WorldWideScience

Sample records for biomolecular mechanisms controlling

  1. A mechanical Turing machine: blueprint for a biomolecular computer.

    Science.gov (United States)

    Shapiro, Ehud

    2012-08-01

    We describe a working mechanical device that embodies the theoretical computing machine of Alan Turing, and as such is a universal programmable computer. The device operates on three-dimensional building blocks by applying mechanical analogues of polymer elongation, cleavage and ligation, movement along a polymer, and control by molecular recognition unleashing allosteric conformational changes. Logically, the device is not more complicated than biomolecular machines of the living cell, and all its operations are part of the standard repertoire of these machines; hence, a biomolecular embodiment of the device is not infeasible. If implemented, such a biomolecular device may operate in vivo, interacting with its biochemical environment in a program-controlled manner. In particular, it may 'compute' synthetic biopolymers and release them into its environment in response to input from the environment, a capability that may have broad pharmaceutical and biological applications. PMID:22649583

  2. A mechanical Turing machine: blueprint for a biomolecular computer

    OpenAIRE

    Shapiro, Ehud

    2012-01-01

    We describe a working mechanical device that embodies the theoretical computing machine of Alan Turing, and as such is a universal programmable computer. The device operates on three-dimensional building blocks by applying mechanical analogues of polymer elongation, cleavage and ligation, movement along a polymer, and control by molecular recognition unleashing allosteric conformational changes. Logically, the device is not more complicated than biomolecular machines of the living cell, and a...

  3. Bridging Nano- and Microtribology in Mechanical and Biomolecular Layers

    Science.gov (United States)

    Tomala, Agnieszka; Göçerler, Hakan; Gebeshuber, Ille C.

    The physical and chemical composition of surfaces determine various important properties of solids such as corrosion rates, adhesive properties, frictional properties, catalytic activity, wettability, contact potential and - finally and most importantly - failure mechanisms. Very thin, weak layers (of man-made and biological origin) on much harder substrates that reduce friction are the focus of the micro- and nanotribological investigations presented in this chapter.Biomolecular layers fulfil various functions in organs of the human body. Examples comprise the skin that provides a protective physical barrier between the body and the environment, preventing unwanted inward and outward passage of water and electrolytes, reducing penetration by destructive chemicals, arresting the penetration of microorganisms and external antigens and absorbing radiation from the sun, or the epithelium of the cornea that blocks the passage of foreign material, such as dust, water and bacteria, into the eye and that contributes to the lubrication layer that ensures smooth movement of the eyelids over the eyeballs.Monomolecular thin films, additive-derived reaction layers and hard coatings are widely used to tailor tribological properties of surfaces. Nanotribological investigations on these substrates can reveal novel properties regarding the orientation of chemisorbed additive layers, development of rubbing films with time and the relation of frictional properties to surface characteristics in diamond coatings.Depending on the questions to be answered with the tribological research, various micro- and nanotribological measurement methods are applied, including scanning probe microscopy (AFM, FFM), scanning electron microscopy, microtribometer investigations, angle-resolved photoelectron spectroscopy and optical microscopy. Thoughts on the feasibility of a unified approach to energy-dissipating systems and how it might be reached (touching upon new ways of scientific publishing

  4. Biomolecular Modeling in a Process Dynamics and Control Course

    Science.gov (United States)

    Gray, Jeffrey J.

    2006-01-01

    I present modifications to the traditional course entitled, "Process dynamics and control," which I renamed "Modeling, dynamics, and control of chemical and biological processes." Additions include the central dogma of biology, pharmacokinetic systems, population balances, control of gene transcription, and large­-scale…

  5. Surface-plasmon-enhanced fluorescence from periodic quantum dot arrays through distance control using biomolecular linkers

    International Nuclear Information System (INIS)

    We have developed a protein-enabled strategy to fabricate quantum dot (QD) nanoarrays where up to a 15-fold increase in surface-plasmon-enhanced fluorescence has been achieved. This approach permits a comprehensive control both laterally (via lithographically defined gold nanoarrays) and vertically (via the QD-metal distance) of the collectively behaving assemblies of QDs and gold nanoarrays by way of biomolecular recognition. Specifically, we demonstrated the spectral tuning of plasmon resonant metal nanoarrays and self-assembly of protein-functionalized QDs in a stepwise fashion with a concomitant incremental increase in separation from the metal surface through biotin-streptavidin spacer units.

  6. Computational methods to study the structure and dynamics of biomolecules and biomolecular processes from bioinformatics to molecular quantum mechanics

    CERN Document Server

    2014-01-01

    Since the second half of the 20th century machine computations have played a critical role in science and engineering. Computer-based techniques have become especially important in molecular biology, since they often represent the only viable way to gain insights into the behavior of a biological system as a whole. The complexity of biological systems, which usually needs to be analyzed on different time- and size-scales and with different levels of accuracy, requires the application of different approaches, ranging from comparative analysis of sequences and structural databases, to the analysis of networks of interdependence between cell components and processes, through coarse-grained modeling to atomically detailed simulations, and finally to molecular quantum mechanics. This book provides a comprehensive overview of modern computer-based techniques for computing the structure, properties and dynamics of biomolecules and biomolecular processes. The twenty-two chapters, written by scientists from all over t...

  7. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J. [eds.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database.

  8. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    International Nuclear Information System (INIS)

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database

  9. A micromachined membrane-based active probe for biomolecular mechanics measurement

    Energy Technology Data Exchange (ETDEWEB)

    Torun, H [GWW School of Mechanical Engineering, Georgia Institute of Technology (United States); Sutanto, J [GWW School of Mechanical Engineering, Georgia Institute of Technology (United States); Sarangapani, K K [GWW School of Mechanical Engineering, Georgia Institute of Technology (United States); Joseph, P [Microelectronic Research Center, Georgia Institute of Technology (United States); Degertekin, F L [GWW School of Mechanical Engineering, Georgia Institute of Technology (United States); Zhu, C [GWW School of Mechanical Engineering, Georgia Institute of Technology (United States)

    2007-04-25

    A novel micromachined, membrane-based probe has been developed and fabricated as assays to enable parallel measurements. Each probe in the array can be individually actuated, and the membrane displacement can be measured with high resolution using an integrated diffraction-based optical interferometer. To illustrate its application in single-molecule mechanics experiments, this membrane probe was used to measure unbinding forces between L-selectin reconstituted in a polymer-cushioned lipid bilayer on the probe membrane and an antibody adsorbed on an atomic force microscope cantilever. Piconewton range forces between single pairs of interacting molecules were measured from the cantilever bending while using the membrane probe as an actuator. The integrated diffraction-based optical interferometer of the probe was demonstrated to have <10 fm Hz{sup -1/2} noise floor for frequencies as low as 3 Hz with a differential readout scheme. With soft probe membranes, this low noise level would be suitable for direct force measurements without the need for a cantilever. Furthermore, the probe membranes were shown to have 0.5 {mu}m actuation range with a flat response up to 100 kHz, enabling measurements at fast speeds.

  10. Quantum mechanical calculation of aqueuous uranium complexes: carbonate, phosphate, organic and biomolecular species

    Directory of Open Access Journals (Sweden)

    Jha Prashant

    2009-08-01

    Full Text Available Abstract Background Quantum mechanical calculations were performed on a variety of uranium species representing U(VI, U(V, U(IV, U-carbonates, U-phosphates, U-oxalates, U-catecholates, U-phosphodiesters, U-phosphorylated N-acetyl-glucosamine (NAG, and U-2-Keto-3-doxyoctanoate (KDO with explicit solvation by H2O molecules. These models represent major U species in natural waters and complexes on bacterial surfaces. The model results are compared to observed EXAFS, IR, Raman and NMR spectra. Results Agreement between experiment and theory is acceptable in most cases, and the reasons for discrepancies are discussed. Calculated Gibbs free energies are used to constrain which configurations are most likely to be stable under circumneutral pH conditions. Reduction of U(VI to U(IV is examined for the U-carbonate and U-catechol complexes. Conclusion Results on the potential energy differences between U(V- and U(IV-carbonate complexes suggest that the cause of slower disproportionation in this system is electrostatic repulsion between UO2 [CO3]35- ions that must approach one another to form U(VI and U(IV rather than a change in thermodynamic stability. Calculations on U-catechol species are consistent with the observation that UO22+ can oxidize catechol and form quinone-like species. In addition, outer-sphere complexation is predicted to be the most stable for U-catechol interactions based on calculated energies and comparison to 13C NMR spectra. Outer-sphere complexes (i.e., ion pairs bridged by water molecules are predicted to be comparable in Gibbs free energy to inner-sphere complexes for a model carboxylic acid. Complexation of uranyl to phosphorus-containing groups in extracellular polymeric substances is predicted to favor phosphonate groups, such as that found in phosphorylated NAG, rather than phosphodiesters, such as those in nucleic acids.

  11. [Advances in biomolecular machine: methane monooxygenases].

    Science.gov (United States)

    Lu, Jixue; Wang, Shizhen; Fang, Baishan

    2015-07-01

    Methane monooxygenases (MMO), regarded as "an amazing biomolecular machine", catalyze the oxidation of methane to methanol under aerobic conditions. MMO catalyze the oxidation of methane elaborately, which is a novel way to catalyze methane to methanol. Furthermore, MMO can inspire the biomolecular machine design. In this review, we introduced MMO including structure, gene and catalytic mechanism. The history and the taxonomy of MMO were also introduced. PMID:26647577

  12. HYDRAULIC SERVO CONTROL MECHANISM

    Science.gov (United States)

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  13. Biomolecular Science (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    A brief fact sheet about NREL Photobiology and Biomolecular Science. The research goal of NREL's Biomolecular Science is to enable cost-competitive advanced lignocellulosic biofuels production by understanding the science critical for overcoming biomass recalcitrance and developing new product and product intermediate pathways. NREL's Photobiology focuses on understanding the capture of solar energy in photosynthetic systems and its use in converting carbon dioxide and water directly into hydrogen and advanced biofuels.

  14. Report on result 1998. Research and development on fusion area. Part 3 (biomolecular mechanism and design); 1998 nendo seika hokokusho. Yugo ryoiki kenkyu kaihatsu daisan bunsatsu (bimolecular mechanism and design)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    An organism is a molecular mechanical system consisting of nucleic acid, peptide and protein having a self-forming and a self-repairing function. For the purpose of creating cells, tissues and molecular mechanism alternating these biological functions, their basic technology was developed. Concretely, studies were made on three-dimensional cellular structural module engineering and biomolecular mechanism and design. Studies on biological soft tissue resulted in success by giving atmospheric glow discharge treatment to the inner surface of a tubular PVC. An artificial vitreous body was created using PVA hydrogels. In addition, liver cells were successfully cultured for the first time in the world. Studies on biological hard tissue revealed that osteopontin plays a role of a trigger for the initial differentiation of the osteoblast cell. Further, a basic experiment was carried out on the initial response of the cartilage cell. In the research on the molecular mechanism, examination was made on the mechanism of a double-head molecular motor. Examination was also made on the adjustment of the hydrogenase LB film as an electricity/hydrogen energy conversion element and on the biomolecular mechanism and design. (NEDO)

  15. Nonholonomic mechanics and control

    CERN Document Server

    Murray, RM

    2015-01-01

    This book explores some of the connections between control theory and geometric mechanics; that is, control theory is linked with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations and in particular with the theory of mechanical systems subject to motion constraints. The synthesis of the topic is appropriate as there is a particularly rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems and illustrates the elegant mathematics behind many simple, interesting, and useful mechanical examples. It is intended for graduate students who wish to learn this subject and researchers in the area who want to enhance their techniques. The book contains sections focusing on physical examples and elementary terms, as well as theoretical sections that use sophisticated analysis and geometry. The first four chapters offer preliminaries and background information, while the...

  16. Programming in Biomolecular Computation:

    DEFF Research Database (Denmark)

    Hartmann, Lars; Jones, Neil; Simonsen, Jakob Grue;

    2011-01-01

    Our goal is to provide a top-down approach to biomolecular computation. In spite of widespread discussion about connections between biology and computation, one question seems notable by its absence: Where are the programs? We identify a number of common features in programming that seem...... conspicuously absent from the literature on biomolecular computing; to partially redress this absence, we introduce a model of computation that is evidently programmable, by programs reminiscent of low-level computer machine code; and at the same time biologically plausible: its functioning is defined...... by a single and relatively small set of chemical-like reaction rules. Further properties: the model is stored-program: programs are the same as data, so programs are not only executable, but are also compilable and interpretable. It is universal: all computable functions can be computed (in natural ways...

  17. Mechanisms in environmental control

    International Nuclear Information System (INIS)

    The theory of implementation provides methods for decentralization of decisions in societies. By using mechanisms (game forms) it is possible (in theory) to implement attractive states in different economic environments. As an example the market mechanisms can implement Pareto-efficient and individual rational allocations in an Arrow-Debreu economic environment without market failures. And even when there exists externalities the market mechanism sometime can be used if it is possible to make a market for the goods not allocated on a market already - examples are marketable emission permits, and deposit refund systems. But environmental problems can often be explained by the existence of other market failures (e.g. asymmetric information), and then the market mechanism do not work properly. And instead of using regulation or traditional economic instruments (subsidies, charges, fees, liability insurance, marketable emission permits, or deposit refund systems) to correct the problems caused by market failures, some other methods can be used to deal with these problems. This paper contains a survey of mechanisms that can be used in environmental control when the problems are caused by the existence of public goods, externalities, asymmetric information, and indivisible goods in the economy. By examples it will be demonstrated how the Clarke-Groves mechanism, the Cournot-Lindahl mechanism, and other mechanisms can be used to solve specific environmental problems. This is only theory and examples, but a recent field study have used the Cournot-Lindahl mechanism to solve the problem of lake liming in Sweden. So this subject may be of some interests for environmental policy in the future. (au) 23 refs

  18. Control rod drive mechanisms

    International Nuclear Information System (INIS)

    Purpose: To accurately measure the loads generated upon scram and judge the absence or presence of deceleration in control rod drive mechanisms. Constitution: Control rod drive mechanisms for use in a BWR type reactor includes an index tube vertically movably, connected at the upper end to the control rod and having a drive piston at the lower end. A piezoelectric member for detecting the load generated upon uprise of the index tube is disposed and signals from the piezoelectric member is connected to a calculation processing device. A load exerted when the index tube uprises is measured by way of the piezoelectric member upon scram thereby judging the absence or presence of the decelerating operation. Therefore, the nuclear reactor can be shutdown only when it is required with no excess safety operation than required. As a result, the reactor availability can be improved and, in addition, it is also possible to mitigate the burden of in-service inspection and reduce the operators' exposure. (Kamimura, M.)

  19. Membrane-based biomolecular smart materials

    International Nuclear Information System (INIS)

    Membrane-based biomolecular materials are a new class of smart material that feature networks of artificial lipid bilayers contained within durable synthetic substrates. Bilayers contained within this modular material platform provide an environment that can be tailored to host an enormous diversity of functional biomolecules, where the functionality of the global material system depends on the type(s) and organization(s) of the biomolecules that are chosen. In this paper, we review a series of biomolecular material platforms developed recently within the Leo Group at Virginia Tech and we discuss several novel coupling mechanisms provided by these hybrid material systems. The platforms developed demonstrate that the functions of biomolecules and the properties of synthetic materials can be combined to operate in concert, and the examples provided demonstrate how the formation and properties of a lipid bilayer can respond to a variety of stimuli including mechanical forces and electric fields

  20. Biomolecular EPR spectroscopy

    CERN Document Server

    Hagen, Wilfred Raymond

    2008-01-01

    Comprehensive, Up-to-Date Coverage of Spectroscopy Theory and its Applications to Biological SystemsAlthough a multitude of books have been published about spectroscopy, most of them only occasionally refer to biological systems and the specific problems of biomolecular EPR (bioEPR). Biomolecular EPR Spectroscopy provides a practical introduction to bioEPR and demonstrates how this remarkable tool allows researchers to delve into the structural, functional, and analytical analysis of paramagnetic molecules found in the biochemistry of all species on the planet. A Must-Have Reference in an Intrinsically Multidisciplinary FieldThis authoritative reference seamlessly covers all important bioEPR applications, including low-spin and high-spin metalloproteins, spin traps and spin lables, interaction between active sites, and redox systems. It is loaded with practical tricks as well as do's and don'ts that are based on the author's 30 years of experience in the field. The book also comes with an unprecedented set of...

  1. Programming in Biomolecular Computation

    DEFF Research Database (Denmark)

    Hartmann, Lars; Jones, Neil; Simonsen, Jakob Grue

    2010-01-01

    Our goal is to provide a top-down approach to biomolecular computation. In spite of widespread discussion about connections between biology and computation, one question seems notable by its absence: Where are the programs? We introduce a model of computation that is evidently programmable......, by programs reminiscent of low-level computer machine code; and at the same time biologically plausible: its functioning is defined by a single and relatively small set of chemical-like reaction rules. Further properties: the model is stored-program: programs are the same as data, so programs are not only...... in a strong sense: a universal algorithm exists, that is able to execute any program, and is not asymptotically inefficient. A prototype model has been implemented (for now in silico on a conventional computer). This work opens new perspectives on just how computation may be specified at the biological level....

  2. Genetically designed biomolecular capping system for mesoporous silica nanoparticles enables receptor-mediated cell uptake and controlled drug release

    Czech Academy of Sciences Publication Activity Database

    Datz, S.; Argyo, C.; Gattner, M.; Weiss, V.; Brunner, K.; Bretzler, J.; von Schirnding, C.; Torrano, A. A.; Spada, F.; Vrábel, Milan; Engelke, H.; Bräuchle, C.; Carell, T.; Bein, T.

    2016-01-01

    Roč. 8, č. 15 (2016), s. 8101-8110. ISSN 2040-3364 Institutional support: RVO:61388963 Keywords : responsive controlled release * Diels-Alder reactions * human carbonic anhydrase Subject RIV: CC - Organic Chemistry Impact factor: 7.394, year: 2014

  3. Genetically designed biomolecular capping system for mesoporous silica nanoparticles enables receptor-mediated cell uptake and controlled drug release

    CERN Document Server

    Datz, Stefan; Gattner, Michael; Weiss, Veronika; Brunner, Korbinian; Bretzler, Johanna; von Schirnding, Constantin; Spada, Fabio; Engelke, Hanna; Vrabel, Milan; Bräuchle, Christoph; Carell, Thomas; Bein, Thomas

    2015-01-01

    Effective and controlled drug delivery systems with on-demand release and targeting abilities have received enormous attention for biomedical applications. Here, we describe a novel enzyme-based cap system for mesoporous silica nanoparticles (MSNs) that is directly combined with a targeting ligand via bio-orthogonal click chemistry. The capping system is based on the pH-responsive binding of an aryl-sulfonamide-functionalized MSN and the enzyme carbonic anhydrase (CA). An unnatural amino acid (UAA) containing a norbornene moiety was genetically incorporated into CA. This UAA allowed for the site-specific bio-orthogonal attachment of even very sensitive targeting ligands such as folic acid and anandamide. This leads to specific receptor-mediated cell and stem cell uptake. We demonstrate the successful delivery and release of the chemotherapeutic agent Actinomycin D to KB cells. This novel nanocarrier concept provides a promising platform for the development of precisely controllable and highly modular theranos...

  4. Genetically designed biomolecular capping system for mesoporous silica nanoparticles enables receptor-mediated cell uptake and controlled drug release

    Science.gov (United States)

    Datz, Stefan; Argyo, Christian; Gattner, Michael; Weiss, Veronika; Brunner, Korbinian; Bretzler, Johanna; von Schirnding, Constantin; Torrano, Adriano A.; Spada, Fabio; Vrabel, Milan; Engelke, Hanna; Bräuchle, Christoph; Carell, Thomas; Bein, Thomas

    2016-04-01

    Effective and controlled drug delivery systems with on-demand release and targeting abilities have received enormous attention for biomedical applications. Here, we describe a novel enzyme-based cap system for mesoporous silica nanoparticles (MSNs) that is directly combined with a targeting ligand via bio-orthogonal click chemistry. The capping system is based on the pH-responsive binding of an aryl-sulfonamide-functionalized MSN and the enzyme carbonic anhydrase (CA). An unnatural amino acid (UAA) containing a norbornene moiety was genetically incorporated into CA. This UAA allowed for the site-specific bio-orthogonal attachment of even very sensitive targeting ligands such as folic acid and anandamide. This leads to specific receptor-mediated cell and stem cell uptake. We demonstrate the successful delivery and release of the chemotherapeutic agent Actinomycin D to KB cells. This novel nanocarrier concept provides a promising platform for the development of precisely controllable and highly modular theranostic systems.Effective and controlled drug delivery systems with on-demand release and targeting abilities have received enormous attention for biomedical applications. Here, we describe a novel enzyme-based cap system for mesoporous silica nanoparticles (MSNs) that is directly combined with a targeting ligand via bio-orthogonal click chemistry. The capping system is based on the pH-responsive binding of an aryl-sulfonamide-functionalized MSN and the enzyme carbonic anhydrase (CA). An unnatural amino acid (UAA) containing a norbornene moiety was genetically incorporated into CA. This UAA allowed for the site-specific bio-orthogonal attachment of even very sensitive targeting ligands such as folic acid and anandamide. This leads to specific receptor-mediated cell and stem cell uptake. We demonstrate the successful delivery and release of the chemotherapeutic agent Actinomycin D to KB cells. This novel nanocarrier concept provides a promising platform for the

  5. Fluidic switching in nanochannels for the control of Inchworm: a synthetic biomolecular motor with a power stroke

    Science.gov (United States)

    Niman, Cassandra S.; Zuckermann, Martin J.; Balaz, Martina; Tegenfeldt, Jonas O.; Curmi, Paul M. G.; Forde, Nancy R.; Linke, Heiner

    2014-11-01

    Synthetic molecular motors typically take nanometer-scale steps through rectification of thermal motion. Here we propose Inchworm, a DNA-based motor that employs a pronounced power stroke to take micrometer-scale steps on a time scale of seconds, and we design, fabricate, and analyze the nanofluidic device needed to operate the motor. Inchworm is a kbp-long, double-stranded DNA confined inside a nanochannel in a stretched configuration. Motor stepping is achieved through externally controlled changes in salt concentration (changing the DNA's extension), coordinated with ligand-gated binding of the DNA's ends to the functionalized nanochannel surface. Brownian dynamics simulations predict that Inchworm's stall force is determined by its entropic spring constant and is ~0.1 pN. Operation of the motor requires periodic cycling of four different buffers surrounding the DNA inside a nanochannel, while keeping constant the hydrodynamic load force on the DNA. We present a two-layer fluidic device incorporating 100 nm-radius nanochannels that are connected through a few-nm-wide slit to a microfluidic system used for in situ buffer exchanges, either diffusionally (zero flow) or with controlled hydrodynamic flow. Combining experiment with finite-element modeling, we demonstrate the device's key performance features and experimentally establish achievable Inchworm stepping times of the order of seconds or faster.Synthetic molecular motors typically take nanometer-scale steps through rectification of thermal motion. Here we propose Inchworm, a DNA-based motor that employs a pronounced power stroke to take micrometer-scale steps on a time scale of seconds, and we design, fabricate, and analyze the nanofluidic device needed to operate the motor. Inchworm is a kbp-long, double-stranded DNA confined inside a nanochannel in a stretched configuration. Motor stepping is achieved through externally controlled changes in salt concentration (changing the DNA's extension), coordinated

  6. Biomolecular characterization, identification, enzyme activities of molds and physiological changes in sweet potatoes (Ipomea batatas) stored under controlled atmospheric conditions

    Science.gov (United States)

    Oladoye, C. O.; Connerton, I. F.; Kayode, R. M. O.; Omojasola, P. F.; Kayode, I. B.

    2016-01-01

    Microbial attacks during storage are one of the primary causes of product deterioration, and can limit the process of prolonging the shelf-life of harvested food. In this study, sweet potatoes were stored at temperatures of 13, 21, and 29 °C for 4 weeks. Samples were collected during storage and plated on potato dextrose agar, from which axenic mold cultures were obtained and identified using 26S rRNA gene sequences. Physiological changes of potato tubers were assessed with respect to pathogenicity, enzyme activity, and atmospheric storage conditions. Six fungal species were identified, namely Penicillium chrysogenum (P. rubens), P. brevicompactum, Mucor circinelloides, Cladosporium cladosporiodes, P. expansum, and P. crustosum. The following fungal isolates, namely P. expansum, P. brevicompactum, and Rhizopus oryzae, were recovered from the re-infected samples and selected according to their levels of enzyme activity. This study revealed high levels of activity for cellulase and pectinase, which were most notable during the initial three days of testing, and were followed by a steady decrease (Pcompared with samples treated with iprodione and sodium hypochlorite, in which the decay rates were 5% and 55%, respectively. The data for the iprodione- and sodium hypochlorite-treated samples at the end of the 3-month storage period showed that they were significantly different (P=0.041), with the sodium hypochlorite-treated samples producing twice the rate of infection compared to the iprodione-treated samples. The comparative rate of the progression of decay in the treated samples can be expressed as iprodionecontrol. This study demonstrates that sweet potato tissue damage is due to the activities of microbial enzymes and, in particular, the pectinases of the organisms isolated from the infected potato tissues, and suggests the advantages of utilizing iprodione as a curing agent for potato tubers before storage.

  7. Biomolecular Modification of Inorganic Crystal Growth

    Energy Technology Data Exchange (ETDEWEB)

    De Yoreo, J J

    2007-04-27

    The fascinating shapes and hierarchical designs of biomineralized structures are an inspiration to materials scientists because of the potential they suggest for biomolecular control over materials synthesis. Conversely, the failure to prevent or limit tissue mineralization in the vascular, skeletal, and urinary systems is a common source of disease. Understanding the mechanisms by which organisms direct or limit crystallization has long been a central challenge to the biomineralization community. One prevailing view is that mineral-associated macromolecules are responsible for either inhibiting crystallization or initiating and stabilizing non-equilibrium crystal polymorphs and morphologies through interactions between anionic moieties and cations in solution or at mineralizing surfaces. In particular, biomolecules that present carboxyl groups to the growing crystal have been implicated as primary modulators of growth. Here we review the results from a combination of in situ atomic force microscopy (AFM) and molecular modeling (MM) studies to investigate the effect of specific interactions between carboxylate-rich biomolecules and atomic steps on crystal surfaces during the growth of carbonates, oxalates and phosphates of calcium. Specifically, we how the growth kinetics and morphology depend on the concentration of additives that include citrate, simple amino acids, synthetic Asp-rich polypeptides, and naturally occurring Asp-rich proteins found in both functional and pathological mineral tissues. The results reveal a consistent picture of shape modification in which stereochemical matching of modifiers to specific atomic steps drives shape modification. Inhibition and other changes in growth kinetics are shown to be due to a range of mechanisms that depend on chemistry and molecular size. Some effects are well described by classic crystal growth theories, but others, such as step acceleration due to peptide charge and hydrophylicity, were previously unrealized

  8. Analyzing biomolecular interactions by variable angle ellipsometry

    Science.gov (United States)

    Wu, Jiun-Yan; Lee, Chih-Kung; Lee, J. H.; Shiue, Shuen-Chen; Lee, Shu-Sheng; Lin, Shiming

    2001-10-01

    In this paper, an innovative ellipsometer is developed and applied to metrology of the biomolecular interaction on a protein biochip. Both the theory, optical and opto-mechanical configurations of this newly developed ellipsometer and methodologies adopted in system design to improve the system performance are presented. It will be shown that by measuring the ellipsometric parameters, the corresponding concentration variation in biochemical reaction can be calculated according to stoichiometry analysis. By applying the variable angle ellipsometry to analysis of a multi-layered sample, the thickness and concentration are resolved. It is believed that the newly developed ellipsometer biosensor is able to undertake an accurate measurement on biomedical interaction.

  9. Control Processes and Defense Mechanisms

    OpenAIRE

    HOROWITZ, MARDI; Cooper, Steven; FRIDHANDLER, BRAM; Perry, J. Christopher; Bond, Michael; VAILLANT, GEORGE

    1992-01-01

    Defense-mechanism theory and control-process theory are related psychodynamic approaches to explaining and classifying how people ward off emotional upsets. Although both theories explain defensive maneuvers in the same motivational terms, each defines categories different1y. Classic categories define defense mechanisms at a relatively macroscopic level, whereas control-process theory aims at relatively microgenetic analysis of how cognitive maneuvers—involving what is th...

  10. Optimal Control of Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Vadim Azhmyakov

    2007-01-01

    Full Text Available In the present work, we consider a class of nonlinear optimal control problems, which can be called “optimal control problems in mechanics.” We deal with control systems whose dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using the variational structure of the solution of the corresponding boundary-value problems, we reduce the initial optimal control problem to an auxiliary problem of multiobjective programming. This technique makes it possible to apply some consistent numerical approximations of a multiobjective optimization problem to the initial optimal control problem. For solving the auxiliary problem, we propose an implementable numerical algorithm.

  11. Coassembly of aromatic dipeptides into biomolecular necklaces.

    Science.gov (United States)

    Yuran, Sivan; Razvag, Yair; Reches, Meital

    2012-11-27

    This paper describes the formation of complex peptide-based structures by the coassembly of two simple peptides, the diphenylalanine peptide and its tert-butyl dicarbonate (Boc) protected analogue. Each of these peptides can self-assemble into a distinct architecture: the diphenylalanine peptide into tubular structures and its analogue into spheres. Integrated together, these peptides coassemble into a construction of beaded strings, where spherical assemblies are connected by elongated elements. Electron and scanning force microscopy demonstrated the morphology of these structures, which we termed "biomolecular necklaces". Additional experiments indicated the reversibility of the coassembly process and the stability of the structures. Furthermore, we suggest a possible mechanism of formation for the biomolecular necklaces. Our suggestion is based on the necklace model for polyelectrolyte chains, which proposes that a necklace structure appears as a result of counterion condensation on the backbone of a polyelectrolyte. Overall, the approach of coassembly, demonstrated using aromatic peptides, can be adapted to any peptides and may lead to the development and discovery of new self-assembled architectures formed by peptides and other biomolecules. PMID:23061818

  12. Biomolecular crystals for material applications and a mechanistic study of an iron oxide nanoparticle synthesis

    Science.gov (United States)

    Falkner, Joshua Charles

    The three projects within this work address the difficulties of controlling biomolecular crystal formats (i.e. size and shape), producing 3-D ordered composite materials from biomolecular crystal templates, and understanding the mechanism of a practical iron oxide synthesis. The unifying thread consistent throughout these three topics is the development of methods to manipulate nanomaterials using a bottom-up approach. Biomolecular crystals are nanometer to millimeter sized crystals that have well ordered mesoporous solvent channels. The overall physical dimensions of these crystals are highly dependent on crystallization conditions. The controlled growth of micro- and nanoprotein crystals was studied to provide new pathways for creating smaller crystalline protein materials. This method produced tetragonal hen egg-white lysozyme crystals (250--100,000 nm) with near monodisperse size distributions (membranes or templates. In this work, the porous structure of larger cowpea mosaic virus crystals was used to template metal nanoparticle growth within the body centered cubic crystalline network. The final composite material was found to have long range ordering of palladium and platinum nonocrystal aggregates (10nm) with symmetry consistent to the virus template. Nanoparticle synthesis itself is an immense field of study with an array of diverse applications. The final piece of this work investigates the mechanism behind a previously developed iron oxide synthesis to gain more understanding and direction to future synthesis strategies. The particle growth mechanism was found to proceed by the formation of a solvated iron(III)oleate complex followed by a reduction of iron (III) to iron (II). This unstable iron(II) nucleates to form a wustite (FeO) core which serves as an epitaxial surface for the magnetite (Fe3O4) shell growth. This method produces spherical particles (6-60nm) with relative size distributions of less than 15%.

  13. Storing and analysing biomolecular contacts

    OpenAIRE

    Walter, Peter

    2011-01-01

    Biomolecular contacts play a crucial role in all areas of life. In particular, protein-protein (PP) interactions are essential for most processes in biological cells. Antigen-antibody recognition, enzyme substrate binding, hormone receptor binding, RNA splicing, DNA replication and signal transduction are just some examples for the rich variety of PP interactions. In the last years modern proteomic methods have helped to get a better understanding of the complexity within living cell and orga...

  14. Models for solvated biomolecular structures

    OpenAIRE

    Cerutti, David

    2007-01-01

    Methods for estimating the structure and energetics of water around biomolecules are presented with the objective of improving the treatment of the biomolecular simulation environment as well as facilitating the use of complex, rigorous water models in the context of structure prediction problems that demand cheap solutions. Salt solutions around biomolecules are studied using an implicit solvent model with explicitly represented ions, revealing that the structure of the ion atmosphere is muc...

  15. Cellular mechanisms that control mistranslation

    DEFF Research Database (Denmark)

    Reynolds, Noah M; Lazazzera, Beth A; Ibba, Michael

    2010-01-01

    Mistranslation broadly encompasses the introduction of errors during any step of protein synthesis, leading to the incorporation of an amino acid that is different from the one encoded by the gene. Recent research has vastly enhanced our understanding of the mechanisms that control mistranslation...

  16. A self-regulating biomolecular comparator for processing oscillatory signals.

    Science.gov (United States)

    Agrawal, Deepak K; Franco, Elisa; Schulman, Rebecca

    2015-10-01

    While many cellular processes are driven by biomolecular oscillators, precise control of a downstream on/off process by a biochemical oscillator signal can be difficult: over an oscillator's period, its output signal varies continuously between its amplitude limits and spends a significant fraction of the time at intermediate values between these limits. Further, the oscillator's output is often noisy, with particularly large variations in the amplitude. In electronic systems, an oscillating signal is generally processed by a downstream device such as a comparator that converts a potentially noisy oscillatory input into a square wave output that is predominantly in one of two well-defined on and off states. The comparator's output then controls downstream processes. We describe a method for constructing a synthetic biochemical device that likewise produces a square-wave-type biomolecular output for a variety of oscillatory inputs. The method relies on a separation of time scales between the slow rate of production of an oscillatory signal molecule and the fast rates of intermolecular binding and conformational changes. We show how to control the characteristics of the output by varying the concentrations of the species and the reaction rates. We then use this control to show how our approach could be applied to process different in vitro and in vivo biomolecular oscillators, including the p53-Mdm2 transcriptional oscillator and two types of in vitro transcriptional oscillators. These results demonstrate how modular biomolecular circuits could, in principle, be combined to build complex dynamical systems. The simplicity of our approach also suggests that natural molecular circuits may process some biomolecular oscillator outputs before they are applied downstream. PMID:26378119

  17. Burn Control Mechanisms in Tokamaks

    Science.gov (United States)

    Hill, Maxwell; Stacey, Weston

    2013-10-01

    Burn control and passive safety in accident scenarios will be an important design consideration in future tokamaks, especially those used as a neutron source for fusion-fission hybrid reactors, such as the Subcritical Advanced Burner Reactor (SABR) concept. At Georgia Tech, we are developing a new burning plasma dynamics code to investigate passive safety mechanisms that could prevent power excursions in tokamak reactors. This code solves the coupled set of balance equations governing burning plasmas in conjunction with a two-point SOL-divertor model. Predictions have been benchmarked against data from DIII-D. We are examining several potential negative feedback mechanisms to limit power excursions: i) ion-orbit loss, ii) thermal instabilities, iii) the degradation of alpha-particle confinement resulting from ripples in the toroidal field, iv) modifications to the radial current profile, v) ``divertor choking'' and vi) Type 1 ELMs.

  18. Control mechanisms for ecological-economic systems

    CERN Document Server

    Burkov, Vladimir N; Shchepkin, Alexander V

    2015-01-01

    This monograph presents and analyzes the optimization, game-theoretic and simulation models of control mechanisms for ecological-economic systems. It is devoted to integrated assessment mechanisms for total risks and losses, penalty mechanisms, risk payment mechanisms, financing and costs compensation mechanisms for risk level reduction, sales mechanisms for risk level quotas, audit mechanisms, mechanisms for expected losses reduction, economic motivation mechanisms, optimization mechanisms for regional environmental (risk level reduction) programs, and mechanisms for authorities' interests coordination. The book is aiming at undergraduate and postgraduate students, as well as at experts in mathematical modeling and control of ecological economic, socioeconomic and organizational systems.

  19. Physics at the biomolecular interface fundamentals for molecular targeted therapy

    CERN Document Server

    Fernández, Ariel

    2016-01-01

    This book focuses primarily on the role of interfacial forces in understanding biological phenomena at the molecular scale. By providing a suitable statistical mechanical apparatus to handle the biomolecular interface, the book becomes uniquely positioned to address core problems in molecular biophysics. It highlights the importance of interfacial tension in delineating a solution to the protein folding problem, in unravelling the physico-chemical basis of enzyme catalysis and protein associations, and in rationally designing molecular targeted therapies. Thus grounded in fundamental science, the book develops a powerful technological platform for drug discovery, while it is set to inspire scientists at any level in their careers determined to address the major challenges in molecular biophysics. The acknowledgment of how exquisitely the structure and dynamics of proteins and their aqueous environment are related attests to the overdue recognition that biomolecular phenomena cannot be effectively understood w...

  20. Integrative NMR for biomolecular research.

    Science.gov (United States)

    Lee, Woonghee; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R; Tonelli, Marco; Westler, William M; Butcher, Samuel E; Henzler-Wildman, Katherine A; Markley, John L

    2016-04-01

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html ). PMID:27023095

  1. Duplication and Divergence Effect on Network Motifs in Undirected Bio-Molecular Networks.

    Science.gov (United States)

    Pei Wang; Jinhu Lu; Xinghuo Yu; Zengrong Liu

    2015-06-01

    Duplication and divergence are two basic evolutionary mechanisms of bio-molecular networks. Real-world bio-molecular networks and their statistical characteristics can be well mimicked by artificial algorithms based on the two mechanisms. Bio-molecular networks consist of network motifs, which act as building blocks of large-scale networks. A fundamental question is how network motifs are evolved from long time evolution and natural selection. By considering the effect of various duplication and divergence strategies, we find that the underlying duplication scheme of the real-world undirected bio-molecular networks would rather follow the anti-preference strategy than the random one. The anti-preference duplication mechanism and the dimerization processes can lead to the formation of various motifs, and robustly conserve proper quantities of motifs in the artificial networks as that in the real-world ones. Furthermore, the anti-preference mechanism and edge deletion divergence can robustly preserve the sparsity of the networks. The investigations reveal the possible evolutionary mechanisms of network motifs in real-world bio-molecular networks, and have potential implications in the design, synthesis and reengineering of biological networks for biomedical purpose. PMID:25203993

  2. A multiscale modeling approach for biomolecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Bowling, Alan, E-mail: bowling@uta.edu; Haghshenas-Jaryani, Mahdi, E-mail: mahdi.haghshenasjaryani@mavs.uta.edu [The University of Texas at Arlington, Department of Mechanical and Aerospace Engineering (United States)

    2015-04-15

    This paper presents a new multiscale molecular dynamic model for investigating the effects of external interactions, such as contact and impact, during stepping and docking of motor proteins and other biomolecular systems. The model retains the mass properties ensuring that the result satisfies Newton’s second law. This idea is presented using a simple particle model to facilitate discussion of the rigid body model; however, the particle model does provide insights into particle dynamics at the nanoscale. The resulting three-dimensional model predicts a significant decrease in the effect of the random forces associated with Brownian motion. This conclusion runs contrary to the widely accepted notion that the motor protein’s movements are primarily the result of thermal effects. This work focuses on the mechanical aspects of protein locomotion; the effect ATP hydrolysis is estimated as internal forces acting on the mechanical model. In addition, the proposed model can be numerically integrated in a reasonable amount of time. Herein, the differences between the motion predicted by the old and new modeling approaches are compared using a simplified model of myosin V.

  3. Control of a mechanical gripper with a fuzzy controller

    International Nuclear Information System (INIS)

    A fuzzy logic system is used to control a mechanical gripper. System is based in a NLX230 fuzzy micro controller. Control rules are programmed by a 68020 microprocessor in the micro controller memory. Stress and its derived are used as feedback signals in the control. This system can adapt its effort to the mechanical resistance of the object between the fingers. (Author)

  4. Group transfer theory of single molecule imaging experiments in the F-ATPase biomolecular motor

    Science.gov (United States)

    Volkan-Kacso, Sandor; Marcus, Rudolph

    I describe a chemo-mechanical theory to treat single molecule imaging and ``stalling'' experiments on the F-ATPase enzyme. This enzyme is an effective stepping biomolecular rotary motor with a rotor shaft and a stator ring. Using group transfer theoretical approach the proposed structure-based theory couples the binding transition of nucleotides in the stator subunits and the physics of torsional elasticity in the rotor. The twisting of the elastic rotor domain acts as a perturbation upon the driving potential, the Gibbs free energy. In the theory, without the use of adjustastable parameters, we predict the rate and equilibrium constant dependence of steps such as ATP binding and phosphate release as a function of manipulated rotor angle. Then we compare these predictions to available data from stalling experiments. Besides treating experiments, the theory can provide guides for atomistic simulations, which could calculate the reorganization parameter and the torsional spring constant. The framework is generic and I discuss its application to other single molecule experiments, such as controlled rotation and other biomolecular motors, including motor-DNA complexes and linear motors.[PNAS, Early Edition, Oct. 19, 2015, doi: 10.1073/pnas.1518489112

  5. Biomolecular surface construction by PDE transform.

    Science.gov (United States)

    Zheng, Qiong; Yang, Siyang; Wei, Guo-Wei

    2012-03-01

    This work proposes a new framework for the surface generation based on the partial differential equation (PDE) transform. The PDE transform has recently been introduced as a general approach for the mode decomposition of images, signals, and data. It relies on the use of arbitrarily high-order PDEs to achieve the time-frequency localization, control the spectral distribution, and regulate the spatial resolution. The present work provides a new variational derivation of high-order PDE transforms. The fast Fourier transform is utilized to accomplish the PDE transform so as to avoid stringent stability constraints in solving high-order PDEs. As a consequence, the time integration of high-order PDEs can be done efficiently with the fast Fourier transform. The present approach is validated with a variety of test examples in two-dimensional and three-dimensional settings. We explore the impact of the PDE transform parameters, such as the PDE order and propagation time, on the quality of resulting surfaces. Additionally, we utilize a set of 10 proteins to compare the computational efficiency of the present surface generation method and a standard approach in Cartesian meshes. Moreover, we analyze the present method by examining some benchmark indicators of biomolecular surface, that is, surface area, surface-enclosed volume, solvation free energy, and surface electrostatic potential. A test set of 13 protein molecules is used in the present investigation. The electrostatic analysis is carried out via the Poisson-Boltzmann equation model. To further demonstrate the utility of the present PDE transform-based surface method, we solve the Poisson-Nernst-Planck equations with a PDE transform surface of a protein. Second-order convergence is observed for the electrostatic potential and concentrations. Finally, to test the capability and efficiency of the present PDE transform-based surface generation method, we apply it to the construction of an excessively large biomolecule, a

  6. Integrated Spintronic Platforms for Biomolecular Recognition Detection

    Science.gov (United States)

    Martins, V. C.; Cardoso, F. A.; Loureiro, J.; Mercier, M.; Germano, J.; Cardoso, S.; Ferreira, R.; Fonseca, L. P.; Sousa, L.; Piedade, M. S.; Freitas, P. P.

    2008-06-01

    This paper covers recent developments in magnetoresistive based biochip platforms fabricated at INESC-MN, and their application to the detection and quantification of pathogenic waterborn microorganisms in water samples for human consumption. Such platforms are intended to give response to the increasing concern related to microbial contaminated water sources. The presented results concern the development of biological active DNA chips and protein chips and the demonstration of the detection capability of the present platforms. Two platforms are described, one including spintronic sensors only (spin-valve based or magnetic tunnel junction based), and the other, a fully scalable platform where each probe site consists of a MTJ in series with a thin film diode (TFD). Two microfluidic systems are described, for cell separation and concentration, and finally, the read out and control integrated electronics are described, allowing the realization of bioassays with a portable point of care unit. The present platforms already allow the detection of complementary biomolecular target recognition with 1 pM concentration.

  7. Biochemical Filter with Sigmoidal Response: Increasing the Complexity of Biomolecular Logic

    CERN Document Server

    Privman, Vladimir; Arugula, Mary A; Melnikov, Dmitriy; Bocharova, Vera; Katz, Evgeny

    2010-01-01

    The first realization of a designed, rather than natural, biochemical filter process is reported and analyzed as a promising network component for increasing the complexity of biomolecular logic systems. Key challenge in biochemical logic research has been achieving scalability for complex network designs. Various logic gates have been realized, but a "toolbox" of analog elements for interconnectivity and signal processing has remained elusive. Filters are important as network elements that allow control of noise in signal transmission and conversion. We report a versatile biochemical filtering mechanism designed to have sigmoidal response in combination with signal-conversion process. Horseradish peroxidase-catalyzed oxidation of chromogenic electron donor by hydrogen peroxide, was altered by adding ascorbate, allowing to selectively suppress the output signal, modifying the response from convex to sigmoidal. A kinetic model was developed for evaluation of the quality of filtering. The results offer improved...

  8. Measurement and control for mechanical compressive stress

    Science.gov (United States)

    Li, Qing; Ye, Guang; Pan, Lan; Wu, Xiushan

    2001-12-01

    At present, the indirect method is applied to measuring and controlling mechanical compressive stress, which is the measurement and control of rotating torque of screw with torque transducer during screw revolving. Because the friction coefficient between every screw-cap and washer, of screw-thread is different, the compressive stress of every screw may is different when the machinery is equipped. Therefore, the accurate measurement and control of mechanical compressive stress is realized by the direct measurement of mechanical compressive stress. The author introduces the research of contrast between compressive stress and rotating torque in the paper. The structure and work principle of a special washer type transducer is discussed emphatically. The special instrument cooperates with the washer type transducer for measuring and controlling mechanical compressive stress. The control tactics based on the rate of compressive stress is put to realize accurate control of mechanical compressive stress.

  9. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    B D Malhotra; Rahul Singhal

    2003-08-01

    Biomolecular electronics is rapidly evolving from physics, chemistry, biology, electronics and information technology. Organic materials such as proteins, pigments and conducting polymers have been considered as alternatives for carrying out the functions that are presently being performed by semiconductor silicon. Conducting polymers such as polypyrroles, polythiophenes and polyanilines have been projected for applications for a wide range of biomolecular electronic devices such as optical, electronic, drug-delivery, memory and biosensing devices. Our group has been actively working towards the application of conducting polymers to Schottky diodes, metal–insulator–semiconductor (MIS) devices and biosensors for the past 10 years. This paper is a review of some of the results obtained at our laboratory in the area of conducting polymer biomolecular electronics.

  10. Size control of nanopores formed on SiO2 glass by swift-heavy-ion irradiation and its application to highly sensitive biomolecular detection

    International Nuclear Information System (INIS)

    Swift-heavy-ion irradiation creates latent tracks in SiO2 glass and nanopores with a high aspect ratio can be formed along these ion paths by selective etching of the latent tracks using hydrogen fluoride (HF) vapor. Here we report that the size of nanopores can easily be controlled by simply changing the temperature of the HF solution generating the vapor and/or that of the SiO2 glass exposed to the vapor. Furthermore, this method of size control was used to produce SiO2 glass sheets with nanopores of different sizes and number densities for use as the waveguide layer in the sensing plates for a waveguide-mode sensor. In comparison with nonperforated plates, the increased surface area due to the formation of nanopores was found to create up to a tenfold increase in sensitivity.

  11. Dual acting slit control mechanism

    Science.gov (United States)

    Struthoff, G. L. (Inventor)

    1980-01-01

    A dual acting control system for mass spectrometers is described, which permits adjustment of the collimating slit width and centering of the collimating slit while using only one vacuum penetration. Coaxial shafts, each with independent vacuum bellows are used to independently move the entire collimating assembly or to adjust the slit dimension through a parallelogram linkage.

  12. Chiral interaction and biomolecular evolution

    International Nuclear Information System (INIS)

    Recent developments in the concept of chiral interaction open now new options and dynamical possibilities for biomolecules which have so far been overlooked. A few of these possibilities are mentioned, such as the control mechanism of enzymatic activity and the role played by non-ergodicity in evolutionary processes. It is shown that chiral interaction, being a surface phenomenon, does not obey Barron's symmetry constraints, which are suitable for force fields present in bulk interactions. In particular, the situation at the ocean-air surface in the prebiotic era is described, as well as the possible role played by chiral interaction in conjunction with the terrestrial magnetic field normal to the ocean surface, which could have lead to a process of deracernization at the ocean-air interface. (author)

  13. From Correlation to Causality: Statistical Approaches to Learning Regulatory Relationships in Large-Scale Biomolecular Investigations.

    Science.gov (United States)

    Ness, Robert O; Sachs, Karen; Vitek, Olga

    2016-03-01

    Causal inference, the task of uncovering regulatory relationships between components of biomolecular pathways and networks, is a primary goal of many high-throughput investigations. Statistical associations between observed protein concentrations can suggest an enticing number of hypotheses regarding the underlying causal interactions, but when do such associations reflect the underlying causal biomolecular mechanisms? The goal of this perspective is to provide suggestions for causal inference in large-scale experiments, which utilize high-throughput technologies such as mass-spectrometry-based proteomics. We describe in nontechnical terms the pitfalls of inference in large data sets and suggest methods to overcome these pitfalls and reliably find regulatory associations. PMID:26731284

  14. Advances in integrative modeling of biomolecular complexes

    NARCIS (Netherlands)

    Karaca, E.; Bonvin, A.M.J.J.

    2013-01-01

    High-resolution structural information is needed in order to unveil the underlying mechanistic of biomolecular function. Due to the technical limitations or the nature of the underlying complexes, acquiring atomic resolution information is difficult for many challenging systems, while, often, low-re

  15. Flourescence from Gas-Phase Biomolecular Ions

    DEFF Research Database (Denmark)

    Nielsen, Steen Brøndsted

    2013-01-01

    This chapter deals with measurements of fluorescence from electronically excited biomolecular ions where there are no interactions with an external environment. Biomolecules with no natural fluorophores are labelled with a dye for such experiments. First, some of the advantages, but also difficul...

  16. Scanning probe and optical tweezer investigations of biomolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Rigby-Singleton, Shellie

    2002-07-01

    A complex array of intermolecular forces controls the interactions between and within biological molecules. The desire to empirically explore the fundamental forces has led to the development of several biophysical techniques. Of these, the atomic force microscope (AFM) and the optical tweezers have been employed throughout this thesis to monitor the intermolecular forces involved in biomolecular interactions. The AFM is a well-established force sensing technique capable of measuring biomolecular interactions at a single molecule level. However, its versatility has not been extrapolated to the investigation of a drug-enzyme complex. The energy landscape for the force induced dissociation of the DHFR-methotrexate complex was studied. Revealing an energy barrier to dissociation located {approx}0.3 nm from the bound state. Unfortunately, the AFM has a limited range of accessible loading rates and in order to profile the complete energy landscape alternative force sensing instrumentation should be considered, for example the BFP and optical tweezers. Thus, this thesis outlines the development and construction an optical trap capable of measuring intermolecular forces between biomolecules at the single molecule level. To demonstrate the force sensing abilities of the optical set up, proof of principle measurements were performed which investigate the interactions between proteins and polymer surfaces subjected to varying degrees of argon plasma treatment. Complementary data was gained from measurements performed independently by the AFM. Changes in polymer resistance to proteins as a response to changes in polymer surface chemistry were detected utilising both AFM and optical tweezers measurements. Finally, the AFM and optical tweezers were employed as ultrasensitive biosensors. Single molecule investigations of the antibody-antigen interaction between the cardiac troponin I marker and its complementary antibody, reveals the impact therapeutic concentrations of heparin

  17. Mechanical engineers' handbook, design, instrumentation, and controls

    CERN Document Server

    Kutz, Myer

    2015-01-01

    Full coverage of electronics, MEMS, and instrumentation andcontrol in mechanical engineering This second volume of Mechanical Engineers' Handbookcovers electronics, MEMS, and instrumentation and control, givingyou accessible and in-depth access to the topics you'll encounterin the discipline: computer-aided design, product design formanufacturing and assembly, design optimization, total qualitymanagement in mechanical system design, reliability in themechanical design process for sustainability, life-cycle design,design for remanufacturing processes, signal processing, dataacquisition and dis

  18. Noise control mechanisms of inside aircraft

    Science.gov (United States)

    Zverev, A. Ya.

    2016-07-01

    World trends in the development of methods and approaches to noise reduction in aircraft cabins are reviewed. The paper discusses the mechanisms of passive and active noise and vibration control, application of "smart" and innovative materials, new approaches to creating all fuselage-design elements, and other promising directions of noise control inside aircraft.

  19. Neuronal mechanisms of feedback postural control

    OpenAIRE

    Hsu, Li-Ju

    2015-01-01

    Different species maintain a basic body posture due to the activity of the postural control system. An efficient control of the body orientation, as well as the body configuration, is important for standing and during locomotion. A general goal of the present study was to analyze neuronal feedback mechanisms contributing to stabilization of the trunk orientation in space, as well as those controlling the body configuration. Two animal models of different complexity, the lamprey...

  20. Robot Control in Terms of Hamiltonian Mechanics

    Czech Academy of Sciences Publication Activity Database

    Záda, V.; Belda, Květoslav

    Praha: Ústav termomechaniky AV ČR, v. v. i, 2016 - (Zolotarev, I.; Radolf, V.) ISBN 978-80-87012-59-8. ISSN 1805-8248. [Engineering Mechanics 2016. Svratka (CZ), 09.05.2016-12.05.2016] Institutional support: RVO:67985556 Keywords : Robot -manipulator * Hamiltonian formalism * Modeling * Robot control * PD control Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2016/AS/belda-0459349.pdf

  1. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    KAUST Repository

    Sobhy, M. A.

    2011-11-07

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation and detection is a key experimental feature that is under continuous development. In this paper, we describe in detail the design and the construction of a sophisticated and versatile multi-color excitation and emission fluorescence instrument for studying biomolecular dynamics at the single-molecule level. The setup is novel, economical and compact, where two inverted microscopes share a laser combiner module with six individual laser sources that extend from 400 to 640 nm. Nonetheless, each microscope can independently and in a flexible manner select the combinations, sequences, and intensities of the excitation wavelengths. This high flexibility is achieved by the replacement of conventional mechanical shutters with acousto-optic tunable filter (AOTF). The use of AOTF provides major advancement by controlling the intensities, duration, and selection of up to eight different wavelengths with microsecond alternation time in a transparent and easy manner for the end user. To our knowledge this is the first time AOTF is applied to wide-field total internal reflection fluorescence (TIRF) microscopy even though it has been commonly used in multi-wavelength confocal microscopy. The laser outputs from the combiner module are coupled to the microscopes by two sets of four single-mode optic fibers in order to allow for the optimization of the TIRF angle for each wavelength independently. The emission is split into two or four spectral channels to allow for the simultaneous detection of up to four different fluorophores of wide selection and using many possible excitation and photoactivation schemes. We demonstrate the performance of this new setup by conducting two-color alternating excitation single-molecule fluorescence resonance energy

  2. Improvements in continuum modeling for biomolecular systems

    CERN Document Server

    Qiao, Yu

    2015-01-01

    Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson-Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulation. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and PNP equations, the coupling of polar and nonpolar interactions, and numerical progress.

