate method. The phase formation was investigated by thermal analysis (TG/DSC) and X-ray diffraction (XRD). The affect of W or Ca doping PZT and their electrical properties was evaluated. Substitution of W by Ti and Ca by Pb leads to an increase of Curie temperature and broadening of dielectric constant. A typical hysteresis loop was observed at room temperature and the remnant polarization was increased with the content of W and Ca. (author)

  14. Performance of biomorphic Silicon Carbide as particulate filter in diesel boilers.

    Science.gov (United States)

    Orihuela, M Pilar; Gómez-Martín, Aurora; Becerra, José A; Chacartegui, Ricardo; Ramírez-Rico, Joaquín

    2017-12-01

    Biomorphic Silicon Carbide (bioSiC) is a novel porous ceramic material with excellent mechanical and thermal properties. Previous studies have demonstrated that it may be a good candidate for its use as particle filter media of exhaust gases at medium or high temperature. In order to determine the filtration efficiency of biomorphic Silicon Carbide, and its adequacy as substrate for diesel particulate filters, different bioSiC-samples have been tested in the flue gases of a diesel boiler. For this purpose, an experimental facility to extract a fraction of the boiler exhaust flow and filter it under controlled conditions has been designed and built. Several filter samples with different microstructures, obtained from different precursors, have been tested in this bench. The experimental campaign was focused on the measurement of the number and size of particles before and after placing the samples. Results show that the initial efficiency of filters made from natural precursors is severely determined by the cutting direction and associated microstructure. In biomorphic Silicon Carbide derived from radially cut wood, the initial efficiency of the filter is higher than 95%. Nevertheless, when the cut of the wood is axial, the efficiency depends on the pore size and the permeability, reaching in some cases values in the range 70-90%. In this case, the presence of macropores in some of the samples reduces their efficiency as particle traps. In continuous operation, the accumulation of particles within the porous media leads to the formation of a soot cake, which improves the efficiency except in the case when extra-large pores exist. For all the samples, after a few operation cycles, capture efficiency was higher than 95%. These experimental results show the potential for developing filters for diesel boilers based on biomorphic Silicon Carbide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Synthesis and characterization of a nanostructured matrix hydroxyapatite ceramic bone reconstruction; Sintese e caracterizacao de uma matriz ceramica nanoestruturada de hidroxiapatita para reconstituicao ossea

    Energy Technology Data Exchange (ETDEWEB)

    Correa, P.; Camargo, N.H.A.; Silva, D.F. [Universidade do Estado de Santa Catarina (PGCEM/UDESC), SC (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2012-07-01

    The nanostructured ceramics have been shown promise as biomaterials for bone reconstruction. Among calcium phosphates, hydroxyapatite Ca/P ratio = 1.67 mol stands out because of its crystallographic similarity with the mineral bone phase and biocompatibility. This work was based on synthesis and characterization of a nanostructured hydroxyapatite for use in reconstituting bone tissue. The synthesis method for obtaining the bioceramic powder occurred at process of dissolution/precipitation, involving CaO solid/liquid and phosphoric acid required for forming the composition of Ca/P = 1.67 mole. The material recovered from the synthesis was calcined at 900 ° C/2h, providing the hydroxyapatite powder nanometer. This was subjected to mechanical fragmentation process in mill attritor, providing a hydroxyapatite with modified surface morphology. The results presented relate to morphological characterization studies (SEM), mineralogical (XRD), chemical (FTIR) and particle size distribution, using the laser particle size analysis method. Such results showed the formation of hydroxyapatite phase and morphology satisfactory for use in reconstituting bone tissue.

  16. Synthesis and ceramic processing of alumina and zirconia based composites infiltrated with glass phase for dental applications; Sintese e processamento de compositos a base de alumina e zirconia com infiltracao de fase vitrea para aplicacoes odontologicas

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Daniel Gomes

    2009-07-01

    The interest for the use of ceramic materials for dental applications started due to the good aesthetic appearance promoted by the similarity to natural teeth. However, the fragility of traditional ceramics was a limitation for their use in stress conditions. The development of alumina and zirconia based materials, that associate aesthetic results, biocompatibility and good mechanical behaviour, makes possible the employment of ceramics for fabrication of dental restorations. The incorporation of vitreous phase in these ceramics is an alternative to minimize the ceramic retraction and to improve the adhesion to resin-based cements, necessary for the union of ceramic frameworks to the remaining dental structure. In the dentistry field, alumina and zirconia ceramic infiltrated with glassy phase are represented commercially by the In-Ceram systems. Considering that the improvement of powder's synthesis routes and of techniques of ceramic processing contributes for good performance of these materials, the goal of the present work is the study of processing conditions of alumina and/or 3 mol% yttria-stabilized zirconia ceramics infiltrated with aluminum borosilicate lanthanum glass. The powders, synthesized by hydroxide coprecipitation route, were pressed by uniaxial compaction and pre-sintered at temperature range between 950 and 1650 degree C in order to obtain porous ceramics bodies. Vitreous phase incorporation was performed by impregnation of aluminum borosilicate lanthanum powder, also prepared in this work, followed by heat treatment between 1200 and 1400 degree C .Ceramic powders were characterized by thermogravimetry, X-ray diffraction, scanning and transmission electron microscopy, gaseous adsorption (BET) and laser diffraction. Sinterability of alumina and /or stabilized zirconia green pellets was evaluated by dilatometry. Pre-sintered ceramics were characterized by apparent density measurements (Archimedes method), X-ray diffraction and scanning

  17. Preparation of SnO2/C biomorphic materials by biotemplating from ...

    Indian Academy of Sciences (India)

    Biomorphic materials; carbothermal-reduction; biotemplate. 1. Introduction. Biomorphic materials, as a new kind of porous carbon mate- rials, are usually fabricated by carbonizing wood or woody ... heat insulating materials and electromagnetic shielding materials (Griel 2001; Zhang et al 2004; Odeshi et al 2006), etc.

  18. Effect of Steam Activation on Development of Light Weight Biomorphic Porous SiC from Pine Wood Precursor

    Science.gov (United States)

    Manocha, Satish M.; Patel, Hemang; Manocha, L. M.

    2013-02-01

    Biomorphic SiC materials with tailor-made microstructure and properties similar to ceramic materials manufactured by conventional method are a new class of materials derived from natural biopolymeric cellulose templates (wood). Porous silicon carbide (SiC) ceramics with wood-like microstructure have been prepared by carbothermal reduction of charcoal/silica composites at 1300-1600 °C in inert Ar atmosphere. The C/SiO2 composites were fabricated by infiltrating silica sol into porous activated biocarbon template. Silica in the charcoal/silica composite, preferentially in the cellular pores, was found to get transformed in forms of fibers and rods due to shrinkage during drying. The changes in the morphology of resulting porous SiC ceramics after heat treatment to 1600 °C, as well as the conversion mechanism of wood to activated carbon and then to porous SiC ceramic have been investigated using scanning electron microscope, x-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry. Activation of carbon prior to silica infiltration has been found to enhance conversion of charcoal to SiC. The pore structure is found to be uniform in these materials than in those made from as-such charcoal/silica composites. This provides a low-cost and eco-friendly route to advanced ceramic materials, with near-net shape potential.

  19. Biomimetic synthesis of cellular SiC based ceramics from plant ...

    Indian Academy of Sciences (India)

    Unknown

    ing oxidized. 3.3 Porous cellular SiC ceramics. Outward movement and reaction of residual Si-phase of biomorphic Si–SiC ceramic specimens occurred when they were positioned in the axial direction in intimate contact with powdered carbon during heating. The den- sity and porosity of the Si-depleted material were found.

  20. Synthesis and characterization of biomorphic CeO2 obtained by using egg shell membrane as template

    Directory of Open Access Journals (Sweden)

    Marija Prekajski

    2014-06-01

    Full Text Available A new technology based on bio-templating approach was proposed in this paper. Egg-shell membrane (ESM has been employed as a natural biotemplate. Fibrous oxide ceramics was prepared by wet impregnation of biological template with water solution of cerium nitrate. The template was derived from membranes of fresh chicken eggs. Repeated impregnation, pyrolysis and final calcination in the range of 600 to 1200 °C in air resulted in template burnout and consolidation of the oxide layers. At low temperatures, the obtained products had structure which corresponded to the negative replication of biological templates. Unique bio-morphic CeO2 microstructures with interwoven networks were synthesized and characterized by scanning electron microscope (SEM and X-ray diffraction (XRD, whereas low-temperature nitrogen adsorption (BET method was used in order to characterize porous properties.

  1. Synthesis of BZN-(α) and BZN-(β) pyrochloric ceramics by the solid state relation; Sintese das ceramicas pirocloricas BZN-α e BZN-β pela relacao em estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Farias, F.C.; Alves, A.G.; Alves, Y.M.; Pereira, F.M.M.; Barroso, M.B., E-mail: werleyfarias@gmail.com [Universidade Federal do Cariri (UFCA), Juazeiro do Norte, CE (Brazil); Pereira, C.A.; Saraiva, I.R. [Faculdade DeVry Fanor (FANOR), Fortaleza, CE (Brazil); Conde, W.S.; Sombra, A.B. [Laboratorio de Telecomunicacoes e Ciencia e Engenharia de Materiais (LOCEM), CE (Brazil)

    2016-07-01

    The ceramics the base of Bi{sub 2}O{sub 3}-ZnO-Nb{sub 2}O{sub 5} (BZN) have two main phases, Bi{sub 1,5}ZnNb{sub 1,5}O{sub 7} (α) and Bi{sub 2}Zn{sub 2/3}Nb{sub 4/3}O{sub 7} (β) with cubic and monoclinic crystal structures, respectively. This study was aimed to summarize the BZN-α phase and BZN-β chemically homogeneous and observe the phase transformations that occur in the system, using the ceramic method. They were characterized by scanning electron microscopy (SEM), X-Ray Diffraction (XRD), and the Rietveld method in structural refinement and Infrared Spectroscopy. The BZN-α phase is presented in pure sintering temperatures used, although BZN-β phase has brought the remaining stages of its formation process, as Bi{sub 5}Nb{sub 3}O{sub 15} and BiNbO{sub 4}. For BZN-α were observed absorptions at 469 and 328 cm{sup -1}, attributed to the metal-oxygen stretch the BZN-β showed absorption bands at wavelengths of 601, 515, 447 and 328 cm{sup -1}, also being assigned metal-oxygen bond. (author)

  2. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes; Sintese e processamento de compositos de zirconia-alumina para aplicacao como eletrolito em celulas a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Rafael Henrique Lazzari

    2007-07-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  3. A biomorphic origami actuator fabricated by folding a conducting paper

    International Nuclear Information System (INIS)

    Okuzaki, H; Saido, T; Suzuki, H; Hara, Y; Yan, H

    2008-01-01

    Cooperation between the electrical conductivity and hygroscopic nature of conducting polymers can provide an insight into the development of a new class of electro-active polymer (EAP) actuators or soft robots working in ambient air. In this paper, we describe an 'origami' actuator fabricated by folding a sheet of conducting 'paper'. The principle lies in the electrically induced changes in the elastic modulus of a humidosensitive conducting polymer film through reversible sorption and desorption of water vapor molecules, which is responsible for amplifying a contraction of the film (∼ 1%) to more than a 100-fold expansion (> 100%) of the origami actuator. Utilizing the origami technique, we have fabricated a biomorphic origami robot by folding an electrochemically synthesized polypyrrole film into the figure of an accordion shape, which can move with a caterpillar-like motion by repeated expansion and contraction at a velocity of 2 cm min -1 .

  4. SATBOT I: Prototype of a biomorphic autonomous spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, J.; Tilden, M.W.

    1995-12-01

    Our goal is to produce a prototype of an autonomous satellite robot, SATBOT. This robot differs from conventional robots in that it has three degrees of freedom, uses magnetics to direct the motion, and needs a zero gravity environment. The design integrates the robot`s structure and a biomorphic (biological morphology) control system to produce a survival-oriented vehicle that adapts to an unknown environment. Biomorphic systems, loosely modeled after biological systems, use simple analog circuitry, low power, and are microprocessor independent. These analog networks called Nervous Networks (Nv), are used to solve real-time controls problems. The Nv approach to problem solving in the robotics has produced many surprisingly capable machines which exhibit emergent behavior. The network can be designed to respond to positive or negative inputs from a sensor and produce a desired directed motion. The fluidity and direction of motion is set by the neurons and is inherent to the structure of the device. The robot is designed to orient itself with respect to a local magnetic field; to direct its attitude toward the greatest source of light; and robustly recover from variations in the local magnetic field, power source, or structural stability. This design uses a two neuron network which acts as a push-pull controller for the actuator (air core coil), and two sun sensors (photodiodes) as bias inputs to the neuron. The effect of sensor activation as it relates to an attractive or repulsive torque (directional motion) is studied. A discussion of this system`s power (energy) efficiency and frequency, noise immunity, and some dynamic characteristics is presented.

  5. Synthesis of carbon nanotubes by CVD method using iron and molybdenum-based catalysts supported on ceramic matrices;Sintese de nanotubos de carbono por CVD utilizando catalisadores a base de ferro e molibdenio suportados em matrizes ceramicas

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Ana Paula de Carvalho

    2010-07-01

    Molybdenum is known for its synergistic effect in the synthesis of carbon nanotubes (CNs) by chemical vapor deposition (CVD method). When added to typical catalysts like iron, nickel, and cobalt, even in small quantities, it is increases the yield of these nanostructures. The presence of Mo also has an influence on the type and number of CN walls formed. Although this effect is widely documented in the literature, there is not yet a consensus about the mechanism of action of molybdenum in catalytic systems. The objective of the present work is to study the influence of molybdenum on the catalytic activity of iron nanoparticle-based catalysts supported on magnesium oxide (Fe/MgO system) in the synthesis of carbon nanotubes by the CVD method. The Mo concentration was systematically varied from null to molar ratio values four times greater than the quantity of Fe, and the obtained material (catalysts and carbon nanotubes) were broadly characterized by different techniques. In order to also study the influence of the preparation method on the final composition of the catalytic system phases, the catalytic systems (Fe/MgO e FeMo{sub x}/MgO) were synthesized by two different methods: co-precipitation and impregnation. The greatest CN yields were observed for the catalysts prepared by coprecipitation. The difference was attributed to better dispersion of the Fe and Mo phases in the catalyst ceramic matrix. In the precipitation stage, it was observed the formation of layered double hydroxides whose concentration increased with the Mo content up to the ratio of Mo/Fe equal to 0.2. This phase is related to a better distribution of Fe and Mo in this concentration range. Another important characteristic observed is that the ceramic matrix is not inert. It can react both with Fe and Mo and form the iron solid solution in the magnesium oxide and the phases magnesium-ferrite (MgFe{sub 2}0{sub 4}) and magnesium molybdate (MgMo0{sub 4}). The MgFe{sub 2}0{sub 4} phase is observed in

  6. Preparation of SnO2/C biomorphic materials by biotemplating from ...

    Indian Academy of Sciences (India)

    A new SnO2/C biomorphic material has been prepared by molding into a composite billet and carbothermal-reduction under vacuum from ... basis for application of the materials. Ramie is a perennial herbaceous plant, ..... The authors wish to express their thanks for the financial support received from the National Natural ...

  7. Cohorts and Emerging Health Disparities: Biomorphic Trajectories in China, 1989 to 2006

    Science.gov (United States)

    Schafer, Markus H.; Kwon, Soyoung

    2012-01-01

    Despite the recent and rapid worldwide rise in body mass index (BMI), little empirical research outside the developed world has systematically considered the role of cohorts in inaugurating emergent biomorphic disparities. This study integrates aspects of the life course perspective (attention to age- and cohort-level influences) with fundamental…

  8. Synthesis of ceramic powder of TiO{sub 2} doped with Zr by the Pechini Method applied in ceramic membranes for water treatment; Sintese de pos ceramicos de TiO{sub 2} dopado com Zr obtido pelo Metodo Pechini aplicados em membranas ceramicas para tramento de agua

    Energy Technology Data Exchange (ETDEWEB)

    Farias, R.F.V.; Fernandes, M.S.M.; Silva, R.S.; Franca, K.B.; Lira, H.L.; Bonifacio, M.A.R., E-mail: raissavenuto@gmail.com, E-mail: maniza-f@hotmail.com, E-mail: raquel.ssb@hotmail.com, E-mail: kepler@labdes.ufcg.edu.br, E-mail: helio.lira@ufcg.edu.br, E-mail: m_aparecidaribeiro@yahoo.com.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2016-07-01

    This paper describes the synthesis of ceramic powder of TiO2 doped with Zr by the polymeric precursor method, also known as Pechini method applied in ceramic membranes for water treatment. Three compositions were synthesized according to the molar ratio Ti{sub x}-1Zr{sub x}O{sub 2} (x = 0.25, 0.50 and 0.75 moles), calcined at 700° C/1h. The samples were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and microbiological analysis. The presence of the doping element was not decisive in the average size of crystallite, which ranged from 5.5 to 11.3 nm. The SEM images showed clusters with uniform surface and granular aspect, it is still possible to see a clearly porous structure formed by clusters of uniform size for all samples. The microbiological analyses of powders have revealed that they have bactericidal properties. (author)

  9. A morphogram for silica-witherite biomorphs and its application to microfossil identification in the early earth rock record.

    Science.gov (United States)

    Rouillard, J; García-Ruiz, J-M; Gong, J; van Zuilen, M A

    2018-02-27

    Archean hydrothermal environments formed a likely site for the origin and early evolution of life. These are also the settings, however, were complex abiologic structures can form. Low-temperature serpentinization of ultramafic crust can generate alkaline, silica-saturated fluids in which carbonate-silica crystalline aggregates with life-like morphologies can self-assemble. These "biomorphs" could have adsorbed hydrocarbons from Fischer-Tropsch type synthesis processes, leading to metamorphosed structures that resemble carbonaceous microfossils. Although this abiogenic process has been extensively cited in the literature and has generated important controversy, so far only one specific biomorph type with a filamentous shape has been discussed for the interpretation of Archean microfossils. It is therefore critical to precisely determine the full distribution in morphology and size of these biomorphs, and to study the range of plausible geochemical conditions under which these microstructures can form. Here, a set of witherite-silica biomorph synthesis experiments in silica-saturated solutions is presented, for a range of pH values (from 9 to 11.5) and barium ion concentrations (from 0.6 to 40 mmol/L BaCl 2 ). Under these varying conditions, a wide range of life-like structures is found, from fractal dendrites to complex shapes with continuous curvature. The size, spatial concentration, and morphology of the biomorphs are strongly controlled by environmental parameters, among which pH is the most important. This potentially limits the diversity of environments in which the growth of biomorphs could have occurred on Early Earth. Given the variety of the observed biomorph morphologies, our results show that the morphology of an individual microstructure is a poor criterion for biogenicity. However, biomorphs may be distinguished from actual populations of cellular microfossils by their wide, unimodal size distribution. Biomorphs grown by diffusion in silica gel can

  10. Anisotropy of the thermal conductivity and electrical resistivity of the SiC/Si biomorphic composite based on a white-eucalyptus biocarbon template

    Science.gov (United States)

    Parfen'eva, L. S.; Orlova, T. S.; Smirnov, B. I.; Smirnov, I. A.; Misiorek, H.; Mucha, J.; Jezowski, A.; de Arellano-Lopez, A. R.; Martinez-Fernandez, J.; Varela-Feria, F. M.

    2006-12-01

    The thermal conductivity κ and electrical resistivity ρ of a cellular ecoceramic, namely, the SiC/Si biomorphic composite, are measured in the temperature range 5 300 K. The SiC/Si biomorphic composite is fabricated using a cellular biocarbon template prepared from white eucalyptus wood by pyrolysis in an argon atmosphere with subsequent infiltration of molten silicon into empty through cellular channels of the template. The temperature dependences κ(T) and ρ(T) of the 3C-SiC/Si biomorphic composite at a silicon content of ˜30 vol % are measured for samples cut out parallel and perpendicular to the direction of tree growth. Data on the anisotropy of the thermal conductivity κ are presented. The behavior of the dependences κ(T) and ρ(T) of the SiC/Si biomorphic composite at different silicon contents is discussed in terms of the results obtained and data available in the literature.

  11. Synthesis, microstructural and electrical characterization of ceramic compounds based on strontium and calcium titanates and iron-oxide; Sintese, caracterizacao microestrutural e eletrica de compostos ceramicos a base de solucoes solidas de titanato de estroncio, titanato de calcio e oxido de ferro

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Joao Roberto do

    2011-07-01

    Ca{sub x}Sr{sub 1-x}Ti{sub 1-y}Fe{sub y}O{sub 3-}{delta}, X = 0, 0.5 and 1.0, y = 0 and 0.35, ceramic compounds were synthesized by reactive solid state synthesis of CaCO{sub 3}, SrCO{sub 3}, TiO{sub 2} and Fe{sub 2}O{sub 3}, and by the polymeric precursor technique. The ceramic powders were evaluated by thermogravimetry and differential thermal analysis, X-ray diffraction and scanning electron microscopy. Sintered ceramic pellets were analyzed by X-ray diffraction, scanning electron microscopy, scanning probe microscopy and impedance spectroscopy. The electromotive force resulting from the exposing the pellets to partial pressure de oxygen in the {approx}50 ppm in the 600-1100 Degree-Celsius range was monitored using an experimental setup consisting of an oxygen electrochemical pump with yttria-stabilized zirconia transducer and sensor. Rietveld analysis of the X-ray data allowed for determining the crystalline structures: cubic perovskite (y = 0) and orthorhombic perovskite (y {ne} 0). The electrical conductivity was determined by the two probe impedance spectroscopy measurements in the 5 Hz-13 MHz frequency range from room temperature to approximately 200 Degree-Celsius . The deconvolution of the [-Z{sup (}{omega}) x Z'({omega})] impedance diagrams in the 300 < T(K) < 500 range shows two semicircles due to intragranular (bulk) and intergranular (grain boundary) contributions to the electrical resistivity. Sintered pellets using powders prepared by the ceramic route present higher inter- and intragranular resistivity values than pellets prepared with chemically synthesized powders. The emf signal under exposure oxygen shows that these compounds may be used in oxygen sensing devices in the 600 - 1100 Degree-Celsius range. Scanning probe microscopy topographic analysis of the polished and thermally etched surfaces of the pellets gave details of grain morphology, showing that pellets prepared with powders synthesized by the chemical route are less porous than

  12. Synthesis and characterization of Zn{sub 2}SiO{sub 4} ceramic pigments obtained by chemical method; Sintese e caracterizacao de pigmentos ceramicos a base de Zn{sub 2}SiO{sub 4} obtidos por metodo quimico

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, J.H.G.; Silva, J.S.; Oliveira, M.M.; Azevedo, E.; Costa, M.G.S., E-mail: hiltonrangel2012@hotmail.com [Instituto Federal do Maranhao (IFMA), Sao Luiz, MA (Brazil); Longo, E. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, UNESP, SP (Brazil). Instituto de Quimica

    2014-07-01

    The silicates provide a wide field of application, ranging from molecular sieves to catalyst supports, and therefore their morphology resulting from the obtaining method of production has been widely studied. The isomorphous replacement of cation Zn in the structure of willemite by a chromophore metal has been widely studied in the use of silicate as ceramic pigments. In this study the polymeric precursor was used to synthesize zinc silicates of nickel-doped to obtain ceramic pigments. The polymeric precursor was treated at 350 deg C/2h and the material was calcined at temperatures from 700 to 1000 deg C/4h on plates of sintered alumina at a heating rate of 10 deg C/min under ambient atmosphere in a muffle furnace type. The results of the XRD indicated the presence of the rhombohedral phase of the willemite and the presence of ZnO as an secondary phase. The micrographs, obtained by SEM, showed that the increasing in the temperature of calcination of the material from 700 to 1000 deg C caused an increasing in particle size due to the formation of aggregates. The reissue spectra of Kubelka-Munk measured by diffuse reflectance showed signs that suggest the presence of different cations in coordination. Based on the results obtained by means of colorimetric coordinates, it was observed that the material had bluish gray color. (author)

  13. Synthesis of ceramics membranes using ZrO{sub 2} obtained by Pechini method aiming it application in oil/water separation; Sintese de membranas ceramicas utilizando ZrO{sub 2} obtido pelo metodo Pechini visando sua aplicacao na separacao oleo/agua

    Energy Technology Data Exchange (ETDEWEB)

    Maia, D.F.; Lira, H.L.; Vilar, M.A.; Costa, A.C.F.M.; Oliveira, J.B.L.; Kiminami, R.H.G.A.; Gama, L.

    2004-07-01

    The water produced in the oil production presents emulsified oil drops of difficult separation causing problems in the reinjection and the discarding. The conventional methods used in the separation oil/water don't clean all the water with efficiency and low cost. Thus, the ceramic membranes appear as a new option for being material very resistant chemistry and thermal, of high perm selective and high efficiency in use in processes of micro filtration and ultrafiltration separation. The zirconia is considered an adequate material to obtain of such membranes and the Pechini method is one promising technique in the attainment of after ultrafine with controlled characteristics. Thus the objective of this work was to prepare ceramic membranes from after synthesized by the Pechini method. The results had shown that the Pechini method was efficient in the attainment of ZrO{sub 2} powder, nanometric, with size of crystal of 7,2 nm and with average diameter of agglomerated 4,94{mu}, indicating that this material can be used in the attainment of membranes of micro filtration and ultrafiltration, adjusted to the separation oil/water The micrographs of the obtained membranes show a homogeneous surface where if it can visualize pores uniformly distributed. (author)

  14. Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability.

    Science.gov (United States)

    Chen, Ke; Li, Cong; Shi, Liurong; Gao, Teng; Song, Xiuju; Bachmatiuk, Alicja; Zou, Zhiyu; Deng, Bing; Ji, Qingqing; Ma, Donglin; Peng, Hailin; Du, Zuliang; Rümmeli, Mark Hermann; Zhang, Yanfeng; Liu, Zhongfan

    2016-11-07

    Mass production of high-quality graphene with low cost is the footstone for its widespread practical applications. We present herein a self-limited growth approach for producing graphene powders by a small-methane-flow chemical vapour deposition process on naturally abundant and industrially widely used diatomite (biosilica) substrates. Distinct from the chemically exfoliated graphene, thus-produced biomorphic graphene is highly crystallized with atomic layer-thickness controllability, structural designability and less noncarbon impurities. In particular, the individual graphene microarchitectures preserve a three-dimensional naturally curved surface morphology of original diatom frustules, effectively overcoming the interlayer stacking and hence giving excellent dispersion performance in fabricating solution-processible electrodes. The graphene films derived from as-made graphene powders, compatible with either rod-coating, or inkjet and roll-to-roll printing techniques, exhibit much higher electrical conductivity (∼110,700 S m -1 at 80% transmittance) than previously reported solution-based counterparts. This work thus puts forward a practical route for low-cost mass production of various powdery two-dimensional materials.

  15. Fabrication and good ethanol sensing of biomorphic SnO2 with architecture hierarchy of butterfly wings

    International Nuclear Information System (INIS)

    Song Fang; Su Huilan; Han Jie; Zhang Di; Chen Zhixin

    2009-01-01

    Using super-hydrophobic butterfly wings as templates, we developed an aqueous sol-gel soakage process assisted by ethanol-wetting and followed by calcination to fabricate well-organized porous hierarchical SnO 2 with connective hollow interiors and thin mesoporous walls. The exquisite hierarchical architecture of SnO 2 is faithfully replicated from the lightweight skeleton of butterfly wings at the level from nano- to macro-scales. On the basis of the self-assembly of SnO 2 nanocrystallites with diameter around 7.0 nm, the interconnected tubes (lamellas), the fastigiated hollow tubers (pillars) and the double-layered substrates further construct the biomorphic hierarchical architecture. Benefiting from the small grain size and the unique hierarchical architecture, the biomorphic SnO 2 as an ethanol sensor exhibits high sensitivity (49.8 to 50 ppm ethanol), and fast response/recovery time (11/31 s to 50 ppm ethanol) even at relatively low working temperature (170 0 C).

  16. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  17. Manufacturing of porous oxide ceramics by replication of plant morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Sieber, H.; Rambo, C.; Cao, J.; Vogli, E.; Greil, P. [Erlangen-Nuernberg Univ., Erlangen (DE). Dept. of Materials Science (III) Glass and Ceramics

    2002-07-01

    Biomorphic oxide ceramics of alumina, mullite and zirconia with a directed pore morphology on the micrometer level were manufactured from bioorganic plant structures by sol-gel processing as well as sol-assisted nano-powder infiltrations. The inherent open porous morphology of natural grown rattan palms was used for vacuum-infiltration with aluminum isopropoxide (Al(OC{sub 3}H{sub 7}){sub 3}), zirconium oxichloride (ZrOCl{sub 2}.8H{sub 2}O) and SiO{sub 2} nano powder. Hydrolysis of the sols by adding HNO{sub 3} and pyrolysis in inert atmosphere at 800 C resulted in the formation of biocarbon/ceramic replica of the original wood morphology. The specimens were sintered in air at temperatures up to 1600 C to yield porous oxide ceramics with an unidirected pore structure similar to the original plant material. Repeated infiltration, hydrolysis and annealing steps were applied to increase the density of the ceramic materials. (orig.)

  18. Piezoelectric Ceramics

    International Nuclear Information System (INIS)

    Park, Chang Yeop

    1987-03-01

    This book tells of piezoelectric ceramics on BaTiO 3 Pb(Zr, Ti)O 3 , properties of piezoelectric ceramics, measurement method of piezoelectric ceramics, manufacturing method of piezoelectric ceramics, property of PbZrO 3 -PbTiO 3 , transparent ceramics like electro-optics effect, electro-optics ceramics, application of a producer of high voltage, application of ultrasonic generator, ZnO piezoelectric film and its application such as property of ZnO, piezoelectric of ZnO film, manufacturing method of ZnO.

  19. On Ceramics.

    Science.gov (United States)

    School Arts, 1982

    1982-01-01

    Presents four ceramics activities for secondary-level art classes. Included are directions for primitive kiln construction and glaze making. Two ceramics design activities are described in which students make bizarrely-shaped lidded jars, feet, and footwear. (AM)

  20. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  1. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  2. [Ceramic posts].

    Science.gov (United States)

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  3. [Ceramic brackets].

    Science.gov (United States)

    Mølsted, K

    1992-01-01

    Because of the many drawbacks of the hard and brittle material, ceramic brackets should not be used uncritically for orthodontic treatments. If ceramic brackets are used, the following guidelines should be observed: 1. If large and complicated tooth movements are involved, conventional bracket systems should be considered. 2. Occlusion on ceramic brackets is to be avoided. 3. Sharp instruments should be used with extreme care to avoid scratching the ceramic surface. Metal ligatures must not be used. 4. The length of the treatment is extended, probably because of the increased friction. 5. The problems connected with removing the brackets have not yet been solved. Be particularly careful of weakened teeth. 6. Esthetically, ceramic brackets function satisfactorily, but transparent elastic ligatures do not. They rapidly become discoloured and need frequent replacement. Nor are there as yet any "invisible arch wires", apart from some few, extremely flexible "white" arch wires. The ceramic bracket has no doubt come to stay, but there have been many difficulties in the "running-in" period, and the problems are far from solved yet. New ceramic brackets are coming onto the market all the time, and only future clinical studies can show whether they will become a genuine alternative to the conventional bracket.

  4. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  5. Tailored ceramics

    International Nuclear Information System (INIS)

    Harker, A.B.

    1988-01-01

    In polyphase tailored ceramic forms two distinct modes of radionuclide immobilization occur. At high waste loadings the radionuclides are distributed through most of the ceramic phases in dilute solid solution, as indicated schematically in this paper. However, in the case of low waste loadings, or a high loading of a waste with low radionuclide content, the ceramic can be designed with only selected phases containing the radionuclides. The remaining material forms nonradioactive phases which provide a degree of physical microstructural isolation. The research and development work with polyphase ceramic nuclear waste forms over the past ten years is discussed. It has demonstrated the critical attributes which suggest them as a waste form for future HLW disposal. From a safety standpoint, the crystalline phases in the ceramic waste forms offer the potential for demonstrable chemical durability in immobilizing the long-lived radionuclides in a geologic environment. With continued experimental research on pure phases, analysis of mineral analogue behavior in geochemical environments, and the study of radiation effects, realistic predictive models for waste form behavior over geologic time scales are feasible. The ceramic forms extend the degree of freedom for the economic optimization of the waste disposal system

  6. Structural Ceramics Database

    Science.gov (United States)

    SRD 30 NIST Structural Ceramics Database (Web, free access)   The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.

  7. Ceramic Seal.

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Juan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Custer, Joyce Olsen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hymel, Ross W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krementz, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gobin, Derek [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harpring, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martinez-Rodriguez, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Varble, Don [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiMaio, Jeff [Tetramer Technologies, Pendleton, SC (United States); Hudson, Stephen [Tetramer Technologies, Pendleton, SC (United States)

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  8. Monolithic ceramics

    Science.gov (United States)

    Herbell, Thomas P.; Sanders, William A.

    1992-01-01

    A development history and current development status evaluation are presented for SiC and Si3N4 monolithic ceramics. In the absence of widely sought improvements in these materials' toughness, and associated reliability in structural applications, uses will remain restricted to components in noncritical, nonman-rated aerospace applications such as cruise missile and drone gas turbine engine components. In such high temperature engine-section components, projected costs lie below those associated with superalloy-based short-life/expendable engines. Advancements are required in processing technology for the sake of fewer and smaller microstructural flaws.

  9. Verification of ceramic structures

    NARCIS (Netherlands)

    Behar-Lafenetre, S.; Cornillon, L.; Rancurel, M.; Graaf, D. de; Hartmann, P.; Coe, G.; Laine, B.

    2012-01-01

    In the framework of the "Mechanical Design and Verification Methodologies for Ceramic Structures" contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and

  10. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  11. Ceramic electrolyte coating methods

    Energy Technology Data Exchange (ETDEWEB)

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2004-10-12

    Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  12. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  13. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  14. Tailored ceramics. Chapter 5

    International Nuclear Information System (INIS)

    Haker, A.B.

    1988-01-01

    In the light of the broad variation in US high-level waste (HLW) types and the uncertainties in future waste production, research on the Rockwell International Science Center has focussed on developing a generic technology for the consolidation of high-level wastes into polyphase ceramics. The basic approach has been to 'tailor' wste compositions with chemical additives so that upon consolidation a dense ceramic assemblage is formed that chemically binds the waste species into known phases. This chapter deals with tailored ceramics for current and future high-level waste compositions. Section 2 gives a historical review of the development of tailored ceramics. Section 3 deals with tailored ceramics designed for specific HLW compositions and with microstructure and phase development. Section 4 discusses chemical and physical properties of tailored ceramic waste forms. In section 5 the various processing steps involved in converting HLW to polycrystalline ceramic forms are described. (author). 159 refs.; 20 figs.; 14 tabs

  15. Antibacterial ceramic for sandbox. Sunabayo kokin ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, K. (Ishizuka Glass Co. Ltd. Nagoya (Japan))

    1993-10-01

    Sands in sandboxes in parks have been called into question of being contaminated by colon bacilli and spawns from ascarides. This paper introduces an antibacterial ceramic for sandbox developed as a new material effective to help reduce the contamination. The ceramic uses natural sand as the main raw material, which is added with borax and silver to contain silver ions that have bacteria and fungus resistance and deodorizing effect. The ceramic has an average grain size ranging from 0.5 mm to 0.7 mm, and is so devised as to match specific gravity, grain size and shape of the sand, hence no separation and segregation can occur. The result of weatherability and antibacterial strength tests on sand for a sandbox mixed with the ceramic at 1% suggests that its efficacy lasts for about three years. Its actual use is under observation. Its efficacy has been verified in a test that measures a survival factor of spawns from dog ascardides contacted with aqueous solution containing the ceramic at 1%. Safety and sanitation tests have proved the ceramic a highly safe product that conforms to the food sanitation law. 5 refs., 3 figs., 3 tabs.

  16. Analyses of fine paste ceramics

    International Nuclear Information System (INIS)

    Sabloff, J.A.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics

  17. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  18. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 2. Science and Technology of Ceramics - Advanced Ceramics: Structural Ceramics and Glasses. Sheela K Ramasesha. Series Article Volume 5 Issue 2 February 2000 pp 4-11 ...

  19. [Ceramic inlays and onlays].

    Science.gov (United States)

    van Pelt, A W; de Kloet, H J; van der Kuy, P

    1996-11-01

    Large direct composite restorations can induce shrinkage related postoperative sensitivity. Indirect resin-bonded (tooth colored) restorations may perhaps prevent these complaints. Indirect bonded ceramics are especially attractive because of their biocompatibility and esthetic performance. Several procedures and techniques are currently available for the fabrication of ceramic restorations: firing, casting, heat-pressing and milling. In this article the different systems are described. Advantages, disadvantages and clinical performance of ceramic inlays are compared and discussed.

  20. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fareed, Ali [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States); Craig, Phillip A. [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States)

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  1. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  2. Ceramic piezoelectric materials

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  3. Corrosion of Ceramic Materials

    Science.gov (United States)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  4. A Ceramic Armor Material Database

    National Research Council Canada - National Science Library

    Holmquist, T

    1999-01-01

    .... The data include nine different ceramic materials. The ceramics are Silicon Carbide, Boron Carbide, Titanium Diboride, Aluminum Nitride, Silicon Nitride, Aluminum Oxide (85% pure), Aluminum Oxide (high purity...

  5. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  6. Thermopower of biomorphic silicon carbide

    Science.gov (United States)

    Smirnov, I. A.; Smirnov, B. I.; Mokhov, E. N.; Sulkowski, Cz.; Misiorek, H.; Jezowski, A.; de Arellano-Lopez, A. R.; Martinez-Fernandez, J.

    2008-08-01

    The thermopower coefficients of cubic bio-SiC, a high-porosity semiconductor with cellular pores prepared from the biocarbon template of white eucalyptus wood, and single-crystal β-SiC taken as a reference are measured in the temperature range 5 280 K. It is revealed that, in the low-temperature range, the samples are characterized by a thermopower contribution associated with the electron drag by phonons. The thermopower of the bio-SiC samples is measured both along and across the empty pore channels and is found to be anisotropic. Two models are proposed to account for the anisotropy of the thermopower in cubic bio-SiC.

  7. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-02-01

    This is the fifth quarterly report on a new study to develop a ceramic membrane/metal joint. Results of wetting experiments on commercially available Nickel based brazing alloys on perovskite surfaces are described. Additionally, experimental and numerical investigations on the strength of concentric ceramic/metal joints are presented.

  8. Ceramics As Materials Of Construction

    OpenAIRE

    Zaki, A; Eteiba, M. B.; Abdelmonem, N.M.

    1988-01-01

    This paper attempts to review the limitations for using the important ceramics in contact with corrosive media. Different types of ceramics are included. Corrosion properties of ceramics and their electrical properties are mentioned. Recommendations are suggested for using ceramics in different media.

  9. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  10. Ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1990-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 32 refs., 1 fig., 1 tab

  11. Anionic Conducting Oxide Ceramics

    National Research Council Canada - National Science Library

    Dunn, Bruce

    1998-01-01

    This program has emphasized the interrelationships among synthesis, microstructure and properties for oxygen ion conducting ceramics based on copper-substituted bismuth vanadate (Bi V Cu O ), known as BICUVOX...

  12. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-07-01

    This is the fourth quarterly report on a new study to develop a ceramic membrane/metal joint. The first experiments using the La-Sr-Fe-O ceramic are reported. Some of the analysis performed on the samples obtained are commented upon. A set of experiments to characterize the mechanical strength and thermal fatigue properties of the joints has been designed and begun. Finite element models of joints used to model residual stresses are described.

  13. Clinical application of bio ceramics

    International Nuclear Information System (INIS)

    Anu, Sharma; Gayatri, Sharma

    2016-01-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  14. Laser technologies of ceramics treatment (review)

    International Nuclear Information System (INIS)

    Markov, E.M.; Voronezhtsev, Yu.I.; Gol'dade, V.A.

    1990-01-01

    Publications on the laser technologies of ceramic coating production, ceramics treatment and ceramics manufacture are analyzed for the past 5 years. Features of production processes utilizing the interaction of laser radiation with ceramics and other substances which form the ceramics as a result of such interaction are considered. Possible ways of improving laser technologies of ceramics treatment are outlined

  15. Testing method for ceramic armour and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2016-01-01

    TNO developed an alternative, more configuration independent ceramic test method than the Depth-of-Penetration test method. In this alternative test ceramic tiles and ceramic based armour are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  16. Testing method for ceramic armor and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2014-01-01

    TNO has developed an alternative, more configuration independent ceramic test method than the standard Depth-of-Penetration test method. In this test ceramic tiles and ceramic based armor are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  17. FATIGUE OF DENTAL CERAMICS

    Science.gov (United States)

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-01-01

    Objectives Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. Data/sources The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Conclusions Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically-assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Clinical significance Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. PMID:24135295

  18. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  19. Mechanical properties of ceramics

    CERN Document Server

    Pelleg, Joshua

    2014-01-01

    This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work.  Generally, ceramics are made by moistening a mixture of clays, casting it into desired shapes and then firing it to a high temperature, a process known as 'vitrification'. The relatively late development of metallurgy was contingent on the availability of ceramics and the know-how to mold them into the appropriate forms. Because of the characteristics of ceramics, they offer great advantages over metals in specific applications in which hardness, wear resistance and chemical stability at high temperatures are essential. Clearly, modern ceramics manufacturing has come a long way from the early clay-processing fabrication method, and the last two decades have seen the development of sophisticated technique...

  20. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  1. Ceramic composites: Enabling aerospace materials

    Science.gov (United States)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  2. Ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.; Kummerer, K.R.; Roth, E.

