WorldWideScience

Sample records for biomolecular electrostatic potential

  1. An analytical approach to computing biomolecular electrostatic potential. II. Validation and applications

    Science.gov (United States)

    Gordon, John C.; Fenley, Andrew T.; Onufriev, Alexey

    2008-08-01

    An ability to efficiently compute the electrostatic potential produced by molecular charge distributions under realistic solvation conditions is essential for a variety of applications. Here, the simple closed-form analytical approximation to the Poisson equation rigorously derived in Part I for idealized spherical geometry is tested on realistic shapes. The effects of mobile ions are included at the Debye-Hückel level. The accuracy of the resulting closed-form expressions for electrostatic potential is assessed through comparisons with numerical Poisson-Boltzmann (NPB) reference solutions on a test set of 580 representative biomolecular structures under typical conditions of aqueous solvation. For each structure, the deviation from the reference is computed for a large number of test points placed near the dielectric boundary (molecular surface). The accuracy of the approximation, averaged over all test points in each structure, is within 0.6 kcal/mol/|e|~kT per unit charge for all structures in the test set. For 91.5% of the individual test points, the deviation from the NPB potential is within 0.6 kcal/mol/|e|. The deviations from the reference decrease with increasing distance from the dielectric boundary: The approximation is asymptotically exact far away from the source charges. Deviation of the overall shape of a structure from ideal spherical does not, by itself, appear to necessitate decreased accuracy of the approximation. The largest deviations from the NPB reference are found inside very deep and narrow indentations that occur on the dielectric boundaries of some structures. The dimensions of these pockets of locally highly negative curvature are comparable to the size of a water molecule; the applicability of a continuum dielectric models in these regions is discussed. The maximum deviations from the NPB are reduced substantially when the boundary is smoothed by using a larger probe radius (3 A˚) to generate the molecular surface. A detailed accuracy

  2. Computational Methods for Biomolecular Electrostatics

    Science.gov (United States)

    Dong, Feng; Olsen, Brett; Baker, Nathan A.

    2008-01-01

    An understanding of intermolecular interactions is essential for insight into how cells develop, operate, communicate and control their activities. Such interactions include several components: contributions from linear, angular, and torsional forces in covalent bonds, van der Waals forces, as well as electrostatics. Among the various components of molecular interactions, electrostatics are of special importance because of their long range and their influence on polar or charged molecules, including water, aqueous ions, and amino or nucleic acids, which are some of the primary components of living systems. Electrostatics, therefore, play important roles in determining the structure, motion and function of a wide range of biological molecules. This chapter presents a brief overview of electrostatic interactions in cellular systems with a particular focus on how computational tools can be used to investigate these types of interactions. PMID:17964951

  3. Biomolecular electrostatics and solvation: a computational perspective.

    Science.gov (United States)

    Ren, Pengyu; Chun, Jaehun; Thomas, Dennis G; Schnieders, Michael J; Marucho, Marcelo; Zhang, Jiajing; Baker, Nathan A

    2012-11-01

    An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view toward describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g. solvent structure, polarization, ion binding, and non-polar behavior) in order to provide a background to understand the different types of solvation models.

  4. MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations

    Science.gov (United States)

    Vergara-Perez, Sandra; Marucho, Marcelo

    2016-01-01

    One of the most used and efficient approaches to compute electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation. There are several software packages available that solve the PB equation for molecules in aqueous electrolyte solutions. Most of these software packages are useful for scientists with specialized training and expertise in computational biophysics. However, the user is usually required to manually take several important choices, depending on the complexity of the biological system, to successfully obtain the numerical solution of the PB equation. This may become an obstacle for researchers, experimentalists, even students with no special training in computational methodologies. Aiming to overcome this limitation, in this article we present MPBEC, a free, cross-platform, open-source software that provides non-experts in the field an easy and efficient way to perform biomolecular electrostatic calculations on single processor computers. MPBEC is a Matlab script based on the Adaptative Poisson-Boltzmann Solver, one of the most popular approaches used to solve the PB equation. MPBEC does not require any user programming, text editing or extensive statistical skills, and comes with detailed user-guide documentation. As a unique feature, MPBEC includes a useful graphical user interface (GUI) application which helps and guides users to configure and setup the optimal parameters and approximations to successfully perform the required biomolecular electrostatic calculations. The GUI also incorporates visualization tools to facilitate users pre- and post-analysis of structural and electrical properties of biomolecules.

  5. MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations.

    Science.gov (United States)

    Vergara-Perez, Sandra; Marucho, Marcelo

    2016-01-01

    One of the most used and efficient approaches to compute electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation. There are several software packages available that solve the PB equation for molecules in aqueous electrolyte solutions. Most of these software packages are useful for scientists with specialized training and expertise in computational biophysics. However, the user is usually required to manually take several important choices, depending on the complexity of the biological system, to successfully obtain the numerical solution of the PB equation. This may become an obstacle for researchers, experimentalists, even students with no special training in computational methodologies. Aiming to overcome this limitation, in this article we present MPBEC, a free, cross-platform, open-source software that provides non-experts in the field an easy and efficient way to perform biomolecular electrostatic calculations on single processor computers. MPBEC is a Matlab script based on the Adaptative Poisson Boltzmann Solver, one of the most popular approaches used to solve the PB equation. MPBEC does not require any user programming, text editing or extensive statistical skills, and comes with detailed user-guide documentation. As a unique feature, MPBEC includes a useful graphical user interface (GUI) application which helps and guides users to configure and setup the optimal parameters and approximations to successfully perform the required biomolecular electrostatic calculations. The GUI also incorporates visualization tools to facilitate users pre- and post- analysis of structural and electrical properties of biomolecules.

  6. Quantitative assessment of electrostatic embedding in Density Functional Theory calculations of biomolecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Fattebert, J; Law, R J; Bennion, B; Lau, E Y; Schwegler, E; Lightstone, F C

    2009-04-24

    We evaluate the accuracy of density functional theory quantum calculations of biomolecular subsystems using a simple electrostatic embedding scheme. Our scheme is based on dividing the system of interest into a primary and secondary subsystem. A finite difference discretization of the Kohn-Sham equations is used for the primary subsystem, while its electrostatic environment is modeled with a simple one-electron potential. Force-field atomic partial charges are used to generate smeared Gaussian charge densities and to model the secondary subsystem. We illustrate the utility of this approach with calculations of truncated dipeptide chains. We analyze quantitatively the accuracy of this approach by calculating atomic forces and comparing results with fullQMcalculations. The impact of the choice made in terminating dangling bonds at the frontier of the QM region is also investigated.

  7. A new approach to implement absorbing boundary condition in biomolecular electrostatics.

    Science.gov (United States)

    Goni, Md Osman

    2013-01-01

    This paper discusses a novel approach to employ the absorbing boundary condition in conjunction with the finite-element method (FEM) in biomolecular electrostatics. The introduction of Bayliss-Turkel absorbing boundary operators in electromagnetic scattering problem has been incorporated by few researchers. However, in the area of biomolecular electrostatics, this boundary condition has not been investigated yet. The objective of this paper is twofold. First, to solve nonlinear Poisson-Boltzmann equation using Newton's method and second, to find an efficient and acceptable solution with minimum number of unknowns. In this work, a Galerkin finite-element formulation is used along with a Bayliss-Turkel absorbing boundary operator that explicitly accounts for the open field problem by mapping the Sommerfeld radiation condition from the far field to near field. While the Bayliss-Turkel condition works well when the artificial boundary is far from the scatterer, an acceptable tolerance of error can be achieved with the second order operator. Numerical results on test case with simple sphere show that the treatment is able to reach the same level of accuracy achieved by the analytical method while using a lower grid density. Bayliss-Turkel absorbing boundary condition (BTABC) combined with the FEM converges to the exact solution of scattering problems to within discretization error.

  8. Electrostatic potential in superconductor

    Czech Academy of Sciences Publication Activity Database

    Lipavský, Pavel; Koláček, Jan; Morawetz, K.; Brandt, E. H.

    2002-01-01

    Roč. 65, - (2002), s. 14511-1-14511-18 ISSN 0163-1829 R&D Projects: GA MŠk ME 601; GA ČR GA202/00/0643; GA AV ČR IAA1010806; GA AV ČR IAA1010919 Grant - others:ESF(XX) VORTEX Institutional research plan: CEZ:AV0Z1010914 Keywords : Ginzburg-Landau theory * Bernoulli potential * Abrikosov vortex lattice Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.327, year: 2002

  9. SMPBS: Web server for computing biomolecular electrostatics using finite element solvers of size modified Poisson-Boltzmann equation.

    Science.gov (United States)

    Xie, Yang; Ying, Jinyong; Xie, Dexuan

    2017-03-30

    SMPBS (Size Modified Poisson-Boltzmann Solvers) is a web server for computing biomolecular electrostatics using finite element solvers of the size modified Poisson-Boltzmann equation (SMPBE). SMPBE not only reflects ionic size effects but also includes the classic Poisson-Boltzmann equation (PBE) as a special case. Thus, its web server is expected to have a broader range of applications than a PBE web server. SMPBS is designed with a dynamic, mobile-friendly user interface, and features easily accessible help text, asynchronous data submission, and an interactive, hardware-accelerated molecular visualization viewer based on the 3Dmol.js library. In particular, the viewer allows computed electrostatics to be directly mapped onto an irregular triangular mesh of a molecular surface. Due to this functionality and the fast SMPBE finite element solvers, the web server is very efficient in the calculation and visualization of electrostatics. In addition, SMPBE is reconstructed using a new objective electrostatic free energy, clearly showing that the electrostatics and ionic concentrations predicted by SMPBE are optimal in the sense of minimizing the objective electrostatic free energy. SMPBS is available at the URL: smpbs.math.uwm.edu © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Multilevel Summation of Electrostatic Potentials Using Graphics Processing Units.

    Science.gov (United States)

    Hardy, David J; Stone, John E; Schulten, Klaus

    2009-03-01

    Physical and engineering practicalities involved in microprocessor design have resulted in flat performance growth for traditional single-core microprocessors. The urgent need for continuing increases in the performance of scientific applications requires the use of many-core processors and accelerators such as graphics processing units (GPUs). This paper discusses GPU acceleration of the multilevel summation method for computing electrostatic potentials and forces for a system of charged atoms, which is a problem of paramount importance in biomolecular modeling applications. We present and test a new GPU algorithm for the long-range part of the potentials that computes a cutoff pair potential between lattice points, essentially convolving a fixed 3-D lattice of "weights" over all sub-cubes of a much larger lattice. The implementation exploits the different memory subsystems provided on the GPU to stream optimally sized data sets through the multiprocessors. We demonstrate for the full multilevel summation calculation speedups of up to 26 using a single GPU and 46 using multiple GPUs, enabling the computation of a high-resolution map of the electrostatic potential for a system of 1.5 million atoms in under 12 seconds.

  11. Including diverging electrostatic potential in 3D-RISM theory: The charged wall case

    Science.gov (United States)

    Vyalov, Ivan; Rocchia, Walter

    2018-03-01

    Although three-dimensional site-site molecular integral equations of liquids are a powerful tool of the modern theoretical chemistry, their applications to the problem of characterizing the electrical double layer originating at the solid-liquid interface with a macroscopic substrate are severely limited by the fact that an infinitely extended charged plane generates a divergent electrostatic potential. Such potentials cannot be treated within the standard 3D-Reference Interaction Site Model equation solution framework since it leads to functions that are not Fourier transformable. In this paper, we apply a renormalization procedure to overcome this obstacle. We then check the validity and numerical accuracy of the proposed computational scheme on the prototypical gold (111) surface in contact with water/alkali chloride solution. We observe that despite the proposed method requires, to achieve converged charge densities, a higher spatial resolution than that suited to the estimation of biomolecular solvation with either 3D-RISM or continuum electrostatics approaches, it still is computationally efficient. Introducing the electrostatic potential of an infinite wall, which is periodic in 2 dimensions, we avoid edge effects, permit a robust integration of Poisson's equation, and obtain the 3D electrostatic potential profile for the first time in such calculations. We show that the potential within the electrical double layer presents oscillations which are not grasped by the Debye-Hückel and Gouy-Chapman theories. This electrostatic potential deviates from its average of up to 1-2 V at small distances from the substrate along the lateral directions. Applications of this theoretical development are relevant, for example, for liquid scanning tunneling microscopy imaging.

  12. The Contribution of Surface Potential to Diverse Problems in Electrostatics

    Science.gov (United States)

    Horenstein, M.