  3. Nonsmooth mechanics models, dynamics and control

    CERN Document Server

    Brogliato, Bernard

    2016-01-01

    Now in its third edition, this standard reference is a comprehensive treatment of nonsmooth mechanical systems refocused to give more prominence to control and modelling. It covers Lagrangian and Newton–Euler systems, detailing mathematical tools such as convex analysis and complementarity theory. The ways in which nonsmooth mechanics influence and are influenced by well-posedness analysis, numerical analysis and simulation, modelling and control are explained. Contact/impact laws, stability theory and trajectory-tracking control are given in-depth exposition connected by a framework formed from complementarity systems and measure-differential inclusions. Links are established with electrical circuits with set-valued nonsmooth elements and with other nonsmooth dynamical systems like impulsive and piecewise linear systems. Nonsmooth Mechanics (third edition) has been substantially rewritten, edited and updated to account for the significant body of results that have emerged in the twenty-first century—incl...

  4. Operation of Control Rod Driving Mechanism controller at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Gyu, Doo Seung; Woo, Lee Min; San, Choe Yeong; Kyoo, Kim Hyung [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    HANARO (High flux Advanced Neutron Application Reactor) achieved its first critical operation in 1995. Recently, there has been fast developments in the field of electronics. Many manufacturers of I and C components have disappeared or merged with the other companies. The suppliers of the control systems of the CRDM (Control Rod Driving Mechanism) at HANARO have disappeared. Therefore, we needed to change the control system of the CRDM since we cannot be provided with maintenance any longer. In this paper, we investigated the operation of the control system of the CRDM when the controller and motor driver are changed.

  5. PREFACE: Radiation Damage in Biomolecular Systems (RADAM07)

    Science.gov (United States)

    McGuigan, Kevin G.

    2008-03-01

    The annual meeting of the COST P9 Action `Radiation damage in biomolecular systems' took place from 19-22 June 2007 in the Royal College of Surgeons in Ireland, in Dublin. The conference was structured into 5 Working Group sessions: Electrons and biomolecular interactions Ions and biomolecular interactions Radiation in physiological environments Theoretical developments for radiation damage Track structure in cells Each of the five working groups presented two sessions of invited talks. Professor Ron Chesser of Texas Tech University, USA gave a riveting plenary talk on `Mechanisms of Adaptive Radiation Responses in Mammals at Chernobyl' and the implications his work has on the Linear-No Threshold model of radiation damage. In addition, this was the first RADAM meeting to take place after the Alexander Litvenenko affair and we were fortunate to have one of the leading scientists involved in the European response Professor Herwig Paretzke of GSF-Institut für Strahlenschutz, Neuherberg, Germany, available to speak. The remaining contributions were presented in the poster session. A total of 72 scientific contributions (32 oral, 40 poster), presented by 97 participants from 22 different countries, gave an overview on the current progress in the 5 different subfields. A 1-day pre-conference `Early Researcher Tutorial Workshop' on the same topic kicked off on 19 June attended by more than 40 postgrads, postdocs and senior researchers. Twenty papers, based on these reports, are included in this volume of Journal of Physics: Conference Series. All the contributions in this volume were fully refereed, and they represent a sample of the courses, invited talks and contributed talks presented during RADAM07. The interdisciplinary RADAM07 conference brought together researchers from a variety of different fields with a common interest in biomolecular radiation damage. This is reflected by the disparate backgrounds of the authors of the papers presented in these proceedings

  6. Longevity: epigenetic and biomolecular aspects.

    Science.gov (United States)

    Taormina, Giusi; Mirisola, Mario G

    2015-04-01

    Many aging theories and their related molecular mechanisms have been proposed. Simple model organisms such as yeasts, worms, fruit flies and others have massively contributed to their clarification, and many genes and pathways have been associated with longevity regulation. Among them, insulin/IGF-1 plays a key and evolutionary conserved role. Interestingly, dietary interventions can modulate this pathway. Calorie restriction (CR), intermittent fasting, and protein and amino acid restriction prolong the lifespan of mammals by IGF-1 regulation. However, some recent findings support the hypothesis that the long-term effects of diet also involve epigenetic mechanisms. In this review, we describe the best characterized aging pathways and highlight the role of epigenetics in diet-mediated longevity. PMID:25883209

  7. Computational Methods for Biomolecular Electrostatics

    OpenAIRE

    Dong, Feng; Olsen, Brett; Baker, Nathan A.

    2008-01-01

    An understanding of intermolecular interactions is essential for insight into how cells develop, operate, communicate and control their activities. Such interactions include several components: contributions from linear, angular, and torsional forces in covalent bonds, van der Waals forces, as well as electrostatics. Among the various components of molecular interactions, electrostatics are of special importance because of their long range and their influence on polar or charged molecules, in...

  8. Electrochemical biofilm control: mechanism of action

    OpenAIRE

    Istanbullu, Ozlem; Babauta, Jerome; Nguyen, Hung Duc; Beyenal, Haluk

    2012-01-01

    Although it has been previously demonstrated that an electrical current can be used to control biofilm growth on metal surfaces, the literature results are conflicting and there is no accepted mechanism of action. One of the suggested mechanisms is the production of hydrogen peroxide (H2O2) on metal surfaces. However, there are literature studies in which H2O2 could not be detected in the bulk solution. This is most likely because H2O2 was produced at a low concentration near the surface and ...

  9. Nanoarchitectonics of biomolecular assemblies for functional applications

    Science.gov (United States)

    Avinash, M. B.; Govindaraju, T.

    2014-10-01

    The stringent processes of natural selection and evolution have enabled extraordinary structure-function properties of biomolecules. Specifically, the archetypal designs of biomolecules, such as amino acids, nucleobases, carbohydrates and lipids amongst others, encode unparalleled information, selectivity and specificity. The integration of biomolecules either with functional molecules or with an embodied functionality ensures an eclectic approach for novel and advanced nanotechnological applications ranging from electronics to biomedicine, besides bright prospects in systems chemistry and synthetic biology. Given this intriguing scenario, our feature article intends to shed light on the emerging field of functional biomolecular engineering.

  10. Nanotube-Based Chemical and Biomolecular Sensors

    Institute of Scientific and Technical Information of China (English)

    J.Koh; B.Kim; S.Hong; H.Lim; H.C.Choi

    2008-01-01

    We present a brief review about recent results regarding carbon nanotube (CNT)-based chemical and biomolecular sensors. For the fabrication of CNT-based sensors, devices containing CNT channels between two metal electrodes are first fabricated usually via chemical vapor deposition (CVD) process or "surface programmed assembly" method. Then, the CNT surfaces are often functionalized to enhance the selectivity of the sensors. Using this process, highly-sensitive CNT-based sensors can be fabricated for the selective detection of various chemical and biological molecules such as hydrogen, ammonia, carbon monoxide, chlorine gas, DNA, glucose, alcohol, and proteins.

  11. Scalable Molecular Dynamics for Large Biomolecular Systems

    Directory of Open Access Journals (Sweden)

    Robert K. Brunner

    2000-01-01

    Full Text Available We present an optimized parallelization scheme for molecular dynamics simulations of large biomolecular systems, implemented in the production-quality molecular dynamics program NAMD. With an object-based hybrid force and spatial decomposition scheme, and an aggressive measurement-based predictive load balancing framework, we have attained speeds and speedups that are much higher than any reported in literature so far. The paper first summarizes the broad methodology we are pursuing, and the basic parallelization scheme we used. It then describes the optimizations that were instrumental in increasing performance, and presents performance results on benchmark simulations.

  12. Micro and Nanotechnologies Enhanced Biomolecular Sensing

    Directory of Open Access Journals (Sweden)

    Tza-Huei Wang

    2013-07-01

    Full Text Available This editorial summarizes some of the recent advances of micro and nanotechnology-based tools and devices for biomolecular detection. These include the incorporation of nanomaterials into a sensor surface or directly interfacing with molecular probes to enhance target detection via more rapid and sensitive responses, and the use of self-assembled organic/inorganic nanocomposites that inhibit exceptional spectroscopic properties to enable facile homogenous assays with efficient binding kinetics. Discussions also include some insight into microfluidic principles behind the development of an integrated sample preparation and biosensor platform toward a miniaturized and fully functional system for point of care applications.

  13. Replacement means for control rod drive mechanism

    International Nuclear Information System (INIS)

    Object: To permit assembling and removal operation of a control rod drive mechanism to be carried out speedily and properly irrespective of the degree of skill of the operating personnel. Structure: When removing a control rod drive mechanism (CRD) a service platform and a frame body are operated for bringing a CRD lift guide frame to a position below the CRD to be removed. Then, a CRD receptacle is placed at the lower end of the CRD, and water is drained from the CRD. Subsequently, a chain is driven by a drive means in a direction which lowers the receptacle, and only the CRD is lowered along the CRD lift guide frame. Thereafter, the CRD is secured at its upper portion by a support means, and the CRD lift guide frame is lowered by a lift jack to thereby permit revolution of the CRD, The CRD lift frame after revolution is lifted and then removed to the outside. (Kamimura, M.)

  14. Mechanical Control of Individual Superconducting Vortices.

    Science.gov (United States)

    Kremen, Anna; Wissberg, Shai; Haham, Noam; Persky, Eylon; Frenkel, Yiftach; Kalisky, Beena

    2016-03-01

    Manipulating individual vortices in a deterministic way is challenging; ideally, manipulation should be effective, local, and tunable in strength and location. Here, we show that vortices respond to local mechanical stress applied in the vicinity of the vortex. We utilized this interaction to move individual vortices in thin superconducting films via local mechanical contact without magnetic field or current. We used a scanning superconducting quantum interference device to image vortices and to apply local vertical stress with the tip of our sensor. Vortices were attracted to the contact point, relocated, and were stable at their new location. We show that vortices move only after contact and that more effective manipulation is achieved with stronger force and longer contact time. Mechanical manipulation of vortices provides a local view of the interaction between strain and nanomagnetic objects as well as controllable, effective, and reproducible manipulation technique. PMID:26836018

  15. Control rod drive mechanisms seismic analysis

    International Nuclear Information System (INIS)

    In the Taishan joint-design, in order to finish Control Rod Drive Mechanism (CRDM) seismic analysis, a response spectrum analysis in combination with quasi-static analysis and a time history analysis are performed according to the different design stages and inputs. The simulated and simplified model of nonlinear structure is studied in the basic design stage; the translation of seismic input data and the use of nonlinear elements are studied in the detailed design stage. (authors)

  16. Concurrency Control Mechanism of Complex Objects

    Institute of Scientific and Technical Information of China (English)

    徐庆云; 王能斌

    1992-01-01

    A complex object is an abstraction and description of a complex entity of the real world.Many applications in such domains as CIMS,CAD and OA define and manipulate a complex object as a single unit.In this paper,a definition of the model of complex objects is given,and the concurrency control mechanism of complex objects in WHYMX object-oriented database system is described.

  17. Control mechanisms for assuring better IS quality:

    OpenAIRE

    Pivka, Marjan

    1998-01-01

    The software domain is faced with a number of quality assurance and process improvement models. Business managers are under pressure from many different kinds of assessments for their operations, products and services. Accounting departments are audited by financial auditors. What about information systems? Do we have a universal model on how to achieve required IS quality? This paper deals with the definition of IS quality and the influence of different control mechanisms on IS. The results ...

  18. Development of Mechanical Water Level Controller

    OpenAIRE

    Akonyi Nasiru Sule; Chinedu Cletus Obinwa; Christian Ebele Okekeze; Eyo Ifreke

    2012-01-01

    The automatic water level controller is a device designed to regulate automatically the pumping of water to an overhead tank without allowing the water in the tank to be exhausted. The design of this mechanical device was achieved using the Archimedes principle of floatation; having a float which determines the water level in the tank depending on the choice of the minimum (lower) and maximum (upper) level inscribed in the tank. The fundamental attribute of this device is the ease in design, ...

  19. Improvements in continuum modeling for biomolecular systems

    Science.gov (United States)

    Yu, Qiao; Ben-Zhuo, Lu

    2016-01-01

    Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson- Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of the biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulations. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and the PNP equations, the coupling of polar and nonpolar interactions, and numerical progress. Project supported by the National Natural Science Foundation of China (Grant No. 91230106) and the Chinese Academy of Sciences Program for Cross & Cooperative Team of the Science & Technology Innovation.

  20. Extension of the GLYCAM06 Biomolecular Force Field to Lipids, Lipid Bilayers and Glycolipids

    OpenAIRE

    Tessier, Matthew B; DeMarco, Mari L.; Yongye, Austin B.; Woods, Robert J.

    2008-01-01

    GLYCAM06 is a generalisable biomolecular force field that is extendible to diverse molecular classes in the spirit of a small-molecule force field. Here we report parameters for lipids, lipid bilayers and glycolipids for use with GLYCAM06. Only three lipid-specific atom types have been introduced, in keeping with the general philosophy of transferable parameter development. Bond stretching, angle bending, and torsional force constants were derived by fitting to quantum mechanical data for a c...

  1. Biomolecular Self-Defense and Futility of High-Specificity Therapeutic Targeting

    OpenAIRE

    Simon Rosenfeld

    2011-01-01

    Robustness has been long recognized to be a distinctive property of living entities. While a reasonably wide consensus has been achieved regarding the conceptual meaning of robustness, the biomolecular mechanisms underlying this systemic property are still open to many unresolved questions. The goal of this paper is to provide an overview of existing approaches to characterization of robustness in mathematically sound terms. The concept of robustness is discussed in various contexts including...

  2. New Interference Mechanism Controls Ultracold Chemistry

    Science.gov (United States)

    Kendrick, Brian K.; Hazra, Jisha; Balakrishnan, N.

    2016-05-01

    A newly discovered interference mechanism has been shown to control the outcome of ultracold chemical reactions. The mechanism originates from the unique properties associated with ultracold collisions, namely: (1) isotropic (s-wave) scattering and (2) an effective quantization of the scattering phase shift (which originates from the bound state structure of the molecule). These two properties can lead to maximum constructive or destructive interference between two interfering reaction pathways (such as exchange and non-exchange in systems with two or more identical nuclei). If the molecular system exhibits a conical intersection, then the associated geometric phase is shown to act as a ``quantum switch'' which can turn the reactivity on or off. Reaction rate coefficients for the O + OH --> H + O2 and H + H2, reactions are presented which explicitly demonstrate the effect. Experimentalists might exploit this new mechanism to control ultracold reactions by the application of external electric or magnetic fields or by the selection of a particular nuclear spin state. This work was supported in part by the LDRD program (Grant No. 20140309ER) at LANL (B.K.) and by NSF Grant PHY-1505557 (N.B.) and ARO MURI Grant No. W911NF-12-1-0476 (N.B.).

  3. Gain control mechanisms in the nociceptive system.

    Science.gov (United States)

    Treede, Rolf-Detlef

    2016-06-01

    The "gate control theory of pain" of 1965 became famous for integrating clinical observations and the understanding of spinal dorsal horn circuitry at that time into a testable model. Although it became rapidly clear that spinal circuitry is much more complex than that proposed by Melzack and Wall, their prediction of the clinical efficacy of transcutaneous electrical nerve stimulation and spinal cord stimulation has left an important clinical legacy also 50 years later. In the meantime, it has been recognized that the sensitivity of the nociceptive system can be decreased or increased and that this "gain control" can occur at peripheral, spinal, and supraspinal levels. The resulting changes in pain sensitivity can be rapidly reversible or persistent, highly localized or widespread. Profiling of spatio-temporal characteristics of altered pain sensitivity (evoked pain to mechanical and/or heat stimuli) allows implications on the mechanisms likely active in a given patient, including peripheral or central sensitization, intraspinal or descending inhibition. This hypothesis generation in the diagnostic process is an essential step towards a mechanism-based treatment of pain. The challenge now is to generate the rational basis of multimodal pain therapy algorithms by including profile-based stratification of patients into studies on efficacy of pharmacological and nonpharmacological treatment modalities. This review outlines the current evidence base for this approach. PMID:26817644

  4. Control mechanisms in mitochondrial oxidative phosphorylation

    Institute of Scientific and Technical Information of China (English)

    Jana Hroudová; Zdeněk Fi(s)ar

    2013-01-01

    Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5'- triphosphate production is regulated by many control mechanism–firstly by oxygen, substrate level, adenosine-5'-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by "second control mechanisms," such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5'-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production.

  5. Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning.

    Science.gov (United States)

    Cole, Daniel J; Vilseck, Jonah Z; Tirado-Rives, Julian; Payne, Mike C; Jorgensen, William L

    2016-05-10

    Molecular mechanics force fields, which are commonly used in biomolecular modeling and computer-aided drug design, typically treat nonbonded interactions using a limited library of empirical parameters that are developed for small molecules. This approach does not account for polarization in larger molecules or proteins, and the parametrization process is labor-intensive. Using linear-scaling density functional theory and atoms-in-molecule electron density partitioning, environment-specific charges and Lennard-Jones parameters are derived directly from quantum mechanical calculations for use in biomolecular modeling of organic and biomolecular systems. The proposed methods significantly reduce the number of empirical parameters needed to construct molecular mechanics force fields, naturally include polarization effects in charge and Lennard-Jones parameters, and scale well to systems comprised of thousands of atoms, including proteins. The feasibility and benefits of this approach are demonstrated by computing free energies of hydration, properties of pure liquids, and the relative binding free energies of indole and benzofuran to the L99A mutant of T4 lysozyme. PMID:27057643

  6. Gain control mechanisms in spinal motoneurons

    Directory of Open Access Journals (Sweden)

    Michael David Johnson

    2014-07-01

    Full Text Available Motoneurons provide the only conduit for motor commands to reach muscles. For many years, motoneurons were in fact considered to be little more than passive wires. Systematic studies in the past 25 years however have clearly demonstrated that the intrinsic electrical properties of motoneurons are under strong neuromodulatory control via multiple sources. The discovery of potent neuromodulation from the brainstem and its ability to change the gain of motoneurons shows that the passive view of the motor output stage is no longer tenable. A mechanism for gain control at the motor output stage makes good functional sense considering our capability of generating an enormous range of forces, from very delicate (e.g. putting in a contact lens to highly forceful (emergency reactions. Just as sensory systems need gain control to deal with a wide dynamic range of inputs, so to might motor output need gain control to deal with the wide dynamic range of the normal movement repertoire. Two problems emerge from the potential use of the brainstem monoaminergic projection to motoneurons for gain control. First, the projection is highly diffuse anatomically, so that independent control of the gains of different motor pools is not feasible. In fact, the system is so diffuse that gain for all the motor pools in a limb likely increases in concert. Second, if there is a system that increases gain, probably a system to reduce gain is also needed. In this review, we summarize recent studies that show local inhibitory circuits within the spinal cord, especially reciprocal and recurrent inhibition, have the potential to solve both of these problems as well as constitute another source of gain modulation.

  7. Dynamic congestion control mechanisms for MPLS networks

    Science.gov (United States)

    Holness, Felicia; Phillips, Chris I.

    2001-02-01

    Considerable interest has arisen in congestion control through traffic engineering from the knowledge that although sensible provisioning of the network infrastructure is needed, together with sufficient underlying capacity, these are not sufficient to deliver the Quality of Service required for new applications. This is due to dynamic variations in load. In operational Internet Protocol (IP) networks, it has been difficult to incorporate effective traffic engineering due to the limited capabilities of the IP technology. In principle, Multiprotocol Label Switching (MPLS), which is a connection-oriented label swapping technology, offers new possibilities in addressing the limitations by allowing the operator to use sophisticated traffic control mechanisms. This paper presents a novel scheme to dynamically manage traffic flows through the network by re-balancing streams during periods of congestion. It proposes management-based algorithms that will allow label switched routers within the network to utilize mechanisms within MPLS to indicate when flows are starting to experience frame/packet loss and then to react accordingly. Based upon knowledge of the customer's Service Level Agreement, together with instantaneous flow information, the label edge routers can then instigate changes to the LSP route and circumvent congestion that would hitherto violate the customer contacts.

  8. Electrochemical biofilm control: mechanism of action.

    Science.gov (United States)

    Istanbullu, Ozlem; Babauta, Jerome; Duc Nguyen, Hung; Beyenal, Haluk

    2012-01-01

    Although it has been previously demonstrated that an electrical current can be used to control biofilm growth on metal surfaces, the literature results are conflicting and there is no accepted mechanism of action. One of the suggested mechanisms is the production of hydrogen peroxide (H(2)O(2)) on metal surfaces. However, there are literature studies in which H(2)O(2) could not be detected in the bulk solution. This is most likely because H(2)O(2) was produced at a low concentration near the surface and could not be detected in the bulk solution. The goals of this research were (1) to develop a well-controlled system to explain the mechanism of action of the bioelectrochemical effect on 316L stainless steel (SS) surfaces and (2) to test whether the produced H(2)O(2) can reduce cell growth on metal surfaces. It was found that H(2)O(2) was produced near 316L SS surfaces when a negative potential was applied. The H(2)O(2) concentration increased towards the surface, while the dissolved oxygen decreased when the SS surface was polarized to -600 mV(Ag/AgCl). When polarized and non-polarized surfaces with identical Pseudomonas aeruginosa PAO1 biofilms were continuously fed with air-saturated growth medium, the polarized surfaces showed minimal biofilm growth while there was significant biofilm growth on the non-polarized surfaces. Although there was no detectable H(2)O(2) in the bulk solution, it was found that the surface concentration of H(2)O(2) was able to prevent biofilm growth. PMID:22827804

  9. Biomolecular Structure Determination with Divide and Concur

    Science.gov (United States)

    Kallus, Yoav; Elser, Veit

    2009-03-01

    Divide and concur (D-C) is a general computational approach, designed for the solution of highly frustrated problems. Recently applied to the problems of disk packing, the kissing number problem, and 3-SAT, it was competitive or outperformed special-purpose methods.ootnotetextS. Gravel and V. Elser, Phys. Rev. E 78, 036706 (2008) We present a method for applying the D-C framework to the problem of biomolecular structure determination. From a list of geometric constraints on groups of atoms in the molecule, we construct a deterministic iterative map that efficiently searches for structures simultaneously satisfying all constraints. As our method eschews an energy function and its minimization to focus on geometric constraints, it can very naturally integrate with the geometric constraints due to chemistry and physics, experimental constraints due to NMR data or many other experimental or biological hints. We present some results of our method.

  10. Ensemble based convergence assessment of biomolecular trajectories

    CERN Document Server

    Lyman, E; Lyman, Edward; Zuckerman, Daniel M.

    2006-01-01

    Assessing the convergence of a biomolecular simulation is an essential part of any computational investigation. This is because many important quantities (e.g., free energy differences) depend on the relative populations of different conformers; insufficient convergence translates into systematic errors. Here we present a simple method to self-consistently assess the convergence of a simulation. Standard clustering methods first generate a set of reference structures to any desired precision. The trajectory is then classified by proximity to the reference structures, yielding a one-dimensional histogram of structurally distinct populations. Comparing ensembles of different trajectories (or different parts of the same trajectory) built with the same reference structures provides a sensitive, quantitative measure of convergence. Please note: this is a preliminary manuscript, and should be read as such. Comments are most welcome, especially regarding pertinent prior work.

  11. Micro- and nanodevices integrated with biomolecular probes.

    Science.gov (United States)

    Alapan, Yunus; Icoz, Kutay; Gurkan, Umut A

    2015-12-01

    Understanding how biomolecules, proteins and cells interact with their surroundings and other biological entities has become the fundamental design criterion for most biomedical micro- and nanodevices. Advances in biology, medicine, and nanofabrication technologies complement each other and allow us to engineer new tools based on biomolecules utilized as probes. Engineered micro/nanosystems and biomolecules in nature have remarkably robust compatibility in terms of function, size, and physical properties. This article presents the state of the art in micro- and nanoscale devices designed and fabricated with biomolecular probes as their vital constituents. General design and fabrication concepts are presented and three major platform technologies are highlighted: microcantilevers, micro/nanopillars, and microfluidics. Overview of each technology, typical fabrication details, and application areas are presented by emphasizing significant achievements, current challenges, and future opportunities. PMID:26363089

  12. Micro- and nanodevices integrated with biomolecular probes

    Science.gov (United States)

    Alapan, Yunus; Icoz, Kutay; Gurkan, Umut A.

    2016-01-01

    Understanding how biomolecules, proteins and cells interact with their surroundings and other biological entities has become the fundamental design criterion for most biomedical micro- and nanodevices. Advances in biology, medicine, and nanofabrication technologies complement each other and allow us to engineer new tools based on biomolecules utilized as probes. Engineered micro/nanosystems and biomolecules in nature have remarkably robust compatibility in terms of function, size, and physical properties. This article presents the state of the art in micro- and nanoscale devices designed and fabricated with biomolecular probes as their vital constituents. General design and fabrication concepts are presented and three major platform technologies are highlighted: microcantilevers, micro/nanopillars, and microfluidics. Overview of each technology, typical fabrication details, and application areas are presented by emphasizing significant achievements, current challenges, and future opportunities. PMID:26363089

  13. Biomolecular Markers in Cancer of the Tongue

    Directory of Open Access Journals (Sweden)

    Daris Ferrari

    2009-01-01

    Full Text Available The incidence of tongue cancer is increasing worldwide, and its aggressiveness remains high regardless of treatment. Genetic changes and the expression of abnormal proteins have been frequently reported in the case of head and neck cancers, but the little information that has been published concerning tongue tumours is often contradictory. This review will concentrate on the immunohistochemical expression of biomolecular markers and their relationships with clinical behaviour and prognosis. Most of these proteins are associated with nodal stage, tumour progression and metastases, but there is still controversy concerning their impact on disease-free and overall survival, and treatment response. More extensive clinical studies are needed to identify the patterns of molecular alterations and the most reliable predictors in order to develop tailored anti-tumour strategies based on the targeting of hypoxia markers, vascular and lymphangiogenic factors, epidermal growth factor receptors, intracytoplasmatic signalling and apoptosis.

  14. An Atomic Force Microscope with Dual Actuation Capability for Biomolecular Experiments

    Science.gov (United States)

    Sevim, Semih; Shamsudhin, Naveen; Ozer, Sevil; Feng, Luying; Fakhraee, Arielle; Ergeneman, Olgaç; Pané, Salvador; Nelson, Bradley J.; Torun, Hamdi

    2016-06-01

    We report a modular atomic force microscope (AFM) design for biomolecular experiments. The AFM head uses readily available components and incorporates deflection-based optics and a piezotube-based cantilever actuator. Jetted-polymers have been used in the mechanical assembly, which allows rapid manufacturing. In addition, a FeCo-tipped electromagnet provides high-force cantilever actuation with vertical magnetic fields up to 0.55 T. Magnetic field calibration has been performed with a micro-hall sensor, which corresponds well with results from finite element magnetostatics simulations. An integrated force resolution of 1.82 and 2.98 pN, in air and in DI water, respectively was achieved in 1 kHz bandwidth with commercially available cantilevers made of Silicon Nitride. The controller and user interface are implemented on modular hardware to ensure scalability. The AFM can be operated in different modes, such as molecular pulling or force-clamp, by actuating the cantilever with the available actuators. The electromagnetic and piezoelectric actuation capabilities have been demonstrated in unbinding experiments of the biotin-streptavidin complex.

  15. Biomolecular Nano-Flow-Sensor to Measure Near-Surface Flow

    Directory of Open Access Journals (Sweden)

    Noji Hiroyuki

    2009-01-01

    Full Text Available Abstract We have proposed and experimentally demonstrated that the measurement of the near-surface flow at the interface between a liquid and solid using a 10 nm-sized biomolecular motor of F1-ATPase as a nano-flow-sensor. For this purpose, we developed a microfluidic test-bed chip to precisely control the liquid flow acting on the F1-ATPase. In order to visualize the rotation of F1-ATPase, several hundreds nanometer-sized particle was immobilized at the rotational axis of F1-ATPase to enhance the rotation to be detected by optical microscopy. The rotational motion of F1-ATPase, which was immobilized on an inner surface of the test-bed chip, was measured to obtain the correlation between the near-surface flow and the rotation speed of F1-ATPase. As a result, we obtained the relationship that the rotation speed of F1-ATPase was linearly decelerated with increasing flow velocity. The mechanism of the correlation between the rotation speed and the near-surface flow remains unclear, however the concept to use biomolecule as a nano-flow-sensor was proofed successfully. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-009-9479-3 contains supplementary material, which is available to authorized users. Click here for file

  16. Discrete Mechanics and Optimal Control: an Analysis

    CERN Document Server

    Ober-Bloebaum, S; Marsden, J E

    2008-01-01

    The optimal control of a mechanical system is of crucial importance in many realms. Typical examples are the determination of a time-minimal path in vehicle dynamics, a minimal energy trajectory in space mission design, or optimal motion sequences in robotics and biomechanics. In most cases, some sort of discretization of the original, infinite-dimensional optimization problem has to be performed in order to make the problem amenable to computations. The approach proposed in this paper is to directly discretize the variational description of the system's motion. The resulting optimization algorithm lets the discrete solution directly inherit characteristic structural properties from the continuous one like symmetries and integrals of the motion. We show that the DMOC approach is equivalent to a finite difference discretization of Hamilton's equations by a symplectic partitioned Runge-Kutta scheme and employ this fact in order to give a proof of convergence. The numerical performance of DMOC and its relationsh...

  17. Extracting Biomolecular Interactions Using Semantic Parsing of Biomedical Text

    OpenAIRE

    Garg, Sahil; Galstyan, Aram; Hermjakob, Ulf; Marcu, Daniel

    2015-01-01

    We advance the state of the art in biomolecular interaction extraction with three contributions: (i) We show that deep, Abstract Meaning Representations (AMR) significantly improve the accuracy of a biomolecular interaction extraction system when compared to a baseline that relies solely on surface- and syntax-based features; (ii) In contrast with previous approaches that infer relations on a sentence-by-sentence basis, we expand our framework to enable consistent predictions over sets of sen...

  18. Mechanism and control of lake eutrophication

    Institute of Scientific and Technical Information of China (English)

    QIN Boqiang; YANG Liuyan; CHEN Feizhou; ZHU Guangwei; ZHANG Lu; CHEN Yiyu

    2006-01-01

    A review about lake naturally eutrophi- cating, the internal loading of nutrients from lake sediment as well as the mechanism of algal blooms and the control practices was made, especially the eutrophication problem of shallow lakes since sev- enty percent of fresh water lakes in China are shallow lakes. It was found that shallow lakes are apt toward eutrophication than deep lakes. Without any influ- ences of human activity, shallow lakes in the middle and lower reaches of Yangtze River are still easily eutrophicated, which may be owing to the effects of flood in this area. In shallow lakes, sediments are frequently disturbed by wind-wave and resuspended, which result in huge nutrients release to overlying water. This may be the major reason for higher in- ternal loading of nutrients in shallow lakes than in deep lakes. Algal bloom is an extreme response of lake ecosystem to the eutrophication. Appearance of algal blooms is related to physical condition of lakes, such as underwater radiation (or transparency), temperature, and hydrodynamic conditions, or related to geochemical conditions of lakes, like concentra- tions of nutrients and ratio of nitrogen to phosphorus, as well as the physiological advantage of cyanobac- teria such as vacuole for moving towards the radiant energy-rich zone and the mycosporine-like amino acids (MAAs) for resisting the harm of ultraviolet ra- diation. In shallow lakes, these advantages of cyanobacteria are favorable in the competition than in deep lakes. Also being the shallowness, it is more difficult to reduce nutrient loading and to control algae blooms in shallow lakes. For the control of eutrophi- cation, people should follow the sequence from pollution sources control, ecological restoration to catchment management. To control the internal nu- trient release, physical, chemical, biological tech- niques, and even bionic techniques could be selected. The idea of ecological restoration for a eutrophic lake is to shift the ecosystem

  19. ssDNA-Functionalized Nanoceria: A Redox-Active Aptaswitch for Biomolecular Recognition.

    Science.gov (United States)

    Bülbül, Gonca; Hayat, Akhtar; Andreescu, Silvana

    2016-04-01

    Quantification of biomolecular binding events is a critical step for the development of biorecognition assays for diagnostics and therapeutic applications. This paper reports the design of redox-active switches based on aptamer conjugated nanoceria for detection and quantification of biomolecular recognition. It is shown that the conformational transition state of the aptamer on nanoceria, combined with the redox properties of these particles can be used to create surface based structure switchable aptasensing platforms. Changes in the redox properties at the nanoceria surface upon binding of the ssDNA and its target analyte enables rapid and highly sensitive measurement of biomolecular interactions. This concept is demonstrated as a general applicable method to the colorimetric detection of DNA binding events. An example of a nanoceria aptaswitch for the colorimetric sensing of Ochratoxin A (OTA) and applicability to other targets is provided. The system can sensitively and selectivity detect as low as 0.15 × 10(-9) m OTA. This novel assay is simple in design and does not involve oligonucleotide labeling or elaborate nanoparticle modification steps. The proposed mechanism discovered here opens up a new way of designing optical sensing methods based on aptamer recognition. This approach can be broadly applicable to many bimolecular recognition processes and related applications. PMID:26844813

  20. Cellular Mechanisms of Ciliary Length Control

    Directory of Open Access Journals (Sweden)

    Jacob Keeling

    2016-01-01

    Full Text Available Cilia and flagella are evolutionarily conserved, membrane-bound, microtubule-based organelles on the surface of most eukaryotic cells. They play important roles in coordinating a variety of signaling pathways during growth, development, cell mobility, and tissue homeostasis. Defects in ciliary structure or function are associated with multiple human disorders called ciliopathies. These diseases affect diverse tissues, including, but not limited to the eyes, kidneys, brain, and lungs. Many processes must be coordinated simultaneously in order to initiate ciliogenesis. These include cell cycle, vesicular trafficking, and axonemal extension. Centrioles play a central role in both cell cycle progression and ciliogenesis, making the transition between basal bodies and mitotic spindle organizers integral to both processes. The maturation of centrioles involves a functional shift from cell division toward cilium nucleation which takes place concurrently with its migration and fusion to the plasma membrane. Several proteinaceous structures of the distal appendages in mother centrioles are required for this docking process. Ciliary assembly and maintenance requires a precise balance between two indispensable processes; so called assembly and disassembly. The interplay between them determines the length of the resulting cilia. These processes require a highly conserved transport system to provide the necessary substances at the tips of the cilia and to recycle ciliary turnover products to the base using a based microtubule intraflagellar transport (IFT system. In this review; we discuss the stages of ciliogenesis as well as mechanisms controlling the lengths of assembled cilia.

  1. PREFACE: India-Japan Workshop on Biomolecular Electronics & Organic Nanotechnology for Environment Preservation

    Science.gov (United States)

    Onoda, Mitsuyoshi; Malhotra, Bansi D.

    2012-04-01

    Organic Functional Materials We would like to express our sincere thanks to the organizing committee members of this workshop and the many organizations such as the Japan Society for the Promotion of Science (JSPS), Japan, the Department of Science & Technology (DST), India, the Society of Organic Nanometric Interfacial Controlled Electronic (NICE) Devices, the Japan Society of Applied Physics, Himeji City, Himeji Convention & Visitors Bureau, Delhi Technological University, Delhi, India and the University of Hyogo for their financial support. Thanks are also given to The Japan Society of Applied Physics, Division of Molecular Electronics and Bioelectronics, The Japan Society of Applied Physics (M & BE), the Technical Committee on Dielectric and Electrical Insulation Materials of the Institute of Electrical Engineering in Japan (IEEJ), the Technical Group on Organic Molecular Electronics, Electronics Society of the Institute of Electronics, Information and Communication Engineers (IEICE), and the IEEE Dielectrics and Electrical Insulation Society, Japan Chapter, for their cooperation. Finally, we hope that the many young and active researchers who are participating will enjoy stimulating discussions and exchange ideas with each other at IJWBME 2011, Himeji, Japan. 7 April 2011 IJWBME 2011 Chairs Mitsuyoshi Onoda Graduate School of Engineering, University of Hyogo, Himeji, Japan Bansi D Malhotra Department of Biotechnology, Delhi Technological University, Delhi, India Conference photograph Participants of the India-Japan Workshop on Biomolecular Electronics & Organic Nanotechnology for Environment Preservation 2011, December 7-10 2011, EGRET Himeji, Japan The PDF also contains a list of sponsors.

  2. Microwave spectroscopy of biomolecular building blocks.

    Science.gov (United States)

    Alonso, José L; López, Juan C

    2015-01-01

    Microwave spectroscopy, considered as the most definitive gas phase structural probe, is able to distinguish between different conformational structures of a molecule, because they have unique spectroscopic constants and give rise to distinct individual rotational spectra.Previously, application of this technique was limited to molecular specimens possessing appreciable vapor pressures, thus discarding the possibility of studying many other molecules of biological importance, in particular those with high melting points, which had a tendency to undergo thermal reactions, and ultimately degradation, upon heating.Nowadays, the combination of laser ablation with Fourier transform microwave spectroscopy techniques, in supersonic jets, has enabled the gas-phase study of such systems. In this chapter, these techniques, including broadband spectroscopy, as well as results of their application into the study of the conformational panorama and structure of biomolecular building blocks, such as amino acids, nucleic bases, and monosaccharides, are briefly discussed, and with them, the tools for conformational assignation - rotational constants, nuclear quadrupole coupling interaction, and dipole moment. PMID:25721775

  3. Function of Amphiphilic Biomolecular Machines: Elastic Protein-based Polymers

    Science.gov (United States)

    Urry, Dan W.

    2000-03-01

    Elastic protein-based polymers function as biomolecular machines due to inverse temperature transitions of hydrophobic folding and assembly. The transitions occur either on raising the temperature from below to above the transition temperature, Tt, or on isothermally lowering Tt from above to below an operating temperature. The inverse temperature transition involves a decrease in entropy of the polymer component of the system on raising the temperature and a larger increase in solvent entropy on hydrophobic association. Tt depends on the quantity of hydrophobic hydration that undergoes transition to bulk water. Designed amphiphilic polymers perform free energy transductions involving the intensive variables of mechanical force, pressure, temperature, chemical potential, electrochemical potential and electromagnetic radiation and define a set of five axioms for their function as machines. The physical basis for these diverse energy conversions is competition for hydration between apolar (hydrophobic) and polar (e.g., charged) moieties. The effectiveness of these Tt-type entropic elastic protein-based machines is due to repeating peptide sequences that form regular, dynamic repeating structures and exhibit damping of backbone torsional oscillations on extension.

  4. Effects of Clear Kefir on Biomolecular Aspects of Glycemic Status of Type 2 Diabetes Mellitus (T2DM Patients in Bandung, West Java [Study on Human Blood Glucose, c Peptide and Insulin

    Directory of Open Access Journals (Sweden)

    Judiono J

    2014-08-01

    Full Text Available Background: Diabetes Mellitus (DM triggers an excessive reaction of free-radicals. It increases reactive oxygen species and reduces antioxidants status as well as the β cell damage. Clear kefir was used for DM therapies, however it limited biomolecular exploration of its bioactive roles. Research aimed to investigate the effects of clear kefir on the biomolecular nature of the glycemic status of T2DM in Bandung. Methods: The randomized pretest-posttest control group was conducted by 106 T2DM patients. Research was done in several hospitals in Bandung and Cimahi, West Java from 2012–2013. Samples were divided randomly into three groups: (1 T2DM with HbA1c 7 fed standard diet and supplemented 200 ml/day by clear kefir, (3 T2DM with HbA1c was fed a standard diet as a control group. Dose response was obtained from a preeliminary vivo study, and then converted to human dosage by year 2011. Intervention was effectively done for 30 days. HbA1c was measured by HPLC. Fasting blood glucose (FBG and Postprandial blood glucose levels (PBG were measured by enzymes levels. C Peptide and insulin were measured by Elisa. Data was analyzed by a statictics programme by significance p<0,05. Study was approved by ethic committee. Results : HbA1c was significantly reduced in delta level (p<0.01 and FBG (p<0.015 among kefir groups. PBG was not significantly reduced among groups. C-Peptide was significantly increased in delta level, except in control group (p<0.014. Insulin was reduced significantly, except in control group (p<0.003. Conclusions : Supplementation of clear kefir reduced blood glucose levels (HbA1c, FBG, PBG and increased c-peptide. Clear kefir’s biomolecular mechanisms and chemistry characterization is a challenge for future studies.

  5. Spin-controlled mechanics in nanoelectromechanical systems

    International Nuclear Information System (INIS)

    We consider a dc-electronic tunneling transport through a carbon nanotube suspended between normal-metal source and arbitrarily spin-polarized drain lead in the presence of an external magnetic field. We show that magnetomotive coupling between electrical current through the nanotube and its mechanical vibrations may lead to an electromechanical instability and give an onset of self-excited mechanical vibrations depending on spin polarization of the drain lead and frequency of vibrations. The self-excitation mechanism is based on correlation between the occupancy of quantized Zeeman-split electronic states in the nanotube and the direction of velocity of its mechanical motion. It is an effective gating effect by the presence of electron in the spin state which, through the Coulomb blockade, permits tunneling of electron to the drain predominantly only during a particular phase of mechanical vibration thus coherently changing mechanical momentum and leading into instability if mechanical damping is overcome

  6. Electrochemical sensor for multiplex screening of genetically modified DNA: identification of biotech crops by logic-based biomolecular analysis.

    Science.gov (United States)

    Liao, Wei-Ching; Chuang, Min-Chieh; Ho, Ja-An Annie

    2013-12-15

    Genetically modified (GM) technique, one of the modern biomolecular engineering technologies, has been deemed as profitable strategy to fight against global starvation. Yet rapid and reliable analytical method is deficient to evaluate the quality and potential risk of such resulting GM products. We herein present a biomolecular analytical system constructed with distinct biochemical activities to expedite the computational detection of genetically modified organisms (GMOs). The computational mechanism provides an alternative to the complex procedures commonly involved in the screening of GMOs. Given that the bioanalytical system is capable of processing promoter, coding and species genes, affirmative interpretations succeed to identify specified GM event in terms of both electrochemical and optical fashions. The biomolecular computational assay exhibits detection capability of genetically modified DNA below sub-nanomolar level and is found interference-free by abundant coexistence of non-GM DNA. This bioanalytical system, furthermore, sophisticates in array fashion operating multiplex screening against variable GM events. Such a biomolecular computational assay and biosensor holds great promise for rapid, cost-effective, and high-fidelity screening of GMO. PMID:23893064

  7. Controlled Unusual Stiffness of Mechanical Metamaterials

    Science.gov (United States)

    Lee, Wooju; Kang, Da-Young; Song, Jihwan; Moon, Jun Hyuk; Kim, Dongchoul

    2016-02-01

    Mechanical metamaterials that are engineered with sub-unit structures present unusual mechanical properties depending on the loading direction. Although they show promise, their practical utility has so far been somewhat limited because, to the best of our knowledge, no study about the potential of mechanical metamaterials made from sophisticatedly tailored sub-unit structures has been made. Here, we present a mechanical metamaterial whose mechanical properties can be systematically designed without changing its chemical composition or weight. We study the mechanical properties of triply periodic bicontinuous structures whose detailed sub-unit structure can be precisely fabricated using various sub-micron fabrication methods. Simulation results show that the effective wave velocity of the structures along with different directions can be designed to introduce the anisotropy of stiffness by changing a volume fraction and aspect ratio. The ratio of Young’s modulus to shear modulus can be increased by up to at least 100, which is a 3500% increase over that of isotropic material (2.8, acrylonitrile butadiene styrene). Furthermore, Poisson’s ratio of the constituent material changes the ratio while Young’s modulus does not influence it. This study presents the promising potential of mechanical metamaterials for versatile industrial and biomedical applications.

  8. Robust Position Control of Electro-mechanical Systems

    OpenAIRE

    Rong Mei; Mou Chen

    2013-01-01

    In this work, the robust position control scheme is proposed for the electro-mechanical system using the disturbance observer and backstepping control method. To the external unknown load of the electro-mechanical system, the nonlinear disturbance observer is given to estimate the external unknown load. Combining the output of the developed nonlinear disturbance observer with backstepping technology, the robust position control scheme is proposed for the electro-mechanical system. The stabili...

  9. Towards a Unified Representation of Mechanisms for Robotic Control Software

    Directory of Open Access Journals (Sweden)

    Antonio Diaz-Calderon

    2008-11-01

    Full Text Available This article gives an overview of the Mechanism Model paradigm. The mechanism model paradigm provides a framework to modeling mechanisms for robotic control. The emphasis is on the unification of mathematical models of kinematics/dynamics, geometric information and control system parameters for a variety of robotic systems (including serial manipulators, wheeled and legged locomotors, with algorithms that are needed for typical robot control applications.

  10. Nonsmooth Mechanics. Models, Dynamics and Control : Erratum/Addendum

    OpenAIRE

    Brogliato, Bernard

    2016-01-01

    This is the first version of the Erratum/Addendum of the 3rd edition of the monograph entitled Nonsmooth Mechanics, Models, Dynamics and Control, Springer, Communications and Control Engineering, ISSN 0178-5354, 2016.

  11. Critical length scale controls adhesive wear mechanisms

    Science.gov (United States)

    Aghababaei, Ramin; Warner, Derek H.; Molinari, Jean-Francois

    2016-06-01

    The adhesive wear process remains one of the least understood areas of mechanics. While it has long been established that adhesive wear is a direct result of contacting surface asperities, an agreed upon understanding of how contacting asperities lead to wear debris particle has remained elusive. This has restricted adhesive wear prediction to empirical models with limited transferability. Here we show that discrepant observations and predictions of two distinct adhesive wear mechanisms can be reconciled into a unified framework. Using atomistic simulations with model interatomic potentials, we reveal a transition in the asperity wear mechanism when contact junctions fall below a critical length scale. A simple analytic model is formulated to predict the transition in both the simulation results and experiments. This new understanding may help expand use of computer modelling to explore adhesive wear processes and to advance physics-based wear laws without empirical coefficients.

  12. Mechanical design and control of a new myoelectric hand prosthesis

    OpenAIRE

    Peerdeman, B.; Stramigioli, S.; Hekman, E.; Brouwer, D.M.; Misra, S

    2011-01-01

    The development of modern, myoelectrically controlled hand prostheses can be difficult, due to the many requirements its mechanical design and control system need to fulfill [1]. The hand should be controllable with few input signals, while being able to perform a wide range of motions. It should be lightweight and slim, but be able to actuate all fingers separately. To accomplish this, new control and mechanical design techniques are implemented in a modern hand prosthesis prototype.

  13. Control Engineering Analysis of Mechanical Pitch Systems

    International Nuclear Information System (INIS)

    With the help of a local stability analysis the coefficient range of a discrete damper, used for centrifugal forced, mechanical pitch system of small wind turbines (SWT), is gained for equilibrium points. – By a global stability analysis the gained coefficient range can be validated. An appropriate approach by Takagi-Sugeno is presented in the paper

  14. Raman spectroscopy detects biomolecular changes associated with nanoencapsulated hesperetin treatment in experimental oral carcinogenesis

    Science.gov (United States)

    Gurushankar, K.; Gohulkumar, M.; Kumar, Piyush; Krishna, C. Murali; Krishnakumar, N.

    2016-03-01

    Recently it has been shown that Raman spectroscopy possesses great potential in the investigation of biomolecular changes of tumor tissues with therapeutic drug response in a non-invasive and label-free manner. The present study is designed to investigate the antitumor effect of hespertin-loaded nanoparticles (HETNPs) relative to the efficacy of native hesperetin (HET) in modifying the biomolecular changes during 7,12-dimethyl benz(a)anthracene (DMBA)-induced oral carcinogenesis using a Raman spectroscopic technique. Significant differences in the intensity and shape of the Raman spectra between the control and the experimental tissues at 1800-500 cm-1 were observed. Tumor tissues are characterized by an increase in the relative amount of proteins, nucleic acids, tryptophan and phenylalanine and a decrease in the percentage of lipids when compared to the control tissues. Further, oral administration of HET and its nanoparticulates restored the status of the lipids and significantly decreased the levels of protein and nucleic acid content. Treatment with HETNPs showed a more potent antitumor effect than treatment with native HET, which resulted in an overall reduction in the intensity of several biochemical Raman bands in DMBA-induced oral carcinogenesis being observed. Principal component and linear discriminant analysis (PC-LDA), together with leave-one-out cross validation (LOOCV) on Raman spectra yielded diagnostic sensitivities of 100%, 80%, 91.6% and 65% and specificities of 100%, 65%, 60% and 55% for classification of control versus DMBA, DMBA versus DMBA  +  HET, DMBA versus DMBA  +  HETNPs and DMBA  +  HET versus DMBA  +  HETNPs treated tissue groups, respectively. These results further demonstrate that Raman spectroscopy associated with multivariate statistical algorithms could be a valuable tool for developing a comprehensive understanding of the process of biomolecular changes, and could reveal the signatures of the

  15. The use of gold nanoparticle aggregation for DNA computing and logic-based biomolecular detection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In-Hee; Yang, Kyung-Ae; Zhang, Byoung-Tak [School of Computer Science and Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Lee, Ji-Hoon [Center for Bioinformation Technology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Park, Ji-Yoon; Chai, Young Gyu [Division of Molecular and Life Sciences, Hanyang University, 1271 Sa-dong, Sangnok-gu, Ansan, Gyeonggi-do 426-791 (Korea, Republic of); Lee, Jae-Hoon [Fachgebiet Mikrobiologie und Genetik, Institut fuer Biotechnologie, Technische Universitaet Berlin, Gustav-Meyer Allee 25, D-13355 Berlin (Germany)], E-mail: btzhang@bi.snu.ac.kr

    2008-10-01

    The use of DNA molecules as a physical computational material has attracted much interest, especially in the area of DNA computing. DNAs are also useful for logical control and analysis of biological systems if efficient visualization methods are available. Here we present a quick and simple visualization technique that displays the results of the DNA computing process based on a colorimetric change induced by gold nanoparticle aggregation, and we apply it to the logic-based detection of biomolecules. Our results demonstrate its effectiveness in both DNA-based logical computation and logic-based biomolecular detection.

  16. High Precision Motion Control of Hybrid Five-Bar Mechanism with an Intelligent Control

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ke; WANG Sheng-ze

    2009-01-01

    Hybrid mechanism is a new type of planar controllable mechanism. Position control accuracy of system determines the output acctracy of the mechanism In order to achieve the desired high accuracy, nonlinear factors as friction must be accurately compensated in the real-time servo control algarithm. In this paper, the model of a hybrid flve-bar mechanism is introduced In terms of the characteristics of the hybrid mechanism, a hybrid intelligent control algorithm based on proportional-integral-derivative(PID) control and cerebellar model articulation control techniques was presented and used to perform control of hybrid five-bar mechanism for the first time. The simulation results show that the hybrid control method can improve the control effect remarkably, compared with the traditional PID control strategy.

  17. Improving Control Mechanism at Routers in TCP/IP Network

    Directory of Open Access Journals (Sweden)

    Nguyen Kim Quoc

    2014-09-01

    Full Text Available The existing control mechanisms at the network nodes have a good active and very effective at each local router, but they do not still strong enough to control nonlinear and dynamical behaviour of the network. Therefore, the control system requirements must be designed to be flexible to fully grasp the important status information of the variation and intelligent control methods to control network congestion in nonlinear network. To solve this problem, we propose a solution combined fuzzy reasoning with neural network control put on active queue management mechanisms at the network nodes.

  18. Soft Supercharging of Biomolecular Ions in Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Chingin, Konstantin; Xu, Ning; Chen, Huanwen

    2014-06-01

    The charge states of biomolecular ions in ESI-MS can be significantly increased by the addition of low-vapor supercharging (SC) reagents into the spraying solution. Despite the considerable interest from the community, the mechanistic aspects of SC are not well understood and are hotly debated. Arguments that denaturation accounts for the increased charging observed in proteins sprayed from aqueous solutions containing SC reagent have been published widely, but often with incomplete or ambiguous supporting data. In this work, we explored ESI MS charging and SC behavior of several biopolymers including proteins and DNA oligonucleotides. Analytes were ionized from 100 mM ammonium acetate (NH4Ac) aqueous buffer in both positive (ESI+) and negative (ESI-) ion modes. SC was induced either with m-NBA or by the elevated temperature of ESI capillary. For all the analytes studied we, found striking differences in the ESI MS response to these two modes of activation. The data suggest that activation with m-NBA results in more extensive analyte charging with lower degree of denaturation. When working solution with m-NBA was analyzed at elevated temperatures, the SC effect from m-NBA was neutralized. Instead, the net SC effect was similar to the SC effect achieved by thermal activation only. Overall, our observations indicate that SC reagents enhance ESI charging of biomolecules via distinctly different mechanism compared with the traditional approaches based on analyte denaturation. Instead, the data support the hypothesis that the SC phenomenon involves a direct interaction between a biopolymer and SC reagent occurring in evaporating ESI droplets.

  19. Quality control of cadweld (mechanical) splices

    International Nuclear Information System (INIS)

    Test data for cadweld splicing of reinforcing steel collected during a study of quality assurance practices on nine nuclear power plant construction projects are presented and evaluated. These data lead to an important hypothesis that the visual inspection identifies procedural deficiencies, and the tensile test identifies material defects. It is also suggested that a material testing program and the visual inspection will detect essentially all substandard cadwell splices. This would permit the deletion of the expensive tensile testing program. Accordingly, most quality control programs require overtesting and overdocumentation of cadweld splices; and furthermore, these programs fail to recognize material defects. The project specifications and quality control requirements for the nine projects are compared. Where possible, these are evaluated against the industry standards and Federal regulations. It is shown that there are a number of deficiencies in these standards, and that in most cases, the testing requirements are not commensurate with the quality that is being achieved in the field

  20. Cutaneous mechanisms of isometric ankle force control

    DEFF Research Database (Denmark)

    Choi, Julia T; Jensen, Jesper Lundbye; Leukel, Christian;

    2013-01-01

    cutaneous sensory function as evidenced by increased touch threshold. Absolute dorsiflexion force error increased without visual feedback during peroneal nerve stimulation. This was not a general effect of stimulation because force error did not increase during plantar nerve stimulation. The effects...... joint. Understanding how the nervous system normally uses cutaneous feedback in motor control will help us identify which functional aspects are impaired in aging and neurological diseases....

  1. Two Mechanisms to Avoid Control Conflicts Resulting from Uncoordinated Intent

    Science.gov (United States)

    Mishkin, Andrew H.; Dvorak, Daniel L.; Wagner, David A.; Bennett, Matthew B.