    1987-01-01

    Ceramic materials are under investigation as potential breeder material in fusion reactors. This paper will review candidate materials with respect to fabrication routes and characterization, properties in as-fabricated and irradiated condition, and experimental results from laboratory and inpile investigations on tritium transport and release. Also discussed are the resources of beryllium, which is being considered as a neutron multiplier. The comparison of ceramic properties that is attempted here aims at the identification of the most-promising material for use in a tritium breeding blanket. 82 refs., 12 figs., 5 tabs

  3. Cyclic mechanical fatigue in ceramic-ceramic composites: an update

    International Nuclear Information System (INIS)

    Lewis, D. III

    1983-01-01

    Attention is given to cyclic mechanical fatigue effects in a number of ceramics and ceramic composites, including several monolithic ceramics in which significant residual stresses should be present as a result of thermal expansion mismatches and anisotropy. Fatigue is also noted in several BN-containing ceramic matrix-particulate composites and in SiC fiber-ceramic matrix composites. These results suggest that fatigue testing is imperative for ceramics and ceramic composites that are to be used in applications subject to cyclic loading. Fatigue process models are proposed which provide a rationale for fatigue effect observations, but do not as yet provide quantitative results. Fiber composite fatigue damage models indicate that design stresses in these materials may have to be maintained below the level at which fiber pullout occurs

  4. Tick-proof ceramics. Bo dani ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Shimono, F. (Ishizuka Glass Co. Ltd., Nagoya (Japan))

    1993-07-01

    Ishizuka Glass has developed SiO2-B2O3-R2O(RO) based tick-proof ceramics (trade name; Segrocera) in cooperation with Yamato Chemical Industry, insecticide maker. This article is a report on effectiveness of this ceramics. Ticks living indoors are roughly divided into two kinds, namely ticks living in a house itself and ticks which enter the house by parasitizing on animals and plants, and Segrocera has been developed aiming at the former ticks which, irrespective of its kind, need the temperature of 20-30[degree]C and the moisture of 60% or more as its breeding conditions. The tick-proof effect of Segrocera is as excellent as 90-99% and even after keeping its specimen at 75RH for 12 months, it has shown the ratio of inhibiting ticks' breeding of 98-99%. In comparison with that the effect of other tick-proof agent, pyrethroids-based aerosol is limited up to 24 hours, it is the feature of Segrocera that its life is considerably longer. Safety of Segrocera is also very high. 2 refs., 1 fig., 7 tabs.

  5. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendfra Nagabhushana

    2001-07-01

    The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

  6. Coated ceramic breeder materials

    Science.gov (United States)

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  7. Dense ceramic articles

    International Nuclear Information System (INIS)

    Cockbain, A.G.

    1976-01-01

    A method is described for the manufacture of articles of substantially pure dense ceramic materials, for use in severe environments. Si N is very suitable for use in such environments, but suffers from the disadvantage that it is not amenable to sintering. Some disadvantages of the methods normally used for making articles of Si N are mentioned. The method described comprises mixing a powder of the substantially pure ceramic material with an additive that promotes densification, and which is capable of nuclear transmutation into a gas when exposed to radiation, and hot pressing the mixture to form a billet. The billet is then irradiated to convert the additive into a gas which is held captive in the billet, and it is then subjected to a hot forging operation, during which the captive gas escapes and an article of substantially pure dense ceramic material is forged. The method is intended primarily for use for Si N, but may be applied to other ceramic materials. The additive may be Li or Be or their compounds, to the extent of at least 5 ppm and not more than 5% by weight. Irradiation is effected by proton or neutron bombardment. (UK)

  8. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-05-01

    The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

  9. Wonderland of ceramics superplasticity; Ceramics chososei no sekai

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, F. [National Industrial Research Inst. of Nagoya, Nagoya (Japan)

    1995-07-01

    It has been ten years since it was found that ceramics, which is strong and hard at room temperatures and does not deform at all, may exhibit a superplasticity phenomenon at high temperatures that it endlessly elongates when pulled as if it were chewing gum. This phenomenon is one of peculiar behaviours which nano-crystal ceramics, pulverized to an extent that the crystalline particle size is on the order of nanometers, show. The application of superplasticity made the material engineers`s old dream come true that hard ceramics are arbitrarily deformed and machined like metal. Using as models materials such as silicone nitride, alumina and zirconia, this paper describes the history and deformation mechanism of ceramics superplasticity, material design aiming at superplasticization and application of ceramics superplasticity to the machining technology. Furthermore, it describes the trend and future development of international joint researches on the basic surveys on ceramics superplasticity. 25 refs., 11 figs.

  10. Positron annihilation in transparent ceramics

    International Nuclear Information System (INIS)

    Husband, P; Selim, F A; Bartošová, I; Slugeň, V

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics. (paper)

  11. Joining ceramics, glass and metal

    International Nuclear Information System (INIS)

    Kraft, W.

    1989-01-01

    In many areas of electronics, engine manufacturing, machine and apparatus construction and aearospace, different combinations of materials such as ceramics/metal and glass/metal are gaining increasingly in importance. The proceedings cover the 53 papers presented to the 3rd International Conference on Joining Ceramics, Glass and Metal, held in Bad Nauheim (FRG) from April 26 to 28, 1989. The papers discuss problems and results under the following main topics of the conference: (1) Active brazing applied to non-oxide ceramics and oxide ceramics. (2) Diffusion bonding of metals and ceramics. (3) Friction welding, reaction bonding, and other joining methods. (4) Properties of metal-ceramic joints (as e.g. residual stress, fracture toughness, thermal stress) and various investigation methods for their determination. (MM) [de

  12. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  13. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1987-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying responses to the fusion environment. Materials can be identified today that will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications. (author)

  14. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications

  15. Piezoelectric Ceramics Characterization

    National Research Council Canada - National Science Library

    Jordan, T

    2001-01-01

    ... the behavior of a piezoelectric material. We have attempted to cover the most common measurement methods as well as introduce parameters of interest. Excellent sources for more in-depth coverage of specific topics can be found in the bibliography. In most cases, we refer to lead zirconate titanate (PZT) to illustrate some of the concepts since it is the most widely used and studied piezoelectric ceramic to date.

  16. Advanced ceramic in structural engineering

    OpenAIRE

    Alonso Rodea, Jorge

    2012-01-01

    The work deals with "Advanced Ceramics in Structural Engineering”. Throughout this work we present the different types of ceramic that are currently in wider use, and the main research lines that are being followed. Ceramics have very interesting properties, both mechanical and electrical and refractory where we can find some of the most interesting points of inquiry. Through this work we try tounderstand this complex world, analyzing both general and specific properties of ...

  17. Ion conductivity of nasicon ceramics

    International Nuclear Information System (INIS)

    Hoj, J.W.; Engell, J.

    1989-01-01

    The Nasicon ss ,Na 1 + X Zr 2 Si X P 3 - X O 12 o , X , 3, includes some of the best solid state sodium conductors known today. Compositions in the interval 1.6 , X , 2.6 show conductivities comparable to the best β double-prime-alumina ceramics. It is well known that the ion conductivity of β-alumina is strongly dependent on the texture of the ceramic. Here a similar behavior is reported for Nasicon ceramics. Ceramics of the bulk composition Na 2.94 Zr 1.49 Si 2.20 P 0.80 O 10.85 were prepared by a gel method. The final ceramics consist of Nasicon crystals with x = 2.14 and a glass phase. The grain size and texture of the ceramics were controlled by varying the thermal history of the gel based raw materials and the sintering conditions. The room temperature resistivity of the resulting ceramics varies from 3.65*10 3 ohm cm to 1.23*10 3 ohm cm. Using the temperature comparison method and estimates of the area of grain boundaries in the ceramics, the resistivity of the Nasicon phase is estimated to be 225 ohm cm at 25 degrees C. B 2 O 3 - or Al 2 O 3 -doping of the glass bearing Nasicon ceramic lower the room temperature resistivity by a factor 2 to 5. The dopants do not substitute into the Nasicon phase in substantial amounts

  18. Deodorant ceramic catalyst. Dasshu ceramics shokubai

    Energy Technology Data Exchange (ETDEWEB)

    Arai, K. (Kobe Steel Ltd., Kobe (Japan)); Naka, R. (Hitachi Ltd., Tokyo (Japan))

    1993-07-01

    Concerning debromination to be used for the filter of deodorizing device, those of long life and high deodorizing performance are demanded a great deal. As one of this kind of debromination, a deodorant ceramic catalyst (mangantid) has been developed and put for practical use as deodorant for refrigerator. In this article, the information and knowledge obtained by the development of mangantid, the features as well as several properties of the product are stated. The deodorizing methods currently used practically are roughly divided into 6 kinds such as the adsorption method, the direct combustion method, the catalytic method and the oxidation method, but each of them has its own merit and demerit, hence it is necessary to select the method in accordance with the kind of odor and its generating condition. Mangantid is a compound body of high deodorant material in a honeycomb configuration, and has the features that in comparison with the existing deordorants, its pressure loss is smaller, its deodorizing rate is bigger, and acidic, neutral and basic gaseous components can be removed in a well-balanced manner. Deodorization with mangantid has the mechanism to let the odorous component contact and react with the catalyst and change the component to the non-odorous component in the temperature range from room temperature to the low temperature region. 5 refs., 11 figs., 1 tab.

  19. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 12. Science and Technology of Ceramics - Functional Ceramics. Sheela K Ramasesha. Series Article Volume 4 Issue 12 December 1999 pp 21-30. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Science and Technology of Ceramics - Traditional Ceramics. Sheela K Ramasesha. Series Article Volume 4 Issue 8 August 1999 pp 16-24. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Ceramics in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T D; Mendel, J E [eds.

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  2. Micromolding for ceramic microneedle arrays

    NARCIS (Netherlands)

    van Nieuwkasteele-Bystrova, Svetlana Nikolajevna; Lüttge, Regina

    2011-01-01

    The fabrication process of ceramic microneedle arrays (MNAs) is presented. This includes the manufacturing of an SU-8/Si-master, its double replication resulting in a PDMS mold for production by micromolding and ceramic sintering. The robustness of the replicated structures was tested by means of

  3. Improved Tensile Test for Ceramics

    Science.gov (United States)

    Osiecki, R. A.

    1982-01-01

    For almost-nondestructive tensile testing of ceramics, steel rod is bonded to sample of ceramic. Assembly is then pulled apart in conventional tensile-test machine. Test destroys only shallow surface layer which can be machined away making specimen ready for other uses. Method should be useful as manufacturing inspection procedure for low-strength brittle materials.

  4. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  5. Zirconia based ceramics

    International Nuclear Information System (INIS)

    Bressiani, J.C.; Bressiani, A.H.A.

    1989-05-01

    Within the new generation of ceramic materials, zirconia continues to attract ever increasing attention of scients, technologists and users by virtue of its singular combination of properties and being able to perform thermo-mechanical, electroeletronic, chemico-biological functions. Nevertheless, in order to obtain these properties, a through understanding of the phase transformation mechanisms and microstructural changes is necessary. This paper discusses the main parameters that require control during fabrication of these materials to obtain desired properties for a specific application. (author) [pt

  6. Transformation Toughening of Ceramics

    Science.gov (United States)

    1992-03-01

    irilugal Coimoi’datiio of Ai:0, and Al.O,/ZrO1 Compositte Slurries vit December 1991 Enhanced Fracture Toughness in Layered Microcomposites of Ce-ZrOz and...34 Nature (London), 258, 703-705 (1975). 2. K.E. Tsukuma and M. Shimada, *Strength, Fracture Toughness, and Vickers Hardness of CeO2 -Stabilized Tetragonal...Transformation Plasticity of CeO2 -stabllized Tetragonal Zirconia Polycrystals and I Stress Assistance and Autocatalysis," 3. Am. Ceram. Soc. 72(5] 343-53

  7. Zirconia based ceramics

    International Nuclear Information System (INIS)

    Bressiani, J.C.; Bressiani, A.H.A.

    1988-01-01

    Within the new generation of ceramic materials, zirconia continues to attract ever increasing attention of scientists, technologists and users by virtue of its singular combination of properties and being able to perform thermo-mechanical, electro-electronic, chemico-biological functions. Nevertheless, in order to obtain these properties, a through understanding of the phase transformation mechanisms and microstructural changes is necessary. This paper discusses the main parameters that require control during fabrication of these materials to obtain desired properties for a specific application. (author) [pt

  8. Indentation Damage in Ceramics.

    Science.gov (United States)

    1987-05-30

    resistance have finer grain sizes (cf. A999 and Vistal ). Most interesting, however, is the quantitative correlation between grinding resistance and...a 0.1 3 4.3 2.2 Vistal I a 0.1 20 4.1 1.7 Vistal 1, a 0.1 40 4.6 1.5 Glass-ceramic Pyroceram c - 1.5 2.3 2.0 Macor C _ 13 2.3 1.0 a. Coors Porcelain

  9. Tribology of Ceramics

    Science.gov (United States)

    1988-01-01

    techniques that do not require a vacuum (e.g., optical techniques such as FTIR , Raman, etc.). a Explore methods such as the use of a small spot...not require a vacuum (e.g., optical techniques such as FTIR , Raman, etc.). 0 Explore methods such as the use of a small spot ESCA device with an... inden - tation of ceramics. J. Mat. Sci., Vol. 16, pp. 1177-1182. Oh, H. L., and I. Finnie. 1966. An analysis of rock drilling by erosion. Proc. 1st Cong

  10. Study on the performance of ceramic composite projectile penetrating into ceramic composite target

    Directory of Open Access Journals (Sweden)

    Rong-cheng Yi

    2017-08-01

    Full Text Available In order to study the performance of ceramic composite projectile penetrating into ceramic composite target, the contrast test and numerical simulations of the penetration of standard projectile and the ceramic composite projectile into a ceramic composite target were conducted. The results show that the penetration performance of ceramic composite projectile is obvious superior to that of standard projectile for ceramic composite target. The ceramic nose of ceramic composite projectile fully destroys the ceramic panels anterior to its following armor-piercing projectile body, thus maintaining the penetration ability of the following armor-piercing projectile body.

  11. Method of forming a ceramic matrix composite and a ceramic matrix component

    Science.gov (United States)

    de Diego, Peter; Zhang, James

    2017-05-30

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  12. Synthesis and characterization of natural hydroxyapatite (recycled) composites with titania; Sintese e caracterizacao de compositos de hidroxiapatita natural (reciclada) com titania

    Energy Technology Data Exchange (ETDEWEB)

    Mendes Filho, Antonio Alves; Gouveia, Vitor Jose Pinto, E-mail: antonio.mendes@cetec.br, E-mail: vitor@cetec.br [Fundacao Centro Tecnologico de Minas Gerais (CETEC), MG (Brazil); Pereira, Renato Alves; Araujo, Fernando Gabriel da Silva, E-mail: renafis@yahoo.com.br, E-mail: fgabrielaraujo@uol.com.br [Universidade Federal de Ouro Preto (UFOP), MG (Brazil); Sousa, Camila Mateus de, E-mail: kamila_mateus@hotmail.com [Centro Universitario de Belo Horizonte (UNI-BH), MG (Brazil)

    2010-07-01

    Natural hydroxyapatite biphasic ceramics (recycled) with titania (TiO{sub 2}-Hap) were studied in this work. For the formation of such ceramic the powders were mixed natural hydroxyapatite obtained from veal bone by the hydrothermal method with titania (TiO{sub 2}), forming the composites H9T1. The powders, manually homogenized, were conformed in pellet and sintered at temperatures between 1200 and 1400 deg C The ceramic bodies were characterized by XRD and SEM/EDS. The initial results were not satisfactory and require new studies. (author)

  13. Nano-ceramics and its molding technologies

    International Nuclear Information System (INIS)

    Liu Jian; Xu Yunshu

    2007-01-01

    Nano-ceramics and its related knowledge were introduced. Fabrication of nano-ceramic powder, as well as the molding and sintering technologies of nano-ceramics were reviewed. Features of the present molding technologies were analyzed. The applications of nano-ceramics were prospected. (authors)

  14. Preparation of 147Pm ceramic source core

    International Nuclear Information System (INIS)

    Mielcarski, M.

    1989-01-01

    Preparation of ceramic pellets containing fixed promethium-147 is described. Incorporation rate of 147 Pm into the ceramic material was determined. The leachability and vaporization of promethium from the obtained ceramics was investigated. The ceramic pellets prepared by the described procedure, mounted in special holders, can be applied as point sources in beta backscatter thickness gauges. (author)

  15. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  16. Ceramics and magnetohydrodynamics

    International Nuclear Information System (INIS)

    Yvars, M.

    1982-01-01

    The principle of MHD conversion using ionized gases is briefly recalled. The enthalpy and temperature of the gas at the outlet of the MHD nozzle are still very high, so it is therefore essential to use this heat with care, by associating the MHD generator with a conventional steam or gas thermal unit (''head cycle''). The block diagrams of the open or closed cycles are particularly examined. The main difficulties of the MHD cycles are summed up. Closer interest is given to those relating to the alkaline seed cycle before moving on to the technology of the high temperature exchanger and the MHD nozzle. The use of MHD at the industrial stage is confronted with the problem of developing ceramics that operate at high temperatures, with significant thermal gradients. The ceramics for insulating walls, for conducting electrodes and those used for thermal exchangers are examined in turn. The article ends with a brief review of the progress of MHD work in the world [fr

  17. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  18. Correlation between ceramics translucency and polymerization efficiency through ceramics.

    Science.gov (United States)

    Ilie, Nicoleta; Hickel, Reinhard

    2008-07-01

    The aim of this study was to analyse the effects of curing with a high intensity curing unit for different exposure times, for different ceramic types, thicknesses and corresponding different ceramic translucencies. The relationship between ceramic translucency and hardness, as well as the critical translucency value for sufficient curing were also determined. All these effects were expressed in terms of Vickers hardness measured with an automatic micro hardness indenter on thin luting composite films (Variolink II), stored for 24h in distilled water at 37 degrees C. Two preliminary studies determined the time necessary to achieve maximum hardness in the luting composite, with and without an additional chemical catalyst. The main study aimed to estimate the effect on luting composite hardness, without an additional chemical catalyst, of the following parameters: curing time (5, 10 and 15s), ceramic thickness (0.5, 1, 2 and 3mm), ceramic type (two leucite-reinforced and two lithium disilicate glass-ceramics) and ceramic translucency (TP), measured using a reflection spectrophotometer as a function of wavelength. The minimum curing time necessary to achieve maximum hardness in the luting composite was 15s for both groups, with and without an additional chemical catalyst. However, dual curing caused a hardness enhancement of ca. 50%. The two leucite-reinforced glass-ceramics did not reduced the hardness of the luting composite up to a ceramic thickness of 2mm, whereas the more dense lithium disilicate glass-ceramics had already caused this effect at a thickness of 1mm. ANOVA analyses revealed that the greatest effect on the luting composite hardness resulted from the curing time (eta square=0.62) followed by translucency (eta square=0.32 TP650 nm and 0.28 for TP470 nm), ceramic type (eta square=0.17) and ceramic thickness (eta square=0.03). High-power curing units are not able to consistently reduce the exposure time. In both systems, at least 15s were necessary to

  19. High density, low open porosity magnesia ceramics

    International Nuclear Information System (INIS)

    Alecu, I.D.; Stead, R.J.

    1998-01-01

    Many modern high-tech applications require magnesia ceramic components with high bulk densities and very low apparent porosities. Quite commonly, bulk densities above 3500 kg.m -3 and open porosities close to zero are specified for such applications of magnesia ceramics. The paper presents the recent achievements of Rojan Advanced Ceramics in the field of high density, very low open porosity magnesia ceramic materials and special products, including labware and planar components. Copyright (1998) Australasian Ceramic Society

  20. Hardness of ion implanted ceramics

    International Nuclear Information System (INIS)

    Oliver, W.C.; McHargue, C.J.; Farlow, G.C.; White, C.W.

    1985-01-01

    It has been established that the wear behavior of ceramic materials can be modified through ion implantation. Studies have been done to characterize the effect of implantation on the structure and composition of ceramic surfaces. To understand how these changes affect the wear properties of the ceramic, other mechanical properties must be measured. To accomplish this, a commercially available ultra low load hardness tester has been used to characterize Al 2 O 3 with different implanted species and doses. The hardness of the base material is compared with the highly damaged crystalline state as well as the amorphous material

  1. Ceramics for Turbine Engine Applications.

    Science.gov (United States)

    1980-03-01

    DEVELOPMENT OF CERAMIC NOZZLE SECTION FOR SMIALL RADIAL GAS TURBINE by J.C.Napier and J.P. Arnold 12 DEVELOPMENT OF A CERAMIC TURBINE NOZZLE RING by H.Burfeindt...this way, for instance, a Daimler engine was in 1911 awarded the prize of the "Automobiltechnische Gesell - schaft". In 1912, a Benz engine won the...blade development Turtle U~nion RB 199 v)ln BENEFITS OF CERAMICS TO GAS TURBINES by Arnold Brooks and Albert I. Bellin Aircraft Engine Group General

  2. Porous ceramics out of oxides

    International Nuclear Information System (INIS)

    Bakunov, V.S.; Balkevich, V.L.; Vlasov, A.S.; Guzman, I.Ya.; Lukin, E.S.; Poluboyarinov, D.N.; Poliskij, R.Ya.

    1977-01-01

    A review is made of manufacturing procedures and properties of oxide ceramics intended for high-temperature thermal insulation and thermal protection applications. Presented are structural characteristics of porous oxide refractories and their properties. Strength and thermal conductivity was shown to depend upon porosity. Described is a procedure for manufacturing porous ceramic materials from aluminium oxide, zirconium dioxide, magnesium oxide, beryllium oxide. The thermal resistance of porous ceramics from BeO is considerably greater than that of other high-refractoriness oxides. Listed are areas of application for porous materials based on oxides

  3. Ceramic drug-delivery devices.

    Science.gov (United States)

    Lasserre, A; Bajpai, P K

    1998-01-01

    A variety of ceramics and delivery systems have been used to deliver chemicals, biologicals, and drugs at various rates for desired periods of time from different sites of implantation. In vitro and in vivo studies have shown that ceramics can successfully be used as drug-delivery devices. Matrices, inserts, reservoirs, cements, and particles have been used to deliver a large variety of therapeutic agents such as antibiotics, anticancer drugs, anticoagulants, analgesics, growth factors, hormones, steroids, and vaccines. In this article, the advantages and disadvantages of conventional drug-delivery systems and the different approaches used to deliver chemical and biological agents by means of ceramic systems will be reviewed.

  4. Dynamic crack arrest in ceramics and ceramic composites

    Science.gov (United States)

    Kobayashi, A. S.; Yang, K. H.

    1989-01-01

    The results of past dynamic crack arrest experiments involving structural ceramics and ceramic composites are reviewed and analyzed. The lack of dynamic crack arrest in very brittle materials is discussed and contrasted with dynamic crack arrest in somewhat brittle metallic and polymeric materials. Numerical analyses show that the lack of crack arrest is due to reduced dynamic fracture resistance of the material and is not due to the kinetic energy.

  5. Ceramics for fusion devices

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1984-01-01

    Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors

  6. Agglomeration of ceramic powders

    Science.gov (United States)

    Cawley, James D.; Larosa, Judith; Dirkse, Fredrick

    1989-01-01

    A research program directed at a critical comparison of numerical models for power agglomeration with experimental observations is currently underway. Central to this program is the quantitative characterization of the distribution of mass within an agglomerate as a function of time. Current experiments are designed to restrict agglomeration to a surface, which is oriented perpendicular to the force of gravity. These experiments are discussed with reference to: their significance to ceramic processing; artifacts which may be avoided in microgravity experiments; and the comparison of information available in real space (from optical microscopy) to that in reciprocal space (from light scattering). The principle machine requirement appears to be a need to obtain information at small scattering angles.

  7. Creep in electronic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Routbort, J. L.; Goretta, K. C.; Arellano-Lopez, A. R.

    2000-04-27

    High-temperature creep measurements combined with microstructural investigations can be used to elucidate deformation mechanisms that can be related to the diffusion kinetics and defect chemistry of the minority species. This paper will review the theoretical basis for this correlation and illustrate it with examples from some important electronic ceramics having a perovskite structure. Recent results on BaTiO{sub 3}, (La{sub 1{minus}x}Sr){sub 1{minus}y}MnO{sub 3+{delta}}, YBa{sub 2}Cu{sub 3}O{sub x}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x}, (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} and Sr(Fe,Co){sub 1.5}O{sub x} will be presented.

  8. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

  9. Recent progress in ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E.

    1998-09-01

    Both fundamental and practical aspects of ceramic joining are understood well enough for many, if not most, applications requiring moderate strengths at room temperature. This paper argues that the two greatest needs in ceramic joining are for techniques to join buried interfaces by selective heating, and methods for joining ceramics for use at temperatures of 800 to 1,200 C. Heating with microwave radiation or with high-energy electron beams has been used to join buried ceramic interfaces, for example SiC to SiC. Joints with varying levels of strength at temperatures of 600 to 1,000 C have been made using four techniques: (1) transient liquid phase bonding; (2) joining with refractory braze alloys; (3) joining with refractory glass compositions; and (4) joining using preceramic polymers. Joint strengths as high as 550 MPa at 1,000 C have been reported for silicon nitride-silicon nitride bonds tested in four-point flexure.

  10. Metals and Ceramics Information Center.

    Science.gov (United States)

    1981-07-01

    Specialization CURRENT AWARENESS BULLETIN (Continued) Noton, B. R. Program Manager Report on Conference Pattee , H. E. Staff Metallurgist Metals...Welding Duckworth, W. H. Staff Engineer Ceramics Pattee , H. Staff Engineer Welding HANDBOOKS /DATABOOKS Hucek, H. J. Staff Metallurgist Mechanical

  11. Moessbauer studies of Inca ceramics

    International Nuclear Information System (INIS)

    Wagner, U.; Wagner, F.E.; Marticorena, B.; Salazar, R.; Schwabe, R.; Riederer, J.

    1986-01-01

    To obtain information on the firing of Inca ceramics, 7 samples from different locations were studied by Moessbauer spectroscopy including a detailed laboratory refiring procedure. The glaze typical for the surface of this ware was studied by Moessbauer scattering. (Auth.)

  12. Inorganic glass ceramic slip rings

    Science.gov (United States)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  13. Geopolymers for Structural Ceramic Applications

    Science.gov (United States)

    2006-08-31

    Stow, Ohio 44224 Abstract Geopolymers , also called geo- cements and low-temperature synthesized glasses, are a class of cementious materials that do...Applications of geopolymers have included ceramic matrix composites,ŕ, 3 waste encapsulation 9-11and alternative cements .7,12,14 As adhesives...and H. Schneider, The American Ceramic Society, Westerville, OH, 2003. 3J. Bell and W. M. Kriven, "Nanoporosity in geopolymeric cements " pp. 590-591

  14. Ceramic Repair Without Hydrofluoric Acid.

    Science.gov (United States)

    Bergoli, César Dalmolin; de Carvalho, Rodrigo Furtado; Luz, Julio Nogueira; Luz, Murilo Souza; Meincke, Débora Könzgen; Saavedra, Guilherme de Siqueira Ferreira

    To evaluate the bond strength between composite resin and feldspathic ceramic following repair protocols with and without hydrofluoric acid and aging by thermocycling. Forty-eight glass feldspathic ceramic blocks (8 x 8 x 6 mm) were divided into three groups on the basis of their surface repair treatment: 1. 10% hydrofluoric acid + Signum Ceramic Primer I + Signum Ceramic Primer II (control group); 2. abrasive rubber tips + Signum Ceramic Primer I + Signum Ceramic Primer II (test group); 3. Signum Ceramic Primer I + Signum Ceramic Primer II (negative control group). The treated surface of each block was built up with composite and then sectioned to produce nontrimmed bars (adhesive area = 1 mm²). Half of the bars from each group were aged by 6000 cycles of 30-s immersions in water baths at 5°C and 55°C, with a transfer time of 2 s. The other bars were immediately subjected to microtensile bond strength testing. The mean bond strength for each block was then recorded and submitted to two-way ANOVA and Tukey's test (α = 0.05). The aging protocol influenced the bond strength values of all groups (p = 0.000). The non-aged groups submitted to surface treatment protocols 1 (13.1 ± 2.5 MPa) and 2 (11.5 ± 5.1 MPa) presented the highest bond strength values. The interface bond strength of all groups was susceptible to aging. Surface treatment protocol 2, with abrasive rubber tips and no hydrofluoric acid, appeared to be the most promising option, as the resulting bond strength values were similar to those of the control group.

  15. Extruded ceramic honeycomb and method

    Science.gov (United States)

    Day, J. Paul

    1995-04-04

    Extruded low-expansion ceramic honeycombs comprising beta-spodumene solid solution as the principal crystal phase and with less than 7 weight percent of included mullite are produced by compounding an extrusion batch comprising a lithium aluminosilicate glass powder and a clay additive, extruding a green honeycomb body from the batch, and drying and firing the green extruded cellular honeycomb to crystallize the glass and clay into a low-expansion spodumene ceramic honeycomb body.

  16. Fracture-dissociation of ceramic liner.

    Science.gov (United States)

    Hwang, Sung Kwan; Oh, Jin-Rok; Her, Man Seung; Shim, Young Jun; Cho, Tae Yeun; Kwon, Sung Min

    2008-08-01

    The use of BIOLOX delta ceramic (CeramTec AG, Plochingen, Germany) has been increasing. This ceramic prevents cracking by restraining the phase transformation due to the insertion of nano-sized, yttria-stabilized tetragonal zirconia into the alumina matrix. This restrains the progress of cracking through the formation of platelet-like crystal or whiskers due to the addition of an oxide additive. We observed a case of BIOLOX delta ceramic liner (CeramTec AG) rim fracture 4 months postoperatively. Radiographs showed that the ceramic liner was subluxated from the acetabular cup. Scratches on the acetabular cup and femoral neck were seen, and the fracture was visible on the rim of the liner. Under electron microscope, metal particle coatings from the ceramic liner were identified. The ceramic liner, fracture fragments, and adjacent tissues were removed and replaced with a ceramic liner and femoral head of the same size and design. We believe the mechanism of the fracture-dissociation of the ceramic liner in this case is similar to a case of separation of the ceramic liner from the polyethylene shell in a sandwich-type ceramic-ceramic joint. To prevent ceramic liner fracture-dissociation, the diameter of the femoral neck needs to be decreased in a new design, while the diameter of the femoral head needs to be increased to ensure an increase in range of motion.

  17. Ceramics as nuclear reactor fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    1975-01-01

    Ceramics are widely accepted as nuclear reactor fuel materials, for both metal clad ceramic and all-ceramic fuel designs. Metal clad UO 2 is used commercially in large tonnages in five different power reactor designs. UO 2 pellets are made by familiar ceramic techniques but in a reactor they undergo complex thermal and chemical changes which must be thoroughly understood. Metal clad uranium-plutonium dioxide is used in present day fast breeder reactors, but may eventually be replaced by uranium-plutonium carbide or nitride. All-ceramic fuels, which are necessary for reactors operating above about 750 0 C, must incorporate one or more fission product retentive ceramic coatings. BeO-coated BeO matrix dispersion fuels and silicate glaze coated UO 2 -SiO 2 have been studied for specialised applications, but the only commercial high temperature fuel is based on graphite in which small fuel particles, each coated with vapour deposited carbon and silicon carbide, are dispersed. Ceramists have much to contribute to many aspects of fuel science and technology. (author)

  18. Method for Waterproofing Ceramic Materials

    Science.gov (United States)

    Cagliostro, Domenick E. (Inventor); Hsu, Ming-Ta S. (Inventor)

    1998-01-01

    Hygroscopic ceramic materials which are difficult to waterproof with a silane, substituted silane or silazane waterproofing agent, such as an alumina containing fibrous, flexible and porous, fibrous ceramic insulation used on a reentry space vehicle, are rendered easy to waterproof if the interior porous surface of the ceramic is first coated with a thin coating of silica. The silica coating is achieved by coating the interior surface of the ceramic with a silica precursor converting the precursor to silica either in-situ or by oxidative pyrolysis and then applying the waterproofing agent to the silica coated ceramic. The silica precursor comprises almost any suitable silicon containing material such as a silane, silicone, siloxane, silazane and the like applied by solution, vapor deposition and the like. If the waterproofing is removed by e.g., burning, the silica remains and the ceramic is easily rewaterproofed. An alumina containing TABI insulation which absorbs more that five times its weight of water, absorbs less than 10 wt. % water after being waterproofed according to the method of the invention.

  19. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  20. Exoelectron emission from magnesium borate glass ceramics

    International Nuclear Information System (INIS)

    Kawamoto, Takamichi; Yanagisawa, Hideo; Nakamichi, Hiroshi; Kikuchi, Riichi; Kawanishi, Masaharu.

    1986-01-01

    Thermally stimulated exoelectron emission (TSEE) of a magnesium borate glass ceramics was investigated for its application to dosemetric use. It has been found that the TSEE glow patterns of the magnesium borate glass ceramics as well as a Li 2 B 4 O 7 glass ceramics depend on the kind of the radiation used and that the heat resistance of the magnesium borate glass ceramics is higher than that of the Li 2 B 4 O 7 glass ceramics. Therefore, the TSEE glow patterns of the magnesium borate glass ceramics indicate a possibility to be used as the dose measurement for each kind of radiation in the mixed radiation field. (author)

  1. All-ceramic crowns: bonding or cementing?

    Science.gov (United States)

    Pospiech, Peter

    2002-12-01

    Despite the wide variety of all-ceramic systems available today, the majority of dental practitioners hesitate to recommend and insert all-ceramic crowns. This article regards the nature of the ceramic materials, the principles of bonding and adhesion, and the clinical problems of the acid-etch technique for crowns. Advantages and disadvantages are discussed, and the influences of different factors on the strength of all-ceramic crowns are presented. Finally, the conclusion is drawn that conventional cementing of all-ceramic crowns is possible when the specific properties of the ceramics are taken into consideration.

  2. Development of forsterite ceramic materials at Rojan Advanced Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Alecu, I.D.; Stead, R.J. [Rojan Advanced Ceramics Pty Ltd, Osborne Park, WA (Australia)

    1998-12-31

    Forsterite is a crystalline magnesium silicate with the chemical formula Mg{sub 2}SiO{sub 4} or 2MgO.SiO{sub 2}. It is best known for having, like the other magnesium silicate, clino- enstatite, with the formula MgSiO{sub 3} or MgO.SiO{sub 2}, an extremely low electrical conductivity. This makes forsterite ceramics the ideal substrate materials for electronics. In addition, forsterite ceramics are considered as some of the most adequate materials for applications as manifolds for SOFC - Solid Oxide Fuel Cells - due to them having a linear thermal expansion coefficient perfectly matching with the other cell components and a very high stability in fuel cell environments. The paper presents some of the results of the technology R and D performed at Rojan Advanced Ceramics Pty Ltd. in Perth, Western Australia, together with some material characteristics and several forsterite ceramic products, from crucibles and boats to planar components. Copyright (1998) Australasian Ceramic Society 3 refs., 1 fig.

  3. Glass Ceramic Formulation Data Package

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-06-17

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the

  4. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (plastics. One possible way of processing nanoceramic coatings at low temperatures (plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  5. Autonomous biomorphic robots as platforms for sensors

    International Nuclear Information System (INIS)

    Tilden, M.; Hasslacher, B.; Mainieri, R.; Moses, J.

    1996-01-01

    The idea of building autonomous robots that can carry out complex and nonrepetitive tasks is an old one, so far unrealized in any meaningful hardware. Tilden has shown recently that there are simple, processor-free solutions to building autonomous mobile machines that continuously adapt to unknown and hostile environments, are designed primarily to survive, and are extremely resistant to damage. These devices use smart mechanics and simple (low component count) electronic neuron control structures having the functionality of biological organisms from simple invertebrates to sophisticated members of the insect and crab family. These devices are paradigms for the development of autonomous machines that can carry out directed goals. The machine then becomes a robust survivalist platform that can carry sensors or instruments. These autonomous roving machines, now in an early stage of development (several proof-of-concept prototype walkers have been built), can be developed so that they are inexpensive, robust, and versatile carriers for a variety of instrument packages. Applications are immediate and many, in areas as diverse as prosthetics, medicine, space, construction, nanoscience, defense, remote sensing, environmental cleanup, and biotechnology

  6. Autonomous biomorphic robots as platforms for sensors

    Energy Technology Data Exchange (ETDEWEB)

    Tilden, M.; Hasslacher, B.; Mainieri, R.; Moses, J.

    1996-10-01

    The idea of building autonomous robots that can carry out complex and nonrepetitive tasks is an old one, so far unrealized in any meaningful hardware. Tilden has shown recently that there are simple, processor-free solutions to building autonomous mobile machines that continuously adapt to unknown and hostile environments, are designed primarily to survive, and are extremely resistant to damage. These devices use smart mechanics and simple (low component count) electronic neuron control structures having the functionality of biological organisms from simple invertebrates to sophisticated members of the insect and crab family. These devices are paradigms for the development of autonomous machines that can carry out directed goals. The machine then becomes a robust survivalist platform that can carry sensors or instruments. These autonomous roving machines, now in an early stage of development (several proof-of-concept prototype walkers have been built), can be developed so that they are inexpensive, robust, and versatile carriers for a variety of instrument packages. Applications are immediate and many, in areas as diverse as prosthetics, medicine, space, construction, nanoscience, defense, remote sensing, environmental cleanup, and biotechnology.

  7. Disc piezoelectric ceramic transformers.

    Science.gov (United States)

    Erhart, Jirií; Půlpán, Petr; Doleček, Roman; Psota, Pavel; Lédl, Vít

    2013-08-01

    In this contribution, we present our study on disc-shaped and homogeneously poled piezoelectric ceramic transformers working in planar-extensional vibration modes. Transformers are designed with electrodes divided into wedge, axisymmetrical ring-dot, moonie, smile, or yin-yang segments. Transformation ratio, efficiency, and input and output impedances were measured for low-power signals. Transformer efficiency and transformation ratio were measured as a function of frequency and impedance load in the secondary circuit. Optimum impedance for the maximum efficiency has been found. Maximum efficiency and no-load transformation ratio can reach almost 100% and 52 for the fundamental resonance of ring-dot transformers and 98% and 67 for the second resonance of 2-segment wedge transformers. Maximum efficiency was reached at optimum impedance, which is in the range from 500 Ω to 10 kΩ, depending on the electrode pattern and size. Fundamental vibration mode and its overtones were further studied using frequency-modulated digital holographic interferometry and by the finite element method. Complementary information has been obtained by the infrared camera visualization of surface temperature profiles at higher driving power.

  8. Bar piezoelectric ceramic transformers.

    Science.gov (United States)

    Erhart, Jiří; Pulpan, Půlpán; Rusin, Luboš

    2013-07-01

    Bar-shaped piezoelectric ceramic transformers (PTs) working in the longitudinal vibration mode (k31 mode) were studied. Two types of the transformer were designed--one with the electrode divided into two segments of different length, and one with the electrodes divided into three symmetrical segments. Parameters of studied transformers such as efficiency, transformation ratio, and input and output impedances were measured. An analytical model was developed for PT parameter calculation for both two- and three-segment PTs. Neither type of bar PT exhibited very high efficiency (maximum 72% for three-segment PT design) at a relatively high transformation ratio (it is 4 for two-segment PT and 2 for three-segment PT at the fundamental resonance mode). The optimum resistive loads were 20 and 10 kΩ for two- and three-segment PT designs for the fundamental resonance, respectively, and about one order of magnitude smaller for the higher overtone (i.e., 2 kΩ and 500 Ω, respectively). The no-load transformation ratio was less than 27 (maximum for two-segment electrode PT design). The optimum input electrode aspect ratios (0.48 for three-segment PT and 0.63 for two-segment PT) were calculated numerically under no-load conditions.

  9. Antiferroelectric Shape Memory Ceramics

    Directory of Open Access Journals (Sweden)

    Kenji Uchino

    2016-05-01

    Full Text Available Antiferroelectrics (AFE can exhibit a “shape memory function controllable by electric field”, with huge isotropic volumetric expansion (0.26% associated with the AFE to Ferroelectric (FE phase transformation. Small inverse electric field application can realize the original AFE phase. The response speed is quick (2.5 ms. In the Pb0.99Nb0.02[(Zr0.6Sn0.41-yTiy]0.98O3 (PNZST system, the shape memory function is observed in the intermediate range between high temperature AFE and low temperature FE, or low Ti-concentration AFE and high Ti-concentration FE in the composition. In the AFE multilayer actuators (MLAs, the crack is initiated in the center of a pair of internal electrodes under cyclic electric field, rather than the edge area of the internal electrodes in normal piezoelectric MLAs. The two-sublattice polarization coupling model is proposed to explain: (1 isotropic volume expansion during the AFE-FE transformation; and (2 piezoelectric anisotropy. We introduce latching relays and mechanical clampers as possible unique applications of shape memory ceramics.

  10. Ceramic HEPA Filter Program

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M A; Bergman, W; Haslam, J; Brown, E P; Sawyer, S; Beaulieu, R; Althouse, P; Meike, A

    2012-04-30

    Potential benefits of ceramic filters in nuclear facilities: (1) Short term benefit for DOE, NRC, and industry - (a) CalPoly HTTU provides unique testing capability to answer questions for DOE - High temperature testing of materials, components, filter, (b) Several DNFSB correspondences and presentations by DNFSB members have highlighted the need for HEPA filter R and D - DNFSB Recommendation 2009-2 highlighted a nuclear facility response to an evaluation basis earthquake followed by a fire (aka shake-n-bake) and CalPoly has capability for a shake-n-bake test; (2) Intermediate term benefit for DOE and industry - (a) Filtration for specialty applications, e.g., explosive applications at Nevada, (b) Spin-off technologies applicable to other commercial industries; and (3) Long term benefit for DOE, NRC, and industry - (a) Across industry, strong desire for better performance filter, (b) Engineering solution to safety problem will improve facility safety and decrease dependence on associated support systems, (c) Large potential life-cycle cost savings, and (d) Facilitates development and deployment of LLNL process innovations to allow continuous ventilation system operation during a fire.

  11. Panel report on high temperature ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nolet, T C [ed.

    1979-01-01

    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  12. Tailorable Porous Ceramics via Freeze Casting

    Data.gov (United States)

    National Aeronautics and Space Administration — Freeze casting of ceramics is a novel technique used to produce porous materials. The process involves solidifying a solvent in a ceramic slurry to produce a frozen...

  13. III Advanced Ceramics and Applications Conference

    CERN Document Server

    Gadow, Rainer; Mitic, Vojislav; Obradovic, Nina

    2016-01-01

    This is the Proceedings of III Advanced Ceramics and Applications conference, held in Belgrade, Serbia in 2014. It contains 25 papers on various subjects regarding preparation, characterization and application of advanced ceramic materials.