    2015-10-01

    Electrostatics spans many different subject areas. Some comprise “good electrostatics,” where charge is used for desirable purposes. Such areas include industrial manufacturing, electrophotography, surface modification, precipitators, aerosol control, and MEMS. Other areas comprise “bad electrostatics,” where charge is undesirable. Such areas include hazardous discharges, ESD, health effects, nuisance triboelectrification, particle contamination, and lightning. Conference proceedings such as this one inevitably include papers grouped around these topics. One common thread throughout is the surface potential developed when charge resides on an insulator surface. Often, the charged insulator will be in intimate contact with a ground plane. At other times, the charged insulator will be isolated. In either case, the resulting surface potential is important to such processes as propagating brush discharges, charge along a moving web, electrostatic biasing effects in MEMS, non-contacting voltmeters, field-effect transistor sensors, and the maximum possible charge on a woven fabric.

  13. Electric fields and electrostatic potentials in the high latitude ionosphere

    Science.gov (United States)

    Banks, P. M.; Saint Maurice, J.-P.; Heelis, R. A.; Hanson, W. B.

    1981-01-01

    Recent interpretive studies of electric field-driven ionospheric plasma convection data from the AE-C satellite are described, where the instruments employed include an ion drift meter and an ion-retarding potential analyzer. Electrostatic potential curves are derived from ion drift velocity measurements for high-latitude segments of the satellite's orbit. The potential curves are shown to be useful in determining the character of the global electrostatic potential pattern, with emphasis on the separation of convective cells. Results are given for six orbits, with attention to the mid-day auroral region.

  14. Realistic electrostatic potentials in a neutron star crust

    International Nuclear Information System (INIS)

    Ebel, Claudio; Mishustin, Igor; Greiner, Walter

    2015-01-01

    We study the electrostatic properties of inhomogeneous nuclear matter which can be formed in the crusts of neutron stars or in supernova explosions. Such matter is represented by Wigner–Seitz cells of different geometries (spherical, cylindrical, cartesian), which contain nuclei, free neutrons and electrons under the conditions of electrical neutrality. Using the Thomas–Fermi approximation, we have solved the Poisson equation for the electrostatic potential and calculated the corresponding electron density distributions in individual cells. The calculations are done for different shapes and sizes of the cells and different average baryon densities. The electron-to-baryon fraction was fixed at 0.3. Using realistic electron distributions leads to a significant reduction in electrostatic energy and electron chemical potential. (paper)

  15. Electrostatic potential profile and nonlinear current in an interacting ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. We consider an interacting one-dimensional molecular wire attached to two metal electrodes on either side of it. The electrostatic potential profile across the wire-electrode interface has been deduced solving the Schrodinger and Poisson equations self-consistently. Since the Poisson distribution crucially depends ...

  16. Atom-partitioned multipole expansions for electrostatic potential boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M., E-mail: michael.s.lee131.civ@mail.mil [Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Leiter, K. [Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Eisner, C. [Secure Mission Solutions, a Parsons Company (United States); Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Knap, J. [Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)

    2017-01-01

    Applications such as grid-based real-space density functional theory (DFT) use the Poisson equation to compute electrostatics. However, the expected long tail of the electrostatic potential requires either the use of a large and costly outer domain or Dirichlet boundary conditions estimated via multipole expansion. We find that the oft-used single-center spherical multipole expansion is only appropriate for isotropic mesh domains such as spheres and cubes. In this work, we introduce a method suitable for high aspect ratio meshes whereby the charge density is partitioned into atomic domains and multipoles are computed for each domain. While this approach is moderately more expensive than a single-center expansion, it is numerically stable and still a small fraction of the overall cost of a DFT calculation. The net result is that when high aspect ratio systems are being studied, form-fitted meshes can now be used in lieu of cubic meshes to gain computational speedup.

  17. Multi-dimensional characterization of electrostatic surface potential computation on graphics processors.

    Science.gov (United States)

    Daga, Mayank; Feng, Wu-Chun

    2012-04-12

    Calculating the electrostatic surface potential (ESP) of a biomolecule is critical towards understanding biomolecular function. Because of its quadratic computational complexity (as a function of the number of atoms in a molecule), there have been continual efforts to reduce its complexity either by improving the algorithm or the underlying hardware on which the calculations are performed. We present the combined effect of (i) a multi-scale approximation algorithm, known as hierarchical charge partitioning (HCP), when applied to the calculation of ESP and (ii) its mapping onto a graphics processing unit (GPU). To date, most molecular modeling algorithms perform an artificial partitioning of biomolecules into a grid/lattice on the GPU. In contrast, HCP takes advantage of the natural partitioning in biomolecules, which in turn, better facilitates its mapping onto the GPU. Specifically, we characterize the effect of known GPU optimization techniques like use of shared memory. In addition, we demonstrate how the cost of divergent branching on a GPU can be amortized across algorithms like HCP in order to deliver a massive performance boon. We accelerated the calculation of ESP by 25-fold solely by parallelization on the GPU. Combining GPU and HCP, resulted in a speedup of at most 1,860-fold for our largest molecular structure. The baseline for these speedups is an implementation that has been hand-tuned SSE-optimized and parallelized across 16 cores on the CPU. The use of GPU does not deteriorate the accuracy of our results.

  18. Massive calculations of electrostatic potentials and structure maps of biopolymers in a distributed computing environment

    International Nuclear Information System (INIS)

    Akishina, T.P.; Ivanov, V.V.; Stepanenko, V.A.

    2013-01-01

    Among the key factors determining the processes of transcription and translation are the distributions of the electrostatic potentials of DNA, RNA and proteins. Calculations of electrostatic distributions and structure maps of biopolymers on computers are time consuming and require large computational resources. We developed the procedures for organization of massive calculations of electrostatic potentials and structure maps for biopolymers in a distributed computing environment (several thousands of cores).

  19. Towards quantitative electrostatic potential mapping of working semiconductor devices using off-axis electron holography

    DEFF Research Database (Denmark)

    Yazdi, Sadegh; Kasama, Takeshi; Beleggia, Marco

    2015-01-01

    holography to characterize an electrically-biased Si p-. n junction by measuring its electrostatic potential, electric field and charge density distributions under working conditions. A comparison between experimental electron holographic phase images and images obtained using three-dimensional electrostatic...

  20. Noncontact measurement of electrostatic fields: Verification of modeled potentials within ion mobility spectrometer drift tube designs

    International Nuclear Information System (INIS)

    Scott, Jill R.; Tremblay, Paul L.

    2007-01-01

    The heart of an ion mobility spectrometer is the drift region where ion separation occurs. While the electrostatic potentials within a drift tube design can be modeled, no method for independently validating the electrostatic field has previously been reported. Two basic drift tube designs were modeled using SIMION 7.0 to reveal the expected electrostatic fields: (1) A traditional alternating set of electrodes and insulators and (2) a truly linear drift tube. One version of the alternating electrode/insulator drift tube and two versions of linear drift tubes were then fabricated. The stacked alternating electrodes/insulators were connected through a resistor network to generate the electrostatic gradient in the drift tube. The two linear drift tube designs consisted of two types of resistive drift tubes with one tube consisting of a resistive coating within an insulating tube and the other tube composed of resistive ferrites. The electrostatic fields within each type of drift tube were then evaluated by a noncontact method using a Kelvin-Zisman type electrostatic voltmeter and probe (results for alternative measurement methods provided in supplementary material). The experimental results were then compared with the electrostatic fields predicted by SIMION. Both the modeling and experimental measurements reveal that the electrostatic fields within a stacked ion mobility spectrometer drift tube are only pseudo-linear, while the electrostatic fields within a resistive drift tube approach perfect linearity

  1. Prediction of Biomolecular Complexes

    KAUST Repository

    Vangone, Anna

    2017-04-12

    Almost all processes in living organisms occur through specific interactions between biomolecules. Any dysfunction of those interactions can lead to pathological events. Understanding such interactions is therefore a crucial step in the investigation of biological systems and a starting point for drug design. In recent years, experimental studies have been devoted to unravel the principles of biomolecular interactions; however, due to experimental difficulties in solving the three-dimensional (3D) structure of biomolecular complexes, the number of available, high-resolution experimental 3D structures does not fulfill the current needs. Therefore, complementary computational approaches to model such interactions are necessary to assist experimentalists since a full understanding of how biomolecules interact (and consequently how they perform their function) only comes from 3D structures which provide crucial atomic details about binding and recognition processes. In this chapter we review approaches to predict biomolecular complexesBiomolecular complexes, introducing the concept of molecular dockingDocking, a technique which uses a combination of geometric, steric and energetics considerations to predict the 3D structure of a biological complex starting from the individual structures of its constituent parts. We provide a mini-guide about docking concepts, its potential and challenges, along with post-docking analysis and a list of related software.

  2. Measurements of electrostatic double layer potentials with atomic force microscopy

    Science.gov (United States)

    Giamberardino, Jason

    The aim of this thesis is to provide a thorough description of the development of theory and experiment pertaining to the electrostatic double layer (EDL) in aqueous electrolytic systems. The EDL is an important physical element of many systems and its behavior has been of interest to scientists for many decades. Because many areas of science and engineering move to test, build, and understand systems at smaller and smaller scales, this work focuses on nanoscopic experimental investigations of the EDL. In that vein, atomic force microscopy (AFM) will be introduced and discussed as a tool for making high spatial resolution measurements of the solid-liquid interface, culminating in a description of the development of a method for completely characterizing the EDL. This thesis first explores, in a semi-historical fashion, the development of the various models and theories that are used to describe the electrostatic double layer. Later, various experimental techniques and ideas are addressed as ways to make measurements of interesting characteristics of the EDL. Finally, a newly developed approach to measuring the EDL system with AFM is introduced. This approach relies on both implementation of existing theoretical models with slight modifications as well as a unique experimental measurement scheme. The model proposed clears up previous ambiguities in definitions of various parameters pertaining to measurements of the EDL and also can be used to fully characterize the system in a way not yet demonstrated.

  3. Calculation of the electrostatic potential of lipid bilayers from molecular dynamics simulations: methodological issues

    DEFF Research Database (Denmark)

    Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    of the electrostatic potential from atomic-scale molecular dynamics simulations of lipid bilayers. We discuss two slightly different forms of Poisson equation that are normally used to calculate the membrane potential: (i) a classical form when the potential and the electric field are chosen to be zero on one......, for asymmetric lipid bilayers, the second approach is no longer appropriate due to a nonzero net dipole moment across a simulation box with a single asymmetric bilayer. We demonstrate that in this case the electrostatic potential can adequately be described by the classical form of Poisson equation, provided...

  4. Molecular electrostatic potential at the atomic sites in the effective core potential approximation.

    Science.gov (United States)

    Lesiuk, Michał; Zachara, Janusz

    2013-02-21

    Considering calculations of the molecular electrostatic potential at the atomic sites (MEP@AS) in the presence of effective core potentials (ECP), we found that the consequent use of the definition of MEP@AS based on the energy derivative with respect to nuclear charge leads to a formula that differs by one term from the result of simple application of Coulomb's law. We have developed a general method to analytically treat derivatives of ECP with respect to nuclear charge. Benchmarking calculations performed on a set of simple molecules show that our formula leads to a systematic decrease in the error connected with the introduction of ECP when compared to all-electron results. Because of a straightforward implementation and relatively low costs of the developed procedure we suggest to use it by default.

  5. The electrostatic ion-cyclotron instability-a two-dimensional potential relaxation instability

    DEFF Research Database (Denmark)

    Popa, G.; Schrittwieser, R.; Juul Rasmussen, Jens

    1985-01-01

    An experimental investigation shows that the electrostatic ion-cyclotron instability, driven by an electron current to a positively biased collector, is accompanied by strong coherent two-dimensional fluctuations of the plasma potential in front of the collector. These results suggest that this i...... that this instability evolves like a two-dimensional potential relaxation instability....

  6. Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection

    International Nuclear Information System (INIS)

    Tsai, Chia-Chang; Chiang, Pei-Ling; Lin, Tsung-Wu; Chen, Yit-Tsong; Sun, Chih-Jung; Tsai, Ming-Hsueh; Chang, Yun-Chorng

    2011-01-01

    Using a silicon nanowire field-effect transistor (SiNW-FET) for biomolecule detections, we selected 3-(mercaptopropyl)trimethoxysilane (MPTMS), N-[6-(biotinamido)hexyl]-3 ' -(2 ' -pyridyldithio) propionamide (biotin-HPDP), and avidin, respectively, as the designated linker, receptor, and target molecules as a study model, where the biotin molecules were modified on the SiNW-FET to act as a receptor for avidin. We applied high-resolution scanning Kelvin probe force microscopy (KPFM) to detect the modified/bound biomolecules by measuring the induced change of the surface potential (ΔΦ s ) on the SiNW-FET under ambient conditions. After biotin-immobilization and avidin-binding, the ΔΦ s on the SiNW-FET characterized by KPFM was demonstrated to correlate to the conductance change inside the SiNW-FET acquired in aqueous solution. The ΔΦ s values on the SiNW-FET caused by the same biotin-immobilization and avidin-binding were also measured from drain current versus gate voltage curves (I d -V g ) in both aqueous condition and dried state. For comparison, we also study the ΔΦ s values on a Si wafer caused by the same biotin-immobilization and avidin-binding through KPFM and ζ potential measurements. This study has demonstrated that the surface potential measurement on a SiNW-FET by KPFM can be applied as a diagnostic tool that complements the electrical detection with a SiNW-FET sensor. Although the KPFM experiments were carried out under ambient conditions, the measured surface properties of a SiNW-FET are qualitatively valid compared with those obtained by other biosensory techniques performed in liquid environment.