    2013-01-01

    This software implements a real-time access control protocol that is intended to make all connected users aware of the presence of other connected users, and which of them is currently in control of the system. Here, "in control" means that a single user is authorized and enabled to issue instructions to the system. The software The software also implements a goal scheduling mechanism that can detect situations where plans for the operation of a target system proposed by different users overlap and interact in conflicting ways. In such situations, the system can either simply report the conflict (rejecting one goal or the entire plan), or reschedule the goals in a way that does not conflict. The access control mechanism (and associated control protocol) is unique. Other access control mechanisms are generally intended to authenticate users, or exclude unauthorized access. This software does neither, and would likely depend on having some other mechanism to support those requirements.

  2. From dynamics to structure and function of model biomolecular systems

    NARCIS (Netherlands)

    Fontaine-Vive-Curtaz, F.

    2007-01-01

    The purpose of this thesis was to extend recent works on structure and dynamics of hydrogen bonded crystals to model biomolecular systems and biological processes. The tools that we have used are neutron scattering (NS) and density functional theory (DFT) and force field (FF) based simulation method

  3. Modeling and control of vibration in mechanical structures

    OpenAIRE

    Nauclér, Peter

    2005-01-01

    All mechanical systems exhibit vibrational response when exposed to external disturbances. In many engineering applications vibrations are undesirable and may even have harmful effects. Therefore, control of mechanical vibration is an important topic and extensive research has been going on in the field over the years. In active control of vibration, the ability to actuate the system in a controlled manner is incorporated into the structure. Sensors are used to measure the vibrations and seco...

  4. Control of a mechanical gripper with a fuzzy controller; Control de una garra robotizada mediante un controlador borroso

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Barcala, J.M.; Gamero, E.; Navarrete, J.J.

    1995-07-01

    A fuzzy logic system is used to control a mechanical gripper. System is based in a NLX230 fuzzy micro controller. Control rules are programmed by a 68020 microprocessor in the micro controller memory. Stress and its derived are used as feedback signals in the control. This system can adapt its effort to the mechanical resistance of the object between the fingers. (Author)

  5. Control of a mechanical gripper with a fuzzy controller; Control de una garra robotizada mediante un controlador borroso

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Barcala, J.M.; Gamero, E.; Navarrete, J.J.

    1995-07-01

    A fuzzy logic system is used to control a mechanical gripper. System is based in a NLX230 fuzzy micro controller. Control rules are programmed by a 68020 microprocessor in the micro controller memory. Stress and its derived are used as feedback signals in the control. This system can adapt its effort to the mechanical resistance of the object between the fingers.

  6. Control of Drop Motion by Mechanical Vibrations

    Science.gov (United States)

    Bestehorn, Michael

    2014-11-01

    Since the first experimental observations of Michael Faraday in 1831 it is known that a vibrating liquid may show an instability of its flat free surface with respect to oscillating regular surface patterns. We study thin liquid films on a horizontal substrate in the long wave approximation. The films are parametrically excited by mechanical horizontal or inclined oscillations. Inertia effects are taken into account and the standard thin film formulation is extended by a second equation for the vertically averaged mass flux. The films can be additionally unstable by Van der Waals forces on a partially wetting substrate, leading to the formation of drops. These drops can be manipulated by the vibrations to move in a desired direction. Linear results based on a damped complex valued Mathieu equation as well as fully nonlinear results using a reduced model will be presented, for more details see.

  7. Novel Mechanism Control Algorithm for Wired Network

    Directory of Open Access Journals (Sweden)

    V. B. Kirubanand

    2011-01-01

    Full Text Available Problem statement: A critical issue in wireless network where the data can hack by the person and we add a novel encryption mechanism to protect the data transfer from client to server and vice versa. Approach: We present a queuing model of a client and server that uses for bulk arrival service. The arrival of data requests is assumed to Markov Poisson Distributed Process (MPDP and the events are considered in the server for process sharing. We obtained the parameter of service rate, arrival rate, expected waiting time and expected busy period. We also derive the expression for the data value of threshold. Results: The total number of packets request processed, there was no time limit to arrivals, while compared to m/m/1 model. Our model m/m (1,b/1 was more efficient to find response and request time in between client and server. Conclusions: Our proposed simulation model validated through Java programming.

  8. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Garry Laverty

    2014-07-01

    Full Text Available Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl, pellicle Formation (Pel and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.

  9. Urgent epidemic control mechanism for aviation networks

    KAUST Repository

    Peng, Chengbin

    2011-01-01

    In the current century, the highly developed transportation system can not only boost the economy, but also greatly accelerate the spreading of epidemics. While some epidemic diseases may infect quite a number of people ahead of our awareness, the health care resources such as vaccines and the medical staff are usually locally or even globally insufficient. In this research, with the network of major aviation routes as an example, we present a method to determine the optimal locations to allocate the medical service in order to minimize the impact of the infectious disease with limited resources. Specifically, we demonstrate that when the medical resources are insufficient, we should concentrate our efforts on the travelers with the objective of effectively controlling the spreading rate of the epidemic diseases. © 2011 Springer-Verlag Berlin Heidelberg.

  10. Mechanisms controlling radionuclide mobility in forest soils

    International Nuclear Information System (INIS)

    Soil processes strongly influence the radionuclide mobility in soils. The mobility of radionuclides in forest soils is governed by several processes involving both abiotic and biotic factors. The sorption-desorption process chiefly governs the activity of radionuclides in the soil solution, hence thereby their mobility and biological availability. Radiocaesium exhibits a very low mobility in mineral soils. Both mobility and bioavailability however increase as the thickness of organic layers and their content in organic matter increases. Clay minerals of micaceous origin strongly act as slinks for radiocaesium in forest soils. The magnitude of cesium mineral fixation in topsoils is expected to be the highest in mineral soils of Eutric cambisol type, and, to a lesser extent, of type of Distric cambisol and Podzoluvisol. A low mobility of radiocaesium in the surface horizons of forest soils may also be partially explained by a biological mobilization: fungi absorb radiocaesium and transport it to upper layers, thereby contributing to constantly recycle the radioelement in the organic horizons. This mechanism is probably important in soils with thick organic layers (Podsol, Histosol, and, to a lesser extent, Distric cambisol and Podzoluvisol). Radionuclides can be associated with soluble organic anions in the soil solution of forest acid soils. Such associations are highly mobile: they are stable in conditions of poor biological activity (low temperatures, acid soil infertility, water excess, etc.). Their magnitude is expected to be the highest in thick acid organic layers (soils of type Podzol and Histosol)

  11. Robust vibration control of flexible linkage mechanisms using piezoelectric films

    Science.gov (United States)

    Liao, Wen-Hwei; Chou, Jyh-Horng; Horng, Ing-Rong

    1997-08-01

    Based on the state space model of the flexible linkage mechanism equipped with piezoelectric films, a robust control methodology for suppressing elastodynamic responses of the high-speed flexible linkage mechanism with linear time-varying parameter perturbations by employing an observer-based feedback controller is presented. The instability caused by the linear time-varying parameter perturbations and the instability caused by the combined effect of control and observation spillover are investigated and carefully prevented by two robust stability criteria proposed in this paper. Numerical simulation of a slider - crank mechanism example is performed to evaluate the improvement of the elastodynamic responses.

  12. Mechanisms of using mutations in pest control

    International Nuclear Information System (INIS)

    Traditional chemically based methods for insect control have been shown to have serious limitations, and many alternative approaches have been developed and evaluated, including those based on the use of different types of mutation. The mutagenic action of ionizing radiation was well known in the field of genetics long before it was realized by entomologists that it might be used to induce dominant lethal mutations in insects, which, when released, could sterilize wild female insects. The use of radiation to induce dominant lethal mutations in the sterile insect technique is now a major component of many large and successful programs for pest suppression and eradication. Specific types of mutations can also be used to make improvements to the sterile insect technique, especially for the development of strains for the production of only male insects for sterilization and release. These strains utilize male translocations and a variety of selectable mutations, either conditional or visible, so that at some stages of development, the males can be separated from the females. (author)

  13. Mechanical systems a unified approach to vibrations and controls

    CERN Document Server

    Gans, Roger F

    2015-01-01

    This essential textbook covers analysis and control of engineering mechanisms, which include almost any apparatus with moving parts used in daily life, from musical instruments to robots. The text  presents both vibrations and controls with considerable breadth and depth using a unified notation. It strikes a nice balance between the analytical and the practical.  This text contains enough material for a two semester sequence, but it can also be used in a single semester course combining the two topics. Mechanical Systems: A Unified Approach to Vibrations and Controls presents a common notation and approach to these closely related areas. Examples from the both vibrations and controls components are integrated throughout this text. This book also: ·         Presents a unified approach to vibrations and controls, including an excellent diagram that simultaneously discusses embedding classical vibrations (mechanical systems) in a discussion of models, inverse models, and open and closed loop control ...

  14. Analysis and Comparison of Access Control Policies Validation Mechanisms

    OpenAIRE

    Muhammad Aqib; Riaz Ahmed Shaikh

    2014-01-01

    Validation and verification of security policies is a critical and important task to ensure that access control policies are error free. The two most common problems present in access control policies are: inconsistencies and incompleteness. In order to detect such problems, various access control policy validation mechanisms are proposed by the researchers. However, comprehensive analysis and evaluation of the existing access control policy validation techniques is missing in the literature....

  15. The Integrated Control-Mechanism in ATM-Based Networks

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Survivability is one of the important issues in ATM-based networks since even a single network element failure may cause a serious data loss. This paper introduces a new restoration mechanism based on multi-layer ATM survivable network management architecture. This mechanism integrates the general control and restoration control by establishing the Working VPs logical network, Backup VPs logical network and spare logical network in order to optimally utilize the network resources while maintaining the restoration requirements.

  16. Analysis and Comparison of Access Control Policies Validation Mechanisms

    Directory of Open Access Journals (Sweden)

    Muhammad Aqib

    2014-12-01

    Full Text Available Validation and verification of security policies is a critical and important task to ensure that access control policies are error free. The two most common problems present in access control policies are: inconsistencies and incompleteness. In order to detect such problems, various access control policy validation mechanisms are proposed by the researchers. However, comprehensive analysis and evaluation of the existing access control policy validation techniques is missing in the literature. In this paper, we have provided a first detailed survey of this domain and presented the taxonomy of the access control policy validation mechanisms. Furthermore, we have provided a qualitative comparison and trend analysis of the existing schemes. From this survey, we found that only few validation mechanisms exist that can handle both inconsistency and incompleteness problem. Also, most of the policy validation techniques are inefficient in handling continuous values and Boolean expressions.

  17. Mechanics and model-based control of advanced engineering systems

    CERN Document Server

    Irschik, Hans; Krommer, Michael

    2014-01-01

    Mechanics and Model-Based Control of Advanced Engineering Systems collects 32 contributions presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, which took place in St. Petersburg, Russia in July 2012. The workshop continued a series of international workshops, which started with a Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures and a Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. In the present volume, 10 full-length papers based on presentations from Russia, 9 from Austria, 8 from Japan, 3 from Italy, one from Germany and one from Taiwan are included, which represent the state of the art in the field of mechanics and model based control, with particular emphasis on the application of advanced structures and machines.

  18. Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems

    International Nuclear Information System (INIS)

    To understand how a complex biomolecular network functions, a decomposition or a reconstruction process of the network is often needed so as to provide new insights into the regulatory mechanisms underlying various dynamical behaviors and also to gain qualitative knowledge of the network. Unfortunately, it seems that there are still no general rules on how to decompose a complex network into simple modules. An alternative resolution is to decompose a complex network into small modules or subsystems with specified functions such as switches and oscillators and then integrate them by analyzing the interactions between them. The main idea of this approach can be illustrated by considering a bidirectionally coupled network in this paper, i.e., coupled Toggle switch and Repressilator, and analyzing the occurrence of various dynamics, although the theoretical principle may hold for a general class of networks. We show that various biomolecular signals can be shaped by regulating the coupling between the subsystems. The approach presented here can be expected to simplify and analyze even more complex biological networks

  19. Protein hydrogels with engineered biomolecular recognition

    Science.gov (United States)

    Mi, Lixin

    Extracellular matrices (ECMs) are the hydrated macromolecular gels in which cells migrate and proliferate and organize into tissues in vivo . The development of artificial ECM with the required mechanical, physico-chemical, and biological properties has long been a challenge in the biomaterial research field. In this dissertation, a novel set of bioactive protein hydrogels has been synthesized and characterized at both molecular and materials levels. The self-recognized and self-assembled protein copolymers have the ability to provide engineered biofunctionality through the controlled arrangement of bioactive domains on the nanoscale. Genetic engineering methods have been employed to synthesize these protein copolymers. Plasmid DNA carrying genes to express both di- and tri-block proteins have been constructed using molecular cloning techniques. These genes were expressed in bacterial E. coli to ensure homogeneous protein length and anticipated structure. Three diblock protein sequences having a leucine zipper construct on one end and polyelectrolyte (AGAGAGPEG)10 on the other, have been studied by circular dichroism, size-exclusion chromatography, analytical ultracentrifugation, and static light scattering to characterize their secondary structure, structural stability, and oligomeric state. The results show that ABC diblock mixtures form very stable heterotrimer aggregates via self-recognition and self-assembly of the coiled coil end domains. Tri-block proteins with two leucine zipper motif ends flanking the polyelectrolyte random coil in the middle have been investigated by circular dichroism and fluorescence spectroscopy, and the hydrogels formed by self-assembly of these tri-blocks have been studied using transmission electronic microscopy and diffusing wave spectroscopy. The reversible gelation behavior is the result of heterotrimeric aggregation of helices to form the physical crosslinks in the gel, with the polyelectrolyte region center block retaining

  20. System defense mechanisms in nuclear power generation control computers

    International Nuclear Information System (INIS)

    Dual-redundant computers are used to control and monitor the production of power from Ontario Hydro's nuclear power reactors. Each computer must have the capability of monitoring its own performance and detecting faults. Upon fault detection, each computer must initiate corrective responses to ensure the integrity of critical control functions. This paper reviews those features the authors have termed system defense mechanisms

  1. Biomolecular structure refinement using the GROMOS simulation software

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Nathan; Allison, Jane R.; Dolenc, Jozica; Eichenberger, Andreas P.; Kunz, Anna-Pitschna E.; Gunsteren, Wilfred F. van, E-mail: wfvgn@igc.phys.chem.ethz.ch [Swiss Federal Institute of Technology ETH, Laboratory of Physical Chemistry (Switzerland)

    2011-11-15

    For the understanding of cellular processes the molecular structure of biomolecules has to be accurately determined. Initial models can be significantly improved by structure refinement techniques. Here, we present the refinement methods and analysis techniques implemented in the GROMOS software for biomolecular simulation. The methodology and some implementation details of the computation of NMR NOE data, {sup 3}J-couplings and residual dipolar couplings, X-ray scattering intensities from crystals and solutions and neutron scattering intensities used in GROMOS is described and refinement strategies and concepts are discussed using example applications. The GROMOS software allows structure refinement combining different types of experimental data with different types of restraining functions, while using a variety of methods to enhance conformational searching and sampling and the thermodynamically calibrated GROMOS force field for biomolecular simulation.

  2. Soft Time-Suboptimal Controlling Structure for Mechanical Systems

    DEFF Research Database (Denmark)

    Kulczycki, Piotr; Wisniewski, Rafal; Kowalski, Piotr;

    2004-01-01

    The paper presents conception of a soft control structure based on the time-optimal approach. Its parameters are selected in accordance with the rules of the statistical decision theory and additionally it allows to eliminate rapid changes in control values. The object is a basic mechanical system......, with uncertain (also non-stationary) mass treated as a stochastic process. The methodology proposed here is of a universal nature and may easily be applied with respect to other uncertainty elements of timeoptimal controlled mechanical systems....

  3. Improving Network Performance by Ameliorating TCP Congestion Control Mechanism

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With the rapid growth of rate-based services and wireless applications,improving Transmission Control Protocol (TCP) congestion control has been becoming more important in the network research field. This paper first briefly introduces the Additive-Increase Multiplicative-Decrease (AIMD) (a,b) algorithm,and then presents an improved TCP congestion control mechanism (D-AIMD) whose principles and simulation results are discussed in detail. This mechanism can be easily implemented with lower additional overheads and can efficiently improve network performance.

  4. Quantifying Modularity in the Evolution of Biomolecular Systems

    OpenAIRE

    2004-01-01

    Functional modules are considered the primary building blocks of biomolecular systems. Here we study to what extent functional modules behave cohesively across genomes:That is, are functional modules also evolutionary modules? We probe this question by analyzing for a large collection of functional modules the phyletic patterns of their genes across 110 genomes. The majority of functional modules display limited evolutionary modularity. This result confirms certain comparative genome analyses...

  5. The biomolecular and ultrastructural basis of epidermolysis bullosa:

    OpenAIRE

    Ciolan, Maria; Olariu, Liviu; Solovan, Caius

    2005-01-01

    Transmission electron microscopy, immunoelectron microscopy, immunofluorescence and antigenic mapping have improved our understanding of the dermo-epidermal junction. We have reviewed some ultrastructural and biomolecular aspects related to the dermo-epidermal junction. In part, they are implicated in the pathogenesis of a group of hereditary disorders characterized by skin fragility, collectively known as epidermolysis bullosa (EB). These disorders could benefit in the near future from a gen...

  6. Biomolecular Detection employing the Interferometric Reflectance Imaging Sensor (IRIS)

    OpenAIRE

    Carlos A Lopez; George G Daaboul; Ahn, Sunmin; Reddington, Alexander P.; Monroe, Margo R.; Zhang, Xirui; Irani, Rostem J.; Yu, Chunxiao; Genco, Caroline A.; Cretich, Marina; Chiari, Marcella; Goldberg, Bennett B.; Connor, John H.; Ünlü, M. Selim

    2011-01-01

    The sensitive measurement of biomolecular interactions has use in many fields and industries such as basic biology and microbiology, environmental/agricultural/biodefense monitoring, nanobiotechnology, and more. For diagnostic applications, monitoring (detecting) the presence, absence, or abnormal expression of targeted proteomic or genomic biomarkers found in patient samples can be used to determine treatment approaches or therapy efficacy. In the research arena, information on molecular aff...

  7. Dynamic Presentation of Immobilized Ligands Regulated through Biomolecular Recognition

    OpenAIRE

    Liu, Bo; Liu, Yang; Riesberg, Jeremiah J.; Shen, Wei

    2010-01-01

    To mimic the dynamic regulation of signaling ligands immobilized on extracellular matrices or on the surfaces of neighboring cells for guidance of cell behavior and fate selection, we have harnessed biomolecular recognition in combination with polymer engineering to create dynamic surfaces on which the accessibility of immobilized ligands to cell surface receptors can be reversibly interconverted under physiological conditions. The cell-adhesive RGD peptide is chosen as a model ligand. RGD is...

  8. Integrated design of cam mechanisms and servo-control systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Traditionally, in a cam mechanism, the cam is driven by an actuator at a constant speed. The motion characteristics of the follower are determined once the cam profile is designed. This paper presents a novel theory named "integrated design of cam mechanisms and servo-control systems" whose basic idea is varying the input speed trajectory of the cam by a microcomputer-controlled servomotor to improve kinematic and dynamic characteristics of the follower system. The philosophy of the theory is developing superior machines by taking advantage of the flexibility of servo-control systems to compensate for disadvantages of rigid cam mechanisms. The systematic design criteria of the cam-servo-integrated system are developed and an approach based on optimal-control theory is presented for to select suitable cam speed functions, hence the basis of the theory is formed.

  9. Biomolecular self-defense and futility of high-specificity therapeutic targeting.

    Science.gov (United States)

    Rosenfeld, Simon

    2011-01-01

    Robustness has been long recognized to be a distinctive property of living entities. While a reasonably wide consensus has been achieved regarding the conceptual meaning of robustness, the biomolecular mechanisms underlying this systemic property are still open to many unresolved questions. The goal of this paper is to provide an overview of existing approaches to characterization of robustness in mathematically sound terms. The concept of robustness is discussed in various contexts including network vulnerability, nonlinear dynamic stability, and self-organization. The second goal is to discuss the implications of biological robustness for individual-target therapeutics and possible strategies for outsmarting drug resistance arising from it. Special attention is paid to the concept of swarm intelligence, a well studied mechanism of self-organization in natural, societal and artificial systems. It is hypothesized that swarm intelligence is the key to understanding the emergent property of chemoresistance. PMID:22272063

  10. Synthesis of dissipative output feedback controllers. Application to mechanical systems

    Energy Technology Data Exchange (ETDEWEB)

    Johannessen, Erling Aarsand

    1997-12-31

    This thesis presents new results on the synthesis of linear controllers with passivity, or more general, dissipativity properties. These methods may be applied to obtain more accurate control over mechanical systems and in the control of chemical processes that involve dissipative subsystems. The thesis presents two different approaches for synthesis of dissipative controllers: (1) A method that exploits the Riccati equation solution to the state space formulation of the H{sub {infinity}} control problem is investigated, illustrated by synthesising a controller for damping of flexible modes in a beam. (2) A more general method for dissipative control synthesis is developed that retains the well-known techniques of loop-shaping and frequency weighting in H{sub {infinity}}. A method is also presented for controller synthesis directly from frequency response data. 82 refs., 34 figs., 3 tabs.

  11. Molecular mechanism of size control in development and human diseases

    Institute of Scientific and Technical Information of China (English)

    Xiaolong Yang; Tian Xu

    2011-01-01

    How multicellular organisms control their size is a fundamental question that fascinated generations of biologists.In the past 10 years, tremendous progress has been made toward our understanding of the molecular mechanism underlying size control. Original studies from Drosophila showed that in addition to extrinsic nutritional and hormonal cues, intrinsic mechanisms also play important roles in the control of organ size during development. Several novel signaling pathways such as insulin and Hippo-LATS signaling pathways have been identified that control organ size by regulating cell size and/or cell number through modulation of cell growth, cell division, and cell death. Later studies using mammalian cell and mouse models also demonstrated that the signaling pathways identified in flies are also conserved in mammals. Significantly, recent studies showed that dysregulation of size control plays important roles in the development of many human diseases sucha as cancer,diabetes,and hypertrophy.

  12. Mixture of experts models to exploit global sequence similarity on biomolecular sequence labeling

    OpenAIRE

    2009-01-01

    Background Identification of functionally important sites in biomolecular sequences has broad applications ranging from rational drug design to the analysis of metabolic and signal transduction networks. Experimental determination of such sites lags far behind the number of known biomolecular sequences. Hence, there is a need to develop reliable computational methods for identifying functionally important sites from biomolecular sequences. Results We present a mixture of experts approach to b...

  13. Molecular Mechanisms Controlling the Early Mouse Embryo Development

    Directory of Open Access Journals (Sweden)

    Alexandra Ivan

    2010-05-01

    Full Text Available Few are known about the molecular mechanism controlling the early embryo development. The reduce dimension of the embryos, only a few μm, the small quantities of proteins synthesized and the artificial environment influence makes difficult to decode the mechanisms controlling early embryonic stages of development. Although, in the last few years many genes have been showed to be active in the early embryonic stages of development, only a few have been characterized and found to be implicated in the molecular mechanism responsible of preimplantational embryos development. Ped gene (Preimplantational embryo development is considered to be involved in regulation of embryonic cleavage division and subsequent embryo survival. This review presents, based on a rich documentation, the main mechanisms involved in early embryo development.

  14. Rock mechanics. Superplastic nanofibrous slip zones control seismogenic fault friction.

    Science.gov (United States)

    Verberne, Berend A; Plümper, Oliver; de Winter, D A Matthijs; Spiers, Christopher J

    2014-12-12

    Understanding the internal mechanisms controlling fault friction is crucial for understanding seismogenic slip on active faults. Displacement in such fault zones is frequently localized on highly reflective (mirrorlike) slip surfaces, coated with thin films of nanogranular fault rock. We show that mirror-slip surfaces developed in experimentally simulated calcite faults consist of aligned nanogranular chains or fibers that are ductile at room conditions. These microstructures and associated frictional data suggest a fault-slip mechanism resembling classical Ashby-Verrall superplasticity, capable of producing unstable fault slip. Diffusive mass transfer in nanocrystalline calcite gouge is shown to be fast enough for this mechanism to control seismogenesis in limestone terrains. With nanogranular fault surfaces becoming increasingly recognized in crustal faults, the proposed mechanism may be generally relevant to crustal seismogenesis. PMID:25504714

  15. Controlling disease spread on networks with feedback mechanism

    Institute of Scientific and Technical Information of China (English)

    Wang Li; Yan Jia-Ren; Zhang Jian-Guo; Liu Zi-Ran

    2007-01-01

    Many real-world networks have the ability to adapt themselves in response to the state of their nodes. This paper studies controlling disease spread on network with feedback mechanism, where the susceptible nodes are able to avoid contact with the infected ones by cutting their connections with probability when the density of infected nodes reaches a certain value in the network. Such feedback mechanism considers the networks' own adaptivity and the cost of immunization. The dynamical equations about immunization with feedback mechanism are solved and theoretical predictions are in agreement with the results of large scale simulations. It shows that when the lethality α increases,the prevalence decreases more greatly with the same immunization g. That is, with the same cost, a better controlling result can be obtained. This approach offers an effective and practical policy to control disease spread, and also may be relevant to other similar networks.

  16. Embroidered electrochemical sensors for biomolecular detection.

    Science.gov (United States)

    Liu, Xiyuan; Lillehoj, Peter B

    2016-05-24

    Electrochemical sensors are powerful analytical tools which possess the capacity for rapid detection of biomarkers in clinical specimens. While most electrochemical sensors are fabricated on rigid substrates, there is a growing need for sensors that can be manufactured on inexpensive and flexible materials. Here, we present a unique embroidered electrochemical sensor that is capable of quantitative analytical measurements using raw biofluid samples. Conductive threads immobilized with enzyme probes were generated using a simple and robust fabrication process and used to fabricate flexible, mechanically robust electrodes on textiles. For proof of concept, measurements were performed to detect glucose and lactate in buffer and whole blood samples, which exhibited excellent specificity and accuracy. We also demonstrate that our embroidered biosensor can be readily fabricated in two-dimensional (2D) arrays for multiplexed measurements. Lastly, we show that this biosensor exhibits good resiliency against mechanical stress and superior repeatability, which are important requirements for flexible sensor platforms. PMID:27156700

  17. Combination of the Sorting Line Priority Polling Control Mechanism

    Directory of Open Access Journals (Sweden)

    Wenxue Ran

    2013-10-01

    Full Text Available The paper proposed the priority polling control mechanism of the unit material combinations sorting lines, and sorters operating process is understood to be the arrival process of orders, service process of each sorter sorts orders and the conversion process between sorting machines. Control process, sorters of the combined sorting lines are divided into the priority sorters and ordinary sorters, priority sorters use full service control, ordinary sorters use limited service (k = 1, applies the polling service system theory, through the embedded Markov chain and probability generating function to establish the mathematical model of the system, the exact solution of the control mechanism of the polling system model and the first and second characteristic parameters, combined with the actual production priority parameters of orders picking for simulation analysis

  18. Engagement and control of synchroniser mechanisms in dual clutch transmissions

    Science.gov (United States)

    Walker, Paul D.; Zhang, Nong

    2012-01-01

    The study of synchroniser engagements in dual clutch transmissions is undertaken in this paper, identifying limitations to the repeatability of actuation, demonstrating one popular solution for positive synchroniser control and offering an alternate engagement tool. Principally, high wet clutch drag and the synchroniser design have lead to detrimental alignments conditions, where indexing chamfers on sleeve and target gear delay engagement of the mechanism and lead to potential sleeve block out. This paper focuses on the investigation of different control methods for overcoming these detrimental alignment conditions. The application of a closed loop control method to overcome block out related engagements is studied, and, for comparison, a novel engagement tool for overriding all chamfer alignment conditions is introduced and evaluated. Results have demonstrated that both techniques have some limitations, with the novel tool being capable of providing direct control of all chamfer engagements with limited extension of the duration of synchroniser engagements; however, some tuning of mechanism parameters is required for different engagement conditions.

  19. Output feedback control of a mechanical system using magnetic levitation.

    Science.gov (United States)

    Beltran-Carbajal, F; Valderrabano-Gonzalez, A; Rosas-Caro, J C; Favela-Contreras, A

    2015-07-01

    This paper presents an application of a nonlinear magnetic levitation system to the problem of efficient active control of mass-spring-damper mechanical systems. An output feedback control scheme is proposed for reference position trajectory tracking tasks on the flexible mechanical system. The electromagnetically actuated system is shown to be a differentially flat nonlinear system. An extended state estimation approach is also proposed to obtain estimates of velocity, acceleration and disturbance signals. The differential flatness structural property of the system is then employed for the synthesis of the controller and the signal estimation approach presented in this work. Some experimental and simulation results are included to show the efficient performance of the control approach and the effective estimation of the unknown signals. PMID:25707718

  20. Quality control of injection moulded micro mechanical parts

    DEFF Research Database (Denmark)

    Gasparin, Stefania; Tosello, Guido; Hansen, Hans Nørgaard;

    2009-01-01

    Quality control of micro components is an increasing challenge. Smaller mechanical parts are characterized by smaller tolerance to be verified. This paper focuses on the dimensional verification of micro injection moulded components selected from an industrial application. These parts are measured...... using an Optical Coordinate Measuring Machine (OCMM), which guarantees fast surface scans suitable for in line quality control. The uncertainty assessment of the measurements is calculated following the substitution method. To investigate the influence parameters in optical coordinate metrology two...

  1. Designing Crane Controls with applied Mechanical and Electrical Safety Features

    Science.gov (United States)

    Lytle, Bradford P.; Walczak, Thomas A.; Delgado, H. (Technical Monitor)

    2002-01-01

    The use of overhead traveling bridge cranes in many varied applications is common practice. In particular, the use of cranes in the nuclear, military, commercial, aerospace, and other industries can involve safety critical situations. Considerations for Human Injury or Casualty, Loss of Assets, Endangering the Environment, or Economic Reduction must be addressed. Traditionally, in order to achieve additional safety in these applications, mechanical systems have been augmented with a variety of devices. These devices assure that a mechanical component failure shall reduce the risk of a catastrophic loss of the correct and/or safe load carrying capability. ASME NOG-1-1998, (Rules for Construction of Overhead and Gantry Cranes, Top Running Bridge, and Multiple Girder), provides design standards for cranes in safety critical areas. Over and above the minimum safety requirements of todays design standards, users struggle with obtaining a higher degree of reliability through more precise functional specifications while attempting to provide "smart" safety systems. Electrical control systems also may be equipped with protective devices similar to the mechanical design features. Demands for improvement of the cranes "control system" is often recognized, but difficult to quantify for this traditionally "mechanically" oriented market. Finite details for each operation must be examined and understood. As an example, load drift (or small motions) at close tolerances can be unacceptable (and considered critical). To meet these high functional demands encoders and other devices are independently added to control systems to provide motion and velocity feedback to the control drive. This paper will examine the implementation of Programmable Electronic Systems (PES). PES is a term this paper will use to describe any control system utilizing any programmable electronic device such as Programmable Logic Controllers (PLC), or an Adjustable Frequency Drive (AID) 'smart' programmable

  2. Flexible neural mechanisms of cognitive control within human prefrontal cortex

    OpenAIRE

    Braver, Todd S.; Paxton, Jessica L.; Locke, Hannah S.; Barch, Deanna M

    2009-01-01

    A major challenge in research on executive control is to reveal its functional decomposition into underlying neural mechanisms. A typical assumption is that this decomposition occurs solely through anatomically based dissociations. Here we tested an alternative hypothesis that different cognitive control processes may be implemented within the same brain regions, with fractionation and dissociation occurring on the basis of temporal dynamics. Regions within lateral prefrontal cortex (PFC) wer...

  3. Mechanical Control of Graphene on Engineered Pyramidal Strain Arrays

    OpenAIRE

    Gill, Stephen T.; Hinnefeld, John H.; Zhu, Shuze; Swanson, William T.; Li, Teng; Mason, Nadya

    2015-01-01

    Strain can tune desirable electronic behavior in graphene, but there has been limited progress in controlling strain in graphene devices. In this paper, we study the mechanical response of graphene on substrates patterned with arrays of mesoscale pyramids. Using atomic force microscopy, we demonstrate that the morphology of graphene can be controlled from conformal to suspended depending on the arrangement of pyramids and the aspect ratio of the array. Non-uniform strains in graphene suspende...

  4. Biomolecular transport and separation in nanotubular networks.

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, Jeanne C.; Stevens, Mark Jackson (Sandia National Laboratories, Albuquerque, NM); Robinson, David B.; Branda, Steven S.; Zendejas, Frank; Meagher, Robert J.; Sasaki, Darryl Yoshio; Bachand, George David (Sandia National Laboratories, Albuquerque, NM); Hayden, Carl C.; Sinha, Anupama; Abate, Elisa; Wang, Julia; Carroll-Portillo, Amanda (Sandia National Laboratories, Albuquerque, NM); Liu, Haiqing (Sandia National Laboratories, Albuquerque, NM)

    2010-09-01

    Cell membranes are dynamic substrates that achieve a diverse array of functions through multi-scale reconfigurations. We explore the morphological changes that occur upon protein interaction to model membrane systems that induce deformation of their planar structure to yield nanotube assemblies. In the two examples shown in this report we will describe the use of membrane adhesion and particle trajectory to form lipid nanotubes via mechanical stretching, and protein adsorption onto domains and the induction of membrane curvature through steric pressure. Through this work the relationship between membrane bending rigidity, protein affinity, and line tension of phase separated structures were examined and their relationship in biological membranes explored.

  5. Biomolecular engineering of intracellular switches in eukaryotes

    OpenAIRE

    Pastuszka, M.K.; Mackay, J.A.

    2010-01-01

    Tools to selectively and reversibly control gene expression are useful to study and model cellular functions. When optimized, these cellular switches can turn a protein's function “on” and “off” based on cues designated by the researcher. These cues include small molecules, drugs, hormones, and even temperature variations. Here we review three distinct areas in gene expression that are commonly targeted when designing cellular switches. Transcriptional switches target gene expression at the l...

  6. Pole assignment for control of flexible link mechanisms

    Science.gov (United States)

    Ouyang, H.; Richiedei, D.; Trevisani, A.

    2013-06-01

    Although the dynamics of flexible link mechanisms and manipulators is nonlinear, motion and vibration control often relies on linear or piecewise-linear controllers based on linearized models in order to ensure real-time implementability. Keeping such an objective in mind, this paper proposes a general receptance-based method for pole assignment in flexible link mechanisms with a single rigid-body degree of freedom (dof) using a single control force (i.e. rank-one control). A chief advantage of the approach proposed is that it makes use of the second-order system model representation through the receptance matrix of the symmetric part of the asymmetric model. The asymmetric terms in the stiffness and damping matrices arise from the coupling between rigid-body motion and elastic motion. The proposed receptance-based formulation ensures numerical reliability and efficiency also for large dimensional and ill-conditioned system models originating from the simultaneous presence of high-frequency and weakly controllable oscillating modes, and of rigid-body motion low-frequency dynamics, which may also be unstable. The validation of the proposed technique is carried out by performing pole assignment through position and velocity feedback or acceleration and velocity feedback on a mechanism. Integral control is also introduced to improve the steady state system response. Numerical results indicate that the proposed method is more accurate and robust than two popular established methods.

  7. Biomolecular papain thin films grown by matrix assisted and conventional pulsed laser deposition: A comparative study

    Science.gov (United States)

    György, E.; Pérez del Pino, A.; Sauthier, G.; Figueras, A.

    2009-12-01

    Biomolecular papain thin films were grown both by matrix assisted pulsed laser evaporation (MAPLE) and conventional pulsed laser deposition (PLD) techniques with the aid of an UV KrF∗ (λ =248 nm, τFWHM≅20 ns) excimer laser source. For the MAPLE experiments the targets submitted to laser radiation consisted on frozen composites obtained by dissolving the biomaterial powder in distilled water at 10 wt % concentration. Conventional pressed biomaterial powder targets were used in the PLD experiments. The surface morphology of the obtained thin films was studied by atomic force microscopy and their structure and composition were investigated by Fourier transform infrared spectroscopy. The possible physical mechanisms implied in the ablation processes of the two techniques, under comparable experimental conditions were identified. The results showed that the growth mode, surface morphology as well as structure of the deposited biomaterial thin films are determined both by the incident laser fluence value as well as target preparation procedure.

  8. A Novel Synthesis of Biomolecular Precursors

    Science.gov (United States)

    Saladino, Raffaele; et al.

    2004-07-01

    We discuss the role of formamide, a product of hydrolysis of hydrogen cyanide (HCN), as precursor of relevant components of nucleic acids in prebiotic conditions and describe the efficient synthesis of purine, adenine, cytosine, thymine, and 5-hydroxymethyluracil. The remarkable formation of some purine acyclonucleosides is also reported, providing a possible solution to the problem of the elusive origin of nucleosides under prebiotic conditions. The role of catalysts as CaCO3, silica, alumina, TiO2 and others in enhancing and variegating the yields of these compounds is described. In addition, formamide acts as a selective agent in the degradation of bases, nucleosides and DNA oligomers. Taken together, these observations reveal a formamide-based synthesis/degradation cycle whose properties provide an equilibration mechanism for the pool of prebiotic precursors.

  9. Improvement Research of Control Rod Drive Mechanism in CARR

    Institute of Scientific and Technical Information of China (English)

    ZHU; Xue-wei; ZHEN; Jian-xiao; LUO; Zhong; YANG; Kun; WANG; Yi-shi; JIA; Yue-guang

    2013-01-01

    We take an improvement research of synchronization in process of control rod drive mechanism(CRDM)inversion.An experimental prototype is designed based on the structure and function of the CRDM,we take some experiments on this experimental prototype,such as maximum loading force experiment,coil temperature rise experiment and stiffness experiment,achieve important magnetic

  10. Fluid Mechanics of Wing Adaptation for Separation Control

    Science.gov (United States)

    Chandrasekhara, M. S.; Wilder, M. C.; Carr, L. W.; Davis, Sanford S. (Technical Monitor)

    1997-01-01

    The unsteady fluid mechanics associated with use of a dynamically deforming leading edge airfoil for achieving compressible flow separation control has been experimentally studied. Changing the leading edge curvature at rapid rates dramatically alters the flow vorticity dynamics which is responsible for the many effects observed in the flow.

  11. Control rod drive mechanism test program. Revision 3

    International Nuclear Information System (INIS)

    A description is given of the testing and development of three control rod drive mechanisms for use on commercial PWR plants designed by B and W. The test results indicate that all three drives are reliable and ensure safe, dependable reactor operation

  12. Context-Based E-Health System Access Control Mechanism

    Science.gov (United States)

    Al-Neyadi, Fahed; Abawajy, Jemal H.

    E-Health systems logically demand a sufficiently fine-grained authorization policy for access control. The access to medical information should not be just role-based but should also include the contextual condition of the role to access data. In this paper, we present a mechanism to extend the standard role-based access control to incorporate contextual information for making access control decisions in e-health application. We present an architecture consisting of authorisation and context infrastructure that work cooperatively to grant access rights based on context-aware authorization policies and context information.

  13. The Effect of Headquarter Integration Mechanisms on Subsidiaries’ New Product Success: From Control to Coordination Mechanism

    Directory of Open Access Journals (Sweden)

    Firmanzah

    2007-10-01

    Full Text Available New product launching (NPL to the local market by subsidiary managers is a strategic activity, which requires organizational supports from MNC global network. The NPL activity is marked by high level of uncertainty, risk, and market failure. Thus, a headquarter needs to integrate the subsidiary NPL into global strategy. There are two mechanisms to integrate subsidiaries’ activities during NPL process; coordination and control process. By testing the effect of each mechanism on role clarity and functional conflict, I found that coordination mechanism increase role clarity between headquarter and subsidiaries’ managers. In contrast, exercising control mechanism reduces role clarity and functional conflict between headquarter and subsidiaries’ managers during NPL. This research shows that both role clarity and functional conflict increase new product commercial performance introduced by subsidiary in the local market.

  14. A New Lyapunov Based Robust Control for Uncertain Mechanical Systems

    Institute of Scientific and Technical Information of China (English)

    ZHEN Sheng-Chao; ZHAO Han; CHEN Ye-Hwa; HUANG Kang

    2014-01-01

    We design a new robust controller for uncertain mechanical systems. The inertia matrix0s singularity and upper bound property are first analyzed. It is shown that the inertia matrix may be positive semi-definite due to over-simplified model. Further-more, the inertia matrix0s being uniformly bounded above is also limited. A robust controller is proposed to suppress the effect of uncertainty in mechanical systems with the assumption of uniform positive definiteness and upper bound of the inertia matrix. We theoretically prove that the robust control renders uniform boundedness and uniform ultimate boundedness. The size of the ultimate boundedness ball can be made arbitrarily small by the designer. Simulation results are presented and discussed.

  15. Sliding mode control on electro-mechanical systems

    Directory of Open Access Journals (Sweden)

    Utkin Vadim I.

    2002-01-01

    Full Text Available The first sliding mode control application may be found in the papers back in the 1930s in Russia. With its versatile yet simple design procedure the methodology is proven to be one of the most powerful solutions for many practical control designs. For the sake of demonstration this paper is oriented towards application aspects of sliding mode control methodology. First the design approach based on the regularization is generalized for mechanical systems. It is shown that stability of zero dynamics should be taken into account when the regular form consists of blocks of second-order equations. Majority of applications in the paper are related to control and estimation methods of automotive industry. New theoretical methods are developed in the context of these studies: sliding made nonlinear observers, observers with binary measurements, parameter estimation in systems with sliding mode control.

  16. Cellular automata modelling of biomolecular networks dynamics.

    Science.gov (United States)

    Bonchev, D; Thomas, S; Apte, A; Kier, L B

    2010-01-01

    The modelling of biological systems dynamics is traditionally performed by ordinary differential equations (ODEs). When dealing with intracellular networks of genes, proteins and metabolites, however, this approach is hindered by network complexity and the lack of experimental kinetic parameters. This opened the field for other modelling techniques, such as cellular automata (CA) and agent-based modelling (ABM). This article reviews this emerging field of studies on network dynamics in molecular biology. The basics of the CA technique are discussed along with an extensive list of related software and websites. The application of CA to networks of biochemical reactions is exemplified in detail by the case studies of the mitogen-activated protein kinase (MAPK) signalling pathway, the FAS-ligand (FASL)-induced and Bcl-2-related apoptosis. The potential of the CA method to model basic pathways patterns, to identify ways to control pathway dynamics and to help in generating strategies to fight with cancer is demonstrated. The different line of CA applications presented includes the search for the best-performing network motifs, an analysis of importance for effective intracellular signalling and pathway cross-talk. PMID:20373215

  17. Ecological production of dryland hairy vetch by mechanical control

    OpenAIRE

    AVCI, Muzaffer; Akar, Taner

    2006-01-01

    Winter hairy vetch, Vicia villosa Roth, gives high grain and hay yields. Mechanical control of weeds is an ecological alternative to the use of herbicides. Among the various mechanical methods, interrow weeding is cheap and practical. Nonetheless, wider row spacing than common practice is needed to ease the operation. We optimized row spacing and seed rates for high grain yield and to ease interrow cultivation. We used two row spacings of 45 and 60 cm as main plots and five seeding rates of 1...

  18. Mechanical control of floating aquatic weed: Kainji Lake experience

    OpenAIRE

    Daddy, F.; Ladu, B.M.B.; Salzwedel, H.; Isa, A.U.

    2003-01-01

    The paper describes the uniqueness and invasiveness of water hyacinth (Eichhornia crassipes) on Lake Kainji (Nigeria). The mechanical blocking device design concept based on the Kainji Lake flooding regime is also highlighted. Water hyacinth coverage, that was over 23% at high water in level in 1994, was reduced to 0.75% in the same period in 2000. Although this feat cannot be wholly ascribed to mechanical control effort alone, the first year of the device's full operation more than 1.04 mill...

  19. Altered neuromuscular control mechanisms of the trapezius muscle in fibromyalgia

    Directory of Open Access Journals (Sweden)

    Karlsson Stefan J

    2010-03-01

    Full Text Available Abstract Background fibromyalgia is a relatively common condition with widespread pain and pressure allodynia, but unknown aetiology. For decades, the association between motor control strategies and chronic pain has been a topic for debate. One long held functional neuromuscular control mechanism is differential activation between regions within a single muscle. The aim of this study was to investigate differences in neuromuscular control, i.e. differential activation, between myalgic trapezius in fibromyalgia patients and healthy controls. Methods 27 fibromyalgia patients and 30 healthy controls performed 3 minutes bilateral shoulder elevations with different loads (0-4 Kg with a high-density surface electromyographical (EMG grid placed above the upper trapezius. Differential activation was quantified by the power spectral median frequency of the difference in EMG amplitude between the cranial and caudal parts of the upper trapezius. The average duration of the differential activation was described by the inverse of the median frequency of the differential activations. Results the median frequency of the differential activations was significantly lower, and the average duration of the differential activations significantly longer in fibromyalgia compared with controls at the two lowest load levels (0-1 Kg (p Conclusion these findings illustrate a different neuromuscular control between fibromyalgia patients and healthy controls during a low load functional task, either sustaining or resulting from the chronic painful condition. The findings may have clinical relevance for rehabilitation strategies for fibromyalgia.

  20. Comparative Study on New AQM Mechanisms for Congestion Control

    Directory of Open Access Journals (Sweden)

    Ramakrishna B B

    2013-09-01

    Full Text Available As usage of network goes increasing day by day, managing network traffic becomes a very difficult task. It is important to avoid high packet loss rates in the Internet. Congestion is the one of the major issue in the present networks. Congestion Control is one of the solutions adopted to solve the congestion issue and to control it. Numbers of queue management algorithms are proposed for congestion control and to reduce high packet loss rates. Active Queue Management (AQM is one such mechanism which provides better control over congestion. In this paper a study is made on recent load based AQM techniques that are proposed and its merits and shortfall is presented.

  1. Biomimetic Control of Mechanical Systems Equipped with Musculotendon Actuators

    Institute of Scientific and Technical Information of China (English)

    Javier Moreno-Valenzuela; Adriana Salinas-Avila

    2011-01-01

    This paper addresses the problem of modelling, control, and simulation of a mechanical system actuated by an agonist-antagonist musculotendon subsystem. Contraction dynamics is given by case I of Zajac's model. Saturated semi positive proportional-derivative-type controllers with switching as neural excitation inputs are proposed. Stability theory of switched system and SOSTOOLS, which is a sum of squares optimization toolbox of Matlab, are used to determine the stability of the obtained closed-loop system. To corroborate the obtained theoretical results numerical simulations are carried out. As additional contribution, the discussed ideas are applied to the biomimetic control of a DC motor, i.e., the position control is addressed assuming the presence of musculotendon actuators. Real-experiments corroborate the expected results.

  2. Mechanisms in Adaptive Feedback Control: Photoisomerization in a Liquid

    CERN Document Server

    Hoki, K; Hoki, Kunihito; Brumer, Paul

    2005-01-01

    The underlying mechanism for Adaptive Feedback Control in the experimental photoisomerization of NK88 in methanol is exposed theoretically. With given laboratory limitations on laser output, the complicated electric fields are shown to achieve their targets in qualitatively simple ways. Further, control over the cis population without laser limitations reveals an incoherent pump-dump scenario as the optimal isomerization strategy. In neither case are there substantial contributions from quantum multiple-path interference or from nuclear wavepacket coherence. Environmentally induced decoherence is shown to justify the use of a simplified theoretical model.

  3. Research on control rod drive mechanism seismic test acceptance criteria

    International Nuclear Information System (INIS)

    Background: There is no clear requirement on the rod drop performance of Control Rod Drive Mechanism (CRDM) in seismic condition. Purpose: Acceptance criteria of AP1OOO CRDM seismic test need to be determined. Methods: Related regulations and the safety function of AP1000 CRDM are investigated, as well as the conclusions drawn from the CRDM seismic tests worldwide. Results: Acceptance criteria of this test should be in accordance with the limit is in AP1OOO Nuclear Plant Safety Analysis Report. Conclusions: Drop time of control rods in AP1000 CRDM seismic test at the room temperature without flow is 2.7 s before and after Safe Shutdown Earthquake (SSE). (authors)

  4. Role of biomolecular logic systems in biosensors and bioactuators

    Science.gov (United States)

    Mailloux, Shay; Katz, Evgeny

    2014-09-01

    An overview of recent advances in biosensors and bioactuators based on biocomputing systems is presented. Biosensors digitally process multiple biochemical signals through Boolean logic networks of coupled biomolecular reactions and produce an output in the form of a YES/NO response. Compared to traditional single-analyte sensing devices, the biocomputing approach enables high-fidelity multianalyte biosensing, which is particularly beneficial for biomedical applications. Multisignal digital biosensors thus promise advances in rapid diagnosis and treatment of diseases by processing complex patterns of physiological biomarkers. Specifically, they can provide timely detection and alert medical personnel of medical emergencies together with immediate therapeutic intervention. Application of the biocomputing concept has been successfully demonstrated for systems performing logic analysis of biomarkers corresponding to different injuries, particularly as exemplified for liver injury. Wide-ranging applications of multianalyte digital biosensors in medicine, environmental monitoring, and homeland security are anticipated. "Smart" bioactuators, for signal-triggered drug release, for example, were designed by interfacing switchable electrodes with biocomputing systems. Integration of biosensing and bioactuating systems with biomolecular information processing systems advances the potential for further scientific innovations and various practical applications.

  5. Biomolecular logic systems: applications to biosensors and bioactuators

    Science.gov (United States)

    Katz, Evgeny

    2014-05-01

    The paper presents an overview of recent advances in biosensors and bioactuators based on the biocomputing concept. Novel biosensors digitally process multiple biochemical signals through Boolean logic networks of coupled biomolecular reactions and produce output in the form of YES/NO response. Compared to traditional single-analyte sensing devices, biocomputing approach enables a high-fidelity multi-analyte biosensing, particularly beneficial for biomedical applications. Multi-signal digital biosensors thus promise advances in rapid diagnosis and treatment of diseases by processing complex patterns of physiological biomarkers. Specifically, they can provide timely detection and alert to medical emergencies, along with an immediate therapeutic intervention. Application of the biocomputing concept has been successfully demonstrated for systems performing logic analysis of biomarkers corresponding to different injuries, particularly exemplified for liver injury. Wide-ranging applications of multi-analyte digital biosensors in medicine, environmental monitoring and homeland security are anticipated. "Smart" bioactuators, for example for signal-triggered drug release, were designed by interfacing switchable electrodes and biocomputing systems. Integration of novel biosensing and bioactuating systems with the biomolecular information processing systems keeps promise for further scientific advances and numerous practical applications.

  6. MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations

    Science.gov (United States)

    Vergara-Perez, Sandra; Marucho, Marcelo

    2016-01-01

    One of the most used and efficient approaches to compute electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation. There are several software packages available that solve the PB equation for molecules in aqueous electrolyte solutions. Most of these software packages are useful for scientists with specialized training and expertise in computational biophysics. However, the user is usually required to manually take several important choices, depending on the complexity of the biological system, to successfully obtain the numerical solution of the PB equation. This may become an obstacle for researchers, experimentalists, even students with no special training in computational methodologies. Aiming to overcome this limitation, in this article we present MPBEC, a free, cross-platform, open-source software that provides non-experts in the field an easy and efficient way to perform biomolecular electrostatic calculations on single processor computers. MPBEC is a Matlab script based on the Adaptative Poisson-Boltzmann Solver, one of the most popular approaches used to solve the PB equation. MPBEC does not require any user programming, text editing or extensive statistical skills, and comes with detailed user-guide documentation. As a unique feature, MPBEC includes a useful graphical user interface (GUI) application which helps and guides users to configure and setup the optimal parameters and approximations to successfully perform the required biomolecular electrostatic calculations. The GUI also incorporates visualization tools to facilitate users pre- and post-analysis of structural and electrical properties of biomolecules.

  7. Programming in Biomolecular Computation: Programs, Self-Interpretation and Visualisation

    Directory of Open Access Journals (Sweden)

    J.G. Simonsen

    2011-01-01

    Full Text Available Our goal is to provide a top-down approach to biomolecular computation. In spite of widespread discussion about connections between biology and computation, one question seems notable by its absence: Where are the programs? We identify a number of common features in programming that seem conspicuously absent from the literature on biomolecular computing; to partially redress this absence, we introduce a model of computation that is evidently programmable, by programs reminiscent of low-level computer machine code; and at the same time biologically plausible: its functioning is defined by a single and relatively small set of chemical-like reaction rules. Further properties: the model is stored-program: programs are the same as data, so programs are not only executable, but are also compilable and interpretable. It is universal: all computable functions can be computed (in natural ways and without arcane encodings of data and algorithm; it is also uniform: new ``hardware'' is not needed to solve new problems; and (last but not least it is Turing complete in a strong sense: a universal algorithm exists, that is able to execute any program, and is not asymptotically inefficient.

  8. Perspective: Coarse-grained models for biomolecular systems

    Science.gov (United States)

    Noid, W. G.

    2013-09-01

    By focusing on essential features, while averaging over less important details, coarse-grained (CG) models provide significant computational and conceptual advantages with respect to more detailed models. Consequently, despite dramatic advances in computational methodologies and resources, CG models enjoy surging popularity and are becoming increasingly equal partners to atomically detailed models. This perspective surveys the rapidly developing landscape of CG models for biomolecular systems. In particular, this review seeks to provide a balanced, coherent, and unified presentation of several distinct approaches for developing CG models, including top-down, network-based, native-centric, knowledge-based, and bottom-up modeling strategies. The review summarizes their basic philosophies, theoretical foundations, typical applications, and recent developments. Additionally, the review identifies fundamental inter-relationships among the diverse approaches and discusses outstanding challenges in the field. When carefully applied and assessed, current CG models provide highly efficient means for investigating the biological consequences of basic physicochemical principles. Moreover, rigorous bottom-up approaches hold great promise for further improving the accuracy and scope of CG models for biomolecular systems.

  9. Biomolecular interaction analysis for carbon nanotubes and for biocompatibility prediction.

    Science.gov (United States)

    Chen, Xiaoping; Fang, Jinzhang; Cheng, Yun; Zheng, Jianhui; Zhang, Jingjing; Chen, Tao; Ruan, Benfang Helen

    2016-07-15

    The interactions between carbon nanotubes (CNTs) and biologics have been commonly studied by various microscopy and spectroscopy methods. We tried biomolecular interaction analysis to measure the kinetic interactions between proteins and CNTs. The analysis demonstrated that wheat germ agglutinin (WGA) and other proteins have high affinity toward carboxylated CNT (f-MWCNT) but essentially no binding to normal CNT (p-MWCNT). The binding of f-MWCNT-protein showed dose dependence, and the observed kinetic constants were in the range of 10(-9) to 10(-11) M with very small off-rates (10(-3) to 10(-7) s(-1)), indicating a relatively tight and stable f-MWCNT-protein complex formation. Interestingly in hemolysis assay, p-MWCNT showed good biocompatibility, f-MWCNT caused 30% hemolysis, but WGA-coated f-MWCNT did not show hemolysis. Furthermore, the f-MWCNT-WGA complex demonstrated enhanced cytotoxicity toward cancer cells, perhaps through the glycoproteins expressed on the cells' surface. Taken together, biomolecular interaction analysis is a precise method that might be useful in evaluating the binding affinity of biologics to CNTs and in predicting biological actions. PMID:27108187

  10. Mechanization and Control Concepts for Biologically Inspired Micro Aerial Vehicles

    Science.gov (United States)

    Raney, David L.; Slominski, Eric C.