  14. Reliability of ceramics for heat engine applications

    Science.gov (United States)

    1980-01-01

    The advantages and disadvantages associated with the use of monolithic ceramics in heat engines are discussed. The principle gaps in the state of understanding of ceramic material, failure origins, nondestructive tests as well as life prediction are included.

  15. Cooled Ceramic Turbine Vane, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — N&R Engineering will investigate the feasibility of cooled ceramics, such as ceramic matrix composite (CMC) turbine blade concepts that can decrease specific...

  16. Ceramics: past, present, and future.

    Science.gov (United States)

    Lemons, J E

    1996-07-01

    The selection and application of synthetic materials for surgical implants has been directly dependent upon the biocompatibility profiles of specific prosthetic devices. The early rationale for ceramic biomaterials was based upon the chemical and biochemical inertness (minimal bioreactivity) of elemental compounds constituted into structural forms (materials). Subsequently, mildly reactive (bioactive), and partially and fully degradable ceramics were identified for clinical uses. Structural forms have included bulk solids or particulates with and without porosities for tissue ingrowth, and more recently, coatings onto other types of biomaterial substrates. The physical shapes selected were application dependent, with advantages and disadvantages determined by: (1) the basic material and design properties of the device construct; and (2) the patient-based functional considerations. Most of the ceramics (bioceramics) selected in the 1960s and 1970s have continued over the long-term, and the science and technology for thick and thin coatings have evolved significantly over the past decade. Applications of ceramic biomaterials range from bulk (100%) ceramic structures as joint and bone replacements to fully or partially biodegradable substrates for the controlled delivery of pharmaceutical drugs, growth factors, and morphogenetically inductive substances. Because of the relatively unique properties of bioceramics, expanded uses as structural composites with other biomaterials and macromolecular biologically-derived substances are anticipated in the future.

  17. Ceramic cutting tools materials, development and performance

    CERN Document Server

    Whitney, E Dow

    1994-01-01

    Interest in ceramics as a high speed cutting tool material is based primarily on favorable material properties. As a class of materials, ceramics possess high melting points, excellent hardness and good wear resistance. Unlike most metals, hardness levels in ceramics generally remain high at elevated temperatures which means that cutting tip integrity is relatively unaffected at high cutting speeds. Ceramics are also chemically inert against most workmetals.

  18. Emerging Ceramic-based Materials for Dentistry

    Science.gov (United States)

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  19. Development of advanced ceramics at AECL

    International Nuclear Information System (INIS)

    Palmer, B.J.F.; MacEwen, S.R.; Sawicka, B.D.; Hayward, P.J.; Sridhar, S.

    1986-12-01

    Atomic Energy of Canada Limited (AECL) has a long history of developing ceramics for nuclear fission and fusion applications. AECL is now applying its multidisciplinary materials R and D capabilities, including unique capabilities in ceramic processing and nondestructive evaluation, to develop advanced ceramic materials for commercial and industrial applications. This report provides an overview of the facilities and programs associated with the development of advanced ceramics at AECL

  20. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients

    OpenAIRE

    Hernigou, Philippe; Roubineau, Fran?ois; Bouthors, Charlie; Flouzat-Lachaniette, Charles-Henri

    2016-01-01

    Based on the exceptional tribological behaviour and on the relatively low biological activity of ceramic particles, Ceramic-on-Ceramic (CoC) total hip arthroplasty (THA) presents significant advantages CoC bearings decrease wear and osteolysis, the cumulative long-term risk of dislocation, muscle atrophy, and head-neck taper corrosion. However, there are still concerns regarding the best technique for implantation of ceramic hips to avoid fracture, squeaking, and revision of ceramic hips with...

  1. Durability of feldspathic veneering ceramic on glass-infiltrated alumina ceramics after long-term thermocycling.

    Science.gov (United States)

    Mesquita, A M M; Ozcan, M; Souza, R O A; Kojima, A N; Nishioka, R S; Kimpara, E T; Bottino, M A

    2010-01-01

    This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 ºC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.

  2. Instructional Resources. The Significance of Form: Ceramics.

    Science.gov (United States)

    Zawatsky, Carole; And Others

    1989-01-01

    Presents four lesson plans designed to teach K-12 students about ceramics and the artists using the medium. Each lesson is centered around one ceramic piece: (1) "Wall Clock," by the Chantilly Porcelain Factory; (2) "Poppy Vase," by Adelaide Robineau; (3) "Laughing Eyes," by Pablo Picasso; and (4) "Ceramic Drum Jar," by Tsayutitsa. (GEA)

  3. Study of brazilian market of advanvced ceramics

    International Nuclear Information System (INIS)

    Veiga, M.M.; Soares, P.S.M.; SIlva, A.P. da; Alvarinho, S.B.

    1989-01-01

    The brazilian actual market survey of advanced ceramics, divided in sectors according to their function is described. The electroelectronics, magnetics, optics, mechanics and nuclears ceramics are presented. A forecasting of the brazilian market in advanced ceramics are also mentioned. (C.G.C.) [pt

  4. Ablation Resistant Zirconium and Hafnium Ceramics

    Science.gov (United States)

    Bull, Jeffrey (Inventor); White, Michael J. (Inventor); Kaufman, Larry (Inventor)

    1998-01-01

    High temperature ablation resistant ceramic composites have been made. These ceramics are composites of zirconium diboride and zirconium carbide with silicon carbide, hafnium diboride and hafnium carbide with silicon carbide and ceramic composites which contain mixed diborides and/or carbides of zirconium and hafnium. along with silicon carbide.

  5. Preparation of a dense, polycrystalline ceramic structure

    Science.gov (United States)

    Cooley, Jason; Chen, Ching-Fong; Alexander, David

    2010-12-07

    Ceramic nanopowder was sealed inside a metal container under a vacuum. The sealed evacuated container was forced through a severe deformation channel at an elevated temperature below the melting point of the ceramic nanopowder. The result was a dense nanocrystalline ceramic structure inside the metal container.

  6. Lubrication And Wear Of Hot Ceramics

    Science.gov (United States)

    Sliney, H. E.; Jacobson, T. P.; Deadmore, D.; Miyoshi, K.

    1988-01-01

    Report presents results of experiments on tribological properties of ceramics. Describes friction and wear characteristics of some ceramics under consideration for use in gas turbines, diesel engines, and Stirling engines. Discusses formulation of composite plasma-sprayed ceramics containing solid lubricant additives, and data for carbide- and oxide-based composite coatings for use at temperatures up to at least 900 degree C.

  7. Surface treatment of ceramic articles

    International Nuclear Information System (INIS)

    Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, C.S.

    1998-01-01

    A process is disclosed for producing an article with improved ceramic surface properties including providing an article having a ceramic surface, and placing the article onto a conductive substrate holder in a hermetic enclosure. Thereafter a low pressure ambient is provided in the hermetic enclosure. A plasma including ions of solid materials is produced the ceramic surface of the article being at least partially immersed in a macroparticle free region of the plasma. While the article is immersed in the macroparticle free region, a bias of the substrate holder is biased between a low voltage at which material from the plasma condenses on the surface of the article and a high negative voltage at which ions from the plasma are implanted into the article. 15 figs

  8. Dynamic properties of ceramic materials

    International Nuclear Information System (INIS)

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process

  9. Radiation resistant ceramic matrix composites

    International Nuclear Information System (INIS)

    Jones, R.H.; Steiner, D.; Heinisch, H.L.; Newsome, G.A.; Kerch, H.M.

    1997-01-01

    Ceramic matrix composites are of interest for nuclear applications because of their high-temperature properties, corrosion resistance, fracture toughness relative to monolithic ceramics, and low neutron activation and after heat. Evaluations of the radiation resistance of commercially available SiC/SiC composites have revealed their promise for this application, but also the need for further development to achieve the desired performance. This paper summarizes the results of a workshop cosponsored by the Offices of Fusion Energy and Basic Energy Sciences of the US Department of Energy and Lockheed-Martin Corporation with forty attendees from national laboratories, universities and industry. A number of promising routes for optimizing the radiation stability of ceramic matrix composites were identified at this workshop. These routes included the newer, more stoichiometric fibers and alternate fiber/matrix interfaces and matrix processing routes. (orig.)

  10. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  11. Chemical characterization of marajoara ceramics

    International Nuclear Information System (INIS)

    Toyota, Rosimeiri Galbiati

    2009-01-01

    In this study the elemental concentration of Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sc, Sm, Ta, Tb, Th, U, Yb and Zn were determined by instrumental neutron activation analysis (INAA) in 204 fragments of Marajoara archaeological ceramics, of which 156 were provided by the Archaeology and Ethnology Museum of Sao Paulo University (MAE) and 48 were provided by Dr. Denise Pahl Schaan, Marajo Museum curator. Also, 9 contemporary ceramics produced and marketed at Marajo Island were analyzed. Electron paramagnetic resonance (EPR) analyses were performed in 8 archaeological samples and 1 contemporary sample in order to identify the burning temperature of the samples. X-ray diffraction (XRD) analyses were performed in 13 archaeological samples and 2 contemporary samples for the investigation of their mineralogical composition. Mahalanobis distance was used for the study of outlier while modified filter was used for the study of the temper added to the ceramic paste. Result interpretation was performed using cluster analysis, principal components analysis and discriminant analysis. Procrustes analysis was used for variable selection and it showed that the Ce, Fe, Eu, Hf, K and Th variables are adequate for the characterization of the analyzed samples. The comparative study among the archaeological and contemporary ceramics showed the arrangement of two well-defined and close groups for the archaeological samples and a third, distant group for the contemporary ones. This result indicates that the archaeological and contemporary ceramics differ in their composition. EPR and XRD analysis were inconclusive for the differentiation of archaeological and contemporary ceramics. (author)

  12. Ceramic veneers with minimum preparation.

    Science.gov (United States)

    da Cunha, Leonardo Fernandes; Reis, Rachelle; Santana, Lino; Romanini, Jose Carlos; Carvalho, Ricardo Marins; Furuse, Adilson Yoshio

    2013-10-01

    The aim of this article is to describe the possibility of improving dental esthetics with low-thickness glass ceramics without major tooth preparation for patients with small to moderate anterior dental wear and little discoloration. For this purpose, a carefully defined treatment planning and a good communication between the clinician and the dental technician helped to maximize enamel preservation, and offered a good treatment option. Moreover, besides restoring esthetics, the restorative treatment also improved the function of the anterior guidance. It can be concluded that the conservative use of minimum thickness ceramic laminate veneers may provide satisfactory esthetic outcomes while preserving the dental structure.

  13. Heat exchanger with ceramic elements

    Science.gov (United States)

    Corey, John A.

    1986-01-01

    An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

  14. Compliant sleeve for ceramic turbine blades

    Science.gov (United States)

    Cai, Hongda; Narasimhan, Dave; Strangman, Thomas E.; Easley, Michael L.; Schenk, Bjoern

    2000-01-01

    A compliant sleeve for attaching a ceramic member to a metal member is comprised of a superalloy substrate having a metal contacting side and a ceramic contacting side. The ceramic contacting side is plated with a layer of nickel followed by a layer of platinum. The substrate is then oxidized to form nickel oxide scale on the ceramic contacting side and a cobalt oxide scale on the metal contacting side. A lubricious coating of boron nitride is then applied over the metal contacting side, and a shear-stress limiting gold coating is applied over the ceramic contacting side.

  15. MHD oxidant intermediate temperature ceramic heater study

    Science.gov (United States)

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-09-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  16. High density, low open porosity magnesia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Alecu, I.D.; Stead, R.J. [Rojan Advanced Ceramics Pty Ltd, Osborne Park, WA (Australia)

    1998-12-31

    Many modern high-tech applications require magnesia ceramic components with high bulk densities and very low apparent porosities. Quite commonly, bulk densities above 3500 kg.m{sup -3} and open porosities close to zero are specified for such applications of magnesia ceramics. The paper presents the recent achievements of Rojan Advanced Ceramics in the field of high density, very low open porosity magnesia ceramic materials and special products, including labware and planar components. Copyright (1998) Australasian Ceramic Society 4 refs., 2 tabs., 1 fig.

  17. Industrial ceramics in Spain

    Directory of Open Access Journals (Sweden)

    Regueiro, M.

    2000-02-01

    Full Text Available The Spanish ceramic industry has experienced a amazing growth in the last four years. Such expansion has affected all sector, but has been particularly noteworthy in those directly related to construction: tiles. glazes, bricks and roof tiles. A combination of an extraordinary exporting effort, together with a record figure in new housing projects (415 000 houses in 1999, are responsible for such outburst. Other sectors, such as refractories have undergone significant growths due to the high rate of steel production increase, also in historical record figures (15m t in 1999. All this sectors doubled altogether the growing rate of their main European competitors. Raw material production has had an even more effervescent trend, almost doubling 1995 production. Such dynamic growth has been associated to a remarkable quality increase and to an unparalleled technological innovation process.

    La industria española de la cerámica ha experimentado un notable crecimiento en los últimos cuatro años; expansión que ha alcanzado a todos los sectores, pero que ha sido especialmente notable en los mas directamente asociados a la construcción: revestimientos, esmaltes, tejas y ladrillos. La combinación de un extraordinario esfuerzo exportador unido a las cifras récord en la viviendas iniciadas, 415 000 en 1999, justifican este auge. Otros sectores como refractarios han experimentado crecimientos significativos ante el ritmo elevado en la producción de acero, que alcanzó asimismo un récord histórico, 15 Mt en 1999. Para el conjunto de estos sectores el ritmo de crecimiento ha duplicado el de los principales competidores europeos. La producción de materias primas han experimentado un dinamismo aún mas elevado duplicándose prácticamente las cifras respecto a 1995. Este crecimiento ha estado asociado a un notable incremento en la calidad y en los procesos de innovación tecnológica.

  18. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared

  19. A new classification system for all-ceramic and ceramic-like restorative materials.

    Science.gov (United States)

    Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A

    2015-01-01

    Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.

  20. GEORGIAN PRODUCTION PREFABRICATED CERAMIC FIREPLACE

    International Nuclear Information System (INIS)

    Gaprindashvili, G.; Chemia, M.; Kartozia, L.

    2006-01-01

    General description and basic working principles of new construction prefabricated ceramic fireplace are given. The presented fireplace represents a unique synthesis of various fireplaces distributed in Georgian and some European countries; however, it is distinguished for its higher efficiency and other advantages. (author)

  1. Compositionally Graded Multilayer Ceramic Capacitors.

    Science.gov (United States)

    Song, Hyun-Cheol; Zhou, Jie E; Maurya, Deepam; Yan, Yongke; Wang, Yu U; Priya, Shashank

    2017-09-27

    Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. Here, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (design of miniature filters and power converters.

  2. Doubled-ended ceramic thyratron

    CERN Multimedia

    1974-01-01

    The double-ended ceramic thyratron CX 1171 B, with its coaxial voltage divider for the SPS. Such a switch, paralleled by three ignitrons in series forms the "thyragnitron" arrangement, and can switch 10 kA, 25 ms pulses, with very fast rise times.

  3. Soft lithography of ceramic patterns

    NARCIS (Netherlands)

    Göbel, Ole; Nedelcu, M.; Steiner, U.

    2007-01-01

    Polymer-based precursor solutions are patterned using a soft-lithographic patterning technique to yield sub-micrometer-sized ceramic patterns. By using a polymer-metal-nitrate solution as a lithographic resist, we demonstrate a micromolding procedure using a simple rubber stamp that yields a

  4. Gas Separations using Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Paul KT Liu

    2005-01-13

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  5. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    Science.gov (United States)

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  6. [Ceramic-on-Ceramic in Total Hip Replacement Revision].

    Science.gov (United States)

    Cucchi, Davide; Gathen, Martin; Streicher, Robert; Wirtz, Dieter Christian

    2018-02-27

    The use of Ceramic-on-Ceramic (CoC) bearings in primary total hip arthroplasty (THA) is increasing and has been intensively analysed. This bearing plays a particularly relevant role in young, active patients and shows advantages over other bearings in biocompatibility, wear rate and lubrication properties. On the contrary, CoC bearings in revision THA are seldom used and scarcely analysed. The aim of this study is to systematically review the available literature on CoC bearings in revision THA. A systematic research in the English literature was performed to identify all studies reporting results of THA revisions using ceramic-on-ceramic bearing. The initial search strategy revealed 555 articles for consideration. On the basis of eligibility criteria, 26 studies were included in this review. Twenty-six studies, accounting for 1846 procedures, were eligible and included in the review. No studies of Level I were identified. Eighteen studies reported on revisions of CoC implants for various reasons, performed either with CoC or different bearings. In 111 patients a CoC bearing was used for the revision. Six studies consistently reported outcome measures for CoC bearing THA revisions, so that a quantitative synthesis of the data was possible. The range of follow-up across the six studies varied between 2.1 and 19 years, with a cumulative avearage follow-up of 9.3 years. A good functional result was documented, with a cumulative weighted mean for postoperative Harris Hip Score (HHS) of 87 points. The rate of dislocation in this group was 3.45% and the risk of fracture of an alumina ceramic head was 0.35% (1 study). Squeaking was reported as complication of CoC bearing THA revisions in three studies, with a calculated incidence of 0.52%. Modern CoC bearings show advantages in preclinical and retrospective studies over other bearings also in revision cases and are therefore to be considered a promising alternative for this kind of operation. Reasonable indications for Co

  7. Catalyzed Ceramic Burner Material

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Amy S., Dr.

    2012-06-29

    period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

  8. Application of neutron activation analysis in study of ancient ceramics

    International Nuclear Information System (INIS)

    Li Guoxia; Zhao Weijuan; Gao Zhengyao; Xie Jianzhong; Huang Zhongxiang; Jia Xiuqin; Han Song

    2000-01-01

    Trace-elements in ancient ceramics and imitative ancient ceramics were determined by neutron activation analysis (NAA). The NAA data are then analyzed by fuzzy cluster method and the trend cluster diagram is obtained. The raw material sources of ancient ceramics and imitative ancient ceramics are determined. The path for improving quality of imitative ancient ceramics is found

  9. Method for preparing thin-walled ceramic articles of configuration

    International Nuclear Information System (INIS)

    Holcombe, C.E.; Powell, G.L.

    1975-01-01

    A method for preparing a hollow thin-walled ceramic product is described. Ceramic powder is plasma-sprayed onto a concave surface of a substrate having a coefficient of thermal expansion less than that of the ceramic. The coated substrate is heated to sinter the ceramic and then cooled to effect a separation of the ceramic product from the substrate

  10. Synthesis and characterization on titanium dioxide prepared by precipitation and hydrothermal treatment; Sintese e caracterizacao de dioxido de titanio preparado por precipitacao e tratamento hidrotermico

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Andre V.P. dos; Yoshito, Walter K.; Lazar, Dolores R.R.; Ussui, Valter, E-mail: vussui@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-07-01

    Surface properties of titanium dioxide (titania) are outstanding among ceramic materials and enables uses as catalysts, photoelectrochemical devices, solar cells and others. In many of these applications, it is necessary to keep the anatase phase, that is stable only in low temperatures (<400 deg C). In the present work, the influence of hydrothermal treatment on physical characteristics and crystal structure of titania powders synthesized by precipitation was investigated. Characterizations of obtained powders were carried out by X-ray diffraction, surface area analysis by N2 gas sorption (BET) and microstructure of powders and ceramics were analyzed by scanning electron microscopy. As prepared powders were formed as cylindrical pellets by uniaxial pressing and sintered at 1500 deg C for 01 hour. Results showed that anatase phase without formation of rutile phase can be formed in hydrothermally treated samples . Rutile phase is predominant in calcined and/or sintered samples (author)

  11. Synthesis of calcium aluminate with silicon addition for application in biomaterials; Sintese de aluminato de calcio com adicao de prata para aplicacao em biomateriais

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, P.J.; Almeida, L.H.S.; Pappen, F.G.; Ribeiro, A.S.; Cava, S.S. [Universidade Federal de Pelotas (UFPel), RS (Brazil); Veiga, F.C.T.; Jurado, J., E-mail: ati_jg@hotmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2016-07-01

    Ceramic materials have biocompatibility have been studied, researched and applied in various treatments such as endodontics and orthopedics. This study aims to carry out the synthesis by the polymeric precursor method for post calcium trialuminato (C3A) and with addition of 1% and 5% silver, them the powders were calcined in de temperature 1000°C, carried out a comparative study between them. The ceramic powders were characterized by X-ray diffraction, having a phase composition, scanning electron microscopy (SEM) associated with EDS observed grain morphology and quantity of the chemical elements. The analysis flow, pH, release of calcium ions (Ca{sup 2+}) and silver ions (Ag{sup +}) were evaluated with the sealer MTA Fillapex result that calcium aluminate addition of silver improved the MTA Fillapex stream with the release of ions Ca{sup +2}, being a material that allows applications in the field of endodontics. (author)

  12. Translucency of dental ceramics with different thicknesses.

    Science.gov (United States)

    Wang, Fu; Takahashi, Hidekazu; Iwasaki, Naohiko

    2013-07-01

    The increased use of esthetic restorations requires an improved understanding of the translucent characteristics of ceramic materials. Ceramic translucency has been considered to be dependent on composition and thickness, but less information is available about the translucent characteristics of these materials, especially at different thicknesses. The purpose of this study was to investigate the relationship between translucency and the thickness of different dental ceramics. Six disk-shaped specimens of 8 glass ceramics (IPS e.max Press HO, MO, LT, HT, IPS e.max CAD LT, MO, AvanteZ Dentin, and Trans) and 5 specimens of 5 zirconia ceramics (Cercon Base, Zenotec Zr Bridge, Lava Standard, Lava Standard FS3, and Lava Plus High Translucency) were prepared following the manufacturers' instructions and ground to a predetermined thickness with a grinding machine. A spectrophotometer was used to measure the translucency parameters (TP) of the glass ceramics, which ranged from 2.0 to 0.6 mm, and of the zirconia ceramics, which ranged from 1.0 to 0.4 mm. The relationship between the thickness and TP of each material was evaluated using a regression analysis (α=.05). The TP values of the glass ceramics ranged from 2.2 to 25.3 and the zirconia ceramics from 5.5 to 15.1. There was an increase in the TP with a decrease in thickness, but the amount of change was material dependent. An exponential relationship with statistical significance (Pceramics and zirconia ceramics. The translucency of dental ceramics was significantly influenced by both material and thickness. The translucency of all materials increased exponentially as the thickness decreased. All of the zirconia ceramics evaluated in the present study showed some degree of translucency, which was less sensitive to thickness compared to that of the glass ceramics. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  13. Ceramic fiber reinforced glass-ceramic matrix composite

    Science.gov (United States)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  14. Effect of synthesis method on the preparation of lanthanum chromite for using as ceramic pigment; Influencia do metodo de sintese na preparacao de cromita de lantanio para utilizacao como pigmento ceramico

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, G.C.B.; Ferreira, K.M.B.; Pimentel, P.M., E-mail: gerbeson_dantas@hotmail.com [Universidade Federal Rural do Semi-Arido (UFERSA), Mossoro, RN (Brazil); Melo, D.M.A.; Gomes, D.K.S.; Costa, A.F. [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2016-07-01

    In this paper, LaCrO3 perovskites were synthesized by two synthesis methods, in order to compare these methods in function of microstructure and optical properties. The synthesis routes employed were a method that use gelatin as organic precursor and microwave assisted auto-combustion. The resulting powders were calcined at 800 ° C and 1000 ° C for obtaining the perovskite phase. Then, they were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM); UV-Visible spectroscopy and colorimetric analysis for color identification. No significant changes were observed in the powders synthesized by two routes. The oxides presented orthorhombic perovskite structure. The powders synthesized by the gelatin method were single phase. Chromite lanthanide presented grayish hue being darker in perovskites calcined at higher temperatures. (author)

  15. Synthesis and characterization of ceramic powders of pure and doped with trivalent erbium barium tungstate; Sintese e caracterizacao de pos ceramicos de tungstato de bario puro e dopado com erbio trivalente

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, R.B. de; Nascimento, V.A. do; Matos, J. M.E. de; Santos, M.R.M.C., E-mail: ricardo@ufpi.edu.br [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Centro de Ciencias da Natureza. Laboratorio Interdisciplinar de Materiais Avancados

    2014-07-01

    This research proposes the synthesis and characterization of pure and doped with Er{sup 3+} (1 and 2 %) barium tungstate powders prepared by the coprecipitation method. In order to characterize the obtained powders were used X-Ray Diffractometry, Raman Spectroscopy and Fourier Transform Infrared Spectroscopy. According to the standard XRD spectra, the crystals exhibited the presence of tetragonal scheelite structure without the presence of secondary phases. Raman spectra showed the presence of eleven vibrational modes and two modes were observed in the infrared spectra. The synthesized oxides showed good crystallinity and structurally ordered at short and long-range. (author)

  16. Process for making ceramic hot gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    2001-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  17. Werkstoffwoche 98. Vol. 7. Symposium 9: Ceramics. Symposium 14: Simulation of ceramics

    International Nuclear Information System (INIS)

    Heinrich, J.; Ziegler, G.; Hermel, W.; Riedel, H.

    1999-01-01

    The leading subject of this proceedings volume is ceramic materials, with papers on the following subject clusters: Processing (infiltration, sintering, forming) - Physics and chemistry of ceramics (functional ceramics, SiC, ceramic precursors, microstructural properties) - Novel concepts (composites, damage induced by oxidation and mechanical stress, performance until damage under mechanical and thermal stress, layers, nanocomposites). 28 of the conference papers have been prepared for individual retrieval from the ENERGY database. (orig./CB) [de

  18. Thermal shock behaviour of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fantozzi, G.; Saadaoui, M.; Chevalier, J.; Olagnon, C. [Groupe d' Etude de Metallurgie Physique UMR, Institut National des Sciences Appliquees de Lyon, Villeurbanne (France)

    2000-07-01

    Thermal shock of ceramics is complex to analyse because of the important number of parameters to take into account. Thermal shock analysis has been refined by considering the dependence with temperature of the different parameters. From the temperature evolution in the specimen, the stress and stress intensity factor (SIF) profiles can be calculated. This allows the prediction of the crack evolution during thermal shock. Thermal shock experiments conducted by using an in-situ acoustic emission (AE) apparatus allow the determination of the time of unstable crack growth. The effect of crack growth resistance (R-curve behaviour) can be taken into account and, if it is significant, the thermal shock resistance of ceramics can be improved. The fracture mechanical analysis was used to determine the R-curve behaviour of alumina material subjected to thermal shock. A good agreement is observed between predictions of thermal fracture theory based on fracture mechanics and experimental results. (orig.)

  19. Interfaces in ceramic nuclear fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    Internal interfaces in all-ceramic dispersion fuels (such as these for HTGRs) are discussed for two classes: BeO-based dispersions, and coated particles for graphite-based fuels. The following points are made: (1) The strength of a two-phase dispersion is controlled by the weaker dispersed phase bonded to the matrix. (2) Differential expansion between two phases can be controlled by an intermediate buffer zone of low density. (3) A thin ceramic coating should be in compression. (4) Chemical reaction between coating and substrate and mass transfer in service should be minimized. The problems of the nuclear fuel designer are to develop coatings for fission product retention, and to produce radiation-resistant interfaces. 44 references, 18 figures

  20. Silsesquioxane-derived ceramic fibres

    Science.gov (United States)

    Hurwitz, F. I.; Farmer, S. C.; Terepka, F. M.; Leonhardt, T. A.

    1991-01-01

    Fibers formed from blends of silsesquioxane polymers were characterized to study the pyrolytic conversion of these precursors to ceramics. The morphology of fibers pyrolyzed to 1400 C revealed primarily amorphous glasses whose conversion to beta-SiC is a function of both blend composition and pyrolysis conditions. Formation of beta-SiC crystallites within the glassy phase is favored by higher than stoichiometric C/Si ratios, while carbothermal reduction of Si-O bonds to form SiC with loss of SiO and CO occurs at higher methyl/phenylpropyl silsesquioxane (lower C/Si) ratios. As the carbothermal reduction is assumed to be diffusion controlled, the fibers can serve as model systems to gain understanding of the silsesquioxane pyrolysis behavior, and therefore are useful in the development of polysilsesquioxane-derived ceramic matrices and coatings as well.

  1. Iron Phosphate Glass-ceramics

    Directory of Open Access Journals (Sweden)

    Andrea Moguš-Milanković

    2015-12-01

    Full Text Available The crystallization of 40Fe2O3-60P2O5, 10ZnO-30Fe2O3-60P2O5 and (43.3−xPbO–(13.7+xFe2O3–43P2O5, (0 x < 30, glasses and glass-ceramic have been investigated. The structural evolution of glasses during heat treatment at various temperatures and the tendency for crystallization for series of glasses with modified composition are characterized by a dendrite-like phase separation in the early stage of crystallization. Such a behavior leads to the formation of randomly dispersed agglomerates which contain the anhedrally shaped crystallites embedded in glass matrix. Therefore, regardless of the type of crystallization, controlled or spontaneous, the formation of crystalline phases in these phosphate glasses and glass-ceramics is attributed to the disordered interfaces between crystalline grains and glassy matrix.

  2. Proceedings of the 36. Brazilian Congress on Ceramic. v. 1

    International Nuclear Information System (INIS)

    1992-01-01

    The 36. Brazilian Congress on Ceramic - volume 1 - present works about basic science, raw-materials, powders synthesis, red ceramics, coating and refractories materials and thermomechanical ceramics. (C.G.C.)

  3. Ceramic veneers with minimum preparation

    OpenAIRE

    da Cunha, Leonardo Fernandes; Reis, Rachelle; Santana, Lino; Romanini, Jose Carlos; Carvalho, Ricardo Marins; Furuse, Adilson Yoshio

    2013-01-01

    The aim of this article is to describe the possibility of improving dental esthetics with low-thickness glass ceramics without major tooth preparation for patients with small to moderate anterior dental wear and little discoloration. For this purpose, a carefully defined treatment planning and a good communication between the clinician and the dental technician helped to maximize enamel preservation, and offered a good treatment option. Moreover, besides restoring esthetics, the restorative t...

  4. Strength and Microstructure of Ceramics

    Science.gov (United States)

    1989-11-01

    Forex - one particular alumina ceramic, I our own detailed crack ample, the relatively large values of r, and c* for the VI observations, and those of...particularly toughness indices, 1i71", indicating that there is sonic the c° , T parameters. However, the indentation mcth- kind of trade -o1Tbetwecn...macroscopic and microsnpic odology takes us closer to the strengths of specimens toughness levels, and that this trade -off is cont’olled by with natural

  5. Luminescent ceramics for LED conversion

    Science.gov (United States)

    Raukas, M.; Wei, G.; Bergenek, K.; Kelso, J.; Zink, N.; Zheng, Y.; Hannah, M.; Stough, M.; Wirth, R.; Linkov, A.; Jermann, F.; Eisert, D.

    2011-03-01

    Many LED-based applications would benefit from more efficient and/or high lumen output devices that enable usage in both white and single color illumination schemes. In the present article we briefly review the materials research history leading to optical ceramic converters and discuss their typical characteristics. Recently demonstrated high performance values in terms of efficacy and external quantum efficiency in orange (amber) spectral region are described.

  6. Metallizing of machinable glass ceramic

    International Nuclear Information System (INIS)

    Seigal, P.K.

    1976-02-01

    A satisfactory technique has been developed for metallizing Corning (Code 9658) machinable glass ceramic for brazing. Analyses of several bonding materials suitable for metallizing were made using microprobe analysis, optical metallography, and tensile strength tests. The effect of different cleaning techniques on the microstructure and the effect of various firing temperatures on the bonding interface were also investigated. A nickel paste, used for thick-film application, has been applied to obtain braze joints with strength in excess of 2000 psi

  7. High temperature fracture of ceramic materials

    International Nuclear Information System (INIS)

    Wiederhorn, S.M.

    1979-01-01

    A review is presented of fracture mechanisms and methods of lifetime prediction in ceramic materials. Techniques of lifetime prediction are based on the science of fracture mechanics. Application of these techniques to structural ceramics is limited by our incomplete understanding of fracture mechanisms in these materials, and by the occurrence of flaw generation in these materials at elevated temperatures. Research on flaw generation and fracture mechanisms is recommended as a way of improving the reliability of structural ceramics

  8. Acid-base properties of ceramic powders

    International Nuclear Information System (INIS)

    Bleier, A.

    1983-01-01

    This chapter addresses the fundamental aspects of potentiometric titration, electrokinetics, and conductometric titration in evaluating surface and interfacial thermodynamic behavior. Emphasizes the characterization of aqueous systems which are pertinent to the processing of ceramic powders. Attempts to clarify the role of novel analytical techniques that will increasingly contribute to the advanced characterization of ceramic powders. Evaluates recently developed acid-base and complexation concepts and their applications to the processing of oxide ceramics

  9. Tensile Properties of Open Cell Ceramic Foams

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Řehořek, Lukáš; Chlup, Zdeněk

    2009-01-01

    Roč. 409, - (2009), s. 168-175 ISSN 1013-9826. [Fractography of Advanced Ceramics /3./. Stará Lesná, 07.09.2008-10.09.2008] R&D Projects: GA ČR(CZ) GA106/06/0724; GA ČR GD106/05/H008 Institutional research plan: CEZ:AV0Z20410507 Keywords : tensile test * ceramics foam * open porosity * tensile strength Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  10. Advanced ceramics: the present and the perspectives

    International Nuclear Information System (INIS)

    Freitas, C.T. de.

    1990-04-01

    Development in the Brazilian and international areas of advanced ceramics is described, emphasizing its economic perspectivas and industrial applications. Results obtained by national institutions are reviewed, mainly in the context of those that pioneered the required high technology in this ceramic field. The rapid growth of the interest for those special materials, made more evident by ample information related to the superconducting ceramics great pontential for important practical applications, is one of the most significant characteristics of the area. (author) [pt

  11. Ceramic vacuum tubes for geothermal well logging

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R.D.

    1977-01-01

    Useful design data acquired in the evaluation of ceramic vacuum tubes for the development of a 500/sup 0/C instrumentation amplifier are presented. The general requirements for ceramic vacuum tubes are discussed for application to the development of high temperature well logs. Commercially available tubes are described and future contract activities that specifically relate to ceramic vacuum tubes are detailed. Supplemental data are presented in the appendix.

  12. Performance characteristics of porous alumina ceramic structures

    International Nuclear Information System (INIS)

    Latella, B.A.; Liu, T.

    2000-01-01

    Porous ceramics have found a wide range of applications as filters for liquids and gases. The suitability of materials for use in these types of applications depends on the microstructure (grain size, pore size and pore volume fraction) and hence the mechanical and thermal properties. In this study alumina ceramics with different levels of porosity and controlled pore sizes were fabricated and the surface damage and fracture properties were examined. Copyright (2000) The Australian Ceramic Society

  13. Porous Ceramic Spheres from Ion Exchange Resin

    Science.gov (United States)

    Dynys, Fred

    2005-01-01

    A commercial cation ion exchange resin, cross-linked polystyrene, has been successfully used as a template to fabricate 20 to 50 micron porous ceramic spheres. Ion exchange resins have dual template capabilities. Pore architecture of the ceramic spheres can be altered by changing the template pattern. Templating can be achieved by utilizing the internal porous structure or the external surface of the resin beads. Synthesis methods and chemical/physical characteristics of the ceramic spheres will be reported.

  14. Evaluation of bond strength of various margin ceramics to a zirconia ceramic

    NARCIS (Netherlands)

    Comlekoglu, M. Erhan; Dundar, Mine; Ozcan, Mutlu; Gungor, M. Ali; Gokce, Bulent; Artunc, Celal

    2008-01-01

    Objective: This study evaluated the bond strengths of four different margin ceramics based on fluoroapatite and feldspath to a zirconia ceramic. Methods: Zirconia cores (Zirconzahn) (N = 28, n = 7/margin ceramic group) were fabricated according to the manufacturers' instructions (diameter: 4 mm;

  15. Zirconia doped silicon nitride ceramics

    International Nuclear Information System (INIS)

    Ekstroem, T.; Falk, L.K.L.; Knutson-Wedel, E.M.

    1992-01-01

    This presentation is concerned with the value added to silicon nitride ceramics by doping with smaller amounts of zirconia. The effects which the different sintering additives ZrO 2 , Y 2 O 3 stabilized ZrO 2 , Y 2 O 3 , Al 2 O 3 and AIN have upon densification, α- to β-Si 3 N 4 phase transformation and final microstructure are discussed. Silicon nitride ceramics containing these additives have been formed either by pressureless sintering or by hot isostatic pressing (HIP) at temperatures in the range 1550 to 1775 deg C. The fine scale microstructures of the densified materials, characterized by analytical electron microscopy and X-ray diffractometry, have been related to mechanical properties viz. strength, hardness and indentation fracture toughness. The most pronounced value added by ZrO 2 doping is that a properly adjusted combination of sintering aids makes it possible to substantially reduce the volume fraction of residual intergranular glass through formation of crystalline ZrO 2 (Y 2 O 3 ) solid solutions. This behaviours opens the possibility of developing new silicon nitride ceramics for high temperature applications. 25 refs., 4 figs

  16. Silicate bonded ceramics of laterites

    International Nuclear Information System (INIS)

    Wagh, A.S.; Douse, V.

    1989-05-01

    Sodium silicate is vacuum impregnated in bauxite waste (red mud) at room temperature to develop ceramics of mechanical properties comparable to the sintered ceramics. For a concentration up to 10% the fracture toughness increases from 0.12 MNm -3/2 to 0.9 MNm -3/2 , and the compressive strength from 7 MNm -2 to 30 MNm -2 . The mechanical properties do not deteriorate, when soaked in water for an entire week. The viscosity and the concentration of the silicate solution are crucial, both for the success of the fabrication and the economics of the process. Similar successful results have been obtained for bauxite and lime stone, even though the latter has poor weathering properties. With scanning electron microscopy and energy dispersive analysis, an attempt is made to identify the crystals formed in the composite, which are responsible for the strength. The process is an economic alternative to the sintered ceramics in the construction industry in the tropical countries, rich in lateritic soils and poor in energy. Also the process has all the potential for further development in arid regions abundant in limestone. (author). 6 refs, 20 figs, 3 tabs

  17. Portland blended cements: demolition ceramic waste management

    International Nuclear Information System (INIS)

    Trezza, M.A.; Zito, S.; Tironi, A.; Irassar, E.F.; Rahhal, V.F.

    2017-01-01

    Demolition ceramic wastes (DCWs) were investigated in order to determine their potential use as supplementary cementitious materials in Portland Blended Cements (PBCs). For this purpose, three ceramic wastes were investigated. After characterization of the materials used, the effect of ceramic waste replacement (8, 24 and 40% by mass) was analyzed. Pozzolanic activity, hydration progress, workability and compressive strength were determined at 2, 7 and 28 days. The results showed that the ground wastes behave as filler at an early age, but as hydration progresses, the pozzolanic activity of ceramic waste contributes to the strength requirement. [es

  18. Ceramic Technology For Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.

  19. Ceramic technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  20. Emerging ceramic-based materials for dentistry.

    Science.gov (United States)

    Denry, I; Kelly, J R

    2014-12-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. © International & American Associations for Dental Research.

  1. Measurement of Emissivity of Porous Ceramic Materials

    OpenAIRE

    BÜYÜKALACA, Orhan

    1998-01-01

    In this study, measurements of spectral and total emissivities of seven different porous ceramic materials and one ceramic fibre material are reported. Measurements were made for wavelength range from 1.2 µm to 20 µm and temperature range from 200 °C to 700 °C. It was found that total emissivity increases with increase of pore size but decreases with increase of temperature. The results showed all the porous ceramic materials tested to be much better than ceramic fibre in terms of total em...

  2. All-ceramic restorations: an overview.

    Science.gov (United States)

    Bassi, F; Carossa, S; Pera, P; Preti, G

    1998-09-01

    Advantages and disadvantages of metal-ceramic and all-ceramic restorations are reviewed particularly from the aesthetic point of view. All-ceramic restorations offer the best results because they let the light through optimally. In constructing all-ceramic crowns on teeth which have been endodontically treated, the material used to rebuild the pin-abutments must be taken into consideration if the best aesthetic results are to be achieved. Materials which, because of their translucent characteristics, are the most aesthetic alternatives to metal alloy pin-abutments in rebuilding teeth which have been endodontically treated, are then described.

  3. Directly susceptible, noncarbon metal ceramic composite crucible

    Science.gov (United States)

    Holcombe, Jr., Cressie E.; Kiggans, Jr., James O.; Morrow, S. Marvin; Rexford, Donald

    1999-01-01

    A sintered metal ceramic crucible suitable for high temperature induction melting of reactive metals without appreciable carbon or silicon contamination of the melt. The crucible comprises a cast matrix of a thermally conductive ceramic material; a perforated metal sleeve, which serves as a susceptor for induction heating of the crucible, embedded within the ceramic cast matrix; and a thermal-shock-absorber barrier interposed between the metal sleeve and the ceramic cast matrix to allow for differential thermal expansions between the matrix and the metal sleeve and to act as a thermal-shock-absorber which moderates the effects of rapid changes of sleeve temperature on the matrix.

  4. Tritium behaviour in ceramic breeder blankets

    International Nuclear Information System (INIS)

    Miller, J.M.

    1989-01-01

    Tritium release from the candidate ceramic materials, Li 2 O, LiA10 2 , Li 2 SiO 3 , Li 4 SiO 4 and Li 2 ZrO 3 , is being investigated in many blanket programs. Factors that affect tritium release from the ceramic into the helium sweep gas stream include operating temperature, ceramic microstructure, tritium transport and solubility in the solid. A review is presented of the material properties studied and of the irradiation programs and the results are summarized. The ceramic breeder blanket concept is briefly reviewed

  5. A review of the strength properties of dental ceramics.

    Science.gov (United States)

    Hondrum, S O

    1992-06-01

    New ceramic materials for restorative dentistry have been developed and introduced in recent years. This article reviews advantages and disadvantages of dental ceramics, concentrating on strength properties. Included are factors affecting the strength of dental ceramic materials and the most common mechanisms for increasing the strength of dental ceramics. The properties of presently available materials such as dispersion-strengthened ceramics, cast ceramics, and foil-reinforced materials are discussed. Current research efforts to improve the fracture resistance of ceramic restorative materials are reviewed. A description of methods to evaluate the strength of ceramics is included, as a caution concerning the interpretation of strength data reported in the literature.

  6. Ceramic bond durability and degradation mechanism of commercial gamma-methacryloxypropyl trimethoxysilane-based ceramic primers.