  7. Split-illumination electron holography for improved evaluation of electrostatic potential associated with electrophotography

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Soon Park, Hyun; Sato, Kuniaki; Akase, Zentaro; Matsuda, Tsuyoshi; Murakami, Yasukazu; Shindo, Daisuke; Kawase, Hiromitsu

    2014-01-01

    Precise evaluation of the electrostatic potential distributions of and around samples with multiple charges using electron holography has long been a problem due to unknown perturbation of the reference wave. Here, we report the first practical application of split-illumination electron holography (SIEH) to tackle this problem. This method enables the use of a non-perturbed reference wave distant from the sample. SIEH revealed the electrostatic potential distributions at interfaces of the charged particles used for development in electrophotography and should lead to dramatic improvements in electrophotography

  8. Reproducing kernel potential energy surfaces in biomolecular simulations: Nitric oxide binding to myoglobin

    International Nuclear Information System (INIS)

    Soloviov, Maksym; Meuwly, Markus

    2015-01-01

    Multidimensional potential energy surfaces based on reproducing kernel-interpolation are employed to explore the energetics and dynamics of free and bound nitric oxide in myoglobin (Mb). Combining a force field description for the majority of degrees of freedom and the higher-accuracy representation for the NO ligand and the Fe out-of-plane motion allows for a simulation approach akin to a mixed quantum mechanics/molecular mechanics treatment. However, the kernel-representation can be evaluated at conventional force-field speed. With the explicit inclusion of the Fe-out-of-plane (Fe-oop) coordinate, the dynamics and structural equilibrium after photodissociation of the ligand are correctly described compared to experiment. Experimentally, the Fe-oop coordinate plays an important role for the ligand dynamics. This is also found here where the isomerization dynamics between the Fe–ON and Fe–NO state is significantly affected whether or not this co-ordinate is explicitly included. Although the Fe–ON conformation is metastable when considering only the bound 2 A state, it may disappear once the 4 A state is included. This explains the absence of the Fe–ON state in previous experimental investigations of MbNO

  9. Free-energy functionals of the electrostatic potential for Poisson-Boltzmann theory.

    Science.gov (United States)

    Jadhao, Vikram; Solis, Francisco J; de la Cruz, Monica Olvera

    2013-08-01

    In simulating charged systems, it is often useful to treat some ionic components of the system at the mean-field level and solve the Poisson-Boltzmann (PB) equation to get their respective density profiles. The numerically intensive task of solving the PB equation at each step of the simulation can be bypassed using variational methods that treat the electrostatic potential as a dynamic variable. But such approaches require the access to a true free-energy functional: a functional that not only provides the correct solution of the PB equation upon extremization, but also evaluates to the true free energy of the system at its minimum. Moreover, the numerical efficiency of such procedures is further enhanced if the free-energy functional is local and is expressed in terms of the electrostatic potential. Existing PB functionals of the electrostatic potential, while possessing the local structure, are not free-energy functionals. We present a variational formulation with a local free-energy functional of the potential. In addition, we also construct a nonlocal free-energy functional of the electrostatic potential. These functionals are suited for employment in simulation schemes based on the ideas of dynamical optimization.

  10. Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography

    International Nuclear Information System (INIS)

    Somodi, P.K.; Twitchett-Harrison, A.C.; Midgley, P.A.; Kardynał, B.E.; Barnes, C.H.W.; Dunin-Borkowski, R.E.

    2013-01-01

    Two-dimensional finite element simulations of electrostatic dopant potentials in parallel-sided semiconductor specimens that contain p–n junctions are used to assess the effect of the electrical state of the surface of a thin specimen on projected potentials measured using off-axis electron holography in the transmission electron microscope. For a specimen that is constrained to have an equipotential surface, the simulations show that the step in the projected potential across a p–n junction is always lower than would be predicted from the properties of the bulk device, but is relatively insensitive to the value of the surface state energy, especially for thicker specimens and higher dopant concentrations. The depletion width measured from the projected potential, however, has a complicated dependence on specimen thickness. The results of the simulations are of broader interest for understanding the influence of surfaces and interfaces on electrostatic potentials in nanoscale semiconductor devices. - Highlights: • Finite element simulations are performed to calculate electrostatic dopant potentials in TEM specimens that contain p–n junctions. • The effect of the electrical state of the specimen surface on the projected potential is assessed for equipotential specimen surfaces. • The step in projected potential is always found to be lower than the step in potential in the bulk device. • The step in projected potential is least sensitive to surface state energy for thicker specimens and higher dopant concentrations. • The depletion width measured from the projected potential has a complicated dependence on specimen thickness

  11. Partial Atomic Charges and Screened Charge Models of the Electrostatic Potential.

    Science.gov (United States)

    Wang, Bo; Truhlar, Donald G

    2012-06-12

    We propose a new screened charge method for calculating partial atomic charges in molecules by electrostatic potential (ESP) fitting. The model, called full density screening (FDS), is used to approximate the screening effect of full charge densities of atoms in molecules. The results are compared to the conventional ESP fitting method based on point charges and to our previously proposed outer density screening (ODS) method, in which the parameters are reoptimized for the present purpose. In ODS, the charge density of an atom is represented by the sum of a point charge and a smeared negative charge distributed in a Slater-type orbital (STO). In FDS, the charge density of an atom is taken to be the sum of the charge density of the neutral atom and a partial atomic charge (of either sign) distributed in an STO. The ζ values of the STOs used in these two models are optimized in the present study to best reproduce the electrostatic potentials. The quality of the fit to the electrostatics is improved in the screened charge methods, especially for the regions that are within one van der Waals radius of the centers of atoms. It is also found that the charges derived by fitting electrostatic potentials with screened charges are less sensitive to the positions of the fitting points than are those derived with conventional electrostatic fitting. Moreover, we found that the electrostatic-potential-fitted (ESP) charges from the screened charge methods are similar to those from the point-charge method except for molecules containing the methyl group, where we have explored the use of restraints on nonpolar H atoms. We recommend the FDS model if the only goal is ESP fitting to obtain partial atomic charges or a fit to the ESP field. However, the ODS model is more accurate for electronic embedding in combined quantum mechanical and molecular mechanical (QM/MM) modeling and is more accurate than point-charge models for ESP fitting, and it is recommended for applications

  12. Electrostatic potential generated by perpendicular neutral-beam injection to a tokamak plasma

    Science.gov (United States)

    Yamaguchi, H.; Murakami, S.

    2018-01-01

    The electrostatic potential generated by neutral-beam-injection (NBI) heating in a tokamak plasma is investigated using numerical simulations. The density distribution of the NBI fast ions in an assumed tokamak is evaluated using the GNET drift-kinetic-equation solver which is based on the Monte Carlo method. The electrostatic potential is evaluated assuming an adiabatic response of the electrons to the fast-ion density distribution in the plasma. It is found that an electrostatic potential peak is generated near the beam-injection point owing to the trapped fast ions satisfying the zero-precession condition. An analytic model expressing the expected potential except for the peak is derived and shows a good agreement with the radial distribution and linear dependence on the electron temperature predicted by the simulation within a factor of 1–2. The existence of three-dimensional electrostatic trapping may break the poloidally-closed particle orbits, and may change the spatial distribution and transport of high-Z impurity ions.

  13. Student Reasoning about Electrostatic and Gravitational Potential Energy: An Exploratory Study with Interdisciplinary Consequences

    Science.gov (United States)

    Lindsey, Beth A.

    2014-01-01

    This paper describes an investigation into student reasoning about potential energy in the context of introductory electrostatics. Similar incorrect reasoning patterns emerged both in written questions administered after relevant instruction and in one-on-one interviews. These reasoning patterns are also prevalent in responses to questions posed…

  14. Prediction of Reduction Potentials of Copper Proteins with Continuum Electrostatics and Density Functional Theory.

    Science.gov (United States)

    Fowler, Nicholas J; Blanford, Christopher F; Warwicker, Jim; de Visser, Sam P

    2017-11-02

    Blue copper proteins, such as azurin, show dramatic changes in Cu 2+ /Cu + reduction potential upon mutation over the full physiological range. Hence, they have important functions in electron transfer and oxidation chemistry and have applications in industrial biotechnology. The details of what determines these reduction potential changes upon mutation are still unclear. Moreover, it has been difficult to model and predict the reduction potential of azurin mutants and currently no unique procedure or workflow pattern exists. Furthermore, high-level computational methods can be accurate but are too time consuming for practical use. In this work, a novel approach for calculating reduction potentials of azurin mutants is shown, based on a combination of continuum electrostatics, density functional theory and empirical hydrophobicity factors. Our method accurately reproduces experimental reduction potential changes of 30 mutants with respect to wildtype within experimental error and highlights the factors contributing to the reduction potential change. Finally, reduction potentials are predicted for a series of 124 new mutants that have not yet been investigated experimentally. Several mutants are identified that are located well over 10 Å from the copper center that change the reduction potential by more than 85 mV. The work shows that secondary coordination sphere mutations mostly lead to long-range electrostatic changes and hence can be modeled accurately with continuum electrostatics. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. A simple derivation for amplitude and time period of charged particles in an electrostatic bathtub potential

    International Nuclear Information System (INIS)

    Prathap Reddy, K

    2016-01-01

    An ‘electrostatic bathtub potential’ is defined and analytical expressions for the time period and amplitude of charged particles in this potential are obtained and compared with simulations. These kinds of potentials are encountered in linear electrostatic ion traps, where the potential along the axis appears like a bathtub. Ion traps are used in basic physics research and mass spectrometry to store ions; these stored ions make oscillatory motion within the confined volume of the trap. Usually these traps are designed and studied using ion optical software, but in this work the bathtub potential is reproduced by making two simple modifications to the harmonic oscillator potential. The addition of a linear ‘ k 1 | x |’ potential makes the simple harmonic potential curve steeper with a sharper turn at the origin, while the introduction of a finite-length zero potential region at the centre reproduces the flat region of the bathtub curve. This whole exercise of modelling a practical experimental situation in terms of a well-known simple physics problem may generate interest among readers. (paper)

  16. Atomic resolution electrostatic potential mapping of graphene sheets by off-axis electron holography

    International Nuclear Information System (INIS)

    Cooper, David; Pan, Cheng-Ta; Haigh, Sarah

    2014-01-01

    Off-axis electron holography has been performed at atomic resolution with the microscope operated at 80 kV to provide electrostatic potential maps from single, double, and triple layer graphene. These electron holograms have been reconstructed in order to obtain information about atomically resolved and mean inner potentials. We propose that off-axis electron holography can now be used to measure the electrical properties in a range of two-dimensional semiconductor materials and three dimensional devices comprising stacked layers of films to provide important information about their electrical properties.

  17. Improvements to the APBS biomolecular solvation software suite.

    Science.gov (United States)

    Jurrus, Elizabeth; Engel, Dave; Star, Keith; Monson, Kyle; Brandi, Juan; Felberg, Lisa E; Brookes, David H; Wilson, Leighton; Chen, Jiahui; Liles, Karina; Chun, Minju; Li, Peter; Gohara, David W; Dolinsky, Todd; Konecny, Robert; Koes, David R; Nielsen, Jens Erik; Head-Gordon, Teresa; Geng, Weihua; Krasny, Robert; Wei, Guo-Wei; Holst, Michael J; McCammon, J Andrew; Baker, Nathan A

    2018-01-01

    The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that have provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses the three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suite of accompanying software since its release in 2001. In this article, we discuss the models and capabilities that have recently been implemented within the APBS software package including a Poisson-Boltzmann analytical and a semi-analytical solver, an optimized boundary element solver, a geometry-based geometric flow solvation model, a graph theory-based algorithm for determining pK a values, and an improved web-based visualization tool for viewing electrostatics. © 2017 The Protein Society.