    2003-01-01

    It is possible that MAV designs of the future will exploit flapping flight in order to perform missions that require extreme agility, such as rapid flight beneath a forest canopy or within the confines of a building. Many of nature's most agile flyers generate flapping motions through resonant excitation of an aeroelastically tailored structure: muscle tissue is used to excite a vibratory mode of their flexible wing structure that creates propulsion and lift. A number of MAV concepts have been proposed that would operate in a similar fashion. This paper describes an ongoing research activity in which mechanization and control concepts with application to resonant flapping MAVs are being explored. Structural approaches, mechanical design, sensing and wingbeat control concepts inspired by hummingbirds, bats and insects are examined. Experimental results from a testbed capable of generating vibratory wingbeat patterns that approximately match those exhibited by hummingbirds in hover, cruise, and reverse flight are presented.

  11. Antenna mechanism of length control of actin cables

    CERN Document Server

    Mohapatra, Lishibanya; Kondev, Jane

    2014-01-01

    Actin cables are linear cytoskeletal structures that serve as tracks for myosin-based intracellular transport of vesicles and organelles in both yeast and mammalian cells. In a yeast cell undergoing budding, cables are in constant dynamic turnover yet some cables grow from the bud neck toward the back of the mother cell until their length roughly equals the diameter of the mother cell. This raises the question: how is the length of these cables controlled? Here we describe a novel molecular mechanism for cable length control inspired by recent experimental observations in cells. This antenna mechanism involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. We compute the probability distribution of cable lengths as a function of several experimentally tuneable parameters such as the formin-binding affinity of Smy1 and the concentra...

  12. A Unified Approach to Robust Control of Flexible Mechanical Systems Using H-Infinity Control Powered by PD Control

    OpenAIRE

    Toda, Masayoshi

    2010-01-01

    In this article, we have presented the control design method based on H∞ control and PD control aiming at a uniform approach to motion control of various flexible mechanical systems. In particular, with a special emphasis on MIMO systems and the optimal PD gains, we have introduced and demonstrated the concept of the generic problem setting in the modeling phase, the physics behind our control method, that is, how the PD control scheme elaborately powers the H∞ control system, the promisi...

  13. Cable control and take-up mechanisms and x-ray scanning apparatus incorporating such mechanisms

    International Nuclear Information System (INIS)

    In this patent, an invention for cable control and take-up mechanisms for elongated, flexible cables is described. Such cables are used in X-ray scanner apparatus to provide power, electronic signals and fluids. A detailed design and description is given of the cable harness, control and take-up mechanism that would be used in conjunction with an X-ray scanner. As a result of this invention, the cables are prevented from becoming prematurely worn or entangled in the X-ray apparatus during the rotational and translational movements necessary in tomographic examinations. This invention is also applicable to other types of apparatus and environments where a number of different positions is required and where it is necessary to control the take-up of elongated, flexible, cable-like members. (U.K.)

  14. Model Predictive Vibration Control Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures

    CERN Document Server

    Takács, Gergely

    2012-01-01

    Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: ·         the implementation of ...

  15. Multi-finger prehension: control of a redundant mechanical system.

    Science.gov (United States)

    Latash, Mark L; Zatsiorsky, Vladimir M

    2009-01-01

    The human hand has been a fascinating object of study for researchers in both biomechanics and motor control. Studies of human prehension have contributed significantly to the progress in addressing the famous problem of motor redundancy. After a brief review of the hand mechanics, we present results of recent studies that support a general view that the apparently redundant design of the hand is not a source of computational problems but a rich apparatus that allows performing a variety of tasks in a reliable and flexible way (the principle of abundance). Multi-digit synergies have been analyzed at two levels of a hypothetical hierarchy involved in the control of prehensile actions. At the upper level, forces and moments produced by the thumb and virtual finger (an imagined finger with a mechanical action equal to the combined mechanical action of all four fingers of the hand) co-vary to stabilize the gripping action and the orientation of the hand-held object. These results support the principle of superposition suggested earlier in robotics with respect to the control of artificial grippers. At the lower level of the hierarchy, forces and moments produced by individual fingers co-vary to stabilize the magnitude and direction of the force vector and the moment of force produced by the virtual finger. Adjustments to changes in task constraints (such as, for example, friction under individual digits) may be local and synergic. The latter reflect multi-digit prehension synergies and may be analyzed with the so-called chain effects: Sequences of relatively straightforward cause-effect links directly related to mechanical constraints leading to non-trivial strong co-variation between pairs of elemental variables. Analysis of grip force adjustments during motion of hand-held objects suggests that the central nervous system adjusts to gravitational and inertial loads differently. The human hand is a gold mine for researchers interested in the control of natural human

  16. Modelling and Simulation of Volume Controlled Mechanical Ventilation System

    OpenAIRE

    2014-01-01

    Volume controlled mechanical ventilation system is a typical time-delay system, which is applied to ventilate patients who cannot breathe adequately on their own. To illustrate the influences of key parameters of the ventilator on the dynamics of the ventilated respiratory system, this paper firstly derived a new mathematical model of the ventilation system; secondly, simulation and experimental results are compared to verify the mathematical model; lastly, the influences of key parameters of...

  17. Invasive mechanism and control strategy of Ageratina adenophora (Sprengel)

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In order to ascertain the invasive mechanism and control strategy of the invasive Crofton weed, Ageratina adenophora, its ecological adaptability and population differentiation,the formation of single dominant population, displacement of native plants and sustainable management strategies were investigated. The present results helped to clarify and explain such issues as the adaptability post invasion,interaction and competition between inter-and intra-species and community resistance, thereby providing important references to researches on other invasive alien species.

  18. PRIVATE AND PUBLIC FOOD SAFETY CONTROL MECHANISMS: INTERDEPENDENCE AND EFFECTIVENESS

    OpenAIRE

    Mojduszka, Eliza M.

    2004-01-01

    In this paper, we propose new research methods and approaches in the area of food safety economics that would improve the allocation and effectiveness of private and public resources and efforts in ensuring food safety. The focus is on approaches that would build a comprehensive understanding of the interdependence between private and public food safety control mechanisms, including direct regulation by process and performance safety standards, traceability requirements, product liability, an...

  19. Mechanical design and optimal control of humanoid robot (TPinokio

    Directory of Open Access Journals (Sweden)

    Teck Chew Wee

    2014-04-01

    Full Text Available The mechanical structure and the control of the locomotion of bipedal humanoid is an important and challenging domain of research in bipedal robots. Accurate models of the kinematics and dynamics of the robot are essential to achieve bipedal locomotion. Toe-foot walking produces a more natural and faster walking speed and it is even possible to perform stretch knee walking. This study presents the mechanical design of a toe-feet bipedal, TPinokio and the implementation of some optimal walking gait generation methods. The optimality in the gait trajectory is achieved by applying augmented model predictive control method and the pole-zero cancellation method, taken into consideration of a trade-off between walking speed and stability. The mechanism of the TPinokio robot is designed in modular form, so that its kinematics can be modelled accurately into a multiple point-mass system, its dynamics is modelled using the single and double mass inverted pendulum model and zero-moment-point concept. The effectiveness of the design and control technique is validated by simulation testing with the robot walking on flat surface and climbing stairs.

  20. Antenna Mechanism of Length Control of Actin Cables.

    Directory of Open Access Journals (Sweden)

    Lishibanya Mohapatra

    2015-06-01

    Full Text Available Actin cables are linear cytoskeletal structures that serve as tracks for myosin-based intracellular transport of vesicles and organelles in both yeast and mammalian cells. In a yeast cell undergoing budding, cables are in constant dynamic turnover yet some cables grow from the bud neck toward the back of the mother cell until their length roughly equals the diameter of the mother cell. This raises the question: how is the length of these cables controlled? Here we describe a novel molecular mechanism for cable length control inspired by recent experimental observations in cells. This "antenna mechanism" involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. We compute the probability distribution of cable lengths as a function of several experimentally tuneable parameters such as the formin-binding affinity of Smy1 and the concentration of myosin motors delivering Smy1. These results provide testable predictions of the antenna mechanism of actin-cable length control.

  1. Conceptual Design of Bottom-mounted Control Rod Drive Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Haeng; Kim, Sanghaun; Yoo, Yeonsik; Cho, Yeonggarp; Kim, Dongmin; Kim, Jong In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The arrangement of the BMCRDMs and irradiation holes in the core is therefore easier than that of the top-mounted CRDM. Hence, many foreign research reactors, such as JRR-3M, JMTR, OPAL, and CARR, have adopted the BMCRDM concept. The purpose of this paper is to introduce the basic design concept on the BMCRDM. The major differences of the CRDMs between HANARO and KJRR are compared, and the design features and individual system of the BMCRDM for the KJRR are described. The Control Rod Drive Mechanism (CRDM) is a device to regulate the reactor power by changing the position of a Control Absorber Rod (CAR) and to shut down the reactor by fully inserting the CAR into the core within a specified time. The Bottom-Mounted CRDM (BMCRDM) for the KiJang Research Reactor (KJRR) is a quite different design concept compared to the top-mounted CRDM such as HANARO and JRTR. The main drive mechanism of the BMCRDM is located in a Reactivity Control Mechanism (RCM) room under the reactor pool bottom, which makes the interference with equipment in the reactor pool reduced.

  2. Conceptual Design of Bottom-mounted Control Rod Drive Mechanism

    International Nuclear Information System (INIS)

    The arrangement of the BMCRDMs and irradiation holes in the core is therefore easier than that of the top-mounted CRDM. Hence, many foreign research reactors, such as JRR-3M, JMTR, OPAL, and CARR, have adopted the BMCRDM concept. The purpose of this paper is to introduce the basic design concept on the BMCRDM. The major differences of the CRDMs between HANARO and KJRR are compared, and the design features and individual system of the BMCRDM for the KJRR are described. The Control Rod Drive Mechanism (CRDM) is a device to regulate the reactor power by changing the position of a Control Absorber Rod (CAR) and to shut down the reactor by fully inserting the CAR into the core within a specified time. The Bottom-Mounted CRDM (BMCRDM) for the KiJang Research Reactor (KJRR) is a quite different design concept compared to the top-mounted CRDM such as HANARO and JRTR. The main drive mechanism of the BMCRDM is located in a Reactivity Control Mechanism (RCM) room under the reactor pool bottom, which makes the interference with equipment in the reactor pool reduced

  3. Event Detection and Sub-state Discovery from Bio-molecular Simulations Using Higher-Order Statistics: Application To Enzyme Adenylate Kinase

    OpenAIRE

    Ramanathan, Arvind; Savol, Andrej J.; Agarwal, Pratul K.; Chennubhotla, Chakra S.

    2012-01-01

    Biomolecular simulations at milli-second and longer timescales can provide vital insights into functional mechanisms. Since post-simulation analyses of such large trajectory data-sets can be a limiting factor in obtaining biological insights, there is an emerging need to identify key dynamical events and relating these events to the biological function online, that is, as simulations are progressing. Recently, we have introduced a novel computational technique, quasi-anharmonic analysis (QAA)...

  4. Dynamics and control of mechanical systems in offshore engineering

    CERN Document Server

    He, Wei; How, Bernard Voon Ee; Choo, Yoo Sang

    2014-01-01

    Dynamics and Control of Mechanical Systems in Offshore Engineering is a comprehensive treatment of marine mechanical systems (MMS) involved in processes of great importance such as oil drilling and mineral recovery. Ranging from nonlinear dynamic modeling and stability analysis of flexible riser systems, through advanced control design for an installation system with a single rigid payload attached by thrusters, to robust adaptive control for mooring systems, it is an authoritative reference on the dynamics and control of MMS. Readers will gain not only a complete picture of MMS at the system level, but also a better understanding of the technical considerations involved and solutions to problems that commonly arise from dealing with them. The text provides:                                                                                                                                 ...

  5. Comparison of different mechanical weed control strategies in sugar beets

    Directory of Open Access Journals (Sweden)

    Kunz, Christoph

    2016-02-01

    Full Text Available In sugar beet (Beta vulgaris weed control is commonly performed by herbicide application applied broadcast at splitting during the cultivation period. Mechanical weeding can be an alternative to chemical weed control. The aim of this experiment was the estimation of weed control efficacy with the use of automatic steering technologies by camera guidance, the use of different intra row weed control implements in conservation tillage systems and the influence of these techniques to the number of uprooted sugar beets. A field experiment with a randomized complete plot design was conducted in 2015 at Ihinger Hof, Germany. Weed density ranged from 0 to 12 plants m-2 with Chenopodium album, Polygonum convolvulus, Polygonum aviculare as the most abundant weed species. Hoeing with the use of automatic steering technologies reduced the weed density by 82%. The use of finger weeders, rotary-harrow and torsion finger weeder reduced the weed density by 29% compared to common hoeing strategies. Differences in the number of uprooted sugar beets were not found across all treatments. We revealed the possibility of a more intense use of mechanical weeding technologies in combination with precision farming technologies in sugar beet.

  6. Flexible neural mechanisms of cognitive control within human prefrontal cortex.

    Science.gov (United States)

    Braver, Todd S; Paxton, Jessica L; Locke, Hannah S; Barch, Deanna M

    2009-05-01

    A major challenge in research on executive control is to reveal its functional decomposition into underlying neural mechanisms. A typical assumption is that this decomposition occurs solely through anatomically based dissociations. Here we tested an alternative hypothesis that different cognitive control processes may be implemented within the same brain regions, with fractionation and dissociation occurring on the basis of temporal dynamics. Regions within lateral prefrontal cortex (PFC) were examined that, in a prior study, exhibited contrasting temporal dynamics between older and younger adults during performance of the AX-CPT cognitive control task. The temporal dynamics in younger adults fit a proactive control pattern (primarily cue-based activation), whereas in older adults a reactive control pattern was found (primarily probe-based activation). In the current study, we found that following a period of task-strategy training, these older adults exhibited a proactive shift within a subset of the PFC regions, normalizing their activity dynamics toward young adult patterns. Conversely, under conditions of penalty-based monetary incentives, the younger adults exhibited a reactive shift some of the same regions, altering their temporal dynamics toward the older adult baseline pattern. These experimentally induced crossover patterns of temporal dynamics provide strong support for dual modes of cognitive control that can be flexibly shifted within PFC regions, via modulation of neural responses to changing task conditions or behavioral goals. PMID:19380750

  7. The Effect of Biomolecular Gradients on Mesenchymal Stem Cell Chondrogenesis under Shear Stress

    Directory of Open Access Journals (Sweden)

    Alexander L. Rivera

    2015-03-01

    Full Text Available Tissue engineering is viewed as a promising option for long-term repair of cartilage lesions, but current engineered cartilage constructs fail to match the mechanical properties of native tissue. The extracellular matrix of adult human articular cartilage contains highly organized collagen fibrils that enhance the mechanical properties of the tissue. Unlike articular cartilage, mesenchymal stem cell (MSC based tissue engineered cartilage constructs lack this oriented microstructure and therefore display much lower mechanical strength. The goal of this study was to investigate the effect of biomolecular gradients and shear stress on MSCs undergoing chondrogenesis within a microfluidic device. Via poly(dimethyl siloxane soft-lithography, microfluidic devices containing a gradient generator were created. Human MSCs were seeded within these chambers and exposed to flow-based transforming growth factor β1 (TGF-β1 gradients. When the MSCs were both confluent and exposed to shear stress, the cells aligned along the flow direction. Exposure to TGF-β1 gradients led to chondrogenesis of MSCs, indicated by positive type II collagen staining. These results, together with a previous study that showed that aligned MSCs produce aligned collagen, suggest that oriented cartilage tissue structures with superior mechanical properties can be obtained by aligning MSCs along the flow direction and exposing MSCs to chondrogenic gradients.

  8. Patient Machine Interface for the Control of Mechanical Ventilation Devices

    Directory of Open Access Journals (Sweden)

    Rolando Grave de Peralta

    2013-11-01

    Full Text Available The potential of Brain Computer Interfaces (BCIs to translate brain activity into commands to control external devices during mechanical ventilation (MV remains largely unexplored. This is surprising since the amount of patients that might benefit from such assistance is considerably larger than the number of patients requiring BCI for motor control. Given the transient nature of MV (i.e., used mainly over night or during acute clinical conditions, precluding the use of invasive methods, and inspired by current research on BCIs, we argue that scalp recorded EEG (electroencephalography signals can provide a non-invasive direct communication pathway between the brain and the ventilator. In this paper we propose a Patient Ventilator Interface (PVI to control a ventilator during variable conscious states (i.e., wake, sleep, etc.. After a brief introduction on the neural control of breathing and the clinical conditions requiring the use of MV we discuss the conventional techniques used during MV. The schema of the PVI is presented followed by a description of the neural signals that can be used for the on-line control. To illustrate the full approach, we present data from a healthy subject, where the inspiration and expiration periods during voluntary breathing were discriminated with a 92% accuracy (10-fold cross-validation from the scalp EEG data. The paper ends with a discussion on the advantages and obstacles that can be forecasted in this novel application of the concept of BCI.

  9. Nanomechanical force transducers for biomolecular and intracellular measurements: is there room to shrink and why do it?

    International Nuclear Information System (INIS)

    Over the past couple of decades there has been a tremendous amount of progress on the development of ultrasensitive nanomechanical instruments, which has enabled scientists to peer for the first time into the mechanical world of biomolecular systems. Currently, work-horse instruments such as the atomic force microscope and optical/magnetic tweezers have provided the resolution necessary to extract quantitative force data from various molecular systems down to the femtonewton range, but it remains difficult to access the intracellular environment with these analytical tools as they have fairly large sizes and complicated feedback systems. This review is focused on highlighting some of the major milestones and discoveries in the field of biomolecular mechanics that have been made possible by the development of advanced atomic force microscope and tweezer techniques as well as on introducing emerging state-of-the-art nanomechanical force transducers that are addressing the size limitations presented by these standard tools. We will first briefly cover the basic setup and operation of these instruments, and then focus heavily on summarizing advances in in vitro force studies at both the molecular and cellular level. The last part of this review will include strategies for shrinking down the size of force transducers and provide insight into why this may be important for gaining a more complete understanding of cellular activity and function. (report on progress)

  10. Study on dynamic lifting characteristics of control rod drive mechanism

    International Nuclear Information System (INIS)

    Based on the equations of the electric circuit and the magnetic circuit and analysis of the dynamic lifting process for the control rod drive mechanism (CRDM), coupled magnetic-electric-mechanical equations both for the static status and the dynamic status are derived. The analytical method is utilized to obtain the current and the time when the lift starts. The numerical simulation method of dynamic analysis recommended by ASME Code is utilized to simulate the dynamic lifting process of CRDM, and the dynamic features of the system with different design gaps are studied. Conclusions are drawn as: (1) the lifting-start time increases with the design gap, and the time for the lifting process is longer with larger gaps; (2) the lifting velocity increases with time; (3) the lifting acceleration increases with time, and with smaller gaps, the impact acceleration is larger. (author)

  11. Modelling and Simulation of Volume Controlled Mechanical Ventilation System

    Directory of Open Access Journals (Sweden)

    Yan Shi

    2014-01-01

    Full Text Available Volume controlled mechanical ventilation system is a typical time-delay system, which is applied to ventilate patients who cannot breathe adequately on their own. To illustrate the influences of key parameters of the ventilator on the dynamics of the ventilated respiratory system, this paper firstly derived a new mathematical model of the ventilation system; secondly, simulation and experimental results are compared to verify the mathematical model; lastly, the influences of key parameters of ventilator on the dynamics of the ventilated respiratory system are carried out. This study can be helpful in the VCV ventilation treatment and respiratory diagnostics.

  12. Minimal metabolic pathway structure is consistent with associated biomolecular interactions.

    Science.gov (United States)

    Bordbar, Aarash; Nagarajan, Harish; Lewis, Nathan E; Latif, Haythem; Ebrahim, Ali; Federowicz, Stephen; Schellenberger, Jan; Palsson, Bernhard O

    2014-01-01

    Pathways are a universal paradigm for functionally describing cellular processes. Even though advances in high-throughput data generation have transformed biology, the core of our biological understanding, and hence data interpretation, is still predicated on human-defined pathways. Here, we introduce an unbiased, pathway structure for genome-scale metabolic networks defined based on principles of parsimony that do not mimic canonical human-defined textbook pathways. Instead, these minimal pathways better describe multiple independent pathway-associated biomolecular interaction datasets suggesting a functional organization for metabolism based on parsimonious use of cellular components. We use the inherent predictive capability of these pathways to experimentally discover novel transcriptional regulatory interactions in Escherichia coli metabolism for three transcription factors, effectively doubling the known regulatory roles for Nac and MntR. This study suggests an underlying and fundamental principle in the evolutionary selection of pathway structures; namely, that pathways may be minimal, independent, and segregated. PMID:24987116

  13. Simulation of Parallel Logical Operations with Biomolecular Computing

    Directory of Open Access Journals (Sweden)

    Mahnaz Kadkhoda

    2008-01-01

    Full Text Available Biomolecular computing is the computational method that uses the potential of DNA as a parallel computing device. DNA computing can be used to solve NP-complete problems. An appropriate application of DNA computation is large-scale evaluation of parallel computation models such as Boolean Circuits. In this study, we present a molecular-based algorithm for evaluation of Nand-based Boolean Circuits. The contribution of this paper is that the proposed algorithm has been implemented using only three molecular operations and the number of passes in each level is decreased to less than half of previously addressed in the literature. Thus, the proposed algorithm is much easier to implement in the laboratory.

  14. Ion irradiation and biomolecular radiation damage II. Indirect effect

    CERN Document Server

    Wang, Wei; Su, Wenhui

    2010-01-01

    It has been reported that damage of genome in a living cell by ionizing radiation is about one-third direct and two-thirds indirect. The former which has been introduced in our last paper, concerns direct energy deposition and ionizing reactions in the biomolecules; the latter results from radiation induced reactive species (mainly radicals) in the medium (mainly water) surrounding the biomolecules. In this review, a short description of ion implantation induced radical formation in water is presented. Then we summarize the aqueous radical reaction chemistry of DNA, protein and their components, followed by a brief introduction of biomolecular damage induced by secondary particles (ions and electron). Some downstream biological effects are also discussed.

  15. Perspective: Markov models for long-timescale biomolecular dynamics

    International Nuclear Information System (INIS)

    Molecular dynamics simulations have the potential to provide atomic-level detail and insight to important questions in chemical physics that cannot be observed in typical experiments. However, simply generating a long trajectory is insufficient, as researchers must be able to transform the data in a simulation trajectory into specific scientific insights. Although this analysis step has often been taken for granted, it deserves further attention as large-scale simulations become increasingly routine. In this perspective, we discuss the application of Markov models to the analysis of large-scale biomolecular simulations. We draw attention to recent improvements in the construction of these models as well as several important open issues. In addition, we highlight recent theoretical advances that pave the way for a new generation of models of molecular kinetics

  16. Computational and theoretical aspects of biomolecular structure and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.E.; Berendzen, J.; Catasti, P., Chen, X. [and others

    1996-09-01

    This is the final report for a project that sought to evaluate and develop theoretical, and computational bases for designing, performing, and analyzing experimental studies in structural biology. Simulations of large biomolecular systems in solution, hydrophobic interactions, and quantum chemical calculations for large systems have been performed. We have developed a code that implements the Fast Multipole Algorithm (FMA) that scales linearly in the number of particles simulated in a large system. New methods have been developed for the analysis of multidimensional NMR data in order to obtain high resolution atomic structures. These methods have been applied to the study of DNA sequences in the human centromere, sequences linked to genetic diseases, and the dynamics and structure of myoglobin.

  17. Nanopatterned structures for biomolecular analysis toward genomic and proteomic applications

    Science.gov (United States)

    Chou, Chia-Fu; Gu, Jian; Wei, Qihuo; Liu, Yingjie; Gupta, Ravi; Nishio, Takeyoshi; Zenhausern, Frederic

    2005-01-01

    We report our fabrication of nanoscale devices using electron beam and nanoimprint lithography (NIL). We focus our study in the emerging fields of NIL, nanophotonics and nanobiotechnology and give a few examples as to how these nanodevices may be applied toward genomic and proteomic applications for molecular analysis. The examples include reverse NIL-fabricated nanofluidic channels for DNA stretching, nanoscale molecular traps constructed from dielectric constrictions for DNA or protein focusing by dielectrophoresis, multi-layer nanoburger and nanoburger multiplets for optimized surface-plasma enhanced Raman scattering for protein detection, and biomolecular motor-based nanosystems. The development of advanced nanopatterning techniques promises reliable and high-throughput manufacturing of nanodevices which could impact significantly on the areas of genomics, proteomics, drug discovery and molecular clinical diagnostics.

  18. Perspective: Markov Models for Long-Timescale Biomolecular Dynamics

    CERN Document Server

    Schwantes, Christian R; Pande, Vijay S

    2014-01-01

    Molecular dynamics simulations have the potential to provide atomic-level detail and insight to important questions in chemical physics that cannot be observed in typical experiments. However, simply generating a long trajectory is insufficient, as researchers must be able to transform the data in a simulation trajectory into specific scientific insights. Although this analysis step has often been taken for granted, it deserves further attention as large-scale simulations become increasingly routine. In this perspective, we discuss the application of Markov models to the analysis of large-scale biomolecular simulations. We draw attention to recent improvements in the construction of these models as well as several important open issues. In addition, we highlight recent theoretical advances that pave the way for a new generation of models of molecular kinetics.

  19. The biomolecular corona of nanoparticles in circulating biological media

    Science.gov (United States)

    Pozzi, D.; Caracciolo, G.; Digiacomo, L.; Colapicchioni, V.; Palchetti, S.; Capriotti, A. L.; Cavaliere, C.; Zenezini Chiozzi, R.; Puglisi, A.; Laganà, A.

    2015-08-01

    When nanoparticles come into contact with biological media, they are covered by a biomolecular `corona', which confers a new identity to the particles. In all the studies reported so far nanoparticles are incubated with isolated plasma or serum that are used as a model for protein adsorption. Anyway, bodily fluids are dynamic in nature so the question arises on whether the incubation protocol, i.e. dynamic vs. static incubation, could affect the composition and structure of the biomolecular corona. Here we let multicomponent liposomes interact with fetal bovine serum (FBS) both statically and dynamically, i.e. in contact with circulating FBS (~40 cm s-1). The structure and composition of the liposome-protein corona, as determined by dynamic light scattering, electrophoretic light scattering and liquid chromatography tandem mass spectrometry, were found to be dependent on the incubation protocol. Specifically, following dynamic exposure to FBS, multicomponent liposomes were less enriched in complement proteins and appreciably more enriched in apolipoproteins and acute phase proteins (e.g. alpha-1-antitrypsin and inter-alpha-trypsin inhibitor heavy chain H3) that are involved in relevant interactions between nanoparticles and living systems. Supported by our results, we speculate that efficient predictive modeling of nanoparticle behavior in vivo will require accurate knowledge of nanoparticle-specific protein fingerprints in circulating biological media.When nanoparticles come into contact with biological media, they are covered by a biomolecular `corona', which confers a new identity to the particles. In all the studies reported so far nanoparticles are incubated with isolated plasma or serum that are used as a model for protein adsorption. Anyway, bodily fluids are dynamic in nature so the question arises on whether the incubation protocol, i.e. dynamic vs. static incubation, could affect the composition and structure of the biomolecular corona. Here we let

  20. Control and Virtual Reality Simulation of Tendon Driven Mechanisms

    International Nuclear Information System (INIS)

    In this paper the authors present a control strategy for tendon driven mechanisms. The aim of the control system is to find the correct torques which the motors have to exert to make the end effector describe a specific trajectory. In robotic assemblies this problem is often solved with closed loop algorithm, but here a simpler method, based on a open loop strategy, is developed. The difficulties in the actuation are in keeping the belt tight during all working conditions. So an innovative solution of this problem is presented here. This methodology can be easily applied in real time monitoring or very fast operations. For this reason several virtual reality simulations, developed using codes written in Virtual Reality Markup Language, are also presented. This approach is very efficient because it requires a very low cpu computation time, small size files, and the manipulator can be easily put into different simulated scenarios

  1. Tracking control mechanisms for positioning automatic CRD exchanger

    International Nuclear Information System (INIS)

    Purpose: To enable completely automatic positioning for the automatic CRD (control rod drives) exchanger, as well as shorten the time for the exchanging operation and save the operator's labour. Constitution: Images of a target attached to the lower flange face of CRD are picked up by a fiber scope mounted to a mounting head. The images are converted through I.T.V. into electrical signals, passed through a cable and then sent to a pattern recognition mechanism. The position for the images of the target is calculated and the calculated position is sent to a drive control section, where the position for the images of the target is compared with a reference position for the images (exactly aligned position) and the moving amount of the mounting head is calculated to move the driving section and thereby complete the positioning. (Kawakami, Y.)

  2. Heralded Control of Mechanical Motion by Single Spins

    Science.gov (United States)

    Rao, D. D. Bhaktavatsala; Momenzadeh, S. Ali; Wrachtrup, Jörg

    2016-08-01

    We propose a method to achieve a high degree of control of nanomechanical oscillators by coupling their mechanical motion to single spins. Manipulating the spin alone and measuring its quantum state heralds the cooling or squeezing of the oscillator even for weak spin-oscillator couplings. We analytically show that the asymptotic behavior of the oscillator is determined by a spin-induced thermal filter function whose overlap with the initial thermal distribution of the oscillator determines its cooling, heating, or squeezing. Counterintuitively, the rate of cooling dependence on the instantaneous thermal occupancy of the oscillator renders robust cooling or squeezing even for high initial temperatures and damping rates. We further estimate how the proposed scheme can be used to control the motion of a thin diamond cantilever by coupling it to its defect centers at low temperature.

  3. Integration of biomolecular logic gates with field-effect transducers

    International Nuclear Information System (INIS)

    Highlights: → Enzyme-based AND/OR logic gates are integrated with a capacitive field-effect sensor. → The AND/OR logic gates compose of multi-enzyme system immobilised on sensor surface. → Logic gates were activated by different combinations of chemical inputs (analytes). → The logic output (pH change) produced by the enzymes was read out by the sensor. - Abstract: The integration of biomolecular logic gates with field-effect devices - the basic element of conventional electronic logic gates and computing - is one of the most attractive and promising approaches for the transformation of biomolecular logic principles into macroscopically useable electrical output signals. In this work, capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensors based on a p-Si-SiO2-Ta2O5 structure modified with a multi-enzyme membrane have been used for electronic transduction of biochemical signals processed by enzyme-based OR and AND logic gates. The realised OR logic gate composes of two enzymes (glucose oxidase and esterase) and was activated by ethyl butyrate or/and glucose. The AND logic gate composes of three enzymes (invertase, mutarotase and glucose oxidase) and was activated by two chemical input signals: sucrose and dissolved oxygen. The developed integrated enzyme logic gates produce local pH changes at the EIS sensor surface as a result of biochemical reactions activated by different combinations of chemical input signals, while the pH value of the bulk solution remains unchanged. The pH-induced charge changes at the gate-insulator (Ta2O5) surface of the EIS transducer result in an electronic signal corresponding to the logic output produced by the immobilised enzymes. The logic output signals have been read out by means of a constant-capacitance method.

  4. Control of mechanical systems with rolling constraints: Application to dynamic control of mobile robots

    Science.gov (United States)

    Sarkar, Nilanjan; Yun, Xiaoping; Kumar, Vijay

    1994-01-01

    There are many examples of mechanical systems that require rolling contacts between two or more rigid bodies. Rolling contacts engender nonholonomic constraints in an otherwise holonomic system. In this article, we develop a unified approach to the control of mechanical systems subject to both holonomic and nonholonomic constraints. We first present a state space realization of a constrained system. We then discuss the input-output linearization and zero dynamics of the system. This approach is applied to the dynamic control of mobile robots. Two types of control algorithms for mobile robots are investigated: trajectory tracking and path following. In each case, a smooth nonlinear feedback is obtained to achieve asymptotic input-output stability and Lagrange stability of the overall system. Simulation results are presented to demonstrate the effectiveness of the control algorithms and to compare the performane of trajectory-tracking and path-following algorithms.

  5. Uranium dioxide sintering Kinetics and mechanisms under controlled oxygen potentials

    International Nuclear Information System (INIS)

    The initial, intermediate, and final sintering stages of uranium dioxide were investigated as a function of stoichiometry and temperature by following the kinetics of the sintering reaction. Stoichiometry was controlled by means of the oxygen potential of the sintering atmosphere, which was measured continuously by solid-state oxygen sensors. Included in the kinetic study were microspheres originated from UO2 gels and UO2 pellets produced by isostatic pressing ceramic grade powders. The microspheres sintering behavior was examined using hot-stage microscopy and a specially designed high-temperature, controlled atmosphere furnace. This same furnace was employed as part of an optical dilatometer, which was utilized in the UO2 pellet sintering investigations. For controlling the deviations from stoichiometry during heat treatment, the oxygen partial pressure in the sintering atmosphere was varied by passing the gas through a Cu-Ti-Cu oxygen trap. The trap temperature determined the oxygen partial pressure of the outflowing mixture. Dry hydrogen was also used in some of the UO sub(2+x) sintering experiments. The determination of diametrial shrinkages and sintering indices was made utilizing high-speed microcinematography and ultra-microbalance techniques. It was observed that the oxygen potential has a substantial influence on the kinetics of the three sintering stages. The control of the sintering atmosphere oxygen partial pressure led to very fast densification of UO sub(2+x). Values in the interval 95.0 to 99.5% of theoretical density were reached in less than one minute. Uranium volume diffusion is the dominant mechanism in the initial and intermediate sintering stages. For the final stage, uranium grain boundary diffusion was found to be the main sintering mechanism. (Author)

  6. Control of forced vibrations of mechanical structures by an electromagnetic controller with a permanent magnet

    DEFF Research Database (Denmark)

    Stein, George Juraj; Darula, Radoslav; Sorokin, Sergey

    2012-01-01

    A theoretical analysis of an electromagnetic vibration controller is presented. The analyzed device consists of a pot-type iron core with a coil and a permanent magnet as a source of constant magnetic flux. The magnetic circuit is closed by a yoke, excited by an external harmonic mechanical force...... lumped-parameter approach and the actuating principle for control of forced vibration is investigated....

  7. Mechanism of controlled release kinetics from medical devices

    Directory of Open Access Journals (Sweden)

    A. Raval

    2010-06-01

    Full Text Available Utilization of biodegradable polymers for controlled drug delivery has gained immense attention in the pharmaceutical and medical device industry to administer various drugs, proteins and other bio-molecules both systematically and locally to cure several diseases. The efficacy and toxicity of this local therapeutics depends upon drug release kinetics, which will further decide drug deposition, distribution, and retention at the target site. Drug Eluting Stent (DES presently possesses clinical importance as an alternative to Coronary Artery Bypass Grafting due to the ease of the procedure and comparable safety and efficacy. Many models have been developed to describe the drug delivery from polymeric carriers based on the different mechanisms which control the release phenomenon from DES. Advanced characterization techniques facilitate an understanding of the complexities behind design and related drug release behavior of drug eluting stents, which aids in the development of improved future drug eluting systems. This review discusses different drug release mechanisms, engineering principles, mathematical models and current trends that are proposed for drug-polymer coated medical devices such as cardiovascular stents and different analytical methods currently utilized to probe diverse characteristics of drug eluting devices.

  8. Neural mechanisms of attentional control in mindfulness meditation

    Directory of Open Access Journals (Sweden)

    Peter eMalinowski

    2013-02-01

    Full Text Available The scientific interest in meditation and mindfulness practice has recently seen an unprecedented surge. After an initial phase of presenting beneficial effects of mindfulness practice in various domains, research is now seeking to unravel the underlying psychological and neurophysiological mechanisms. Advances in understanding these processes are required for improving and fine-tuning mindfulness-based interventions that target specific conditions such as eating disorders or attention deficit hyperactivity disorders. This review presents a theoretical framework that emphasizes the central role of attentional control mechanisms in the development of mindfulness skills. It discusses the phenomenological level of experience during meditation, the different attentional functions that are involved, and relates these to the brain networks that subserve these functions. On the basis of currently available empirical evidence specific processes as to how attention exerts its positive influence are considered and it is concluded that meditation practice appears to positively impact attentional functions by improving resource allocation processes. As a result, attentional resources are allocated more fully during early processing phases which subsequently enhance further processing. Neural changes resulting from a pure form of mindfulness practice that is central to most mindfulness programs are considered from the perspective that they constitute a useful reference point for future research. Furthermore, possible interrelations between the improvement of attentional control and emotion regulation skills are discussed.

  9. Development of embedded Control System for Control and Safety Rod Drive Mechanisms (CSRDMs) of PFBR

    International Nuclear Information System (INIS)

    Prototype Fast Breeder Reactor (PFBR), a 500 MWe, Sodium cooled, fast breeder reactor is nearing completion at Kalpakkam, Tamil Nadu. PFBR has two independent, fast acting and diverse shutdown systems, one with nine Control and Safety Rods (CSRs) and another with three Diverse Safety Rods (DSRs), with independent driving mechanisms called CSRDMs and DSRDMs respectively. This paper deals with the development of Real Time Computer based Control system for controlling nine CSRDMs with model based software development environment - SCADE (Safety Critical Application Development Environment). (author)

  10. Phloem transport: a review of mechanisms and controls.

    Science.gov (United States)

    De Schepper, Veerle; De Swaef, Tom; Bauweraerts, Ingvar; Steppe, Kathy

    2013-11-01

    It is generally believed that an osmotically generated pressure gradient drives the phloem mass flow. So far, this widely accepted Münch theory has required remarkably few adaptations, but the debate on alternative and additional hypotheses is still ongoing. Recently, a possible shortcoming of the Münch theory has been pointed out, suggesting that the Münch pressure flow is more suitable for herbs than for trees. Estimation of the phloem resistance indicates that a point might be reached in long sieve tubes where the pressure required to drive the Münch flow cannot be generated. Therefore, the relay hypothesis regained belief as it implies that the sieve tubes are shorter then the plant's axial axis. In the source phloem, three different loading strategies exist which probably result from evolutionary advantages. Passive diffusion seems to be the most primitive one, whereas active loading strategies substantially increase the growth potential. Along the transport phloem, a leakage-retrieval mechanism is observed. Appreciable amounts of carbohydrates are lost from the sieve tubes to feed the lateral sinks, while a part of these lost carbohydrates is subsequently reloaded into the sieve tubes. This mechanism is probably involved to buffer short-term irregularities in phloem turgor and gradient. In the long term, the mechanism controls the replenishment and remobilization of lateral stem storage tissues. As phloem of higher plants has multiple functions in plant development, reproduction, signalling, and growth, the fundamental understanding of the mechanisms behind phloem transport should be elucidated to increase our ability to influence plant growth and development. PMID:24106290

  11. Pushing back the frontiers of mercury speciation using a combination of biomolecular and isotopic signatures: challenge and perspectives.

    Science.gov (United States)

    Pedrero, Zoyne; Donard, Olivier F X; Amouroux, David

    2016-04-01

    Mercury (Hg) pollution is considered a major environmental problem due to the extreme toxicity of Hg. However, Hg metabolic pathways in biota remain elusive. An understanding of these pathways is crucial to elucidating the (eco)toxic effects of Hg and its biogeochemical cycle. The development of a new analytical methodology based on both speciation and natural isotopic fractionation represents a promising approach for metabolic studies of Hg and other metal(loid)s. Speciation provides valuable information about the reactivity and potential toxicity of metabolites, while the use of natural isotopic signature analysis adds a complementary dynamic dimension that allows the life history of the target element to be probed, the source of the target element (i.e., the source of pollution) to be identified, and reactions to be tracked. The resulting combined (bio)molecular and isotopic signature affords precious insight into the behavior of Hg in biota and Hg detoxification mechanisms. In the long term, this highly innovative methodology could be used in life and environmental science studies of metal(loid)s to push back the frontiers of our knowledge in this field. This paper summarizes the current status of the application of Hg speciation and the isotopic signature of Hg at the biomolecular level in living organisms, and discusses potential future uses of this combination of techniques. Graphical Abstract Application of Hg speciation and the isotopic signature of Hg to enhance our understanding of the roles of Hg in metabolic, toxicological, and environmental processes. PMID:26753975

  12. Chemo-mechanical control of neural stem cell differentiation

    Science.gov (United States)

    Geishecker, Emily R.

    Cellular processes such as adhesion, proliferation, and differentiation are controlled in part by cell interactions with the microenvironment. Cells can sense and respond to a variety of stimuli, including soluble and insoluble factors (such as proteins and small molecules) and externally applied mechanical stresses. Mechanical properties of the environment, such as substrate stiffness, have also been suggested to play an important role in cell processes. The roles of both biochemical and mechanical signaling in fate modification of stem cells have been explored independently. However, very few studies have been performed to study well-controlled chemo-mechanotransduction. The objective of this work is to design, synthesize, and characterize a chemo-mechanical substrate to encourage neuronal differentiation of C17.2 neural stem cells. In Chapter 2, Polyacrylamide (PA) gels of varying stiffnesses are functionalized with differing amounts of whole collagen to investigate the role of protein concentration in combination with substrate stiffness. As expected, neurons on the softest substrate were more in number and neuronal morphology than those on stiffer substrates. Neurons appeared locally aligned with an expansive network of neurites. Additional experiments would allow for statistical analysis to determine if and how collagen density impacts C17.2 differentiation in combination with substrate stiffness. Due to difficulties associated with whole protein approaches, a similar platform was developed using mixed adhesive peptides, derived from fibronectin and laminin, and is presented in Chapter 3. The matrix elasticity and peptide concentration can be individually modulated to systematically probe the effects of chemo-mechanical signaling on differentiation of C17.2 cells. Polyacrylamide gel stiffness was confirmed using rheological techniques and found to support values published by Yeung et al. [1]. Cellular growth and differentiation were assessed by cell counts

  13. Extension of the GLYCAM06 Biomolecular Force Field to Lipids, Lipid Bilayers and Glycolipids.

    Science.gov (United States)

    Tessier, Matthew B; Demarco, Mari L; Yongye, Austin B; Woods, Robert J

    2008-01-01

    GLYCAM06 is a generalisable biomolecular force field that is extendible to diverse molecular classes in the spirit of a small-molecule force field. Here we report parameters for lipids, lipid bilayers and glycolipids for use with GLYCAM06. Only three lipid-specific atom types have been introduced, in keeping with the general philosophy of transferable parameter development. Bond stretching, angle bending, and torsional force constants were derived by fitting to quantum mechanical data for a collection of minimal molecular fragments and related small molecules. Partial atomic charges were computed by fitting to ensemble-averaged quantum-computed molecular electrostatic potentials.In addition to reproducing quantum mechanical internal rotational energies and experimental valence geometries for an array of small molecules, condensed-phase simulations employing the new parameters are shown to reproduce the bulk physical properties of a DMPC lipid bilayer. The new parameters allow for molecular dynamics simulations of complex systems containing lipids, lipid bilayers, glycolipids, and carbohydrates, using an internally consistent force field. By combining the AMBER parameters for proteins with the GLYCAM06 parameters, it is also possible to simulate protein-lipid complexes and proteins in biologically relevant membrane-like environments. PMID:22247593

  14. Potential-of-mean-force description of ionic interactions and structural hydration in biomolecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Hummer, G.; Garcia, A.E. [Los Alamos National Lab., NM (United States). Theoretical Biology and Biophysics Group; Soumpasis, D.M. [Max-Planck-Inst for Biophysical Chemistry, Goettingen (Germany). Biocomputation Group

    1994-10-01

    To understand the functioning of living organisms on a molecular level, it is crucial to dissect the intricate interplay of the immense number of biological molecules. Most of the biochemical processes in cells occur in a liquid environment formed mainly by water and ions. This solvent environment plays an important role in biological systems. The potential-of-mean-force (PMF) formalism attempts to describe quantitatively the interactions of the solvent with biological macromolecules on the basis of an approximate statistical-mechanical representation. At its current status of development, it deals with ionic effects on the biomolecular structure and with the structural hydration of biomolecules. The underlying idea of the PMF formalism is to identify the dominant sources of interactions and incorporate these interactions into the theoretical formalism using PMF`s (or particle correlation functions) extracted from bulk-liquid systems. In the following, the authors shall briefly outline the statistical-mechanical foundation of the PMF formalism and introduce the PMF expansion formalism, which is intimately linked to superposition approximations for higher-order particle correlation functions. The authors shall then sketch applications, which describe the effects of the ionic environment on nucleic-acid structure. Finally, the authors shall present the more recent extension of the PMF idea to describe quantitatively the structural hydration of biomolecules. Results for the interface of ice and water and for the hydration of deoxyribonucleic acid (DNA) will be discussed.

  15. Bacterial cell curvature through mechanical control of cell growth

    DEFF Research Database (Denmark)

    Cabeen, M.; Charbon, Godefroid; Vollmer, W.;

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that coll...... cell wall insertion to produce curved growth. Our study suggests that bacteria may use the cytoskeleton for mechanical control of growth to alter morphology......The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that...

  16. Line-tension controlled mechanism for influenza fusion.

    Directory of Open Access Journals (Sweden)

    Herre Jelger Risselada

    Full Text Available Our molecular simulations reveal that wild-type influenza fusion peptides are able to stabilize a highly fusogenic pre-fusion structure, i.e. a peptide bundle formed by four or more trans-membrane arranged fusion peptides. We rationalize that the lipid rim around such bundle has a non-vanishing rim energy (line-tension, which is essential to (i stabilize the initial contact point between the fusing bilayers, i.e. the stalk, and (ii drive its subsequent evolution. Such line-tension controlled fusion event does not proceed along the hypothesized standard stalk-hemifusion pathway. In modeled influenza fusion, single point mutations in the influenza fusion peptide either completely inhibit fusion (mutants G1V and W14A or, intriguingly, specifically arrest fusion at a hemifusion state (mutant G1S. Our simulations demonstrate that, within a line-tension controlled fusion mechanism, these known point mutations either completely inhibit fusion by impairing the peptide's ability to stabilize the required peptide bundle (G1V and W14A or stabilize a persistent bundle that leads to a kinetically trapped hemifusion state (G1S. In addition, our results further suggest that the recently discovered leaky fusion mutant G13A, which is known to facilitate a pronounced leakage of the target membrane prior to lipid mixing, reduces the membrane integrity by forming a 'super' bundle. Our simulations offer a new interpretation for a number of experimentally observed features of the fusion reaction mediated by the prototypical fusion protein, influenza hemagglutinin, and might bring new insights into mechanisms of other viral fusion reactions.

  17. Passive Flow Separation Control Mechanism Inspired by Shark Skin

    Science.gov (United States)

    Oakley, India; Lang, Amy

    2015-11-01

    The following experimental work seeks to examine shark scales as passive flow-actuated separation control mechanisms. It is hypothesized that the actuation of these scales can in fact reduce pressure drag by inhibiting flow reversal and thereby prevent flow separation. In order to examine this mechanism at a fundamental level, three-dimensional sharkskin scales were simplified and modeled as two-dimensional flaps. To further simplify the experiment, the flaps were observed within a laminar boundary layer. The laminar boundary layer was grown over a long flat plate that was placed inside a water tunnel. A rotating cylinder was also used to induce an unsteady, increasing adverse pressure gradient, which generated a reversing flow. In order to visualize the potential actuation of the two-dimensional flaps DPIV (digital particle image velocimetry) was utilized. Three main objectives for this work included, the actuation of the two-dimensional flaps, the resistance to a reversed flow as a result of flap actuation and the prevention of flow separation. However once the experiment was conducted the flaps did not perform as previously hypothesized. The adverse pressure gradient induced by the rotating cylinder did not produce a reversing flow powerful enough to actuate the flaps. NSF REU Site Award 1358991.

  18. Mechanisms controlling the distribution of two invasive Bromus species

    Directory of Open Access Journals (Sweden)

    Olga Bykova

    2014-03-01

    Full Text Available In order to predict future range shifts for invasive species it is important to explore their ability to acclimate to the new environment and understand physiological and reproductive constraints controlling their distribution. My dissertation studied mechanisms by which temperature may affect the distribution of two aggressive plant invaders in North America, Bromus tectorum and Bromus rubens. I first evaluated winter freezing tolerance of Bromus species and demonstrated that the mechanism explaining their distinct northern range limits is different acquisition time of freezing tolerance. While B. rubens has a slower rate of freezing acclimation that leads to intolerance of sudden, late-autumn drops in temperature below -12°C, B. tectorum rapidly hardens and so is not impacted by the sudden onset of severe late-autumn cold. In addition, the analysis of male reproductive development and seed production showed that neither species produces seed at or above 36°C, due to complete pollen sterility, which might trigger climate-mediated range contractions at B. tectorum and B. rubens southern margins. Finally, a detailed gas-exchange analysis combined with biochemical modelling demonstrated that both species acclimate to a broad range of temperatures and photosynthetic response to temperature does not explain their current range separation.

  19. Cellular and Humoral Mechanisms Involved in the Control of Tuberculosis

    Directory of Open Access Journals (Sweden)

    Joaquin Zuñiga

    2012-01-01

    Full Text Available Mycobacterium tuberculosis (Mtb infection is a major international public health problem. One-third of the world's population is thought to have latent tuberculosis, a condition where individuals are infected by the intracellular bacteria without active disease but are at risk for reactivation, if their immune system fails. Here, we discuss the role of nonspecific inflammatory responses mediated by cytokines and chemokines induced by interaction of innate receptors expressed in macrophages and dendritic cells (DCs. We also review current information regarding the importance of several cytokines including IL-17/IL-23 in the development of protective cellular and antibody-mediated protective responses against Mtb and their influence in containment of the infection. Finally, in this paper, emphasis is placed on the mechanisms of failure of Mtb control, including the immune dysregulation induced by the treatment with biological drugs in different autoimmune diseases. Further functional studies, focused on the mechanisms involved in the early host-Mtb interactions and the interplay between host innate and acquired immunity against Mtb, may be helpful to improve the understanding of protective responses in the lung and in the development of novel therapeutic and prophylactic tools in TB.

  20. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced by Electron Beam Freeform Fabrication

    Science.gov (United States)

    Domack, Marcia S.; Tainger, Karen M.

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  1. Method of controlling moving-coil type control rod driving mechanisms

    International Nuclear Information System (INIS)

    Purpose: To enable solenoid plungers to sufficiently follow after abrupt changes of moving speed of moving-coils in nuclear reactors. Method: In a control circuit for moving-coil type control rod driving mechanisms of nuclear reactors, the velocity of a driving device for the moving-coils is detected by a velocity detector to control the velocity change of exciting currents in the coils depending on a velocity instruction signal. Since the velocity change of the coil exciting current varies depending on the change in the velocity instruction signal, the solenoid plunger can smoothly follow after the moving coils electromagnetically coupled therewith, and the deviation between the moving-coils and the solenoid plunger, that is, the driving axis can be minimized. Accordingly, smooth reactor control can be attained. (Takahashi, M.)

  2. Monitoring device for operation of reactor control rod driving mechanism

    International Nuclear Information System (INIS)

    The device of the present invention detects occurrence of abnormality of control rod driving mechanisms in an early stage by extracting changes of a controlling current for the CRDM of a PWR type reactor. Namely, the device of the present invention comprises an abnormality detection and processing device which performs wavelet conversion of signals of the current flowing in a lift coil, signals of the current flowing in a movable griper coil and signals of the current flowing in a stationary griper coil in the CRDM. The device compares the effective value of the wavelet conversion with a previously set reference value. The abnormality of CRDM is analyzed based on the comparative results showing that the effective value of the WAVELET conversion exceeds a predetermined relationship with the reference value. With such procedures, slight change of waveforms can be recognized accurately based on the information represented by three axes, namely, a time axis, the extent of extension/contraction of a base function and a corelationship of the base functions, without using an expensive accelerometer. (I.S.)

  3. Shark Skin Bristling as a Passive Mechanism for Separation Control

    Science.gov (United States)

    Wheelus, Jennifer; Lang, Amy; Jones, Emily

    2011-11-01

    The skin of fast-swimming sharks is proposed to have mechanisms to reduce drag and delay flow separation. The skin of fast-swimming and agile sharks is covered with small teeth-like denticles on the order of 0.2 mm. The shortfin mako is one of the fastest and most agile ocean predators creating the need to minimize its pressure drag by controlling flow separation. Biological studies of the shortfin mako skin have shown the passive bristling angle of their denticles to exceed 50 degrees in areas on the flank corresponding to the locations likely to experience separation first. It is proposed that reversing flow, as occurs at the onset of separation in a turbulent boundary layer, would activate denticle bristling and hinder local separation from leading to global separation over the shark. This study focuses on the denticle reaction to various reversed flow conditions using a pulsating jet. Mako shark skin was subjected to numerous reversed flow velocities to determine the bristling onset velocity. Digital Particle Image Velocimetry (DPIV) and digital video were used to determine the flow conditions and denticle behavior. The effect of reversed flow velocity on denticle bristling and its relation to separation control will be discussed. Research funded by NSF (award 0932352).

  4. Electro-Mechanical Actuator. DC Resonant Link Controller

    Science.gov (United States)

    Schreiner, Kenneth E.

    1996-01-01

    This report summarizes the work performed on the 68 HP electro-mechanical actuator (EMA) system developed on NASA contract for the Electrical Actuation (ELA) Technology Bridging Program. The system was designed to demonstrate the capability of large, high power linear ELAs for applications such as Thrust Vector Control (TVC) on rocket engines. It consists of a motor controller, drive electronics and a linear actuator capable of up to 32,00 lbs loading at 7.4 inches/second. The drive electronics are based on the Resonant DC link concept and operate at a nominal frequency of 55 kHz. The induction motor is a specially designed high speed, low inertia motor capable of a 68 peak HP. The actuator was originally designed by MOOG Aerospace under an internal R & D program to meet Space Shuttle Main Engine (SSME) TVC requirements. The design was modified to meet this programs linear rate specification of 7.4 inches/second. The motor and driver were tested on a dynamometer at the Martin Marietta Space Systems facility. System frequency response, step response and force-velocity tests were conducted at the MOOG Aerospace facility. A complete description of the system and all test results can be found in the body of the report.