    Science.gov (United States)

    Aida, Masahiro; Tabei, Naoko; Kimoto, Suguru; Tanimura, Hideki; Takahashi, Haruyoshi; Yaguchi, Takehiro; Nishiyama, Norihiro

    2012-08-01

    To investigate the bond durability and degradation mechanism of various commercial ceramic primers that are based on gamma-methacryloxypropyl trimethoxysilane (gamma-MPTS) and contain various organic additives. The null hypotheses tested were that (1) the type of ceramic primer had no effect on the bond strength after thermocycling and (2) the type of ceramic primer had no effect on the water contact angle after rinsing with THF. The adherent was a silica-based ceramic block used for computer-aided design/computer-aided manufacturing (CAD-CAM). Four commercial ceramic primers, Clearfil Mega Bond Porcelain Bonding kit (CM), Tokuso ceramic primer (TC), GC ceramic primer (CP), and Porcelain Liner M (PL), were compared with a simplified experimental ceramic primer (EP) that comprised gamma-MPTS and an inorganic acid (hydrochloric acid) but no other organic additives. The specimens for the adhesion test were prepared after a dual-curing type resin cement (Link Max) had adhered to the ceramic surfaces treated with each ceramic primer. The bonded specimens were then stored in water at 37 degrees C for 1 day. Then, the bonded specimens were thermocycled between 5 degrees C and 55 degrees C in water baths for 5000 or 10,000 cycles. The dwell time in each water bath and the transfer time were 60 and 7 seconds, respectively. The shear bond strength of resin to the ceramic surface was measured under a crosshead speed of 1.0 mm/minute by a conventional testing machine. Thereafter, the fracture mode for each specimen was determined. In addition, the water contact angle on the treated ceramic surfaces was measured before and after THF using a cotton pellet. As a control, the contact angle on the ground ceramic surface was measured without any ceramic primer. For all samples, thermocycling led to an increase in the frequency of interfacial failure, reflecting reduced mean bond strength of the resin to the treated ceramic surfaces. However, the bond degradation behavior differed

  7. Development of Advanced Ceramic Manufacturing Technology; FINAL

    International Nuclear Information System (INIS)

    Pujari, V.K.

    2001-01-01

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. I n order to achieve these objectives, NAC, a leading U.S. advanced ceramics component manufacturer, assembled a multidisciplinary, vertically integrated team. This team included: a major diesel engine builder, Detroit Diesel Corporation (DDC); a corporate ceramics research division, SGIC's Northboro R and D Center; intelligent processing system developers, BDM Federal/MATSYS; a furnace equipment company, Centorr/Vacuum Industries; a sintering expert, Wittmer Consultants; a production OEM, Deco-Grand; a wheel manufacturer and grinding operation developer, Norton Company's Higgins Grinding Technology Center (HGTC); a ceramic machine shop, Chand Kare Technical Ceramics; and a manufacturing cost consultant, IBIS Associates. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration

  8. Prestresses in bilayered all-ceramic restorations.

    Science.gov (United States)

    Aboushelib, Moustafa N; Feilzer, Albert J; de Jager, Niek; Kleverlaan, Cornelis J

    2008-10-01

    A general trend in all ceramic systems is to use veneering ceramics of slightly lower thermal expansion coefficients compared with that of the framework resulting in a positive mismatch in thermal expansion coefficient (+DeltaTEC). The concept behind this TEC mismatch is to generate compressive stresses in the weaker veneering ceramic and thus enhance the overall strength of the restoration. This technique had excellent results with porcelain fused to metal restorations (PFM). However, there are concerns to apply this concept to all-ceramic restorations. The aim of this research was to determine the stresses in bilayered all-ceramic restorations due to the mismatch in TEC. Two commercial veneering ceramics with a TEC lower than that of zirconia (+DeltaTEC); NobelRondo zirconiatrade mark and Lava Ceramtrade mark, plus one experimental veneering ceramic with an identical TEC that matches that of zirconia (DeltaTEC = 0) were used to veneer zirconia discs. The specimens were loaded in biaxial flexure test setup with the veneer ceramic in tension. The stresses due to load application and TEC mismatch were calculated using fractography, engineering mathematics, and finite element analysis (FEA). In this study, the highest load at failure (64 N) was obtained with the experimental veneer where the thermal mismatch between zirconia and veneering ceramic was minimal. For the two commercial veneer ceramics the magnitude of the thermal mismatch localized at the zirconia veneer interface (42 MPa) exceeded the bond strength between the two materials and resulted in delamination failure during testing (ca. 50 MPa). For all-ceramic zirconia veneered restorations it is recommended to minimize the thermal mismatch as much as possible. (c) 2008 Wiley Periodicals, Inc.

  9. Characterization techniques to predict mechanical behaviour of green ceramic bodies fabricated by ceramic microstereolithography

    Science.gov (United States)

    Adake, Chandrashekhar V.; Bhargava, Parag; Gandhi, Prasanna

    2018-02-01

    Ceramic microstereolithography (CMSL) has emerged as solid free form (SFF) fabrication technology in which complex ceramic parts are fabricated from ceramic suspensions which are formulated by dispersing ceramic particles in UV curable resins. Ceramic parts are fabricated by exposing ceramic suspension to computer controlled UV light which polymerizes resin to polymer and this polymer forms rigid network around ceramic particles. A 3-dimensional part is created by piling cured layers one over the other. These ceramic parts are used to build microelectromechanical (MEMS) devices after thermal treatment. In many cases green ceramic parts can be directly utilized to build MEMS devices. Hence characterization of these parts is essential in terms of their mechanical behaviour prior to their use in MEMS devices. Mechanical behaviour of these green ceramic parts depends on cross link density which in turn depends on chemical structure of monomer, concentrations of photoinitiator and UV energy dose. Mechanical behaviour can be determined with the aid of nanoindentation. And extent of crosslinking can be verified with the aid of DSC. FTIR characterization is used to analyse (-C=C-) double bond conversion. This paper explains characterization tools to predict the mechanical behaviour of green ceramic bodies fabricated in CMSL

  10. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients.

    Science.gov (United States)

    Hernigou, Philippe; Roubineau, François; Bouthors, Charlie; Flouzat-Lachaniette, Charles-Henri

    2016-04-01

    Based on the exceptional tribological behaviour and on the relatively low biological activity of ceramic particles, Ceramic-on-Ceramic (CoC) total hip arthroplasty (THA) presents significant advantagesCoC bearings decrease wear and osteolysis, the cumulative long-term risk of dislocation, muscle atrophy, and head-neck taper corrosion.However, there are still concerns regarding the best technique for implantation of ceramic hips to avoid fracture, squeaking, and revision of ceramic hips with fracture of a component.We recommend that surgeons weigh the potential advantages and disadvantages of current CoC THA in comparison with other bearing surfaces when considering young very active patients who are candidates for THA. Cite this article: Hernigou P, Roubineau F, Bouthors C, Flouzat-Lachaniette C-H. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients. EFORT Open Rev 2016;1:107-111. DOI: 10.1302/2058-5241.1.000027.

  11. Synthesis and characterization of nanocomposite powders of calcium phosphate/silica-gel; Sintese e caracterizacao de pos nanoestruturados de fosfato de calcio/silica-gel

    Energy Technology Data Exchange (ETDEWEB)

    Muller, D.T.; Delima, S.A. [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil). Dept. de Engenharia Mecanica; Santos, R.B.M.; Camargo, N.H.A., E-mail: dem2nhac@joinville.udesc.b [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil). Programa de Pos Graduacao em Ciencia e Engenharia de Materiais

    2009-07-01

    In the recent years ceramics of calcium phosphate are pointed out as an outstanding material in substitution and regeneration in defects from osseous tissue, in reason of their similar mineralogical characteristics of apatite of bone structure. However, the challenge with phosphate calcium ceramics find out about the mechanical properties and the development of biomaterials similar of the bone structure, what sometimes is not so easy, about fragile materials. The aim of this work focused in synthesis and characterization nanocomposites powders of calcium phosphate/silica-gel with percentages 1, 2, 3 e 5% of nanometric silica. The method synthesis used for the compositions elaboration was dissolution-precipitation. The presented results are related with the optimization to method elaboration of nanostructured powders, the mineralogical characterization with X-ray diffraction, thermal behavior with thermal differential analysis, differential scanning calorimetry here is ADT and dilatometer. The scanning electronic microscopy was used to help of morphological characterization the nanostructured powders and the surfaces from body test recovered from the mechanical test. (author)

  12. Influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage restorations.

    Science.gov (United States)

    Bakeman, E M; Rego, N; Chaiyabutr, Y; Kois, J C

    2015-01-01

    This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (pceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (pceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.

  13. Y-TZP ceramic processing from coprecipitated powders: a comparative study with three commercial dental ceramics.

    Science.gov (United States)

    Lazar, Dolores R R; Bottino, Marco C; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H A

    2008-12-01

    (1) To synthesize 3mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. A coprecipitation route was used to synthesize a 3mol% yttria-stabilized zirconia ceramic processed by uniaxial compaction and pressureless sintering. Commercially available alumina or alumina/zirconia ceramics, namely Procera AllCeram (PA), In-Ceram Zirconia Block (CAZ) and In-Ceram Zirconia (IZ) were chosen for comparison. All specimens (6mmx5mmx5mm) were polished and ultrasonically cleaned. Qualitative phase analysis was performed by XRD and apparent densities were measured on the basis of Archimedes principle. Ceramics were also characterized using SEM, TEM and EDS. The hardness measurements were made employing Vickers hardness test. Fracture toughness (K(IC)) was calculated. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (alpha=0.05). ANOVA revealed that the Vickers hardness (p<0.0001) and fracture toughness (p<0.0001) were affected by the ceramic materials composition. It was confirmed that the PA ceramic was constituted of a rhombohedral alumina matrix, so-called alpha-alumina. Both CAZ and IZ ceramics presented tetragonal zirconia and alpha-alumina mixture of phases. The SEM/EDS analysis confirmed the presence of aluminum in PA ceramic. In the IZ and CAZ ceramics aluminum, zirconium and cerium in grains involved by a second phase containing aluminum, silicon and lanthanum were identified. PA showed significantly higher mean Vickers hardness values (H(V)) (18.4+/-0.5GPa) compared to vitreous CAZ (10.3+/-0.2GPa) and IZ (10.6+/-0.4GPa) ceramics. Experimental Y-TZP showed significantly lower results than that of the other monophased ceramic (PA) (p<0.05) but it showed significantly higher fracture toughness (6.0+/-0.2MPam(1/2)) values when compared to the

  14. Ceramics for applications in fusion systems

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1979-01-01

    Six critical applications for ceramics in fusion systems are reviewed, and structural and electrical problem areas discussed. Fusion neutron radiation effects in ceramics are considered in relation to fission neutron studies. A number of candidate materials are proposed for further evaluation

  15. High temperature ceramic/metal joint structure

    Science.gov (United States)

    Boyd, Gary L. (Inventor)

    1991-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  16. Marginal adaptation of ceramic inserts after cementation

    NARCIS (Netherlands)

    Ozcan, M; Pfeiffer, P; Nergiz, [No Value

    2002-01-01

    The advantage of using ceramic inserts is to prevent major drawbacks of composite resins such as polymerization shrinkage, wear and microleakage. This in vitro study evaluated the marginal adaptation of two approximal ceramic insert systems after cementation to the cavities opened with ultrasonic

  17. TNO's research on ceramic based armor

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.; Weerheijm, J.; Diederen, A.M.; Kwint, M.E.

    2015-01-01

    Several specially designed experimental techniques including an alternative test method have been developed for the evaluation of ceramic based armor. Armor grade ceramics and a range of combined materials have been tested using 7.62 AP rounds. Using the energy method [12] the dwell-time and total

  18. Yellow cake to ceramic uranium dioxide

    International Nuclear Information System (INIS)

    Zawidzki, T.W.; Itzkovitch, I.J.

    1983-01-01

    This overview article first reviews the processes for converting uranium ore concentrates to ceramic uranium dioxide at the Port Hope Refinery of Eldorado Resources Limited. In addition, some of the problems, solutions, thoughts and research direction with respect to the production and properties of ceramic UO 2 are described

  19. Prestresses in bilayered all-ceramic restorations

    NARCIS (Netherlands)

    Aboushelib, M.N.; Feilzer, A.J.; de Jager, N.; Kleverlaan, C.J.

    2008-01-01

    Introduction: A general trend in all ceramic systems is to use veneering ceramics of slightly lower thermal expansion coefficients compared with that of the framework resulting in a positive mismatch in thermal expansion coefficient (+ΔTEC). The concept behind this TEC mismatch is to generate

  20. Porous Ceramic Spheres From Cation Exchange Beads

    Science.gov (United States)

    Dynys, Fred

    2005-01-01

    This document is a slide presentation that examines the use of a simple templating process to produce hollow ceramic spheres with a pore size of 1 to 10 microns. Using ion exchange process it was determined that the method produces porous ceramic spheres with a unique structure: (i.e., inner sphere surrounded by an outer sphere.)

  1. High performance structural ceramics for nuclear industry

    International Nuclear Information System (INIS)

    Pujari, Vimal K.; Faker, Paul

    2006-01-01

    A family of Saint-Gobain structural ceramic materials and products produced by its High performance Refractory Division is described. Over the last fifty years or so, Saint-Gobain has been a leader in developing non oxide ceramic based novel materials, processes and products for application in Nuclear, Chemical, Automotive, Defense and Mining industries

  2. Science and Technology of Ceramics -16 ...

    Indian Academy of Sciences (India)

    like housing, clothing, food production, transportation, ... means potter's earth. Ceramics cannot be defined in a very simple fashion. Ceramics are usually associated with pottery, sanitary ware, tiles etc. Though this is not incorrect, it is incomplete. One ..... gas permeability, external appearance and structure. In the.

  3. Atomic imaging and microanalysis of ceramics

    International Nuclear Information System (INIS)

    Thomas, G.; Ramesh, R.

    1988-10-01

    This paper is a short review of electron microscopy techniques, as applied to modern ceramics. Examples: representative of the significance of modern electron microscopy, methods of atomic resolution imaging, diffraction and spectroscopy in the task of characterising, and understanding typical ceramic materials are given. (JL)

  4. Ceramic-Metal Interfaces in Multilayer Actuators

    DEFF Research Database (Denmark)

    Engell, John; Pedersen, Henrik Guldberg; Andersen, Bjørn

    1996-01-01

    Multilayer actuators consist of a number of piezoelectric or electrostrictive ceramic layers, separated by thin metal electrodes. Thus, the ceramic-metal interface plays an even more important role than for bulk piezoceramics. The performance and durability of the actuator depends closely...

  5. FY2016 Ceramic Fuels Development Annual Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2016 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY16 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  6. Beach sand minerals in ceramic applications

    International Nuclear Information System (INIS)

    Suresh Kumar, S.; Patra, R.N.; Mukherjee, T.K.

    2004-01-01

    Ceramics are in use since the time memorial and many new materials belonging to this segment of industry have come to existence as the human civilization progressed. Although clay and some non-clay minerals are used in the traditional ceramics, they are not compatible for advanced ceramic applications. The synthesized compounds of elements like aluminium, silicon, titanium, zirconium, rare earths etc are having ability to satisfy the requirements of such advanced high tech applications. The six heavy minerals present in abundantly available Indian beach sand minerals happen to contain these elements and find application as such or in their value added forms both in traditional and advanced ceramics. In this paper an effort has been made to describe the role of beach sand minerals being produced by Indian Rare Earths Ltd as basic raw materials for the Indian ceramic industry. (author)

  7. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.

  8. Polymer and ceramic nanocomposites for aerospace applications

    Science.gov (United States)

    Rathod, Vivek T.; Kumar, Jayanth S.; Jain, Anjana

    2017-11-01

    This paper reviews the potential of polymer and ceramic matrix composites for aerospace/space vehicle applications. Special, unique and multifunctional properties arising due to the dispersion of nanoparticles in ceramic and metal matrix are briefly discussed followed by a classification of resulting aerospace applications. The paper presents polymer matrix composites comprising majority of aerospace applications in structures, coating, tribology, structural health monitoring, electromagnetic shielding and shape memory applications. The capabilities of the ceramic matrix nanocomposites to providing the electromagnetic shielding for aircrafts and better tribological properties to suit space environments are discussed. Structural health monitoring capability of ceramic matrix nanocomposite is also discussed. The properties of resulting nanocomposite material with its disadvantages like cost and processing difficulties are discussed. The paper concludes after the discussion of the possible future perspectives and challenges in implementation and further development of polymer and ceramic nanocomposite materials.

  9. FY2015 ceramic fuels development annual highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-22

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2015 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY15 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  10. Low Voltage Power Supply Incorporating Ceramic Transformer

    CERN Document Server

    Imori, M

    2007-01-01

    A low voltage power supply provides the regulated output voltage of 1 V from the supply voltage around 48 V. The low voltage power supply incorporates a ceramic transformer which utilizes piezoelectric effect to convert voltage. The ceramic transformer isolates the secondary from the primary, thus providing the ground isolation between the supply and the output voltages. The ceramic transformer takes the place of the conventional magnetic transformer. The ceramic transformer is constructed from a ceramic bar and does not include any magnetic material. So the low voltage power supply can operate under a magnetic field. The output voltage is stabilized by feedback. A feedback loop consists of an error amplifier, a voltage controlled oscillator and a driver circuit. The amplitude ratio of the transformer has dependence on the frequency, which is utilized to stabilize the output voltage. The low voltage power supply is investigated on the analogy of the high voltage power supply similarly incorporating the cerami...

  11. TiO3 ceramics

    Indian Academy of Sciences (India)

    Administrator

    High purity Bi2O3, Na2CO3, TiO2, MgCO3 and Nb2O5. (purity over 99⋅5%) powders were used as starting mate- rials. Our preliminary experiments found that (Bi1/2Na1/2). Ti1–x(Mg1/3Nb2/3)xO3 ceramics were not well synthesized by mixing and calcinating all these above powders as used in the conventional oxide ...

  12. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  13. Fibrous-Ceramic/Aerogel Composite Insulating Tiles

    Science.gov (United States)

    White, Susan M.; Rasky, Daniel J.

    2004-01-01

    Fibrous-ceramic/aerogel composite tiles have been invented to afford combinations of thermal-insulation and mechanical properties superior to those attainable by making tiles of fibrous ceramics alone or aerogels alone. These lightweight tiles can be tailored to a variety of applications that range from insulating cryogenic tanks to protecting spacecraft against re-entry heating. The advantages and disadvantages of fibrous ceramics and aerogels can be summarized as follows: Tiles made of ceramic fibers are known for mechanical strength, toughness, and machinability. Fibrous ceramic tiles are highly effective as thermal insulators in a vacuum. However, undesirably, the porosity of these materials makes them permeable by gases, so that in the presence of air or other gases, convection and gas-phase conduction contribute to the effective thermal conductivity of the tiles. Other disadvantages of the porosity and permeability of fibrous ceramic tiles arise because gases (e.g., water vapor or cryogenic gases) can condense in pores. This condensation contributes to weight, and in the case of cryogenic systems, the heat of condensation undesirably adds to the heat flowing to the objects that one seeks to keep cold. Moreover, there is a risk of explosion associated with vaporization of previously condensed gas upon reheating. Aerogels offer low permeability, low density, and low thermal conductivity, but are mechanically fragile. The basic idea of the present invention is to exploit the best features of fibrous ceramic tiles and aerogels. In a composite tile according to the invention, the fibrous ceramic serves as a matrix that mechanically supports the aerogel, while the aerogel serves as a low-conductivity, low-permeability filling that closes what would otherwise be the open pores of the fibrous ceramic. Because the aerogel eliminates or at least suppresses permeation by gas, gas-phase conduction, and convection, the thermal conductivity of such a composite even at

  14. Flexural strength of In-Ceram alumina and In-Ceram zirconia core materials.

    Science.gov (United States)

    Chong, Kok-Heng; Chai, John; Takahashi, Yutaka; Wozniak, Wayne

    2002-01-01

    The study compared the flexural strength of In-Ceram alumina and In-Ceram zirconia systems. The probability of failure of the two glass-infiltrated ceramic core materials was analyzed with and without lamination with Vitadur-alpha porcelain. Ten uniform beams of core materials as well as 10 beams of laminated core materials were fabricated for In-Ceram alumina and In-Ceram zirconia. The samples were subjected to three-point bending tests. Flexural strength for both ceramic core materials was determined with and without their porcelain laminations. The strength data were analyzed using the Weibull method. Modes of failure for both systems were determined using scanning electron micrography. The strength of the In-Ceram zirconia system was significantly higher than In-Ceram alumina when comparing their core materials with and without porcelain lamination. The failure mode for both systems was predominantly transgranular fracture of alumina platelets. In-Ceram zirconia demonstrated higher flexural strength than In-Ceram alumina.

  15. Radiopaque strontium fluoroapatite glass-ceramics

    Directory of Open Access Journals (Sweden)

    Wolfram eHöland

    2015-10-01

    Full Text Available The controlled precipitation of strontium fluoroapatite crystals, was studied in four base glass compositions derived from the SiO2 – Al2O3 – Y2O3 – SrO – Na2O – K2O/Rb2O/Cs2O – P2O5 – F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: a Sr5(PO43F – leucite, KAlSi2O6 , b Sr5(PO43F – leucite, KAlSi2O6, and nano-sized NaSrPO4 c Sr5(PO43F – pollucite, CsAlSiO4 , and nano-sized NaSrPO4, d Sr5(PO43F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4.The proof of crystal phase formation was possible by X-ray diffraction (XRD. The microstructures, which were studied using scanning electron microscopy (SEM demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needlelike morphology. The study of the crystal growth of needlelike Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism.The formation of leucite, pollucite and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  16. Method for producing ceramic bodies

    International Nuclear Information System (INIS)

    Prunier, A.R. Jr.; Spangenberg, S.F.; Wijeyesekera, S.

    1992-01-01

    This patent describes a method for preparing a superconducting ceramic article. It comprises heating a powdered admixture comprising a source of yttria (Y 2 O 3 ), a source of barium monoxide and a source of cupric oxide to a temperature of from about 800 degrees Centigrade to 900 degrees Centigrade to allow the admixture to be densified under pressure to more than about 65 percent of the admixture's theoretical density but low enough to substantially preclude melting of the admixture; applying to the heated admixture isostatic pressure of between about 80,000 psi (5.5 x 10 2 MPa) and about the fracture stress of the heated admixture, for a period of time of from about 0.1 second to about ten minutes to form a densified article with a density of more than about 65 percent of the admixture's theoretical density; and annealing the densified article in the presence of gaseous oxygen under conditions sufficient to convert the densified article to a superconducting ceramic article having a composition comprising YBa 2 Cu 3 O 7 - x where O < x < 0.6

  17. Ceramics like PZT-PMN

    International Nuclear Information System (INIS)

    Droescher, R.E.; Sousa, V.C.; Bergman, C.P.

    2009-01-01

    The goal of this work was to achieve piezoelectric ceramics referring to the system PZT-PMN Pb(Mg 1 / 3 Nb 2 / 3 Zr 0 , 52 Ti 0 , 48 )O 3 . Have been analysed ceramics like 0,65PZT-0,35PMN ((Pb(Mg 0 , 1167 Nb 0 , 2300 Zr 0 , 3380 Ti 0 , 3120 )O 3 ), 0,75PZT-0,25PMN ((Pb(Mg 0 , 083 Nb 0 . 1675 Zr 0 , 3900 Ti 0 , 3600 )O3) and the 0,85PZT-0,15PMN ((Pb(Mg 0,0500 Nb 0 , 1000 Zr 0 , 4420 Ti 0 , 4080 )O 3 ). The influence of the calcination and concentration of PZT on the lattice phases, microstructure and density was evaluated. Then, the method used was the mixed-oxide method, the samples were taken under different temperatures of calcination before the final sinterizing. The DRX and SEM techniques were used to identify the phases formed and analyse the microstructure, respectively. The main result revealed that, the better way is to realize three burns before the final sinterizing at 1200 o C/4 h . Like that, on obtain for sure the average lattice phases, like: perovskite, pyrochlore and PbO and also tend to densify the samples. (author)

  18. Glass ceramic seals to inconel

    Science.gov (United States)

    McCollister, Howard L.; Reed, Scott T.

    1983-11-08

    A glass ceramic composition prepared by subjecting a glass composition comprising, by weight, 65-80% SiO.sub.2, 8-16%, Li.sub.2 O, 2-8% , Al.sub.2 O.sub.3, 1-8% K.sub.2 O, 1-5% P.sub.2 O.sub.5 and 1.5-7% B.sub.2 O.sub.3, to the following processing steps of heating the glass composition to a temperature sufficient to crystallize lithium metasilicate therein, holding the glass composition at a temperature and for a time period sufficient to dissolve the lithium metasilicate therein thereby creating cristobalite nucleii, cooling the glass composition and maintaining the composition at a temperature and for a time period sufficient to recrystallize lithium metasilicate therein, and thermally treating the glass composition at a temperature and for a time period sufficient to cause growth of cristobalite and further crystallization of lithium metasilicate producing a glass ceramic composition having a specific thermal expansion coefficient and products containing said composition.

  19. Ceramic materials on perovskite-type structure for electronic applications

    International Nuclear Information System (INIS)

    Surowiak, Z.

    2003-01-01

    Ceramic materials exhibiting the perovskite-type structure constitute among others, resource base for many fields of widely understood electronics (i.e., piezoelectronics, accustoelectronics, optoelectronics, computer science, tele- and radioelectronics etc.). Most often they are used for fabrication of different type sensors (detectors), transducers, ferroelectric memories, limiters of the electronic current intensity, etc., and hence they are numbered among so-called intelligent materials. Prototype structure of this group of materials is the structure of the mineral called perovskite (CaTiO 3 ). By means of right choice of the chemical composition of ABO 3 and deforming the regular perovskite structure (m3m) more than 5000 different chemical compounds and solid solutions exhibiting the perovskite-type structure have been fabricated. The concept of perovskite functional ceramics among often things ferroelectric ceramics, pyroelectric ceramics, piezoelectric ceramics, electrostrictive ceramics, posistor ceramics, superconductive ceramics and ferromagnetic ceramics. New possibilities of application of the perovskite-type ceramics are opened by nanotechnology. (author)

  20. Ceramic restoration repair: report of two cases

    Directory of Open Access Journals (Sweden)

    Luís Henrique Araújo Raposo

    2009-04-01

    Full Text Available The esthetic and functional rehabilitation of patients with multiple missing teeth can be performed with several techniques and materials. Ceramic restorations provide reliable masticatory function and good esthetics. However, fracture can occur in some cases due to their brittle behavior. In some cases, the replacement of an extensive prosthesis is a problem due to the high treatment cost. In this paper, two cases are presented, in which fractures occurred in extensive metal-ceramic fixed partial dentures, and their replacement was not possible. Ceramic repair was chosen and the sequences of treatment with and without presence of the ceramic fragment are also discussed. The cases illustrate that, in some situations, fractured metal-ceramic partial dentures can be successfully repaired when prosthetic replacement is not a choice. Prosthodontists must use alternatives that allow a reliable repair to extensive metal-ceramic fixed partial dentures. Surface preparation of the ceramic with hydrofluoric acid in conjunction with a silane coupling agent is essential for a predictable bonding of composite resin. The repair performed with composite resin is an esthetic and functional alternative when extensive fixed partial dentures cannot be replaced.

  1. Microcracking in ceramics and acoustic emission

    International Nuclear Information System (INIS)

    Subbarao, E.C.

    1991-01-01

    One of the limitations in the use of ceramics in critical applications is due to the presence of microcracks, which may arise from differential thermal expansion and phase changes, among others. Acoustic emission signals occur when there are abrupt microdeformations in a material and thus offer a convenient means of non-destructive detection of microcracking. Examples of a study of acoustic emission from microcracking due to anisotropic thermal expansion in low thermal expansion single phase ceramics such as niobia and sodium zirconium phosphate ceramics and due to phase changes in zirconia and superconducting YBa 2 Cu 3 Osub(7-x) ceramics are presented, together with the case of lead titanate ceramics, which exhibits both a phase change (paraelectric to ferroelectric) and an anisotropic thermal expansion. The role of grain size on the extent of microcracking is illustrated in the case of niobia ceramics. Some indirect evidence of healing of microcracks on heating niobia and lead titanate ceramics is presented from the acoustic emission results. (author). 69 refs., 9 figs

  2. High-temperature materials and structural ceramics

    International Nuclear Information System (INIS)

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  3. Characterization and evaluation of ceramic properties of clay used in structural ceramics

    International Nuclear Information System (INIS)

    Reis, A.S.; Oliveira, J.N.; Della-Sagrillo, V.P.; Valenzuela-Diaz, F.R.

    2014-01-01

    The clay used in the manufacture of structural ceramic products must meet quality requirements that are influenced by their chemical, physical, mineralogical and microstructural characteristics, which control the ceramic properties of the final products. This paper aims to characterize the clay used in the manufacture of ceramic roof tiles and bricks. The clay was characterized through XRF, XRD, thermogravimetry and differential thermal analysis, Atterberg limits and particle size distribution. Specimens were shaped, dried at 110°C, and burned at 900 deg C in an industrial kiln. After that, they were submitted to tests of water absorption, apparent porosity, bulk density and flexural strength. The results show that the chemical composition of clay has significant amount of silica and alumina and adequate levels of kaolinite for use in structural ceramic. The ceramic properties evaluated in the specimens partially meet the requirements of the Brazilian standard-clays for structural ceramics. (author)

  4. Characterization of ceramics used in mass ceramic industry Goianinha/RN

    International Nuclear Information System (INIS)

    Sales Junior, J.C.C.; Nascimento, R.M. do; Andrade, J.C.S.; Saldanha, K.M.; Dutra, R.P.S.

    2011-01-01

    The preparation of the the ceramic mass is one of the most important steps in the manufacture of ceramic products, since the characteristics of the raw materials used, and the proportions that they are added, directly influence the final properties of ceramic products and the operational conditions of processing. The objective of this paper is to present the results of the characterization of a ceramic mass used in the manufacture of sealing blocks by a red ceramic industry of the city of Goianinha / RN. We analyzed the chemical and mineralogical composition; thermogravimetric and differential thermal analysis; granulometric analysis; evaluation of plasticity; and determining the technological properties of specimens used in test firing at 700, 900 and 1100 ° C. The results show that the ceramic body studied has characteristics that allow use in the manufacture of sealing blocks when burned at a temperature of 900 ° C. (author)

  5. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    Science.gov (United States)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  6. High temperature alloys and ceramic heat exchanger

    International Nuclear Information System (INIS)

    Okamoto, Masaharu

    1984-04-01

    From the standpoint of energy saving, the future operating temperatures of process heat and gas turbine plants will become higher. For this purpose, ceramics is the most promissing candidate material in strength for application to high-temperature heat exchangers. This report deals with a servey of characteristics of several high-temperature metallic materials and ceramics as temperature-resistant materials; including a servey of the state-of-the-art of ceramic heat exchanger technologies developed outside of Japan, and a study of their application to the intermediate heat exchanger of VHTR (a very-high-temperature gas-cooled reactor). (author)

  7. Low-thermal expansion infrared glass ceramics

    Science.gov (United States)

    Lam, Philip

    2009-05-01

    L2 Tech, Inc. is in development of an innovative infrared-transparent glass ceramic material with low-thermal expansion (nano-crystals in a residual glass phase. The major crystalline phase is zirconium tungstate (ZrW2O8) which has Negative Thermal Expansion (NTE). The glass phase is the infrared-transparent germanate glass which has positive thermal expansion (PTE). Then glass ceramic material has a balanced thermal expansion of near zero. The crystal structure is cubic and the thermal expansion of the glass ceramic is isotropic or equal in all directions.

  8. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    Science.gov (United States)

    Naslain, R.

    2011-10-01

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  9. Ceramic sealants prepared by polymer pyrolysis

    Science.gov (United States)

    Hong, Sung Jin; Kim, Deug Joong; Yoo, Young Sung

    2011-02-01

    The formation and properties of ceramic seals for SOFC applications prepared by polymer pyrolysis are investigated. A mixture with polymethylsiloxane and fillers are pyrolyzed in a N2 atmosphere. The coefficient of thermal expansion of the ceramic composites was controlled by fillers with a high coefficient of thermal expansion such as AlCo. The morphology of the ceramic composites derived from the mixture with polymethylsiloxane and fillers is composed of fillers embedded in a Si-O-C glass matrix. The thermal expansion behavior and sealing characteristics are measured and discussed

  10. Solidification of HLLW into sintered ceramics

    International Nuclear Information System (INIS)

    O-Oka, K.; Ohta, T.; Masuda, S.; Tsunoda, N.

    1979-01-01

    Simulated HLLW from the PNC reprocessing plant at Tokai was solidified into sintered ceramics by normal sintering or hot-pressing with addition of some oxides. Among various ceramic products obtained so far, the most preferable was nepheline-type sintered solids formed with addition of SiO 2 and Al 2 O 3 to the simulated waste calcine. The solid shows advantageous properties in leach rate and mechanical strength, which suggest that the ceramic solids were prepared with additions of ZrO 2 or MnO 2 , and some of them showed good characteristics

  11. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    Energy Technology Data Exchange (ETDEWEB)

    Naslain, R, E-mail: naslain@lcts.u-bordeaux1.fr [University of Bordeaux 3, Allee de La Boetie, 33600 Pessac (France)

    2011-10-29

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  12. Experimental Techniques for Thermodynamic Measurements of Ceramics

    Science.gov (United States)

    Jacobson, Nathan S.; Putnam, Robert L.; Navrotsky, Alexandra

    1999-01-01

    Experimental techniques for thermodynamic measurements on ceramic materials are reviewed. For total molar quantities, calorimetry is used. Total enthalpies are determined with combustion calorimetry or solution calorimetry. Heat capacities and entropies are determined with drop calorimetry, differential thermal methods, and adiabatic calorimetry . Three major techniques for determining partial molar quantities are discussed. These are gas equilibration techniques, Knudsen cell methods, and electrochemical techniques. Throughout this report, issues unique to ceramics are emphasized. Ceramic materials encompass a wide range of stabilities and this must be considered. In general data at high temperatures is required and the need for inert container materials presents a particular challenge.

  13. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    International Nuclear Information System (INIS)

    Naslain, R

    2011-01-01

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  14. Porous ceramic scaffolds with complex architectures

    Energy Technology Data Exchange (ETDEWEB)

    Saiz, Eduardo; Munch, Etienne; Franco, Jaime; Deville, Sylvain; Hunger, Phillip; Saiz, Eduardo; Tomsia, Antoni P.

    2008-03-15

    This work compares two novel techniques for the fabrication of ceramic scaffolds for bone tissue engineering with complex porosity: robocasting and freeze casting. Both techniques are based on the preparation of concentrated ceramic suspensions with suitable properties for the process. In robocasting, the computer-guided deposition of the suspensions is used to build porous materials with designed three dimensional (3-D) geometries and microstructures. Freeze casting uses ice crystals as a template to form porous lamellar ceramic materials. Preliminary results on the compressive strengths of the materials are also reported.

  15. [Preparation of porous ceramics based on waste ceramics and its Ni2+ adsorption characteristics].

    Science.gov (United States)

    Zhang, Yong-Li; Wang, Cheng-Zhi; Shi, Ce; Shang, Ling-Ling; Ma, Rui; Dong, Wan-Li

    2013-07-01

    The preparation conditions of porous ceramics were determined by SEM, XRD and FT-IR characterizations as well as the nickel removal ability of porous ceramics to be: the mass fraction w of sesbania powder doped was 4%, and the calcination temperature was 800 degrees C. SEM and pore structure characterization illustrated that calcination caused changes in the structure and morphology of waste ceramics. With the increase of calcination temperature, the specific surface area and pore volume decreased, while the aperture increased. EDS analyses showed that the main elements of both the original waste porcelain powder and the porous ceramics were Si, Al and O. The SEM, XRD and FT-IR characterization of porous ceramics illustrated that the structure of porous ceramics was stable before and after adsorption. The series of experiments of Ni2+ adsorption using these porous ceramics showed that when the dosage of porous ceramics was 10 g x L(-1), the adsorption time was 60 min, the pH value was 6.32, and the concentration of nickel-containing wastewater was below 100 mg x L(-1), the Ni2+ removal of wastewater reached 89.7%. Besides, the porous ceramics showed higher removal efficiency on nickel in the wastewater. The Ni(2+)-containing wastewater was processed by the porous ceramics prepared, and the adsorption dynamics and adsorption isotherms of Ni2+ in wastewater by porous ceramics were investigated. The research results showed that the Ni2+ adsorption process of porous ceramics was in accordance with the quasi second-order kinetic model (R2 = 0.999 9), with Q(e) of 9.09 mg x g(-1). The adsorption process can be described by the Freundlich equation and Langmuir equation, and when the temperature increased from 20 degrees C to 40 degrees C, the maximum adsorption capacity Q(m) increased from 14.49 mg x g(-1) to 15.38 mg x g(-1).

  16. Scale up issues involved with the ceramic waste form: ceramic-container interactions and ceramic cracking quantification

    International Nuclear Information System (INIS)

    Bateman, K. J.; DiSanto, T.; Goff, K. M.; Johnson, S. G.; O'Holleran, T.; Riley, W. P. Jr.

    1999-01-01

    Argonne National Laboratory is developing a process for the conditioning of spent nuclear fuel to prepare the material for final disposal. Two waste streams will result from the treatment process, a stainless steel based form and a ceramic based form. The ceramic waste form will be enclosed in a stainless steel container. In order to assess the performance of the ceramic waste form in a repository two factors must be examined, the surface area increases caused by waste form cracking and any ceramic/canister interactions that may release toxic material. The results indicate that the surface area increases are less than the High Level Waste glass and any toxic releases are below regulatory limits

  17. ceramics

    Indian Academy of Sciences (India)

    2009-08-11

    Aug 11, 2009 ... difference in ECP and ECR was because of internal field generated during aging. The space charge effect was res- ponsible for internal field. The PR and FPR crossed each other at polarization reversal field, 1·80 kV/mm, which was slightly lower than the average value of ECP and ECP. (2·75 + 1·25)/2 = 2 ...

  18. for zeolite coating

    Directory of Open Access Journals (Sweden)

    Carlos Renato Rambo

    2006-01-01

    Full Text Available Biotemplating is the processing of microcellular ceramics by reproduction of natural morphologies, where the microstructural features of the biotemplate are maintained in the biomorphic ceramic. Different biotemplates with distinct pore anatomies were used to produce biomorphic supports for the zeolite coating: wood, cardboard, sea-sponge and sisal. The biomorphic ceramics were produced by distinguished processing routes: Al-gas infiltration-reaction, liquid-metal infiltration, dip-coating and sol-gel synthesis, in order to produce nitrides, carbides and oxides, depending on the processing conditions. The zeolite coating was performed by hydrothermal growth of MFI-type (Silicalite-1 and ZSM-5 zeolite crystals onto the internal pore walls of the biomorphic templates. The final biomorphic ceramic-zeolite composites were physically characterized, evaluated in terms of their gas adsorption capabilities and correlated to their microstructure and specific pore anatomy. The combination of the properties of the biomorphic ceramics with the adsorption properties of zeolites results in materials with distinct properties as potential candidates for adsorption and catalytic applications due to their characteristic porosity, molecular sieving capabilities and high thermo-mechanical strength.

  19. Mechanical behaviour of structural ceramics

    Directory of Open Access Journals (Sweden)

    Bueno, S.

    2007-06-01

    Full Text Available The use of ceramic materials in structural applications is limited by the lack of reliability associated with brittle fracture behaviour. In order to extend the structural use of ceramics, the design of microstructures which exhibit flaw tolerance due to toughening mechanisms which produce an increase in crack growth resistance during crack propagation has been proposed. This work is a review of the mechanical behaviour of structural ceramic materials and its characterisation. Firstly, the basic brittle fracture parameters and the statistical criteria to determine the probability of exceeding the safety factors demanded for a particular application are analysed. Then, the toughening mechanisms which can be developed in the materials through microstructural design as well as the mechanical characterisation of toughened ceramics are discussed. The experimental values of linear elastic fracture toughness parameters (critical stress intensity factor, KIC, and critical energy release rate, GIC are not intrinsic properties for toughened materials and depend on crack length and the loading system. In this work, the different mechanical parameters proposed to characterise such materials are reviewed. The following fracture parameters are analysed: work of fracture (γWOF, critical J-integral value (JIC and R-curve. For the determination, stable fracture tests are proposed in order to ensure that the energy provided during the test is no more than the necessary one for crack propagation.

    El uso de los materiales cerámicos en aplicaciones estructurales está limitado por la falta de fiabilidad asociada a su comportamiento frágil durante la fractura. Para extender su aplicación se ha propuesto el diseño de microestructuras que presenten tolerancia a los defectos debido a la actuación de mecanismos de refuerzo. Este trabajo es una puesta al día sobre el estudio del comportamiento mecánico de los materiales cerámicos estructurales y su

  20. Manufacturing of planar ceramic interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  1. CERAMIC WASTE FORM DATA PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J.; Marra, J.

    2014-06-13

    The purpose of this data package is to provide information about simulated crystalline waste forms that can be used to select an appropriate composition for a Cold Crucible Induction Melter (CCIM) proof of principle demonstration. Melt processing, viscosity, electrical conductivity, and thermal analysis information was collected to assess the ability of two potential candidate ceramic compositions to be processed in the Idaho National Laboratory (INL) CCIM and to guide processing parameters for the CCIM operation. Given uncertainties in the CCIM capabilities to reach certain temperatures throughout the system, one waste form designated 'Fe-MP' was designed towards enabling processing and another, designated 'CAF-5%TM-MP' was designed towards optimized microstructure. Melt processing studies confirmed both compositions could be poured from a crucible at 1600{degrees}C although the CAF-5%TM-MP composition froze before pouring was complete due to rapid crystallization (upon cooling). X-ray diffraction measurements confirmed the crystalline nature and phase assemblages of the compositions. The kinetics of melting and crystallization appeared to vary significantly between the compositions. Impedance spectroscopy results indicated the electrical conductivity is acceptable with respect to processing in the CCIM. The success of processing either ceramic composition will depend on the thermal profiles throughout the CCIM. In particular, the working temperature of the pour spout relative to the bulk melter which can approach 1700{degrees}C. The Fe-MP composition is recommended to demonstrate proof of principle for crystalline simulated waste forms considering the current configuration of INL's CCIM. If proposed modifications to the CCIM can maintain a nominal temperature of 1600{degrees}C throughout the melter, drain, and pour spout, then the CAF-5%TM-MP composition should be considered for a proof of principle demonstration.