  18. Profiles of electrostatic potential across the water-vapor, ice-vapor and ice-water interfaces

    Directory of Open Access Journals (Sweden)

    T. Bryk

    2016-02-01

    Full Text Available Ice-water, water-vapor interfaces and ice surface are studied by molecular dynamics simulations with the SPC/E model of water molecules having the purpose to estimate the profiles of electrostatic potential across the interfaces. We have proposed a methodology for calculating the profiles of electrostatic potential based on a trial particle, which showed good agreement for the case of electrostatic potential profile of the water-vapor interface of TIP4P model calculated in another way. The measured profile of electrostatic potential for the pure ice-water interface decreases towards the liquid bulk region, which is in agreement with simulations of preferential direction of motion of Li^{+} and F^{-} solute ions at the liquid side of the ice-water interface. These results are discussed in connection with the Workman-Reynolds effect.

  19. Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography.

    Science.gov (United States)

    Somodi, P K; Twitchett-Harrison, A C; Midgley, P A; Kardynał, B E; Barnes, C H W; Dunin-Borkowski, R E

    2013-11-01

    Two-dimensional finite element simulations of electrostatic dopant potentials in parallel-sided semiconductor specimens that contain p-n junctions are used to assess the effect of the electrical state of the surface of a thin specimen on projected potentials measured using off-axis electron holography in the transmission electron microscope. For a specimen that is constrained to have an equipotential surface, the simulations show that the step in the projected potential across a p-n junction is always lower than would be predicted from the properties of the bulk device, but is relatively insensitive to the value of the surface state energy, especially for thicker specimens and higher dopant concentrations. The depletion width measured from the projected potential, however, has a complicated dependence on specimen thickness. The results of the simulations are of broader interest for understanding the influence of surfaces and interfaces on electrostatic potentials in nanoscale semiconductor devices. © 2013 Elsevier B.V. All rights reserved.

  20. Electrostatic potential in the auroral ionosphere derived from Chatanika radar observations

    International Nuclear Information System (INIS)

    Foster, J.C.; Banks, P.M.; Doupnik, J.R.

    1982-01-01

    A technique is described for determining the latitudinal variation of the electrostatic potential associated with the ionospheric convection electric fields. Using the north-south electric field component derived from radar convection velocity experiments, the integral of Exd1 is taken northward along the magnetic meridian, starting at low latitudes. The radar data consiste of up to 40 independent measurements of plasma convection spanning 15 0 of invariant latitude centered on Chatanika, Alaska (65 0 ν), with half-hour temporal resolution. It has been found that (1) the electric field contributions to the potential at and below 60 0 ν are small under most circumstances and (2) the latitudinal variation of the potential is smooth and regular, permitting the potentials to be contoured across local time. It is found from the experiments that the potential often varies uniformly over 10 0 latitude at dawn and dusk. Electric fields of 50 mV/m are common. It is also noted that the latitude of the greatest negative potential in the premidnight sector coincides with the Harang discontinuity in ionspheric currents. The potentials calculated from the measured plasma drifts exhibit a regular local time variation. Equipotential contours derived from the latitude-local time potential field obtained with the long-duration radar experiments, while not providing a snapshot of the instantaneous pattern, elucidate the large-scale diurnal variation of the electrostatic potential at auroral latitudes. From such contours it is found that a two-cell convection pattern with varying degrees of asymmetry is consistently present at auroral latitudes, that a cross-polar cap potential drop of 70--120 kV is present in moderately disturbed conditions, and that substorms perturb the potential pattern at all local times

  1. DNA minor groove electrostatic potential: influence of sequence-specific transitions of the torsion angle gamma and deoxyribose conformations.

    Science.gov (United States)

    Zhitnikova, M Y; Shestopalova, A V

    2017-11-01

    The structural adjustments of the sugar-phosphate DNA backbone (switching of the γ angle (O5'-C5'-C4'-C3') from canonical to alternative conformations and/or C2'-endo → C3'-endo transition of deoxyribose) lead to the sequence-specific changes in accessible surface area of both polar and non-polar atoms of the grooves and the polar/hydrophobic profile of the latter ones. The distribution of the minor groove electrostatic potential is likely to be changing as a result of such conformational rearrangements in sugar-phosphate DNA backbone. Our analysis of the crystal structures of the short free DNA fragments and calculation of their electrostatic potentials allowed us to determine: (1) the number of classical and alternative γ angle conformations in the free B-DNA; (2) changes in the minor groove electrostatic potential, depending on the conformation of the sugar-phosphate DNA backbone; (3) the effect of the DNA sequence on the minor groove electrostatic potential. We have demonstrated that the structural adjustments of the DNA double helix (the conformations of the sugar-phosphate backbone and the minor groove dimensions) induce changes in the distribution of the minor groove electrostatic potential and are sequence-specific. Therefore, these features of the minor groove sizes and distribution of minor groove electrostatic potential can be used as a signal for recognition of the target DNA sequence by protein in the implementation of the indirect readout mechanism.

  2. Student reasoning about electrostatic and gravitational potential energy: An exploratory study with interdisciplinary consequences

    Directory of Open Access Journals (Sweden)

    Beth A. Lindsey

    2014-01-01

    Full Text Available This paper describes an investigation into student reasoning about potential energy in the context of introductory electrostatics. Similar incorrect reasoning patterns emerged both in written questions administered after relevant instruction and in one-on-one interviews. These reasoning patterns are also prevalent in responses to questions posed about gravitational potential energy in the context of universal gravitation in introductory mechanics. This finding is relevant for interdisciplinary research, because many courses in multiple disciplines first introduce the concept of electric potential energy in analogy to gravitational potential energy. The results suggest that in introductory courses students do not gain an understanding of potential energy that is sufficiently robust to apply in more advanced physics courses or in disciplines other than physics, in which students must frequently reason with energy in the context of interactions between atoms and molecules.

  3. Electrostatic potential of human immunodeficiency virus type 2 and rhesus macaque simian immunodeficiency virus capsid proteins

    Directory of Open Access Journals (Sweden)

    Katarzyna eBozek

    2012-06-01

    Full Text Available Human immunodeficiency virus type 2 (HIV-2 and simian immunodeficiency virus isolated from a macaque monkey (SIVmac are assumed to have originated from simian immunodeficiency virus isolated from sooty mangabey (SIVsm. Despite their close similarity in genome structure, HIV-2 and SIVmac show different sensitivities to TRIM5α, a host restriction factor against retroviruses. The replication of HIV-2 strains is potently restricted by rhesus (Rh monkey TRIM5α, while that of SIVmac strain 239 (SIVmac239 is not. Viral capsid protein is the determinant of this differential sensitivity to TRIM5α, as the HIV-2 mutant carrying SIVmac239 capsid protein evaded Rh TRIM5α-mediated restriction. However, the molecular determinants of this restriction mechanism are unknown. Electrostatic potential on the protein-binding site is one of the properties regulating protein-protein interactions. In this study, we investigated the electrostatic potential on the interaction surface of capsid protein of HIV-2 strain GH123 and SIVmac239. Although HIV-2 GH123 and SIVmac239 capsid proteins share more than 87% amino acid identity, we observed a large difference between the two molecules with the HIV-2 GH123 molecule having predominantly positive and SIVmac239 predominantly negative electrostatic potential on the surface of the loop between α-helices 4 and 5 (L4/5. As L4/5 is one of the major determinants of Rh TRIM5α sensitivity of these viruses, the present results suggest that the binding site of the Rh TRIM5α may show complementarity to the HIV-2 GH123 capsid surface charge distribution.

  4. Ab initio molecular electrostatic potential of hexanuclear Cu, Ag, and Au clusters

    Science.gov (United States)

    Posada-Amarillas, Alvaro

    DFT calculations of electrostatic potential (ESP) are carried out under the PBE/SDD theory level. Planar initial structures are given as input to perform DFT optimization with the aim of obtaining ground state structures. ESP is thus calculated and results show the existence of both, nucleophilic and electrophilic sites. In each case, the latter are located over the cluster planes while the former are observed in cluster vertices. Binding energy is provided, as well as structural parameters of ground state structures. CONACyT-México is acknowledged for funding Project No. 180424.

  5. Biomolecular Science (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    A brief fact sheet about NREL Photobiology and Biomolecular Science. The research goal of NREL's Biomolecular Science is to enable cost-competitive advanced lignocellulosic biofuels production by understanding the science critical for overcoming biomass recalcitrance and developing new product and product intermediate pathways. NREL's Photobiology focuses on understanding the capture of solar energy in photosynthetic systems and its use in converting carbon dioxide and water directly into hydrogen and advanced biofuels.

  6. Electronic memory devices based on the chalcone with negative electrostatic potential regions

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Bao-Long; Sun, Ru; Ge, Jian-Feng, E-mail: ge_jianfeng@hotmail.com; Wang, Dong; Li, Hua; Lu, Jian-Mei, E-mail: lujm@suda.edu.cn

    2013-10-01

    The molecular electrostatic potential (ESP) properties were used for the explanation of organic electric memory ability. Several chalcone compounds, owning a negative ESP region locates at the oxygen atom, were selected in this paper to validate the selection of compounds for organic memory materials. The synthesis, characterization, fabrication of the organic memory devices and the electrical properties for them were reported, and they were shown as WORM (write once read many times) type memory devices. The molecular geometries were optimized by the addition of a changeable electric field in the x direction inside the molecules using FF-DFT (Finite Field-Density Functionary Theory) method. The relationship between ESP of the molecules under different electric field and the property was discussed, and the mechanisms associated with the memory effect were also elucidated from DFT calculation results. - Highlights: • The molecular electrostatic potential (ESP) properties were used. • The chalcone compounds were used for the WORM type device. • The molecular geometries were optimized by the addition of a changeable electric field in the x direction. • The structure–property relationship was discussed.

  7. Do surfaces of positive electrostatic potential on different halogen derivatives in molecules attract? like attracting like!

    Science.gov (United States)

    Varadwaj, Arpita; Varadwaj, Pradeep R; Yamashita, Koichi

    2018-03-15

    Coulomb's law states that like charges repel, and unlike charges attract. However, it has recently been theoretically revealed that two similarly charged conducting spheres will almost always attract each other when both are in close proximity. Using multiscale first principles calculations, we illustrate practical examples of several intermolecular complexes that are formed by the consequences of attraction between positive atomic sites of similar or dissimilar electrostatic surface potential on interacting molecules. The results of the quantum theory of atoms in molecules and symmetry adapted perturbation theory support the attraction between the positive sites, characterizing the F•••X (X = F, Cl, Br) intermolecular interactions in a series of 20 binary complexes as closed-shell type, although the molecular electrostatic surface potential approach does not (a failure!). Dispersion that has an r -6 dependence, where r is the equilibrium distance of separation, is found to be the sole driving force pushing the two positive sites to attract. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Dirac gap-induced graphene quantum dot in an electrostatic potential

    Science.gov (United States)

    Giavaras, G.; Nori, Franco

    2011-04-01

    A spatially modulated Dirac gap in a graphene sheet leads to charge confinement, thus enabling a graphene quantum dot to be formed without the application of external electric and magnetic fields [G. Giavaras and F. Nori, Appl. Phys. Lett. 97, 243106 (2010)]. This can be achieved provided the Dirac gap has a local minimum in which the states become localized. In this work, the physics of such a gap-induced dot is investigated in the continuum limit by solving the Dirac equation. It is shown that gap-induced confined states couple to the states introduced by an electrostatic quantum well potential. Hence the region in which the resulting hybridized states are localized can be tuned with the potential strength, an effect which involves Klein tunneling. The proposed quantum dot may be used to probe quasirelativistic effects in graphene, while the induced confined states may be useful for graphene-based nanostructures.

  9. Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)

    2017-02-12

    High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained. - Highlights: • High frequency electrostatic wave propagation is investigated in a dense semi-bounded quantum plasma. • The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. • The quantum effect enhances the frequency of the wave especially in the high wave number regime. • The frequency of surface wave is found to be always lower than that of the bulk wave. • The group velocity of the surface wave for various quantum wave number is also obtained.

  10. Design of [2]rotaxane through image threshold segmentation of electrostatic potential image.

    Science.gov (United States)

    Liu, Pingying; Chen, Qiufeng; Ma, Jing

    2016-09-15

    An electrostatic potential (ESP)-based image segmentation method has been used to estimate the ability of proton donation and acceptance involved in ring-rod recognition. The relative binding strength of [2]rotaxane has also been further estimated from the difference of the characteristic image-segmentation derived ESP between proton donor and proton acceptor. The size and electrostatic compatibility criteria are introduced to guide the design of interlocked [2]rotaxane. A library of 75 thermodynamically stable [2]rotaxane candidates has been generated, including 16 experimentally known systems. The theoretical results for 16 experimentally known [2]rotaxanes are in good agreement with both the experimental association constants and density functional theory-calculated binding energies. Our ESP-based image segmentation model is also applicable to the tristable [2]rotaxane molecular shuttle as well as [1]rotaxane with self-inclusion function, indicating this simple method is generic in the field of constructing other supramolecular architectures formed with donor/acceptor molecular recognition. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Mapping the electrostatic potential of Au nanoparticles using hybrid electron holography.