  5. Radon mitigation with pressure-controlled mechanical ventilation

    International Nuclear Information System (INIS)

    Effective ventilation and positive or low negative pressure indoors are suggested to achieve low indoor radon levels. The aim of this study was to develop and to test equipment which makes it possible to achieve simultaneously effective ventilation and minimum indoor-outdoor pressure difference. The unit included mechanical supply and exhaust air fans, a heat-exchanger and a pressure control unit in direct digital control (DDC), which continuously adjusted air flows based on the pressure difference transmitter information. Indoor radon level decreased from 501 ± 95 Bq/m3 to 202 ± 54 Bq/m3 after two weeks of the equipment's installation during winter conditions. The arithmetic week average of indoor radon level was 135 Bq/m3 from May to August. When the set value of pressure difference adjustment was slightly positive (0.2 Pa) and in-out temperature difference was small in August, the minimum level (38 ± 28 Bq/m3) was obtained. (author)

  6. Biomolecular detection employing the Interferometric Reflectance Imaging Sensor (IRIS).

    Science.gov (United States)

    Lopez, Carlos A; Daaboul, George G; Ahn, Sunmin; Reddington, Alexander P; Monroe, Margo R; Zhang, Xirui; Irani, Rostem J; Yu, Chunxiao; Genco, Caroline A; Cretich, Marina; Chiari, Marcella; Goldberg, Bennett B; Connor, John H; Ünlü, M Selim

    2011-01-01

    The sensitive measurement of biomolecular interactions has use in many fields and industries such as basic biology and microbiology, environmental/agricultural/biodefense monitoring, nanobiotechnology, and more. For diagnostic applications, monitoring (detecting) the presence, absence, or abnormal expression of targeted proteomic or genomic biomarkers found in patient samples can be used to determine treatment approaches or therapy efficacy. In the research arena, information on molecular affinities and specificities are useful for fully characterizing the systems under investigation. Many of the current systems employed to determine molecular concentrations or affinities rely on the use of labels. Examples of these systems include immunoassays such as the enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR) techniques, gel electrophoresis assays, and mass spectrometry (MS). Generally, these labels are fluorescent, radiological, or colorimetric in nature and are directly or indirectly attached to the molecular target of interest. Though the use of labels is widely accepted and has some benefits, there are drawbacks which are stimulating the development of new label-free methods for measuring these interactions. These drawbacks include practical facets such as increased assay cost, reagent lifespan and usability, storage and safety concerns, wasted time and effort in labelling, and variability among the different reagents due to the labelling processes or labels themselves. On a scientific research basis, the use of these labels can also introduce difficulties such as concerns with effects on protein functionality/structure due to the presence of the attached labels and the inability to directly measure the interactions in real time. Presented here is the use of a new label-free optical biosensor that is amenable to microarray studies, termed the Interferometric Reflectance Imaging Sensor (IRIS), for detecting proteins, DNA, antigenic material

  7. Mechanical and dosimetric quality control for computer controlled radiotherapy treatment equipment.

    Science.gov (United States)

    Thompson, A V; Lam, K L; Balter, J M; McShan, D L; Martel, M K; Weaver, T A; Fraass, B A; Ten Haken, R K

    1995-05-01

    Modern computer controlled radiotherapy treatment equipment offers the possibility of delivering complex, multiple field treatments with minimal operator intervention, thus making multiple field conformal therapy practical. Conventional quality control programs are inadequate for this new technology, so new quality control procedures are needed. A reasonably fast, sensitive, and complete daily quality control program has been developed in our clinic that includes nearly automated mechanical as well as dosimetric tests. Automated delivery of these quality control fields is performed by the control system of the MM50 racetrack microtron, directed by the CCRS sequence processor [D. L. McShan and B. A. Fraass, Proceedings of the XIth International Conference on the use of computers in Radiation Therapy, 20-24 March 1994, Manchester, U.K. (North Western Medical Physics Department, Manchester, U.K., 1994), pp. 210-211], which controls the treatment process. The mechanical tests involve multiple irradiations of a single film to check the accuracy and reproducibility of the computer controlled setup of gantry and collimator angles, table orientation, collimator jaws, and multileaf collimator shape. The dosimetric tests, which involve multiple irradiations of an array of ionization chambers in a commercial dose detector (Keithly model 90100 Tracker System) rigidly attached to the head of the treatment gantry, check the output and symmetry of the treatment unit as a function of gantry and collimator angle and other parameters. For each of the dosimetric tests, readings from the five ionization chambers are automatically read out, stored, and analyzed by the computer, along with the geometric parameters of the treatment unit for that beam.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7643792

  8. Diaphragm Unloading via Controlled Mechanical Ventilation Alters the Gene Expression Profile

    OpenAIRE

    DeRuisseau, Keith C.; Shanely, R Andrew; Akunuri, Nagabhavani; Hamilton, Marc T.; Van Gammeren, Darin; Zergeroglu, A. Murat; McKenzie, Michael; Powers, Scott K.

    2005-01-01

    Rationale: Prolonged controlled mechanical ventilation results in diaphragmatic inactivity and promotes oxidative injury, atrophy, and contractile dysfunction in this important inspiratory muscle. However, the impact of controlled mechanical ventilation on global mRNA alterations in the diaphragm remains unknown.

  9. Mechanics and control of the cytoskeleton in Amoeba proteus.

    Science.gov (United States)

    Dembo, M

    1989-06-01

    Many models of the cytoskeletal motility of Amoeba proteus can be formulated in terms of the theory of reactive interpenetrating flow (Dembo and Harlow, 1986). We have devised numerical methodology for testing such models against the phenomenon of steady axisymmetric fountain flow. The simplest workable scheme revealed by such tests (the minimal model) is the main preoccupation of this study. All parameters of the minimal model are determined from available data. Using these parameters the model quantitatively accounts for the self assembly of the cytoskeleton of A. proteus: for the formation and detailed morphology of the endoplasmic channel, the ectoplasmic tube, the uropod, the plasma gel sheet, and the hyaline cap. The model accounts for the kinematics of the cytoskeleton: the detailed velocity field of the forward flow of the endoplasm, the contraction of the ectoplasmic tube, and the inversion of the flow in the fountain zone. The model also gives a satisfactory account of measurements of pressure gradients, measurements of heat dissipation, and measurements of the output of useful work by amoeba. Finally, the model suggests a very promising (but still hypothetical) continuum formulation of the free boundary problem of amoeboid motion. by balancing normal forces on the plasma membrane as closely as possible, the minimal model is able to predict the turgor pressure and surface tension of A. proteus. Several dynamical factors are crucial to the success of the minimal model and are likely to be general features of cytoskeletal mechanics and control in amoeboid cells. These are: a constitutive law for the viscosity of the contractile network that includes an automatic process of gelation as the network density gets large; a very vigorous cycle of network polymerization and depolymerization (in the case of A. proteus, the time constant for this reaction is approximately 12 s); control of network contractility by a diffusible factor (probably calcium ion); and

  10. Toxicity evaluation of PEDOT/biomolecular composites intended for neural communication electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, M; Thaning, E; Von Holst, H [Division of Neuronic Engineering, School of Technology and Health, Royal Institute of Technology, SE-14152 Huddinge (Sweden); Lundberg, J [Section for Neuroradiology, R2:02 NKK-lab, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Solna, SE-171 76, Stockholm (Sweden); Sandberg-Nordqvist, A C [Section of Clinical CNS Research, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Solna, SE-171 76, Stockholm (Sweden); Kostyszyn, B [Center for Hearing and Communication Research, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, M1:01, SE-171 76 Stockholm (Sweden); Inganaes, O, E-mail: maria.asplund@sth.kth.s [Biomolecular and Organic Electronics, IFM, Linkoeping University, SE-581 83 Linkoeping (Sweden)

    2009-08-15

    Electrodes coated with the conducting polymer poly(3,4-ethylene dioxythiophene) (PEDOT) possess attractive electrochemical properties for stimulation or recording in the nervous system. Biomolecules, added as counter ions in electropolymerization, could further improve the biomaterial properties, eliminating the need for surfactant counter ions in the process. Such PEDOT/biomolecular composites, using heparin or hyaluronic acid, have previously been investigated electrochemically. In the present study, their biocompatibility is evaluated. An agarose overlay assay using L929 fibroblasts, and elution and direct contact tests on human neuroblastoma SH-SY5Y cells are applied to investigate cytotoxicity in vitro. PEDOT:heparin was further evaluated in vivo through polymer-coated implants in rodent cortex. No cytotoxic response was seen to any of the PEDOT materials tested. The examination of cortical tissue exposed to polymer-coated implants showed extensive glial scarring irrespective of implant material (Pt:polymer or Pt). However, quantification of immunological response, through distance measurements from implant site to closest neuron and counting of ED1+ cell density around implant, was comparable to those of platinum controls. These results indicate that PEDOT:heparin surfaces were non-cytotoxic and show no marked difference in immunological response in cortical tissue compared to pure platinum controls.

  11. Antimicrobial agents used in the control of periodontal biofilms: effective adjuncts to mechanical plaque control?

    Directory of Open Access Journals (Sweden)

    Ricardo Palmier Teles

    2009-06-01

    Full Text Available The control of biofilm accumulation on teeth has been the cornerstone of periodontal disease prevention for decades. However, the widespread prevalence of gingivitis suggests the inefficiency of self-performed mechanical plaque control in preventing gingival inflammation. This is particularly relevant in light of recent evidence suggesting that long standing gingivitis increases the risk of loss of attachment and that prevention of gingival inflammation might reduce the prevalence of mild to moderate periodontitis. Several antimicrobials have been tested as adjuncts to mechanical plaque control in order to improve the results obtained with oral home care. Recent studies, including meta-analyses, have indicated that home care products containing chemical antimicrobials can provide gingivitis reduction beyond what can be accomplished with brushing and flossing. Particularly, formulations containing chlorhexidine, mouthrinses containing essential oils and triclosan/copolymer dentifrices have well documented clinical antiplaque and antigingivitis effects. In vivo microbiological tests have demonstrated the ability of these antimicrobial agents to penetrate the biofilm mass and to kill bacteria growing within biofilms. In addition, chemical antimicrobials can reach difficult-to-clean areas such as interproximal surfaces and can also impact the growth of biofilms on soft tissue. These agents have a positive track record of safety and their use does not seem to increase the levels of resistant species. Further, no study has been able to establish a correlation between mouthrinses containing alcohol and oral cancer. In summary, the adjunct use of chemical plaque control should be recommended to subjects with well documented difficulties in achieving proper biofilm control using only mechanical means.

  12. Self-assembling biomolecular catalysts for hydrogen production

    Science.gov (United States)

    Jordan, Paul C.; Patterson, Dustin P.; Saboda, Kendall N.; Edwards, Ethan J.; Miettinen, Heini M.; Basu, Gautam; Thielges, Megan C.; Douglas, Trevor

    2016-02-01

    The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted Escherichia coli for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis.

  13. A programmable biomolecular computing machine with bacterial phenotype output.

    Science.gov (United States)

    Kossoy, Elizaveta; Lavid, Noa; Soreni-Harari, Michal; Shoham, Yuval; Keinan, Ehud

    2007-07-23

    The main advantage of autonomous biomolecular computing devices over electronic computers is their ability to interact directly with biological systems. No interface is required since all components of molecular computers, including hardware, software, input, and output are molecules that interact in solution along a cascade of programmable chemical events. Here, we demonstrate for the first time that the output of a computation preduced by a molecular finite automaton can be a visible bacterial phenotype. Our 2-symbol-2-state finite automaton utilized linear double-stranded DNA inputs that were prepared by inserting a string of six base pair symbols into the lacZ gene on the pUC18 plasmid. The computation resulted in a circular plasmid that differed from the original pUC18 by either a 9 base pair (accepting state) or 11 base pair insert (unaccepting state) within the lacZ alpha region gene. Upon transformation and expression of the resultant plasmids in E. coli, the accepting state was represented by production of functional beta-galactosidase and formation of blue colonies on X-gal medium. In contrast, the unaccepting state was represented by white colonies due to a shift in the open reading frame of lacZ. PMID:17562552

  14. SWISS-PROT: connecting biomolecular knowledge via a protein database.

    Science.gov (United States)

    Gasteiger, E; Jung, E; Bairoch, A

    2001-07-01

    With the explosive growth of biological data, the development of new means of data storage was needed. More and more often biological information is no longer published in the conventional way via a publication in a scientific journal, but only deposited into a database. In the last two decades these databases have become essential tools for researchers in biological sciences. Biological databases can be classified according to the type of information they contain. There are basically three types of sequence-related databases (nucleic acid sequences, protein sequences and protein tertiary structures) as well as various specialized data collections. It is important to provide the users of biomolecular databases with a degree of integration between these databases as by nature all of these databases are connected in a scientific sense and each one of them is an important piece to biological complexity. In this review we will highlight our effort in connecting biological information as demonstrated in the SWISS-PROT protein database. PMID:11488411

  15. Deterministic characterization of phase noise in biomolecular oscillators

    International Nuclear Information System (INIS)

    On top of the many external perturbations, cellular oscillators also face intrinsic perturbations due the randomness of chemical kinetics. Biomolecular oscillators, distinct in their parameter sets or distinct in their architecture, show different resilience with respect to such intrinsic perturbations. Assessing this resilience can be done by ensemble stochastic simulations. These are computationally costly and do not permit further insights into the mechanistic cause of the observed resilience. For reaction systems operating at a steady state, the linear noise approximation (LNA) can be used to determine the effect of molecular noise. Here we show that methods based on LNA fail for oscillatory systems and we propose an alternative ansatz. It yields an asymptotic expression for the phase diffusion coefficient of stochastic oscillators. Moreover, it allows us to single out the noise contribution of every reaction in an oscillatory system. We test the approach on the one-loop model of the Drosophila circadian clock. Our results are consistent with those obtained through stochastic simulations with a gain in computational efficiency of about three orders of magnitude

  16. Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Klier, Kamil; Herman, Richard G

    2005-11-30

    This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Brnsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. The latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with

  17. Control rod driving mechanism, and control device and operation method therefor

    International Nuclear Information System (INIS)

    The upper portion of a housing of control rod driving mechanisms is secured to a reactor pressure vessel, and the lower portion thereof is sealed by a closing plug. Gears are formed on the outer circumference of a driving shaft vertically moving with the linkage of a control rod in a pressure vessel, and a linear reluctance motor comprising a stator iron core having gears on the inner circumference of a stator and a stator coil for driving the driving shaft. There are disposed a latch mechanism for holding the control rod by engaging with the gears of the driving shaft and a position detector for detecting the position of the inserted control rod by the gears of the driving shaft or magnets mounted to the gears. Since the inner structure can be simplified with no shaft-sealing portion, the frequency for the maintenance and inspection can be reduced to improve the reliability of sealing portions of the pressure vessel. The space for maintenance and inspection of the lower portion of the pressure vessel can be reduced thereby making the height of a reactor building low and strengthen the earthquake proof structure. (N.H.)

  18. A Quick-responsive DNA Nanotechnology Device for Bio-molecular Homeostasis Regulation

    Science.gov (United States)

    Wu, Songlin; Wang, Pei; Xiao, Chen; Li, Zheng; Yang, Bing; Fu, Jieyang; Chen, Jing; Wan, Neng; Ma, Cong; Li, Maoteng; Yang, Xiangliang; Zhan, Yi

    2016-01-01

    Physiological processes such as metabolism, cell apoptosis and immune responses, must be strictly regulated to maintain their homeostasis and achieve their normal physiological functions. The speed with which bio-molecular homeostatic regulation occurs directly determines the ability of an organism to adapt to conditional changes. To produce a quick-responsive regulatory system that can be easily utilized for various types of homeostasis, a device called nano-fingers that facilitates the regulation of physiological processes was constructed using DNA origami nanotechnology. This nano-fingers device functioned in linked open and closed phases using two types of DNA tweezers, which were covalently coupled with aptamers that captured specific molecules when the tweezer arms were sufficiently close. Via this specific interaction mechanism, certain physiological processes could be simultaneously regulated from two directions by capturing one biofactor and releasing the other to enhance the regulatory capacity of the device. To validate the universal application of this device, regulation of the homeostasis of the blood coagulant thrombin was attempted using the nano-fingers device. It was successfully demonstrated that this nano-fingers device achieved coagulation buffering upon the input of fuel DNA. This nano-device could also be utilized to regulate the homeostasis of other types of bio-molecules. PMID:27506964

  19. Photodamage and the importance of photoprotection in biomolecular-powered device applications.

    Science.gov (United States)

    Vandelinder, Virginia; Bachand, George D

    2014-01-01

    In recent years, an enhanced understanding of the mechanisms underlying photobleaching and photoblinking of fluorescent dyes has led to improved photoprotection strategies, such as reducing and oxidizing systems (ROXS) that reduce blinking and oxygen scavenging systems to reduce bleaching. Excitation of fluorescent dyes can also result in damage to catalytic proteins (e.g., biomolecular motors), affecting the performance of integrated devices. Here, we characterized the motility of microtubules driven by kinesin motor proteins using various photoprotection strategies, including a microfluidic deoxygenation device. Impaired motility of microtubules was observed at high excitation intensities in the absence of photoprotection as well as in the presence of an enzymatic oxygen scavenging system. In contrast, using a polydimethylsiloxane (PDMS) microfluidic deoxygenation device and ROXS, not only were the fluorophores slower to bleach but also moving the velocity and fraction of microtubules over time remained unaffected even at high excitation intensities. Further, we demonstrate the importance of photoprotection by examining the effect of photodamage on the behavior of a switchable mutant of kinesin. Overall, these results demonstrate that improved photoprotection strategies may have a profound impact on functional fluorescently labeled biomolecules in integrated devices. PMID:24350711

  20. Predictive mechanisms in the control of contour following

    Science.gov (United States)

    Tramper, Julian J.; Flanders, Martha

    2013-01-01

    In haptic exploration, when running a fingertip along a surface, the control system may attempt to anticipate upcoming changes in curvature in order to maintain a consistent level of contact force. Such predictive mechanisms are well known in the visual system, but have yet to be studied in the somatosensory system. Thus the present experiment was designed to reveal human capabilities for different types of haptic prediction. A robot arm with a large 3D workspace was attached to the index fingertip and was programmed to produce virtual surfaces with curvatures that varied within and across trials. With eyes closed, subjects moved the fingertip around elliptical hoops with flattened regions or Limaçon shapes, where the curvature varied continuously. Subjects anticipated the corner of the flattened region rather poorly, but for the Limaçon shapes they varied finger speed with upcoming curvature according to the two-thirds power law. Furthermore, although the Limaçon shapes were randomly presented in various 3D orientations, modulation of contact force also indicated good anticipation of upcoming changes in curvature. The results demonstrate that it is difficult to haptically anticipate the spatial location of an abrupt change in curvature, but smooth changes in curvature may be facilitated by anticipatory predictions. PMID:23649968

  1. The current-phase relation of a mechanically controllable breakjunction

    International Nuclear Information System (INIS)

    In order to determine the current-phase relation (CPR) of a mechanically controllable break (MCB) junction an adjustable SQUID has been developed. A ring, interrupted by a MCB junction, is cut out of a thin niobium foil using laser cutting techniques. In this SQUID the critical current can be varied continuously by adjusting the contact size of the junction. A new technique has been developed which enables us to measure directly the CPR. Superconducting current leads are attached on either side of the contact in order to determine the selfinductance of the ring. The CPR has been investigated at 4.2 K and at 1.3 K in a range of normal resistances which is estimated to be between 0.5 and 8 kΩ. A deviation from the pure sinusoidal CPR is found at 4.2 K while the CPR at 1.3 K seems to be nearly sinusoidal. It is striking that the CPRs at 4.2 K have a maximum in the current at values slightly smaller than π/2, while theories predict it to be between π/2 and π for superconducting pointcontacts with three-dimensional banks in this temperature range. (orig.)

  2. Weathering controls on mechanisms of carbon storage in grassland soils

    Energy Technology Data Exchange (ETDEWEB)

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-09-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation of Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought.

  3. Mechanical Engineering Design Project report: Enabler control systems

    Science.gov (United States)

    Cullen, Christian; Delvecchio, Dave; Scarborough, Alan; Havics, Andrew A.

    1992-01-01

    The Controls Group was assigned the responsibility for designing the Enabler's control system. The requirement for the design was that the control system must provide a simple user interface to control the boom articulation joints, chassis articulation joints, and the wheel drive. The system required controlling hydraulic motors on the Enabler by implementing 8-bit microprocessor boards. In addition, feedback to evaluate positions and velocities must be interfaced to provide the operator with confirmation as well as control.

  4. Studies of the charge instabilities in the complex nano-objects: clusters and bio-molecular systems

    International Nuclear Information System (INIS)

    For the last 6 years, my main research works focused on i) the Coulomb instabilities and the fragmentation processes of fullerenes and clusters of fullerenes ii) the stability and the reactivity of complex bio-molecular systems. Concerning the clusters of fullerenes, which are van der Waals type clusters, we have shown that the multiply charged species, obtained in collisions with slow highly charged ions, keep their structural properties but become very good electric conductor. In another hand, with the aim to understand the role of the biologic environment at the molecular scale in the irradiation damage of complex biomolecules, we have studied the charge stabilities of clusters of small biomolecules and the dissociation processes of larger nano-hydrated biomolecules. Theses studies have shown that first, specific molecular recognition mechanisms continue to exist in gas phase and secondly, a small and very simple biochemical environment is enough to change the dynamics of instabilities. (author)

  5. Development of an informatics infrastructure for data exchange of biomolecular simulations: Architecture, data models and ontology.

    Science.gov (United States)

    Thibault, J C; Roe, D R; Eilbeck, K; Cheatham Iii, T E; Facelli, J C

    2015-01-01

    Biomolecular simulations aim to simulate structure, dynamics, interactions, and energetics of complex biomolecular systems. With the recent advances in hardware, it is now possible to use more complex and accurate models, but also reach time scales that are biologically significant. Molecular simulations have become a standard tool for toxicology and pharmacology research, but organizing and sharing data - both within the same organization and among different ones - remains a substantial challenge. In this paper we review our recent work leading to the development of a comprehensive informatics infrastructure to facilitate the organization and exchange of biomolecular simulations data. Our efforts include the design of data models and dictionary tools that allow the standardization of the metadata used to describe the biomedical simulations, the development of a thesaurus and ontology for computational reasoning when searching for biomolecular simulations in distributed environments, and the development of systems based on these models to manage and share the data at a large scale (iBIOMES), and within smaller groups of researchers at laboratory scale (iBIOMES Lite), that take advantage of the standardization of the meta data used to describe biomolecular simulations. PMID:26387907

  6. Cytokinetic Control Mechanisms in Ehrlich Ascites Tumour Growth

    International Nuclear Information System (INIS)

    Ehrlich ascites tumour in mice was studied as a model system to elucidate the cytokinetic mechanisms controlling growth of cell populations. The basis for a retardation in growth rate during tumour development was determined with the aid of 3H-thymidine labelling and autoradiography. Three possible cytokinetic variables in growth regulation, namely, duration of the mitotic cell cycle, fraction of the cycling cells in the population (growth fraction) and rate of cell loss, were measured at different stages of growth. It was concluded that a deceleration in growth was a result of (1) a gradual prolongation of the cell cycle and its components and (2) a progressive decline in the growth fraction. Rate of cell loss did not appreciably change during most of the growth. It was also found that the total cell mass rather than the tumour age dictated the growth rate at any instant over a considerable range of growth. Non-cycling cells were found to resume cycle when a fraction of an old tumour was transplanted in new hosts, 3H-thymidine labelling combined with microspectrophotometric estimates of cellular DNA was utilized to locate the stages at which a cell cycle could be suspended or resumed. It was found that decycling or recycling could occur only after mitosis and before DNA synthesis; non-cycling (G0) state resembled G1, which was absent in the proliferating tumour cells. These findings are relevant to a further understanding of the molecular events leading to the initiation or suspension of a cell cycle. They are also pertinent to formulating a rationale for tumour therapy — for example with radiation — when coupled with the existing knowledge of the relative sensitivity of cells at different stages of cycle. (author)

  7. Fatigue life estimation of ball screw in control element drive mechanism of SMART

    International Nuclear Information System (INIS)

    Various kinds of mechanisms are applied or studied for the driving control elements in reactors. One of these mechanisms is a ball screw type drive mechanism, which has advantages in precise operation and high stiffness. So this system is one of the candidate control element drive mechanism of SMART. The fatigue lifes of ball bearing and ball screws are generally limited by flaking at normal operation and are estimated by statistical method. A method to estimate the fatigue life of the ball screw on a control element drive mechanism is presented, and the suitability of ball screw type mechanism is discussed in this paper

  8. Passive dynamic controllers for non-linear mechanical systems

    Science.gov (United States)

    Juang, Jer-Nan; Wu, Shih-Chin; Phan, Minh; Longman, Richard W.

    1992-01-01

    The objective is to develop active model-independent controllers for slewing and vibration control of nonlinear multibody flexible systems, including flexible robots. The topics are presented in viewgraph form and include: passive stabilization; work-energy rate principle; Liapunov theory; displacement feedback; dynamic controller; displacement and acceleration feedback; velocity feedback; displacement feedback; physical interaction; a 6-DOF robot; and simulation results.

  9. On the Mechanism of Time-Delayed Feedback Control

    CERN Document Server

    Just, W; Ostheimer, M; Reibold, E; Benner, H; Just, Wolfram; Bernard, Thomas; Ostheimer, Matthias; Reibold, Ekkehard; Benner, Hartmut

    1996-01-01

    The Pyragas method for controlling chaos is investigated in detail from the experimental as well as theoretical point of view. We show by an analytical stability analysis that the revolution around an unstable periodic orbit governs the success of the control scheme. Our predictions concerning the transient behaviour of the control signal are confirmed by numerical simulations and an electronic circuit experiment.

  10. Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks

    DEFF Research Database (Denmark)

    Soberano de Oliveira, Ana Paula; Patil, Kiran Raosaheb; Nielsen, Jens

    2008-01-01

    use the topology of bio-molecular interaction networks in order to constrain the solution space. Such approaches systematically integrate the existing biological knowledge with the 'omics' data. Results: Here we introduce a hypothesis-driven method that integrates bio-molecular network topology with...... transcriptome data, thereby allowing the identification of key biological features (Reporter Features) around which transcriptional changes are significantly concentrated. We have combined transcriptome data with different biological networks in order to identify Reporter Gene Ontologies, Reporter Transcription...... Factors, Reporter Proteins and Reporter Complexes, and use this to decipher the logic of regulatory circuits playing a key role in yeast glucose repression and human diabetes. Conclusion: Reporter Features offer the opportunity to identify regulatory hot-spots in bio-molecular interaction networks that...

  11. Multiple Features Based Approach to Extract Bio-molecular Event Triggers Using Conditional Random Field

    Directory of Open Access Journals (Sweden)

    Amit Majumder

    2012-11-01

    Full Text Available The purpose of Biomedical Natural Language Processing (BioNLP is to capture biomedical phenomena from textual data by extracting relevant entities, information and relations between biomedical entities (i.e. proteins and genes. In general, in most of the published papers, only binary relations were extracted. In a recent past, the focus is shifted towards extracting more complex relations in the form of bio-molecular events that may include several entities or other relations. In this paper we propose an approach that enables event trigger extraction of relatively complex bio-molecular events. We approach this problem as a detection of bio-molecular event trigger using the well-known algorithm, namely Conditional Random Field (CRF. We apply our experiments on development set. It shows the overall average recall, precision and F-measure values of 64.27504%, 69.97559% and 67.00429%, respectively for the event detection.

  12. Modular overconstrained weak-link mechanism for ultraprecision motion control

    International Nuclear Information System (INIS)

    We have designed and constructed a novel miniature overconstrained weak-link mechanism that will allow positioning of two crystals with better than 50 nrad angular resolution and nanometer linear driving sensitivity. The precision and stability of this structure allow the user to align or adjust an assembly of crystals to achieve the same performance as does a single channel-cut crystal, so we call it an ''artificial channel-cut crystal.'' Unlike the traditional kinematic linear spring mechanisms, the overconstrained weak-link mechanism provides much higher structure stiffness and stability. Using a laminar structure configured and manufactured by chemical etching and lithography techniques, we are able to design and build a planar-shape, high stiffness, high precision weak-link mechanism. In this paper, we present recent developments for the overconstrained weak-link mechanism. Applications of this new technique to synchrotron radiation instrumentation are also discussed

  13. The Control System Modeling and The Mechanical Structure Analysis For EMCVT

    Directory of Open Access Journals (Sweden)

    Lei ZHANG

    2013-07-01

    Full Text Available The current automotive metallic belt continuously variable transmission (CVT mostly use hydraulic system to push the cone disc and achieve the speed ratio control. A new Electrical Mechanical Continuously Variable Transmission without hydraulic control (Electrical Mechanical CVT, EMCVT studied in this paper, uses the rolling screw mechanism to press cone disc, achieves speed regulation through the electronic control mechanism, and abandons the energy-intensive hydraulic system. In this paper, based on the analysis of mechanical configuration, the EMCVT's transmission system and its speed regulation process, speed ratio control characteristic and the clamping force control feature are studied and modeled. Besides, the Control strategy of the transmission system driven by motor is built, so as to provide an important theoretical basis for the further building of EMVCT's control system and the selection and implementation of Control strategy.

  14. Zero-cross detecting technology in control element drive mechanism control system of PWR

    International Nuclear Information System (INIS)

    Control Element Drive Mechanism Control System (CEDMCS) plays a decisive role in regulating the reactor power and shutting down the reactor in the trip condition. But, due to the failure of CEDMCS, the operating plants have had many experiences such as unexpected reactor trip or interruption during normal plant operation. To prevent those kinds of problems, it is required to improve control logic. Zero cross detection cards in CEDMCS could be made trouble which cause unexpected reactor trip resulted from fluctuating frequency of input signal coming from from M/G set. Some of the problems have been solved by modifying zero cross detection card circuit, but the other problems, such as output voltage variation resulted from input frequency change. Because current zero-cross detector was designed by analog technology, it was difficult to resolve output voltage variation problem. In this report the zero cross detector was improved to resolve voltage fluctuating problem by using new devices such as digital noise filtering circuit is better than old one. If suggested detector is applied to plant, it is possible to use it under House Load Operation because stable output voltage can be generated by new zero-cross detector. (author). 3 tabs., 21 figs., 10 refs

  15. The Parent Control in the Mechanical Engineering Management-Holding

    Science.gov (United States)

    Šnircová, Jana; Hodulíková, Petra; Joehnk, Peter

    2012-12-01

    The group of entities under the control of parent, so called holding, is arisen as the result and the most often used form of the business concentration nowadays. The paper is focused to find special tasks of parent company for to preserve effective unified economic control in the management-holding. The unified economic control the holding exists in the conditions of the main conflict of interest - holding is not a legal but economic unit and the connected companies into it have a legal autonomy with the economic dependence. The unified economic control limits the financial independence of every individual company of the holding. The attention in the paper is concentrated to the management concept of the parent control, i.e. the parent company supervises the control of intragroup flows and all of subsidiaries production activities.

  16. Mechanisms of surgical control of type 2 diabetes

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Madsbad, Sten

    2016-01-01

    responsible for postprandial hypoglycemia sometimes observed after bypass. Other operations (biliopancreatic-diversion and or sleeve gastrectomy) appear to involve different and/or additional mechanisms, and so does experimental bariatric surgery in rodents. However, unlike bypass surgery in humans...

  17. Model-following control applications to nonlinear mechanical systems

    OpenAIRE

    Barlas, Mustafa Remzi

    1992-01-01

    Model-following control design methodology is introduced for nonlinear plants and models. The plant equations are considered to be linear in the control input. Dynamic matching conditions are presented and the resulting error dynamics are given. The stability of error dynamics is ensured, using Liapunov's second theorem; by modifying the model state rates, which effectively introduces error feedback. The methodology is applied to two problems. Motion control of an n-link manipulator wi...

  18. Mechanical characterization of calcium pectinate hydrogel for controlled drug delivery

    OpenAIRE

    Chung Jin Thau; Zhibing Zhang

    2003-01-01

    Calcium pectinate beads, a paniculate hydrogel system, is an attractive drug carrier for oral delivery. In this study, a poorly water-soluble model drug indomethacin was incorporated into calcium pectinate beads made of different pectin concentrations, which were produced by an extrusion method. The effect of pectin concentration on bead size, circularity, swelling behavior, and mechanical properties, as well as in vitro drug release profile was investigated. The mechanical properties of calc...

  19. Pheromonal control: reconciling physiological mechanism with signalling theory.

    Science.gov (United States)

    Peso, Marianne; Elgar, Mark A; Barron, Andrew B

    2015-05-01

    Pheromones are intraspecific chemical signals. They can have profound effects on the behaviour and/or physiology of the receiver, and it is still common to hear pheromones described as controlling of the behaviour of the receiver. The discussion of pheromonal control arose initially from a close association between hormones and pheromones in the comparative physiological literature, but the concept of a controlling pheromone is at odds with contemporary signal evolution theory, which predicts that a manipulative pheromonal signal negatively affecting the receiver's fitness should not be stable over evolutionary time. Here we discuss the meaning of pheromonal control, and the ecological circumstances by which it might be supported. We argue that in discussing pheromonal control it is important to differentiate between control applied to the effects of a pheromone on a receiver's physiology (proximate control), and control applied to the effects of a pheromone on a receiver's fitness (ultimate control). Critically, a pheromone signal affecting change in the receiver's behaviour or physiology need not necessarily manipulate the fitness of a receiver. In cases where pheromonal signalling does lead to a reduction in the fitness of the receiver, the signalling system would be stable if the pheromone were an honest signal of a social environment that disadvantages the receiver, and the physiological and behavioural changes observed in the receiver were an adaptive response to the new social circumstances communicated by the pheromone. PMID:24925630

  20. Adaptive Clutch Engaging Process Control for Automatic Mechanical Transmission

    Institute of Scientific and Technical Information of China (English)

    LIU Hai-ou; CHEN Hui-yan; DING Hua-rong; HE Zhong-bo

    2005-01-01

    Based on detail analysis of clutch engaging process control targets and adaptive demands, a control strategy which is based on speed signal, different from that of based on main clutch displacement signal, is put forward. It considers both jerk and slipping work which are the most commonly used quality evaluating indexes of vehicle starting phase. The adaptive control system and its reference model are discussed profoundly.Taking the adaptability to different starting gears and different road conditions as examples, some proving field test records are shown to illustrate the main clutch adaptive control strategy at starting phase. Proving field test gives acceptable results.

  1. Prognostics Enhanced Reconfigurable Control of Electro-Mechanical Actuators

    Data.gov (United States)

    National Aeronautics and Space Administration — Actuator systems are employed widely in aerospace, transportation and industrial processes to provide power to critical loads, such as aircraft control surfaces....

  2. Output-input ratio in thermally fluctuating biomolecular machines.

    Science.gov (United States)

    Kurzynski, Michal; Torchala, Mieczyslaw; Chelminiak, Przemyslaw

    2014-01-01

    Biological molecular machines are proteins that operate under isothermal conditions and hence are referred to as free energy transducers. They can be formally considered as enzymes that simultaneously catalyze two chemical reactions: the free energy-donating (input) reaction and the free energy-accepting (output) one. Most if not all biologically active proteins display a slow stochastic dynamics of transitions between a variety of conformational substates composing their native state. This makes the description of the enzymatic reaction kinetics in terms of conventional rate constants insufficient. In the steady state, upon taking advantage of the assumption that each reaction proceeds through a single pair (the gate) of transition conformational substates of the enzyme-substrates complex, the degree of coupling between the output and the input reaction fluxes has been expressed in terms of the mean first-passage times on a conformational transition network between the distinguished substates. The theory is confronted with the results of random-walk simulations on the five-dimensional hypercube. The formal proof is given that, for single input and output gates, the output-input degree of coupling cannot exceed unity. As some experiments suggest such exceeding, looking for the conditions for increasing the degree of coupling value over unity challenges the theory. Performed simulations of random walks on several model networks involving more extended gates indicate that the case of the degree of coupling value higher than 1 is realized in a natural way on critical branching trees extended by long-range shortcuts. Such networks are scale-free and display the property of the small world. For short-range shortcuts, the networks are scale-free and fractal, representing a reasonable model for biomolecular machines displaying tight coupling, i.e., the degree of coupling equal exactly to unity. A hypothesis is stated that the protein conformational transition networks, as

  3. Engineering intracellular active transport systems as in vivo biomolecular tools.

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, George David; Carroll-Portillo, Amanda

    2006-11-01

    Active transport systems provide essential functions in terms of cell physiology and metastasis. These systems, however, are also co-opted by invading viruses, enabling directed transport of the virus to and from the cell's nucleus (i.e., the site of virus replication). Based on this concept, fundamentally new approaches for interrogating and manipulating the inner workings of living cells may be achievable by co-opting Nature's active transport systems as an in vivo biomolecular tool. The overall goal of this project was to investigate the ability to engineer kinesin-based transport systems for in vivo applications, specifically the collection of effector proteins (e.g., transcriptional regulators) within single cells. In the first part of this project, a chimeric fusion protein consisting of kinesin and a single chain variable fragment (scFv) of an antibody was successfully produced through a recombinant expression system. The kinesin-scFv retained both catalytic and antigenic functionality, enabling selective capture and transport of target antigens. The incorporation of a rabbit IgG-specific scFv into the kinesin established a generalized system for functionalizing kinesin with a wide range of target-selective antibodies raised in rabbits. The second objective was to develop methods of isolating the intact microtubule network from live cells as a platform for evaluating kinesin-based transport within the cytoskeletal architecture of a cell. Successful isolation of intact microtubule networks from two distinct cell types was demonstrated using glutaraldehyde and methanol fixation methods. This work provides a platform for inferring the ability of kinesin-scFv to function in vivo, and may also serve as a three-dimensional scaffold for evaluating and exploiting kinesin-based transport for nanotechnological applications. Overall, the technology developed in this project represents a first-step in engineering active transport system for in vivo

  4. Comparative effect of physicomechanical and biomolecular cues on zone-specific chondrogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Moeinzadeh, Seyedsina; Pajoum Shariati, Seyed Ramin; Jabbari, Esmaiel

    2016-06-01

    Current tissue engineering approaches to regeneration of articular cartilage rarely restore the tissue to its normal state because the generated tissue lacks the intricate zonal organization of the native cartilage. Zonal regeneration of articular cartilage is hampered by the lack of knowledge for the relation between physical, mechanical, and biomolecular cues and zone-specific chondrogenic differentiation of progenitor cells. This work investigated in 3D the effect of TGF-β1, zone-specific growth factors, optimum matrix stiffness, and adding nanofibers on the expression of chondrogenic markers specific to the superficial, middle, and calcified zones of articular cartilage by the differentiating human mesenchymal stem cells (hMSCs). Growth factors included BMP-7, IGF-1, and hydroxyapatite (HA) for the superficial, middle, and calcified zones, respectively; optimum matrix stiffness was 80 kPa, 2.1 MPa, and 320 MPa; and nanofibers were aligned horizontal, random, and perpendicular to the gel surface. hMSCs with zone-specific cell densities were encapsulated in engineered hydrogels and cultured with or without TGF-β1, zone-specific growth factor, optimum matrix modulus, and fiber addition and cultured in basic chondrogenic medium. The expression of encapsulated cells was measured by mRNA, protein, and biochemical analysis. Results indicated that zone-specific matrix stiffness had a dominating effect on chondrogenic differentiation of hMSCs to the superficial and calcified zone phenotypes. Addition of aligned nanofibers parallel to the direction of gel surface significantly enhanced expression of Col II in the superficial zone chondrogenic differentiation of hMSCs. Conversely, biomolecular factor IGF-1 in combination with TGF-β1 had a dominating effect on the middle zone chondrogenic differentiation of hMSCs. Results of this work could potentially lead to the development of multilayer grafts mimicking the zonal organization of articular cartilage. PMID:27038568

  5. Balancing the balance: Self-control mechanisms and compulsive buying

    NARCIS (Netherlands)

    Horváth, C.; Büttner, O.B.; Belei, N.V.T.; Adigüzel, F.

    2015-01-01

    Previous research has mainly focused on identifying why compulsive buyers engage in excessive buying, while their attempts to control problematic buying behavior have largely been ignored. The present research examines the self-control attempts of compulsive buyers. Study 1 uses qualitative in-depth

  6. An Intelligent Call Admission Control Decision Mechanism for Wireless Networks

    CERN Document Server

    S., Ramesh Babu H; S, Satyanarayana P

    2010-01-01

    The Call admission control (CAC) is one of the Radio Resource Management (RRM) techniques plays instrumental role in ensuring the desired Quality of Service (QoS) to the users working on different applications which have diversified nature of QoS requirements. This paper proposes a fuzzy neural approach for call admission control in a multi class traffic based Next Generation Wireless Networks (NGWN). The proposed Fuzzy Neural Call Admission Control (FNCAC) scheme is an integrated CAC module that combines the linguistic control capabilities of the fuzzy logic controller and the learning capabilities of the neural networks .The model is based on Recurrent Radial Basis Function Networks (RRBFN) which have better learning and adaptability that can be used to develop the intelligent system to handle the incoming traffic in the heterogeneous network environment. The proposed FNCAC can achieve reduced call blocking probability keeping the resource utilisation at an optimal level. In the proposed algorithm we have c...

  7. Unifying parameters in mechanical weed control research - report of the roundtable

    OpenAIRE

    Rasmussen, Jesper

    2009-01-01

    This report summarises (i) the introduction given at the initiation of the roundtable discussion about unifying parameters in mechanical weed control and (ii) the following discussion at the EWRS Physical and Cultural Weed Control Group meeting in Zaragoza 2009

  8. The Application of LOGO! in Control System of a Transmission and Sorting Mechanism

    Science.gov (United States)

    Liu, Jian; Lv, Yuan-Jun

    Logic programming of general logic control module LOGO! has been recommended the application in transmission and sorting mechanism. First, the structure and operating principle of the mechanism had been introduced. Then the pneumatic loop of the mechanism had been plotted in the software of FluidSIM-P. At last, pneumatic loop and motors had been control by LOGO!, which makes the control process simple and clear instead of the complicated control of ordinary relay. LOGO! can achieve the complicated interlock control composed of inter relays and time relays. In the control process, the logic control function of LOGO! is fully used to logic programming so that the system realizes the control of air cylinder and motor. It is reliable and adjustable mechanism after application.

  9. RESEARCH ON MECHANICAL MEASUREMENT-ORIENTED INTELLIGENT VIRTUAL CONTROLS

    Institute of Scientific and Technical Information of China (English)

    Tang Baoping; Qin Shuren

    2004-01-01

    Intelligent virtual control (IVC) is an intelligent measurement instrument unit with the function of actual measurement instruments, and the unit can be used as basic building block for a variety of more complex virtual measurement instruments on a PC. IVC is a further advancement from virtual instrument (VI), and it fuses the function modules and the controls modules so that the relationship between the functions and controls of an instrument is imbedded in one or more units. The design, implementation and optimization methods of IVCs are introduced. The computer software representation of IVCs is discussed. An example of an actual VI constructed with the building blocks of IVCs is given.

  10. Disentangling the Impact of Control-Enhancing Mechanisms on Firm Performance

    DEFF Research Database (Denmark)

    Zattoni, Alessandro; Pedersen, Torben

    2011-01-01

    Governance scholars and investors traditionally advocate against the use of control enhancing mechanisms, i.e. mechanisms aimed at separating voting and cash flow rights. These mechanisms may, in fact, determine a deviation from the proportionality principle and may encourage large and controlling...... shareholders to expropriate minority shareholders. The aim of this article is to contribute to the current debate investigating the implications of these control-enhancing mechanisms on firm performance. To reach this purpose, we collected ownership data on the (100) largest listed companies per capitalization...... in five European countries (i.e. France, Germany, Italy, Spain, and the UK). Then we tested the consequences of control-enhancing mechanisms for firm performance using 2SLS regression models. Our results show that (i) mechanisms that lock-in control do have a direct and negative impact on firm...

  11. The impact of a firm's internal control mechanisms on the choice of innovation mode

    Institute of Scientific and Technical Information of China (English)

    LIU Xinmin; LI Yuan; SU Zhongfeng; FENG Jinlu

    2007-01-01

    A finn's internal control mechanisms may have a significant influence on the choice of innovation mode. Therefore, based on the research on the internal control mechanisms of companies, we developed a model to explore the relationship between a finn's internal control mechanisms and the choice of innovation mode. Using a sample of 585 Chinese finns, this study tests the proposed model. Results show that strategic control has a positive relationship with radical innovation, but a negative relationship with incremental innovation, while financial control has a negative relationship with radical innovation, but a positive relationship with incremental innovation.

  12. An Analysis of Biomolecular Force Fields for Simulations of Polyglutamine in Solution

    Energy Technology Data Exchange (ETDEWEB)

    Fluitt, Aaron M. [Univ. of Chicago, IL (United States); de Pablo, Juan J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    Polyglutamine (polyQ) peptides are a useful model system for biophysical studies of protein folding and aggregation, both for their intriguing aggregation properties and their own relevance to human disease. The genetic expansion of a polyQ tract triggers the formation of amyloid aggregates associated with nine neurodegenerative diseases. Several clearly identifiable and separable factors, notably the length of the polyQ tract, influence the mechanism of aggregation, its associated kinetics, and the ensemble of structures formed. Atomistic simulations are well positioned to answer open questions regarding the thermodynamics and kinetics of polyQ folding and aggregation. The additional, explicit representation of water permits deeper investigation of the role of solvent dynamics, and it permits a direct comparison of simulation results with infrared spectroscopy experiments. The generation of meaningful simulation results hinges on satisfying two essential criteria: achieving sufficient conformational sampling to draw statistically valid conclusions, and accurately reproducing the intermolecular forces that govern system structure and dynamics. In this work, we examine the ability of 12 biomolecular force fields to reproduce the properties of a simple, 30-residue polyQ peptide (Q30) in explicit water. In addition to secondary and tertiary structure, we consider generic structural properties of polymers that provide additional dimensions for analysis of the highly degenerate disordered states of the molecule. We find that the 12 force fields produce a wide range of predictions. We identify AMBER ff99SB, AMBER ff99SB*, and OPLS-AA/L to be most suitable for studies of polyQ folding and aggregation.

  13. Composite control of the n-link chained mechanical systems

    Czech Academy of Sciences Publication Activity Database

    Čelikovský, Sergej; Zikmund, Jiří

    Bratislava: Slovak University of Technology in Bratislava, 2007, 130-1-130-6. ISBN 978-80-227-2677-1. [Process Control 2007. Štrbské Pleso (SK), 11.06.2007-14.06.2007] R&D Projects: GA ČR(CZ) GA102/05/0011 Institutional research plan: CEZ:AV0Z10750506 Keywords : Nonlinear systems * Underactuated systems * Exact linearization Subject RIV: BC - Control Systems Theory

  14. Preserving organelle vitality: peroxisomal quality control mechanisms in yeast

    OpenAIRE

    Aksam, Eda Bener; de Vries, Bart; van der Klei, Ida J.; Kiel, Jan A. K. W.

    2009-01-01

    Cellular proteins and organelles such as peroxisomes are under continuous quality control. Upon synthesis in the cytosol, peroxisomal proteins are kept in an import-competent state by chaperones or specific proteins with an analogous function to prevent degradation by the ubiquitin-proteasome system. During protein translocation into the organelle, the peroxisomal targeting signal receptors (Pex5, Pex20) are also continuously undergoing quality control to enable efficient functioning of the t...

  15. CONCEPTUAL APPROACHES TO CREATE CONTROL MECHANISM BY PASSENGER COMMUTATION SERVICES

    Directory of Open Access Journals (Sweden)

    V. O. Zadoya

    2010-11-01

    Full Text Available In the article the basic approaches of improving a management mechanism for passenger suburban railway transportations are considered, and the classification of reformation models for passenger suburban railway transportations depending on scales, degree of independence, department subordination and amount of proprietors of future company is offered.

  16. Benefits of Precision Farming Technologies for Mechanical Weed Control in Soybean and Sugar Beet—Comparison of Precision Hoeing with Conventional Mechanical Weed Control

    OpenAIRE

    Christoph Kunz; Jonas Felix Weber; Roland Gerhards

    2015-01-01

    Weed infestations and associated yield losses require effective weed control measures in soybean and sugar beet. Besides chemical weed control, mechanical weeding plays an important role in integrated weed management systems. Field experiments were conducted at three locations for soybean in 2013 and 2014 and at four locations for sugar beet in 2014 to investigate if automatic steering technologies for inter-row weed hoeing using a camera or RTK-GNSS increase weed control efficacy, efficiency...

  17. Optical Coherence Tomography and Biomolecular Imaging with Coherent Raman Scattering Microscopy

    DEFF Research Database (Denmark)

    Andersson-Engels, Stefan; Andersen, Peter E.

    2014-01-01

    The Special Section on Selected Topics in Biophotonics: Optical Coherence Tomography and Biomolecular Imaging with Coherent Raman Scattering Microscopy comprises two invited review papers and several contributed papers from the summer school Biophotonics ’13, as well as contributed papers within...

  18. Transition metal bioconjugates with an organometallic link between the metal and the biomolecular scaffold

    OpenAIRE

    Monney, Angèle; Albrecht, Martin

    2013-01-01

    This overview compiles recent advances in the synthesis and application of organometallic bioconjugates that comprise a metal–carbon linkage between the metal and the biomolecular scaffold. This specific area of bioorganometallic chemistry has been spurred by the discovery of naturally occurring bioorganometallic compounds and afforded organometallic bioconjugates from transition metals binding to amino acids, nucleic acids and other biomolecules. These artificial bioorganometallic compounds ...

  19. Computer Programming and Biomolecular Structure Studies: A Step beyond Internet Bioinformatics

    Science.gov (United States)

    Likic, Vladimir A.

    2006-01-01

    This article describes the experience of teaching structural bioinformatics to third year undergraduate students in a subject titled "Biomolecular Structure and Bioinformatics." Students were introduced to computer programming and used this knowledge in a practical application as an alternative to the well established Internet bioinformatics…

  20. Mechanical AGN Feedback: Controlling the Thermodynamical Evolution of Elliptical Galaxies

    CERN Document Server

    Gaspari, M; Temi, P

    2012-01-01

    A fundamental gap in the current understanding of galaxies concerns the thermodynamical evolution of the ordinary, baryonic matter. On one side, radiative emission drastically decreases the thermal energy content of the interstellar plasma (ISM), inducing a slow cooling flow toward the centre. On the other side, the active galactic nucleus (AGN) struggles to prevent the runaway cooling catastrophe, injecting huge amount of energy in the ISM. The present study intends to deeply investigate the role of mechanical AGN feedback in (isolated or massive) elliptical galaxies, extending and completing the mass range of tested cosmic environments. Our previously successful feedback models, in galaxy clusters and groups, demonstrated that AGN outflows, self-regulated by cold gas accretion, are able to properly quench the cooling flow, without destroying the cool core. Via 3D hydrodynamic simulations (FLASH 3.3), including also stellar evolution, we show that massive mechanical AGN outflows can indeed solve the cooling ...

  1. Failure of latch mechanism for motion control of safety rods

    International Nuclear Information System (INIS)

    During safety rod tests in K-reactor prior to startup, one safety rod could not be lifted because the ''button'' broke off and became lodged in the mechanism. Examination of the failed latch assembly along with other assemblies from both K-Area and L-Area revealed several missing buttons as well as severely deformed ''jaw hanger extensions.'' We participated in the investigation of the damage by request of the Reactor Restart Section. Based on our study of the latch mechanism, the modifications to the ''safety rod extension,'' and the operating history of the machine, this memorandum describes the causes of the observed damage with experimental evidence and calculations to support the findings. 3 refs

  2. Mechanisms controlling renal hemodynamics and electrolyte excretion during amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Woods, L.L.; Mizelle, H.L.; Montani, J.P.; Hall, J.E.

    1986-08-01

    Our purpose was to investigate the mechanisms by which increased plasma amino acids elevate renal blood flow (RBF) and glomerular filtration rate (GFR). Since transport of amino acids and Na is linked in the proximal tubule, the authors hypothesized that increased amino acids might stimulate proximal tubular Na reabsorption (PR/sub Na/) and thus increase RBF and GFR by a macula densa feedback mechanism. A solution of four amino acids (Ala, Ser, Gly, Pro) was infused intravenously into anesthetized dogs with normal kidneys (NK) and with kidneys in which the tubuloglomerular feedback mechanism was blunted by lowering renal artery pressure (LPK) or blocked by making the kidneys nonfiltering (NFK). In NK, RBF and GFR increased by 35 +/- 4% and 30 +/- 7% after 90 min of amino acid infusion, while PR/sub Na/ (estimated from lithium clearance) and O2 consumption increased by 31 +/- 5% and 29 +/- 5% and distal Na delivery remained relatively constant. Autoregulation of RBF and GFR in response to step deceases in renal artery pressure was impaired during amino acids in NK. The hemodynamic responses to amino acids were abolished in LPK and NFK. Infusion of the nonmetabolized -aminoisobutyric acid into NK produced changes in renal hemodynamics that were similar to the responses observed with the four metabolizable amino acids. These data are consistent with the hypothesis that elevation of plasma amino acids increases RBF and GFR by a mechanism that requires an intact macula densa feedback. Metabolism of the amino acids does not appear to be necessary for these changes to occur.

  3. Workflow management systems, their security and access control mechanisms

    OpenAIRE

    Chehrazi, Golriz

    2007-01-01

    This paper gives an overview of workflow management systems (WfMSs) and their security requirements with focus on access mechanisms. It is a descriptive paper in which we examine the state of the art of workflow systems, describe what security risks affect WfMSs in particular, and how these can be diminiuished. WfMSs manage, illustrate and support business processes. They contribute to the performance, automation and optimization of processes, which is important in the global economy today. ...

  4. SGLT-2 Inhibitors: A New Mechanism for Glycemic Control

    OpenAIRE

    Chao, Edward C.

    2014-01-01

    Glucosuria, the presence of glucose in the urine, has long been regarded as a consequence of uncontrolled diabetes. However, glucose excretion can be induced by blocking the activity of the renal sodium-glucose cotransporter 2 (SGLT-2). This mechanism corrects hyperglycemia independently of insulin. This article provides an overview of the paradigm shift that triggered the development of the SGLT-2 inhibitor class of agents and summarizes the available evidence from clinical studies to date.

  5. Q-AIMD: A Congestion Aware Video Quality Control Mechanism

    OpenAIRE

    Tran-Thai, Tuan; Changuel, Nesrine; Kerboeuf, Sylvaine; Faucheux, Frederic; Lochin, Emmanuel; Lacan, Jérôme

    2013-01-01

    Following the constant increase of the multimedia traffic, it seems necessary to allow transport protocols to be aware of the video quality of the transmitted flows rather than the throughput. This paper proposes a novel transport mechanism adapted to video flows. Our proposal, called Q-AIMD for video quality AIMD (Additive Increase Multiplicative Decrease), enables fairness in video quality while transmitting multiple video flows. Targeting video quality fairness allows improving the overall...