  2. Polymer-Derived Ceramic Fibers

    Science.gov (United States)

    Ichikawa, Hiroshi

    2016-07-01

    SiC-based ceramic fibers are derived from polycarbosilane or polymetallocarbosilane precursors and are classified into three groups according to their chemical composition, oxygen content, and C/Si atomic ratio. The first-generation fibers are Si-C-O (Nicalon) fibers and Si-Ti-C-O (Tyranno Lox M) fibers. Both fibers contain more than 10-wt% oxygen owing to oxidation during curing and lead to degradation in strength at temperatures exceeding 1,300°C. The maximum use temperature is 1,100°C. The second-generation fibers are SiC (Hi-Nicalon) fibers and Si-Zr-C-O (Tyranno ZMI) fibers. The oxygen content of these fibers is reduced to less than 1 wt% by electron beam irradiation curing in He. The thermal stability of these fibers is improved (they are stable up to 1,500°C), but their creep resistance is limited to a maximum of 1,150°C because their C/Si atomic ratio results in excess carbon. The third-generation fibers are stoichiometric SiC fibers, i.e., Hi-Nicalon Type S (hereafter Type S), Tyranno SA, and Sylramic™ fibers. They exhibit improved thermal stability and creep resistance up to 1,400°C. Stoichiometric SiC fibers meet many of the requirements for the use of ceramic matrix composites for high-temperature structural application. SiBN3C fibers derived from polyborosilazane also show promise for structural applications, remain in the amorphous state up to 1,800°C, and have good high-temperature creep resistance.

  3. Compact Ceramic Microchannel Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Lewinsohn, Charles [Ceramatec, Inc., Salt Lake City, UT (United States)

    2016-10-31

    The objective of the proposed work was to demonstrate the feasibility of a step change in power plant efficiency at a commercially viable cost, by obtaining performance data for prototype, compact, ceramic microchannel heat exchangers. By performing the tasks described in the initial proposal, all of the milestones were met. The work performed will advance the technology from Technology Readiness Level 3 (TRL 3) to Technology Readiness Level 4 (TRL 4) and validate the potential of using these heat exchangers for enabling high efficiency solid oxide fuel cell (SOFC) or high-temperature turbine-based power plants. The attached report will describe how this objective was met. In collaboration with The Colorado School of Mines (CSM), specifications were developed for a high temperature heat exchanger for three commercial microturbines. Microturbines were selected because they are a more mature commercial technology than SOFC, they are a low-volume and high-value target for market entry of high-temperature heat exchangers, and they are essentially scaled-down versions of turbines used in utility-scale power plants. Using these specifications, microchannel dimensions were selected to meet the performance requirements. Ceramic plates were fabricated with microchannels of these dimensions. The plates were tested at room temperature and elevated temperature. Plates were joined together to make modular, heat exchanger stacks that were tested at a variety of temperatures and flow rates. Although gas flow rates equivalent to those in microturbines could not be achieved in the laboratory environment, the results showed expected efficiencies, robust operation under significant temperature gradients at high temperature, and the ability to cycle the stacks. Details of the methods and results are presented in this final report.

  4. Additively Manufactured Ceramic Rocket Engine Components

    Data.gov (United States)

    National Aeronautics and Space Administration — HRL Laboratories, LLC, with Vector Space Systems (VSS) as subcontractor, has a 24-month effort to develop additive manufacturing technology for reinforced ceramic...

  5. Additive manufacturing of polymer-derived ceramics

    Science.gov (United States)

    Eckel, Zak C.; Zhou, Chaoyin; Martin, John H.; Jacobsen, Alan J.; Carter, William B.; Schaedler, Tobias A.

    2016-01-01

    The extremely high melting point of many ceramics adds challenges to additive manufacturing as compared with metals and polymers. Because ceramics cannot be cast or machined easily, three-dimensional (3D) printing enables a big leap in geometrical flexibility. We report preceramic monomers that are cured with ultraviolet light in a stereolithography 3D printer or through a patterned mask, forming 3D polymer structures that can have complex shape and cellular architecture. These polymer structures can be pyrolyzed to a ceramic with uniform shrinkage and virtually no porosity. Silicon oxycarbide microlattice and honeycomb cellular materials fabricated with this approach exhibit higher strength than ceramic foams of similar density. Additive manufacturing of such materials is of interest for propulsion components, thermal protection systems, porous burners, microelectromechanical systems, and electronic device packaging.

  6. Radiation effects on structural ceramics in fusion

    International Nuclear Information System (INIS)

    Hopkins, G.R.; Price, R.J.; Trester, P.W.

    1986-01-01

    Ceramics are required to serve in a conventional role as electrical and thermal insulators and dielectrics in fusion power reactors. In addition, certain ceramic materials can play a unique structural role in fusion power reactors by virtue of their very low induced radioactivity from fusion neutron capture. The aspects of safety, long-term radioactive waste management, and personnel access for maintenance and repair can all be significantly improved by applying the low-activation ceramics to the structural materials of the first-wall and blanket regions of a fusion reactor. Achievement of long service life at high structural loads and thermal stresses on the materials exposed to high-radiation doses presents a critical challenge for fusion. In this paper, we discuss radiation effects on structural ceramics for fusion application

  7. Scaling up the microwave firing of ceramics

    International Nuclear Information System (INIS)

    Wroe, F.C.R.

    1993-01-01

    EA Technology, through a comprehensive R ampersand D program, is developing new microwave furnace technology focused on the ceramics processing industries. Using a combination of computer modelling, experimentation and feasibility studies, EA Technology has developed processes and procedures for firing large ceramic components. The aim of this work is to describe the investigation of the firing of ceramic products such as bricks, pottery, refractories, and industrial ceramics, using advanced processing techniques to produce and maintain uniformity of temperature throughout the components and kiln environment. This has achieved the goal of producing uniform microstructures and low thermal stress by careful control of the firing cycle. This paper illustrates the feasibility of microwave-assisted firing and shows it to be economically viable in terms of energy costs and process control. 6 refs., 1 fig

  8. Fire effects on prehistoric ceramics [Chapter 3

    Science.gov (United States)

    Trisha Rude; Anne Trinkle Jones

    2012-01-01

    In North America, prehistoric pottery is primarily earthenware (a porous ceramic, fired at a relatively low temperature). It is not glass-like or dense like other kinds of pottery such as stoneware and porcelain (see chapter 6).

  9. Advanced Ceramics Property and Performance Measurements

    Science.gov (United States)

    Jenkins, Michael; Salem, Jonathan; Helfinstine, John; Quinn, George; Gonczy, Stephen

    2015-01-01

    Mechanical and physical properties of ceramic bodies can be difficult to measure correctly unless the proper techniques are used. The Advanced Ceramics Committee of ASTM, C-28, has developed dozens of consensus test standards and practices to measure various properties of a ceramic monolith, composite, or coating. The standards give the what, how, how not, and why for measurement of many mechanical, physical, thermal, and performance properties. Using these standards will provide accurate, reliable, and complete data for rigorous comparisons with other test results from your test lab, or another. The C-28 Committee has involved academics, producers, and users of ceramics to write and continually update more than 45 standards since the committees inception in 1986. Included in this poster is a pictogram of the C-28 standards and information on how to obtain individual copies with full details or the complete collection of all of the standards in one volume.

  10. Thermoluminescence properties of AlN ceramics

    DEFF Research Database (Denmark)

    Trinkler, L.; Christensen, P.; Agersnap Larsen, N.

    1998-01-01

    The paper describes thermoluminescence (TL) properties of AlN:Y2O3 ceramics irradiated with ionising radiation. A high TL sensitivity of AlN:Y2O3 ceramics to radiation encouraged a study of the AlN ceramics for application as a dosimetric material. The paper presents experimental data on: glow...... curve, emission spectrum, dose response, energy dependence, influence of heating rate and fading rate. The measured TL characteristics were compared with those of well-known, widely used TLDs, i.e. LiF:Mg,Ti, LiF:Mg,Cu,P and Al2O3:C. It is concluded that AlN:Y2O3 ceramics showing a radiation sensitivity...

  11. Mixed-mode fracture of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.

    1985-01-01

    The mixed-mode fracture behavior of ceramic materials is of importance for monolithic ceramics in order to predict the onset of fracture under generalized loading conditions and for ceramic composites to describe crack deflection toughening mechanisms. Experimental data on surface flaw mixed-mode fracture in various ceramics indicate that the flaw-plane normal stress at fracture decreases with increasing in-flaw-plane shear stress, although present data exhibit a fairly wide range in details of this sigma - tau relationship. Fracture from large cracks suggests that Mode II has a greater effect on Mode I fracture than Mode III. A comparison of surface flaw and large crack mixed-mode I-II fracture responses indicated that surface flaw behavior is influenced by shear resistance effects.

  12. Microstructure and properties of ceramic materials

    International Nuclear Information System (INIS)

    Yen Tungsheng

    1984-01-01

    Ceramics materials study is an important field in modern materials science. Each side presented 19 papers most of which were recent investigations giving rather extensive coverage of microstructure and properties of new materials. (Auth.)

  13. Toward Modeling Limited Plasticity in Ceramic Materials

    National Research Council Canada - National Science Library

    Grinfeld, Michael; Schoenfeld, Scott E; Wright, Tim W

    2008-01-01

    The characteristic features of many armor-related ceramic materials are the anisotropy on the micro-scale level and the very limited, though non-vanishing, plasticity due to limited number of the planes for plastic slip...

  14. Modelling of Tape Casting for Ceramic Applications

    DEFF Research Database (Denmark)

    Jabbari, Masoud

    , there is still only very limited insight into the processes determining the final properties of such components. Hence, the aim of the present PhD project is to obtain the required knowledge basis for the optimized processing of multi-material functional ceramics components. Recent efforts in the domain...... of ceramic processing are generally focused on the control of the microstructure while the importance of shaping is often underestimated. Improved performance requires the design and shaping of both controlled architectures and microstructures. Novel functionally graded ceramic materials may be formed...... by multilayers or adjacent grading of different ceramic materials. Such grading is often desired for optimal performance. An example is when there is a gradient in temperature or chemical environment along the component during operation; in this case the properties of each section of the component should...

  15. Composite metal foil and ceramic fabric materials

    Science.gov (United States)

    Webb, Brent J.; Antoniak, Zen I.; Prater, John T.; DeSteese, John G.

    1992-01-01

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

  16. Wear mechanisms in ceramic hip implants.

    Science.gov (United States)

    Slonaker, Matthew; Goswami, Tarun

    2004-01-01

    The wear in hip implants is one of the main causes for premature hip replacements. The wear affects the potential life of the prosthesis and subsequent removals of in vivo implants. Therefore, the objective of this article is to review various joints that show lower wear rates and consequently higher life. Ceramics are used in hip implants and have been found to produce lower wear rates. This article discusses the advantages and disadvantages of ceramics compared to other implant materials. Different types of ceramics that are being used are reviewed in terms of the wear characteristics, debris released, and their size together with other biological factors. In general, the wear rates in ceramics were lower than that of metal-on-metal and metal-on-polyethylene combinations.

  17. Screening and classification of ceramic powders

    Science.gov (United States)

    Miwa, S.

    1983-01-01

    A summary is given of the classification technology of ceramic powders. Advantages and disadvantages of the wet and dry screening and classification methods are discussed. Improvements of wind force screening devices are described.

  18. Celsian Glass-Ceramic Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.; Dicarlo, James A.

    1996-01-01

    Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.

  19. Machinability of IPS Empress 2 framework ceramic.

    Science.gov (United States)

    Schmidt, C; Weigl, P

    2000-01-01

    Using ceramic materials for an automatic production of ceramic dentures by CAD/CAM is a challenge, because many technological, medical, and optical demands must be considered. The IPS Empress 2 framework ceramic meets most of them. This study shows the possibilities for machining this ceramic with economical parameters. The long life-time requirement for ceramic dentures requires a ductile machined surface to avoid the well-known subsurface damages of brittle materials caused by machining. Slow and rapid damage propagation begins at break outs and cracks, and limits life-time significantly. Therefore, ductile machined surfaces are an important demand for machine dental ceramics. The machining tests were performed with various parameters such as tool grain size and feed speed. Denture ceramics were machined by jig grinding on a 5-axis CNC milling machine (Maho HGF 500) with a high-speed spindle up to 120,000 rpm. The results of the wear test indicate low tool wear. With one tool, you can machine eight occlusal surfaces including roughing and finishing. One occlusal surface takes about 60 min machining time. Recommended parameters for roughing are middle diamond grain size (D107), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 1000 mm/min, depth of cut a(e) = 0.06 mm, width of contact a(p) = 0.8 mm, and for finishing ultra fine diamond grain size (D46), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 100 mm/min, depth of cut a(e) = 0.02 mm, width of contact a(p) = 0.8 mm. The results of the machining tests give a reference for using IPS Empress(R) 2 framework ceramic in CAD/CAM systems. Copyright 2000 John Wiley & Sons, Inc.

  20. Measurement of radiant properties of ceramic foam

    International Nuclear Information System (INIS)

    Hoornstra, J.; Turecky, M.; Maatman, D.

    1994-07-01

    An experimental facility is described for the measurement of the normal spectral and total emissivity and transmissivity of semi-transparent materials in the temperature range of 600 C to 1200 C. The set-up was used for the measurement of radiation properties of highly porous ceramic foam which is used in low NO x radiant burners. Emissivity and transmissivity data were measured and are presented for coated and uncoated ceramic foam of different thicknesses. (orig.)

  1. Ceramics for Dental Applications: A Review

    Directory of Open Access Journals (Sweden)

    Julie A. Holloway

    2010-01-01

    Full Text Available Over the past forty years, the technological evolution of ceramics for dental applications has been remarkable, as new materials and processing techniques are steadily being introduced. The improvement in both strength and toughness has made it possible to expand the range of indications to long-span fixed partial prostheses, implant abutments and implants. The present review provides a state of the art of ceramics for dental applications.

  2. Tensile properties of open cell ceramic foams

    Czech Academy of Sciences Publication Activity Database

    Bertolla, Luca; Dlouhý, Ivo; Řehořek, Lukáš; Chlup, Zdeněk

    2013-01-01

    Roč. 3, č. 1 (2013), s. 106-113 ISSN 1338-1660. [FRACTOGRAPHY 2012. Stará Lesná, 21.10.2012-24.10.2012] R&D Projects: GA ČR(CZ) GA101/09/1821 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : tension test * cellular materials * ceramics Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  3. The cast glass-ceramic restoration.

    Science.gov (United States)

    Malament, K A; Grossman, D G

    1987-06-01

    The use of Dicor cast glass-ceramic material for fixed prosthodontic complete crowns has been described. The advantages of this material are chemical and physical uniformity, marginal accuracy, uncomplicated fabrication from wax-up to casting, ceramming, and coloring, ease of adjustment, excellent esthetics resulting from natural translucency, light absorption, light refraction, and natural color for the crown, and its inherent resistance to bacterial plaque.

  4. Monolithic ceramic capacitors for high reliability applications

    Science.gov (United States)

    Thornley, E. B.

    1981-01-01

    Monolithic multi-layer ceramic dielectric capacitors are widely used in high reliability applications in spacecraft, launch vehicles, and military equipment. Their relatively low cost, wide range of values, and package styles are attractive features that result in high usage in electronic circuitry in these applications. Design and construction of monolithic ceramic dielectric capacitors, defects that can lead to failure, and methods for defect detection that are being incorporated in military specifications are discussed.

  5. Ceramics And Sculpture Interface With Architecture.

    OpenAIRE

    Peters Edem E.; Henry Asante

    2015-01-01

    This work is an inter-disciplinary discourse that examines the role that their collective efforts it properly harassed can play in the development of modern architecture to meet the quest for safe and comfortable homes. The paper aims at assessing how much presence there are sculpture and ceramics in architecture. Sculpture and ceramics are disciplines in fine art and industrial art respectively. The paper identifies the specific contributions each discipline gives to the making of modern arc...

  6. Impact Strength of Glass and Glass Ceramic

    Science.gov (United States)

    Bless, S.; Tolman, J.

    2009-12-01

    Strength of glass and glass ceramic was measured with a bar impact technique. High-speed movies show regions of tensile and compressive failure. The borosilicate glass had a compressive strength of at least 2.2 GPa, and the glass ceramic at least 4 GPa. However, the BSG was much stronger in tension than GC. In ballistic tests, the BSG was the superior armor.

  7. Bibliography of ceramic extrusion and plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M.A.; Vance, M.C.; Jordan, A.C.; Kertesz, M.P.

    1987-03-01

    A comprehensive bibliography of ceramic extrusion and plasticity has been compiled. Over 670 abstracts are included covering the period 1932 to 1984. Citations cover a wide range of interests from basic science investigations to engineering ''tips'' and include references to brick and tile, whitewares, technical ceramics, theoretical models, engineering analyses, forming, drying, and raw materials. In addition to the citations, there are numerous indices to make the bibliography easy to use.

  8. Advanced Ceramic Materials for Future Aerospace Applications

    Science.gov (United States)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  9. Microstructural characterization of nuclear-waste ceramics

    International Nuclear Information System (INIS)

    Ryerson, F.J.; Clarke, D.R.

    1982-01-01

    Characterization of nuclear waste ceramics requires techniques possessing high spatial and x-ray resolution. XRD, SEM, electron microprobe, TEM and analytical EM techniques are applied to ceramic formulations designed to immobilize both commercial and defense-related reactor wastes. These materials are used to address the strengths and limitations of the techniques above. An iterative approach combining all these techniques is suggested. 16 figures, 2 tables

  10. Tensile Behaviour of Open Cell Ceramic Foams

    Czech Academy of Sciences Publication Activity Database

    Řehořek, Lukáš; Dlouhý, Ivo; Chlup, Zdeněk

    2009-01-01

    Roč. 53, č. 4 (2009), s. 237-241 ISSN 0862-5468 R&D Projects: GA ČR GA101/09/1821; GA ČR GD106/09/H035 Institutional research plan: CEZ:AV0Z20410507 Keywords : Tensile test * Ceramics foam * Open porosity * Tensile strength Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.649, year: 2009

  11. Development of Advanced Ceramic Manufacturing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  12. Mechanical properties of In-Ceram Alumina and In-Ceram Zirconia.

    Science.gov (United States)

    Guazzato, Massimiliano; Albakry, Mohammad; Swain, Michael Vincent; Ironside, Jim

    2002-01-01

    This study compared the mechanical properties of In-Ceram Zirconia and In-Ceram Alumina. Ninety-four disks and six bars were prepared with the slip-casting technique. The disks were used to assess biaxial flexural strength (piston on three ball), Weibull modulus, hardness, and fracture toughness with two methods: indentation fracture and indentation strength. The bars were used to measure elastic moduli (Young's modulus and Poisson's ratio). X-ray diffraction analysis of the specimens was carried out upon every step of the specimen preparation and of the fractured surfaces. Mean biaxial flexure strengths of In-Ceram Alumina and In-Ceram Zirconia were 600 MPa (SD 60) and 620 MPa (SD 61), respectively. Mean fracture toughness measured according to indentation strength was 3.2 MPa.m1/2 (SD 0.34) for in-Ceram Alumina and 4.0 MPa.m1/2 (SD 0.43) for In-Ceram Zirconia. Mean fracture toughnesses of In-Ceram Alumina and In-Ceram Zirconia measured according to indentation fracture were 2.7 MPa.m1/2 (SD 0.34) and 3.0 MPa.m1/2 (SD 0.48), respectively. X-ray diffraction analysis showed that little phase transformation from tetragonal to monoclinic occurred when the specimens were fractured, supporting the existence of a modest difference of fracture toughness between the two ceramics. No statistically significant difference was found in strength. In-Ceram Zirconia was tougher (P < .01) than In-Ceram Alumina when tested according to indentation strength. However, no significant difference was found in the fracture toughness when tested with the indentation fracture technique.

  13. Prospects of ceramic tritium breeder materials

    International Nuclear Information System (INIS)

    Roth, E.; Roux, N.; Conservatoire National des Arts et Metiers; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette

    1989-01-01

    In this paper the authors examine the prospects of the main ceramics proposed as breeder materials for fusion reactors, i.e. Li-2O, Li-2ZrO-3, LiAlO-2, Li-4SiO-4. To do so they review terms of reference of contemplated blankets for NET, ITER and DEMO, and the proposed blanket concepts and materials. Issues respective to the use of each breeder material are examined, and from this review it is concluded that ceramics are the most favorable breeder materials whose use can be contemplated as well for a driver blanket for NET or ITER and for a DEMO blanket. Ceramics are then compared between themselves and it is seen that, subject to the confirmation of recent experimental results, lithium zirconate could be used with advantage in any of the present blanket concepts, except in those employing lithium at its natural isotopic abundance, in which case only Li-2O can be used. However in specific cases, or in parts of a blanket, other ceramics may be profitably employed. As a general conclusion suggestions are made to further improve ceramic breeder performances, and it is recommended to intensify also work on problems that have to be solved in order to operate ceramic breeder blankets e.g. tritium extraction and recovery systems and conditions of beryllium use. (author). 37 refs.; 12 tabs

  14. Marginal Strength of Collarless Metal Ceramic Crown

    Directory of Open Access Journals (Sweden)

    Sikka Swati

    2010-01-01

    fracture strength at margins of metal ceramic crowns cemented to metal tooth analogs. Crowns evaluated with different marginal configurations, shoulder and shoulder bevel with 0 mm, 0.5 mm, 1 mm, and 1.5 mm, were selected. Methods. Maxillary right canine typhodont tooth was prepared to receive a metal ceramic crown with shoulder margin. This was duplicated to get 20 metal teeth analogs. Then the same tooth was reprepared to get shoulder bevel configuration. These crowns were then cemented onmetal teeth analogs and tested for fracture strength atmargin on an Instron testing machine. A progressive compressive load was applied using 6.3 mm diameter rod with crosshead speed of 2.5 mm per minute. Statisticaly analysis was performed with ANOVA, Student's “t” test and “f” test. Results. The fracture strength of collarless metal ceramic crowns under study exceeded the normal biting force. Therefore it can be suggested that collarless metal ceramic crowns with shoulder or shoulder bevel margins up to 1.5 mm framework reduction may be indicated for anteriormetal ceramic restorations. Significance. k Collarless metal ceramic crowns have proved to be successful for anterior fixed restorations. Hence, it may be subjected to more clinical trials.

  15. Properties of paving units incorporating crushed ceramic

    Directory of Open Access Journals (Sweden)

    Dina M. Sadek

    2014-08-01

    Full Text Available The aim of this study is to investigate the effects of using crushed ceramic in the production of interlocking paving units. Eight mixes were cast. The first mix was the control mix, in which natural aggregates were used in the upper and lower layers. In the second and third mixes, coarse crushed ceramic was used in the lower layer replacing 50% and 100% of crushed stone, respectively. In the fourth and fifth mixes, fine crushed ceramic was used in the lower layer replacing 50% and 100% of natural sand, respectively. In the sixth mix, coarse and fine crushed ceramic were used in the lower layer replacing 50% of crushed stone and 50% of natural sand, respectively. Finally, in the seventh and eighth mixes, fine crushed ceramic was used in the upper layer replacing 50% and 100% of natural sand, respectively while natural sand was used in the lower layer. Tests were carried out in order to investigate the properties of the manufactured specimens after 28 days of curing. Compressive strength and abrasion resistance were determined according to the American Society for Testing and Materials (ASTM C 140 and ASTM C418, respectively. Water absorption, split tensile strength, abrasion resistance, as well as, skid resistance were determined according to both Egyptian Standard Specifications (ESS 4382 and European Standard (EN 1338. The Egyptian standard is identical with the European standard. The results indicate that it is feasible to use fine crushed ceramic in the manufacture of paving blocks.

  16. Structure and properties of interfaces in ceramics

    International Nuclear Information System (INIS)

    Bonnell, D.; Ruehle, M.; Chowdhry, U.

    1995-01-01

    The motivation for the symposium was the observation that interfaces in crystallographically and compositionally complex systems often dictate the performance and reliability of devices that utilize functional ceramics. The current level of understanding of interface-property relations in silicon-based devices required over 30 years of intensive research. Similar issues influence the relationship between atomic bonding at interfaces and properties in functional ceramic systems. The current understanding of these complex interfaces does not allow correlation between atomic structure and interface properties, in spite of their importance to a number of emerging technologies (wireless communications, radar-based positioning systems, sensors, etc.). The objective of this symposium was to focus attention on these fundamental issues by featuring recent theoretical and experimental work from various disciplines that impact the understanding of interface chemistry, structure, and properties. The emphasis was on relating properties of surfaces and interfaces to structure through an understanding of atomic level phenomena. Interfaces of interest include metal/ceramic, ceramic/ceramic, ceramic/vapor, etc., in electronic, magnetic, optical, ferroelectric, piezoelectric, and dielectric applications. Sixty one papers have been processed separately for inclusion on the data base

  17. Ceramics in Restorative and Prosthetic DENTISTRY1

    Science.gov (United States)

    Kelly, J. Robert

    1997-08-01

    This review is intended to provide the ceramic engineer with information about the history and current use of ceramics in dentistry, contemporary research topics, and potential research agenda. Background material includes intra-oral design considerations, descriptions of ceramic dental components, and the origin, composition, and microstructure of current dental ceramics. Attention is paid to efforts involving net-shape processing, machining as a forming method, and the analysis of clinical failure. A rationale is presented for the further development of all-ceramic restorative systems. Current research topics receiving attention include microstructure/processing/property relationships, clinical failure mechanisms and in vitro testing, wear damage and wear testing, surface treatments, and microstructural modifications. The status of the field is critically reviewed with an eye toward future work. Significant improvements seem possible in the clinical use of ceramics based on engineering solutions derived from the study of clinically failed restorations, on the incorporation of higher levels of "biomimicry" in new systems, and on the synergistic developments in dental cements and adhesive dentin bonding.

  18. Modeling of microcrack density based damage evolution in ceramic rods

    International Nuclear Information System (INIS)

    Grove, D.J.; Rajendran, A.M.

    2000-01-01

    This paper presents results from simulations of shock wave propagation in ceramic rods with and without confinement. The experiments involved steel and graded-density flyer plates impacting sleeved and unsleeved AD995 ceramic rods. The main objectives of simulating these experiments were: 1) to validate the Rajendran-Grove (RG) ceramic model constants, and 2) to investigate the effects of confinement on damage evolution in ceramic rods, as predicted by the RG model. While the experimental measurements do not indicate the details of damage evolution in the ceramic rod, the numerical modeling has provided some valuable insight into the damage initiation and propagation processes in ceramic rods

  19. Ceramic Armor Will Be Replaced by Composite Armor Very Soon*

    OpenAIRE

    Soeyatno, Soeyatno

    2012-01-01

    Ceramic armors have existed for more than 30 years. They replaced the much heavier metal armor.One of the biggest producers of ceramic armor is Bittosi in Spain. It is a confidential product with no open promotion. Ceramic armor is the side products of Bitossi. Their main products are alubit liming and balls for ceramic industry, paint and pharmacy. Their ceramic armors have been used by many countries in Europe and by NATO. Actually, ceramic armor is still too heavy for soldiers since itweig...

  20. Biaxial flexural strength of bilayered zirconia using various veneering ceramics

    OpenAIRE

    Chantranikul, Natravee; Salimee, Prarom

    2015-01-01

    PURPOSE The aim of this study was to evaluate the biaxial flexural strength (BFS) of one zirconia-based ceramic used with various veneering ceramics. MATERIALS AND METHODS Zirconia core material (Katana) and five veneering ceramics (Cerabien ZR; CZR, Lava Ceram; LV, Cercon Ceram Kiss; CC, IPS e.max Ceram; EM and VITA VM9; VT) were selected. Using the powder/liquid layering technique, bilayered disk specimens (diameter: 12.50 mm, thickness: 1.50 mm) were prepared to follow ISO standard 6872:20...

  1. Status quo of ceramic material for metal halide discharge lamps

    International Nuclear Information System (INIS)

    Kappen, Theo G M M

    2005-01-01

    Polycrystalline alumina is an excellent ceramic material for use as the envelope for metal halide discharge lamps. Although this material was introduced in the mid-1960s, and is thus already known for several decades, recent years have seen considerable effort aimed at further development of these ceramic envelope materials. Developments are not only in the field of ceramic shaping technologies, but are also concentrated on the material properties of the ceramic material itself. Optical, mechanical as well as the chemical properties of the ceramic envelope are strongly controlled by the shape as well as the microstructure of the ceramics used

  2. Y-TZP ceramic processing from coprecipitated powders : A comparative study with three commercial dental ceramics

    NARCIS (Netherlands)

    Lazar, Dolores R. R.; Bottino, Marco C.; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H. A.

    2008-01-01

    Objectives. (1) To synthesize 3 mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. Methods.

  3. [Effect of ceramic on ceramic total hip arthroplasty in Crowe IV developmental dysplasia of the hip].

    Science.gov (United States)

    Sun, Jing-Yang; Zhou, Yong-Gang; Du, Yin-Qiao; Piao, Shang; Wang, Sen; Gao, Zhi-Sen; Wu, Wen-Ming; Ma, Hai-Yang

    2018-02-25

    To observe the clinical effect of ceramic on ceramic total hip arthroplasty(THA)in Crowe IV developmental dysplasia of the hip(DDH). From April 2008 to December 2015, 137 hips of 111 Crowe IV DDH patients received THA using Forte or Delta ceramic on ceramic by one senior surgeon, which consists of 85 unilateral hips and 26 bilateral hips. The average age of the patients was(38.88±10.83) years old ranging from 18 to 68 years old. The mean follow-up was(41.16±21.50) months ranging from 12 to 96 months. All the patients were evaluated by Harris Hip Score. Radiographic evaluations were made preoperatively and during follow-up. Harris scores, the incidence of complications such as ceramic fracture, squeaking, dislocation were observed. The mean preoperative Harris score was 56.54±15.67, the mean postoperative Harris score was 88.30±6.86( P =0.017). Periprosthetic osteolysis was not deteced around any cup. No ceramic fracture occurred. There were 3 cases of revision surgery due to infection, losening of the stem and limb length discrepancy, respectively; 3 cases of dislocation occurred. Seventy-seven patients were recorded the gait and the hip mobility, the hip flexion of 69 patients were above 120 degrees. Ceramic on ceramic bearing showed an encouraging result in Crowe IV DDH total hip arthroplasty. Copyright© 2018 by the China Journal of Orthopaedics and Traumatology Press.

  4. Ceramic Foams from Pre-Ceramic Polymer Routes for Reusable Acreage Thermal Protection System Applications

    Science.gov (United States)

    Stackpoole, Mairead; Chien, Jennifer; Schaeffler, Michelle

    2004-01-01

    Contents include the following: Motivation. Current light weight insulation. Advantages of preceramic-polymer-derived ceramic foams. Rigid insulation materials. Tailor foam microstructures. Experimental approach. Results: sacrificial materials, sacrificial fillers. Comparison of foam microstructures. Density of ceramic foams. Phase evolution and properties: oxidation behavior. mechanical properties, aerothermal performance. Impact damage of microcellular foams. Conclusions.

  5. Strategies for fracture toughness, strength and reliability optimisation of ceramic-ceramic laminates

    Czech Academy of Sciences Publication Activity Database

    Šestáková, L.; Bermejo, R.; Chlup, Zdeněk; Danzer, R.

    2011-01-01

    Roč. 102, č. 6 (2011), s. 613-626 ISSN 1862-5282 Institutional research plan: CEZ:AV0Z20410507 Keywords : Ceramic laminates * Layered ceramics * Residual stress * Fracture toughness * Threshold strength Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.830, year: 2011

  6. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  7. Ceramic inlays : effect of mechanical cycling and ceramic type on restoration-dentin bond strength

    NARCIS (Netherlands)

    Trindade, F.Z.; Kleverlaan, C.J.; da Silva, L.H.; Feilzer, A.J.; Cesar, P.F.; Bottino, M.A.; Valandro, L.F.

    2016-01-01

    This study aimed to evaluate the bond strength between dentin and five different ceramic inlays in permanent maxillary premolars, with and without mechanical cycling. One hundred permanent maxillary premolars were prepared and divided into 10 groups (n=10) according to the ceramic system (IPS e.Max

  8. Characterization of ceramic powders used in the inCeram systems to fixed dental Prosthesis

    Directory of Open Access Journals (Sweden)

    Alexandra Almeida Diego

    2007-03-01

    Full Text Available InCeram (Vita Zahnfabrik- Germany is known as a high strength ceramic being used for core crowns and for fixed partial denture frameworks. InCeram system consists of slip-casting technique which is used for to build the framework, which is then pre-sintered obtaining an open-pore microstructure. The material gains its strength by infiltration of the lanthanum glass into the porous microstructure. In this work, commercial alumina (Al2O3, alumina-zirconia (Al2O3-ZrO2 and glasses lanthanum oxide-rich powders, used in InCeram system, were characterized, using x ray diffraction, dilatometry and scanning electron microscopy. The characteristics of these powders were related aiming to consider their substitution for new ceramic materials.

  9. Evaluation of the reuse of glass and ceramic blocks in the development of a ceramic products

    International Nuclear Information System (INIS)

    Rodrigues, R.A.; Silva, L.A.; Martins, B.E.D.B.S.; Felippe, C.E.C.; Almeida, V.C.

    2010-01-01

    The ceramic industry has enormous potential to absorb wastes. The main objective of this study was to evaluate the feasibility of reusing leftovers ceramic blocks, from construction and, with shards of glass in the development of a ceramic product. The ceramic pieces were prepared with different compositions of glass by the method of pressing conformation and heating at 1000 and 1100 deg C. The conformed pieces were tested for linear shrinkage, water absorption, porosity, and tensile strength. The techniques for characterization were X-ray fluorescence, X-ray diffraction and scanning electron microscopy, the results show that the ceramic material produced has a high flexural strength and low values of water absorption. (author)

  10. Microstructural characterization of ceramic floor tiles with the incorporation of wastes from ceramic tile industries

    Directory of Open Access Journals (Sweden)

    Carmeane Effting

    2010-09-01

    Full Text Available Ceramic floor tiles are widely used in buildings. In places where people are bare feet, the thermal sensation of cold or hot depends on the environmental conditions and material properties including its microstructure and crustiness surface. The introduction of the crustiness surface on the ceramic floor tiles interfere in the contact temperature and also it can be an strategy to obtain ceramic tiles more comfortable. In this work, porous ceramic tiles were obtained by pressing an industrial atomized ceramic powder incorporated with refractory raw material (residue from porcelainized stoneware tile polishing and changing firing temperature. Raw materials and obtained compacted samples were evaluated by chemical analysis, scanning electron microscopy (SEM, energy-dispersive spectrometry (EDS, thermogravimetric analysis (TGA, and differential thermal analysis (DTA. Thermal (thermal conductivity and effusivity and physical (porosity measurements were also evaluated.

  11. Cordierite ceramics for applications in foundry practice

    Directory of Open Access Journals (Sweden)

    Aćimović-Pavlović Zagorka S.

    2007-01-01

    Full Text Available The research of new ceramic coatings has an important role in the improvement and development of new casting methods, especially casting with meltable and evaporable patterns. The selection of ceramic materials to be used as refractory fillers, materials for the binding system and additives for maintaining suspension stability, will be carried out in accordance with the casting method selected for the actual alloys and types of castings. The actual importance of these problems is reflected in the fact that the application of quality coatings increases the production efficiency by producing high quality castings, increases the metal yield and eliminates the expensive casting operations-cleaning and machining. Cordierite ceramic are of great importance in modern technology. Standard raw materials, kaolin, talc, MgO, alumina, feldspar were used in the synthesis of cordierite ceramics. Sintered cordierite of the composition 2MgO · 2Al2O3 · 5SiO2 was used as a refractory filler in a ceramic coating for evaporative polystyrene patterns in a new casting technology, the EPC Method. Cordierite characterization was carried out by means of X-ray diffraction. The characteristic temperatures for carrying out solid state reactions in the three component system 2MgO · 2A12O3 · 5SiO2 were determined by differential thermal analysis in the range from ambient temperature to 1100 °C. In order to realistically evaluate possible cordierite application in the production of evaporative pattern ceramic coatings, concurrent analyses with a talc-based coating were carried out. Cordierite ceramics have not yet been used in casting.

  12. Development in laser peening of advanced ceramics

    Science.gov (United States)

    Shukla, Pratik; Smith, Graham C.; Waugh, David G.; Lawrence, Jonathan

    2015-07-01

    Laser peening is a well-known process applicable to surface treat metals and alloys in various industrial sectors. Research in the area of laser peening of ceramics is still scarce and a complete laser-ceramic interaction is still unreported. This paper focuses on laser peening of SiC ceramics employed for cutting tools, armor plating, dental and biomedical implants, with a view to elucidate the unreported work. A detailed investigation was conducted with 1064nm Nd:YAG ns pulse laser to first understand the surface effects, namely: the topography, hardness, KIc and the microstructure of SiC advanced ceramics. The results showed changes in surface roughness and microstructural modification after laser peening. An increase in surface hardness was found by almost 2 folds, as the diamond footprints and its flaws sizes were considerably reduced, thus, enhancing the resistance of SiC to better withstand mechanical impact. This inherently led to an enhancement in the KIc by about 42%. This is attributed to an induction of compressive residual stress and phase transformation. This work is a first-step towards the development of a 3-dimensional laser peening technique to surface treat many advanced ceramic components. This work has shown that upon tailoring the laser peening parameters may directly control ceramic topography, microstructure, hardness and the KIc. This is useful for increasing the performance of ceramics used for demanding applications particularly where it matters such as in military. Upon successful peening of bullet proof vests could result to higher ballistic strength and resistance against higher sonic velocity, which would not only prevent serious injuries, but could also help to save lives of soldiers on the battle fields.

  13. Building ceramics with improved thermal insulation parameters

    Directory of Open Access Journals (Sweden)

    Rzepa Karol

    2016-01-01

    Full Text Available One of the most important performance characteristics of masonry units is their high thermal insulation. There are many different ways to improve this parameter, however the most popular methods in case of ceramic masonry units are: addition of pore-creating raw materials and application of proper hole pattern. This study was an attempt to improve thermal insulation of ceramics by applying thermal insulation additives. Perlite dust created as a subgrain from expansion of perlite rock was used. Perlite subgrain is not very popular among consumers, that’s why it’s subjected to granulation to obtain coarse grain. The authors presented concept of direct application of perlite dust for the production of building ceramics with improved thermal insulation. Fineness of this additive is asset for molding of ceramic materials from plastic masses. Based on the results it was found that about 70% perlite by volume can be added to obtain material with a coefficient of heat conductivity of 0,37 W/mK. Higher content of this additive in ceramic mass causes deterioration of its rheological properties. Mass loses its plasticity, it tears up and formed green bodies are susceptible to deformation. During sintering perlite takes an active part in compaction process. Higher sintering dynamics is caused by: high content of alkali oxides in perlite and glass nature of perlite. Alkali oxides generate creation of liquid phase which intensifies mass compaction processes. Active role of perlite in sintering process causes good connection of its grains with clay groundwork which is important factor for mechanical parameters of ceramic materials. It was also noted that addition of perlite above 40% by volume of mass effectively neutralized negative effect of efflorescence in ceramic materials.

  14. Rolling Contact Fatigue of Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Wang, W. [Bournemouth University, Bournemouth, United Kingdom; Wang, Y. [Bournemouth University, Bournemouth, United Kingdom; Hadfield, M. [Bournemouth University, Bournemouth, United Kingdom; Kanematsu, W. [National Institute of Advanced Industrial Science and Technology, Japan; Kirkland, Timothy Philip [ORNL; Jadaan, Osama M. [University of Wisconsin, Platteville

    2006-09-01

    High hardness, low coefficient of thermal expansion and high temperature capability are properties also suited to rolling element materials. Silicon nitride (Si{sub 3}N{sub 4}) has been found to have a good combination of properties suitable for these applications. However, much is still not known about rolling contact fatigue (RCF) behavior, which is fundamental information to assess the lifetime of the material. Additionally, there are several test techniques that are employed internationally whose measured RCF performances are often irreconcilable. Due to the lack of such information, some concern for the reliability of ceramic bearings still remains. This report surveys a variety of topics pertaining to RCF. Surface defects (cracks) in Si{sub 3}N{sub 4} and their propagation during RCF are discussed. Five methods to measure RCF are then briefly overviewed. Spalling, delamination, and rolling contact wear are discussed. Lastly, methods to destructively (e.g., C-sphere flexure strength testing) and non-destructively identify potential RCF-limiting flaws in Si{sub 3}N{sub 4} balls are described.

  15. ANL-1(A) - Development of nondestructive evaluation methods for structural ceramics

    International Nuclear Information System (INIS)

    Ellingson, W.A.; Roberts, R.A.; Gopalsami, N.; Dieckman, S.; Hentea, T.; Vaitekunas, J.J.