    Science.gov (United States)

    Ozsoy-Keskinbora, Cigdem; Boothroyd, Chris B; Dunin-Borkowski, Rafal E; van Aken, Peter A; Koch, Christoph T

    2016-06-01

    Electron holography is a powerful technique for characterizing electrostatic potentials, charge distributions, electric and magnetic fields, strain distributions and semiconductor dopant distributions with sub-nm spatial resolution. Mapping internal electrostatic and magnetic fields within nanoparticles and other low-dimensional materials by TEM requires both high spatial resolution and high phase sensitivity. Carrying out such an analysis fully quantitatively is even more challenging, since artefacts such as dynamical electron scattering may strongly affect the measurement. In-line electron holography, one of the variants of electron holography, features high phase sensitivity at high spatial frequencies, but suffers from inefficient phase recovery at low spatial frequencies. Off-axis electron holography, in contrast, can recover low spatial frequency phase information much more reliably, but is less effective in retrieving phase information at high spatial frequencies when compared to in-line holography. We investigate gold nanoparticles using hybrid electron holography at both atomic-resolution and intermediate magnification. Hybrid electron holography is a novel technique that synergistically combines off-axis and in-line electron holography, allowing the measurement of the complex wave function describing the scattered electrons with excellent signal-to-noise properties at both high and low spatial frequencies. The effect of dynamical electron scattering is minimized by beam tilt averaging. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Evaluation of an Electrostatic Dust Removal System with Potential Application in Next-Step Fusion Devices

    International Nuclear Information System (INIS)

    Friesen, F.Q.L.; John, B.; Skinner, C.H.; Roquemore, A.L.; Calle, C.I.

    2011-01-01

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 mm3 volume of carbon and tungsten particles were moved in under 5 seconds. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon, and the change in particle distribution over short timescales (<1 s).

  13. Quantum capacitance, electrostatic potential, electronic and structural data for bare and functionalized niobium carbide MXenes

    Directory of Open Access Journals (Sweden)

    Yan Xin

    2017-12-01

    Full Text Available The data reported in this article are structural and physicochemical properties for bare and F, O, OH and CH3O-functionalized Nbn+1Cn (n = 1, 2, 3 and 4 MXenes. The structural properties are presented as top views and side views from the X direction of the optimal structures of studied MXenes. The physicochemical properties include quantum capacitances, electrostatic potentials and electronic properties such as the projected density of states (PDOS and band structures. Further interpretation and discussion of these data can be obtained from the article entitled “Possibility of bare and functionalized niobium carbide MXenes for electrode materials of supercapacitors and field emitters” (Xin and Yu, 2017 [1].

  14. Molecular electrostatic potential on the proton-donating atom as a theoretical descriptor of excited state acidity.

    Science.gov (United States)

    Wang, Yu-Fu; Cheng, Yuan-Chung

    2018-02-07

    Organic photoacids with enhanced acidities in the excited states have received much attention both experimentally and theoretically because of their applications in nanotechnology and chemistry. In this study, we investigate the excited-state acidities of 14 hydroxyl-substituted aromatic photoacids, with a focus on using theoretical molecular electrostatic potential (MEP) as an effective descriptor for photoacidity. For these model photoacids, we applied time-dependent density functional theory (TDDFT) at the ωB97X-D/6-31G(d) level to calculate the molecular electrostatic potentials of S 1 excited states and show that the molecular electrostatic potential on the proton-donating atom exhibits a linear relationship with the observed excited-state logarithmic acid dissociation constant (pK a *). As a result, the molecular electrostatic potential on the proton-donating atom can be used to estimate the pK a * values based on simple TDDFT calculations for a broad range of hydroxyl-substituted aromatic compounds. Furthermore, we explore the molecular electrostatic potential as a quantum descriptor for the photoacidities of cationic photoacids, and show a universal behavior of the pK a *-MEP dependence. We also investigate the solvent effects on the photoacidity using TDDFT calculations with implicit solvent models. Finally, we discuss the physical insights implicated by the molecular electrostatic potential as a successful measure for photoacidity on the mechanism of proton transfer in the molecular excited states. This pK a * descriptor provides an effective means to quantify the tendency of excited-state proton transfer with a relatively small computational cost, which is expected to be useful in the design of functional photoacids.

  15. Accuracy of Protein Embedding Potentials: An Analysis in Terms of Electrostatic Potentials

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; List, Nanna Holmgaard; Kristensen, Kasper

    2015-01-01

    of an inaccurate embedding potential. In this paper, we investigate in detail the quality of the electronic component of embedding potentials designed for calculations on protein biostructures. We show that very accurate explicitly polarizable embedding potentials may be efficiently designed using fragmentation...

  16. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Electrostatics in Chemistry. 3. Molecular Electrostatic Potential: Visualization and Topography. Shridhar R Gadre and Pravin K Bhadane. 1 1. Basic Principles, Resona- nce, Vol.4, No.2, 11-19, 1999. 2. Electrostatic Potentials of. Atoms, Ions and Molecules,. Resonance, Vol.4, No.5, 40-51,. 1999. Topographical features of the ...

  17. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 7. Electrostatics in Chemistry - Molecular Electrostatic Potential: Visualization and Topography. Shridhar R Gadre Pravin K Bhadane. Series Article Volume 4 Issue 7 July 1999 pp 14-23 ...

  18. Mapping the electrostatic potential of Au nanoparticles using hybrid electron holography

    International Nuclear Information System (INIS)

    Ozsoy-Keskinbora, Cigdem; Boothroyd, Chris B.; Dunin-Borkowski, Rafal E.; Aken, Peter A. van; Koch, Christoph T.

    2016-01-01

    Electron holography is a powerful technique for characterizing electrostatic potentials, charge distributions, electric and magnetic fields, strain distributions and semiconductor dopant distributions with sub-nm spatial resolution. Mapping internal electrostatic and magnetic fields within nanoparticles and other low-dimensional materials by TEM requires both high spatial resolution and high phase sensitivity. Carrying out such an analysis fully quantitatively is even more challenging, since artefacts such as dynamical electron scattering may strongly affect the measurement. In-line electron holography, one of the variants of electron holography, features high phase sensitivity at high spatial frequencies, but suffers from inefficient phase recovery at low spatial frequencies. Off-axis electron holography, in contrast, can recover low spatial frequency phase information much more reliably, but is less effective in retrieving phase information at high spatial frequencies when compared to in-line holography. We investigate gold nanoparticles using hybrid electron holography at both atomic-resolution and intermediate magnification. Hybrid electron holography is a novel technique that synergistically combines off-axis and in-line electron holography, allowing the measurement of the complex wave function describing the scattered electrons with excellent signal-to-noise properties at both high and low spatial frequencies. The effect of dynamical electron scattering is minimized by beam tilt averaging. - Highlights: • Hybrid electron holography approach applied to Au nanoparticles. • Proof of principle of atomic resolution hybrid electron holography experiment demonstrated. • Dynamical scattering artifacts decrease by varying the illumination direction. • The effect of the number of iterations and noise on the low spatial frequencies in the phase are discussed.

  19. The measurement of electrostatic potentials in core/shell GaN nanowires using off-axis electron holography

    DEFF Research Database (Denmark)

    Yazdi, Sadegh; Kasama, Takeshi; Ciechonski, R

    2013-01-01

    Core-shell GaN nanowires are expected to be building blocks of future light emitting devices. Here we apply off-axis electron holography to map the electrostatic potential distributions in such nanowires. To access the cross-section of selected individual nanowires, focused ion beam (FIB) milling...

  20. On contribution of known atomic partial charges of protein backbone in electrostatic potential density maps.

    Science.gov (United States)

    Wang, Jimin

    2017-06-01

    Partial charges of atoms in a molecule and electrostatic potential (ESP) density for that molecule are known to bear a strong correlation. In order to generate a set of point-field force field parameters for molecular dynamics, Kollman and coworkers have extracted atomic partial charges for each of all 20 amino acids using restrained partial charge-fitting procedures from theoretical ESP density obtained from condensed-state quantum mechanics. The magnitude of atomic partial charges for neutral peptide backbone they have obtained is similar to that of partial atomic charges for ionized carboxylate side chain atoms. In this study, the effect of these known atomic partial charges on ESP is examined using computer simulations and compared with the experimental ESP density recently obtained for proteins using electron microscopy. It is found that the observed ESP density maps are most consistent with the simulations that include atomic partial charges of protein backbone. Therefore, atomic partial charges are integral part of atomic properties in protein molecules and should be included in model refinement. © 2017 The Protein Society.

  1. Programming in biomolecular computation

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue

    2011-01-01

    Our goal is to provide a top-down approach to biomolecular computation. In spite of widespread discussion about connections between biology and computation, one question seems notable by its absence: Where are the programs? We identify a number of common features in programming that seem...... conspicuously absent from the literature on biomolecular computing; to partially redress this absence, we introduce a model of computation that is evidently programmable, by programs reminiscent of low-level computer machine code; and at the same time biologically plausible: its functioning is defined...... by a single and relatively small set of chemical-like reaction rules. Further properties: the model is stored-program: programs are the same as data, so programs are not only executable, but are also compilable and interpretable. It is universal: all computable functions can be computed (in natural ways...

  2. Programming in biomolecular computation

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue

    2011-01-01

    conspicuously absent from the literature on biomolecular computing; to partially redress this absence, we introduce a model of computation that is evidently programmable, by programs reminiscent of low-level computer machine code; and at the same time biologically plausible: its functioning is defined...... by a single and relatively small set of chemical-like reaction rules. Further properties: the model is stored-program: programs are the same as data, so programs are not only executable, but are also compilable and interpretable. It is universal: all computable functions can be computed (in natural ways......Our goal is to provide a top-down approach to biomolecular computation. In spite of widespread discussion about connections between biology and computation, one question seems notable by its absence: Where are the programs? We identify a number of common features in programming that seem...

  3. Electrostatic potential variation on the flux surface and its impact on impurity transport

    Science.gov (United States)

    García-Regaña, J. M.; Beidler, C. D.; Kleiber, R.; Helander, P.; Mollén, A.; Alonso, J. A.; Landreman, M.; Maaßberg, H.; Smith, H. M.; Turkin, Y.; Velasco, J. L.

    2017-05-01

    The impurity transport in magnetically confined plasmas under some conditions finds neither quantitatively nor qualitatively a satisfactory theory-based explanation. This compromises the successful realization of thermo-nuclear fusion for energy production since impurity accumulation is known to be one of the causes that limits the plasma performance through radiative losses and plasma dilution. Under stellarator reactor-relevant conditions, accumulation is supported by the negative (inwards pointing) radial electric field which must arise to satisfy the ambipolarity constraint on the neoclassical particle fluxes. The high charge number of the impurities makes their transport particularly sensitive to the presence of electric fields and, consequently, the electrostatic potential variation on the flux surface, {Φ1} , which conventional neoclassical theory usually neglects, may contribute to the theoretical interpretation of experimental results not yet fully understood, e.g. Ida et al (2009 Phys. Plasmas 16 056111) and Yoshinuma et al (2009 Nucl. Fusion 49 062002). In the present work we have considered different stellarator configurations and assessed the impact that {Φ1} has on the radial particle transport of selected impurities. The results for LHD show that {Φ1} can strongly modify this transport, resulting in large deviations of the level of inward impurity flux predicted by the standard neoclassical theory in most cases. In Wendelstein 7-X, on the contrary, {Φ1} is significantly smaller and, for the parameters considered, its effect only appreciable for impurities with high charge number. Finally, in TJ-II the potential variation leads to appreciable changes of the impurity radial flux, although not to the extent its large amplitude might lead one to think. The dependence on the chosen parameters and open questions for future developments are discussed.

  4. Zeta-potential data reliability of gold nanoparticle biomolecular conjugates and its application in sensitive quantification of surface absorbed protein.