  6. Neural mechanisms of attentional control in mindfulness meditation

    OpenAIRE

    Malinowski, Peter

    2013-01-01

    The scientific interest in meditation and mindfulness practice has recently seen an unprecedented surge. After an initial phase of presenting beneficial effects of mindfulness practice in various domains, research is now seeking to unravel the underlying psychological and neurophysiological mechanisms. Advances in understanding these processes are required for improving and fine-tuning mindfulness-based interventions that target specific conditions such as eating disorders or attention defici...

  7. Development of a biomolecular assay for postmortem diagnosis of Taenia saginata Cysticercosis.

    Science.gov (United States)

    Chiesa, Francesco; Dalmasso, Alessandra; Bellio, Alberto; Martinetti, Manuela; Gili, Stefano; Civera, Tiziana

    2010-10-01

    Bovine cysticercosis is caused by the larval stage of the human tapeworm Taenia saginata. According to European data on meat inspection, the prevalence ranges from 0.007% to 6.8%, but the real prevalence is considered to be at least 10 times higher. Laboratory confirmation of the etiological agent is based on gross, stereomicroscopic, and histological examination of submitted specimens. False identifications may occur, possibly because of death and degeneration of cysts, or because taeniid larvae and other tissue parasites, such as Sarcocystis spp., may cause similar macroscopic morphological lesions. Therefore, tests that can warrant sure identification of taeniid lesions and calcified cysts in the muscle are needed. The focus of our study was to develop a suitable postmortem test that could be applied on putative lesions by T. saginata cysticerci, as ambiguously diagnosed after routine meat inspection. In particular, we proposed a biomolecular assay targeting the mitochondrial cytochrome c oxidase subunit I gene (COI). For developing the polymerase chain reaction assay, viable cysts of Cysticercus bovis (n = 10) were used as positive reference samples, and those of Echinococcus granulosus (n = 3), Cysticercus tenuicollis (n = 3), and Sarcocystis spp. (n = 4) as reference negative controls. Further, to evaluate the applicability of the proposed assay, 171 samples of bovine muscular tissue, obtained from local slaughterhouses and containing lesions recognized as T. saginata cysticerci by macroscopic examination, were tested. The proposed test confirmed the diagnosis at postmortem inspection in 94.7% (162/171) of samples. In conclusion, the assay developed in this study, amplifying a short fragment from the mitochondrial gene COI, showed to be suitable for samples containing both viable and degenerating T. saginata cysticerci, yielding an unequivocal diagnosis. PMID:20618079

  8. Mechanical characterization of calcium pectinate hydrogel for controlled drug delivery

    Directory of Open Access Journals (Sweden)

    Chung Jin Thau

    2003-01-01

    Full Text Available Calcium pectinate beads, a paniculate hydrogel system, is an attractive drug carrier for oral delivery. In this study, a poorly water-soluble model drug indomethacin was incorporated into calcium pectinate beads made of different pectin concentrations, which were produced by an extrusion method. The effect of pectin concentration on bead size, circularity, swelling behavior, and mechanical properties, as well as in vitro drug release profile was investigated. The mechanical properties of calcium pectinate beads were determined by a micromanipulation technique. The drug release profile was measured using a standard British Pharmacopoeia method. It was found that the beads made of higher pectin concentration in general had a less permeable matrix structure and greater mechanical rigidity, although they swelled more after hydration. However, such an effect was not significant when the pectin concentration was increased to above 8%. Micromanipulation measurements showed that there was significant relaxation of the force being imposed on single hydrated beads when they were held, but this phenomenon did not occur on dry beads, which means that the force relaxation was dominated by liquid loss from the beads. The rate of the force relaxation was determined, and has been related to the release rate of the model drug entrapped in the calcium pectinate beads.

  9. Probable Mechanisms of Needling Therapies for Myofascial Pain Control

    Directory of Open Access Journals (Sweden)

    Li-Wei Chou

    2012-01-01

    Full Text Available Myofascial pain syndrome (MPS has been defined as a regional pain syndrome characterized by muscle pain caused by myofascial trigger points (MTrPs clinically. MTrP is defined as the hyperirritable spot in a palpable taut band of skeletal muscle fibers. Appropriate treatment to MTrPs can effectively relieve the clinical pain of MPS. Needling therapies, such as MTrP injection, dry needling, or acupuncture (AcP can effectively eliminate pain immediately. AcP is probably the first reported technique in treating MPS patients with dry needling based on the Traditional Chinese Medicine (TCM theory. The possible mechanism of AcP analgesia were studied and published in recent decades. The analgesic effect of AcP is hypothesized to be related to immune, hormonal, and nervous systems. Compared to slow-acting hormonal system, nervous system acts in a faster manner. Given these complexities, AcP analgesia cannot be explained by any single mechanism. There are several principles for selection of acupoints based on the TCM principles: “Ah-Shi” point, proximal or remote acupoints on the meridian, and extra-meridian acupoints. Correlations between acupoints and MTrPs are discussed. Some clinical and animal studies of remote AcP for MTrPs and the possible mechanisms of remote effectiveness are reviewed and discussed.

  10. 14 CFR 27.923 - Rotor drive system and control mechanism tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor drive system and control mechanism... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.923 Rotor drive system and control mechanism tests. (a) Each part tested as prescribed in this...

  11. 14 CFR 29.923 - Rotor drive system and control mechanism tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor drive system and control mechanism... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.923 Rotor drive system and control mechanism tests. (a) Endurance tests, general. Each rotor...

  12. Lie Algebroids in Classical Mechanics and Optimal Control

    Directory of Open Access Journals (Sweden)

    Eduardo Martínez

    2007-03-01

    Full Text Available We review some recent results on the theory of Lagrangian systems on Lie algebroids. In particular we consider the symplectic and variational formalism and we study reduction. Finally we also consider optimal control systems on Lie algebroids and we show how to reduce Pontryagin maximum principle.

  13. Molecular Alignment and Orientation From Laser-Induced Mechanisms to Optimal Control

    CERN Document Server

    Atabek, O

    2002-01-01

    Genetic algorithms, as implemented in optimal control strategies, are currently successfully exploited in a wide range of problems in molecular physics. In this context, laser control of molecular alignment and orientation remains a very promising issue with challenging applications extending from chemical reactivity to nanoscale design. We emphasize the complementarity between basic quantum mechanisms monitoring alignment/orientation processes and optimal control scenarios. More explicitly, if on one hand we can help the optimal control scheme to take advantage of such mechanisms by appropriately building the targets and delineating the parameter sampling space, on the other hand we expect to learn, from optimal control results, some robust and physically sound dynamical mechanisms. We present basic mechanisms for alignment and orientation, such as pendular states accommodated by the molecule-plus-field effective potential and the "kick" mechanism obtained by a sudden excitation. Very interestingly, an optim...

  14. Automatic detection of AutoPEEP during controlled mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Nguyen Quang-Thang

    2012-06-01

    Full Text Available Abstract Background Dynamic hyperinflation, hereafter called AutoPEEP (auto-positive end expiratory pressure with some slight language abuse, is a frequent deleterious phenomenon in patients undergoing mechanical ventilation. Although not readily quantifiable, AutoPEEP can be recognized on the expiratory portion of the flow waveform. If expiratory flow does not return to zero before the next inspiration, AutoPEEP is present. This simple detection however requires the eye of an expert clinician at the patient’s bedside. An automatic detection of AutoPEEP should be helpful to optimize care. Methods In this paper, a platform for automatic detection of AutoPEEP based on the flow signal available on most of recent mechanical ventilators is introduced. The detection algorithms are developed on the basis of robust non-parametric hypothesis testings that require no prior information on the signal distribution. In particular, two detectors are proposed: one is based on SNT (Signal Norm Testing and the other is an extension of SNT in the sequential framework. The performance assessment was carried out on a respiratory system analog and ex-vivo on various retrospectively acquired patient curves. Results The experiment results have shown that the proposed algorithm provides relevant AutoPEEP detection on both simulated and real data. The analysis of clinical data has shown that the proposed detectors can be used to automatically detect AutoPEEP with an accuracy of 93% and a recall (sensitivity of 90%. Conclusions The proposed platform provides an automatic early detection of AutoPEEP. Such functionality can be integrated in the currently used mechanical ventilator for continuous monitoring of the patient-ventilator interface and, therefore, alleviate the clinician task.

  15. Chemical and mechanical control of corrosion product transport

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O.; Blum, R. [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark); Daucik, K. [I/S Skaerbaekvaerket, Faelleskemikerne, Fredericia (Denmark)

    1996-12-01

    The corrosion products formed in the condensate and feedwater system of once-through boilers are precipitated and deposited inside the evaporator tubes mainly in the burner zone at the highest heat flux. Depositions lead to increased oxidation rate and increased metal temperature of the evaporator tubes, hereby decreasing tube lifetime. This effect is more important in the new high efficiency USC boilers due to increased feedwater temperature and hence higher thermal load on the evaporator tubes. The only way to reduce the load on the evaporator tubes is to minimise corrosion product transport to the boiler. Two general methods for minimising corrosion product transport to the boiler have been evaluated through measurement campaigns for Fe in the water/steam cycle in supercritical boilers within the ELSAM area. One method is to reduce corrosion in the low temperature condensate system by changing conditioning mode from alkaline volatile treatment (AVT) to oxygenated treatment (OT). The other method is to filtrate part of the condensate with a mechanical filter at the deaerator. The results show, that both methods are effective at minimising Fe-transport to the boiler, but changing to OT has the highest effect and should always be used, whenever high purity condensate is maintained. Whether mechanical filtration also is required, depends on the boiler, specifically the load on the evaporator. A simplified calculation model for lifetime evaluation of evaporator tubes has been developed. This model has been used for evaluating the effect of corrosion product transport to the boiler on evaporator tube lifetime. Conventional supercritical boilers generally can achieve sufficient lifetime by AVT and even better by OT, whereas all measures to reduce Fe-content of feedwater, including OT and mechanical filtration, should be taken, to ensure sufficient lifetime for the new boilers with advanced steam data - 290 bar/580 deg. C and above. (au)

  16. Mechanical control over valley magnetotransport in strained graphene

    Science.gov (United States)

    Ma, Ning; Zhang, Shengli; Liu, Daqing

    2016-05-01

    Recent experiments report that the graphene exhibits Landau levels (LLs) that form in the presence of a uniform strain pseudomagnetic field with magnitudes up to hundreds of tesla. We further reveal that the strain removes the valley degeneracy in LLs, and leads to a significant valley polarization with inversion symmetry broken. This accordingly gives rise to the well separated valley Hall plateaus and Shubnikov-de Haas oscillations. These effects are absent in strainless graphene, and can be used to generate and detect valley polarization by mechanical means, forming the basis for the new paradigm "valleytronics" applications.

  17. Computer Studies on the Mechanisms Controlling Cellular Proliferation

    International Nuclear Information System (INIS)

    A model of the autoregulation of mitotic and functional activity of the cells is used (R. Tsanev and B. Sendov, J. theoret. Biol. 12 (1966) 327) to study by means of a digital computer the reaction of different cellular systems (a synchronous cellular population, liver and epidermis) to injuring agents disturbing the steady state of the system. The reaction of the cellular models to different kinds of injury was found to imitate adequately some particular features of the real regenerative processes. The model may also be useful to check different hypotheses concerning the mechanisms by which irradiation affects cellular proliferation. (author)

  18. High-Order Stochastic Adaptive Controller Design with Application to Mechanical System

    OpenAIRE

    Jie Tian; Wei Feng; Yuzhen Wang

    2012-01-01

    The main purpose of this paper is to apply stochastic adaptive controller design to mechanical system. Firstly, by a series of coordinate transformations, the mechanical system can be transformed to a class of special high-order stochastic nonlinear system, based on which, a more general mathematical model is considered, and the smooth state-feedback controller is designed. At last, the simulation for the mechanical system is given to show the effectiveness of the design scheme.

  19. Sexual orientation biases attentional control: a possible gaydar mechanism

    Directory of Open Access Journals (Sweden)

    Lorenza S Colzato

    2010-05-01

    Full Text Available Homosexuals are believed to have a “sixth sense” for recognizing each other, an ability referred to as gaydar. We considered that being a homosexual might rely on systematic practice of processing relatively specific, local perceptual features, which might lead to a corresponding chronic bias of attentional control. This was tested by comparing male and female homosexuals and heterosexuals--brought up in the same country and culture and matched in terms of race, intelligence, sex, mood, age, personality, religious background, educational style, and socio-economic situation--in their efficiency to process global and local features of hierarchically-constructed visual stimuli. Both homosexuals and heterosexuals showed better performance on global features—the standard global precedence effect. However, this effect was significantly reduced in homosexuals, suggesting a relative preference for detail. Findings are taken to demonstrate chronic, generalized biases in attentional control parameters that reflect the selective reward provided by the respective sexual orientation.

  20. Mechanisms of daughter cell-size control during cell division.

    Science.gov (United States)

    Kiyomitsu, Tomomi

    2015-05-01

    Daughter cell size is tightly regulated during cell division. In animal cells, the position of the anaphase spindle specifies the cell cleavage site to dictate the relative size of the daughter cells. Although spindle orientation is regulated by dynein-dependent cortical pulling forces exerted on astral microtubules in many cell types, it was unclear how these forces are precisely regulated to center or displace the spindle. Recently, intrinsic signals derived from chromosomes or spindle poles have been demonstrated to regulate dynein-dependent pulling forces in symmetrically dividing cells. Unexpectedly, myosin-dependent contractile forces have also been shown to control spindle position by altering the cellular boundaries during anaphase. In this review, I discuss how dynein- and myosin-dependent forces are coordinately regulated to control daughter cell size. PMID:25548067

  1. Sensory mechanisms of balance control in cerebellar disease

    OpenAIRE

    Bunn, L. M.

    2011-01-01

    A wealth of evidence exists to suggest that the cerebellum has an important role in the integration of vestibular, proprioceptive and visual sensory signals. Human bipedal balance depends on sensory integration and balance impairment is a common feature of cerebellar disease. I test the hypothesis that disrupted sensori-motor processing is responsible for balance impairment in cerebellar disease. Balance control in subjects with pure cerebellar disease (SCA6) was compared with matched healthy...

  2. Corticolimbic Mechanisms in the Control of Trial and Error Learning

    OpenAIRE

    Luu, Phan; Shane, Matthew; Pratt, Nikki; Tucker, Don M.

    2008-01-01

    As learning progresses, human and animal studies suggest that a frontal executive system is strongly involved early in learning, whereas a posterior monitoring and control system comes online as learning progress. In a previous study, we employed dense array EEG methodology to delineate the involvement of these two systems as human participants learn, through trial and error, to associate manual responses with arbitrary digit codes. The results were generally consistent with the dual-system l...

  3. Sexual orientation biases attentional control: a possible gaydar mechanism

    OpenAIRE

    Colzato, Lorenza S; Linda Van Hooidonk; Wery Van Den Wildenberg; Fieke Harinck; Bernhard Hommel

    2010-01-01

    Homosexuals are believed to have a “sixth sense” for recognizing each other, an ability referred to as gaydar. We considered that being a homosexual might rely on systematic practice of processing relatively specific, local perceptual features, which might lead to a corresponding chronic bias of attentional control. This was tested by comparing male and female homosexuals and heterosexuals--brought up in the same country and culture and matched in terms of race, intelligence, sex,...

  4. Cognitive Control Deficits in Schizophrenia: Mechanisms and Meaning

    OpenAIRE

    Lesh, Tyler A.; Niendam, Tara A; Minzenberg, Michael J.; Carter, Cameron S.

    2010-01-01

    Although schizophrenia is an illness that has been historically characterized by the presence of positive symptomatology, decades of research highlight the importance of cognitive deficits in this disorder. This review proposes that the theoretical model of cognitive control, which is based on contemporary cognitive neuroscience, provides a unifying theory for the cognitive and neural abnormalities underlying higher cognitive dysfunction in schizophrenia. To support this model, we outline con...

  5. Mechanisms of motor adaptation in reactive balance control.

    Directory of Open Access Journals (Sweden)

    Torrence D J Welch

    Full Text Available Balance control must be rapidly modified to provide stability in the face of environmental challenges. Although changes in reactive balance over repeated perturbations have been observed previously, only anticipatory postural adjustments preceding voluntary movements have been studied in the framework of motor adaptation and learning theory. Here, we hypothesized that adaptation occurs in task-level balance control during responses to perturbations due to central changes in the control of both anticipatory and reactive components of balance. Our adaptation paradigm consisted of a Training set of forward support-surface perturbations, a Reversal set of novel countermanding perturbations that reversed direction, and a Washout set identical to the Training set. Adaptation was characterized by a change in a motor variable from the beginning to the end of each set, the presence of aftereffects at the beginning of the Washout set when the novel perturbations were removed, and a return of the variable at the end of the Washout to a level comparable to the end of the Training set. Task-level balance performance was characterized by peak center of mass (CoM excursion and velocity, which showed adaptive changes with repetitive trials. Only small changes in anticipatory postural control, characterized by body lean and background muscle activity were observed. Adaptation was found in the evoked long-latency muscular response, and also in the sensorimotor transformation mediating that response. Finally, in each set, temporal patterns of muscle activity converged towards an optimum predicted by a trade-off between maximizing motor performance and minimizing muscle activity. Our results suggest that adaptation in balance, as well as other motor tasks, is mediated by altering central sensitivity to perturbations and may be driven by energetic considerations.

  6. Efficiently making (almost) any concurrency control mechanism serializable

    OpenAIRE

    Wang, Tianzheng; Johnson, Ryan; Fekete, Alan; Pandis, Ippokratis

    2016-01-01

    Concurrency control (CC) algorithms must trade off strictness for performance. In particular, serializable CC schemes generally pay higher cost to prevent anomalies, both in runtime overhead such as the maintenance of lock tables, and in efforts wasted by aborting transactions. We propose the serial safety net (SSN), a serializability-enforcing certifier which can be applied with minimal overhead on top of various CC schemes that offer higher performance but admit anomalies, such as snapshot ...

  7. Molecular Mechanisms to Control Post-Transplantation Hepatitis B Recurrence

    Directory of Open Access Journals (Sweden)

    Akinobu Takaki

    2015-07-01

    Full Text Available Hepatitis B often progresses to decompensated liver cirrhosis requiring orthotopic liver transplantation (OLT. Although newer nucleos(tide analogues result in >90% viral and hepatitis activity control, severely decompensated patients still need OLT because of drug-resistant virus, acute exacerbation, or hepatocellular carcinoma. Acute hepatitis B is also an indication for OLT, because it can progress to fatal acute liver failure. After OLT, the hepatitis B recurrence rate is >80% without prevention, while >90% of transplant recipients are clinically controlled with combined hepatitis B immunoglobulin (HBIG and nucleos(tide analogue treatment. However, long-term HBIG administration is associated with several unresolved issues, including limited availability and extremely high cost; therefore, several treatment protocols with low-dose HBIG, combined with nucleos(tide analogues, have been investigated. Another approach is to induce self-producing anti-hepatitis B virus (HBV antibodies using an HBV envelope (HBs antigen vaccine. Patients who are not HBV carriers, such as those with acutely infected liver failure, are good candidates for vaccination. For chronic HBV carrier liver cirrhosis patients, a successful vaccine response can only be achieved in selected patients, such as those treated with experimentally reduced immunosuppression protocols. The present protocol for post-OLT HBV control and the future prospects of newer treatment strategies are reviewed.

  8. Development of passive-controlled HUB (teetered brake & damper mechanism) of horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yukimaru; Kamada, Yasunari; Maeda, Takao [Mie Univ. (Japan)

    1997-12-31

    For the purpose of the improvement of reliability of the Mega-Watt wind turbine, this paper indicates the development of an original mechanism for the passive-controlled hub, which has the effects of braking and damping on aerodynamic forces. This mechanism is useful for variable speed control of the large wind turbine. The passive-controlled hub is the combination of two mechanisms. One is the passive-teetered and damping mechanism, and the other is the passive-variable-pitch mechanism. These mechanism are carried out by the combination of the teetering and feathering motions. When the wind speed exceeds the rated wind speed, the blade is passively teetered in a downwind direction and, simultaneously, a feathering mechanism, which is linked to the teetering mechanism through a connecting rods, is activated. Testing of the model horizontal axis wind turbine in a wind tunnel showed that the passive-controlled hub mechanism can suppress the over-rotational speed of the rotor. By the application of the passive-controlled hub mechanism, the maximum rotor speed is reduced to about 60%.

  9. Innovation in Bio-disaster Prevention and Control Mechanism after Forest Tenure Reform at County Level

    OpenAIRE

    Zhan, Zu-ren

    2012-01-01

    Taking Youxi County of Fujian Province as an example, I introduced basic situations of new bio-disaster prevention and control mechanism for forest resource protection and social service works after the forest tenure reform. Then, I analyzed new problems faced by bio-disaster prevention and control in forestry. Finally, I present the existing problems of bio-disaster prevention and control at the county level from five aspects: innovating upon plant quarantine management mechanism; innovation...

  10. Adaptive Backstepping Control of Nonlinear Hydraulic-Mechanical System Including Valve Dynamics

    Directory of Open Access Journals (Sweden)

    M. Choux

    2010-01-01

    Full Text Available The main contribution of the paper is the development of an adaptive backstepping controller for a nonlinear hydraulic-mechanical system considering valve dynamics. The paper also compares the performance of two variants of an adaptive backstepping tracking controller with a simple PI controller. The results show that the backstepping controller considering valve dynamics achieves significantly better tracking performance than the PI controller, while handling uncertain parameters related to internal leakage, friction, the orifice equation and oil characteristics.

  11. Factors controlling alkalisalt deposition in recovery boiler- release mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    McKeough, P.; Kylloenen, H.; Kurkela, M. [VTT Energy, Espoo (Finland). Process Technology Group

    1996-12-01

    As part of a cooperative effort to develop a model to describe the behaviour of inorganic compounds in kraft recovery boilers, an experimental investigation of the release of sulphur during black liquor pyrolysis has been undertaken. Previous to these studies, the mechanisms of sulphur release and the reasons for the observed effects of process conditions on sulphur release were very poorly understood. On the basis of the experimental results, the main reactions leading to sulphur release have been elucidated with a fair degree of certainty. Logical explanations for the variations of sulphur release with temperature and with liquor solids content have been proposed. The influence of pressure has been investigated in order to gain insights into the effects of mass transfer on the sulphur-release rate. In the near future, the research will be aimed at generating the kinetic data necessary for modelling the release of sulphur in the recovery furnace. (author)

  12. Constraints on Private Benefits of Control: Ex Ante Control Mechanisms versus Ex Post Transaction Review

    OpenAIRE

    Gilson, Ronald J; Alan Schwartz

    2013-01-01

    We ask how to regulate pecuniary private benefit consumption. These benefits can compensate controlling shareholders for monitoring managers and investing effort in implementing projects. Controlling shareholders may consume excessive benefits, however. We argue (a) ex post judicial review of controlled transactions dominates ex ante restrictions on the controlled structures: the latter eliminate efficiencies along with abuses of the controlled company form; (b) controlling shareholders shoul...

  13. Impeller leakage flow modeling for mechanical vibration control

    Science.gov (United States)

    Palazzolo, Alan B.

    1996-01-01

    HPOTP and HPFTP vibration test results have exhibited transient and steady characteristics which may be due to impeller leakage path (ILP) related forces. For example, an axial shift in the rotor could suddenly change the ILP clearances and lengths yielding dynamic coefficient and subsequent vibration changes. ILP models are more complicated than conventional-single component-annular seal models due to their radial flow component (coriolis and centrifugal acceleration), complex geometry (axial/radial clearance coupling), internal boundary (transition) flow conditions between mechanical components along the ILP and longer length, requiring moment as well as force coefficients. Flow coupling between mechanical components results from mass and energy conservation applied at their interfaces. Typical components along the ILP include an inlet seal, curved shroud, and an exit seal, which may be a stepped labyrinth type. Von Pragenau (MSFC) has modeled labyrinth seals as a series of plain annular seals for leakage and dynamic coefficient prediction. These multi-tooth components increase the total number of 'flow coupled' components in the ILP. Childs developed an analysis for an ILP consisting of a single, constant clearance shroud with an exit seal represented by a lumped flow-loss coefficient. This same geometry was later extended to include compressible flow. The objective of the current work is to: supply ILP leakage-force impedance-dynamic coefficient modeling software to MSFC engineers, base on incompressible/compressible bulk flow theory; design the software to model a generic geometry ILP described by a series of components lying along an arbitrarily directed path; validate the software by comparison to available test data, CFD and bulk models; and develop a hybrid CFD-bulk flow model of an ILP to improve modeling accuracy within practical run time constraints.

  14. MOLECULAR MECHANISM OF URANIUM REDUCTION BY CLOSTRIDIA AND ITS MANIPULATION.

    Energy Technology Data Exchange (ETDEWEB)

    FRANCIS, A.J.; GAO, W.; CHIDAMBARAM, D.; DODGE, C.J.

    2006-11-16

    This research addresses the need for detailed studies of the enzymatic mechanisms for reduction of radionuclides and/or metals by fermentative microorganisms. The overall objective of this research is to elucidate systematically the molecular mechanisms involved in the reduction of uranium by Clostridia. We propose to (1) determine the role of hydrogenases in uranium reduction, (2) purify the enzymes involved in uranium reduction, (3) determine the mechanisms of reduction, e.g., one or two electron transfer reactions, and (4) elucidate the genetic control of the enzymes and cellular factors involved in uranium reduction. This is a collaborative study between BNL and Stanford University involving expertise in biomolecular science, biochemistry, microbiology, and electrochemistry.

  15. Molecular Mechanism of Uranium Reduction by Clostridia and its Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Francis; W. Gao, D. Chidambaram; C.J. Dodge

    2006-06-01

    This research addresses the need for detailed studies of the enzymatic mechanisms for reduction of radionuclides and/or metals by fermentative microorganisms. The overall objective of this research is to elucidate systematically the molecular mechanisms involved in the reduction of uranium by Clostridia. We propose to (1) determine the role of hydrogenases in uranium reduction, (22) purify the enzymes involved in uranium reduction, (3) determine the mechanisms of reduction, e.g., one or two electron transfer reactions, and (4) elucidate the genetic control of the enzymes and cellular factors involved in uranium reduction. This is a collaborative study between BNL and Stanford University involving expertise in biomolecular science, biochemistry, microbiology, and electrochemistry.

  16. Line-Tension Controlled Mechanism for Influenza Fusion

    OpenAIRE

    Herre Jelger Risselada; Giovanni Marelli; Marc Fuhrmans; Smirnova, Yuliya G.; Helmut Grubmüller; Siewert Jan Marrink; Marcus Müller

    2012-01-01

    Our molecular simulations reveal that wild-type influenza fusion peptides are able to stabilize a highly fusogenic pre-fusion structure, i.e. a peptide bundle formed by four or more trans-membrane arranged fusion peptides. We rationalize that the lipid rim around such bundle has a non-vanishing rim energy (line-tension), which is essential to (i) stabilize the initial contact point between the fusing bilayers, i.e. the stalk, and (ii) drive its subsequent evolution. Such line-tension controll...

  17. Radial basis function (RBF) neural network control for mechanical systems design, analysis and Matlab simulation

    CERN Document Server

    Liu, Jinkun

    2013-01-01

    Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design.   This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronauti...

  18. Repetitive control mechanism of disturbance cancellation using a hybrid regression and genetic algorithm

    Science.gov (United States)

    Lin, Jeng-Wen; Shen, Pu Fun; Wen, Hao-Ping

    2015-10-01

    The application of a repetitive control mechanism for use in a mechanical control system has been a topic of investigation. The fundamental purpose of repetitive control is to eliminate disturbances in a mechanical control system. This paper presents two different repetitive control laws using individual types of basis function feedback and their combinations. These laws adjust the command given to a feedback control system to eliminate tracking errors, generally resulting from periodic disturbance. Periodic errors can be reduced through linear basis functions using regression and a genetic algorithm. The results illustrate that repetitive control is most effective method for eliminating disturbances. When the data are stabilized, the tracking error of the obtained convergence value, 10-14, is the optimal solution, verifying that the proposed regression and genetic algorithm can satisfactorily reduce periodic errors.

  19. Position Fuzzy Control for a Two-Axis Shaking Table based on Slider-Crank Mechanism

    Directory of Open Access Journals (Sweden)

    Carlos H. Esparza-Franco

    2013-11-01

    Full Text Available Different mechanisms have been designed to generate vibratory motion to test the evaluation of seismic control systems to be used in structural buildings. These systems are called "shaking-tables" and they are usually designed with linear actuators which facilitate the implementation of classical control systems for its proper operation. This paper presents a position fuzzy control system designed to control the displacement behavior of earthquakes on the shaking-table based on a slider-crank mechanism. The results show repeatability greater than 97%, adequate to the validation of anti-seismic controllers on small-scale models.

  20. Heat resistant driving coil and control rod drive mechanism

    International Nuclear Information System (INIS)

    Ceramic materials are used for each part of driving coils and used as the driving coils for a driving shaft. That is, a cylindrical bobbin having outwardly protruding flanges on the entire circumference at the upper and the lower portions is made of stainless steels. Ceramics sheets are appended as necessary to the outer circumferential surface of the bobbin. Then, ceramic electric wires are wound around the outer circumference of the bobbin by a required number of turns to constitute coils. The electric wire is prepared by coating the conductor of nickel-plated copper with ceramic coating material, disposing an insulation material to the outer circumference thereof the further coating the outside with ceramic coating material. This can improve the heat resistance and, since the control rod drives using such heat resistant driving coils can operate at a high temperature. It requires no cooling device and can simplify the reactor and its peripheral structures. (T.M.)

  1. Enhanced Role Based Access Control Mechanism for Electronic Examination System

    Directory of Open Access Journals (Sweden)

    Adebukola Onashoga

    2014-02-01

    Full Text Available Over the years, e-learning and e-examination has become standard in many institutions of higher learning. It has been observed that examination questions and results can be easily intercepted by invalid users, thus the security of resources shared among valid users is not guaranteed. In order to solve these problems as it relates to access control, a Role based Examination System (RBES was designed, developed and evaluated. RBES attempted to solve the security issue by the combination of two authentication techniques: text-based authentication and graphical password authentication. The Text-based authentication utilizes two text-based parameters namely the username and password. The graphical password authentication makes use of a finite set of controls (RBES chooses radio buttons which are identified by numbers. These numbers constitute the password used for graphical authentication. To improve on resource sharing among users in the examination system, RBES proposes role management (role creation, role update, role removal and user management (user creation, user update and user removal. The developed system made use of asp.net, C#, IIS server, WAMP server, Mysql and other tools for its development. RBES was tested by some legitimate and illegitimate users and the performance of the system was found to be satisfactory, hence RBES shows an efficient and reliable scheme that can be deployed in any examination or e-learning system. Finally the potential threats to the system were modeled and the use of weak passwords was found to be the most likely threat the system could be vulnerable to.

  2. [Mechanism of watershed soil erosion control by vegetation].

    Science.gov (United States)

    Qin, Fucang; Yu, Xinxiao; Zhang, Manling; Xie, Yuanyuan

    2005-09-01

    From the view of hydrodynamics, this paper studied the acting mechanism of tree, grass and forest litter on slope runoff velocity and kinetic energy. The results showed that slope runoff head loss was related to slope gradient, forest density, net rainfall intensity and slope length. The relationship of water head loss with the distance among trees and the diameter at the ground of tree was Eoc (D/b)4/3. The grass on slope turned to be curved with s flowing, and thus, increased the bottom resistance of flow, and reduced the shearing stress of soil surface. Therefore, silt-carrying capacity decreased dramatically. The analysis of actually measured materials of each rainfall, runoff and sediment, and the comparison of Qiaozi eastern gully and Qiaozi west gully in Tianshui city of Gansu Province showed that under same precipitation condition, the runoff, sediment yield, flood peak discharge and maximum sediment transport rate in treated watershed was less than those in untreated watershed, suggesting that vegetation was obviously beneficial to water reservation and water and soil conservation. PMID:16355771

  3. Development of Limited Angle Brushless Torque Motor Control Drive for Scan Mirror Mechanism

    Directory of Open Access Journals (Sweden)

    A. Jagadeeshwaran

    2013-10-01

    Full Text Available This paper illustrate the design and realization of control drive electronics of Limited Angle brushless torque motor for position control of Scan mirror mechanism. The scan mirror mechanism is controlled for the intended limited mechanical angle within +/- 20deg. The control drive is designed for six selectable positions within +/- 20deg with an accuracy of 0.75 degree. These six selectablepositions are achieved with rates of 1 deg/sec, 2 deg/sec and 3 deg/sec according to the requirement. The control input to the drive electronics is given through PC interface for the required position and rate. The input/output is presented in GUI front end. The instantaneous data of present position and rate of the scan mechanism is logged in PC for reference.

  4. PREFACE: 1st Nano-IBCT Conference 2011 - Radiation Damage of Biomolecular Systems: Nanoscale Insights into Ion Beam Cancer Therapy

    Science.gov (United States)

    Huber, Bernd A.; Malot, Christiane; Domaracka, Alicja; Solov'yov, Andrey V.

    2012-07-01

    The 1st Nano-IBCT Conference entitled 'Radiation Damage in Biomolecular Systems: Nanoscale Insights into Ion Beam Cancer Therapy' was held in Caen, France, in October 2011. The Meeting was organised in the framework of the COST Action MP1002 (Nano-IBCT) which was launched in December 2010 (http://fias.uni-frankfurt.de/nano-ibct). This action aims to promote the understanding of mechanisms and processes underlying the radiation damage of biomolecular systems at the molecular and nanoscopic level and to use the findings to improve the strategy of Ion Beam Cancer Therapy. In the hope of achieving this, participants from different disciplines were invited to represent the fields of physics, biology, medicine and chemistry, and also included those from industry and the operators of hadron therapy centres. Ion beam therapy offers the possibility of excellent dose localization for treatment of malignant tumours, minimizing radiation damage in normal healthy tissue, while maximizing cell killing within the tumour. Several ion beam cancer therapy clinical centres are now operating in Europe and elsewhere. However, the full potential of such therapy can only be exploited by better understanding the physical, chemical and biological mechanisms that lead to cell death under ion irradiation. Considering a range of spatio-temporal scales, the proposed action therefore aims to combine the unique experimental and theoretical expertise available within Europe to acquire greater insight at the nanoscopic and molecular level into radiation damage induced by ion impact. Success in this endeavour will be both an important scientific breakthrough and give great impetus to the practical improvement of this innovative therapeutic technique. Ion therapy potentially provides an important advance in cancer therapy and the COST action MP1002 will be very significant in ensuring Europe's leadership in this field, providing the scientific background, required data and mechanistic insight which

  5. Seismic appraisal test of control rod drive mechanism of China experiment fast reactor

    International Nuclear Information System (INIS)

    The structure of the control rod drive mechanism in pool type sodium-cooled fast reactor is the characterized by long, thin, and geometric nonlinearity, and the seismic load is multiple activation. The anti-seismic evaluation is always paid great attention by the countries developing the technology worldwide. This article introduces the seismic appraisal test of the control rod drive mechanism of China Experimental Fast Reactor (CEFR) performed on a seismic platform which is vertical shaft style and multiple activation. The result of the test shows the structural integrity and the function of the control rod drive mechanism could meet the design requirements of the earthquake intensity. (authors)

  6. Stochastic Optimal Control for Online Seller under Reputational Mechanisms

    Directory of Open Access Journals (Sweden)

    Milan Bradonjić

    2015-12-01

    Full Text Available In this work we propose and analyze a model which addresses the pulsing behavior of sellers in an online auction (store. This pulsing behavior is observed when sellers switch between advertising and processing states. We assert that a seller switches her state in order to maximize her profit, and further that this switch can be identified through the seller’s reputation. We show that for each seller there is an optimal reputation, i.e., the reputation at which the seller should switch her state in order to maximize her total profit. We design a stochastic behavioral model for an online seller, which incorporates the dynamics of resource allocation and reputation. The design of the model is optimized by using a stochastic advertising model from [1] and used effectively in the Stochastic Optimal Control of Advertising [2]. This model of reputation is combined with the effect of online reputation on sales price empirically verified in [3]. We derive the Hamilton-Jacobi-Bellman (HJB differential equation, whose solution relates optimal wealth level to a seller’s reputation. We formulate both a full model, as well as a reduced model with fewer parameters, both of which have the same qualitative description of the optimal seller behavior. Coincidentally, the reduced model has a closed form analytical solution that we construct.

  7. Chilean Unremunerated Reserve Requirement Capital Controls as a Screening Mechanism

    Directory of Open Access Journals (Sweden)

    Thomas I. Palley

    2005-01-01

    Full Text Available Este trabajo presenta un modelo sobre los “speed bump” (topes a los controles de capital de tipo chileno, que los interpreta como un mecanismo para identificar a los inversores volátiles. Esta interpretación es contrastada con la explicación basada en las finanzas poeblicas, cuyo punto de vista muestra a los topes como un impuesto sobre ingresos de capital a corto plazo que incrementan su precio relativo. Un resultado sorprendente es que aun cuando los topes incrementan el costo del capital, ellos pueden realmente incrementar los ingresos de capital. Estos ingresos crecientes son más estables porque provienen de los inversionistas pacientes. La lección es que discriminar a los inversores volátiles estabiliza el ambiente financiero. Los topes benefician tanto a las empresas como a los inversionistas pacientes al reducir el daño que podría provenir de salidas repentinas de capital, lo cual aumenta la demanda y la oferta de capital.

  8. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture.

    Science.gov (United States)

    Grundy, Daniel J; Chen, Mengbin; González, Verónica; Leoni, Stefano; Miller, David J; Christianson, David W; Allemann, Rudolf K

    2016-04-12

    The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D(80)DQFD and N(218)DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H2(18)O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-(2)H2]FDP and (R)-[1-(2)H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues

  9. An Analytical Study of Fuzzy Control of a Flexible Rod Mechanism

    Science.gov (United States)

    Beale, D.; Lee, S. W.; Boghiu, D.

    1998-02-01

    The non-linear nature of very high speed, flexible rod mechanisms has been previously confirmed, both experimentally and analytically in reference [1]. Therefore, effective control system design for flexible mechanisms operating at very high speeds must consider the non-linearities when designing a controller for very high speeds. Active control via fuzzy logic is assessed as means to suppress the elastic transverse bending vibration of a flexible rod of a slider crank mechanism. Several pairs of piezoelectric elements are used to provide the control action. Sensor output of deflection is fed to the fuzzy controller, which determines the voltage input to the actuators. A three mode approximation is used in the simulation study. Computer simulation shows that fuzzy control can be used to suppress bending vibrations at high speeds, and even at speeds where the uncontrolled response would be unstable.

  10. Modeling and Control of Hybrid Machine Systems——a Five-bar Mechanism Case

    Institute of Scientific and Technical Information of China (English)

    Hongnian Yu

    2006-01-01

    A hybrid machine (HM) as a typical mechatronic device, is a useful tool to generate smooth motion, and combines the motions of a large constant speed motor with a small servo motor by means of a mechnical linkage mechanism, in order to provide a powerful programmable drive system. To achieve design objectives, a control system is required. To design a better control system and analyze the performance of an HM, a dynamic model is necessary. This paper first develops a dynamic model of an HM with a five-bar mechanism using a Lagrangian formulation. Then, several important properties which are very useful in system analysis, and control system design, are presented. Based on the developed dynamic model,two control approaches, computed torque, and combined computed torque and slide mode control, are adopted to control the HM system. Simulation results demonstrate the control performance and limitations of each control approach.

  11. A new formal model for privilege control with supporting POSIX capability mechanism

    Institute of Scientific and Technical Information of China (English)

    JI Qingguang; QING Sihan; HE Yeping

    2005-01-01

    In order to enforce the least privilege principle in the operating system, it is necessary for the process privilege to be effectively controlled; but this is very difficult because a process always changes as time changes. In this paper, based on the analysis on how the process privilege is generated and how it works, a hierarchy implementing the least privilege principle with three layers, i.e. administration layer, functionality control layer and performance layer, is posed. It is clearly demonstrated that to bound privilege's working scope is a critical part for controlling privilege, but this is only mentioned implicitly while not supported in POSIX capability mechanism. Based on analysis of existing control mechanism for privilege, not only an improved capability inheritance formula but also a new complete formal model for controlling process based on integrating RBAC, DTE, and POSIX capability mechanism is introduced. The new invariants in the model show that this novel privilege control mechanism is different from RBAC's, DTE's, and POSIX's, and it generalizes subdomain control mechanism and makes this mechanism dynamic.

  12. Structural vibration control for a class of connected multistructure mechanical systems

    OpenAIRE

    Francisco Palacios-Quiñonero; Josep M. Rossell; Josep Rubió-Massegú; Hamid R. Karimi

    2012-01-01

    A mathematical model to compute the overall vibrational response of connected multistructure mechanical systems is presented. Using the proposed model, structural vibration control strategies for seismic protection of multibuilding systems can be efficiently designed. Particular attention is paid to the design of control configurations that combine passive interbuilding dampers with local feedback control systems implemented in the buildings. These hybrid active-passive control strategies pos...

  13. A methodology for identification and control of electro-mechanical actuators

    Science.gov (United States)

    Tutunji, Tarek A.; Saleem, Ashraf

    2015-01-01

    Mechatronic systems are fully-integrated engineering systems that are composed of mechanical, electronic, and computer control sub-systems. These integrated systems use electro-mechanical actuators to cause the required motion. Therefore, the design of appropriate controllers for these actuators are an essential step in mechatronic system design. In this paper, a three-stage methodology for real-time identification and control of electro-mechanical actuator plants is presented, tested, and validated. First, identification models are constructed from experimental data to approximate the plants’ response. Second, the identified model is used in a simulation environment for the purpose of designing a suitable controller. Finally, the designed controller is applied and tested on the real plant through Hardware-in-the-Loop (HIL) environment. The described three-stage methodology provides the following practical contributions: • Establishes an easy-to-follow methodology for controller design of electro-mechanical actuators. • Combines off-line and on-line controller design for practical performance. • Modifies the HIL concept by using physical plants with computer control (rather than virtual plants with physical controllers). Simulated and experimental results for two case studies, induction motor and vehicle drive system, are presented in order to validate the proposed methodology. These results showed that electromechanical actuators can be identified and controlled using an easy-to-duplicate and flexible procedure. PMID:26150992

  14. The fuzzy control of fully-mechanized coal face production capacity

    International Nuclear Information System (INIS)

    The fully-mechanized coal face system is thought of as a fuzzy controller, the various factors that have effect on the controller are found and analysis has been made as to how they effect the fully-mechanized coal face's production capacity. Based on the above analysis, this paper establishes a series of data analysis models describing the quantitative characteristics of the fully-mechanized coal face production system. With this series of data models, the 90 fully-mechanized coal faces are processed and then the fuzzy control forecasting model of the fully-mechanized coal faces production capacity is established. This model is accurate and reliable and has achieved good results in practical application

  15. State of the Art Report for Development of Control Element Drive Mechanism of the APR+ Reactor

    International Nuclear Information System (INIS)

    Recently newly-developed nuclear reactors with increased safety and enhanced performance by developed countries in the nuclear area are competing in the global nuclear market. Several reactors, for example AP600 and AP1000 by Westinghouse Electric Co. in USA, EPR by Areva in Europe, APWR by Mitsubishi Heavy Industry in Japan in the pressurized power reactor, are competing to preoccupy the nuclear market during Nuclear Renaissance. Dedicated control element drive mechanism with enhanced performance and increased safety are developed for these new reactors. And load follow capability is required, and it is estimated that load follow requirement make design requirement of a control element drive mechanism harsh. It is necessary to review the current technical state of a control element drive mechanism. This work is aimed to review the design characteristics of a past and current control element drive mechanism for a nuclear reactor and to check the direction and goal of CEDM design development recently

  16. Mechanization and new technologies for the control and the sustainability of agricultural and forestry systems

    Directory of Open Access Journals (Sweden)

    The Editors

    2016-05-01

    Full Text Available Abstract Book of the Congress:Mechanization and new technologies for the control and the sustainability of agricultural and forestry systems Alghero, Italy, 29th May - 1st June 2016

  17. State of the Art Report for Development of Control Element Drive Mechanism of the APR+ Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Seon; Choi, Suhn; Song, Chul Hwa

    2008-10-15

    Recently newly-developed nuclear reactors with increased safety and enhanced performance by developed countries in the nuclear area are competing in the global nuclear market. Several reactors, for example AP600 and AP1000 by Westinghouse Electric Co. in USA, EPR by Areva in Europe, APWR by Mitsubishi Heavy Industry in Japan in the pressurized power reactor, are competing to preoccupy the nuclear market during Nuclear Renaissance. Dedicated control element drive mechanism with enhanced performance and increased safety are developed for these new reactors. And load follow capability is required, and it is estimated that load follow requirement make design requirement of a control element drive mechanism harsh. It is necessary to review the current technical state of a control element drive mechanism. This work is aimed to review the design characteristics of a past and current control element drive mechanism for a nuclear reactor and to check the direction and goal of CEDM design development recently.

  18. New discrimination method for ablative control mechanism in solid-propellant rocket nozzle

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A reasonable discrimination method for ablative control mechanism in solid-propellant rocket nozzle can improve the calculation accuracy of ablation rate. Based on the different rate constants for reactions of C with H2O and CO2,a new discrimination method for ablative control mechanism,which comprehensively considers the influence of nozzle surface temperature and gas component concentration,is presented. Using this new discrimination method,calculations were performed to simulate the nozzle throat insert ablation. The numerical results showed that the calculated ablation rate,which was more close to the measured values,was less than the value calculated by diffusion control mechanisms or by double control mechanisms. And H2O was proved to be the most detrimental oxidizing species in nozzle ablation.

  19. Efficacy and mechanisms of non-antibacterial, chemical plaque control by dentifrices - An in vitro study

    NARCIS (Netherlands)

    Busscher, Henk J.; White, Don J.; Atema-Smit, Jelly; van der Mei, Henny C.

    2007-01-01

    Objectives: The provision of antiplaque benefits to dentifrices assists patients in improving hygiene and reducing susceptibility to gingivitis and caries. Chemical plaque control involves different mechanisms and is mostly associated with antibacterial effects, but also includes effects on pellicle

  20. A Rate-Based Flow Control Mechanism for AvoidingCongestion

    Institute of Scientific and Technical Information of China (English)

    张孝林; 王宇宏; 吴介一

    2002-01-01

    The rate-based flow control mechanisms for the Available Bit Rate (ABR) service are used to share the available bandwidth of a bottleneck switch connected to a bottleneck link fairly and reasonably among many competitive users, and to maintain the buffer queue length of the switch at a desired level in order to avoid congestion in Asynchronous Transfer Mode (ATM) networks. In this paper, a control theoretic approach that uses a DeadbeatResponse (DR) controller to the design of a rate-based flow control mechanism is presented.The mechanism has a simple structure and is robust in the sense that its stability is not sensitive to the change of the number of active Virtual Connections (VCs). Simulation results show that this mechanism not only ensures fair share of the bandwidth for all active VCs regardless of the number of hops they traverse but also has the advantages of fast convergence, no oscillation,and high link bandwidth utilization.

  1. Constructing Bio-molecular Databases on a DNA-based Computer

    CERN Document Server

    Chang, Weng-Long; Ho,; Guo, Minyi

    2007-01-01

    Codd [Codd 1970] wrote the first paper in which the model of a relational database was proposed. Adleman [Adleman 1994] wrote the first paper in which DNA strands in a test tube were used to solve an instance of the Hamiltonian path problem. From [Adleman 1994], it is obviously indicated that for storing information in molecules of DNA allows for an information density of approximately 1 bit per cubic nm (nanometer) and a dramatic improvement over existing storage media such as video tape which store information at a density of approximately 1 bit per 1012 cubic nanometers. This paper demonstrates that biological operations can be applied to construct bio-molecular databases where data records in relational tables are encoded as DNA strands. In order to achieve the goal, DNA algorithms are proposed to perform eight operations of relational algebra (calculus) on bio-molecular relational databases, which include Cartesian product, union, set difference, selection, projection, intersection, join and division. Fu...

  2. Micromachining microcarrier-based biomolecular encoding for miniaturized and multiplexed immunoassay.

    Science.gov (United States)

    Zhi, Zheng-liang; Morita, Yasutaka; Hasan, Quamrul; Tamiya, Eiichi

    2003-08-15

    Micromachining techniques, which originated in the microelectronics industry, have been employed to manufacture microparticles bearing an engraved dot-type signature for biomolecular encoding. These metallic microstructures are photolithographically defined and manufactured in a highly reproducible manner. In addition, the code introduced on the particle face is a straightforward visible feature that is easily recognizable with the use of optical microscopy. The number of distinct codes theoretically could be many thousands, depending on the coding element numbers. Such microparticles are, thus, with appropriate surface organic functionalizations, ideal for encoding biomolecular libraries and serving as a platform for developing high-throughput multiplexed bioassay schemes based on suspension array technology. As proof of this statement, we demonstrated that encoded microparticles tagged with antibodies to human immunoglobulin classes are capable, using imaging detection as the interrogating approach, of high sensitivity and high specificity, as well as multiplexed detection of the respective antigens in a microliter-sample volume. PMID:14651038

  3. Effect of antibody modifications on its biomolecular binding as determined by surface plasmon resonance.

    Science.gov (United States)

    Vashist, Sandeep Kumar

    2012-02-01

    A surface plasmon resonance (SPR)-based procedure was developed to determine the effect of antibody modifications on its biomolecular binding behavior. Mouse immunoglobulin G (IgG) was immobilized on a protein A-functionalized gold-coated SPR chip. Goat anti-mouse IgG and its various commercially available modifications (i.e., conjugated with atto 550, atto 647, tetramethylrhodamine isothiocyanate [TRITC], horseradish peroxidase [HRP], or biotin) were employed in exactly the same concentration for the detection of mouse IgG. The various modifications of goat anti-mouse IgG decreased its biomolecular binding to mouse IgG in the order of unmodified>HRP-labeled>atto 550-labeled>biotinylated>TRITC-labeled>atto 647-labeled. PMID:22093612

  4. Study on the control mechanism of China aerospace enterprises' binary multinational operation

    Institute of Scientific and Technical Information of China (English)

    Wang Jian; Li Hanling; Wu Weiwei

    2008-01-01

    China's aerospace enterprises carry on the multinational operation and participate in the international competition and the international division of labor and cooperation positively.This article first analyzs China aerospace enterprises' binary multinational business control objective and constructes its model.Then the article analyzes the tangible and intangible control mechanism of China aerospace enterprises' binary multinational operation respectively.Finally,the article constructs the model of China aerospace enterprises' binary multinational operation mechanisms.

  5. Cognitive Control of Emotional Information in Schizophrenia: Understanding the Mechanisms of Social Functioning Impairments

    OpenAIRE

    Tully, Laura Magdalen

    2013-01-01

    Social functioning impairments are a core, debilitating, and treatment refractory feature of schizophrenia. The mechanisms contributing to these impairments are unknown. Cognitive control mechanisms, mediated by the lateral prefrontal cortex (LPFC), are known to influence response to interpersonal stressors in healthy individuals, thus impairments in these processes may contribute to social deficits. Deficits in cognitive control and lateral prefrontal abnormalities are well-documented in sch...

  6. Mechanisms of transmission and control of low-frequency sound in aircraft interiors

    Science.gov (United States)

    Fuller, C. R.

    1985-01-01

    A simplified analytical model is used to study the principal mechanisms at work in propeller noise source radiation, fuselage response, and the behavior of the coupled inner acoustic field, in order to control low frequency sound in aircraft interiors. Both active and passive methods of noise control are comparatively evaluated in light of the transmission mechanisms. Fuselage vibrational response is noted to be dominated by only a few lower order circumferential modes.

  7. Microstructures of UO2 with controlled properties: understanding of elaboration mechanisms and of the mechanical behaviour under temperature

    International Nuclear Information System (INIS)

    The objective of this research work is to develop new UO2 fuel materials, without additive but with microstructure characteristics and mechanical properties controlled at high temperatures. More precisely, it aims at correlating initial powders and their implementation conditions with the microstructures obtained after sintering, and at correlating microstructure characteristics of sintered pellets with their mechanical behaviour at high temperatures. The author described the pellet fabrication process and mentions effects of some powder geometrical characteristics and sintering conditions on granular growth and densification. He gives an overview of knowledge on mechanisms of viscoplastic strain of UO2, on the effect of material parameters and of solicitation conditions on the mechanical behaviour of UO2. He describes and discusses an experimental investigation of industrial UO2 powder sintering which aimed at identifying parameters which influence the final microstructure densification and formation. He reports the development of a 'model' UO2 powder fabrication process with which powder characteristics are better controlled than in the case of industrial powders. These 'model' powders are used to more precisely investigate the effects of powder parameters (quantity of fine particles, specific area and morphology) on densification and grain size after sintering

  8. MTPA control of mechanical sensorless IPMSM based on adaptive nonlinear control.

    Science.gov (United States)

    Najjar-Khodabakhsh, Abbas; Soltani, Jafar

    2016-03-01

    In this paper, an adaptive nonlinear control scheme has been proposed for implementing maximum torque per ampere (MTPA) control strategy corresponding to interior permanent magnet synchronous motor (IPMSM) drive. This control scheme is developed in the rotor d-q axis reference frame using adaptive input-output state feedback linearization (AIOFL) method. The drive system control stability is supported by Lyapunov theory. The motor inductances are online estimated by an estimation law obtained by AIOFL. The estimation errors of these parameters are proved to be asymptotically converged to zero. Based on minimizing the motor current amplitude, the MTPA control strategy is performed by using the nonlinear optimization technique while considering the online reference torque. The motor reference torque is generated by a conventional rotor speed PI controller. By performing MTPA control strategy, the generated online motor d-q reference currents were used in AIOFL controller to obtain the SV-PWM reference voltages and the online estimation of the motor d-q inductances. In addition, the stator resistance is online estimated using a conventional PI controller. Moreover, the rotor position is detected using the online estimation of the stator flux and online estimation of the motor q-axis inductance. Simulation and experimental results obtained prove the effectiveness and the capability of the proposed control method. PMID:26830002

  9. Computer-controlled mechanical lung model for application in pulmonary function studies

    NARCIS (Netherlands)

    A.F.M. Verbraak (Anton); J.E.W. Beneken; J.M. Bogaard (Jan); A. Versprille (Adrian)

    1995-01-01

    textabstractA computer controlled mechanical lung model has been developed for testing lung function equipment, validation of computer programs and simulation of impaired pulmonary mechanics. The construction, function and some applications are described. The physical model is constructed from two b

  10. Universal mechanisms of sound production and control in birds and mammals

    DEFF Research Database (Denmark)

    Elemans, Coen; Rasmussen, Jeppe Have; Herbst, Christian T.;

    2015-01-01

    -aerodynamic (MEAD) mechanism, the same mechanism used to produce human speech. Furthermore, we show substantial redundancy in the control of key vocal parameters ex vivo, suggesting that in vivo vocalizations may also not be specified by unique motor commands. We propose that such motor redundancy can aid vocal...... learning and is common to MEAD sound production across birds and mammals, including humans....