    1989-01-01

    This section includes the following papers: Development of Nondestructive Evaluation Methods for Structural Ceramics; Effects of Flaws on the Fracture Behavior of Structural Ceramics; Design, Fabrication, and Interface Characterization of Ceramic Fiber-Ceramic Matrix Composites; Development of Advanced Fiber-Reinforced Ceramics; Modeling of Fibrous Preforms for CVD Infiltration; NDT of Advanced Ceramic Composite Materials; Joining of Silicon Carbide Reinforced Ceramics; Superconducting Film Fabrication Research; Short Fiber Reinforced Structural Ceramics; Structural Reliability and Damage Tolerance of Ceramic Composites for High-Temperature Applications; Fabrication of Ceramic Fiber-Ceramic Matrix Composites by Chemical Vapor Infiltration; Characterization of Fiber-CVD Matrix interfacial Bonds; Microwave Sintering of Superconducting Ceramics; Improved Ceramic Composites Through Controlled Fiber-Matrix Interactions; Evaluation of Candidate Materials for Solid Oxide Fuel Cells; Ceramic Catalyst Materials: Hydrous Metal Oxide Ion-Exchange Supports for Coal Liquefaction; and Investigation of Properties and Performance of Ceramic Composite Components

  16. Flexural strength of Cerec 2 machined and jointed InCeram-Alumina and InCeram-Zirconia bars.

    Science.gov (United States)

    Apholt, W; Bindl, A; Lüthy, H; Mörmann, W H

    2001-05-01

    The flexural strength of Cerec 2 InCeram-Alumina and InCeram-Zirconia bars is evaluated. The focus of the in vitro study is to identify a jointing procedure for InCeram which may be used for producing full-ceramic fixed-partial-denture frameworks. Six groups (n=15) of machined and jointed InCeram-Alumina (T1-T5) and InCeram-Zirconia (T6) bars (3x4x13mm(3)), respectively, were examined using a 3-point-bending test. InCeram-Alumina joint-free controls were: machined (C1), slip cast (C2, C3) and cut from the block (C4) bars. Machined joint-free InCeram-Zirconia bars were used as controls (C5). InCeram-Alumina slip was used for jointing T1-T5 and InCeram-Zirconia slip for bars T6. Bars were jointed in groups T1 and T2 using butt joint (S1), in T3 and T4 oblique (S2, S3) and in T5 and T6 rounded (S4) joint shapes. Two-way analysis of variance showed significant differences between materials (pZirconia (T6) bars, respectively but machined/joint-free InCeram-Alumina (511 (59) MPa, C1) and machined/joint-free InCeram-Zirconia (624 (58) MPa, C5) were significantly (p0.05) were found between machined/jointed InCeram-Zirconia (475 (54) MPa, T6), joint-free InCeram-Alumina slip cast (498 (125) MPa, C2) and joint-free InCeram-Alumina machined bars (511 (59) MPa, C1). Compared to conventional slip cast InCeram-Alumina the flexural strength of machined/jointed InCeram-Zirconia appears to be adequate for fixed-partial-denture frameworks.

  17. Radiopaque Strontium Fluoroapatite Glass-Ceramics

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2–Al2O3–Y2O3–SrO–Na2O–K2O/Rb2O/Cs2O–P2O5–F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F – leucite, KAlSi2O6, (b) Sr5(PO4)3F – leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F – pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  18. Radiopaque Strontium Fluoroapatite Glass-Ceramics.

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2-Al2O3-Y2O3-SrO-Na2O-K2O/Rb2O/Cs2O-P2O5-F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F - leucite, KAlSi2O6, (b) Sr5(PO4)3F - leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F - pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F - Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite - pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal expansion (CTE). These

  19. Ceramic substrate including thin film multilayer surface conductor

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Joseph Ambrose; Peterson, Kenneth A.

    2017-05-09

    A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on an upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.

  20. Research on Durability of Recycled Ceramic Powder Concrete

    Science.gov (United States)

    Chen, M. C.; Fang, W.; Xu, K. C.; Xie, L.

    2017-06-01

    Ceramic was ground into powder with 325 mesh and used to prepare for concrete. Basic mechanical properties, carbonation and chloride ion penetration of the concrete tests were conducted. In addition, 6-hour electric fluxes of recycled ceramic powder concrete were measured under loading. The results showed that the age strength of ceramics powder concrete is higher than that of the ordinary concrete and the fly ash concrete. The ceramic powder used as admixture would reduce the strength of concrete under no consideration of its impact factor; under consideration of the impact factor for ceramic powder as admixture, the carbonation resistance of ceramic powder concrete was significantly improved, and the 28 day carbonation depth of the ceramic powder concrete was only 31.5% of ordinary concrete. The anti-chloride-permeability of recycled ceramic powder concrete was excellent.

  1. Tribological properties of toughened zirconia-based ceramics

    International Nuclear Information System (INIS)

    Stachowiak, G.W.; Stachowiak, G.B.

    1991-01-01

    The physical and mechanical properties of toughened zirconia ceramics are briefly characterized and described with a special emphasis on their tribological behaviour. The wear and friction properties of PSZ and TZP ceramics at room and elevated temperatures are described. The influence of the environment on the tribological characteristics of zirconia ceramics is discussed. Both lubricated and unlubricated conditions for ceramic/ceramic and metal/ceramic sliding contacts are analysed. One of the main, and as yet unresolved problems, lubrication of ceramic at elevated temperatures and/or space environment, is addressed and the possible solutions to the problem are suggested. The critical needs in the research and development area of improving the tribological properties of zirconia ceramics are defined and its future market potentials stated. 30 refs., 2 tabs., 4 figs

  2. Comparison of two carbonated apatite ceramics in vivo

    NARCIS (Netherlands)

    Habibovic, Pamela; Juhl, Maria V.; Clyens, Stuart; Martinetti, Roberta; Dolcini, Laura; Theilgaard, Naseem; van Blitterswijk, Clemens

    2010-01-01

    Carbonated apatite ceramics, with a composition similar to that of bone mineral, are potentially interesting synthetic bone graft substitutes. In the present study, two porous carbonated apatite ceramics were developed, characterized and tested for their bone repair capacity and osteoinductive

  3. Development of high-density ceramic composites for ballistic applications

    International Nuclear Information System (INIS)

    Rupert, N.L.; Burkins, M.S.; Gooch, W.A.; Walz, M.J.; Levoy, N.F.; Washchilla, E.P.

    1993-01-01

    The application of ceramic composites for ballistic application has been generally developed with ceramics of low density, between 2.5 and 4.5 g/cm 2 . These materials have offered good performance in defeating small-caliber penetrators, but can suffer time-dependent degradation effects when thicker ceramic tiles are needed to defeat modem, longer, heavy metal penetrators that erode rather than break up. This paper addresses the ongoing development, fabrication procedures, analysis, and ballistic evaluation of thinner, denser ceramics for use in armor applications. Nuclear Metals Incorporated (NMI) developed a process for the manufacture of depleted uranium (DU) ceramics. Samples of the ceramics have been supplied to the US Army Research Laboratory (ARL) as part of an unfunded cooperative study agreement. The fabrication processes used, characterization of the ceramic, and a ballistic comparison between the DU-based ceramic with baseline Al 2 O 3 will be presented

  4. Effect of acidic agents on surface roughness of dental ceramics

    Directory of Open Access Journals (Sweden)

    Boonlert Kukiattrakoon

    2011-01-01

    Conclusion: Acidic agents used in this study negatively affected the surface of ceramic materials. This should be considered when restoring the eroded tooth with ceramic restorations in patients who have a high risk of erosive conditions.

  5. Ceramic corrosion/erosion project description

    Energy Technology Data Exchange (ETDEWEB)

    Nakaishi, C.V.; Carpenter, L.K.

    1981-02-01

    As a part of the United States Department of Energy's High Temperature Turbine Technology Program, the Morgantown Energy Technology Center is participating in a Ceramics Corrosion/Erosion Materials Study. Objective is to create a technology base for ceramic materials which could be used by stationary gas power turbines operating with a high-temperature, coal-derived, low-Btu gas products of combustion environment. Two facilities are designed and installed to burn a varying low-Btu coal-derived gas in a controlled manner. This report contains the objectives and testing philosophy as well as the operating, specimen handling, and emergency procedures for the facilities. The facilities were checked out in August/September 1980. Testing is scheduled to begin in late 1980 with completion of 1000 hours of ceramic materials exposure to be completed by early 1981. Most of the enclosed is an update of two METC Information Releases (IR), i.e., IR 442 (1979) Test Plan for Ceramic Corrosion/Erosion Project, and IR 817 (1980) Ceramic Corrosion/Erosion Project Description.

  6. Phase Equilibria and Crystallography of Ceramic Oxides.

    Science.gov (United States)

    Wong-Ng, W; Roth, R S; Vanderah, T A; McMurdie, H F

    2001-01-01

    Research in phase equilibria and crystallography has been a tradition in the Ceramics Division at National Bureau of Standards/National Institute of Standatrds and Technology (NBS/NIST) since the early thirties. In the early years, effort was concentrated in areas of Portland cement, ceramic glazes and glasses, instrument bearings, and battery materials. In the past 40 years, a large portion of the work was related to electronic materials, including ferroelectrics, piezoelectrics, ionic conductors, dielectrics, microwave dielectrics, and high-temperature superconductors. As a result of the phase equilibria studies, many new compounds have been discovered. Some of these discoveries have had a significant impact on US industry. Structure determinations of these new phases have often been carried out as a joint effort among NBS/NIST colleagues and also with outside collaborators using both single crystal and neutron and x-ray powder diffraction techniques. All phase equilibria diagrams were included in Phase Diagrams for Ceramists, which are collaborative publications between The American Ceramic Society (ACerS) and NBS/NIST. All x-ray powder diffraction patterns have been included in the Powder Diffraction File (PDF). This article gives a brief account of the history of the development of the phase equilibria and crystallographic research on ceramic oxides in the Ceramics Division. Represented systems, particularly electronic materials, are highlighted.

  7. Ceramic matrix and resin matrix composites - A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  8. Ceramic matrix and resin matrix composites: A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  9. Current all-ceramic systems in dentistry: a review.

    Science.gov (United States)

    Santos, Maria Jacinta M C; Costa, Max Dorea; Rubo, José H; Pegoraro, Luis Fernando; Santos, Gildo C

    2015-01-01

    This article describes the ceramic systems and processing techniques available today in dentistry. It aims to help clinicians understand the advantages and disadvantages of a myriad of ceramic materials and technique options. The microstructural components, materials' properties, indications, and names of products are discussed to help clarify their use. Key topics will include ceramics, particle-filled glasses, polycrystalline ceramics, CAD/CAM, and adhesive cementation.

  10. Influence of ceramic surface texture on the wear of gold alloy and heat-pressed ceramics.

    Science.gov (United States)

    Saiki, Osamu; Koizumi, Hiroyasu; Nogawa, Hiroshi; Hiraba, Haruto; Akazawa, Nobutaka; Matsumura, Hideo

    2014-01-01

    The purpose of this study was to evaluate the influence of ceramic surface texture on the wear of rounded rod specimens. Plate specimens were fabricated from zirconia (ZrO2), feldspathic porcelain, and lithium disilicate glass ceramics (LDG ceramics). Plate surfaces were either ground or polished. Rounded rod specimens with a 2.0-mm-diameter were fabricated from type 4 gold alloy and heat-pressed ceramics (HP ceramics). Wear testing was performed by means of a wear testing apparatus under 5,000 reciprocal strokes of the rod specimen with 5.9 N vertical loading. The results were statistically analyzed with a non-parametric procedure. The gold alloy showed the maximal height loss (90.0 µm) when the rod specimen was abraded with ground porcelain, whereas the HP ceramics exhibited maximal height loss (49.8 µm) when the rod specimen was abraded with ground zirconia. There was a strong correlation between height loss of the rod and surface roughness of the underlying plates, for both the gold alloy and HP ceramics.

  11. Effect of various intermediate ceramic layers on the interfacial stability of zirconia core and veneering ceramics.

    Science.gov (United States)

    Yoon, Hyung-In; Yeo, In-Sung; Yi, Yang-Jin; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk

    2015-01-01

    The purposes of this study were to evaluate the effects of intermediate ceramics on the adhesion between the zirconia core and veneer ceramics. The polished surfaces of fully sintered Y-TZP blocks received three different treatments: (1) connector (C), (2) liner (L) or (3) wash layer (W). All the treated zirconia blocks were veneered with either (a) fluorapatite glass-ceramic (E) or (b) feldspathic porcelain (V) and divided into four groups (CE, CV, LE and WV). For the control group, the testing surfaces of metal blocks were veneered with feldspathic porcelain (VM). A half of the samples in each group (n = 21) were exposed to thermocycling, while the other half of the specimens were stored at room temperature under dry conditions. All specimens were subjected to the shear test and the failed surfaces were microscopically examined. The elemental distribution at the zirconia core/veneer interface was analyzed. The specimens in Groups CE and CV exhibited significantly greater mean bond strength values than those in Groups LE and WV, respectively (p ceramic substances into the zirconia surface. A glass-ceramic based connector is significantly more favorable to core/veneer adhesion than the other intermediate ceramics evaluated in the study. However, thermal cycling affected the bond strength at the core/veneer interface differently according to the intermediate ceramics.

  12. Advantages and disadvantages of ceramic on ceramic total hip arthroplasty: a review.

    Science.gov (United States)

    Gallo, Jiri; Goodman, Stuart Barry; Lostak, Jiri; Janout, Martin

    2012-09-01

    Ceramic on ceramic (COC) total hip arthroplasty (THA) was developed to reduce wear debris and accordingly, the occurrence of osteolysis and aseptic loosening especially in younger patients. Based on the excellent tribological behavior of current COC bearings and the relatively low biological activity of ceramic particles, significant improvement in survivorship of these implants is expected. We used manual search to identify all relevant studies reporting clinical data on COC THAs in PubMed. The objective was to determine whether current COC THA offers a better clinical outcome and survivorship than non-COC THA. Studies with early generation ceramic bearings yielded 68% to 84% mean survivorship at 20 years follow-up which is comparable with the survivorship of non-COC THAs. Studies on current ceramic bearings report a 10-year revision-free interval of 92% to 99%. These outcomes are comparable to the survivorship of the best non-COC THAs. However, there are still concerns regarding fracture of sandwich ceramic liners, squeaking, and impingement of the femoral neck on the rim of the ceramic liner leading to chipping, especially in younger and physically active patients. Current COC THA leads to equivalent but not improved survivorship at 10 years follow-up in comparison to the best non-COC THA. Based on this review, we recommend that surgeons weigh the potential advantages and disadvantages of current COC THA in comparison to other bearing surfaces when considering young very active patients who are candidates for THA.

  13. Randomized Clinical Trial of Implant-Supported Ceramic-Ceramic and Metal-Ceramic Fixed Dental Prostheses: Preliminary Results

    Science.gov (United States)

    Esquivel-Upshaw, Josephine F.; Clark, Arthur E.; Shuster, Jonathan J.; Anusavice, Kenneth J.

    2013-01-01

    Purpose The aim of this study was to determine the survival rates over time of implant-supported ceramic-ceramic and metal-ceramic prostheses as a function of core-veneer thickness ratio, gingival connector embrasure design, and connector height. Materials and Methods An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study involving 55 patients missing three teeth in either one or two posterior areas. These patients (34 women; 21 men; age range 52–75 years) were recruited for the study to receive a 3-unit implant-supported fixed dental prosthesis (FDP). Two implants were placed for each of the 72 FDPs in the study. The implants (Osseospeed, Astra Tech), which were made of titanium, were grit blasted. A gold-shaded, custom-milled titanium abutment (Atlantis, Astra Tech), was secured to each implant body. Each of the 72 FDPs in 55 patients were randomly assigned based on one of the following options: (1) A. Material: ceramic-ceramic (Yttria-stabilized zirconia core, pressable fluorapatite glass-ceramic, IPS e.max ZirCAD and ZirPress, Ivoclar Vivadent) B. metal-ceramic (palladium-based noble alloy, Capricorn, Ivoclar Vivadent, with press-on leucite-reinforced glass-ceramic veneer, IPS InLine POM, Ivoclar Vivadent); (2) occlusal veneer thickness (0.5, 1.0, and 1.5 mm); (3) curvature of gingival embrasure (0.25, 0.5, and 0.75 mm diameter); and (4) connector height (3, 4, and 5 mm). FDPs were fabricated and cemented with dual-cure resin cement (RelyX, Universal Cement, 3M ESPE). Patients were recalled at 6 months, 1 year, and 2 years. FDPs were examined for cracks, fracture, and general surface quality. Results Recall exams of 72 prostheses revealed 10 chipping fractures. No fractures occurred within the connector or embrasure areas. Two-sided Fisher’s exact tests showed no significant correlation between fractures and type of material system (p = 0.51), veneer thickness (p = 0.75), radius of curvature of gingival embrasure

  14. Do sanitary ceramic workers have a worse presentation of chest radiographs or pulmonary function tests than other ceramic workers?

    Directory of Open Access Journals (Sweden)

    Yu-Chung Tsao

    2017-03-01

    Conclusion: In this study, we found that sanitary ceramic workers were at a similar risk to other ceramic workers for moderate to severe silicosis when older age and longer working duration were accounted for.

  15. [Comparison of color reappearance between metal-ceram restoration and foundry-ceram restoration using crystaleye spectrophotometer].

    Science.gov (United States)

    Shi, Tao; Zhang, Ning; Kong, Fan-wen; Zhan, De-song

    2010-10-01

    To study the color reappearance effect of metal-ceram restoration and foundry-ceram restoration using Crystaleye spectrophotometer. 58 metal-ceram restorations and 58 foundry-ceram restorations according to the result of the Crystaleye spectrophotometer were made respectively. The deltaE between restorations and natural teeth as referenced were analyzed. And satisfaction of dentists and patients were evaluated. The deltaE between metal-ceram restorations and natural teeth was 7.13 +/- 0.74. The deltaE between foundry-ceram restorations and teeth was 1.47 +/- 0.84. There were statistical differences between the deltaE (P spectrophotometer can provide accurate reference for foundry-ceram restoration, but for metal-ceram restoration it is not accurate.

  16. Effect of ceramic etching protocols on resin bond strength to a feldspar ceramic.

    Science.gov (United States)

    Bottino, M A; Snellaert, A; Bergoli, C D; Özcan, M; Bottino, M C; Valandro, L F

    2015-01-01

    This study sought to evaluate the resin microtensile bond strength (MTBS) stability of a leucite-reinforced ceramic after different ceramic etching protocols. The microtensile test had 40 ceramic blocks (5×5×6 mm) assigned to five groups (n=8), in accordance with the following surface etching protocols: NE nonetched (control); 9HF: hydrofluoric (HF) acid etching (9%HF)+wash/dry; 4HF: 4%HF+wash/dry; 5HF: 5%HF+wash/dry; and 5HF+N: 5%HF+neutralizer+wash/dry+ultrasonic-cleaning. Etched ceramic surfaces were treated with a silane agent. Next, resin cement blocks were built on the prepared ceramic surface and stored for 24 hours in distilled water at 37°C. The specimens were then sectioned to obtain microtensile beams (32/block), which were randomly assigned to the following conditions, nonaged (immediate test) and aged (water storage for 150 days plus 12,000 thermal cycles), before the microtensile test. Bond strength data were submitted to one-way analysis of variance and Tukey test (α=0.05). Additional ceramic samples were subjected to the different ceramic etching protocols and evaluated using a scanning electron microscope (n=2) and atomic force microscopy (n=2). Aging led to a statistically significant decrease in the MTBS for all groups, except the untreated one (NE). Among the groups submitted to the same aging conditions, the untreated (NE) revealed inferior MTBS values compared to the 9HF and 4HF groups. The 5HF and 5HF+N groups had intermediate mean values, being statistically similar to the higher values presented by the 9HF and 4HF groups and to the lower value associated with the NE group. The neutralization procedure did not enhance the ceramic/resin cement bond strength. HF acid etching is a crucial step in resin/ceramic bonding.

  17. Fabrication of ceramic dispersoid reinforcement by using mechanical activation

    International Nuclear Information System (INIS)

    Kim, Ji Soon; Kim, Jin Chun

    2010-07-01

    For fabrication of ceramic dispersoid with good wettability, disreputably and homogeneity to metal melt by Mechanical Surface Activation method the followings have been investigated: (1) Processing optimization for surface activation of ceramic dispersoids by mechanical activation (mechanical alloying) (2) Wetting behavior of mechanically-activated ceramic dispersoids (3) Effect of second element on the improvement of wettability and dispersibility

  18. Stability analysis of multipoint tool equipped with metal cutting ceramics

    Science.gov (United States)

    Maksarov, V. V.; Khalimonenko, A. D.; Matrenichev, K. G.

    2017-10-01

    The article highlights the issues of determining the stability of the cutting process by a multipoint cutting tool equipped with cutting ceramics. There were some recommendations offered on the choice of parameters of replaceable cutting ceramic plates for milling based of the conducted researches. Ceramic plates for milling are proposed to be selected on the basis of value of their electrical volume resistivity.

  19. Numerical Simulation of Ballistic Impact of Layered Aluminum Nitride Ceramic

    Science.gov (United States)

    2015-09-01

    ARL-TR-7416 ● SEP 2015 US Army Research Laboratory Numerical Simulation of Ballistic Impact of Layered Aluminum Nitride Ceramic...of Ballistic Impact of Layered Aluminum Nitride Ceramic by JD Clayton Weapons and Materials Research Directorate, ARL...Numerical Simulation of Ballistic Impact of Layered Aluminum Nitride Ceramic 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  20. Boundary surface and microstructure analysis of ceramic materials

    International Nuclear Information System (INIS)

    Woltersdorf, J.; Pippel, E.

    1992-01-01

    The article introduces the many possibilities of high voltage (HVEM) and high resolution electron microscopy (HREM) for boundary surface and microstructure analysis of ceramic materials. The investigations are limited to ceramic long fibre composites and a ceramic fibre/glass matrix system. (DG) [de

  1. Soaring Voices: Recent Ceramics by Women from Japan

    Science.gov (United States)

    Johnson, Mark M.

    2011-01-01

    Japanese ceramics enjoy a long and distinguished history, and the Japanese aesthetic of elegant simplicity, along with their approach to materials, has influenced ceramic artists around the world for centuries. Women in Japan have been involved in the production of ceramics for thousands of years, but with few exceptions, their names have remained…

  2. Addressing the ceramics studio equipment challenge in Nigeria ...

    African Journals Online (AJOL)

    It is already well established that ceramics require the use of equipment for production. Also well known is the fact that most ceramists in Nigeria are unable to procure and utilize major equipment for ceramics production due to the exorbitant prices of imported ceramics studio equipment and technology on which the country ...

  3. Ceramics Art Education and Contemporary Challenges in Nigeria

    Science.gov (United States)

    Kashim, Isah Bolaji; Adelabu, Oluwafemi Samuel

    2013-01-01

    Formal ceramics art education is becoming a fundamental requirement for professional practice in ceramics in Nigeria. Considering the ample resources available for ceramic practices in the country with a teeming population of over 140 million people, there is a promising future for the art, in spite of the effects of globalization and…

  4. Process for making a ceramic composition for immobilization of actinides

    Science.gov (United States)

    Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Herman, Connie Cicero; Hobson, Beverly F.; Herman, David Thomas; Curtis, Paul G.; Farmer, Joseph

    2001-01-01

    Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.

  5. [Comparison of machinability of two types of dental machinable ceramic].

    Science.gov (United States)

    Fu, Qiang; Zhao, Yunfeng; Li, Yong; Fan, Xinping; Li, Yan; Lin, Xuefeng

    2002-11-01

    In terms of the problems of now available dental machinable ceramics, a new type of calcium-mica glass-ceramic, PMC-I ceramic, was developed, and its machinability was compared with that of Vita MKII quantitatively. Moreover, the relationship between the strength and the machinability of PMC-I ceramic was studied. Samples of PMC-I ceramic were divided into four groups according to their nucleation procedures. 600-seconds drilling tests were conducted with high-speed steel tools (Phi = 2.3 mm) to measure the drilling depths of Vita MKII ceramic and PMC-I ceramic, while constant drilling speed of 600 rpm and constant axial load of 39.2 N were used. And the 3-point bending strength of the four groups of PMC-I ceramic were recorded. Drilling depth of Vita MKII was 0.71 mm, while the depths of the four groups of PMC-I ceramic were 0.88 mm, 1.40 mm, 0.40 mm and 0.90 mm, respectively. Group B of PMC-I ceramic showed the largest depth of 1.40 mm and was statistically different from other groups and Vita MKII. And the strength of the four groups of PMC-I ceramic were 137.7, 210.2, 118.0 and 106.0 MPa, respectively. The machinability of the new developed dental machinable ceramic of PMC-I could meet the need of the clinic.

  6. Robust, high temperature-ceramic membranes for gas separation

    Science.gov (United States)

    Berchtold, Kathryn A.; Young, Jennifer S.

    2014-07-29

    A method of making ceramic membranes, and the ceramic membranes so formed, comprising combining a ceramic precursor with an organic or inorganic comonomer, forming the combination as a thin film on a substrate, photopolymerizing the thin film, and pyrolyzing the photopolymerized thin film.

  7. Shape forming of ceramics via gelcasting of aqueous particulate ...

    Indian Academy of Sciences (India)

    Unknown

    sions are cast to form net shape porous ceramic shapes. The present study attempts to highlight the use of gel- casting in forming simple and complex dense ceramic components with a wide range of shapes and sizes. The process has great potential in fabrication of net shaped highly porous ceramics as demonstrated in ...

  8. Students' Perception of Ceramics Education in Nigeria Tertiary ...

    African Journals Online (AJOL)

    Toshiba

    The undergraduate programme in ceramics education is designed ... among others, much of the construction industry depends on the use of ceramic materials. This includes brick, cement, tile, and glass. Cement is used to make concrete which in ..... 6 Money spent on ceramics education is a waste 3.31 3.06 A 3.09 3.02 A.

  9. Dielectric relaxations of confined water in porous silica ceramics

    Indian Academy of Sciences (India)

    2017-12-06

    Dec 6, 2017 ... C. While the first sample was a ceramic with opened lateral pores, the second one was a ceramic with sealed lateral pores. In both ceramics, three dielectric processes were identified. The first, which appeared at lower temperatures, was attributed to the reorientation of water molecules in ice-like water ...

  10. Investigations on thermoluminescent dosimetry (TLD) with doped alumina ceramics

    International Nuclear Information System (INIS)

    Janas, R.; Huebner, K.

    1976-01-01

    Alumina ceramics doped and burned under various conditions have been investigated with regard to their suitability for thermoluminescent dosimetry. The production of ceramics is described. The properties essential for dosimetric purposes, such as glow curve, energy dose characteristics, fading, recoverability, lower detection limit and energy dependence, are indicated. The advantages and disadvantages of alumina ceramics are compared. (author)

  11. Characterization of the interaction between glazes and ceramic bodies

    Czech Academy of Sciences Publication Activity Database

    Kavanová, M.; Kloužková, A.; Kloužek, Jaroslav

    2017-01-01

    Roč. 61, č. 3 (2017), s. 267-275 ISSN 0862-5468 Institutional support: RVO:67985891 Keywords : glazes * ceramics * thermal analysis * coefficients of the thermal expansion * dilatometry Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 0.439, year: 2016

  12. Trace elements in ancient ceramics: Pt.4

    International Nuclear Information System (INIS)

    Li Huhou; Sun Yongjun; Zhang Xiangdong

    1987-01-01

    In the last period of Tong Dynasty, Jingdezhen began its production of ceramics. During the Song Dynasty, the ceramic industry greatly developed and produced fine white ware at Hutian. In the Yuan Dynastry, Hutian became the centre of production making the world famous blue and white wares. Here are reported results of analyses of ancient porcelians of Hutian in Jiangdezhen by reactor neutron activation analysis. The results show that the patterns of eight rare earth elements are apparently different for products in different periods, indicating that methods for producing ceramics or kinds of clay used were different. The contents of some other trace elements such as hafnium, tantalum, thorium and uranium show the same regularity in difference of composition also

  13. Interfacing design and making of Ceramics

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2014-01-01

    as a pattern of circles, which size and 3d inner pattern are reflecting the position and speed of the hand. The second level has to do with realizing the modules in ceramics by 3d printing directly in porcelain with a RapMan printer that coils up the 3d shape in layers....... and Aesthetics in the conference. Digital technology as 3D printing with ceramic allows to bridge from the digital design environment to fabrication. At the same time novel digital means can create new interfaces between the human, space and the material. Here advances in 3d motion capture technology and sensors...... investigates the idea of an interactive digital design tool for designing wall like composition with 3d ceramics and is working on two levels. One which has to do with a digital interactive system that responds on the movement of the hands; at a certain distance the user’s hands appear on a monitor screen...

  14. Glasses, ceramics, and composites from lunar materials

    Science.gov (United States)

    Beall, George H.

    1992-02-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  15. Structural behaviour of nitrogen in oxide ceramics

    International Nuclear Information System (INIS)

    Ghauri, K.M.

    1997-01-01

    The solubility of nitrogen in molten oxides has significant consideration for two quite different types of engineering materials. The implication of a knowledge of the role of nitrogen in these oxides for refining high nitrogen steels in obvious but similar nitrogen-bearing oxide melts are of critical importance in the densification of silicon nitride ceramics. Present paper discusses structural behaviour and phase equilibria qualitatively in the light of knowledge available on slag structure through infrared and x-ray diffraction. Nitrogen solubility in glasses and related sialon based ceramics may be of paramount importance to understand the role of nitrogen in these materials as these oxides are similar in composition, structure and characteristics to sintering glasses in nitrogen ceramics. It is quite logical to infer that the same oxide model can be applied in order to massively produce nitrogen alloyed steels which are actively competing to be the materials of the next century. (author)

  16. Using the Voice to Design Ceramics

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede; Jensen, Kristoffer

    2011-01-01

    Digital technology makes new possibilities in ceramic craft. This project is about how experiential knowledge that the craftsmen gains in a direct physical and tactile interaction with a responding material can be transformed and utilized in the use of digital technologies. The project presents...... SoundShaping, a system to create ceramics from the human voice. Based on a generic audio feature extraction system, and the principal component analysis to ensure that the pertinent information in the voice is used, a 3D shape is created using simple geometric rules. This shape is output to a 3D printer...... to make ceramic results. The system demonstrates the close connection between digital technology and craft practice....

  17. Study of solid metal/ceramic reactions

    International Nuclear Information System (INIS)

    Mehan, R.L.; Jackson, M.R.

    1981-01-01

    In advanced energy systems, ceramics may allow higher operating temperatures for greater efficiency. However, compressive contacts at joints with metals are required by the poor tensile behavior of ceramics. Compression at these interfaces excludes oxygen, and oxides do not form. Reactions under inert or reducing conditions (as in metal matrix composites) have been studied, as have reactions of complex superalloys with SiC, Si/SiC and Si 3 N 4 . The reactions were complex, dictating a phenomenological study with no treatment of their basic nature or the phase equilibria. With a model alloy containing only Ni, Cr and Al, the present experiments and analyses are an attempt to gain a more basic understanding of metal/ceramic reactions

  18. Development of high strength, high temperature ceramics

    Science.gov (United States)

    Hall, W. B.

    1982-01-01

    Improvement in the high-pressure turbopumps, both fuel and oxidizer, in the Space Shuttle main engine were considered. The operation of these pumps is limited by temperature restrictions of the metallic components used in these pumps. Ceramic materials that retain strength at high temperatures and appear to be promising candidates for use as turbine blades and impellers are discussed. These high strength materials are sensitive to many related processing parameters such as impurities, sintering aids, reaction aids, particle size, processing temperature, and post thermal treatment. The specific objectives of the study were to: (1) identify and define the processing parameters that affect the properties of Si3N4 ceramic materials, (2) design and assembly equipment required for processing high strength ceramics, (3) design and assemble test apparatus for evaluating the high temperature properties of Si3N4, and (4) conduct a research program of manufacturing and evaluating Si3N4 materials as applicable to rocket engine applications.

  19. Neodymium-doped laser yttrium oxide ceramics

    International Nuclear Information System (INIS)

    Bagaev, S N; Vatnik, S M; Vedin, I A; Maiorov, A P; Pestryakov, E V; Osipov, V V; Ivanov, M G; Solomonov, V I; Platonov, V V; Orlov, A N; Rasuleva, A V; Ivanov, V V; Kaigorodov, A S; Khrustov, V R; Shestakov, A V; Salkov, A V

    2008-01-01

    We studied mechanical, optical, and lasing parameters of neodymium-doped yttrium oxide ceramics synthesised by using a new technology involving the laser synthesis of nanopowders and their magnetic pulsed compaction. The fracture toughness of ceramics to cracks and its microhardness were measured to be K IC = 0.9-1.4 MPa m 1/2 and H ν = 11.8 GPa, respectively. Ceramic samples sintered in the temperature range from 1550 to 2050 0 C have the porosity (1-150)x10 -4 % and the optical loss coefficient α 1.07 = 0.03-2.1 cm -1 at a wavelength of 1.07 μm. It is shown that such porosity does not affect the optical loss coefficient of light. Lasing at ∼1.079 μm with a slope efficiency of 15% was obtained in a 1.1-mm-thick sample pumped by laser diodes. (active media. lasers)

  20. Ceramic technology for advanced heat engines project

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  1. Latest developments in ceramic fibre products

    Energy Technology Data Exchange (ETDEWEB)

    Christian, W.B. (Morganite Ceramic Fibres S.A., Herstal (Belgium))

    This paper will discuss the latest developments in ceramic fiber products and their utilization for new techniques with particular emphasis on energy conservation, time and maintenance saving in heat treatment installations throughout industry. Latest developments in ceramic fiber furnace linings will be highlighted by costs and thermal comparisons analyses between low thermal mass and 'dense' refractory materials. This will be an introduction to the most recent technique of energy conservation through the use of ceramic fibers in conjunction with existing refractory linings. This technique termed 'veneering' has for the last two years shown very interesting in the optimization of processes and economical use of electric and organic fuels.

  2. Proton conducting ceramic membranes for hydrogen separation

    Science.gov (United States)

    Elangovan, S [South Jordan, UT; Nair, Balakrishnan G [Sandy, UT; Small, Troy [Midvale, UT; Heck, Brian [Salt Lake City, UT

    2011-09-06

    A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

  3. Experiences with Voice to Design Ceramics

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede; Jensen, Kristoffer

    2013-01-01

    This article presents SoundShaping, a system to create ceramics from the human voice and thus how digital technology makes new possibilities in ceramic craft. The article is about how experiential knowledge that the craftsmen gains in a direct physical and tactile interaction with a responding ma....... The shape is output to a 3D printer to make ceramic results. The system demonstrates the close connection between digital technology and craft practice. Several experiments and reflections demonstrate the validity of this work....... material can be transformed and utilized in the use of digital technologies. SoundShaping is based on a generic audio feature extraction system and the principal component analysis to ensure that the pertinent information in the voice is used. Moreover, 3D shape is created using simple geometric rules...

  4. Experiences with voice to design ceramics

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede; Jensen, Kristoffer

    2014-01-01

    This article presents SoundShaping, a system to create ceramics from the human voice and thus how digital technology makes new possibilities in ceramic craft. The article is about how experiential knowledge that the craftsmen gains in a direct physical and tactile interaction with a responding ma....... The shape is output to a 3D printer to make ceramic results. The system demonstrates the close connection between digital technology and craft practice. Several experiments and reflections demonstrate the validity of this work....... material can be transformed and utilised in the use of digital technologies. SoundShaping is based on a generic audio feature extraction system and the principal component analysis to ensure that the pertinent information in the voice is used. Moreover, 3D shape is created using simple geometric rules...

  5. Development of electrostrictive ceramic motor actuators

    Science.gov (United States)

    Haertling, Gene H.; Li, Guang

    1992-01-01

    Electrostriction, which exists in all materials, exhibits many potential applications in electronic and optically controlled systems. Few materials, however, possess electrostrictive effects large enough to be of practical usefulness. The development of materials with high electrostrictive coefficients has been a major impetus of much research in this area. The Pb(x)Ba(1 - x)(Zr(y)Ti(1 - y))O3 (PBZT) ceramic system appears to be a very promising candidate because of the electrostrictive coefficients, Q(sub 11) and Q(sub 12), are among the highest discovered today. In this paper, we describe the preparation and sintering of the PBZT(73/37) ceramic, and the effect of some sintering conditions on sintered samples. The results on the measurement of the electrostrictive and related properties are presented. In addition, a brief discussion of characteristics of PBZT ceramics is provided.

  6. Anelasticity and strength in zirconia ceramics

    International Nuclear Information System (INIS)

    Matsuzawa, M.; Horibe, S.; Sakai, J.

    2005-01-01

    Non-elastic strain behavior was investigated for several different zirconia ceramics and a possible mechanism for anelasticity was discussed. Anelastic strain was detected in zirconia ceramics irrespective of the crystallographic phase and its productivity depended on the particular kind of dopant additive. It was found that the anelastic properties could be significantly influenced by the level of oxygen vacancy in the matrix, and that the anelastic strain might be produced by a light shift of ionic species. In order to investigate the effect of anelasticity on mechanical properties on zirconia ceramics, the tensile strength was investigated for a wide range of strain rates. The obviously unique strain rate dependence was observed only in the materials having anelastic properties. It was assumed that anelasticity could be efficient at improving the tensile strength. (orig.)

  7. Hemorrhagic iliopsoas bursitis complicating well-functioning ceramic-on-ceramic total hip arthroplasty.

    Science.gov (United States)

    Park, Kyung Soon; Diwanji, Sanket R; Kim, Hyung Keun; Song, Eun Kyoo; Yoon, Taek Rim

    2009-08-01

    Iliopsoas bursitis has been increasingly recognized as a complication of total hip arthroplasty and is usually associated with polyethylene wear. Here, the authors report a case of hemorrhagic iliopsoas bursitis complicating an otherwise well-functioning ceramic-on-ceramic arthroplasty performed by minimal invasive modified 2-incision technique. The bursitis in turn resulted in femoral nerve palsy and femoral vein compression. In this report, there was no evidence to support that the bursitis was due to an inflammatory response to ceramic wear particles or any other wear particles originating from the total hip arthroplasty.

  8. Environment Conscious Ceramics (Ecoceramics): An Eco-Friendly Route to Advanced Ceramic Materials

    Science.gov (United States)

    Singh, M.

    2001-01-01

    Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). This technology provides an eco-friendly route to advanced ceramic materials. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented.

  9. Ceramic membranes for gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Vincente-Mingarro, I.M. de; Pitarch, J.A. [Tecnologia y Gestion de la Innovacion, Madrid (Spain)

    1998-11-01

    The project is being carried out jointly by TGI, S.A., CIEMAT and CSIC-ICM to develop and evaluate new inorganic membranes of a ceramic type, with nanometric pore size for separation of contaminants and fuel enrichment, in gas mixtures from coal gasification. In order to achieve both the highest active and selective surface, a candle (150 mm length and 60 mm in diameter), with 30-40 % porosity and pore sizes of {lt}1 {mu}m was developed. The processing steps include the slip-casting of the first layer (porous support) in a way than after thermal treatment (1400-1600{degree}C) the desirable shape dimensions, strength, porosity and pore size were obtained. Then the support was dipped successively (colloidal filtration over the casting porous piece) in an appropriate suspension of alumina with lower grain size. The top layer was obtained by the sol-gel process so that through successive setting and heat treatment the pores were reduced to the nanometre size. CVD and CVI techniques were set up to develop membranes for gas separation with a high selectivity level. Experimental chemical infiltration `Membranes Development` on porous substrates has been achieved on disk and candle-shaped materials. Characterisation was by spectrophotometry (IRS). Kinetic studies of coating in order to find out reproducible conditions at low temperature were also carried out. Uniform recovery over the whole membrane surface is wanted. The CIEMAT`s Hot Gas Separation Plant (HGSP) works with gas mixtures at a maximum design temperature 773 K and pressures up to 50 bar. It comprises: a gas supply unit equipped with flow, temperature and pressure measuring and control systems; a heating system within the membrane which must be leak proof for high pressures; and an in-line gas chromatography system thus allowing the chemical composition of the gas entering, permeated and retained to be measured. 7 figs.

  10. Composite Laser Ceramics by Advanced Bonding Technology.

    Science.gov (United States)

    Ikesue, Akio; Aung, Yan Lin; Kamimura, Tomosumi; Honda, Sawao; Iwamoto, Yuji

    2018-02-09

    Composites obtained by bonding materials with the same crystal structure and different chemical compositions can create new functions that do not exist in conventional concepts. We have succeeded in bonding polycrystalline YAG and Nd:YAG ceramics without any interstices at the bonding interface, and the bonding state of this composite was at the atomic level, similar to the grain boundary structure in ceramics. The mechanical strength of the bonded composite reached 278 MPa, which was not less than the strength of each host material (269 and 255 MPa). Thermal conductivity of the composite was 12.3 W/mK (theoretical value) which is intermediate between the thermal conductivities of YAG and Nd:YAG (14.1 and 10.2 W/mK, respectively). Light scattering cannot be detected at the bonding interface of the ceramic composite by laser tomography. Since the scattering coefficients of the monolithic material and the composite material formed by bonding up to 15 layers of the same materials were both 0.10%/cm, there was no occurrence of light scattering due to the bonding. In addition, it was not detected that the optical distortion and non-uniformity of the refractive index variation were caused by the bonding. An excitation light source (LD = 808 nm) was collimated to 200 μm and irradiated into a commercial 1% Nd:YAG single crystal, but fracture damage occurred at a low damage threshold of 80 kW/cm². On the other hand, the same test was conducted on the bonded interface of 1% Nd:YAG-YAG composite ceramics fabricated in this study, but it was not damaged until the excitation density reached 127 kW/cm². 0.6% Nd:YAG-YAG composite ceramics showed high damage resistance (up to 223 kW/cm²). It was concluded that composites formed by bonding polycrystalline ceramics are ideal in terms of thermo-mechanical and optical properties.

  11. Bioactive and inert dental glass-ceramics.

    Science.gov (United States)

    Montazerian, Maziar; Zanotto, Edgar Dutra

    2017-02-01

    The global market for dental materials is predicted to exceed 10 billion dollars by 2020. The main drivers for this growth are easing the workflow of dentists and increasing the comfort of patients. Therefore, remarkable research projects have been conducted and are currently underway to develop improved or new dental materials with enhanced properties or that can be processed using advanced technologies, such as CAD/CAM or 3D printing. Among these materials, zirconia, glass or polymer-infiltrated ceramics, and glass-ceramics (GCs) are of great importance. Dental glass-ceramics are highly attractive because they are easy to process and have outstanding esthetics, translucency, low thermal conductivity, high strength, chemical durability, biocompatibility, wear resistance, and hardness similar to that of natural teeth, and, in certain cases, these materials are bioactive. In this review article, we divide dental GCs into the following two groups: restorative and bioactive. Most restorative dental glass-ceramics (RDGCs) are inert and biocompatible and are used in the restoration and reconstruction of teeth. Bioactive dental glass-ceramics (BDGCs) display bone-bonding ability and stimulate positive biological reactions at the material/tissue interface. BDGCs are suggested for dentin hypersensitivity treatment, implant coating, bone regeneration and periodontal therapy. Throughout this paper, we elaborate on the history, processing, properties and applications of RDGCs and BDGCs. We also report on selected papers that address promising types of dental glass-ceramics. Finally, we include trends and guidance on relevant open issues and research possibilities. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 619-639, 2017. © 2016 Wiley Periodicals, Inc.

  12. Support Services for Ceramic Fiber-Ceramic Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, JP

    2001-08-16

    products of coal combustion found on the coupons exposed during those tests are reported. Finally, a relative comparison of ceramic and alloy material performance based on the SEM results is presented.