    Science.gov (United States)

    Wang, Wenjie; Ding, Xiaofan; Xu, Qing; Wang, Jing; Wang, Lei; Lou, Xinhui

    2016-12-01

    Zeta potentials (ZP) of gold nanoparticle bioconjugates (AuNP-bios) provide important information on surface charge that is critical for many applications including drug delivery, biosensing, and cell imaging. The ZP measurements (ZPMs) are conducted under an alternative electrical field at a high frequency under laser irradiation, which may strongly affect the status of surface coating of AuNP-bios and generate unreliable data. In this study, we systemically evaluated the ZP data reliability (ZPDR) of citrate-, thiolated single stranded DNA-, and protein-coated AuNPs mainly according to the consistence of ZPs in the repeated ZPMs and the changes of the hydrodynamic size before and after the ZPMs. We found that the ZPDR was highly dependent on both buffer conditions and surface modifications. Overall, the higher ionic strength of the buffer and the lower affinity of surface bounders were related with the worse ZPDR. The ZPDR of citrate-coated AuNP was good in water, but bad in 10mM phosphate buffer (PB), showing substantially decrease of the absolute ZP values after each measurement, probably due to the electrical field facilitated adsorption of negatively charged phosphate ions on AuNPs. The significant desorption of DNAs from AuNP was observed in the PB containing medium concentration of NaCl, but not in PB. The excellent ZPDR of bovine serum albumin (BSA)-coated AuNP was observed at high salt concentrations and low surface coverage, enabling ZPM as an ultra-sensitive tool for protein quantification on the surface of AuNPs with a single molecule resolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Electrostatic potential of mean force between two curved surfaces in the presence of counterion connectivity

    Science.gov (United States)

    Zhou, Shiqi

    2015-11-01

    In this paper, we investigate effects of counterion connectivity (i.e., association of the counterions into a chain molecule) on the electrostatic potential of mean force (EPMF) between two similarly charged cylinder rods in a primitive model electrolyte solution by solving a classical density functional theory. The main findings include the following: (i) The counterion connectivity helps in inducing a like-charge-attractionlike (LCA-like) phenomenology even in a monovalent counterion solution wherein the LCA-like observation generally does not occur without the counterion connectivity. (ii) For divalent counterion solutions, the counterion connectivity can reinforce or weaken the LCA-like observation depending on the chain length N , and simply increases the equilibrium nearest surface separation of the rods corresponding to the minimum EPMF to nearly three times the counterion site diameter, whether N is large or small. (iii) If N is large enough, the LCA-like strength tends to be negatively correlated with the electrolyte concentration c over the entire range of the rod surface charge magnitude | σ*| considered; whereas if N drops, the correlation tends to become positive with decrease of the | σ*| value, and particularly for modest | σ*| values, the correlation relationship exhibits an extreme value phenomenon. (iv) In the case of a 1:1 electrolyte, the EPMF effects of the diameters of counterion and coion sites are similar in both situations with and without the counterion connectivity. All of these findings can be explained self-consistently by a recently proposed hydrogen-bonding style mechanism reinforced by one additional concept: flexibility of the counterion chain and the factors affecting it, like N and counterion site valence.

  6. Determination of electrostatic potential distribution by atomic force microscopy (AFM) on model silica and alumina surfaces in aqueous electrolyte solutions

    International Nuclear Information System (INIS)

    Yelken, Gulnihal Ozek; Polat, Mehmet

    2014-01-01

    Graphical abstract: - Highlights: • Atomic force microscopy was employed to quantitatively determine the surface potential on silica and alumina surfaces immersed in aqueous electrolyte solutions at various pH values using the DLVO theory. • Potential distributions could be presented in the form of a potential map by repeating the procedure on multiple locations on these surfaces. • The average potential of the distributions agreed very well with the surface potentials measured by electrophoretic techniques. • Several experimental procedures required to achieve the very sensitive force measurements were outlined and demonstrated. - Abstract: AFM was employed as a physicochemical probe to determine the electrostatic potential distribution quantitatively on selected ideal oxide surfaces (quartz 0 0 0 1 and sapphire 0 0 0 1) in aqueous media. The force of interaction between a silicon nitride tip and the oxide surface was measured at a given point under well-defined solution conditions. Relevant theories were used to isolate the electrostatic component from the total force of interaction which was then employed to estimate the surface potential at that point. Repeating the procedure on selected locations generated a potential map of the surface. Comparison of these potentials with those obtained from independent electrokinetic measurements confirmed the validity of the approach

  7. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Electrostatic Potentials of Atoms, Ions and Molecules. Shridhar R Gadre and Pravin K Bhadane. 1 Part 1 - Basic Principles,. Resonance, Vol.4, No.2, 11-19,. 1999. Electrostatic Potential (ESP) generated by a chemical species is widely used as a tool for exploring its properties and locating potential sites for interaction with ...

  8. Biomolecular EPR spectroscopy

    CERN Document Server

    Hagen, Wilfred Raymond

    2008-01-01

    Comprehensive, Up-to-Date Coverage of Spectroscopy Theory and its Applications to Biological SystemsAlthough a multitude of books have been published about spectroscopy, most of them only occasionally refer to biological systems and the specific problems of biomolecular EPR (bioEPR). Biomolecular EPR Spectroscopy provides a practical introduction to bioEPR and demonstrates how this remarkable tool allows researchers to delve into the structural, functional, and analytical analysis of paramagnetic molecules found in the biochemistry of all species on the planet. A Must-Have Reference in an Intrinsically Multidisciplinary FieldThis authoritative reference seamlessly covers all important bioEPR applications, including low-spin and high-spin metalloproteins, spin traps and spin lables, interaction between active sites, and redox systems. It is loaded with practical tricks as well as do's and don'ts that are based on the author's 30 years of experience in the field. The book also comes with an unprecedented set of...

  9. Electrostatic potential wells for on-demand drop manipulation in microchannels.

    Science.gov (United States)

    de Ruiter, Riëlle; Pit, Arjen M; de Oliveira, Vitor Martins; Duits, Michèl H G; van den Ende, Dirk; Mugele, Frieder

    2014-03-07

    Precise control and manipulation of individual drops are crucial in many lab-on-a-chip applications. We present a novel hybrid concept for channel-based discrete microfluidics with integrated electrowetting functionality by incorporating co-planar electrodes (separated by a narrow gap) in one of the microchannel walls. By combining the high throughput of channel-based microfluidics with the individual drop control achieved using electrical actuation, we acquire the strengths of both worlds. The tunable strength of the electrostatic forces enables a wide range of drop manipulations, such as on-demand trapping and release, guiding, and sorting of drops in the microchannel. In each of these scenarios, the retaining electrostatic force competes with the hydrodynamic drag force. The conditions for trapping can be predicted using a simple model that balances these forces.

  10. Electrostatic Charge on Flying Hummingbirds and Its Potential Role in Pollination.

    Science.gov (United States)

    Badger, Marc; Ortega-Jimenez, Victor Manuel; von Rabenau, Lisa; Smiley, Ashley; Dudley, Robert

    2015-01-01

    Electrostatic phenomena are known to enhance both wind- and insect-mediated pollination, but have not yet been described for nectar-feeding vertebrates. Here we demonstrate that wild Anna's Hummingbirds (Calypte anna) can carry positive charges up to 800 pC while in flight (mean ± s.d.: 66 ± 129 pC). Triboelectric charging obtained by rubbing an isolated hummingbird wing against various plant structures generated charges up to 700 pC. A metal hummingbird model charged to 400 pC induced bending of floral stamens in four plants (Nicotiana, Hemerocallis, Penstemon, and Aloe spp.), and also attracted falling Lycopodium spores at distances of < 2 mm. Electrostatic forces may therefore influence pollen transfer onto nectar-feeding birds.

  11. Electrostatic Charge on Flying Hummingbirds and Its Potential Role in Pollination.

    Directory of Open Access Journals (Sweden)

    Marc Badger

    Full Text Available Electrostatic phenomena are known to enhance both wind- and insect-mediated pollination, but have not yet been described for nectar-feeding vertebrates. Here we demonstrate that wild Anna's Hummingbirds (Calypte anna can carry positive charges up to 800 pC while in flight (mean ± s.d.: 66 ± 129 pC. Triboelectric charging obtained by rubbing an isolated hummingbird wing against various plant structures generated charges up to 700 pC. A metal hummingbird model charged to 400 pC induced bending of floral stamens in four plants (Nicotiana, Hemerocallis, Penstemon, and Aloe spp., and also attracted falling Lycopodium spores at distances of < 2 mm. Electrostatic forces may therefore influence pollen transfer onto nectar-feeding birds.

  12. Improvements to the APBS biomolecular solvation software suite: Improvements to the APBS Software Suite

    Energy Technology Data Exchange (ETDEWEB)

    Jurrus, Elizabeth [Pacific Northwest National Laboratory, Richland Washington; Engel, Dave [Pacific Northwest National Laboratory, Richland Washington; Star, Keith [Pacific Northwest National Laboratory, Richland Washington; Monson, Kyle [Pacific Northwest National Laboratory, Richland Washington; Brandi, Juan [Pacific Northwest National Laboratory, Richland Washington; Felberg, Lisa E. [University of California, Berkeley California; Brookes, David H. [University of California, Berkeley California; Wilson, Leighton [University of Michigan, Ann Arbor Michigan; Chen, Jiahui [Southern Methodist University, Dallas Texas; Liles, Karina [Pacific Northwest National Laboratory, Richland Washington; Chun, Minju [Pacific Northwest National Laboratory, Richland Washington; Li, Peter [Pacific Northwest National Laboratory, Richland Washington; Gohara, David W. [St. Louis University, St. Louis Missouri; Dolinsky, Todd [FoodLogiQ, Durham North Carolina; Konecny, Robert [University of California San Diego, San Diego California; Koes, David R. [University of Pittsburgh, Pittsburgh Pennsylvania; Nielsen, Jens Erik [Protein Engineering, Novozymes A/S, Copenhagen Denmark; Head-Gordon, Teresa [University of California, Berkeley California; Geng, Weihua [Southern Methodist University, Dallas Texas; Krasny, Robert [University of Michigan, Ann Arbor Michigan; Wei, Guo-Wei [Michigan State University, East Lansing Michigan; Holst, Michael J. [University of California San Diego, San Diego California; McCammon, J. Andrew [University of California San Diego, San Diego California; Baker, Nathan A. [Pacific Northwest National Laboratory, Richland Washington; Brown University, Providence Rhode Island

    2017-10-24

    The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that has provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suite of accompanying software since its release in 2001. In this manuscript, we discuss the models and capabilities that have recently been implemented within the APBS software package including: a Poisson-Boltzmann analytical and a semi-analytical solver, an optimized boundary element solver, a geometry-based geometric flow solvation model, a graph theory based algorithm for determining pKa values, and an improved web-based visualization tool for viewing electrostatics.

  13. Programming in biomolecular computation

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue

    2010-01-01

    , by programs reminiscent of low-level computer machine code; and at the same time biologically plausible: its functioning is defined by a single and relatively small set of chemical-like reaction rules. Further properties: the model is stored-program: programs are the same as data, so programs are not only......Our goal is to provide a top-down approach to biomolecular computation. In spite of widespread discussion about connections between biology and computation, one question seems notable by its absence: Where are the programs? We introduce a model of computation that is evidently programmable...... executable, but are also compilable and interpretable. It is universal: all computable functions can be computed (in natural ways and without arcane encodings of data and algorithm); it is also uniform: new “hardware” is not needed to solve new problems; and (last but not least) it is Turing complete...

  14. Theoretical potential for low energy consumption phase change memory utilizing electrostatically-induced structural phase transitions in 2D materials

    Science.gov (United States)

    Rehn, Daniel A.; Li, Yao; Pop, Eric; Reed, Evan J.

    2018-01-01

    Structural phase-change materials are of great importance for applications in information storage devices. Thermally driven structural phase transitions are employed in phase-change memory to achieve lower programming voltages and potentially lower energy consumption than mainstream nonvolatile memory technologies. However, the waste heat generated by such thermal mechanisms is often not optimized, and could present a limiting factor to widespread use. The potential for electrostatically driven structural phase transitions has recently been predicted and subsequently reported in some two-dimensional materials, providing an athermal mechanism to dynamically control properties of these materials in a nonvolatile fashion while achieving potentially lower energy consumption. In this work, we employ DFT-based calculations to make theoretical comparisons of the energy required to drive electrostatically-induced and thermally-induced phase transitions. Determining theoretical limits in monolayer MoTe2 and thin films of Ge2Sb2Te5, we find that the energy consumption per unit volume of the electrostatically driven phase transition in monolayer MoTe2 at room temperature is 9% of the adiabatic lower limit of the thermally driven phase transition in Ge2Sb2Te5. Furthermore, experimentally reported phase change energy consumption of Ge2Sb2Te5 is 100-10,000 times larger than the adiabatic lower limit due to waste heat flow out of the material, leaving the possibility for energy consumption in monolayer MoTe2-based devices to be orders of magnitude smaller than Ge2Sb2Te5-based devices.