  11. Mechanical tests of the bolt of the gripper latch on the control rod cluster

    International Nuclear Information System (INIS)

    Failure analysis and mechanical testing indicate that control rod drive mechanisms malfunctioning by 1995-96 is due to rupture by fatigue of a bolt inside the stationary gripper assembly. Fatigue is enhanced by free working following surface adaptation and unscrewing of the assembly. These results are taken into account for the choice of a new anti-rotation device. (authors)

  12. Networked Just-in-time Control of a Parallel Mechanism with Pneumatic Linear Drives

    Directory of Open Access Journals (Sweden)

    Takahiro Kosaki

    2014-01-01

    Full Text Available Parallel mechanisms have advantages such as high power, high stiffness, and high precision due to the parallel arrangement of actuators, in comparison with typical serial mechanisms. In the present study, we used pneumatic linear drives to develop a linearly actuated parallel mechanism, in which the actuators fixed on a base enable high degrees of freedom of motion of an end-effector. Using pneumatic linear drives in the realization of such a parallel mechanism leads to lightweight, compact, and low-cost construction. For the parallel mechanism prototype, we construct a control system based on our previously proposed networked Just-In-Time (JIT control strategy, which is based on client-server architecture. In this system, the parallel mechanism is connected to a client computer, and a server computer has a database that stores the control data for all the pneumatic actuators to drive the parallel mechanism. The client online accesses the database, receives data from the server, and feeds control commands to the pneumatic actuators. Experiments were performed to investigate the performance of the developed parallel mechanism system.

  13. Randomised controlled trial of respiratory system compliance measurements in mechanically ventilated neonates

    OpenAIRE

    Stenson, B.; Glover, R.; Wilkie, R; Laing, I; TARNOW-MORDI, W

    1998-01-01

    AIM—To determine whether outcomes of neonatal mechanical ventilation could be improved by regular pulmonary function testing.
METHODS—Two hundred and forty five neonates, without immediately life threatening congenital malformations, were mechanically ventilated in the newborn period. Infants were randomly allocated to conventional clinical management (control group) or conventional management supplemented by regular measurements of static respiratory system compliance, usin...

  14. Oscillation control of carbon nanotube mechanical resonator by electrostatic interaction induced retardation

    OpenAIRE

    Masaaki Yasuda; Kuniharu Takei; Takayuki Arie; Seiji Akita

    2016-01-01

    Despite the superb intrinsic properties of carbon nanotube mechanical resonators, the quality factors at room temperature are 1,000 or less, even in vacuum, which is much lower than that of mechanical resonators fabricated using a top-down approach. This study demonstrates the improvement of the quality factor and the control of nonlinearity of the mechanical resonance of the cantilevered nanotube by electrostatic interaction. The apparent quality factor of the nanotube supported by insulator...

  15. Experimental electro-mechanical static characterization of IGBT bare die under controlled temperature

    OpenAIRE

    Belmehdi, Yassine; Azzopardi, Stephane; Delétage, Jean-Yves; Woirgard, Eric

    2010-01-01

    International audience Silicon dice soldered in power assemblies have to withstand simultaneously electrical, thermal and mechanical stress. Mechanical stress is an important issue because it will directly impact on both the device behaviour and power modules reliability. This paper focuses on the electro-mechanical static characterization of a planar gate IGBT by the help of experiments at controlled temperatures. A specific test bench is proposed to make the experiments on silicone bare ...

  16. Bridge- and Solvent-Mediated Intramolecular Electronic Communications in Ubiquinone-Based Biomolecular Wires

    OpenAIRE

    Liu, Xiao-Yuan; Ma, Wei; Zhou, Hao; Cao, Xiao-Ming; Long, Yi-Tao

    2015-01-01

    Intramolecular electronic communications of molecular wires play a crucial role for developing molecular devices. In the present work, we describe different degrees of intramolecular electronic communications in the redox processes of three ubiquinone-based biomolecular wires (Bis-CoQ0s) evaluated by electrochemistry and Density Functional Theory (DFT) methods in different solvents. We found that the bridges linkers have a significant effect on the electronic communications between the two pe...

  17. Markov propagation of allosteric effects in biomolecular systems: application to GroEL–GroES

    OpenAIRE

    Chennubhotla, Chakra; Bahar, Ivet

    2006-01-01

    We introduce a novel approach for elucidating the potential pathways of allosteric communication in biomolecular systems. The methodology, based on Markov propagation of ‘information' across the structure, permits us to partition the network of interactions into soft clusters distinguished by their coherent stochastics. Probabilistic participation of residues in these clusters defines the communication patterns inherent to the network architecture. Application to bacterial chaperonin complex ...

  18. Evaluation of stochastic effects on biomolecular networks using the generalised Nyquist stability criterion

    OpenAIRE

    Kim, J; Bates, D. G.; Postlethwaite, I.

    2008-01-01

    Abstract—Stochastic differential equations are now commonly used to model biomolecular networks in systems biology, and much recent research has been devoted to the development of methods to analyse their stability properties. Stability analysis of such systems may be performed using the Laplace transform, which requires the calculation of the exponential matrix involving time symbolically. However, the calculation of the symbolic exponential matrix is not feasible for problems of even mod...

  19. Atomic force microscopy of self-assembled biomolecular structures and their interaction with metallic nanoparticles.

    OpenAIRE

    Gysemans, Maarten

    2009-01-01

    We applied AFM to study biomolecular wires, both out of interest in thei r biological functions and in the framework of nanotechnology based fabr ication. We have focused on two different kinds of protein wires: Insuli n fibrils and microtubules. Microtubules are an important constituent of the cytoskeleton and fulfill multiple vital functions in the cell. Insu lin fibrils on the other hand are amyloid fibrils without a clear biolog ical role, but with intriguing polymerization properties tha...

  20. The Shadow Map: A General Contact Definition for Capturing the Dynamics of Biomolecular Folding and Function

    OpenAIRE

    Jeffrey K Noel; Whitford, Paul C.; Onuchic, José N.

    2012-01-01

    Structure-based models (SBMs) are simplified models of the biomolecular dynamics that arise from funneled energy landscapes. We recently introduced an all-atom SBM that explicitly represents the atomic geometry of a biomolecule. While this initial study showed the robustness of the all-atom SBM Hamiltonian to changes in many of the energetic parameters, an important aspect, which has not been explored previously, is the definition of native interactions. In this study, we propose a general de...

  1. A Review of Salam Phase Transition in Protein Amino Acids: Implication for Biomolecular Homochirality

    OpenAIRE

    Bai, Fan; Wang, Wenqing

    2002-01-01

    The origin of chirality, closely related to the evolution of life on the earth, has long been debated. In 1991, Abdus Salam suggested a novel approach to achieve biomolecular homochirality by a phase transition. In his subsequent publication, he predicted that this phase transition could eventually change D-amino acids to L-amino acids as C -H bond would break and H atom became a superconductive atom. Since many experiments denied the configuration change in amino acids, Salam hypothesis arou...

  2. Affinity capillary electrophoresis and density functional theory employed for characterization of (bio)molecular interactions

    Czech Academy of Sciences Publication Activity Database

    Kašička, Václav; Ehala, Sille; Růžička, Martin; Dybal, Jiří; Toman, Petr

    Salzburg: Society of Analytical Chemistry, 2014. OR28. [ISC 2014. International Symposium on Chromatography /30./. 14.09.2014-18.09.2014, Salzburg] R&D Projects: GA ČR(CZ) GAP206/12/0453; GA ČR(CZ) GA13-17224S Institutional support: RVO:61388963 ; RVO:61389013 Keywords : affinity capillary electrophoresis * density functional theory * biomolecular complexes Subject RIV: CB - Analytical Chemistry, Separation

  3. Interacting with the biomolecular solvent accessible surface via a haptic feedback device

    OpenAIRE

    Hayward Steven; Stocks Matthew B; Laycock Stephen D

    2009-01-01

    Abstract Background From the 1950s computer based renderings of molecules have been produced to aid researchers in their understanding of biomolecular structure and function. A major consideration for any molecular graphics software is the ability to visualise the three dimensional structure of the molecule. Traditionally, this was accomplished via stereoscopic pairs of images and later realised with three dimensional display technologies. Using a haptic feedback device in combination with mo...

  4. Biomolecular changes in the aging myocardium: the effect of enalapril.

    Science.gov (United States)

    Ferder, L; Romano, L A; Ercole, L B; Stella, I; Inserra, F

    1998-11-01

    Chronic administration of enalapril in the aging mouse prevents myocardial fibrosis. To investigate the mechanisms involved, we studied 30 CF1 female mice that received enalapril (ENAL:20 mg/L) in their drinking water after weaning and 30 control (CONT) mice. Ten animals from each group were killed at 12, 18, and 24 months. Half of the samples were prepared for light microscopy (LM) and the other half for electron microscopy (EM). Cardiac histologic sections were studied by an image analyzer (Bioscan OPTIMAS 4.1). We performed the following measurements in cardiomyocytes: mitochondrial number, mitochondrial superoxide dismutase (SOD) using immunohistochemical methods with EM, the percentage of cell cyclin, and apoptosis. The results obtained for CONT and ENAL, respectively were as follows. For cyclin (percentage of positive) our results were: 12 months 17.1+/-0.1% and 18.2+/-0.8%, 18 months 2.4+/-1.6% (P < .001), and 11.4+/-0.1% (P < .001), 24 months 1.2+/-1.3% (P < .001), and 8.2+/-1.2% (P < .001) with significant differences at 18 and 24 months. For the Feulgen method (cell/mm2) we found: 12 months CONT 89.7+/-1.2, ENAL 84.6+/-1.2; 18 months CONT 62.8+/-1.2, ENAL 98.7+/-1.3, and 24 months CONT 81.2+/-1.3, ENAL 112.3+/-1.4. Apoptosis (percentage of positive) was found to be 12 months 3.7+/-0.4% and 1.9+/-0.1%, 18 months 7.1 +/-0.3% (P < .001), and 1.5+/-0.1% (P < .001), 24 months 10.9+/-0.5% (P < .001) and 2.1+/-1.8% (P < .001), for CONT and ENAL, respectively; there were significant differences at 18 and 24 months. The number of mitochondria per cardiomyocyte were: 12 months 85.9+/-1.8 and 87.3+/-1.5, 18 months 69.2+/-1.5t and 82.2+/-1.8 (P < .001), 24 months 54.6+/-1.1 (P < .001) and 81.4+/-1.6 (P < .001) for CONT and ENAL respectively, with significant differences at 18 and 24 months. Mitochondrial SOD was found to be: 12 months 13.6%+/-0.2% (P < .05) and 17.8%+/-1.3% (P < .05), 18 months 7.1%+/-1.0% (P < .001) and 16.7%+/-1.6% (P < .001), 24 months 4

  5. Microcontroller Based Proportional Derivative Plus Conditional Integral Controller for Electro-Mechanical Dual Acting Pulley Continuously Variable Transmission Ratio Control

    International Nuclear Information System (INIS)

    Electro-Mechanical Dual Acting Pulley (EMDAP) Continuously Variable Transmission (CVT) is a transmission utilized by electro-mechanical actuated system. It has a potential to reduce energy consumption because it only needs power during changing CVT ratio and no power is needed to maintain CVT ratio due to self lock mechanism design. This paper proposed simple proportional derivative plus conditional integral (PDCI) controller to control EMDAP CVT ratio which can be simply implemented on a microcontroller. This proposed controller used Astrom-Hagglund method and Ziegler-Nichols formula to tune PDCI gain. The Proportional Derivative controller is directly activated from the start but Integral controller is only activated when the error value reaches error value setting point. Simulation using Matlab/Simulink software was conducted to evaluate PDCI system performance. The simulation results showed PDCI controller has ability to perform maximum overshoot 0.1%, 0.001 steady state error and 0.5s settling time. For clamping condition, settling time is about 11.46s during changing ratio from 2.0 to 0.7, while for release condition, settling time is about 8.33s during changing ratio from 0.7 to 2.0.

  6. A Closed-Loop Proportional-Integral (PI) Control Software for Fully Mechanically Controlled Automated Electron Microscopic Tomography

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-23

    A closed-loop proportional-integral (PI) control software is provided for fully mechanically controlled automated electron microscopic tomography. The software is developed based on Gatan DigitalMicrograph�, and is compatible with Zeiss LIBRA� 120 transmission electron microscope. However, it can be expanded to other TEM instrument with modification. The software consists of a graphical user interface, a digital PI controller, an image analyzing unit, and other drive units (i.e.: image acquire unit and goniometer drive unit). During a tomography data collection process, the image analyzing unit analyzes both the accumulated shift and defocus value of the latest acquired image, and provides the results to the digital PI controller. The digital PI control compares the results with the preset values and determines the optimum adjustments of the goniometer. The goniometer drive unit adjusts the spatial position of the specimen according to the instructions given by the digital PI controller for the next tilt angle and image acquisition. The goniometer drive unit achieves high precision positioning by using a backlash elimination method. The major benefits of the software are: 1) the goniometer drive unit keeps pre-aligned/optimized beam conditions unchanged and achieves position tracking solely through mechanical control; 2) the image analyzing unit relies on only historical data and therefore does not require additional images/exposures; 3) the PI controller enables the system to dynamically track the imaging target with extremely low system error.

  7. Hydraulic actuator mechanism to control aircraft spoiler movements through dual input commands

    Science.gov (United States)

    Irick, S. C. (Inventor)

    1981-01-01

    An aircraft flight spoiler control mechanism is described. The invention enables the conventional, primary spoiler control system to retain its operational characteristics while accommodating a secondary input controlled by a conventional computer system to supplement the settings made by the primary input. This is achieved by interposing springs between the primary input and the spoiler control unit. The springs are selected to have a stiffness intermediate to the greater force applied by the primary control linkage and the lesser resistance offered by the spoiler control unit. Thus, operation of the primary input causes the control unit to yield before the springs, yet, operation of the secondary input, acting directly on the control unit, causes the springs to yield and absorb adjustments before they are transmitted into the primary control system.

  8. Force spectroscopy of biomolecular folding and binding: theory meets experiment

    Science.gov (United States)

    Dudko, Olga

    2015-03-01

    Conformational transitions in biological macromolecules usually serve as the mechanism that brings biomolecules into their working shape and enables their biological function. Single-molecule force spectroscopy probes conformational transitions by applying force to individual macromolecules and recording their response, or ``mechanical fingerprints,'' in the form of force-extension curves. However, how can we decode these fingerprints so that they reveal the kinetic barriers and the associated timescales of a biological process? I will present an analytical theory of the mechanical fingerprints of macromolecules. The theory is suitable for decoding such fingerprints to extract the barriers and timescales. The application of the theory will be illustrated through recent studies on protein-DNA interactions and the receptor-ligand complexes involved in blood clot formation.

  9. Problems Related to the Nuclear and Mechanical Design of the Programma Reattore Organico Reactor Control Rods

    International Nuclear Information System (INIS)

    The paper illustrates the methods used for calculating the nuclear design of the control rods in the preliminary and operational phases of the PRO project. Comparisons are made with experimental data and a summary is given of the programming studies carried out. Finally, consideration is given to certain problems connected with the mechanical design of the control rods. (author)

  10. Robust Adaptive Backstepping Control Design for a Nonlinear Hydraulic-Mechanical System

    DEFF Research Database (Denmark)

    Choux, Martin; Karimi, Hamid Reza; Hovland, Geir; Hansen, Michael Rygaard; Ottestad, Morten; Blanke, Mogens

    The complex dynamics that characterize hydraulic systems make it difficult for the control design to achieve prescribed goals in an efficient manner. In this paper, we present the design and analysis of a robust nonlinear controller for a nonlinear hydraulic-mechanical (NHM) system. The system co...

  11. Robust control of distributed parameter mechanical systems using a multidimensional systems approach

    Czech Academy of Sciences Publication Activity Database

    Cichy, B.; Augusta, Petr; Rogers, E.; Galkowski, K.; Hurák, Z.

    2010-01-01

    Roč. 58, č. 1 (2010), s. 67-75. ISSN 0239-7269 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10750506 Keywords : robust control * distributed parameter mechanical systems * multidimensional systems Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2010/TR/augusta-0347866.pdf

  12. Engine Performance (Section C: Emission Control Systems). Auto Mechanics Curriculum Guide. Module 3. Instructor's Guide.

    Science.gov (United States)

    Rains, Larry

    This engine performance (emission control systems) module is one of a series of competency-based modules in the Missouri Auto Mechanics Curriculum Guide. Topics of this module's five units are: positive crankcase ventilation (PCV) and evaporative emission control systems; exhaust gas recirculation (EGR); air injection and catalytic converters;…

  13. Engine Tune-up Service. Unit 6: Emission Control Systems. Student Guide. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Bacon, E. Miles

    This student guide is for Unit 6, Emission Control Systems, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with inspecting, testing, and servicing an emission control system. A companion review exercise book and posttests are available separately as CE 031 221-222. An introduction tells how this unit fits…

  14. Neural-mechanical feedback control scheme generates physiological ankle torque fluctuation during quiet stance.

    Science.gov (United States)

    Vette, Albert H; Masani, Kei; Nakazawa, Kimitaka; Popovic, Milos R

    2010-02-01

    We have recently demonstrated in simulations and experiments that a proportional and derivative (PD) feedback controller can regulate the active ankle torque during quiet stance and stabilize the body despite a long sensory-motor time delay. The purpose of the present study was to: 1) model the active and passive ankle torque mechanisms and identify their contributions to the total ankle torque during standing and 2) investigate whether a neural-mechanical control scheme that implements the PD controller as the neural controller can successfully generate the total ankle torque as observed in healthy individuals during quiet stance. Fourteen young subjects were asked to stand still on a force platform to acquire data for model optimization and validation. During two trials of 30 s each, the fluctuation of the body angle, the electromyogram of the right soleus muscle, and the ankle torque were recorded. Using these data, the parameters of: 1) the active and passive torque mechanisms (Model I) and 2) the PD controller within the neural-mechanical control scheme (Model II) were optimized to achieve potential matching between the measured and predicted ankle torque. The performance of the two models was finally validated with a new set of data. Our results indicate that not only the passive, but also the active ankle torque mechanism contributes significantly to the total ankle torque and, hence, to body stabilization during quiet stance. In addition, we conclude that the proposed neural-mechanical control scheme successfully mimics the physiological control strategy during quiet stance and that a PD controller is a legitimate model for the strategy that the central nervous system applies to regulate the active ankle torque in spite of a long sensory-motor time delay. PMID:20071280

  15. Acoustic and Vibration Control for an Underwater Structure under Mechanical Excitation

    Directory of Open Access Journals (Sweden)

    Shi-Jian Zhu

    2014-01-01

    Full Text Available Acoustic and vibration control for an underwater structure under mechanical excitation has been investigated by using negative feedback control algorithm. The underwater structure is modeled with cylindrical shells, conical shells, and circular bulkheads, of which the motion equations are built with the variational approach, respectively. Acoustic property is analyzed by the Helmholtz integration formulation with boundary element method. Based on negative feedback control algorithm, a control loop with a coupling use of piezoelectric sensor and actuator is built, and accordingly some numerical examples are carried out on active control of structural vibration and acoustic response. Effects of geometrical and material parameters on acoustic and vibration properties are investigated and discussed.

  16. Research of Control Method for Improving Mechanical Performance of Winding Motor

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhao-zhang; YANG Zheng-lin

    2002-01-01

    A reformed PHD (Proportional-Integral- Differential)motor controller is developed for the ideal winding performance. It is verified that the PHD motor controller can largely improve the mechanical performance and raise the production efficiency by means of the test of a winding production system driven by a motor with high internal resistance rotator. It indicates that improving the control method is one of the most effective ways to improve the winding performance of the motor in winding production.

  17. System identification of a mechanical system with impacts using model reference adaptive control

    OpenAIRE

    Virden, D.; Wagg, D.J.

    2005-01-01

    A single degree of freedom mechanical spring-mass system was considered where the motion of the mass is constrained by an adjustable rigid impact stop. A model reference adaptive control algorithm combined with interspike interval techniques was used to consider the viability of identifying system parameters when impacts are present. The unmodified adaptive control algorithm destabilizes during vibro-impact motion, so three modified control algorithms were tested experimentally. The first, th...

  18. The Dynamic Evolution of Firms’ Pollution Control Strategy under Graded Reward-Penalty Mechanism

    OpenAIRE

    Li Ming Chen; Wen Ping Wang

    2016-01-01

    The externality of pollution problem makes firms lack enough incentive to reduce pollution emission. Therefore, it is necessary to design a reasonable environmental regulation mechanism so as to effectively urge firms to control pollution. In order to inspire firms to control pollution, we divide firms into different grades according to their pollution level and construct an evolutionary game model to analyze the interaction between government’s regulation and firms’ pollution control under g...

  19. Effects of intelligent control mechanism on multiple-vehicle collision under emergency

    Science.gov (United States)

    Li, Zhipeng; Chen, Lizhu

    2014-06-01

    In this paper, we study the effects of intelligent control mechanism on multiple-vehicle collision induced by a sudden stop. The control motion of following vehicles is extended by introducing their velocity relative to the braking one into the dynamic models. We study the dynamic process of multiple-vehicle collision under the new control mechanism with finding that the new control mechanism can effectively avoid the first following vehicle's collision with the stopped vehicle, and the new consideration behaves better in reducing the number of crumpled vehicles than the existing control method. We obtain the region maps of the multiple-vehicle collision for the new intelligent control. We show the dependence of the number of the crumpled vehicles on the initial headway, the sensitivity, and the intensity of the intelligent control. In addition, the effects of the transfer delay on multiple-vehicle collision are obtained by drawing the phase diagram of the multiple-vehicle collision for the new intelligent control with different transfer delays. It is revealed that the negative effects of the delay on the multiple-vehicle collision can be mitigated by enhancing the strength of the intelligent control.

  20. Extension of the CHARMM General Force Field to sulfonyl-containing compounds and its utility in biomolecular simulations.

    Science.gov (United States)

    Yu, Wenbo; He, Xibing; Vanommeslaeghe, Kenno; MacKerell, Alexander D

    2012-12-01

    Presented is an extension of the CHARMM General Force Field (CGenFF) to enable the modeling of sulfonyl-containing compounds. Model compounds containing chemical moieties such as sulfone, sulfonamide, sulfonate, and sulfamate were used as the basis for the parameter optimization. Targeting high-level quantum mechanical and experimental crystal data, the new parameters were optimized in a hierarchical fashion designed to maintain compatibility with the remainder of the CHARMM additive force field. The optimized parameters satisfactorily reproduced equilibrium geometries, vibrational frequencies, interactions with water, gas phase dipole moments, and dihedral potential energy scans. Validation involved both crystalline and liquid phase calculations showing the newly developed parameters to satisfactorily reproduce experimental unit cell geometries, crystal intramolecular geometries, and pure solvent densities. The force field was subsequently applied to study conformational preference of a sulfonamide based peptide system. Good agreement with experimental IR/NMR data further validated the newly developed CGenFF parameters as a tool to investigate the dynamic behavior of sulfonyl groups in a biological environment. CGenFF now covers sulfonyl group containing moieties allowing for modeling and simulation of sulfonyl-containing compounds in the context of biomolecular systems including compounds of medicinal interest. PMID:22821581

  1. Bi-stability of amplitude modulation AFM in air: deterministic and stochastic outcomes for imaging biomolecular systems

    International Nuclear Information System (INIS)

    The dynamics of the oscillating microcantilever for amplitude modulation atomic force microscopy (AM AFM) operating in air is well understood theoretically but the experimental outcomes are still emerging. We use double-stranded DNA on mica as a model biomolecular system for investigating the connection between theory and experiment. A demonstration that the switching between the two cantilever oscillation states is stochastic in nature is achieved, and it can be induced by means of topographical anomalies on the surface. Whether one or the other attractor basin is accessed depends on the tip-sample separation history used to achieve the imaging conditions, and we show that the behaviour is reproducible when the tip is stable and well characterized. Emergence of background noise occurs in certain regions of parameter space regardless of whether two cantilever oscillation states coexist. The low state has been explored in detail and we note that at low to intermediate values of the free amplitude, noise-free imaging is achieved. The outcomes shown here are general and demonstrate that a thorough and systematic experimental approach in conjunction with standard modelling gives insight into the mechanisms behind image contrast formation in AM AFM in air.

  2. The allostery landscape: quantifying thermodynamic couplings in biomolecular systems

    CERN Document Server

    Cuendet, Michel A; LeVine, Michael V

    2016-01-01

    Allostery plays a fundament role in most biological processes. However, little theory is available to describe it outside of two-state models. Here we use a statistical mechanical approach to show that the allosteric coupling between two collective variables is not a single number, but instead a two-dimensional thermodynamic coupling function that is directly related to the mutual information from information theory and the copula density function from probability theory. On this basis, we demonstrate how to quantify the contribution of specific energy terms to this thermodynamic coupling function, enabling a decomposition that reveals the mechanism of allostery. We illustrate the thermodynamic coupling function and its use by showing how allosteric coupling in the alanine dipeptide molecule contributes to the overall shape of the {\\Phi}/{\\Psi} free energy surface, and by identifying the interactions that are necessary for this coupling.

  3. Design and Development of Mechanical Structure and Control System for Tracked Trailing Mobile Robot

    Directory of Open Access Journals (Sweden)

    Hongchuan Xu

    2013-02-01

    Full Text Available Along with the science and technology unceasing progress, the uses of tracing robots become more and more widely. Tracked tracing robot was adopted as the research object in this paper, mechanical structure and control system of robot was designed and developmented. In mechanical structure design part, structure designed and positioned  were completed, including design of robot body, wheel, underpan, transmission structure and the positioning of batteries, control panel, sensors, etc, and then robot dynamics was analyzed; In control section, M30245 was used as the core, according to the characteristics of tracked tracing robot differential drive, realization scheme of motion control system was put forward, system drive circuit, detection module, control program were developed. System were discussed and checked through test. From this paper tracked tracing robot was researched, and a certain design and experimental basis can be provided in future research.

  4. Wind Evaluation Breadboard: mechanical design and analysis, control architecture, dynamic model, and performance simulation

    Science.gov (United States)

    Reyes García-Talavera, Marcos; Viera, Teodora; Núñez, Miguel; Zuluaga, Pablo; Ronquillo, Bernardo; Ronquillo, Mariano; Brunetto, Enzo; Quattri, Marco; Castro, Javier; Hernández, Elvio

    2008-07-01

    The Wind Evaluation Breadboard (WEB) for the European Extremely Large Telescope (ELT) is a primary mirror and telescope simulator formed by seven segments simulators, including position sensors, electromechanical support systems and support structures. The purpose of the WEB is to evaluate the performance of the control of wind buffeting disturbance on ELT segmented mirrors using an electro-mechanical set-up which simulates the real operational constrains applied to large segmented mirrors. The instrument has been designed and developed by IAC, ALTRAN, JUPASA and ESO, with FOGALE responsible of the Edge Sensors, and TNO of the Position Actuators. This paper describes the mechanical design and analysis, the control architecture, the dynamic model generated based on the Finite Element Model and the close loop performance achieved in simulations. A comparison in control performance between segments modal control and actuators local control is also presented.

  5. Innovation in Bio-disaster Prevention and Control Mechanism after Forest Tenure Reform at County Level

    Institute of Scientific and Technical Information of China (English)

    ZHAN Zu-ren

    2012-01-01

    Taking Youxi County of Fujian Province as an example,the author introduced basic situations of new bio-disaster prevention and control mechanism for forest resource protection and social service works after the forest tenure reform.Then,the author analyzed new problems faced by bio-disaster prevention and control in forestry.Finally,the author present the existing problems of bio-disaster prevention and control at the county level from five aspects:innovating upon plant quarantine management mechanism;innovation upon survey methods and service modes of bio-disaster monitoring;strengthening and improving construction of bio-disaster monitoring and forecasting network;innovating upon management system for bio-disaster prevention and control;speeding up construction of service system for social prevention and control of bio-disasters.

  6. A novel auto-tuning PID control mechanism for nonlinear systems.

    Science.gov (United States)

    Cetin, Meric; Iplikci, Serdar

    2015-09-01

    In this paper, a novel Runge-Kutta (RK) discretization-based model-predictive auto-tuning proportional-integral-derivative controller (RK-PID) is introduced for the control of continuous-time nonlinear systems. The parameters of the PID controller are tuned using RK model of the system through prediction error-square minimization where the predicted information of tracking error provides an enhanced tuning of the parameters. Based on the model-predictive control (MPC) approach, the proposed mechanism provides necessary PID parameter adaptations while generating additive correction terms to assist the initially inadequate PID controller. Efficiency of the proposed mechanism has been tested on two experimental real-time systems: an unstable single-input single-output (SISO) nonlinear magnetic-levitation system and a nonlinear multi-input multi-output (MIMO) liquid-level system. RK-PID has been compared to standard PID, standard nonlinear MPC (NMPC), RK-MPC and conventional sliding-mode control (SMC) methods in terms of control performance, robustness, computational complexity and design issue. The proposed mechanism exhibits acceptable tuning and control performance with very small steady-state tracking errors, and provides very short settling time for parameter convergence. PMID:26117284

  7. Computation and Communication Evaluation of an Authentication Mechanism for Time-Triggered Networked Control Systems.

    Science.gov (United States)

    Martins, Goncalo; Moondra, Arul; Dubey, Abhishek; Bhattacharjee, Anirban; Koutsoukos, Xenofon D

    2016-01-01

    In modern networked control applications, confidentiality and integrity are important features to address in order to prevent against attacks. Moreover, network control systems are a fundamental part of the communication components of current cyber-physical systems (e.g., automotive communications). Many networked control systems employ Time-Triggered (TT) architectures that provide mechanisms enabling the exchange of precise and synchronous messages. TT systems have computation and communication constraints, and with the aim to enable secure communications in the network, it is important to evaluate the computational and communication overhead of implementing secure communication mechanisms. This paper presents a comprehensive analysis and evaluation of the effects of adding a Hash-based Message Authentication (HMAC) to TT networked control systems. The contributions of the paper include (1) the analysis and experimental validation of the communication overhead, as well as a scalability analysis that utilizes the experimental result for both wired and wireless platforms and (2) an experimental evaluation of the computational overhead of HMAC based on a kernel-level Linux implementation. An automotive application is used as an example, and the results show that it is feasible to implement a secure communication mechanism without interfering with the existing automotive controller execution times. The methods and results of the paper can be used for evaluating the performance impact of security mechanisms and, thus, for the design of secure wired and wireless TT networked control systems. PMID:27463718

  8. Biomolecular modification of zirconia surfaces for enhanced biocompatibility

    International Nuclear Information System (INIS)

    Yttria-tetragonal zirconia polycrystal (Y-TZP) is a preferred biomaterial due to its good mechanical properties. In order to improve the biocompatibility of zirconia, RGD-peptide derived from extracellular matrix proteins was employed to modify the surface of Y-TZP to promote cell adhesion in this study. The surface of Y-TZP specimens was first modified using a hydrothermal method for different lengths of time. The topographies of modified Y-TZP specimens were analyzed by contact angle, XRD, FTIR, AFM, and FE-SEM. The mechanical properties were evaluated using Vickers hardness and three point bending strength. Then, the RGD-peptide was immobilized on the surface of the Y-TZP by chemical treatment. These RGD-peptide immobilized Y-TZP specimens were characterized by FTIR and AFM, and then were cocultured with MG-63 osteoblast cells for biocompatibility assay. The cell morphology and proliferation were evaluated by SEM, WST-1, and ALP activity assay. The XRD results indicated that the phase transition, from tetragonal phase to monoclinic phase, was increased with a longer incubation time of hydrothermal treatment. However, there were no significant differences in mechanical strengths after RGD-peptide was successfully grafted onto the Y-TZP surface. The SEM images showed that the MG-63 cells appeared polygonal, spindle-shaped, and attached on the RGD-peptide immobilized Y-TZP. The proliferation and cellular activities of MG-63 cells on the RGD-peptide immobilized Y-TZP were better than that on the unmodified Y-TZP. From the above results, the RGD-peptide can be successfully grafted onto the hydrothermal modified Y-TZP surface. The RGD-peptide immobilized Y-TZP can increase cell adhesion, and thus, improve the biocompatibility of Y-TZP. - Highlights: • Covalent bonding between peptide and Y-TZP was proposed. • Stable biomimetic structures produced on the surface of zirconia. • The biocompatibility was improved

  9. Memristive port-Hamiltonian control : Path-dependent damping injection in control of mechanical systems

    NARCIS (Netherlands)

    Doria-Cerezo, A.; van der Heijden, L.; Scherpen, J. M. A.

    2013-01-01

    This paper presents the use of the memristor as a new element for designing passivity-based controllers. From the port-Hamiltonian description of the electrical circuits with memristors, a target dynamics is assigned to the matching equation proposed by the methodology known as Interconnection and D

  10. Adaptive nonlinear vibration control of a Cartesian flexible manipulator driven by a ballscrew mechanism

    Science.gov (United States)

    Qiu, Zhi-cheng

    2012-07-01

    A flexible Cartesian manipulator is a coupling system with a moving rigid body and flexible structures. Thus, vibration suppression problem must be solved to guarantee the stability and control accuracy. A characteristic model based nonlinear golden section adaptive control (CMNGSAC) algorithm is implemented to suppress the vibration of a flexible Cartesian smart material manipulator driven by a ballscrew mechanism using an AC servomotor. The system modeling is derived to recognize the dynamical characteristics. The closed loop stability is analyzed based on the model. Also, an experimental setup is constructed to verify the adopted method. Experimental comparison studies are conducted for modal frequencies' identification and active vibration control of the flexible manipulator. The active vibration control experiments include set-point vibration control responses, vibration suppression under resonant excitation and simultaneous translating and vibration suppression using different control methods. The experimental results demonstrate that the controller can suppress both the larger and the lower amplitude vibration near the equilibrium point effectively.

  11. Genetic algorithm combined with immune mechanism and its application in skill fuzzy control

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Automation of skill fuzzy control system is an important research aspect of fuzzy control fields. It's significant for those control instances consisted in production and people's daily life. But, how to control a system not movement or behavior rules but only relied on movement parameters, that problem still had not be resolved. This paper proposes a new method used a genetic algorithm based on immune mechanism to learn the degree of membership, at same time, simplifying the corresponding movement equation; its efficiency will be indicated by an example.

  12. Control and regulatory mechanisms associated with thermogenesis in flying insects and birds.

    Science.gov (United States)

    Loli, Denise; Bicudo, José Eduardo P W

    2005-01-01

    Most insects and birds are able to fly. The chitin made exoskeleton of insects poses them several constraints, and this is one the reasons they are in general small sized animals. On the other hand, because birds possess an endoskeleton made of bones they may grow much larger when compared to insects. The two taxa are quite different with regards to their general "design" platform, in particular with respect to their respiratory and circulatory systems. However, because they fly, they may share in common several traits, namely those associated with the control and regulatory mechanisms governing thermogenesis. High core temperatures are essential for animal flight irrespective of the taxa they belong to. Birds and insects have thus evolved mechanisms which allowed them to control and regulate high rates of heat fluxes. This article discusses possible convergent thermogenic control and regulatory mechanisms associated with flight in insects and birds. PMID:16283551

  13. Distributed power and control actuation in the thoracic mechanics of a robotic insect

    Energy Technology Data Exchange (ETDEWEB)

    Finio, Benjamin M; Wood, Robert J, E-mail: bfinio@fas.harvard.ed [Harvard University School of Engineering and Applied Sciences, Cambridge, MA 02138 (United States)

    2010-12-15

    Recent advances in the understanding of biological flight have inspired roboticists to create flapping-wing vehicles on the scale of insects and small birds. While our understanding of the wing kinematics, flight musculature and neuromotor control systems of insects has expanded, in practice it has proven quite difficult to construct an at-scale mechanical device capable of similar flight performance. One of the key challenges is the development of an effective and efficient transmission mechanism to control wing motions. Here we present multiple insect-scale robotic thorax designs capable of producing asymmetric wing kinematics similar to those observed in nature and utilized by dipteran insects to maneuver. Inspired by the thoracic mechanics of dipteran insects, which entail a morphological separation of power and control muscles, these designs show that such distributed actuation can also modulate wing motion in a robotic design.

  14. Distributed power and control actuation in the thoracic mechanics of a robotic insect

    International Nuclear Information System (INIS)

    Recent advances in the understanding of biological flight have inspired roboticists to create flapping-wing vehicles on the scale of insects and small birds. While our understanding of the wing kinematics, flight musculature and neuromotor control systems of insects has expanded, in practice it has proven quite difficult to construct an at-scale mechanical device capable of similar flight performance. One of the key challenges is the development of an effective and efficient transmission mechanism to control wing motions. Here we present multiple insect-scale robotic thorax designs capable of producing asymmetric wing kinematics similar to those observed in nature and utilized by dipteran insects to maneuver. Inspired by the thoracic mechanics of dipteran insects, which entail a morphological separation of power and control muscles, these designs show that such distributed actuation can also modulate wing motion in a robotic design.

  15. Q-Learning-Based Inter-Networking Mobile Number Portability Congestion Control Mechanism

    Institute of Scientific and Technical Information of China (English)

    Wang Anping; Li Yuan; Lin Lin

    2011-01-01

    Inter-networking Mobile Number Portability (MNP) is an important way to promote the development of new telecom services.For the congestion that always occurs on the MNP query nodes,this paper proposes a Q-learning-based inter-networking mobile number portability congestion control mechanism,taking the node queue delay and query service stability as the control targets,based on the optimal decision which is made over mobile user number portability query through self-adaptive connection admission control.The simulation and analysis show that,compared with tail-drop,random early detection and other mechanisms,this mechanism realizes a smoother and more regular queue size when the load is relatively light; and maintains a relatively low and stable queue size with relatively small loss when the load is relatively heavy,thus improving QoS and increasing network throughput at lower cost.

  16. MCCM: Multilevel Congestion Avoidance and Control Mechanism for Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Md. Manowarul Islam

    2014-05-01

    Full Text Available Congestion in Mobile Ad Hoc Network causes packet loss, longer end-to-end data delivery delay which affects the overall performance of the network significantly. To ensure high throughput, the routing protocol should be congestion adaptive and should be capable of handling the congestion. In this research work, we propose a Multilevel Congestion avoidance and Control Mechanism (MCCM that exploits both congestion avoidance and control mechanism to handle the congestion problem in an effective and efficient way. MCCM is capable of finding an energy efficient path during route discovery process, provide longer lifetime of any developed route. The efficient admission control and selective data packet delivery mechanism of MCCM jointly overcome the congestion problem at any node and thus, MCCM improves the network performance in term of packet delivery ratio, lower data delivery delay and high throughput. The result of performance evaluation section shows that, MCCM outperforms the existing routing protocols carried out in Network Simulator-2(NS-2.

  17. Biomolecular nonlinear dynamic mechanisms as a foundation for human traits of information processing machine

    Directory of Open Access Journals (Sweden)

    Nicholas G. Rambaidi

    2001-01-01

    Full Text Available A pseudo-biological paradigm in information processing launched by McCulloch and Pitts in the early 1940s has been advanced during the last decades. Different attempts were made based on these developments to design operational information processing devices capable of solving problems of high computational complexity.

  18. Controlling Self-Renewal and Differentiation of Stem Cells via Mechanical Cues

    OpenAIRE

    Nava, Michele M.; Raimondi, Manuela T.; Riccardo Pietrabissa

    2012-01-01

    The control of stem cell response in vitro, including self-renewal and lineage commitment, has been proved to be directed by mechanical cues, even in the absence of biochemical stimuli. Through integrin-mediated focal adhesions, cells are able to anchor onto the underlying substrate, sense the surrounding microenvironment, and react to its properties. Substrate-cell and cell-cell interactions activate specific mechanotransduction pathways that regulate stem cell fate. Mechanical factors, incl...

  19. Self-other control: a candidate mechanism for social cognitive function

    OpenAIRE

    Sophie Sowden

    2014-01-01

    Despite ever-growing interest in the “social brain” and the search for the neural underpinnings of social cognition, we are yet to fully understand the basic neurocognitive mechanisms underlying complex social behaviors. One such candidate mechanism is the control of neural representations of the self and of other people (Brass et al., 2009; Spengler et al., 2009a), and it is likely that “common” disorders of social cognition such as autism and schizophrenia involve atypical modulation of sel...

  20. A conflict monitoring account of the control mechanisms involved in dual-tasking

    OpenAIRE

    Olszanowski, Michal; Bajo, Maria Teresa; Szmalec, Arnaud

    2015-01-01

    The present study investigates the cognitive mechanism underlying the control of interference during dual-task coordination. Partially inspired by the Conflict Monitoring Hypothesis (Botvinick et al., 2001), we test the assumption that dual-task interference is resolved by a top-down adaptation mechanism that is responsible for behavioral adjustments in the prioritization of the coordinated tasks. In a series of two experiments, we measured conflict adaptation to the so-called Gratton effect—...

  1. Dynamic Modeling and Control of Electromechanical Coupling for Mechanical Elastic Energy Storage System

    OpenAIRE

    Yang Yu; Zengqiang Mi

    2013-01-01

    The structural scheme of mechanical elastic energy storage (MEES) system served by permanent magnet synchronous motor (PMSM) and bidirectional converters is designed. The aim of the research is to model and control the complex electromechanical system. The mechanical device of the complex system is considered as a node in generalized coordinate system, the terse nonlinear dynamic model of electromechanical coupling for the electromechanical system is constructed through Lagrange-Maxwell energ...

  2. Low frequency control strategy for seismic attenuation in inertial platforms and mechanical suspensions

    Science.gov (United States)

    Acernese, F.; Canonico, R.; De Rosa, R.; Giordano, G.; Romano, R.; Barone, F.

    2013-04-01

    This paper describes a new application of the monolithic folded pendulum configured as seismometer (no force feed-back) and used as sensor in the control of inertial platforms and suspensions, like, for example, those used in interferometric detectors of gravitational waves, where a residual horizontal motion better than 10-15m/√Hz in the band 0.01 ÷ 100Hz is a requirement. The experimental results, obtained in the band 0.01 ÷ 10Hz, demonstrate that this sensor has enough dynamics and sensitivity to introduce no limitations to the state-of-the-art control systems. Moreover, its full scalability allows an easy integration and positioning also on the different stages of multistage mechanical suspensions (seismic attenuators) and inertial platforms. This new application demonstrates not only the feasibility of the proposed new control strategy in the low frequency region, but, and it is very relevant, that it is now possible the implementation of very effective control systems with a large reduction of control electronics, replaced by less noisy optical and mechanical devices, with the further advantage of rendering the whole system surely less sensitive to environmental noises. The results of this study, although preliminary and obtained with sensors not optimized for the specific application, are presented and discussed in this paper, in connection with some of the possible applications (platforms and mechanical structure control and stabilization, building controls, etc.) and the planned further developments and improvements.

  3. Genetic algorithm based optimal control of smart composite shell structures under mechanical loading and thermal gradient

    International Nuclear Information System (INIS)

    In the present paper an improved genetic algorithm (GA) based linear quadratic regulator (LQR) control scheme has been proposed for active vibration control of smart fiber reinforced polymer (FRP) composite shell structures under combined mechanical and thermal loading. A layered shell finite element formulation has been done to obtain the electro-thermo-mechanical response of fiber reinforced polymer (FRP) composite shell structures bonded with piezoelectric patches. Based on the responses obtained from finite element analysis, a real coded GA based improved LQR control scheme has been incorporated, which maximizes the closed loop damping while keeping the actuator voltages within limit. It has been observed that the developed FE code can be used for determination of the accurate response of smart FRP shell structures for the simulation of active vibration control of such structures. The proposed GA based LQR control scheme could control both dynamic oscillation due to mechanical load as well as the static displacement due to a thermal gradient, which was not possible with conventional LQR control scheme

  4. Benefits of Precision Farming Technologies for Mechanical Weed Control in Soybean and Sugar Beet—Comparison of Precision Hoeing with Conventional Mechanical Weed Control

    Directory of Open Access Journals (Sweden)

    Christoph Kunz

    2015-04-01

    Full Text Available Weed infestations and associated yield losses require effective weed control measures in soybean and sugar beet. Besides chemical weed control, mechanical weeding plays an important role in integrated weed management systems. Field experiments were conducted at three locations for soybean in 2013 and 2014 and at four locations for sugar beet in 2014 to investigate if automatic steering technologies for inter-row weed hoeing using a camera or RTK-GNSS increase weed control efficacy, efficiency and crop yield. Treatments using precision farming technologies were compared with conventional weed control strategies. Weed densities in the experiments ranged from 15 to 154 plants m−2 with Chenopodium album, Polygonum convolvulus, Polygonum aviculare, Matricaria chamomilla and Lamium purpureum being the most abundant species. Weed hoeing using automatic steering technologies reduced weed densities in soybean by 89% and in sugar beet by 87% compared to 85% weed control efficacy in soybean and sugar beet with conventional weeding systems. Speed of weed hoeing could be increased from 4 km h−1 with conventional hoes to 7 and 10 km·h−1, when automatic steering systems were used. Precision hoeing technologies increased soybean yield by 23% and sugar beet yield by 37%. After conventional hoeing and harrowing, soybean yields were increased by 28% and sugar beet yield by 26%.

  5. Dynamic simulation and study of Mechanical Shim (MSHIM) core control strategy for AP1000 reactor

    International Nuclear Information System (INIS)

    Highlights: • A reactor core fast simulation program RCFSP is developed for AP1000. • A nodal core model and the MSHIM control strategy are implemented in RCFSP. • Load follow results for the original and revised MSHIM strategies are given. • Parameter sensitivity analysis and optimization of MSHIM control system are performed. - Abstract: The advanced Mechanical Shim (MSHIM) core control strategy is implemented in the AP1000 reactor by a digital rod control system. This control system comprises of two separate rod controllers that automatically control the core reactivity and axial power distribution using the gray and black M control banks and the axial offset (AO) control bank respectively. It has been demonstrated that the MSHIM control system can provide superior reactor control capabilities via automatic rod control only, which needs it to take more burdens than many other traditional core control systems during load change transients. This paper presents the dynamic simulation, and the parameter sensitivity analysis and optimization of the MSHIM control system for AP1000 reactor. A nodal core model is used to describe the dynamic behavior of the reactor core first. Then the nodal model and the original and revised MSHIM strategies are implemented in the AP1000 reactor to develop a fast simulation program in MATLAB/SIMULINK. Based on the simulation program, the MSHIM load follow and load regulation operations are simulated, the results of which demonstrate that the core reactivity and axial power distribution can be well-controlled via automatic rod control only. To show the effects of key factors on the control system behavior, the MSHIM load follow simulations with different control parameter values are performed. According to the simulation results and subsequent quantitative analysis, the mechanisms by which the key factors affect the control system behavior are illustrated and the optimum numerical ranges of these parameters are obtained. These

  6. Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics.

    Science.gov (United States)

    Li, Qiaochu; Barrett, Devin G; Messersmith, Phillip B; Holten-Andersen, Niels

    2016-01-26

    Interactions between polymer molecules and inorganic nanoparticles can play a dominant role in nanocomposite material mechanics, yet control of such interfacial interaction dynamics remains a significant challenge particularly in water. This study presents insights on how to engineer hydrogel material mechanics via nanoparticle interface-controlled cross-link dynamics. Inspired by the adhesive chemistry in mussel threads, we have incorporated iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network to obtain hydrogels cross-linked via reversible metal-coordination bonds at Fe3O4 NP surfaces. Unique material mechanics result from the supra-molecular cross-link structure dynamics in the gels; in contrast to the previously reported fluid-like dynamics of transient catechol-Fe(3+) cross-links, the catechol-Fe3O4 NP structures provide solid-like yet reversible hydrogel mechanics. The structurally controlled hierarchical mechanics presented here suggest how to develop hydrogels with remote-controlled self-healing dynamics. PMID:26645284

  7. A control system formulation of the mechanism that controls the secretions of serum group hormone in humans during sleep

    Science.gov (United States)

    Howard, J. C.; Young, D. R.

    1975-01-01

    Plasma growth hormone concentrations during sleep were determined experimentally. An elevated level of plasma growth hormone was observed during the initial phase of sleep and remained elevated for approximately 3 hr before returning to the steady-state level. Moreover, subsequent to a prolonged interruption of sleep, of the order of 2-3 hr, an elevated level of plasma growth hormone was again observed during the initial phase of resumed sleep. A control system formulation of the mechanism that controls the secretions of serum growth hormone in humans was used to account for the growth hormone responses observed.

  8. Position indicator for movable coil type reactor control rod driving mechanism

    International Nuclear Information System (INIS)

    Purpose: To enable the accurate and continuous indication of the position of a movable coil type reactor control rod driving mechanism. Constitution: The position of an electromagnet magnetically coupled to a plunger connected to a reactor core control rod is detected by an electromagnet position detector, and the displacement of the positions of the electromagnet and the plunger is detected by a relative position detector connected to the electromagnet. The detected values of both the detectors are used to calculate the position of the driving mechanism. (Aizawa, K.)

  9. Virus spreading in wireless sensor networks with a medium access control mechanism

    International Nuclear Information System (INIS)

    In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical analysis shows that the medium access control mechanism obviously reduces the density of infected nodes in the networks, which has been ignored in previous studies. It is also found that by increasing the network node density or node communication radius greatly increases the number of infected nodes. The theoretical results are confirmed by numerical simulations. (general)

  10. Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor

    International Nuclear Information System (INIS)

    Chaos, its control and synchronization for a fractional order rotational mechanical system with a centrifugal governor are studied for both the autonomous and the nonautonomous cases. It is found that chaos exists in the fractional order systems with order less than and more than the number of states of the system. Controlling the chaotic motion of a fractional order system to its equilibrium point is obtained for both the autonomous and the nonautonomous cases. The rotational mechanical systems with the same fractional order and with the different fractional orders are synchronized by linear coupling for both the autonomous and the nonautonomous cases

  11. Mechanism design for the control rods conduction of TRIGA Mark III reactor in the NINR

    International Nuclear Information System (INIS)

    This work presents in the first chapter a general studio about the reactor and the importance of control rods in the reactor , the mechaniucal design attending to requisitions that are imposed for conditions of operation of the reactor are present in the second chapter, the narrow relation that exists with the new control console and the mechanism is developed in the thired chapter, this relation from a point of view of an assembly of components is presents in fourth chapter, finally reaches and perspectives of mechanism forming part of project of the automation of reactor TRIGA MARK III, are present in the fifth chapter. (Author)

  12. Theoretical models for the emergence of biomolecular homochirality

    Science.gov (United States)

    Walker, Sara Imari

    Little is known about the emergence of life from nonliving precursors. A key missing-piece is the origin of homochirality: nearly all life is characterized by exclusively dextrorotary sugars and levorotary amino acids. The research presented in this thesis addresses the challenge of uncovering mechanisms for chiral symmetry breaking in a prebiotic environment and implications for the origin of life on Earth. Expanding on a well-known model for chiral selection through polymerization, and modeling the spatiotemporal dynamics starting from near-racemic initial conditions, it is demonstrated that the net chirality of molecular building blocks grows with the longest polymer in the reaction network (of length N) with critical behavior for the onset of chiral asymmetry determined by the value of N. This surprising result indicates that significant chiral asymmetry occurs only for systems which permit growth of long polymers. Expanding on this work, the effects of environmental disturbances on the evolution of chirality in prebiotic reaction-diffusion networks are studied via the implementation of a stochastic spatiotemporal Langevin equation. The results show that environmental interactions can have significant impact on the evolution of prebiotic chirality: the history of prebiotic chirality is therefore interwoven with the Earths early environmental history in a mechanism we call punctuated chirality. This result establishes that the onset of homochirality is not an isolated phenomenon: chiral selection must occur in tandem with the transition from chemistry to biology, otherwise the prebiotic soup is unstable to environmental events. Addressing the challenge of understanding the role of chirality in the transition from non-life to life, the diffusive slowdown of reaction networks induced, for example, through tidal cycles or evaporating pools, is modeled. The results of this study demonstrate that such diffusive slowdown leads to the stabilization of homochiral

  13. A statistical model of uplink inter-cell interference with slow and fast power control mechanisms

    KAUST Repository

    Tabassum, Hina

    2013-09-01

    Uplink power control is in essence an interference mitigation technique that aims at minimizing the inter-cell interference (ICI) in cellular networks by reducing the transmit power levels of the mobile users while maintaining their target received signal quality levels at base stations. Power control mechanisms directly impact the interference dynamics and, thus, affect the overall achievable capacity and consumed power in cellular networks. Due to the stochastic nature of wireless channels and mobile users\\' locations, it is important to derive theoretical models for ICI that can capture the impact of design alternatives related to power control mechanisms. To this end, we derive and verify a novel statistical model for uplink ICI in Generalized-K composite fading environments as a function of various slow and fast power control mechanisms. The derived expressions are then utilized to quantify numerically key network performance metrics that include average resource fairness, average reduction in power consumption, and ergodic capacity. The accuracy of the derived expressions is validated via Monte-Carlo simulations. Results are generated for multiple network scenarios, and insights are extracted to assess various power control mechanisms as a function of system parameters. © 1972-2012 IEEE.

  14. Morphing Mechanisms Part 1: Using Iterative Learning Control to Morph Cam Follower Motion

    Directory of Open Access Journals (Sweden)

    Nonglak Phetkong

    2005-01-01

    Full Text Available This study introduces the concept of morphing mechanisms. Mechanisms are normally designed for specific operating conditions and once they are built one may wish to use them under different operating conditions. In some cases, a mechanism may be imperfectly fabricated and one would like to get the intended ideal performance. In these cases, instead of designing, fabricating and replacing the original mechanism, the behavior of the existing hardware can be morphed to make it function as if it was the redesigned or re-fabricated system. This concept is illustrated in both simulation and experiments for cam mechanisms. Iterative learning control is used on a cam designed and built using a 2-3 polynomial profile and it is made to function like a cam designed with a 3-4-5 polynomial. Eight cycles of learning are seen to be sufficient to effectively accomplish this morphing of the calm behavior.

  15. Hard and soft Sub-Time-Optimal Controllers for a Mechanical System with Uncertain Mass

    DEFF Research Database (Denmark)

    Kulczycki, P.; Wisniewski, Rafal; Kowalski, P.; Krawiec, K.