  13. SHEAR BOND STRENGTHS BETWEEN CERAMIC CORES AND VENEERING CERAMICS OF DENTAL BI-LAYERED CERAMIC SYSTEMS AND THE SENSITIVITY TO THERMOCYCLING

    Directory of Open Access Journals (Sweden)

    SUN TING, BDS, DDS

    2012-09-01

    Full Text Available The purpose of this study was to investigate the bond strength between various commercial ceramic core materials and veneering ceramics of dental bi-layered ceramic combinations and the effect of thermocycling. The shear bond strength of four dental bi-layered ceramic combinations (white Cercon, yellow Cercon, white Lava, yellow Lava, IPS E.max were tested. Metal ceramic combinations were conducted as a control group. Half of each group was subjected to thermocycling. All specimens were thereafter subjected to a shear force. The initial mean shear bond strength values in MPa ± S.D were 28.02 ± 3.04 for White Cercon Base/Cercon Ceram Kiss, 27.54 ± 2.20 for Yellow Cercon Base/Cercon Ceram Kiss, 28.43 ± 2.13for White Lava Frame/Lava Ceram, 27.36 ± 2.25 for Yellow Lava Frame/Lava Ceram, 47.10 ± 3.77 for IPS E.max Press/IPS E.max Ceram and 30.11 ± 2.15 for metal ceramic control. The highest shear strength was recorded for IPS E.max Press/IPS E.max Ceram before and after thermocycling. The mean shear bond strength values of five other combinations were not significantly different (P < 0.05. Lithium-disilicate based combinations produced the highest core-veneer bonds that overwhelmed the metal ceramic combinations. Thermocycling had no effect on the core-veneer bonds. The core-veneer bonds of zirconia based combinations were not weakened by the addition of coloring pigments.

  14. Tritium transport in lithium ceramics porous media

    International Nuclear Information System (INIS)

    Tam, S.W.; Ambrose, V.

    1991-01-01

    A random network model has been utilized to analyze the problem of tritium percolation through porous Li ceramic breeders. Local transport in each pore channel is described by a set of convection-diffusion-reaction equations. Long range transport is described by a matrix technique. The heterogeneous structure of the porous medium is accounted for via Monte Carlo methods. The model was then applied to an analysis of the relative contribution of diffusion and convective flow to tritium transport in porous lithium ceramics. 15 refs., 4 figs

  15. Incorporation of flat glass in red ceramic

    International Nuclear Information System (INIS)

    Caldas, T.C.C.; Morais, A.S.C.; Pereira, P.S.; Monteiro, S.N.; Vieira, C.M.F.

    2011-01-01

    This work have as objective evaluate the effect of incorporation of up to 10% by weight of powdered flat glass , from civil industry, in red ceramic. The bodies were obtained by uniaxial pressing at 20 MPa and fired at temperatures of 850 ° C and 1050 ° C. The parameters studied were linear firing shrinkage, apparent density, water absorption and flexural rupture stress for the evaluation of the mechanical physical properties. The microstructure was observed by scanning electron microscopy and phase identification was performed by X-ray diffraction. The results showed that the waste changes the microstructure and properties of red ceramics. (author)

  16. Fabrication of transparent ceramics using nanoparticles

    Science.gov (United States)

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  17. Experimental alterations on ceramic interest basalts

    International Nuclear Information System (INIS)

    Sanfeliu-Montolio, T.; Ballbe-Lonch, E.; Querlat-Mitjans, I.; Juan-Abril, A.; Fuente-Cellell, C. de la

    1991-01-01

    This study presents the results and conclusion extracted of the chemical and mineralogical analysis made on 12 samples of recent and subrecent (IV series) Canary Island's basalt, that have been subject to different attack processes in order to cause in them controlled mineralogical alterations. The methods used were: optical analysis, x-ray fluorescence analysis and x-ray diffraction. The object of this work is to determine the alterability of these basaltic rocks that have ceramic interest since it's possible its use in same ceramic manufactures and also as petrurgic raw material. (author)

  18. Ceramic matrix composites by microwave assisted CVI

    International Nuclear Information System (INIS)

    Currier, R.P.; Devlin, D.J.

    1993-01-01

    Chemical vapor infiltration (CVI) processes for producing continuously reinforced ceramic composites are reviewed. Potential advantages of microwave assisted CVI are noted and numerical studies of microwave assisted CVI are reviewed. The models predict inverted thermal gradients in fibrous ceramic preforms subjected to microwave radiation and suggest processing strategies for achieving uniformly dense composites. Comparisons are made to experimental results on silicon-based composite systems. The role played by the relative ability of fiber and matrix to dissipate microwave energy is noted. Results suggest that microwave induced inverted gradients can be exploited to promote inside-out densification. 10 refs., 2 figs

  19. Sothi-Siswal Ceramic Assemblage: A Reappraisal

    Directory of Open Access Journals (Sweden)

    Tejas Garge

    2010-12-01

    Full Text Available Harappan evidences in Chautan valley has a unique ceramic tradition. In the light of recent plethora of knowledge as well as against the background of the studies conducted by A. Ghosh, J.S. Nigam, Katy Frenchman, Suraj Bhan & Madhu Bala, we will have to not only reclassify the Sothi-Siswal ceramic assemblage but also alter basic nomenclatures and concepts involve in it. It will give us deep insight in to the process of evolution of Early Harappan cultures vis-à-vis the dynamic of regional cultural complexes.

  20. Ceramics And Sculpture Interface With Architecture.

    Directory of Open Access Journals (Sweden)

    Peters Edem E.

    2015-08-01

    Full Text Available This work is an inter-disciplinary discourse that examines the role that their collective efforts it properly harassed can play in the development of modern architecture to meet the quest for safe and comfortable homes. The paper aims at assessing how much presence there are sculpture and ceramics in architecture. Sculpture and ceramics are disciplines in fine art and industrial art respectively. The paper identifies the specific contributions each discipline gives to the making of modern architecture and offers suggestions for future improvement that will lead to entrepreneurial skill and its development.

  1. Usefulness of ceramic implants in neurosurgery.

    Science.gov (United States)

    Kobayashi, S; Hara, H; Okudera, H; Takemae, T; Sugita, K

    1987-11-01

    The authors have designed various implants made of alumina ceramic for neurosurgical use. They were used for reconstruction of the sellar floor and orbital wall and for cranioplasty to repair bone defects in both the convexity and the suboccipital region. Burr hole and sphenoid buttons were made to prevent postoperative dents in the skin. A ceramic-silicon sponge was developed as a marker prosthesis for neurovascular decompression. There were no untoward side effects such as infection or rejection by recipient tissue in humans or dogs. The advantages and disadvantages of the material are discussed.

  2. A randomized controlled clinical trial of 3-unit posterior zirconia–ceramic fixed dental prostheses (FDP) with layered or pressed veneering ceramics: 3-year results

    OpenAIRE

    Naenni, Nadja; Bindl, Andreas; Sax, Caroline; Hämmerle, Christoph; Sailer, Irena

    2015-01-01

    The aim of the present pilot study was to test whether or not posterior zirconia-ceramic fixed dental prostheses (FDPs) with pressed veneering ceramic exhibit less chipping than FDPs with layered veneering ceramics

  3. The Integration Method of Ceramic Arts in the Product Design

    Science.gov (United States)

    Shuxin, Wang

    2018-03-01

    As one of the four ancient civilization countries, the firing technology of ceramic invented by China has made a great contribution to the progress and development of human society. In modern life, even the development of technology still needs the ceramics, there are large number of artists who take the ceramics as carrier active in the field of contemporary art. The ceramics can be seen everywhere in our daily life, this paper mainly discusses the integration means of ceramic art in the product design.

  4. Phase composition of yttrium-doped zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Christoph; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures; Weiss, Stephan [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Ikeda-Ohno, Atsushi [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements; Gumeniuk, R. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Experimentelle Physik

    2017-06-01

    Ceramic material might be an alternative to borosilicate glass for the immobilization of nuclear waste. The crystallinity of ceramic material increases the corrosion resistance over several magnitudes in relation to amorphous glasses. The stability of such ceramics depend on several parameters, among them the crystal phase composition. A reliable quantitative phase analysis is necessary to correlate the macroscopic material properties with structure parameters. We performed a feasibility study based on yttrium-doped zirconia ceramics as analogue for trivalent actinides to ascertain that the nanosized crystal phases in zirconia ceramics can be reliably determined.

  5. Tough hybrid ceramic-based material with high strength

    International Nuclear Information System (INIS)

    Guo, Shuqi; Kagawa, Yutaka; Nishimura, Toshiyuki

    2012-01-01

    This study describes a tough and strong hybrid ceramic material consisting of platelet-like zirconium compounds and metal. A mixture of boron carbide and excess zirconium powder was heated to 1900 °C using a liquid-phase reaction sintering technique to produce a platelet-like ZrB 2 -based hybrid ceramic bonded by a thin zirconium layer. The platelet-like ZrB 2 grains were randomly present in the as-sintered hybrid ceramic. Relative to non-hybrid ceramics, the fracture toughness and flexural strength of the hybrid ceramic increased by approximately 2-fold.

  6. Coating of ceramic powders by chemical vapor deposition techniques (CVD)

    International Nuclear Information System (INIS)

    Haubner, R.; Lux, B.

    1997-01-01

    New ceramic materials with selected advanced properties can be designed by coating of ceramic powders prior to sintering. By variation of the core and coating material a large number of various powders and ceramic materials can be produced. Powders which react with the binder phase during sintering can be coated with stable materials. Thermal expansion of the ceramic materials can be adjusted by varying the coating thickness (ratio core/layer). Electrical and wear resistant properties can be optimized for electrical contacts. A fluidized bed reactor will be designed which allow the deposition of various coatings on ceramic powders. (author)

  7. Chemically bonded phosphate ceramics : part III : reduction mechanism and its application to iron phosphate ceramics.

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, A. S.; Jeong, S. Y.; Energy Technology

    2003-11-01

    In this, the last of a series of three papers, we discuss a method of forming iron phosphate ceramics by a reduction process. We report the formation of iron oxide ceramics by reducing hematite with iron in a phosphoric acid solution. The reaction results in a rapid-setting ceramic (at room temperature) with a compressive strength of 3700 psi and a density of 1.7 g/cm{sup 3}. Although the exact mineral form of the binder is difficult to determine because it is mostly amorphous and hence is not amenable to X-ray diffraction analyses, this material is expected to consist of iron hydrophosphates. The reduction process is very useful in recycling several industrial wastes that are rich in hematite, including iron mine tailings, red mud (a caustic waste from the alumina industry), and machining swarfs. Formation of ceramics with red mud and swarfs is also discussed.

  8. Laser cladding of high performance ceramic sheets on a low quality ceramic substrate

    International Nuclear Information System (INIS)

    Triantafyllidis, D.; Li, L.; Stott, F.H.

    2004-01-01

    High alumina refractory ceramics offer increased resistance in slagging environments. In particular, the presence of more than 5% Cr 2 O 3 in a high alumina refractory ceramic increases its slag corrosion resistance due to the formation of a dense Cr-spinel oxide layer at the refractory/slag interface. However, refractory ceramics containing more that 5% Cr 2 O 3 cost significantly more than Cr 2 O 3 -free refractory ceramics. The surface and near-surface compositions and properties are more important than the bulk properties for high-temperature applications in slag-containing environments. Laser cladding, therefore, is a useful tool for developing refractory ceramics with a low-cost substrate and a high slag-corrosion resistant surface layer. This paper presents a technique involving cladding of pre-positioned layers of a 85% Al 2 O 3 -5% Cr 2 O 3 ceramic on a 60% Al 2 O 3 refractory ceramic, focusing on the process characteristics. A simple model that describes the process of multi-sheet cladding is developed and the operating map for the process is presented. The microstructural characteristics of the clad surfaces have been analysed by optical and scanning electron microscopy (SEM), as well as energy dispersion X-ray spectroscopy (EDX), revealing the formation of an intermediate layer between the substrate and the top ceramic sheets in multi-sheet cladding. A bi-phasic structure is formed in the clad surface, comprising of an Al 2 O 3 -Cr 2 O 3 -based solid solution and a SiO 2 -based matrix

  9. Ceramic Inlays: Effect of Mechanical Cycling and Ceramic Type on Restoration-dentin Bond Strength.

    Science.gov (United States)

    Trindade, F Z; Kleverlaan, C J; da Silva, L H; Feilzer, A J; Cesar, P F; Bottino, M A; Valandro, L F

    2016-01-01

    This study aimed to evaluate the bond strength between dentin and five different ceramic inlays in permanent maxillary premolars, with and without mechanical cycling. One hundred permanent maxillary premolars were prepared and divided into 10 groups (n=10) according to the ceramic system (IPS e.Max Press; IPS e.Max CAD; Vita PM9; Vita Mark II; and Vita VM7) and the mechanical cycling factor (with and without [100 N, 2 Hz, 1.2×10(6) cycles]). The inlays were adhesively cemented, and all of the specimens were cut into microbars (1×1 mm, nontrimming method), which were tested under microtensile loading. The failure mode was classified and contact angle, roughness, and microtopographic analyses were performed on each ceramic surface. The mechanical cycling had a significant effect (p=0.0087) on the bond strength between dentin and IPS e.max Press. The Vita Mark II group had the highest bond strength values under both conditions, with mechanical cycling (9.7±1.8 MPa) and without (8.2±1.9 MPa), while IPS e.Max CAD had the lowest values (2.6±1.6 and 2.2±1.4, respectively). The adhesive failure mode at the ceramic/cement interface was the most frequent. Vita Mark II showed the highest value of average roughness. IPS e.max Press and Vita Mark II ceramics presented the lowest contact angles. In conclusion, the composition and manufacturing process of ceramics seem to have an influence on the ceramic surface and resin cement bond strength. Mechanical cycling did not cause significant degradation on the dentin and ceramic bond strength under the configuration used.

  10. Advanced ceramic materials and their potential impact on the future

    International Nuclear Information System (INIS)

    Laren, M.G.M.

    1989-01-01

    This article reviews the types of advanced ceramic materials that are being used today and their potential for even greater utilization in the future. Market analysis and projections have been developed from a number of sources both foreign and domestic are referenced and given in the text. Projection on the future use of advanced ceramics to the year 2000 indicate a potential growth of the total world market approaching 187 billion dollars. This paper describes advanced ceramic materials by their functionality, i.e. structural, electronic, chemical, thermal, biological, nuclear, etc. It also refers to specific engineering uses of advanced ceramics and include automotive ceramic materials with physical data for the most likely ceramic materials to be used for engine parts. This family of materials includes silicon carbides, silicon nitride, partially stabilized zirconia and alumina. Fiber reinforced ceramic composites are discussed with recognition of the research on fiber coating chemistry and the compatibility of the coating with the fiber and the matrix. Another class of advanced ceramics is toughened ceramics. The transformation toughened alumina is recognized as an example of this technology. The data indicate that electronic ceramic materials will always have the largest portion of the advanced ceramic market and the critical concepts of a wide range of uses is reviewed. (Auth.)

  11. Frictional Resistance of Three Types of Ceramic Brackets

    Directory of Open Access Journals (Sweden)

    Claire L Williams

    2014-01-01

    Full Text Available Objectives: To investigate the static frictional resistance at the bracket/archwire interface in two recently introduced bracket systems and compare them to conventional ceramic and conventional metal bracket systems. Three variables were considered including the bracket system, archwire type and archwire angulation. Material and Methods: Four bracket systems were tested in vitro: Self ligating ceramic, ceramic with metal slot and module, conventional ceramic with module and conventional metal with module. A specially constructed jig and an Instron testing machine were used to measure the static frictional resistance for 0.014 inches round and 0.018 x 0.025 inches rectangular stainless steel wires at 0° and 7° angulations. Main outcome measures: static frictional force at the bracket/archwire interface; recorded and measured in units of force (Newtons. Results: Self ligating ceramic and metal slot ceramic bracket systems generated significantly less static frictional resistance than conventional ceramic bracket systems with the wire at both angulations (P < 0.05. Changing the wire from 0.014 round to 0.018 x 0.025 rectangular wire significantly increased frictional forces for metal slot ceramic and conventional metal bracket systems (P < 0.01. Increasing wire angulation significantly increased frictional resistance at the bracket/archwire interface for all four types of bracket systems tested (P < 0.001. Conclusions: Compared to conventional ceramic, self ligating ceramic and metal slot ceramic bracket systems should give improved clinical performance, matching that of conventional metal brackets.

  12. Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications

    Science.gov (United States)

    Esfahani, Hamid; Ramakrishna, Seeram

    2017-01-01

    Ceramic nanofibers (NFs) have recently been developed for advanced applications due to their unique properties. In this article, we review developments in electrospun ceramic NFs with regard to their fabrication process, properties, and applications. We find that surface activity of electrospun ceramic NFs is improved by post pyrolysis, hydrothermal, and carbothermal processes. Also, when combined with another surface modification methods, electrospun ceramic NFs result in the advancement of properties and widening of the application domains. With the decrease in diameter and length of a fiber, many properties of fibrous materials are modified; characteristics of such ceramic NFs are different from their wide and long (bulk) counterparts. In this article, electrospun ceramic NFs are reviewed with an emphasis on their applications as catalysts, membranes, sensors, biomaterials, fuel cells, batteries, supercapacitors, energy harvesting systems, electric and magnetic parts, conductive wires, and wearable electronic textiles. Furthermore, properties of ceramic nanofibers, which enable the above applications, and techniques to characterize them are briefly outlined. PMID:29077074

  13. Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Hamid Esfahani

    2017-10-01

    Full Text Available Ceramic nanofibers (NFs have recently been developed for advanced applications due to their unique properties. In this article, we review developments in electrospun ceramic NFs with regard to their fabrication process, properties, and applications. We find that surface activity of electrospun ceramic NFs is improved by post pyrolysis, hydrothermal, and carbothermal processes. Also, when combined with another surface modification methods, electrospun ceramic NFs result in the advancement of properties and widening of the application domains. With the decrease in diameter and length of a fiber, many properties of fibrous materials are modified; characteristics of such ceramic NFs are different from their wide and long (bulk counterparts. In this article, electrospun ceramic NFs are reviewed with an emphasis on their applications as catalysts, membranes, sensors, biomaterials, fuel cells, batteries, supercapacitors, energy harvesting systems, electric and magnetic parts, conductive wires, and wearable electronic textiles. Furthermore, properties of ceramic nanofibers, which enable the above applications, and techniques to characterize them are briefly outlined.

  14. A Novel Conservation Method of Historical Outdoor Ceramics

    Directory of Open Access Journals (Sweden)

    Aivaras Kareiva

    2015-06-01

    Full Text Available In this study, a novel conservation method was developed for the protection of historical outdoor ceramics. The historical ceramics from monastery of “San Filippo di Fragalà” (Sicily, Italy were chosen for this study. Polymeric films on the surface of ceramics specimens were formed using Silres BS 16 as a precursor. For the comparison, the material Paraloid B-82, which is already known in the conservation practice, was also used for the formation of protective coatings on historical ceramics. The investigated samples were characterized by SEM, TG, EDX, XRD methods and contact angle measurements. The results obtained showed that ceramic samples were successfully preserved and saturated by Silres BS 16 with forming effective polymeric coatings on ancient ceramics surfaces. Keywords: Ancient ceramics, conservation, Silres BS 16, SEM, TG, contact angle.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.6823

  15. Ceramic Technology Project semiannual progress report, April 1992--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1993-07-01

    This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  16. [Research on the aging of all-ceramics restoration materials].

    Science.gov (United States)

    Zhang, Dongjiao; Chen, Xinmin

    2011-10-01

    All-ceramic crowns and bridges have been widely used for dental restorations owing to their excellent functionality, aesthetics and biocompatibility. However, the premature clinical failure of all-ceramic crowns and bridges may easily occur when they are subjected to the complex environment of oral cavity. In the oral environment, all-ceramic materials are prone to aging. Aging can lead all-ceramic materials to change color, to lower bending strength, and to reduce anti-fracture toughness. There are many factors affecting the aging of the all-ceramic materials, for example, the grain size, the type of stabilizer, the residual stress and the water environment. In order to analyze the aging behavior, to optimize the design of all-ceramic crowns and bridges, and to evaluate the reliability and durability, we review in this paper recent research progress of aging behavior for all-ceramics restoration materials.

  17. Evaluation of the Three-year Experience with All-ceramic Crowns with Polycrystalline Ceramic Cores

    Directory of Open Access Journals (Sweden)

    Lenka Vavřičková

    2013-01-01

    Full Text Available The objective of the study was to evaluate the clinical outcomes of all-ceramic crowns three years after placement of the restoration in the oral cavity. The aim of the present clinical study were surveyed the Procera®, Cercon® and LAVA™ systems. In total, 121 crowns were followed in 33 patients (7 men and 26 women with an average age of 53.5 years. The eighty crowns were placed in anterior and forty one crowns in posterior teeth. The crowns were fabricated in two dental laboratories and delivered in two private dental practices. The clinical trial was conducted according to American Dental Association guidelines. The patients were requested to provide their consent to the regular clinical examination including radiographic and photographic records.  A total of 102 crowns were made of zirconium oxide ceramic cores – 58 Cercon®; 43 LAVA™, while 19 crowns were made of aluminum oxide cores Procera®. The veneering ceramic LAVA™ Ceram was used. The success rate was analyzed using Kaplan-Meier statistics and, in our case, the overall three-year success rate reached 96.7%.  All-ceramic crowns with polycrystalline ceramic cores have low susceptibility to fracture, in this study just 3.3%.

  18. Ceramic on ceramic arthroplasty of the hip: new materials confirm appropriate use in young patients.

    Science.gov (United States)

    Sentuerk, U; von Roth, P; Perka, C

    2016-01-01

    The leading indication for revision total hip arthroplasty (THA) remains aseptic loosening owing to wear. The younger, more active patients currently undergoing THA present unprecedented demands on the bearings. Ceramic-on-ceramic (CoC) bearings have consistently shown the lowest rates of wear. The recent advances, especially involving alumina/zirconia composite ceramic, have led to substantial improvements and good results in vitro. Alumina/zirconia composite ceramics are extremely hard, scratch resistant and biocompatible. They offer a low co-efficient of friction and superior lubrication and lower rates of wear compared with other bearings. The major disadvantage is the risk of fracture of the ceramic. The new composite ceramic has reduced the risk of fracture of the femoral head to 0.002%. The risk of fracture of the liner is slightly higher (0.02%). Assuming that the components are introduced without impingement, CoC bearings have major advantages over other bearings. Owing to the superior hardness, they produce less third body wear and are less vulnerable to intra-operative damage. The improved tribology means that CoC bearings are an excellent choice for young, active patients requiring THA. ©2016 The British Editorial Society of Bone & Joint Surgery.

  19. Wear characteristics of polished and glazed lithium disilicate ceramics opposed to three ceramic materials.

    Science.gov (United States)

    Saiki, Osamu; Koizumi, Hiroyasu; Akazawa, Nobutaka; Kodaira, Akihisa; Okamura, Kentaro; Matsumura, Hideo

    2016-01-01

    This study compared the wear characteristics of a heat-pressed lithium disilicate ceramic material opposed to feldspathic porcelain, a lithium disilicate glass ceramic, and zirconia materials. Ceramic plate specimens were prepared from feldspathic porcelain (EX-3 nA1B), lithium disilicate glass ceramics (e.max CAD MO1/C14), and zirconia (Katana KT 10) and then ground or polished. Rounded rod specimens were fabricated from heat-pressed lithium disilicate glass ceramic (e.max press LT A3) and then glazed or polished. A sliding wear testing apparatus was used for wear testing. Wear of glazed rods was greater than that of polished rods when they were abraded with ground zirconia, ground porcelain, polished porcelain, or polished lithium disilicate ceramics. For both glazed and polished rods, wear was greater when the rods were abraded with ground plates. The findings indicate that application of a polished surface rather than a glazed surface is recommended for single restorations made of heat-pressed lithium disilicate material. In addition, care must be taken when polishing opposing materials, especially those used in occlusal contact areas. (J Oral Sci 58, 117-123, 2016).

  20. Sintering characteristics of nano-ceramic coatings

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Popma, R.

    2003-01-01

    This paper concentrates on sintering characteristics of nano-sized ceramic SiO2 particles. The sintering process is studied as a function of temperature using a conventional furnace and using a laser beam. The underlying idea is to combine the nanoceramic sol-gel concept with inkjet technology and

  1. Preliminary Study of Fly Ash Ceramic Process

    International Nuclear Information System (INIS)

    Herry-Poernomo; Djoko-Sardjono, Ign.

    2000-01-01

    Preliminary study of ceramic production process from two components ofwhich are fly ash and feldspar has been done. Aluminosilicate substancecontained in the fly ash is a basic material a former ceramic body, if itfired at the temperature of 1000 o C forms mullite (3Al 2 O 3 .2SiO 2 ). Mulliteis a refractory material which is very stable at the temperature changing.This experiment studies the ceramic production process of two componentsnamely fly ash with particle size of o C.Steps of processes are making paste of fly ash and feldspar, making of greenpellets, and firing of pellets, physical analysis of ceramic including volumedecrease, lost ignition, porosity, density, water sorption, compressivestrength. The experiment result at firing temperature of 1000 o C were shownthat best composition at the weight ratio of fly ash to feldspar are 60/40and 50/50. It physical characteristic respectively are decrease of volume0.54 and 0.69 %, lost ignition = 11.98 and 11.78 %, porosity = 0.159 and0.155, density = 2.05 and 2.06 g/cm 3 , water sorption = 18.96 and 18.36 %,compressive strength = 24.82 and 24.79 kN/mm 2 . (author)

  2. Study of ceramics sintering under high pressures

    International Nuclear Information System (INIS)

    Kunrath Neto, A.O.

    1990-01-01

    A systematic study was made on high pressure sintering of ceramics in order to obtain materials with controlled microstructure, which are not accessible by conventional methods. Some aspects with particular interest were: to achieve very low porosity, with fine grains; to produce dispersed metastable and denser phases which can act as toughening agents; the study of new possibilities for toughening enhancement. (author)

  3. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    International Nuclear Information System (INIS)

    Mecartnery, Martha; Graeve, Olivia; Patel, Maulik

    2017-01-01

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  4. Zirconia-based colors for ceramic glazes

    International Nuclear Information System (INIS)

    Eppler, R.A.

    1977-01-01

    The history of color development for use in ceramic glazes is outlined. The most significant modern development is based on zirconia and zircon. These materials have gained increasing acceptance in the industry since their introduction in the late 1950's and early 1960's, due to their superior stability during firing of the glaze

  5. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mecartnery, Martha [Univ. of California, Irvine, CA (United States); Graeve, Olivia [Univ. of California, San Diego, CA (United States); Patel, Maulik [Univ. of Liverpool (United Kingdom)

    2017-05-25

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  6. Keramiek / Ceramics | Hoffman | Tydskrif vir letterkunde

    African Journals Online (AJOL)

    Tydskrif vir letterkunde. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 41, No 1 (2004) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Keramiek / Ceramics. Ruan Hoffman. Abstract. No Abstract.

  7. Samanid ceramics and neutron activation analysis

    International Nuclear Information System (INIS)

    Azarpay, G.; Frierman, J.D.; Asaro, F.

    1977-01-01

    Glazed pottery known as ''Afrasiyab'' and ''Nishapur'' wares (early Islamic ceramics) are generally attributed to the Samanid dynasty (819-1005). The clay composition of Samanid wares and discarded kiln items found in situ were analyzed by NAA and the elemental composition compared with that of other sherds. 7 figures, 1 table

  8. Calculation of the ceramics Weibull parameters

    Czech Academy of Sciences Publication Activity Database

    Fuis, Vladimír; Návrat, Tomáš

    2011-01-01

    Roč. 58, - (2011), s. 642-647 ISSN 2010-376X. [International Conference on Bioinformatics and Biomedicine 2011. Bali, 26.10.2011-28.10.2011] Institutional research plan: CEZ:AV0Z20760514 Keywords : biomaterial parameters * Weibull statistics * ceramics Subject RIV: BO - Biophysics http://www.waset.org/journals/waset/v58/v58-132.pdf

  9. Ceramic microfabrication by rapid prototyping process chains

    Indian Academy of Sciences (India)

    To avoid high tooling costs in product development, a rapid prototyping process chain has been established that enables rapid manufacturing of ceramic microcomponents from functional models to small lot series within a short time. This process chain combines the fast and inexpensive supply of master models by rapid ...

  10. Science and Technology of Ceramics -4 ...

    Indian Academy of Sciences (India)

    and titanium; and aluminidesz of nickel are being studied all over the world. However, there are many problems ... being reinforced into these ceramics. Refractory metals like tungsten or niobium, whiskers3 and .... its high transmission of visible and ultraviolet light. The transmissio'n edge in the ultraviolet range depends on ...

  11. Use of waste ceramics in adsorption technologies

    Czech Academy of Sciences Publication Activity Database

    Doušová, B.; Koloušek, D.; Keppert, M.; Machovic, V.; Lhotka, M.; Urbanová, Martina; Brus, Jiří; Holcova, L.

    2016-01-01

    Roč. 134, Part 2 (2016), s. 145-152 ISSN 0169-1317 R&D Projects: GA ČR(CZ) GA13-24155S Institutional support: RVO:61389013 Keywords : waste ceramics * brick dust * toxic cations Subject RIV: JN - Civil Engineering Impact factor: 3.101, year: 2016

  12. The colloidal chemistry of ceramic clays

    Science.gov (United States)

    Phelps, G. W.

    1984-01-01

    The colloidal chemistry and mineralogy of two argil minerals were studied. Deposits of kaolin and of ceramic clays in the United States and England are discussed for the probable mechanism of formation. The structural modifications of the bed, original material associated with the clays and the proper use of flocculants are discussed.

  13. Colloidal forming of metal/ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Herencia, A.J.; Gutierrez, C.A.; Millan, A.J.; Nieto, M.I.; Moreno, R. [Inst. de Ceramica y Vidrio, Madrid (Spain)

    2002-07-01

    Metal/Ceramic composites have very attractive properties as either structural or electronic materials. For certain applications, complex microstructures and shapes are required. Colloidal processing of ceramics has proved to provide better properties and allows to obtain near net complex shaped parts. However colloidal processing has not received a similar attention in powder metallurgy. This work deals with the colloidal approach to the forming of metallic and metal/ceramic composites in an aqueous medium. Rheological behavior of concentrated pure nickel, nickel/alumina and nickel/zirconia suspensions is studied and optimized for obtaining flat surfaces or near net shaped parts by tape casting and gel casting respectively. In each case the influence of the processing additives (acrylic binders for tape casting and carrageenans for gel casting) on the rheological behavior of the slurries is determined. Pure nickel and nickel/ceramic composites with different compositions have been prepared. Static and dynamic sintering studies were performed at different conditions in order to control the porosity and microstructure of the final bodies, which were characterized by optical microscopy. (orig.)

  14. Description de Paraperipatus stresemanni de Ceram

    NARCIS (Netherlands)

    Bouvier, M.E.L.

    1917-01-01

    M. E. STRESEMANN, de Fribourg-en-Brisgau, a bien voulu soumettre à mon examen quatre exemplaires d'un Onychophore qu'il a capturés dans I'île de Ceram. Cet Onychophore appartient sans conteste au genre Paraperipatus WILLEY qui comprenait jusqu'ici quatre espèces: P. novaebritanniae WILLEY (1898), de

  15. Using the Voice to Design Ceramics

    DEFF Research Database (Denmark)

    Tvede Hansen, Flemming; Jensen, Kristoffer

    2011-01-01

    SoundShaping, a system to create ceramics from the human voice. Based on a generic audio feature extraction system, and the principal component analysis to ensure that the pertinent information in the voice is used, a 3D shape is created using simple geometric rules. This shape is output to a 3D printer...

  16. Novel, Ceramic Membrane System For Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Elangovan, S.

    2012-12-31

    Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

  17. Electrokinetic desalination of glazed ceramic tiles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Ferreira, Celia; Christensen, Iben Vernegren

    2010-01-01

    Electrokinetic desalination is a method where an applied electric DC field is the driving force for removal of salts from porous building materials. In the present paper, the method is tested in laboratory scale for desalination of single ceramic tiles. In a model system, where a tile...

  18. Ceramic nanostructure materials, membranes and composite layers

    NARCIS (Netherlands)

    Burggraaf, A.J.; Keizer, Klaas; van Hassel, B.A.

    1989-01-01

    Synthesis methods to obtain nanoscale materials will be briefly discussed with a focus on sol-gel methods. Three types of nanoscale composites (powders, membranes and ion implanted layers) will be discussed and exemplified with recent original research results. Ceramic membranes with a thickness of

  19. Bonding silicon nitride using glass-ceramic

    International Nuclear Information System (INIS)

    Dobedoe, R.S.

    1995-01-01

    Silicon nitride has been successfully bonded to itself using magnesium-aluminosilicate glass and glass-ceramic. For some samples, bonding was achieved using a diffusion bonder, but in other instances, following an initial degassing hold, higher temperatures were used in a nitrogen atmosphere with no applied load. For diffusion bonding, a small applied pressure at a temperature below which crystallisation occurs resulted in intimate contact. At slightly higher temperatures, the extent of the reaction at the interface and the microstructure of the glass-ceramic joint was highly sensitive to the bonding temperature. Bonding in a nitrogen atmosphere resulted in a solution-reprecipitation reaction. A thin layer of glass produced a ''dry'', glass-free joint, whilst a thicker layer resulted in a continuous glassy join across the interface. The chromium silicide impurities within the silicon nitride react with the nucleating agent in the glass ceramic, which may lead to difficulty in producing a fine glass-ceramic microstructure. Slightly lower temperatures in nitrogen resulted in a polycrystalline join but the interfacial contact was poor. It is hoped that one of the bonds produced may be developed to eventually form part of a graded joint between silicon nitride and a high temperature nickel alloy. (orig.)

  20. Modifications of optical properties with ceramic coatings

    International Nuclear Information System (INIS)

    Besmann, T.M.; Abdel-Latif, A.I.

    1990-01-01

    Coatings of ceramic materials that exhibited high thermal absorptivities and emissivities were chemical vapor deposited on graphite and refractory metals. In this paper the coatings prepared were SiC and B 4 C, and the substrates used were graphite, molybdenum, titanium, and Nb-1Zr. The coatings are characterized with regard to adherence, optical properties, and response to potential harsh environments

  1. Sintering and deformation of nanocrystalline ceramics

    International Nuclear Information System (INIS)

    Hahn, H.; Averback, R.S.; Hofler, H.J.; Logas, J.

    1991-01-01

    Nanocrystalline ceramics have been produced by the method of inert gas condensation of ultra-small particles and in situ consolidation. Sintering characteristics and microstructural parameter such as grain size, porosity and pore size distributions have been investigated by a variety of techniques, including: X-ray diffraction, gravimetry, nitrogen adsorption, scanning electron microscopy and small angle neutron scattering. In pure TiO 2 , the sintering temperatures are drastically lowered compared to conventional ceramics, however, extensive grain growth occurs before full densification is achieved. High density, nanocrystalline ceramics can be prepared by pressure assisted sintering, doping and additions of second phases. High temperature microhardness and creep deformation in compression were measured and it was found that creep processes occur at lower temperatures than in ceramics with larger grain sizes. Nanocrystalline TiO 2 with densities >99% can be deformed plastically without fracture at temperatures below half the melting point. The total strains exceed 0.6 at strain rates as high as 10 -3 s -l . The stress exponent of the strain rate, n, is approximately 3 and the grain size dependence is G -q with q in the range of 1-1.5. In this paper it is concluded that the creep deformation occurs by an interface reaction controlled mechanism

  2. Electronic ceramics in high-temperature environments

    International Nuclear Information System (INIS)

    Searcy, A.W.; Meschi, D.J.

    1982-01-01

    Simple thermodynamic means are described for understanding and predicting the influence of temperature changes, in various environments, on electronic properties of ceramics. Thermal gradients, thermal cycling, and vacuum annealing are discussed, as well as the variations of ctivities and solubilities with temperature. 7 refs

  3. Support Services for Ceramic Fiber-Ceramic Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.P.

    2000-06-06

    built to simulate the Kellogg entrained-bed gasifier in use at the Southern Company Services Wilsonville facility, but at 1/10 of the firing rate. At the exit of the unit is a large candle filter vessel typically operated at approximately 1000 F (540 C) in which coupons of materials can be inserted to test their resistance to gasifier ash and gas corrosion. The system also has ports for testing of hydrogen separation membranes that are suitably contained in a pressure housing. In addition, NETL is operating the combustion and environmental research facility (CERF). In recent years, the 0.5 MMBtu/hr (0.5 x 10{sup 6} kJ/hr) CERF has served as a host for exposure of over 60 ceramic and alloy samples at ambient pressure as well as at 200 psig (for tubes). Samples have been inserted in five locations covering 1700-2600 F (930-1430 C), with exposures exceeding 1000 hours. In the present program, the higher priority metals are to be tested at 1500-1600 F (820-870 C) in one CERF location and near 1800-2000 F (980-1090 C) at other locations to compare results with those from the EERC tests.

  4. EDXRF study of Tupiguarani archaeological ceramics

    International Nuclear Information System (INIS)

    Appoloni, C.R.; Aragao, P.H.A.; Santos, A.O. dos; Silva, L.M. da; Barbieri, P.F.; Espinoza Quinones, F.R.; Nascimento Filho, V.F. do

    2000-01-01

    A set of Indian Brazilian pottery fragments belonging to Tupi-Guarani tradition has been studied by EDXRF. The pottery fragments were accidentally discovered in the Santa Dalmacia farm in 1990, sited near Cambe city at the north of Parana Brazilian State. The main objective was to characterize the ceramic paste, as well as the superficial layer of the ceramic fragments, in order to get information about the pigment composition of the plastic decoration. The Energy Dispersive X-ray Fluorescence (EDXRF) methodology was employed to obtain the ceramic paste composition, as well as the superficial layer of the ceramic fragments. The measurements were carried out at CENA. The experimental set up consisted of 238 Pu, 55 Fe and 109 Cd radioactive sources, a X-ray tube (at 15 kV, 40 mA, Mo target and Zr filter), a Si(Li) detector (30 mm 2 , with a Be window ) and a multichannel analyzer. For detection of the elements within the ceramic paste, the fragments were irradiated at the center of the lateral section. While several superficial areas with remaining plastic decoration were also chosen and irradiated at the convex and concave sides of each fragment. X-ray spectra were analyzed at UEL using the AXIL program. A program based on the graphic polygonal representation method was developed and used to correlate the representative intensity data of each fragment. A low Ca content, and a systematic presence of relatively high concentrations of Fe can characterize the ceramic pastes. Ti and Zr are also always present at high levels, and Ni, Cu and in some cases Zn at level of traces; Rb, Sr, Ba and Y are also present at low concentration. The black pigment in the pottery plastic decoration is due to the presence of Mn, the red pigment is due to the presence of Fe, while the white pigment is characterized by the presence of Ba. Other qualitative and quantitative results were obtained for each kind of ceramic fragment groups. For the eleven fragments studied, the polygonal

  5. Titanium - ceramic restoration: How to improve the binding between titanium and ceramic

    Directory of Open Access Journals (Sweden)

    Harry Laksono

    2011-03-01

    Full Text Available Background: Titanium alloys has been used as an alternative to nickel-chromium alloys for metal-ceramic restorations because of its good biocompatibility and mechanical properties. This indicated that it was possible to design coping according to standards established for metal-ceramics. However, titanium is chemically reacting strongly with gaseous elements which causes problems when ceramics are fused to titanium. Purpose: To provide information about improving the bonding between titanium and ceramic. Review: Titanium has two crystal modifications, the close-packed hexagonal (α structure, up to 880° C, and above this temperature the bodycentered cubic (β structure. The principal problems is the extensive dissolution of oxygen resulting in thick, oxygen-rich titanium layers called α-case that harms the bonding of ceramic to titanium and the great mismatch in the coefficient of thermal expansion of conventional ultra-low fusing ceramic. Methods have been developed for fusing ceramic to titanium like processing methods, the used of ultra-low fusing titanium ceramic, bonding agent, and protocol for ceramic bonding to titanium. Conclusion: Titanium and titanium alloys, based on their physical and chemical properties suitable for titanium-ceramic restorations, but careful selection of processing methods, ceramic materials, laboratory skill and strict protocol for ceramic bonding to titanium are necessary to improve the bonding between titanium and ceramic.Latar Belakang: Logam campur titanium telah dipakai sebagai salah satu bahan alternatif untuk logam nikel-krom pada pembuatan restorasi keramik taut logam karena mempunyai biokompatibilitas dan sifat mekanik yang baik. Hal ini menunjukkan bahwa logam titanium dapat dipakai untuk pembuatan koping logam berdasarkan standar yang dipakai untuk pembuatan restorasi keramik taut logam. Meskipun, secara kimiawi logam titanium bereaksi dengan elemen-elemen gas yang menyebabkan masalah pada perlekatan

  6. Polishing for glass ceramics: which protocol?

    Science.gov (United States)

    Silva, Tânia Mara da; Salvia, Ana Carolina Rodrigues Danzi; Carvalho, Rodrigo Furtado de; Pagani, Clovis; Rocha, Daniel Maranha da; Silva, Eduardo Galera da

    2014-07-01

    The execution of adjustments on ceramic restorations is sometimes necessary for either correction of occlusion and/or inadequate contours or esthetical improvements. Clinically, the surfaces undergo weariness through fine grinding diamond burs which remove the superficial glazing layer. Several materials for ceramic polishing have been used in an attempt to reach a satisfactory surface smoothness. The aim of this study was to perform a literature review on different polishing protocols of several dental ceramics. This is a literature review performed through scientific articles published between 2004 and 2012, indexed in MEDLINE, PubMed and Scielo databases. The study selected and analyzed a total of 20 relevant articles that evaluated different types of ceramics, polishing treatment and surface roughness. After an extensive literature review, this study observed: 1 - after the rupture of the glazing layer due to the adjustments of the restorations, the best choice for the polishing of the surface will depend on the type of ceramics used; 2 - glazing procedure provide excellent results regarding to the superficial smoothness; however, if reglazing is impossible, either abrasive rubber cups/points or sandpaper discs followed by the use of diamond polishing pastes results in a satisfactory superficial smoothness; 3 - clinical studies that take into account the behavior of the protocols polishing are scarce and should be encouraged; 4 - the large number of variables influence the final outcome of polishing should be considered. The necessity in standardization of methodologies to enable a comparison among researches. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  7. Ceramic Surface Treatment with a Single-component Primer: Resin Adhesion to Glass Ceramics.