  15. Simulation of Biomolecular Nanomechanical Systems

    Science.gov (United States)

    2006-10-01

    Dynamics of Surface Immobilized DNA”, J. Chem. Phys., Vol. 120, pp 4958-4968 (2004). 9. J. C. Stachowiak , M. Yue, K. Castelino, N. Lacevic, A. Chakraborty...J. C. Stachowiak , A. Majumdar, “Cantilever arrays for multiplexed mechanical analysis of biomolecular reactions,” Molecular and Cellular Biomechanics...290-299 (2004). 4. M. Yue, J. C. Stachowiak , A. Majumdar, “Cantilever arrays for multiplexed mechanical analysis of biomolecular reactions

  16. Bluues: a program for the analysis of the electrostatic properties of proteins based on generalized Born radii.

    Science.gov (United States)

    Fogolari, Federico; Corazza, Alessandra; Yarra, Vijaylakshmi; Jalaru, Anusha; Viglino, Paolo; Esposito, Gennaro

    2012-03-28

    The Poisson-Boltzmann (PB) equation and its linear approximation have been widely used to describe biomolecular electrostatics. Generalized Born (GB) models offer a convenient computational approximation for the more fundamental approach based on the Poisson-Boltzmann equation, and allows estimation of pairwise contributions to electrostatic effects in the molecular context. We have implemented in a single program most common analyses of the electrostatic properties of proteins. The program first computes generalized Born radii, via a surface integral and then it uses generalized Born radii (using a finite radius test particle) to perform electrostaic analyses. In particular the ouput of the program entails, depending on user's requirement: 1) the generalized Born radius of each atom; 2) the electrostatic solvation free energy; 3) the electrostatic forces on each atom (currently in a developmental stage); 4) the pH-dependent properties (total charge and pH-dependent free energy of folding in the pH range -2 to 18; 5) the pKa of all ionizable groups; 6) the electrostatic potential at the surface of the molecule; 7) the electrostatic potential in a volume surrounding the molecule; Although at the expense of limited flexibility the program provides most common analyses with requirement of a single input file in PQR format. The results obtained are comparable to those obtained using state-of-the-art Poisson-Boltzmann solvers. A Linux executable with example input and output files is provided as supplementary material.

  17. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    This article presents the fundamental concepts of electrostatics as applied to atoms and molecules. The electric field and potential due to a set of discrete as well as continuous charge distributions are discussed along with their graphic visualization. Funda- mental theorems in electrostatics are also summarized. Introduction.

  18. Dynamics of biomolecular fibers

    Science.gov (United States)

    Plewa, Joseph Steven

    We describe theoretical and experimental investigations of biomolecular dynamics. First we demonstrate a lattice Monte Carlo simulation which conserves a topological linking number by forbidding moves through cis conformations. Unlike previous models that conserve linking number, our simulated ring chains have flexibility and the scaling properties of a lattice self-avoiding walk. A linking number of order 0.2 per bond leads to an eight-percent reduction of the radius for 128-bond chains. For ring chains evolving without the conservation of linking number, we demonstrate a substantial anti-correlation between the twist and writhe variables whose sum yields the linking number. We raise the possibility that our observed anti-correlations may have counterparts in biomolecules like DNA. We then discuss experiments which combine digital video microscopy and total-internal reflection microscopy (TIRM) in a single technique (3DTIRM) which allows accurate measurement of the three-dimensional location of microscopic particles. We compare two methods for measuring the total scattered light intensity. The first method uses an external photodiode as in conventional TIRM, the second uses only digitized video frames. We employ 3DTIRM to study the material properties of yeast amyloid fibers, consisting of aggregates of Sup35 protein. We attach one end of a biotin-labelled fiber to a glass slide and the other end to a streptavidin-coated 4.4 mum polystyrene sphere. By studying the equilibrium fluctuations of the colloidal sphere, we determine the elastic modulus of the fibers, and set limits on the twisting persistence length.

  19. Grid computing and biomolecular simulation.

    Science.gov (United States)

    Woods, Christopher J; Ng, Muan Hong; Johnston, Steven; Murdock, Stuart E; Wu, Bing; Tai, Kaihsu; Fangohr, Hans; Jeffreys, Paul; Cox, Simon; Frey, Jeremy G; Sansom, Mark S P; Essex, Jonathan W

    2005-08-15

    Biomolecular computer simulations are now widely used not only in an academic setting to understand the fundamental role of molecular dynamics on biological function, but also in the industrial context to assist in drug design. In this paper, two applications of Grid computing to this area will be outlined. The first, involving the coupling of distributed computing resources to dedicated Beowulf clusters, is targeted at simulating protein conformational change using the Replica Exchange methodology. In the second, the rationale and design of a database of biomolecular simulation trajectories is described. Both applications illustrate the increasingly important role modern computational methods are playing in the life sciences.

  20. Biomolecular Transport through Hemofiltration Membranes

    Science.gov (United States)

    Datta, Subhra; Fissell, William H.; Roy, Shuvo

    2009-01-01

    A theoretical model for filtration of large solutes through a pore in the presence of transmembrane pressures, applied/induced electric fields, and dissimilar interactions at the pore entrance and exit is developed to characterize and predict the experimental performance of a hemofiltration membrane with nanometer scale pores designed for a proposed implantable Renal Assist Device (RAD). The model reveals that the sieving characteristics of the membrane can be improved by applying an external electric field, and ensuring a smaller ratio of the pore-feed and pore-permeate equilibrium partitioning coefficients when diffusion is present. The model is then customized to study the sieving characteristics for both charged and uncharged solutes in the slit-shaped nanopores of the hemofiltration device for the RAD. The effect of streaming potential or induced fields are found to be negligible under representative operating conditions. Experimental data on the sieving coefficient of bovine serum albumin, carbonic anhydrase and thyroglobulin are reported and compared with the theoretical predictions. Both steric and electrostatic partitioning are considered and the comparison suggests that in general electrostatic effects are present in the filtration of proteins though some data, particularly those recorded in a strongly hypertonic solution (10×PBS), show better agreement with the steric partitioning theory. PMID:19184436

  1. Electrostatic potential in a collisionless plasma flow along open magnetic field lines

    International Nuclear Information System (INIS)

    Sato, Kunihiro; Katayama, Hideaki; Miyawaki, Fujio

    1992-06-01

    Formation of the steady-state potential in a collisionless plasma flow along nonuniform magnetic field lines terminated at a wall is studied theoretically under the condition that a particle source in a plasma can be neglected. It is found that the plasma flow is required to satisfy the generalized Bohm criterion over the whole region for the formation of the steady-state continuous potential in the divergent magnetic field. A monotonically falling potential can build up from the inside of the magnetic throat to the wall only if the Bohm criterion is marginally satisfied at the throat. Numerical solutions to Poisson's equation show that a potential profile outside the throat is strongly dependent upon the particle density of electrons trapped between the throat and the wall. Controllability of the potential by increasing the trapped-electron density is discussed briefly. (author)

  2. Two-extremum electrostatic potential of metal-lattice plasma and the work function of an electron

    Directory of Open Access Journals (Sweden)

    Surma S.A.

    2015-06-01

    Full Text Available Metal-lattice plasma is treated as a neutral two-component two-phase system of 2D surface and 3D bulk. Free electron density and bulk chemical potential are used as intensive parameters of the system with the phase boundary position determined in the crystalline lattice. A semiempirical expression for the electron screened electrostatic potential is constructed using the lattice-plasma polarization concept. It comprises an image term and three repulsion/attraction terms of second and fourth orders. The novel curve has two extremes and agrees with certain theoretical forms of potential. A practical formula for the electron work function of metals and a simplified schema of electronic structure at the metal/vacuum interface are proposed. This yields 10.44 eV for the Fermi energy of free electron gas; -5.817 eV for the Fermi energy level; 4.509 eV for the average work function of bcc tungsten. Selected data are also given for fcc Cu and hcp Re. For harmonic frequencies ~ 10E16 per s of the self-excited metal-lattice plasma, energy gaps of 14.54 and 8.02 eV are found, which correspond to the bulk and surface plasmons, respectively. Further extension of this thermodynamics and metal-lattice theory based approach may contribute to a better understanding of theoretical models which are employed in chemical physics, catalysis and materials science of nanostructures.

  3. Electrostatic potential and field of a round beam coasting off axis in a circular vacuum chamber

    International Nuclear Information System (INIS)

    Regenstreif, E.

    1976-01-01

    The purpose of this paper is to present closed expressions for the potential and the field produced by a uniform or non-uniform beam coasting off the center-line of an infinite cylindrical vacuum chamber of circular cross section. This is a problem of classical electromagnetism; its rigorous solution involves however a refined application of Poisson's and Laplace's equations. (author)

  4. Driving electrostatic transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes power stages and bias configurations suitable for driving an electrostatic transducer. Measurement results of a 300 V prototype amplifier are shown. Measuring THD across a high impedance source is discussed...

  5. Effect of flexoelectricity on electrostatic potential in a bent piezoelectric nanowire

    International Nuclear Information System (INIS)

    Liu, Chenchen; Hu, Shuling; Shen, Shengping

    2012-01-01

    Flexoelectricity presents a strong size effect, and should not be ignored for nanodevices. By taking the flexoelectricity into account, an analytical solution is deduced for the piezoelectric potential generated in a bent ZnO nanowire (NW) cantilever. It is shown that the electric potential in the NW is not independent of z-coordinate, which is different from the results based on the classical piezoelectric theory. The results also show that the effect of flexoelectricity on the voltage is significant in a bent ZnO NW even though the flexoelectric coefficients are set to be the minimum. Moreover, we find that the flexoelectricity plays an important role in filling the gap between the results from the classical piezoelectric theory and experimental results. It is indicated that one can use the flexoelectricity to modify the transfer efficiency from mechanical energy to electrical energy through strain engineering. (paper)

  6. Electrical potential-assisted DNA hybridization. How to mitigate electrostatics for surface DNA hybridization.

    Science.gov (United States)

    Tymoczko, Jakub; Schuhmann, Wolfgang; Gebala, Magdalena

    2014-12-24

    Surface-confined DNA hybridization reactions are sensitive to the number and identity of DNA capture probes and experimental conditions such as the nature and the ionic strength of the electrolyte solution. When the surface probe density is high or the concentration of bulk ions is much lower than the concentration of ions within the DNA layer, hybridization is significantly slowed down or does not proceed at all. However, high-density DNA monolayers are attractive for designing high-sensitivity DNA sensors. Thus, circumventing sluggish DNA hybridization on such interfaces allows a high surface concentration of target DNA and improved signal/noise ratio. We present potential-assisted hybridization as a strategy in which an external voltage is applied to the ssDNA-modified interface during the hybridization process. Results show that a significant enhancement of hybridization can be achieved using this approach.

  7. Changes in electrostatic surface potential of Na+/K+-ATPase cytoplasmic headpiece induced by cytoplasmic ligand(s) binding.

    Science.gov (United States)

    Kubala, Martin; Grycova, Lenka; Lansky, Zdenek; Sklenovsky, Petr; Janovska, Marika; Otyepka, Michal; Teisinger, Jan

    2009-09-16

    A set of single-tryptophan mutants of the Na(+)/K(+)-ATPase isolated, large cytoplasmic loop connecting transmembrane helices M4 and M5 (C45) was prepared to monitor effects of the natural cytoplasmic ligands (i.e., Mg(2+) and/or ATP) binding. We introduced a novel method for the monitoring of the changes in the electrostatic surface potential (ESP) induced by ligand binding, using the quenching of the intrinsic tryptophan fluorescence by acrylamide or iodide. This approach opens a new way to understanding the interactions within the proteins. Our experiments revealed that the C45 conformation in the presence of the ATP (without magnesium) substantially differed from the conformation in the presence of Mg(2+) or MgATP or in the absence of any ligand not only in the sense of geometry but also in the sense of the ESP. Notably, the set of ESP-sensitive residues was different from the set of geometry-sensitive residues. Moreover, our data indicate that the effect of the ligand binding is not restricted only to the close environment of the binding site and that the information is in fact transmitted also to the distal parts of the molecule. This property could be important for the communication between the cytoplasmic headpiece and the cation binding sites located within the transmembrane domain.

  8. The Gas-Phase Heats of Formation of n-Alkanes as a Function of the Electrostatic Potential Extrema on their Molecular Surfaces

    Directory of Open Access Journals (Sweden)

    Fakhr M. Abu-Awwad

    2004-01-01

    Full Text Available The hybrid density functional B3LYP is employed to map the molecular electrostatic potentials on the surfaces of twenty normal alkanes, (Cn H2n+2, n = 1-20. It is shown that gas-phase heats of formation of the alkanes can be represented quantitatively in terms of the potential, where a general equation of the heat of formation is introduced as a function of potentials' extrema, VS,min and VS,max with average absolute error of 0.028 kcal/mol and a standard deviation of 0.048 kcal/mol. This should be viewed as a success of the B3LYP functional and the molecular surface electrostatic potential as tools of chemistry. The predicted gas-phase heats of formation of thirty normal alkanes (n = 21-50 are reproduced and compared to their experimental counterparts when available.