    2005-01-01

    An essential limitation in using the classical optimal control has been its limited robustness to modeling inadequacies and perturbations. This paper presents conceptions of two practical control structures based on the time-optimal approach: hard and soft ones. The hard structure is defined by...... parameters selected in accordance with the rules of the statistical decision theory; however, the soft structure allows additionally to eliminate rapid changes in control values. The object is a basic mechanical system, with uncertain (also non-stationary) mass treated as a stochastic process. The...... methodology proposed here is of a universal nature and may easily be applied with respect to other elements of uncertainty of time-optimal controlled mechanical systems....

  16. Hard and soft sub-time-optimal controllers for a mechanical system with uncertain mass

    DEFF Research Database (Denmark)

    Kulczycki, P.; Wisniewski, Rafal; Kowalski, P.; Krawiec, K.

    2004-01-01

    An essential limitation in using the classical optimal control has been its limited robustness to modeling inadequacies and perturbations. This paper presents conceptions of two practical control structures based on the time-optimal approach: hard and soft ones. The hard structure is defined by...... parameters selected in accordance with the rules of the statistical decision theory; however, the soft structure allows additionally to eliminate rapid changes in control values. The object is a basic mechanical system, with uncertain (also non-stationary) mass treated as a stochastic process. The...... methodology proposed here is of a universal nature and may easily be applied with respect to other elements of uncertainty of time-optimal controlled mechanical systems....

  17. Co-Simulation Research of the Mechanical-Hydraulic-Control Coupling System of ITER Tractor

    International Nuclear Information System (INIS)

    The virtual prototyping models of the mechanical, hydraulic and control system of the ITER tractor were built with CATIA, ADAMS and MATLAB/Simulink respectively according to its heavy load and high precision characteristics, and the data transfer between the different models was accomplished by the integration interface between different software. Consequently the virtual experimental platform for the multi-disciplinary co-simulation was established. A co-simulation study of the mechanical-hydraulic-control coupling system of the ITER tractor was carried out. The synchronization servo control of parallel hydraulic cylinders was implemented, and the tracking control of the preconcerted trajectory of the hydraulic cylinders was realized on the established experimental platform. This paper presents the optimization design and technology rebuilding for the complicated coupling system with its theoretic foundation and co-simulation virtual experimental platform.

  18. Operation and maintenance experience with control rod and their drive mechanisms of fast breeder test reactor

    International Nuclear Information System (INIS)

    This paper explains the functional and construction features of Control Rod Drive Mechanism (CRDM) and control rod used in Fast Breeder Test Reactor (FBTR) which is a 40 MWt loop type sodium cooled fast reactor. It discusses all safety related incidents and failures encountered during its service in reactor, the solutions evolved and modifications carried out to prevent recurrence. It also details the maintenance activities and periodical surveillance carried out. The results of a reliability analysis done are also discussed. (author)

  19. The ownership structure and control mechanisms in Sweden: Case study of leading pyramidal corporations

    OpenAIRE

    Sharifi, Nazanin

    2014-01-01

    ABSTRACT: This study describes the differences between the corporate governance systems and the ownership structures around the world. It concentrates on the ownership structure of the firms in continental European countries and examined control-enhancing mechanisms that are used to increase controlling power of dominated shareholders in selected developed countries such as Germany, France, Italy and the Netherlands. By using data collected from listed companies in Stockholm stock market, thi...

  20. Programmable System on Chip Distributed Communication and Control Approach for Human Adaptive Mechanical System

    OpenAIRE

    Ahmad A.M. Faudzi; Suzumori, K

    2010-01-01

    Problem statement: Communication and control are two main components in any Mechatronics system. They can be designed either by centralized or decentralized approach. Both approaches can be chosen based on application designed and specific requirements of the designer. In this study, decentralized or normally called distributed approach was selected to solved communication and control of a human adaptive mechanical system namely Intelligent Chair Tools (ICT). The ICT seating system is powered...

  1. A General control mechanism of energy flow in the excited state of polyenic biochromophores.

    OpenAIRE

    Buckup, Tiago; Hauer, Jürgen; Voll, Judith; de Vivie-Riedle, Regina; Motzkus, Marcus

    2011-01-01

    Quantum dynamics in photobiology is a highly controversial subject of modern research. In particular, the role of low-frequency vibrational coherence of biochromophores has been intensely discussed. Coherent control of polyenic chromophores, like carotenoids and retinoids, has been showing that the manipulation of such low frequency coherences may play a crucial role in the evolution of excited population and therefore in the efficiency of photosynthesis. However, no precise control mechanism...

  2. Partially Overlapping Mechanisms of Language and Task Control in Young and Older Bilinguals

    OpenAIRE

    Weissberger, Gali H.; Wierenga, Christina E.; Bondi, Mark W; Gollan, Tamar H.

    2012-01-01

    The current study tested the hypothesis that bilinguals rely on domain-general mechanisms of executive control to achieve language control by asking if linguistic and nonlinguistic switching tasks exhibit similar patterns of aging-related decline. Thirty young and 30 aging bilinguals completed a cued language-switching task and a cued color-shape switching task. Both tasks demonstrated significant aging effects, but aging-related slowing and the aging-related increase in errors were significa...

  3. Metal-coordination: Using one of nature’s tricks to control soft material mechanics

    OpenAIRE

    Holten-Andersen, Niels; Jaishankar, Aditya; Harrington, Matthew; Fullenkamp, Dominic E.; DiMarco, Genevieve; He, Lihong; McKinley, Gareth H.; Messersmith, Phillip B.; Lee, Ka Yee C.

    2013-01-01

    Growing evidence supports a critical role of dynamic metal-coordination crosslinking in soft biological material properties such as self-healing and underwater adhesion1. Using bio-inspired metal-coordinating polymers, initial efforts to mimic these properties have shown promise2. Here we demonstrate how bio-inspired aqueous polymer network mechanics can be easily controlled via metal-coordination crosslink dynamics; metal ion-based crosslink stability control allows aqueous polymer network r...

  4. Controller design for flexible, distributed parameter mechanical arms via combined state space and frequency domain techniques

    Science.gov (United States)

    Book, W. J.; Majett, M.

    1982-01-01

    The potential benefits of the ability to control more flexible mechanical arms are discussed. A justification is made in terms of speed of movement. A new controller design procedure is then developed to provide this capability. It uses both a frequency domain representation and a state variable representation of the arm model. The frequency domain model is used to update the modal state variable model to insure decoupled states. The technique is applied to a simple example with encouraging results.

  5. Radon mitigation with mechanical supply and exhaust ventilation adjusted by a pressure control unit

    International Nuclear Information System (INIS)

    Effective ventilation and positive or low negative pressure indoors are suggested to low indoor radon levels. The aim of this study is to develop and to test an equipment, which makes it possible to achieve simultaneously effective ventilation and minimum outdoor-pressure difference. The unit includes mechanical supply and exhaust air fans, a exchanger and a pressure control unit in direct digital control (DDC), which adjusts continuously air exchange based on the pressure difference transmitter information. (orig.). (8 refs., 6 figs.)

  6. Possibilities for automatic control of hydro-mechanical transmission and birotating electric machine

    OpenAIRE

    Mikhailov, V.V.; A. G. Snitkov

    2014-01-01

    The paper presents mathematical models and results of virtual investigations pertaining to the selected motion parameters of a mobile machine equipped with hydro mechanical and modernized transmissions. The machine has been tested in similar technological cycles and it has been equipped with a universal automatic control system. Changes in structure and type of power transmission have been obtained with the help of a control algorithm including an extra reversible electric machine which is sw...

  7. Nonlinear Lyapunov-based boundary control of distributed heat transfer mechanisms in membrane distillation plant

    KAUST Repository

    Eleiwi, Fadi

    2015-07-01

    This paper presents a nonlinear Lyapunov-based boundary control for the temperature difference of a membrane distillation boundary layers. The heat transfer mechanisms inside the process are modeled with a 2D advection-diffusion equation. The model is semi-descretized in space, and a nonlinear state-space representation is provided. The control is designed to force the temperature difference along the membrane sides to track a desired reference asymptotically, and hence a desired flux would be generated. Certain constraints are put on the control law inputs to be within an economic range of energy supplies. The effect of the controller gain is discussed. Simulations with real process parameters for the model, and the controller are provided. © 2015 American Automatic Control Council.

  8. Expenditure optimization in a problem of controlled motion of mechanical systems

    Science.gov (United States)

    Babadzanjanz, Levon K.; Pototskaya, Irina Yu.; Pupysheva, Yulia Yu.

    2016-06-01

    The controlled motion which is represented by the linear ODE system with constant coefficients is considered. The admissible control is a piecewise constant function that blanks selected frequency components of the solution of linear equations at the moment T. As "the expenditure" functional we use the integral of the sum of the modules of coordinates of the control along the interval [0, T]. The problem under consideration is to construct an admissible control which minimizes the Expenditure. To solve this problem the method is proposed which leads to explicit formulas. All results of research are formulated as the theorem. These results can be applied not only in mechanical controlled systems, but also in any problem that can be described by the system of ordinary differential equations with control.

  9. Interacting with the biomolecular solvent accessible surface via a haptic feedback device

    Directory of Open Access Journals (Sweden)

    Hayward Steven

    2009-10-01

    Full Text Available Abstract Background From the 1950s computer based renderings of molecules have been produced to aid researchers in their understanding of biomolecular structure and function. A major consideration for any molecular graphics software is the ability to visualise the three dimensional structure of the molecule. Traditionally, this was accomplished via stereoscopic pairs of images and later realised with three dimensional display technologies. Using a haptic feedback device in combination with molecular graphics has the potential to enhance three dimensional visualisation. Although haptic feedback devices have been used to feel the interaction forces during molecular docking they have not been used explicitly as an aid to visualisation. Results A haptic rendering application for biomolecular visualisation has been developed that allows the user to gain three-dimensional awareness of the shape of a biomolecule. By using a water molecule as the probe, modelled as an oxygen atom having hard-sphere interactions with the biomolecule, the process of exploration has the further benefit of being able to determine regions on the molecular surface that are accessible to the solvent. This gives insight into how awkward it is for a water molecule to gain access to or escape from channels and cavities, indicating possible entropic bottlenecks. In the case of liver alcohol dehydrogenase bound to the inhibitor SAD, it was found that there is a channel just wide enough for a single water molecule to pass through. Placing the probe coincident with crystallographic water molecules suggests that they are sometimes located within small pockets that provide a sterically stable environment irrespective of hydrogen bonding considerations. Conclusion By using the software, named HaptiMol ISAS (available from http://www.haptimol.co.uk, one can explore the accessible surface of biomolecules using a three-dimensional input device to gain insights into the shape and water

  10. Dynamic postural control but not mechanical stability differs among those with and without chronic ankle instability.

    Science.gov (United States)

    Wikstrom, E A; Tillman, M D; Chmielewski, T L; Cauraugh, J H; Naugle, K E; Borsa, P A

    2010-02-01

    The purpose of this investigation was to compare dynamic postural control and mechanical ankle stability among patients with and without chronic ankle instability (CAI) and controls. Seventy-two subjects were divided equally into three groups: uninjured controls, people with previous ankle injury but without CAI, and people with CAI. Subjects completed a single-leg hop-stabilization task, and then had an anterior drawer test and lateral ankle radiograph performed bilaterally. The dynamic postural stability index was calculated from the ground reaction forces of the single-leg hop-stabilization task. Ankle joint stiffness (N/m) was measured with an instrumented arthrometer during the anterior drawer test, and fibula position was assessed from the radiographic image. Patients with previous ankle injuries but without CAI demonstrated higher frontal plane dynamic postural stability scores than both the uninjured control and CAI groups (Pankle joint stiffness (P=0.045) relative to the control group. The increased frontal plane dynamic postural control may represent a component of a coping mechanism that limits recurrent sprains and the development of CAI. Mechanical stability alterations are speculated to result from the initial ankle trauma. PMID:19422654

  11. Dynamics of biomoleculars studied by Rayleigh scattering of Moessbauer radiation and Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    This paper reports on dynamics of biomoleculars, proteins and DNA that plays a role in the supply and the regulation their functional activity, for example, like transducers of oxygen, like enzymes, in photosynthesis and so on. The Mossbauer spectroscopy (MS) and especially Rayleigh Scattering of Mossbauer Radiation (RSMR) permit to obtain the quantitative data on dimensions and times of complex hierarchy of motion in biopolymers and to create correspondent functional models. The scheme of RSMR includes Mossbauer source 57Co, the scatterer---biopolymer, the detector and Mossbauer analyzer (Black absorber---or one-line absorber), that situated before and after the scatterer on definite angle -2θ

  12. Immunochemical, biomolecular and biochemical characterization of bovine epithelial intestinal primocultures

    Directory of Open Access Journals (Sweden)

    Mainil Jacques

    2005-12-01

    Full Text Available Abstract Background Cultures of enterocytes and colonocytes represent valuable tools to study growth and differentiation of epithelial cells. In vitro models may be used to evaluate passage or toxicity of drugs, interactions of enteropathogenes bacteria strains with intestinal epithelium and other physiologic or pathologic phenomenon involving the digestive tract. Results Cultures of bovine colonocytes and jejunocytes were obtained from organoid-enriched preparations, using a combination of enzymatic and mechanical disruption of the intestine epithelium, followed by an isopicnic centrifugation discarding most single cells. Confluent cell monolayers arising from plated organoids exhibited epithelium typical features, such as the pavement-like structure, the presence of apical microvilli and tight junctions. Accordingly, cells expressed several markers of enterocyte brush border (i.e. maltase, alkaline phosphatase and fatty acid binding protein as well as an epithelial cytoskeleton component (cytokeratin 18. However, enterocyte primocultures were also positive for the vimentin immunostaining (mesenchyme marker. Vimentin expression studies showed that this gene is constitutively expressed in bovine enterocytes. Comparison of the vimentin expression profile with the pattern of brush border enzymes activities, suggested that the decrease of cell differentiation level observed during the enterocyte isolation procedure and early passages of the primoculture could result from a post-transcriptional de-repression of vimentin synthesis. The low differentiation level of bovine enterocytes in vitro could partly be counteracted adding butyrate (1–2 mM or using a glucose-deprived culture medium. Conclusion The present study describes several complementary approaches to characterize bovine primary cultures of intestinal cells. Cultured cells kept their morphologic and functional characteristics during several generations.

  13. GLYCAM06: a generalizable biomolecular force field. Carbohydrates.

    Science.gov (United States)

    Kirschner, Karl N; Yongye, Austin B; Tschampel, Sarah M; González-Outeiriño, Jorge; Daniels, Charlisa R; Foley, B Lachele; Woods, Robert J

    2008-03-01

    A new derivation of the GLYCAM06 force field, which removes its previous specificity for carbohydrates, and its dependency on the AMBER force field and parameters, is presented. All pertinent force field terms have been explicitly specified and so no default or generic parameters are employed. The new GLYCAM is no longer limited to any particular class of biomolecules, but is extendible to all molecular classes in the spirit of a small-molecule force field. The torsion terms in the present work were all derived from quantum mechanical data from a collection of minimal molecular fragments and related small molecules. For carbohydrates, there is now a single parameter set applicable to both alpha- and beta-anomers and to all monosaccharide ring sizes and conformations. We demonstrate that deriving dihedral parameters by fitting to QM data for internal rotational energy curves for representative small molecules generally leads to correct rotamer populations in molecular dynamics simulations, and that this approach removes the need for phase corrections in the dihedral terms. However, we note that there are cases where this approach is inadequate. Reported here are the basic components of the new force field as well as an illustration of its extension to carbohydrates. In addition to reproducing the gas-phase properties of an array of small test molecules, condensed-phase simulations employing GLYCAM06 are shown to reproduce rotamer populations for key small molecules and representative biopolymer building blocks in explicit water, as well as crystalline lattice properties, such as unit cell dimensions, and vibrational frequencies. PMID:17849372

  14. An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Yiyan; Landry, James P.; Zhu, X. D., E-mail: xdzhu@physics.ucdavis.edu [Department of Physics, University of California, One Shields Avenue, Davis, California 95616 (United States); Li, Yanhong; Yu, Hai; Lau, Kam; Huang, Shengshu; Chokhawala, Harshal A.; Chen, Xi [Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616 (United States)

    2013-11-15

    A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400–10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.

  15. Improving postural control by applying mechanical noise to ankle muscle tendons.

    Science.gov (United States)

    Borel, Liliane; Ribot-Ciscar, Edith

    2016-08-01

    The application of subthreshold mechanical vibrations with random frequencies (white mechanical noise) to ankle muscle tendons is known to increase muscle proprioceptive information and to improve the detection of ankle movements. The aim of the present study was to analyze the effect of this mechanical noise on postural control, its possible modulation according to the sensory strategies used for postural control, and the consequences of increasing postural difficulty. The upright stance of 20 healthy young participants tested with their eyes closed was analyzed during the application of four different levels of noise and compared to that in the absence of noise (control) in three conditions: static, static on foam, and dynamic (sinusoidal translation). The quiet standing condition was conducted with the eyes open and closed to determine the subjects' visual dependency to maintain postural stability. Postural performance was assessed using posturographic and motion analysis evaluations. The results in the static condition showed that the spectral power density of body sway significantly decreased with an optimal level of noise and that the higher the spectral power density without noise, the greater the noise effect, irrespective of visual dependency. Finally, noise application was ineffective in the foam and dynamic conditions. We conclude that the application of mechanical noise to ankle muscle tendons is a means to improve quiet standing only. These results suggest that mechanical noise stimulation may be more effective in more impaired populations. PMID:27021075

  16. Examining the mechanisms of overgeneral autobiographical memory: capture and rumination, and impaired executive control.

    Science.gov (United States)

    Sumner, Jennifer A; Griffith, James W; Mineka, Susan

    2011-02-01

    Overgeneral autobiographical memory (OGM) is an important cognitive phenomenon in depression, but questions remain regarding the underlying mechanisms. The CaR-FA-X model (Williams et al., 2007) proposes three mechanisms that may contribute to OGM, but little work has examined the possible additive and/or interactive effects among them. We examined two mechanisms of CaR-FA-X: capture and rumination, and impaired executive control. We analysed data from undergraduates (N=109) scoring high or low on rumination who were presented with cues of high and low self-relevance on the Autobiographical Memory Test (AMT). Executive control was operationalised as performance on both the Stroop Colour-Word Task and the Controlled Oral Word Association Test (COWAT). Hierarchical generalised linear modelling was used to predict whether participants would generate a specific memory on a trial of the AMT. Higher COWAT scores, lower rumination, and greater cue self-relevance predicted a higher probability of a specific memory. There was also a rumination×cue self-relevance interaction: Higher (vs lower) rumination was associated with a lower probability of a specific memory primarily for low self-relevant cues. We found no evidence of interactions between these mechanisms. Findings are interpreted with respect to current autobiographical memory models. Future directions for OGM mechanism research are discussed. PMID:21294036

  17. Parallel Magnetic Flow Electromagnet for Movable Coil Control-rod Driving Mechanism

    International Nuclear Information System (INIS)

    The parallel magnetic flow electromagnet can effectively relax the saturation, which easily takes place in the single magnetic flow electromagnet, and accordingly can improve the drive capacity of the movable coil electromagnet drive mechanism for a mobile reactor control rod. (authors)

  18. Planning Principles and Control Mechanisms of New Town Development in Malaysia

    Directory of Open Access Journals (Sweden)

    Dasimah Bt Omar

    2009-02-01

    Full Text Available There is no clear-cut definition of constitutes new towns. The notion of self-containment is rightly seen as central to many new towns and often been one of the underlying objectives. References on planning principles and control mechanisms regarding new town development in Malaysia are very limited. Therefore, the perception survey is to identify the planning principles and control mechanisms of new town development in Malaysia from the perspective of two different groups of professional town planners. The findings showed that there is an urgent need to properly define new town and to clearly spell out the planning principles and control mechanisms as to the requirements of new town development. There is a strong need for an integrated national policy, strong need for special development control mechanisms, moderately strong need for a separate format for preparing the Development Proposal Report, a moderate need for special planning standards and some support for revising the present Town and Country Planning Act so as to satisfy the new town development.

  19. Cascade Controller Including Back-stepping for Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Choux, Martin; Hovland, Geir; Blanke, Mogens

    Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants of an...

  20. Experimentation with the prototype of the PEC control rod operating mechanism (PCROM): washing activities and results

    International Nuclear Information System (INIS)

    Experimentation on prototypes of Pec components is presently being carried out at Casaccia Cre. This report shows the results of the first cycle of experimentation of the control rods operating mechanism prototype (Pcrom), concerning the aspects of sodium removal and the checks after experimentation. The activities carried out for the finalization of the washing procedure are also reported

  1. Quality control and process capability assessment for injection-moulded micro mechanical parts

    DEFF Research Database (Denmark)

    Gasparin, Stefania; Tosello, Guido; Hansen, Hans Nørgaard;

    2013-01-01

    Quality control of micro components is an increasing challenge. Smaller mechanical parts are characterized by smaller tolerance to be verified. This paper focuses on the dimensional verification of micro injection-moulded components selected from an industrial application. These parts are measure...

  2. DNA DAMAGE REPAIR AND CELL CYCLE CONTROL: A NATURAL BIO-DEFENSE MECHANISM

    Science.gov (United States)

    DNA DAMAGE REPAIR AND CELL CYCLE CONTROL: A natural bio-defense mechanismAnuradha Mudipalli.Maintenance of genetic information, including the correct sequence of nucleotides in DNA, is essential for replication, gene expression, and protein synthesis. DNA lesions onto...

  3. Rate-controlling mechanisms of hot deformation in a medium carbon vanadium microalloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haitao [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Guoquan, E-mail: g.liu@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Xu, Lei [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Hebei Iron and Steel Technology Research Institute, Shijiazhuang 050021 (China)

    2013-01-01

    Isothermal compression tests were carried out on a medium carbon vanadium microalloy steel (roughly Fe-0.33C-1.5Mn-0.1 V, wt%) by using a Gleeble-1500 simulator. Based on constitutive analysis including an Arrhenius term, activation energy for hot working was calculated and used to evaluate the rate-controlling mechanism of hot deformation. At low strain rates (0.1-1 s{sup -1}), the activation energy for hot working (287.4 kJ/mol) is very close to the austenite lattice self-diffusion activation energy, indicating that the rate-controlling mechanism is dislocation climb. While at high strain rates (10-30 s{sup -1}), the activation energy becomes very high (500.6 kJ/mol), and activation volume is better used under such conditions. Then, activation volume analysis based on both Schoeck model and Kocks-Argon-Ashby model demonstrates that the rate-controlling mechanism at high strain rates is cross slip. That is, the rate-controlling mechanisms of hot deformation for the medium carbon vanadium microalloy steel at high and low strain rates are intrinsically different. Inspired by the findings above, processing map analysis based on dynamic materials model was further preceded and different peak domains of power dissipation efficiency in high and low strain rate regimes were found.

  4. METHODOLOGY FOR PARAMETER CALCULATION OF DISK BRAKE MECHANISMS WITH HYDRAULIC CONTROL

    Directory of Open Access Journals (Sweden)

    O. S. Rukteshel

    2014-11-01

    Full Text Available The paper describes a new methodology for a parameter calculation of a disk brake mechanism with hydraulic control that allows to determine a value of hysteresis losses in a brake at the design stage with high accuracy. A complex analysis for obtaining qualitative and quantitative evaluation of design brake parameter influence on hysteresis value in it is presented in the paper.

  5. Design issues of a back-pressure-based congestion control mechanism

    NARCIS (Netherlands)

    Malhotra, R.; Mandjes, M.; Scheinhardt, W.; Berg, H. van den

    2010-01-01

    Congestion control in packet-based networks is often realized by feedback protocols - in this paper we assess the performance under a back-pressure mechanism that has been proposed and standardized for Ethernet metropolitan networks. Relying on our earlier results for feedback fluid queues, we deriv

  6. Rate-controlling mechanisms of hot deformation in a medium carbon vanadium microalloy steel

    International Nuclear Information System (INIS)

    Isothermal compression tests were carried out on a medium carbon vanadium microalloy steel (roughly Fe-0.33C-1.5Mn-0.1 V, wt%) by using a Gleeble-1500 simulator. Based on constitutive analysis including an Arrhenius term, activation energy for hot working was calculated and used to evaluate the rate-controlling mechanism of hot deformation. At low strain rates (0.1–1 s−1), the activation energy for hot working (287.4 kJ/mol) is very close to the austenite lattice self-diffusion activation energy, indicating that the rate-controlling mechanism is dislocation climb. While at high strain rates (10–30 s−1), the activation energy becomes very high (500.6 kJ/mol), and activation volume is better used under such conditions. Then, activation volume analysis based on both Schöck model and Kocks–Argon–Ashby model demonstrates that the rate-controlling mechanism at high strain rates is cross slip. That is, the rate-controlling mechanisms of hot deformation for the medium carbon vanadium microalloy steel at high and low strain rates are intrinsically different. Inspired by the findings above, processing map analysis based on dynamic materials model was further preceded and different peak domains of power dissipation efficiency in high and low strain rate regimes were found.

  7. Assessment of current practices in creating and using passwords as a control mechanism for information access

    Directory of Open Access Journals (Sweden)

    P. L. Wessels

    2007-11-01

    Full Text Available One of the critical issues in managing information within an organization is to ensure that proper controls exist and are applied in allowing people access to information. Passwords are used extensively as the main control mechanism to identify users wanting access to systems, applications, data files, network servers or personal information. In this article, the issues involved in selecting and using passwords are discussed and the current practices employed by users in creating and storing passwords to gain access to sensitive information are assessed. The results of this survey conclude that information managers cannot rely only on users to employ proper password control in order to protect sensitive information.

  8. Modeling Mechanical and Electrical Uncertain Systems using Functions of Robust Control MATLAB Toolbox®3

    Directory of Open Access Journals (Sweden)

    Mohammed Tawfik Hussein

    2015-04-01

    Full Text Available Uncertainty is inherent property of all real life control systems, and this is due to that there is nothing constant practically; all parameters are going to change under some environmental circumstances, therefore control engineers must not ignore this changing since it can affect the behavior and the performance of the system. In this paper a critical research method for modeling uncertain systems is demonstrated with the utilization of built in robust control Matlab Toolbox®3 functions. Good results were obtained for testing the stability of interval linear time invariant systems. Finally mechanical and electrical uncertain systems were implemented as practical example to validate the uncertainty.

  9. The System Construction and the Implementation of QOS Control Mechanism in Intelligent Streaming Media

    Science.gov (United States)

    Xiao-dan, Du; Qing, Hu; Yong-hong, Liu; Hong, Yu

    In the existing IP-based Internet, the real-time transmission of media streaming data is a hot issue of the current network application research. This paper constructs an intelligent streaming media system. To protect the important data in real time and improve the quality of service as far as possible, we have taken a variety of measures, including the scalable layered coding, the caching mechanism of the client and server, non-uniform scheduling strategy, early warning of non-uniform stream control and congestion control, non-uniform error control, etc.

  10. Strain-controlled criticality governs the nonlinear mechanics of fibre networks

    CERN Document Server

    Sharma, A; Rens, R; Sheinman, M; Jansen, K A; Koenderink, G H; MacKintosh, F C

    2015-01-01

    Disordered fibrous networks are ubiquitous in nature as major structural components of living cells and tissues. The mechanical stability of networks generally depends on the degree of connectivity: only when the average number of connections between nodes exceeds the isostatic threshold are networks stable (Maxwell, J. C., Philosophical Magazine 27, 294 (1864)). Upon increasing the connectivity through this point, such networks undergo a mechanical phase transition from a floppy to a rigid phase. However, even sub-isostatic networks become rigid when subjected to sufficiently large deformations. To study this strain-controlled transition, we perform a combination of computational modeling of fibre networks and experiments on networks of type I collagen fibers, which are crucial for the integrity of biological tissues. We show theoretically that the development of rigidity is characterized by a strain-controlled continuous phase transition with signatures of criticality. Our experiments demonstrate mechanical...

  11. Research on Delay and Packet Loss Control Mechanism in Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Qiuling Yang

    2014-04-01

    Full Text Available In wireless mesh networks, the performance of TCP was degraded rapidly due to the interference in wireless channels. To deal with this problem, A TCP control mechanism based on the character of delay distribution and wireless packet loss is proposed in this paper. Firstly, this delay model can capture the delay exactly that a packet experiences at one hop transmission with rigorous theoretic derivation and lower overhead, and computational complexity. Then we analyze the character of the wireless packet loss. Furthermore, this mechanism points out the control method at transport layer to deal with the different type of packet loss. The simulation results show that our mechanism can decrease the packet loss rate efficiently

  12. An Innovative Design of a Microtab Deployment Mechanism for Active Aerodynamic Load Control

    Directory of Open Access Journals (Sweden)

    Kuo-Chang Tsai

    2015-06-01

    Full Text Available This study presents an innovative design of a microtab system for aerodynamic load control on horizontal-axis wind-turbine rotors. Microtabs are small devices located near the trailing edge of the rotor blades and enable a rapid increase or decrease of the lift force through deployment of the tabs on the pressure or suction side of the airfoil, respectively. The new system has been designed to replace an earlier linearly-actuated microtab mechanism whose performance was limited by space restrictions and stiction. The newly-designed microtab system is based on a four-bar linkage that overcomes the two drawbacks. Its improved kinematics allows for the tab height to increase from 1.0% to 1.7% of the airfoil chord when fully deployed, thereby making it more effective in terms of aerodynamic load control. Furthermore, the modified four-bar link mechanism provides a more robust and reliable mechanical structure.

  13. Biomolecular interactions probed by fluorescence resonance energy transfer

    Science.gov (United States)

    Lange, Daniela Charlotte

    2000-09-01

    This thesis describes how a physical phenomenon, Fluorescence Resonance Energy Transfer (FRET), can be exploited for the study of interactions between biomolecules. The physical basis of this phenomenon is discussed and it is described how some of its characteristics can be exploited in measurement. A recently introduced method, photobleaching FRET microscopy, was implemented and its image analysis refined to suit our biological context. Further, a new technique is proposed, which combines FRET with confocal laser scanning microscopy to optimize resolution and to allow for 3D-studies in living cells. The first part of this thesis presents the application of FRET to the study of oligomerization of G-protein coupled receptors (GPCRs), which was performed at the Fraser Laboratories at McGill University in Montreal. It is demonstrated how FRET microscopy allowed us to circumvent problems of traditional biochemical approaches and provided the first direct evidence for GPCR oligomerization in intact cells. We found that somatostatin receptors (SSTRs) functionally interact by forming oligomers with their own kind, with different SSTR isoforms, and even with distantly related GPCRs, such as dopamine receptors, the latter of which is breaking with the dogma that GPCRs would only pair up with their own kind. The high sensitivity of the FRET technique allowed us to characterize these interactions under more physiological conditions, which lead to the observation that oligomerization is induced by receptor agonist. We further studied the differential effects of agonists and antagonists on receptor oligomerization, leading to a model for the molecular mechanism underlying agonist/antagonist function and receptor activation. The second part was carried out at the Neurobiology Laboratory of the VA Medical Center in Newington, CT. The objective was to further our understanding of Niemann- Pick type C disease, which is characterized by a defect in intracellular cholesterol

  14. Executive mechanisms control in structure of experimental plants TEXT, DBR of the IBR-2, IBR-30 reactors

    International Nuclear Information System (INIS)

    Task of executive mechanisms control in the structure of experimental plant TEXT, DBR of the IBR-2, IBR-30 reactors is made up. The application zone of the CAMAC control block (BIUM) on the basis of the K1801VM1 microprocessor is extended: for different types of executive mechanisms with control pulse; for different types of executive mechanisms with the movement between control points. The block of control and monitoring information of executive mechanisms is represented by the text file of PK. 6 refs.; 5 figs.; 1 tab

  15. Self-Healing Nanocomposite Hydrogel with Well-Controlled Dynamic Mechanics

    Science.gov (United States)

    Li, Qiaochu; Mishra, Sumeet; Chen, Pangkuan; Tracy, Joseph; Holten-Andersen, Niels

    Network dynamics is a crucial factor that determines the macroscopic self-healing rate and efficiency in polymeric hydrogel materials, yet its controllability is seldom studied in most reported self-healing hydrogel systems. Inspired by mussel's adhesion chemistry, we developed a novel approach to assemble inorganic nanoparticles and catechol-decorated PEG polymer into a hydrogel network. When utilized as reversible polymer-particle crosslinks, catechol-metal coordination bonds yield a unique gel network with dynamic mechanics controlled directly by interfacial crosslink structure. Taking advantage of this structure-property relationship at polymer-particle interfaces, we next designed a hierarchically structured hybrid gel with two distinct relaxation timescales. By tuning the relative contribution of the two hierarchical relaxation modes, we are able to finely control the gel's dynamic mechanical behavior from a viscoelastic fluid to a stiff solid, yet preserving its fast self-healing property without the need for external stimuli.

  16. The potential role of market mechanisms in the control of acid rain

    International Nuclear Information System (INIS)

    The remit of the study was to consider whether, and in what circumstances, market mechanisms can assist in the implementation of policies to control acid rain. The study focuses on static sources of SO2. It examines how market mechanisms might be used to control them from three viewpoints - theoretical, experience of their use in other countries, and simulations of their use in this country. The study draws from all these, in order to offer guidance on the practical benefits which could be expected to flow from their use, and on the best way to introduce them. The study took as its starting point the National Plan for reducing the UK's SO2 emissions to comply with the Large Combustion Plant Directive. These arrangements impose separate quotas, or ''bubbles'' in the parlance of emission control, on England and Wales, Scotland, and Northern Ireland, for the electricity industry, refineries, and other industry. (Author)

  17. Tracking Control of the Flexible SLIDER-CRANK Mechanism System Under Impact

    Science.gov (United States)

    FUNG, R.-F.; SUN, J.-H.; WU, J.-W.

    2002-08-01

    The variable structure control (VSC) and the stabilizer design by using pole placement technique are applied to the tracking control of the flexible slider-crank mechanism under impact. The VSC strategy is employed to track the crank angular position and speed, while the stabilizer design is involved to suppress the flexible vibrations simultaneously. From the theoretical impact consideration, three approaches including the generalized momentum balance (GMB), the continuous force model (CFM), and the CFM associated with the effective mass compensation EMC are adopted, and are derived on the basis of the energy and impulse-momentum conservations. Simulation results are provided to demonstrate the performance of the motor-controller flexible slider-crank mechanism not only accomplishing good tracking trajectory of the crank angle, but also eliminating vibrations of the flexible connecting rod.

  18. Control system of executive mechanisms of a spectrometer on the IBR-2 reactor as a modern local network of controllers CAN

    International Nuclear Information System (INIS)

    Controllers SMC-32 and SMC-32-CAN as elements of control systems of executive mechanisms of the IBR-2 spectrometers are submitted. The controllers provide management of executive mechanisms of spectrometers on the consecutive communication line RS232, RS422 (SMC-32, SMC-32-CAN), and on the local network CAN (SMC-32-CAN). The control systems of the executive mechanisms are easily modernized due to connection of additional elements of the local network CAN. Dynamic characteristics of the spectrometers' executive mechanisms are essentially improved. For example, it has been possible to increase the rotation frequency of the step motor DSHI-200 up to 10000 pps. (author)

  19. Effectiveness of internal control mechanisms in monitoring financial resources at the Gauteng Department of Education / Kgabo Emmanuel Makgatho

    OpenAIRE

    Makgatho, Kgabo Emmanuel

    2013-01-01

    There is a need to strengthen the internal control systems and mechanisms in the public sector in order for public institutions to maintain clean financial reports. This study focused on the effectiveness of the implementation of internal control mechanisms in monitoring financial resources at Gauteng Department of Education. The effectiveness of internal controls is characterised by the implementation of all the five components, namely Control Environment, Control Activities, Risk Assessment...

  20. Modelling and Control of a Spherical Inverted Pendulum on a Five-bar Mechanism

    Directory of Open Access Journals (Sweden)

    Israel Soto

    2015-07-01

    Full Text Available This paper describes the kinematics and dynamics modelling of a mechanical system consisting of a spherical inverted pendulum whose base is mounted on a parallel planar mechanism, better known as a five-bar mechanism. The whole mechanism has four degrees of freedom, but it has only two actuators and so it is an under-actuated system. The nonlinear dynamics model of the complete system is first obtained using a non-minimal set of generalized coordinates, and then a reduced equivalent model is computed. To validate this approach, the reduced model is linearized and simulations are carried out, showing the stabilization of the system with a simple LQR controller. Experimental results on an academic prototype are also presented.

  1. Control by some operating mechanisms in experimental installations TEXT, DVR on the IBR-2, IBR-30 reactors

    International Nuclear Information System (INIS)

    Control units for pitch engines and operating mechanisms, applied in high-resolution diffractometers and MURN spectrometers installed in the IBR-2 and IBR-30 reactors are described. The program interfaces and adapters for the operating mechanisms control are considered. The control units are created on the basis of the PC in the CAMAC standard. 5 refs.; 2 figs

  2. Indirect adaptive output feedback control of a biorobotic AUV using pectoral-like mechanical fins

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Mugdha S; Singh, Sahjendra N [Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, NV 89154-4026 (United States); Mittal, Rajat [Department of Mechanical and Aerospace Engineering, George Washington University, Washington University, DC 22052 (United States)], E-mail: sahaj@egr.unlv.edu

    2009-06-01

    This paper treats the question of servoregulation of autonomous underwater vehicles (AUVs) in the yaw plane using pectoral-like mechanical fins. The fins attached to the vehicle have oscillatory swaying and yawing motion. The bias angle of the angular motion of the fin is used for the purpose of control. Of course, the design approach considered here is applicable to AUVs for other choices of oscillation patterns of the fins, which produce periodic forces and moments. It is assumed that the vehicle parameters, hydrodynamic coefficients, as well the fin forces and moments are unknown. For the trajectory control of the yaw angle, a sampled-data indirect adaptive control system using output (yaw angle) feedback is derived. The control system has a modular structure, which includes a parameter identifier and a stabilizer. For the control law derivation, an internal model of the exosignals (reference signal (constant or ramp) and constant disturbance) is included. Unlike the direct adaptive control scheme, the derived control law is applicable to minimum as well as nonminimum phase biorobotic AUVs (BAUVs). This is important, because for most of the fin locations on the vehicle, the model is a nonminimum phase. In the closed-loop system, the yaw angle trajectory tracking error converges to zero and the remaining state variables remain bounded. Simulation results are presented which show that the derived modular control system accomplishes precise set point yaw angle control and turning maneuvers in spite of the uncertainties in the system parameters using only yaw angle feedback.

  3. Indirect adaptive output feedback control of a biorobotic AUV using pectoral-like mechanical fins

    International Nuclear Information System (INIS)

    This paper treats the question of servoregulation of autonomous underwater vehicles (AUVs) in the yaw plane using pectoral-like mechanical fins. The fins attached to the vehicle have oscillatory swaying and yawing motion. The bias angle of the angular motion of the fin is used for the purpose of control. Of course, the design approach considered here is applicable to AUVs for other choices of oscillation patterns of the fins, which produce periodic forces and moments. It is assumed that the vehicle parameters, hydrodynamic coefficients, as well the fin forces and moments are unknown. For the trajectory control of the yaw angle, a sampled-data indirect adaptive control system using output (yaw angle) feedback is derived. The control system has a modular structure, which includes a parameter identifier and a stabilizer. For the control law derivation, an internal model of the exosignals (reference signal (constant or ramp) and constant disturbance) is included. Unlike the direct adaptive control scheme, the derived control law is applicable to minimum as well as nonminimum phase biorobotic AUVs (BAUVs). This is important, because for most of the fin locations on the vehicle, the model is a nonminimum phase. In the closed-loop system, the yaw angle trajectory tracking error converges to zero and the remaining state variables remain bounded. Simulation results are presented which show that the derived modular control system accomplishes precise set point yaw angle control and turning maneuvers in spite of the uncertainties in the system parameters using only yaw angle feedback

  4. The interplay of intrinsic and extrinsic bounded noises in biomolecular networks.

    Science.gov (United States)

    Caravagna, Giulio; Mauri, Giancarlo; d'Onofrio, Alberto

    2013-01-01

    After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a biomolecular network. The influence of intrinsic and extrinsic noises on biomolecular networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i) the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii) a model of enzymatic futile cycle and (iii) a genetic toggle switch. In (ii) and (iii) we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possible functional role of bounded noises. PMID:23437034

  5. Spatially encoded strategies in the execution of biomolecular-oriented 3D NMR experiments

    International Nuclear Information System (INIS)

    Three-dimensional nuclear magnetic resonance (3D NMR) provides one of the foremost analytical tools available for the elucidation of biomolecular structure, function and dynamics. Executing a 3D NMR experiment generally involves scanning a series of time-domain signals S(t3), as a function of two time variables (t1, t2) which need to undergo parametric incrementations throughout independent experiments. Recent years have witnessed extensive efforts towards the acceleration of this kind of experiments. Among the different approaches that have been proposed counts an 'ultrafast' scheme, which distinguishes itself from other propositions by enabling-at least in principle-the acquisition of the complete multidimensional NMR data set within a single transient. 2D protein NMR implementations of this single-scan method have been demonstrated, yet its potential for 3D acquisitions has only been exemplified on model organic compounds. This publication discusses a number of strategies that could make these spatial encoding protocols compatible with 3D biomolecular NMR applications. These include a merging of 2D ultrafast NMR principles with temporal 2D encoding schemes, which can yield 3D HNCO spectra from peptides and proteins within ∼100 s timescales. New processing issues that facilitate the collection of 3D NMR spectra by relying fully on spatial encoding principles are also assessed, and shown capable of delivering HNCO spectra within 1 s timescales. Limitations and prospects of these various schemes are briefly addressed

  6. DockScreen: A Database of In Silico Biomolecular Interactions to Support Computational Toxicology

    Directory of Open Access Journals (Sweden)

    Michael-Rock Goldsmith

    2014-01-01

    Full Text Available We have developed DockScreen, a database of in silico biomolecular interactions designed to enable rational molecular toxicological insight within a computational toxicology framework. This database is composed of chemical/target (receptor and enzyme binding scores calculated by molecular docking of more than 1000 chemicals into 150 protein targets and contains nearly 135 thousand unique ligand/target binding scores. Obtaining this dataset was achieved using eHiTS (Simbiosys Inc., a fragment-based molecular docking approach with an exhaustive search algorithm, on a heterogeneous distributed high-performance computing framework. The chemical landscape covered in DockScreen comprises selected environmental and therapeutic chemicals. The target landscape covered in DockScreen was selected based on the availability of high-quality crystal structures that covered the assay space of phase I ToxCast in vitro assays. This in silico data provides continuous information that establishes a means for quantitatively comparing, on a structural biophysical basis, a chemical’s profile of biomolecular interactions. The combined minimum-score chemical/target matrix is provided.

  7. Neutral-particle emission in collisions of electrons with biomolecular ions in an electrostatic storage ring

    International Nuclear Information System (INIS)

    Electron-biomolecular ion collisions were studied using an electrostatic storage ring with a merging electron beam device. Biomolecular ions produced by an electrospray ion source and accelerated to 20 keV/charge were injected into the ring after being mass-analyzed. The circulating ion beam was then merged with an electron beam. Neutral reaction products in collisions of electrons with ions were detected by a micro-channel plate outside of the ring. Electron-ion collisions were studied for multiply-deprotonated oligonucleotide and peptide anions as well as singly protonated oligonucleotide and peptide cations. For peptide cations, neutrals were resonantly emitted at an electron energy of around 6.5 eV, which was almost independent of the ion masses. This is deduced to come from electron-ion recombination, resulting in the cleavage of a peptide bond. For DNA oligonucleotide cations, resonant neutral particle emission was also observed. In electron and DNA anion collisions, neutrals started to increase from definite threshold energies, where the threshold energies increased in proportion to the ion charge. The same was found for peptide anions. The origin of this phenomenon is discussed

  8. X3DBio2: A visual analysis tool for biomolecular structure comparison

    Science.gov (United States)

    Yi, Hong; Thakur, Sidharth; Sethaphong, Latsavongsakda; Yingling, Yaroslava G.

    2013-01-01

    A major problem in structural biology is the recognition of differences and similarities between related three dimensional (3D) biomolecular structures. Investigating these structure relationships is important not only for understanding of functional properties of biologically significant molecules, but also for development of new and improved materials based on naturally-occurring molecules. We developed a new visual analysis tool, X3DBio2, for 3D biomolecular structure comparison and analysis. The tool is designed for elucidation of structural effects of mutations in proteins and nucleic acids and for assessment of time dependent trajectories from molecular dynamics simulations. X3DBio2 is a freely downloadable open source software and provides tightly integrated features to perform many standard analysis and visual exploration tasks. We expect this tool can be applied to solve a variety of biological problems and illustrate the use of the tool on the example study of the differences and similarities between two proteins of the glycosyltransferase family 2 that synthesize polysaccharides oligomers. The size and conformational distances and retained core structural similarity of proteins SpsA to K4CP represent significant epochs in the evolution of inverting glycosyltransferases.

  9. The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes.

    Science.gov (United States)

    van Zundert, G C P; Rodrigues, J P G L M; Trellet, M; Schmitz, C; Kastritis, P L; Karaca, E; Melquiond, A S J; van Dijk, M; de Vries, S J; Bonvin, A M J J

    2016-02-22

    The prediction of the quaternary structure of biomolecular macromolecules is of paramount importance for fundamental understanding of cellular processes and drug design. In the era of integrative structural biology, one way of increasing the accuracy of modeling methods used to predict the structure of biomolecular complexes is to include as much experimental or predictive information as possible in the process. This has been at the core of our information-driven docking approach HADDOCK. We present here the updated version 2.2 of the HADDOCK portal, which offers new features such as support for mixed molecule types, additional experimental restraints and improved protocols, all of this in a user-friendly interface. With well over 6000 registered users and 108,000 jobs served, an increasing fraction of which on grid resources, we hope that this timely upgrade will help the community to solve important biological questions and further advance the field. The HADDOCK2.2 Web server is freely accessible to non-profit users at http://haddock.science.uu.nl/services/HADDOCK2.2. PMID:26410586

  10. Optimizing water hyperpolarization and dissolution for sensitivity-enhanced 2D biomolecular NMR

    Science.gov (United States)

    Olsen, Greg; Markhasin, Evgeny; Szekely, Or; Bretschneider, Christian; Frydman, Lucio

    2016-03-01

    A recent study explored the use of hyperpolarized water, to enhance the sensitivity of nuclei in biomolecules thanks to rapid proton exchanges with labile amide backbone and sidechain groups. Further optimizations of this approach have now allowed us to achieve proton polarizations approaching 25% in the water transferred into the NMR spectrometer, effective water T1 times approaching 40 s, and a reduction in the dilution demanded for the cryogenic dissolution process. Further hardware developments have allowed us to perform these experiments, repeatedly and reliably, in 5 mm NMR tubes. All these ingredients - particularly the ⩾3000× 1H polarization enhancements over 11.7 T thermal counterparts, long T1 times and a compatibility with high-resolution biomolecular NMR setups - augur well for hyperpolarized 2D NMR studies of peptides, unfolded proteins and intrinsically disordered systems undergoing fast exchanges of their protons with the solvent. This hypothesis is here explored by detailing the provisions that lead to these significant improvements over previous reports, and demonstrating 1D coherence transfer experiments and 2D biomolecular HMQC acquisitions delivering NMR spectral enhancements of 100-500× over their optimized, thermally-polarized, counterparts.

  11. The interplay of intrinsic and extrinsic bounded noises in biomolecular networks.

    Directory of Open Access Journals (Sweden)

    Giulio Caravagna

    Full Text Available After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a biomolecular network. The influence of intrinsic and extrinsic noises on biomolecular networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii a model of enzymatic futile cycle and (iii a genetic toggle switch. In (ii and (iii we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possible functional role of bounded noises.

  12. The comparison of manual and LabVIEW-based fuzzy control on mechanical ventilation.

    Science.gov (United States)

    Guler, Hasan; Ata, Fikret

    2014-09-01

    The aim of this article is to develop a knowledge-based therapy for management of rats with respiratory distress. A mechanical ventilator was designed to achieve this aim. The designed ventilator is called an intelligent mechanical ventilator since fuzzy logic was used to control the pneumatic equipment according to the rat's status. LabVIEW software was used to control all equipments in the ventilator prototype and to monitor respiratory variables in the experiment. The designed ventilator can be controlled both manually and by fuzzy logic. Eight female Wistar-Albino rats were used to test the designed ventilator and to show the effectiveness of fuzzy control over manual control on pressure control ventilation mode. The anesthetized rats were first ventilated for 20 min manually. After that time, they were ventilated for 20 min by fuzzy logic. Student's t-test for p < 0.05 was applied to the measured minimum, maximum and mean peak inspiration pressures to analyze the obtained results. The results show that there is no statistical difference in the rat's lung parameters before and after the experiments. It can be said that the designed ventilator and developed knowledge-based therapy support artificial respiration of living things successfully. PMID:25205667

  13. Potential mechanisms mediating improved glycemic control after bariatric/metabolic surgery.

    Science.gov (United States)

    Yamamoto, Hiroshi; Kaida, Sachiko; Yamaguchi, Tsuyoshi; Murata, Satoshi; Tani, Masaji; Tani, Tohru

    2016-03-01

    Conservative medical treatment for morbid obesity generally fails to sustain weight loss. On the other hand, surgical operations, so-called bariatric surgery, have evolved due to their long-term effects. The global increase in the overweight population and the introduction of laparoscopic surgery have resulted in the use of bariatric surgery spreading quickly worldwide in recent years. Recent clinical evidence suggests that bariatric surgery not only reduces body weight, but also improves secondary serious diseases, including type 2 diabetes mellitus, in so-called metabolic surgery. Moreover, several potential mechanisms mediating the improvement in glycemic control after bariatric/metabolic surgery have been proposed based on the animal and human studies. These mechanisms include changes in the levels of gastrointestinal hormones, bacterial flora, bile acids, intestinal gluconeogenesis and gastrointestinal motility as well as adipose tissue and inflammatory mediators after surgery. The mechanisms underlying improved glycemic control are expected to accelerate the promotion of both metabolic and bariatric surgery. This article describes the current status of bariatric surgery worldwide and in Japan, reviews the accumulated data for weight loss and diabetic improvements after surgery and discusses the potential mechanisms mediating improved glycemic control. PMID:25700844

  14. Dynamic analysis and control of lightweight manipulators with flexible parallel link mechanisms

    Science.gov (United States)

    Lee, Jeh Won

    1991-01-01

    The flexible parallel link mechanism is designed for increased rigidity to sustain the buckling when it carries a heavy payload. Compared to a one link flexible manipulator, a two link flexible manipulator, especially the flexible parallel mechanism, has more complicated characteristics in dynamics and control. The objective of this research is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model. The step response of the analytical model and the TREETOPS model match each other well. The nonlinear dynamics is studied using a sinusoidal excitation. The actuator dynamic effect on a flexible robot was investigated. The effects are explained by the root loci and the Bode plot theoretically and experimentally. For the base performance for the advanced control scheme, a simple decoupled feedback scheme is applied.

  15. Mathematical models and stabilizing bio-control mechanisms for microbial populations in a cultured environment

    International Nuclear Information System (INIS)

    In this paper we have analyzed a limited nutrient-consumer dynamic model involving distributed time delays both in material recycling and growth response of consumer. It is established that the system exhibits instability characteristics due to the presence of time delays. Three different types of naturally feasible bio-control mechanisms are proposed. It is established that these mechanisms have a stabilizing effect on the system in their own respect. Several independent sets of sufficient conditions for the global asymptotic stability are obtained in each case. Examples and simulations are provided for a clear understanding of the results

  16. A simple and efficient sun tracking mechanism using programmable logic controller

    International Nuclear Information System (INIS)

    To increase the unit area illumination of solar ray on PV panel, it is required to track the sun throughout the day. So to reach the goal various type of sun tracking mechanism is already developed but in this paper we designed two different types of sun tracking mechanism: single axis and dual axis tracking using programmable logic controller (PLC) as it has numbers of unique advantages like-it is faster, reliable, requires less maintenance and reprogrammable. A comparative study between those two systems is also presented in this paper. The whole system has been designed and tested using GE, FANUC PLC. (authors)

  17. Understanding the mechanism of nanotube synthesis for controlled production of specific (n,m) structures

    Energy Technology Data Exchange (ETDEWEB)

    Resasco, Daniel E.

    2010-02-11

    This report shows the extensive research on the mechanism responsible for the formation of single walled carbon nanotubes in order to get control over their structural parameters (diameter and chirality). Catalyst formulations, pre-treatment conditions, and reaction conditions are described in detail as well as mechanisms to produce nanotubes structures of specific arrays (vertical forest, nanotube pillars). Applications of SWNT in different fields are also described in this report. In relation to this project five students have graduated (3 PhD and 2 MS) and 35 papers have been published.

  18. Control of large spaceborne antenna systems with flexible booms by mechanical decoupling

    Science.gov (United States)

    Wang, P. K. C.

    1983-01-01

    A simple practical method for designing antenna-feed attitude control systems for large deployable spaceborne antenna systems with long flexible booms is proposed. The basic idea is to mechanically decouple the antenna-feed from the boom so that the feed-attitude control system can be designed without taking the boom dynamics into consideration, thus avoiding a complex control problem involving an infinite-dimensional distributed parameter system. The validity of the proposed method is substantiated by analytical and numerical studies using a mathematical model for the flexible boom which could undergo both bending and torsional vibrations. This approach leads to simple antenna-feed attitude control systems which are amenable to physical implementation.

  19. SAFCM: A Security-Aware Feedback Control Mechanism for Distributed Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Ma, Yue; Jiang, Wei; Sang, Nan;

    2012-01-01

    Distributed Real-time Embedded (DRE) systems are facing great challenges in networked, unpredictable and especially unsecured environments. In such systems, there is a strong need to enforce security on distributed computing nodes in order to guard against potential threats, while satisfying the...... real-time requirements. This paper proposes a Security-Aware Feedback Control Mechanism (SAFCM) which has the ability to dynamically change the security level to guarantee soft real-time requirements and make the security protection as strong as possible. In order to widely support distributed real......-time systems, a multi-input multi-output feedback loop is designed and a model predictive controller is deployed based on an equation model that describes the dynamic behavior of the DRE systems. This control loop uses security level scaling to globally control the CPU utilization and security performance for...

  20. Enhancing Security and Privacy in Video Surveillance through Role-Oriented Access Control Mechanism

    DEFF Research Database (Denmark)

    Mahmood Rajpoot, Qasim

    Use of video surveillance has significantly increased in the last few decades. Modern video surveillance systems are equipped with techniques that automatically extract information about the objects and events from the video streams and allow traversal of data in an effective and efficient manner...... that is suitable for video surveillance systems as well as other domains sharing similar requirements. As the currently dominant access control models – the role-based access control (RBAC) and the attribute-based access control (ABAC) – suffer from limitations while offering features complementary to each other......, their integration has become an important area of research. Our access control model combines the two models in a novel way in order to unify their benefits while avoiding their limitations. Our approach provides a mechanism that not only takes information about the current circumstances into account during access...