    Science.gov (United States)

    Prado, Mayara; Prochnow, Catina; Marchionatti, Ana Maria Estivalete; Baldissara, Paolo; Valandro, Luiz Felipe; Wandscher, Vinicius Felipe

    2018-04-19

    To evaluate the microshear bond strength (μSBS) of composite cement bonded to two machined glass ceramics and its durability, comparing conventional surface conditioning (hydrofluoric acid + silane) to a one-step primer (Monobond Etch & Prime). Machined slices of lithium disilicate ceramic (LDC) (IPS e.max CAD) and feldspathic ceramic (FC) (VITA Mark II) glass ceramics were divided into two groups (n = 10) according to two factors: 1. surface treatment: HF+S (ca 5% hydrofluoric acid [IPS Ceramic Etching GEL] + silane coupling agent [SIL; Monobond Plus]) or MEP (single-component ceramic conditioner; Monobond Etch & Prime); 2. storage condition: baseline (without aging; tested 24 h after cementing) or aged (70 days of water storage + 12,000 thermal cycles). Composite cement (Multilink Automix, Ivoclar Vivadent) was applied to starch matrices on the treated ceramic surfaces and photoactivated. A μSBS test was performed (0.5 mm/min) and the failure pattern was determined. Contact angle and micromorphological analyses were also performed. Data were analyzed with Student's t-test (α = 5%). For both ceramic materials, HF+S resulted in higher mean μSBS (MPa) at baseline (LDC: HF+S 21.2 ± 2.2 > MEP 10.4 ± 2.4; FC: HF+S 19.6 ± 4.3 > MEP 13.5 ± 5.4) and after aging (LDC: HF+S 14.64 ± 2.31 > MEP 9 ± 3.4; FC HF+S: 14.73 ± 3.33 > MEP 11.1 ± 3.3). HF+S resulted in a statistically significant decrease in mean μSBS after aging (p = 0.0001), while MEP yielded no significant reduction. The main failure type was adhesive between composite cement and ceramic. HF+S resuted in the lowest contact angle. Hydrofluoric acid + silane resulted in higher mean μSBS than Monobond Etch & Prime for both ceramics; however, Monobond Etch & Prime had stable bonding after aging.

  8. Facility for continuous CVD coating of ceramic fibers

    International Nuclear Information System (INIS)

    Moore, A.W.

    1992-01-01

    The development of new and improved ceramic fibers has spurred the development and application of ceramic composites with improved strength, strength/weight ratio, toughness, and durability at increasingly high temperatures. For many systems, the ceramic fibers can be used without modification because their properties are adequate for the chosen application. However, in order to take maximum advantage of the fiber properties, it is often necessary to coat the ceramic fibers with materials of different composition and properties. Examples include (1) boron nitride coatings on a ceramic fiber, such as Nicalon silicon carbide, to prevent reaction with the ceramic matrix during fabrication and to enhance fiber pullout and increase toughness when the ceramic composite is subjected to stress; (2) boron nitride coatings on ceramic yarns, such as Nicalon for use as thermal insulation panels in an aerodynamic environment, to reduce abrasion of the Nicalon and to inhibit the oxidation of free carbon contained within the Nicalon; and (3) ceramic coatings on carbon yarns and carbon-carbon composites to permit use of these high-strength, high-temperature materials in oxidizing environments at very high temperatures. This paper describes a pilot-plant-sized CVD facility for continuous coating of ceramic fibers and some of the results obtained so far with this equipment

  9. The effect of multicolored machinable ceramics on the esthetics of all-ceramic crowns.

    Science.gov (United States)

    Reich, Sven; Hornberger, Helga

    2002-07-01

    Computer-aided design/computer-assisted machining systems offer the possibility of fabricating restorations from one machinable ceramic block. Whether multishaded blocks improve esthetic results and are a viable alternative to individually stained ceramics has not been fully determined. The aim of this investigation was to examine the effect of multishaded blocks on the esthetic appearance of all-ceramic CEREC crowns and compare these crowns with single-shade and stained restorations. Ten subjects were included in this study. For each subject, 6 different crowns were milled with the use of a CEREC machine. One crown was milled from each of the following machinable ceramic materials: CEREC Vitablocs Mark II in classic colors; Vitablocs Mark II in 3D-Master colors; Vitablocs Mark II in either classic or 3D-Master colors, with additional staining; Megadenta Bloxx multishaded; Mark II experimental multilayer; and an experimental multilayer leucite ceramic. Three independent examiners assessed the esthetic appearance of crowns fabricated to match each subject's anterior tooth shade. A scale of 1 to 6 was used to score the shade match and esthetic adaptation of each crown, with 1 representing excellent characteristics and 3.5 serving as the threshold for clinical acceptability. The examiners' scores were averaged, and the mean values were analyzed with the Wilcoxon signed rank test (Pesthetic (Pcrowns made from single-shaded Mark II 3D-Master blocks: 6 out of 10 restorations were scored below 3.5. Two of the layered materials (Mark II experimental and Bloxx) followed with 5 acceptable restorations out of 10. Within the limitations of this study, the results provide no evidence that multicolored machinable ceramics improve the esthetics of all-ceramic crowns.

  10. Outcome of bonded vs all-ceramic and metal- ceramic fixed prostheses for single tooth replacement.

    Science.gov (United States)

    Karl, Matthias

    2016-01-01

    The conventional treatment of a single missing tooth is most frequently based on the provision of a fixed dental prosthesis (FDPs). A variety of designs and restorative materials are available which have an impact on the treatment outcome. Consequently, it was the aim of this review to compare resin-bonded, all-ceramic and metal-ceramic FDPs based on existing evidence. An electronic literature search using "metal-ceramic" AND "fixed dental prosthesis" AND "clinical, all-ceramic" AND "fixed dental prosthesis" AND "clinical, resin-bonded" AND "fixed dental prosthesis" AND "clinical, fiber reinforced composite" AND "clinical, monolithic" AND "zirconia" AND "clinical" was conducted and supplemented by the manual searching of bibliographies from articles already included. A total of 258 relevant articles were identified. Metal-ceramic FDPs still show the highest survival rates of all tooth-supported restorations. Depending on the ceramic system used, all-ceramic restorations may reach comparable survival rates while the technical complications, i.e. chipping fractures of veneering materials in particular, are more frequent. Resin-bonded FDPs can be seen as long-term provisional restorations with the survival rate being higher in anterior locations and when a cantilever design is applied. Inlay-retained FDPs and the use of fiber-reinforced composites overall results in a compromised long-term prognosis. Recently advocated monolithic zirconia restorations bear the risk of low temperature degradation. Several variables affect treatment planning for a given patient situation, with survival and success rates of different restorative options representing only one factor. The broad variety of designs and materials available for conventional tooth-supported restorations should still be considered as a viable treatment option for single tooth replacement.

  11. KROME Ceramics: color management system for the ceramics industry; KROME: Ceramics Sistema de gestion del color para la industra ceramica

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Luque, J.; Pla, O.; Selvi, S.

    2013-05-01

    Digital Decoration Systems, SL (DIGIT-S) with Unicer, SL, has implemented a system to improve and optimize the process of decorating by inkjet printing for ceramic industry. It provides a comprehensive solution, KROME Ceramics, to improve the cost effectiveness of product and process through the implementation of a working system based on the control of digital decoration process and the synchronization of all elements that make up the decorative modules, including the creation of a work flow, management of files that are generated during the process, a correct color management system, and of course, optimizing and evaluating ink jet inks integrating all elements involved: Lighting, Computer, Software, Monitor, Plotter, Paper, Ink, Ink jet, Body's, Enamels and Oven. (Author)

  12. CRYSTALLINE CERAMIC WASTE FORMS: REFERENCE FORMULATION REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K.; Fox, K.; Marra, J.

    2012-05-15

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be successfully produced from a melting and crystallization process. The objective of this report is to explain the design of ceramic host systems culminating in a reference ceramic formulation for use in subsequent studies on process optimization and melt property data assessment in support of FY13 melter demonstration testing. The waste stream used as the basis for the development and testing is a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. In addition to the combined CS/LN/TM High Mo waste stream, variants without Mo and without Mo and Zr were also evaluated. Based on the results of fabricating and characterizing several simulated ceramic waste forms, two reference ceramic waste form compositions are recommended in this report. The first composition targets the CS/LN/TM combined waste stream with and without Mo. The second composition targets

  13. Effect of intermediate ceramics and firing temperature on bond strength between tetragonal zirconia polycrystal and veneering ceramics.

    Science.gov (United States)

    Matsumoto, Naoya; Yoshinari, Masao; Takemoto, Shinji; Hattori, Masayuki; Kawada, Eiji; Oda, Yutaka

    2013-01-01

    The purpose of the present study was to investigate the influence of the intermediate ceramics and firing temperature on bond strength between tetragonal zirconia polycrystal (TZP) and its intermediate ceramics. Two types of intermediate ceramics, defined as a ceramics placed between the TZP and its veneering ceramics, were used; one including high-strength lithium-disilicate (EP) or feldspathic liner porcelain (SB). The firing temperature of the intermediate ceramics was set at 930°C, 945°C or 960°C. Shear bond strength showed values of 35.8 MPa in SB and 54.9 MPa in EP at a firing temperature of 960°C. Electron probe microanalysis revealed that components of the intermediate ceramics remained on the TZP surface after debonding, indicating that fractures occurred in the intermediate ceramics near the TZP. These results indicate that the bond strength between and a TZP framework and its veneering ceramics could be improved by using a high-strength intermediate ceramics and a comparatively high firing temperature.

  14. Characterization and evaluation of ceramic properties of clay used in structural ceramics

    International Nuclear Information System (INIS)

    Savazzini-Reis, A.; Della-Sagrillo, V.P.; Valenzuela-Diaz, F.R.

    2016-01-01

    The Brazilian red ceramic industry monthly consumes about 10.3 million tons of clay, its main raw material. In most potteries, characterization of the clay is made empirically, which can result in tiles and blocks not according to standards. This sense, this paper aims to characterize clays used in the manufacturing of red ceramic products in factory located in Colatina-ES, which appears as a ceramic pole with about twenty small and midsize industries. The clays were characterized by: Xray fluorescence, X-ray diffraction, thermal analysis (TG/DSC), granulometry and Atterberg limits. Specimens of clay and mixture containing four clays were shaped. Specimens were shaped, dried at 110°C, and burned in a kiln for 24 h. The ceramics and mechanical characteristics were evaluated: flexural strength, water absorption, apparent porosity, apparent specific mass and shrinkage by drying and firing. The characterization showed that kaolinitic clay presents high plasticity, but high porosity. The mixture formed by the four clays does not meet the requirements of the Brazilian standard clays for red ceramic. (author)

  15. Current Issues with Environmental Barrier Coatings for Ceramics and Ceramic Composites

    Science.gov (United States)

    Lee, Kang N.

    2004-01-01

    The environmental barrier coating (EBC) for SiC/SiC ceramic matrix composites and Si3N4 ceramics is an emerging field as the application of silicon-based ceramics in the gas turbine engine hot section is on the horizon, both for aero and industrial gas turbines. EBC is an enabling technology for silicon-based ceramics because these materials without an EBC cannot be used in combustion environments due to rapid surface recession. Significant progress in EBC development has been made during the last decade through various government-sponsored programs. Current EBCs are based on silicon, mullite (3Al2O3-2SiO2) and BSAS (barium strontium aluminum silicate with celsian structure). Volatility of BSAS, BSAS-silica chemical reaction, and low melting point of silicon limit temperature capability of current EBCs to about 1350 C for long-term applications. There is a need for higher temperature EBCs as the temperature capability of silicon-based ceramics continue to increase. Therefore, research is underway to develop EBCs with improved temperature capability compared to current EBCs. The current status and issues with the advanced EBC development efforts will be discussed.

  16. Cerec anterior crowns: restorative options with monolithic ceramic materials.

    Science.gov (United States)

    Reich, Sven; Fiedlar, Kurt

    2013-01-01

    The aim of this article is to discuss the different types of monolithic ceramic crowns that can be placed on anterior teeth with existing shoulder preparations. Anterior crowns were indicated for the teeth 12 to 22 in the present case. The patient, a 65-year-old male, had received all-ceramic crowns 20 years earlier, which had started to develop cracks and palatal fractures over the last few years. The patient's teeth were prepared and four sets of crowns were fabricated using different monolithic ceramic materials: IPS e.max CAD, Cerec Blocs C In, VITABLOCS Real Life, and ENAMIC. Both shade characterization and crystallization firing were performed on the monolithic lithium disilicate glass ceramic crowns. The silicate ceramic crowns received glaze firing alone. The crowns made of hybrid ceramic (ENAMIC) were treated with a polymer sealant.

  17. PREFACE: 3rd International Congress on Ceramics (ICC3)

    Science.gov (United States)

    Niihara, Koichi; Ohji, Tatsuki; Sakka, Yoshio

    2011-10-01

    Early in 2005, the American Ceramic Society, the European Ceramic Society and the Ceramic Society of Japan announced a collaborative effort to provide leadership for the global ceramics community that would facilitate the use of ceramic and glass materials. That effort resulted in an agreement to organize a new biennial series of the International Congress on Ceramics, convened by the International Ceramic Federation (ICF). In order to share ideas and visions of the future for ceramic and glass materials, the 1st International Congress on Ceramics (ICC1) was held in Canada, 2006, under the organization of the American Ceramic Society, and the 2nd Congress (ICC2) was held in Italy, 2008, hosted by the European Ceramic Society. Organized by the Ceramic Society of Japan, the 3rd Congress (ICC3) was held in Osaka, Japan, 14-18 November 2010. Incorporating the 23rd Fall Meeting of the Ceramic Society of Japan and the 20th Iketani Conference, ICC3 was also co-organized by the Iketani Science and Technology Foundation, and was endorsed and supported by ICF, Asia-Oceania Ceramic Federation (AOCF) as well as many other organizations. Following the style of the previous two successful Congresses, the program was designed to advance ceramic and glass technologies to the next generation through discussion of the most recent advances and future perspectives, and to engage the worldwide ceramics community in a collective effort to expand the use of these materials in both conventional as well as new and exciting applications. ICC3 consisted of 22 voluntarily organized symposia in the most topical and essential themes of ceramic and glass materials, including Characterization, design and processing technologies Electro, magnetic and optical ceramics and devices Energy and environment related ceramics and systems Bio-ceramics and bio-technologies Ceramics for advanced industry and safety society Innovation in traditional ceramics It also contained the Plenary Session and the

  18. High temperature electrically conducting ceramic heating element and control system

    Science.gov (United States)

    Halbach, C. R.; Page, R. J.

    1975-01-01

    Improvements were made in both electrode technology and ceramic conductor quality to increase significantly the lifetime and thermal cycling capability of electrically conducting ceramic heater elements. These elements were operated in vacuum, inert and reducing environments as well as oxidizing atmospheres adding to the versatility of the conducting ceramic as an ohmic heater. Using stabilized zirconia conducting ceramic heater elements, a furnace was fabricated and demonstrated to have excellent thermal response and cycling capability. The furnace was used to melt platinum-20% rhodium alloy (melting point 1904 C) with an isothermal ceramic heating element having a nominal working cavity size of 2.5 cm diameter by 10.0 cm long. The furnace was operated to 1940 C with the isothermal ceramic heating element. The same furnace structure was fitted with a pair of main heater elements to provide axial gradient temperature control over a working cavity length of 17.8 cm.

  19. Method for non-destructive evaluation of ceramic coatings

    Science.gov (United States)

    Peterson, Kristen A.; Rosen, Elias P.; Jordan, Eric H.; Shahbazmohamadi, Sina; Vakhtin, Andrei B.

    2016-11-08

    A method for evaluating the condition of a ceramic coating deposited on a substrate comprising illuminating the ceramic coating with light, measuring the intensity of light returned from the ceramic coating as function of depth in the coating and transverse position on the coating, and analyzing the measured light intensities to obtain one or more of intensity of the light returned from the exposed coating surface relative to the intensity of light returned from the coating/substrate interface, intensity of the light returned from the coating/substrate interface relative to the intensity of light returned from the bulk of the ceramic coating, determination of roughness at the exposed surface of the ceramic coating, and determination of roughness of the interface between the ceramic coating and underlying bond coat or substrate.

  20. Active Optical Fibers Doped with Ceramic Nanocrystals

    Directory of Open Access Journals (Sweden)

    Jan Mrazek

    2014-01-01

    Full Text Available Erbium-doped active optical fiber was successfully prepared by incorporation of ceramic nanocrystals inside a core of optical fiber. Modified chemical vapor deposition was combined with solution-doping approach to preparing preform. Instead of inorganic salts erbium-doped yttrium-aluminium garnet nanocrystals were used in the solution-doping process. Prepared preform was drawn into single-mode optical fiber with a numerical aperture 0.167. Optical and luminescence properties of the fiber were analyzed. Lasing ability of prepared fiber was proofed in a fiber-ring set-up. Optimal laser properties were achieved for a fiber length of 20~m. The slope efficiency of the fiber-laser was about 15%. Presented method can be simply extended to the deposition of other ceramic nanomaterials.

  1. Interfacing design and making of Ceramics

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2014-01-01

    allow capturing spatial hand gestures and body movement in real-time. Where technology often seems to take us away from material this approach enables the designers body to be once again involved in the making. This approach builds on McCullough’s (1998) idea about a close connection between digital...... investigates the idea of an interactive digital design tool for designing wall like composition with 3d ceramics and is working on two levels. One which has to do with a digital interactive system that responds on the movement of the hands; at a certain distance the user’s hands appear on a monitor screen...... as a pattern of circles, which size and 3d inner pattern are reflecting the position and speed of the hand. The second level has to do with realizing the modules in ceramics by 3d printing directly in porcelain with a RapMan printer that coils up the 3d shape in layers....

  2. CMH-17 Volume 5 Ceramic Matrix Composites

    Science.gov (United States)

    Andrulonis, Rachael; Kiser, J. Douglas; David, Kaia E.; Davies, Curtis; Ashforth, Cindy

    2017-01-01

    A wide range of issues must be addressed during the process of certifying CMC (ceramic matrix composite) components for use in commercial aircraft. The Composite Materials Handbook-17, Volume 5, Revision A on ceramic matrix composites has just been revised to help support FAA certification of CMCs for elevated temperature applications. The handbook supports the development and use of CMCs through publishing and maintaining proven, reliable engineering information and standards that have been thoroughly reviewed. Volume 5 contains detailed sections describing CMC materials processing, design analysis guidelines, testing procedures, and data analysis and acceptance. A review of the content of this latest revision will be presented along with a description of how CMH-17, Volume 5 could be used by the FAA (Federal Aviation Administration) and others in the future.

  3. Synthesis of biomorphaus SiC-ceramics

    Directory of Open Access Journals (Sweden)

    Egelja Adela D.

    2007-01-01

    Full Text Available The carbothermal reduction processing of partially mineralized fir (Abies alba samples was used to obtain highly-porous SiC ceramics with cellular structure. The infiltration of TEOS (tetraetilortosilikat, Si(OC2H54 as a silica source, was conducted in order to carry out the mineralization process. Synthesis of the SiC was achieved with a C/SiO2 replica annealing at 1723 K in Ar atmosphere. The obtained samples were characterized using X-ray photoelectron spectroscopy (XPS, scanning electron microscopy (SEM and energy dispersive spectrometry (EDS. The experimental results revealed that the hierarchical bimorphous wood structure was preserved even after high-temperature treatment. Microstructural characterization of the ceramics revealed the presence of the P-SiC phase and traces of the a-SiC phase.

  4. Development of ceramic glaze with photocatalytic activity

    International Nuclear Information System (INIS)

    Tezza, V.B.; Uggioni, E.; Carrera, A.A. Duran; Bernardin, A.M.

    2011-01-01

    Glazes were developed by adding anatase in commercial ceramic plates as an agent of photocatalysis. The glazes were coated on ceramic tiles, which were fired between 800 and 1000°C. The formulations were characterized (SEM, XRD), and the wettability was determined by measuring the water contact angle. The microstructural analysis (SEM) showed that the anatase particles can disperse properly in the glaze matrix. The X-ray diffraction shows that from 1000°C, the glaze becomes very reactive, and particles of anatase are transformed into titanite or rutile, depending on the glaze used. The determination of the contact angle shows the clear influence of the glaze type and sintering temperature on the wettability characteristics of the obtained layer. (author)

  5. Mechanical Properties Of Single Crystal Ceramics

    Science.gov (United States)

    Rowcliffe, D. J.; Johnson, S. M.

    1987-03-01

    Approaches to characterizing the mechanical behavior of single crystal ceramics are reviewed. Consideration is given to techniques applicable to large crystals and to indentation techniques that can be used on crystals of 1 mm or less. The importance of flaws in controlling the mechanical behavior of brittle ceramics is discussed, leading to an emphasis on fracture mechanics methods. These techniques are applicable to the determination of fracture toughness and to the measurement of slow crack growth in aggresive environments. Indentation processes have been analyzed extensively and the good understanding of stress fields and micro-mechanics of indentation has led to techniques to measure hardness, toughness and elastic modulus. Measurements of hardness anistropy can be used to determine slip planes and also provide considerable information on local plastic flow in brittle crystals.

  6. Ceramic onlay for endodontically treated mandibular molar

    Directory of Open Access Journals (Sweden)

    Roopadevi Garlapati

    2014-01-01

    Full Text Available Restoration of endodontically treated teeth is important for the success of endodontic treatment. In full coverage restorations, maximum amount of tooth structure is compromised, so as to conserve the amount of tooth structure partial coverage restorations, can be preferred. This case report is on fabrication of a conservative tooth colored restoration for an endodontically treated posterior tooth. A 22-year-old male patient presented with pain in the mandibular left first molar. After endodontic treatment, composite material was used as postendodontic restoration. The tooth was then prepared to receive a ceramic onlay and bonded with self-adhesive universal resin cement. Ceramic onlay restoration was periodically examined up to 2 years.

  7. 3D Printing Bioinspired Ceramic Composites.

    Science.gov (United States)

    Feilden, Ezra; Ferraro, Claudio; Zhang, Qinghua; García-Tuñón, Esther; D'Elia, Eleonora; Giuliani, Finn; Vandeperre, Luc; Saiz, Eduardo

    2017-10-23

    Natural structural materials like bone and shell have complex, hierarchical architectures designed to control crack propagation and fracture. In modern composites there is a critical trade-off between strength and toughness. Natural structures provide blueprints to overcome this, however this approach introduces another trade-off between fine structural manipulation and manufacturing complex shapes in practical sizes and times. Here we show that robocasting can be used to build ceramic-based composite parts with a range of geometries, possessing microstructures unattainable by other production technologies. This is achieved by manipulating the rheology of ceramic pastes and the shear forces they experience during printing. To demonstrate the versatility of the approach we have fabricated highly mineralized composites with microscopic Bouligand structures that guide crack propagation and twisting in three dimensions, which we have followed using an original in-situ crack opening technique. In this way we can retain strength while enhancing toughness by using strategies taken from crustacean shells.

  8. Method of solidifying radioactive wastes with ceramics

    International Nuclear Information System (INIS)

    Anzai, Kazuo; Oota, Takao.

    1983-01-01

    Purpose: To improve the heat efficiency and enable simple and rapid solidification of radioactive wastes by facilitating high frequency inductive heating. Method: Calcined radioactive wastes and ceramic forming substances are charged into a crucible made of electrically insulating pyrolytic materials, melted by way of high frequency induction heating, then taken out from the crucible, introduced into a container and solidified therein to dispose radioactive wastes. In this case, the high frequency induction heating can be facilitated by adding, to the ceramic-forming substance and the calcined products charged in the crucible, powderous silicon carbide as the third ingredient in a range of 20 - 50% by weight based on the total weight. (Kawakami, Y.)

  9. Production of ceramics from coal fly ash

    Directory of Open Access Journals (Sweden)

    Angjusheva Biljana

    2012-01-01

    Full Text Available Dense ceramics are produced from fly ash from REK Bitola, Republic of Macedonia. Four types of fly ash from electro filters and one from the collected zone with particles < 0.063 mm were the subject of this research. Consolidation was achieved by pressing (P= 133 MPa and sintering (950, 1000, 1050 and 11000C and heating rates of 3 and 100/min. Densification was realized by liquid phase sintering and solid state reaction where diopside [Ca(Mg,Al(Si,Al2O6] was formed. Ceramics with optimal properties (porosity 2.96±0.5%, bending strength - 47.01±2 MPa, compressive strength - 170 ±5 MPa was produced at 1100ºC using the heating rate of 10ºC/min.

  10. 4TH International Conference on High-Temperature Ceramic Matrix Composites

    National Research Council Canada - National Science Library

    2001-01-01

    .... Topic to be covered include fibers, interfaces, interphases, non-oxide ceramic matrix composites, oxide/oxide ceramic matrix composites, coatings, and applications of high-temperature ceramic matrix...

  11. ION EXCHANGE IN GLASS-CERAMICS

    Directory of Open Access Journals (Sweden)

    George Halsey Beall

    2016-08-01

    Full Text Available In the past few years ion-exchange in glasses has found a renewed interest with a lot of new development and research in industrial and academic labs and the commercialization of materials with outstanding mechanical properties. These glasses are now widely used in many electronic devices including hand-held displays and tablets. The exchange is generally conducted in a bath of molten salt below the transition temperature of the glass. The exchange at the surface of an alkali ion by a bigger one brings compressive stress at the surface. The mechanical properties are dependent on the stress level at the surface and the depth of penetration of the bigger ion. As compared to glasses, glass-ceramics have the interest to display a wide range of aspects (transparent to opaque and different mechanical properties (especially higher modulus and toughness. There has been little research on ion-exchange in glass-ceramics. In these materials the mechanisms are much more complex than in glasses because of their polyphasic nature: ion-exchange generally takes place mostly in one phase (crystalline phase or residual glass. The mechanism can be similar to what is observed in glasses with the replacement of an ion by another in the structure. But in some cases this ion-exchange leads to microstructural modifications (for example amorphisation or phase change.This article reviews these ion-exchange mechanisms using several transparent and opaque alumino-silicate glass-ceramics as examples. The effect of the ion exchange in the various glass-ceramics will be described, with particular emphasis on flexural strength.

  12. Firing: the proof test for ceramic processing

    International Nuclear Information System (INIS)

    Kingery, W.D.

    1975-01-01

    The object of ceramic processing is to form ware having certain shapes and properties. Thus, one test of the success of processing procedures must be in terms of the resulting structure and characteristics of a material after firing. During the firing process some few variations resulting from processing may be evened out, but the great majority of variation tends to be amplified. Examination of a few cases illustrates the nature of the defect amplification process. (U.S.)

  13. Frost-resistance of red ceramic products

    OpenAIRE

    Ramires, M. V. V.; Madruga, T. P.; Bergman, C. P.

    2000-01-01

    The present work is a study about degradation occurring with red ceramics whenever they are exposed to the environmental conditions of a cold and humid climate. Four different types of clay from Rio Grande do Sul were studied: two of them from the Serra Geral formation, and the other two from the formation of Strada Nova, which are commonly used to make roof tiles. The clay was characterised to identify its chemical and mineralogical composition. Also the physical properties were researched. ...

  14. Radioactivity Measurements on Glazed Ceramic Surfaces

    OpenAIRE

    Hobbs, Thomas G.

    2000-01-01

    A variety of commonly available household and industrial ceramic items and some specialty glass materials were assayed by alpha pulse counting and ion chamber voltage measurements for radioactivity concentrations. Identification of radionuclides in some of the items was performed by gamma spectroscopy. The samples included tableware, construction tiles and decorative tiles, figurines, and other products with a clay based composition. The concentrations of radioactivity ranged from near backgr...

  15. Method of bonding metals to ceramics

    Science.gov (United States)

    Maroni, V.A.

    1991-04-23

    A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof is disclosed. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, Au and alloys thereof. 3 figures.

  16. Stereolithography of SiOC Ceramic Microcomponents.

    Science.gov (United States)

    Zanchetta, Erika; Cattaldo, Marco; Franchin, Giorgia; Schwentenwein, Martin; Homa, Johannes; Brusatin, Giovanna; Colombo, Paolo

    2016-01-13

    The first example of the fabrication of complex 3D polymer-derived-ceramic structures is presented with micrometer-scale features by a 3D additive manufacturing (AM) technology, starting with a photosensitive preceramic precursor. Dense and crack-free silicon-oxycarbide-based microparts with features down to 200 μm are obtained after pyrolysis at 1000 °C in a nitrogen atmosphere. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Literature Review of Polymer Derived Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Reuben James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-25

    Polymer Derived Ceramics (PDCs), also known as preceramic polymers, are valuable coating agents that are used to produce surface barriers on substrates such as stainless steel. These barriers protect against a multitude of environmental threats, and have been used since their research and development in 19772. This paper seeks to review and demonstrate the remarkable properties and versatility that PDCs have to offer, while also giving a brief overview of the processing techniques used today.

  18. Application of High Pressures to Ceramics.

    Science.gov (United States)

    1981-10-13

    made, while at the same time , be healed, for example, by lIPing. However, the high toughness of the resultant composite much broader application of...deformation of high dialational stresses sufficiently relaxes ceramics is apparently not currently being the matrix constraint so the particles...same time maintaining single crystal particulates, it may be even more applicabli quality in terms of purity and the absence of to development of such

  19. Composite treatment of ceramic tile armor

    Science.gov (United States)

    Hansen, James G. R. [Oak Ridge, TN; Frame, Barbara J [Oak Ridge, TN

    2010-12-14

    An improved ceramic tile armor has a core of boron nitride and a polymer matrix composite (PMC) facing of carbon fibers fused directly to the impact face of the tile. A polyethylene fiber composite backing and spall cover are preferred. The carbon fiber layers are cured directly onto the tile, not adhered using a separate adhesive so that they are integral with the tile, not a separate layer.

  20. Proton conducting ceramics in membrane separations

    Science.gov (United States)

    Brinkman, Kyle S; Korinko, Paul S; Fox, Elise B; Chen, Frank

    2015-04-14

    Perovskite materials of the general formula SrCeO.sub.3 and BaCeO.sub.3 are provided having improved conductivity while maintaining an original ratio of chemical constituents, by altering the microstructure of the material. A process of making Pervoskite materials is also provided in which wet chemical techniques are used to fabricate nanocrystalline ceramic materials which have improved grain size and allow lower temperature densification than is obtainable with conventional solid-state reaction processing.

  1. Engineering Ceramic Nanophosphors for Optical Applications

    Science.gov (United States)

    2009-06-11

    pellets and films on sintering − Optical blackening from residual free carbon • To overcome drawbacks of metal organic precursors − Fluorinating...Riman, JB Brown, KR Mikeska, J. Appl. Phys. 93:2946 (2003). Heavy Metal Fluoride Glass Formation • ZBLA and ZBLAN have better fiber drawing ability than...Riman, E Snitzer, J Amer. Ceram. Soc., 76:3147 (1993). Sol-Gel Precursor Selection • Metal organic precursors cause undersirable properties − “Foam

  2. Mechanistic Studies of Superplasticity of Structural Ceramics

    Science.gov (United States)

    1992-02-01

    powder suspension, and direct consolida- gy and, correspondingly, strengthening tion of the slurry into a green body using the grain boundary. colloidal...librium, must possess a countercharge which is negative (posi- trolyte. The milled slurry was cast, under a pressure of up to tive). The dopants, in...34Space Charges, Elastic CeO2 -ZrO 2" pp. 147-52 in Materials Science Forum, Vol. 34-36, Ceramic Field and Dipole Contributions to Equilibrium Solute

  3. Laser Micromachining of Glass, Silicon, and Ceramics

    Directory of Open Access Journals (Sweden)

    L. Rihakova

    2015-01-01

    Full Text Available A brief review is focused on laser micromachining of materials. Micromachining of materials is highly widespread method used in many industries, including semiconductors, electronic, medical, and automotive industries, communication, and aerospace. This method is a promising tool for material processing with micron and submicron resolution. In this paper micromachining of glass, silicon, and ceramics is considered. Interaction of these materials with laser radiation and recent research held on laser material treatment is provided.

  4. Co-Extrusion of Piezoelectric Ceramic Fibres

    OpenAIRE

    Ismael Michen, Marina

    2010-01-01

    The present work successfully developed a methodology for fabricating lead zirconate titanate [PZT] thin solid- and hollow-fibres by the thermoplastic co-extrusion process. The whole process chain, that includes: a) compounding, involving the mixing of ceramic powder with a thermoplastic binder, b) rheological characterizations, c) preform composite fabrication followed by co-extrusion, d) debinding and, finally, e) sintering of the body to near ...

  5. Biocompatible wear-resistant thick ceramic coating

    Directory of Open Access Journals (Sweden)

    Vogt Nicola

    2016-09-01

    Full Text Available Sensitisation to immunologically active elements like chromium, cobalt or nickel and debris particle due to wear are serious problems for patients with metallic implants. We tested the approach of using a hard and thick ceramic coating as a wear-resistant protection of titanium implants, avoiding those sensitisation and foreign body problems. We showed that the process parameters strongly influence the coating porosity and, as a consequence, also its hardness.

  6. Sem analysis zirconia-ceramic adhesion interface

    Science.gov (United States)

    CARDELLI, P.; VERTUCCI, V.; MONTANI, M.; ARCURI, C.

    2015-01-01

    SUMMARY Objectives Modern dentistry increasingly tends to use materials aesthetically acceptable and biomimetic. Among these are zirconia and ceramics for several years, a combination that now has becoming synonym of aesthetic; however, what could be the real link between these two materials and especially its nature, remains a controversial topic debated in the literature. The aim of our study was to “underline” the type of bonding that could exist between these materials. Materials and methods To investigate the nature of this bond we used a SEM microscopy (Zeiss SUPRA 25). Different bilaminar specimens: “white” zirconia Zircodent® and ceramic “Noritake®”, after being tested with loading test in bending (three-point-bending) and FEM analysis, were analyzed by SEM. Fragments’ analysis in closeness of the fracture’s point has allowed us to be able to “see” if at large magnifications between these two materials, and without the use of linear, could exist a lasting bond and the possible type of failure that could incur. Results From our analysis of the specimens’ fragments analyzed after test Equipment, it is difficult to highlight a clear margin and no-adhesion zones between the two materials, although the analysis involving fragments adjacent to the fracture that has taken place at the time of Mechanical test Equipment. Conclusions According to our analysis and with all the clarification of the case, we can assume that you can obtain a long and lasting bond between the zirconia and ceramics. Agree to the data present in the literature, we can say that the type of bond varies according to the type of specimens and of course also the type of failure. In samples where the superstructure envelops the ceramic framework Zirconium we are in the presence of a cohesive failure, otherwise in a presence of adhesive failure. PMID:27555905

  7. Flame-sintered ceramic exoelectron dosimeter samples

    International Nuclear Information System (INIS)

    Petel, M.; Holzapfel, G.

    1979-01-01

    New techniques for the preparation of integrating solid state dosimeters, particularly exoelectron dosimeters, have been initiated. The procedure consists in melting the powdered dosimeter materials in a hot, fast gas stream and depositing the ceramic layer. The gas stream is generated either through a chemical flame or by an electrical arc plasma. Results will be reported on the system Al 2 O 3 /stainless steel as a first step to a usable exoelectron dosimeter

  8. Ceramic composites by chemical vapor infiltration

    International Nuclear Information System (INIS)

    Stinton, D.P.

    1987-01-01

    Composites consisting of silicon carbide matrices reinforced with continuous ceramic fibers are being developed for high-temperature structural applications. Chemical vapor deposition (CVD) techniques are very effective in fabricating composites with high strengths and exceptional fracture toughness. Mechanical properties of infiltrated composites are controlled by the strength of the interfacial bond between the fibers and matrix. This paper describes two CVD techniques and reviews the models being developed to better understand and control the infiltration process

  9. A special percolation problem in ceramic composites

    International Nuclear Information System (INIS)

    Ang Chen; Xi Dai; Yu Zhi; Yahua Bao

    1993-11-01

    The interface effect is taken into consideration, and a special percolation model is proposed for a two-phases metal/ceramic composite in the present paper. The computer simulation shows that the percolation threshold of this interface-controlled percolation behaviour is 4.5% in the three dimensional f.c.c. lattices, which is in good agreement with the experimental data. (author). 9 refs, 3 figs

  10. 3D Printing Bioinspired Ceramic Composites

    OpenAIRE

    Feilden, Ezra; Ferraro, Claudio; Zhang, Qinghua; García-Tuñón, Esther; D’Elia, Eleonora; Giuliani, Finn; Vandeperre, Luc; Saiz, Eduardo

    2017-01-01

    Natural structural materials like bone and shell have complex, hierarchical architectures designed to control crack propagation and fracture. In modern composites there is a critical trade-off between strength and toughness. Natural structures provide blueprints to overcome this, however this approach introduces another trade-off between fine structural manipulation and manufacturing complex shapes in practical sizes and times. Here we show that robocasting can be used to build ceramic-based ...

  11. Structural transformation of Nb containing glass - ceramics at thermal treatment

    International Nuclear Information System (INIS)

    Pelss, J.; Misnovs, A.; Berzina, L.; Cimdins, R.; Bossert, J.

    2004-01-01

    Full text: Niobium glass ceramics is know as biomaterial in medicine: stomatology, maxillofacial surgery. The material structure and phase amount influenced on chemical and biological activity of glass-ceramics. Samples from glass powder in system NaO: CaO: Nb 2 O 5 : P 2 O 5 treated at different temperatures (750-1050 0 C) and at different time - from 1 to 6 hours. The glass - ceramics structure investigated by DTA, X-ray and SEM methods

  12. Investigation of Locally Made Ceramic Filter for Household Water Treatment

    OpenAIRE

    Nurmiyanto, Awaluddin; Prasetya, Agus

    2012-01-01

    This research have objective to develop and evaluate the performance of ceramic filter in using locally available material at Yogyakarta. Ceramic filter are made by pressing a mixture of clay, discarded pottery (grog) and combustible material (coconut fiber) into the molder. Curving processes are then applied to form tubular shape before firing it using kiln (1005°C). Filtration test were performed gravitationally by flowing well water into ceramic filter. Filtered water quality was complying...

  13. Mechanics and Durability of Fiber Reinforced Porous Ceramic Composites

    OpenAIRE

    Huang, Xinyu

    2001-01-01

    Porous ceramics and porous ceramic composites are emerging functional materials that have found numerous industrial applications, especially in energy conversion processes. They are characterized by random microstructure and high porosity. Examples are ceramic candle filters used in coal-fired power plants, gas-fired infrared burners, anode and cathode materials of solid oxide fuel cells, etc. In this research, both experimental and theoretical work have been conducted t...

  14. Ceramic Replaces Metal In High Performance Optomechanical Structures

    Science.gov (United States)

    Vasquez, Peter; Fox, Robert L.; Sandford, Stephen P.

    1995-01-01

    Recently developed ceramic materials and fabrication techniques integrated by Langley Research Center workers to produce superior optomechanical structures for spacecraft and aircraft instrumentation. Basic features of these novel supports, such as dimensional stability, low cost, and ease of fabrication, also make them ideal for many commerical optical systems as well. Ceramic supports for optical components and benches offer important advantages over usual metal parts. Ceramic materials expand and contract only slightly with changes in temperature. Moreover, they are relatively inexpensive and lightweight.

  15. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    OpenAIRE

    Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel

    2015-01-01

    The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Va...

  16. Slip casting nano-particle powders for making transparent ceramics

    Science.gov (United States)

    Kuntz, Joshua D [Livermore, CA; Soules, Thomas F [Livermore, CA; Landingham, Richard Lee [Livermore, CA; Hollingsworth, Joel P [Oakland, CA

    2011-04-12

    A method of making a transparent ceramic including the steps of providing nano-ceramic powders in a processed or unprocessed form, mixing the powders with de-ionized water, the step of mixing the powders with de-ionized water producing a slurry, sonifing the slurry to completely wet the powder and suspend the powder in the de-ionized water, separating very fine particles from the slurry, molding the slurry, and curing the slurry to produce the transparent ceramic.

  17. Method for preparing Pb-.beta."-alumina ceramic

    Science.gov (United States)

    Hellstrom, Eric E.

    1986-01-01

    A process is disclosed for preparing impermeable, polycrystalline samples of Pb-.beta."-alumina ceramic from Na-.beta."-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-.beta."-alumina ceramic that is substantially crack-free.

  18. COMPOSITION AND METHOD FOR COATING A CERAMIC BODY

    Science.gov (United States)

    Blanchard, M.K.

    1958-11-01

    A method is presented for protecting a beryllium carbide-graphite body. The method consists in providing a ceramic coating which must contain at least one basic oxide component, such as CaO, at least one amphoteric oxide component, such as Al/sub 2/O/sub 3/, and at least one acidic oxide component, such as SiO/ sub 2/. Various specific formulations for this ceramic coating are given and the coating is applied by conventional ceramic techniques.

  19. Malayaite ceramic pigments prepared with galvanic sludge as colouring agent

    OpenAIRE

    Costa, Gracia; Ribeiro, Manuel J.; Labrincha, Joao A.; Dondi, Michele; Matteucci, Francesco; Cruciani, Giuseppe

    2008-01-01

    The synthesis and characterisation of chrome?-tin red malayaite Ca(Cr,Sn)SiO5 pigments are reported. The novel approach of using a galvanizing sludge from the Cr/Ni plating process as colouring agent is investigated. The ceramic pigments were prepared using common solid state reaction process, with optimisation of milling and firing conditions. Characterisation was done by x-?ray powder diffraction, diffuse reflectance spectroscopy, and application in standard ceramic glazes. The ceramic pigm...

  20. Zirconia based ceramics, some clinical and biological aspects: Review

    Directory of Open Access Journals (Sweden)

    Ossama Saleh Abd El-Ghany

    2016-12-01

    Full Text Available Improved material strength, enhanced esthethic and high biocompatibility give Zirconia ceramic a great possibility to be used for a wide range of promising clinical applications. This review presents the different types of zirconia materials available for dental application, the effect of machining procedures on these materials, the esthetic of zirconia ceramics and bonding of the veneering ceramics in addition to the biologic properties of these new materials.