  9. The nature of electrostatic potential fluctuations in Cu2ZnSnS4 and their role on photovoltaic device performance

    International Nuclear Information System (INIS)

    Mendis, B G; Goodman, M C J; Taylor, A A; Halliday, D P; Shannon, M D; Major, J D; Durose, K

    2013-01-01

    Aberration corrected STEM EELS is used to investigate point defects in Cu 2 ZnSnS 4 (CZTS). Nano-scale clusters of Zn Cu anti-site donors are observed with the donor concentration being sufficiently high to degenerately dope the semiconductor. Uncompensated donors and acceptors result in electrostatic potential fluctuations within the material. The effect of these potential fluctuations on the photovoltaic device properties is discussed

  10. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  11. Multipolar electrostatics.

    Science.gov (United States)

    Cardamone, Salvatore; Hughes, Timothy J; Popelier, Paul L A

    2014-06-14

    Atomistic simulation of chemical systems is currently limited by the elementary description of electrostatics that atomic point-charges offer. Unfortunately, a model of one point-charge for each atom fails to capture the anisotropic nature of electronic features such as lone pairs or π-systems. Higher order electrostatic terms, such as those offered by a multipole moment expansion, naturally recover these important electronic features. The question remains as to why such a description has not yet been widely adopted by popular molecular mechanics force fields. There are two widely-held misconceptions about the more rigorous formalism of multipolar electrostatics: (1) Accuracy: the implementation of multipole moments, compared to point-charges, offers little to no advantage in terms of an accurate representation of a system's energetics, structure and dynamics. (2) Efficiency: atomistic simulation using multipole moments is computationally prohibitive compared to simulation using point-charges. Whilst the second of these may have found some basis when computational power was a limiting factor, the first has no theoretical grounding. In the current work, we disprove the two statements above and systematically demonstrate that multipole moments are not discredited by either. We hope that this perspective will help in catalysing the transition to more realistic electrostatic modelling, to be adopted by popular molecular simulation software.

  12. Electrostatic potentials of the S-locus F-box proteins contribute to the pollen S specificity in self-incompatibility in Petunia hybrida.

    Science.gov (United States)

    Li, Junhui; Zhang, Yue; Song, Yanzhai; Zhang, Hui; Fan, Jiangbo; Li, Qun; Zhang, Dongfen; Xue, Yongbiao

    2017-01-01

    Self-incompatibility (SI) is a self/non-self discrimination system found widely in angiosperms and, in many species, is controlled by a single polymorphic S-locus. In the Solanaceae, Rosaceae and Plantaginaceae, the S-locus encodes a single S-RNase and a cluster of S-locus F-box (SLF) proteins to control the pistil and pollen expression of SI, respectively. Previous studies have shown that their cytosolic interactions determine their recognition specificity, but the physical force between their interactions remains unclear. In this study, we show that the electrostatic potentials of SLF contribute to the pollen S specificity through a physical mechanism of 'like charges repel and unlike charges attract' between SLFs and S-RNases in Petunia hybrida. Strikingly, the alteration of a single C-terminal amino acid of SLF reversed its surface electrostatic potentials and subsequently the pollen S specificity. Collectively, our results reveal that the electrostatic potentials act as a major physical force between cytosolic SLFs and S-RNases, providing a mechanistic insight into the self/non-self discrimination between cytosolic proteins in angiosperms. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  13. Synthesis of the RGO/Al2O3 core-shell nanocomposite flakes and characterization of their unique electrostatic properties using zeta potential measurements

    Science.gov (United States)

    Jastrzębska, A. M.; Karcz, J.; Letmanowski, R.; Zabost, D.; Ciecierska, E.; Zdunek, J.; Karwowska, E.; Siekierski, M.; Olszyna, A.; Kunicki, A.

    2016-01-01

    The aim of this study was to describe the influence of the modification of electrostatic properties of RGO/Al2O3 core-shell nanocomposite flakes. The amount of crystalline form of aluminum oxide was very small. It existed mostly in amorphous phase in the form of covalently bonded to GO surface. The morphological, structural and physicochemical investigations results showed that spherical Al2O3 nanoparticles (ca. 41 nm) in gamma phase completely covered the surface of curly-shaped RGO flakes and acted as a spreader between individual flakes. The high BET specific surface area of the analyzed composite (119.71 m2/g) together with very low open porosity (0.479 cm3/g) indicated that RGO/Al2O3 nanocomposite flakes showed low tendency to agglomeration. The zeta potential curves obtained for RGO/Al2O3 core-shell nanocomposite flakes were differing from curves obtained for GO and Al2O3 suspensions in distilled water and neutral environment. The specific electrostatic properties of the core-shell system of RGO/Al2O3 flakes had an influence on its surface charge (zeta potential) which was measured by applying an external electric field. The FTIR and Raman investigations results also confirmed that the Cdbnd O species were not taking part in the surface amphoteric reactions resulting in the formation of electrostatic surface charge.

  14. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators

  15. Electrostatic hazards

    CERN Document Server

    Luttgens, Günter; Luttgens, Gnter; Luttgens, G Nter

    1997-01-01

    In the US, UK and Europe there is in excess of one notifiable dust or electrostatic explosion every day of the year. This clearly makes the hazards associated with the handling of materials subject to either cause or react to electrostatic discharge of vital importance to anyone associated with their handling or industrial bulk use. This book provides a comprehensive guide to the dangers of static electricity and how to avoid them. It will prove invaluable to safety managers and professionals, as well as all personnel involved in the activities concerned, in the chemical, agricultural, pharmaceutical and petrochemical process industries. The book makes extended use of case studies to illustrate the principles being expounded, thereby making it far more open, accessible and attractive to the practitioner in industry than the highly theoretical texts which are also available. The authors have many years' experience in the area behind them, including the professional teaching of the content provided here. Günte...

  16. Driving electrostatic transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes power stages and bias configurations suitable for driving an electrostatic transducer. Measurement results of a 300 V prototype amplifier are shown. Measuring THD across a high impedance source is discussed......, and a high voltage attenuation interface for an audio analyzer is presented. THD below 0:1% is reported....

  17. Modeling Structural Dynamics of Biomolecular Complexes by Coarse-Grained Molecular Simulations.

    Science.gov (United States)

    Takada, Shoji; Kanada, Ryo; Tan, Cheng; Terakawa, Tsuyoshi; Li, Wenfei; Kenzaki, Hiroo

    2015-12-15

    Due to hierarchic nature of biomolecular systems, their computational modeling calls for multiscale approaches, in which coarse-grained (CG) simulations are used to address long-time dynamics of large systems. Here, we review recent developments and applications of CG modeling methods, focusing on our methods primarily for proteins, DNA, and their complexes. These methods have been implemented in the CG biomolecular simulator, CafeMol. Our CG model has resolution such that ∼10 non-hydrogen atoms are grouped into one CG particle on average. For proteins, each amino acid is represented by one CG particle. For DNA, one nucleotide is simplified by three CG particles, representing sugar, phosphate, and base. The protein modeling is based on the idea that proteins have a globally funnel-like energy landscape, which is encoded in the structure-based potential energy function. We first describe two representative minimal models of proteins, called the elastic network model and the classic Go̅ model. We then present a more elaborate protein model, which extends the minimal model to incorporate sequence and context dependent local flexibility and nonlocal contacts. For DNA, we describe a model developed by de Pablo's group that was tuned to well reproduce sequence-dependent structural and thermodynamic experimental data for single- and double-stranded DNAs. Protein-DNA interactions are modeled either by the structure-based term for specific cases or by electrostatic and excluded volume terms for nonspecific cases. We also discuss the time scale mapping in CG molecular dynamics simulations. While the apparent single time step of our CGMD is about 10 times larger than that in the fully atomistic molecular dynamics for small-scale dynamics, large-scale motions can be further accelerated by two-orders of magnitude with the use of CG model and a low friction constant in Langevin dynamics. Next, we present four examples of applications. First, the classic Go̅ model was used to

  18. A nonlinear electrostatic potential change in the T-system of skeletal muscle detected under passive recording conditions using potentiometric dyes.

    Science.gov (United States)

    Heiny, J A; Jong, D S

    1990-01-01

    Voltage-sensing dyes were used to examine the electrical behavior of the T-system under passive recording conditions similar to those commonly used to detect charge movement. These conditions are designed to eliminate all ionic currents and render the T-system potential linear with respect to the command potential applied at the surface membrane. However, we found an unexpected nonlinearity in the relationship between the dye signal from the T-system and the applied clamp potential. An additional voltage- and time-dependent optical signal appears over the same depolarizing range of potentials where change movement and mechanical activation occur. This nonlinearity is not associated with unblocked ionic currents and cannot be attributed to lack of voltage clamp control of the T-system, which appears to be good under these conditions. We propose that a local electrostatic potential change occurs in the T-system upon depolarization. An electrostatic potential would not be expected to extend beyond molecular distances of the membrane and therefore would be sensed by a charged dye in the membrane but not by the voltage clamp, which responds solely to the potential of the bulk solution. Results obtained with different dyes suggest that the location of the phenomena giving rise to the extra absorbance change is either intramembrane or at the inner surface of the T-system membrane.

  19. Spectroscopic and DFT Studies of Second Sphere Variants of the Type 1 Copper Site in Azurin: Covalent and Non-Local Electrostatic Contributions to Reduction Potentials

    Science.gov (United States)

    Hadt, Ryan G.; Sun, Ning; Marshall, Nicholas M.; Hodgson, Keith O.; Hedman, Britt; Lu, Yi; Solomon, Edward I.

    2012-01-01

    The reduction potentials (E0) of type 1 (T1) or blue copper (BC) sites in proteins and enzymes with identical first coordination spheres around the redox active copper ion can vary by ~400 mV. Here, we use a combination of low temperature electronic absorption and magnetic circular dichroism, electron paramagnetic resonance, resonance Raman, and S K-edge X-ray absorption spectroscopies to investigate a series of second sphere variants—F114P, N47S, and F114N in Pseudomonas aeruginosa azurin (Az)—which modulate hydrogen bonding to and protein derived dipoles nearby the Cu-S(Cys) bond. Density functional theory (DFT) calculations correlated to the experimental data allow for the fractionation of the contributions to tuning E0 into covalent and non-local electrostatic components. These are found to be significant, comparable in magnitude, and additive for active H-bonds, while passive H-bonds are mostly non-local electrostatic in nature. For dipoles, these terms can be additive to or oppose one another. This study provides a methodology for uncoupling covalency from non-local electrostatics, which, when coupled to X-ray crystallographic data, distinguishes specific local interactions from more long range protein/active interactions, while affording further insight into the second sphere mechanisms available to the protein to tune the E0 of electron transfer sites in biology. PMID:22985400

  20. A comparative study on carbon, boron-nitride, boron-phosphide and silicon-carbide nanotubes based on surface electrostatic potentials and average local ionization energies.

    Science.gov (United States)

    Esrafili, Mehdi D; Behzadi, Hadi

    2013-06-01

    A density functional theory study was carried out to predict the electrostatic potentials as well as average local ionization energies on both the outer and the inner surfaces of carbon, boron-nitride (BN), boron-phosphide (BP) and silicon-carbide (SiC) single-walled nanotubes. For each nanotube, the effect of tube radius on the surface potentials and calculated average local ionization energies was investigated. It is found that SiC and BN nanotubes have much stronger and more variable surface potentials than do carbon and BP nanotubes. For the SiC, BN and BP nanotubes, there are characteristic patterns of positive and negative sites on the outer lateral surfaces. On the other hand, a general feature of all of the systems studied is that stronger potentials are associated with regions of higher curvature. According to the evaluated surface electrostatic potentials, it is concluded that, for the narrowest tubes, the water solubility of BN tubes is slightly greater than that of SiC followed by carbon and BP nanotubes.

  1. Potential of mean force between a large solute and a biomolecular complex: A model analysis on protein flux through chaperonin system

    Science.gov (United States)

    Amano, Ken-ich; Oshima, Hiraku; Kinoshita, Masahiro

    2011-11-01

    Insertion of a large solute into an even larger vessel comprising biopolymers followed by release of the same solute from it is one of the important functions sustaining life. As a typical example, an unfolded protein is inserted into a chaperonin from bulk aqueous solution, a cochaperonin acting as a lid is attached to the chaperonin rim and the protein folds into its native structure within the closed cavity, the cochaperonin is detached after the folding is finished, and the folded protein is released back to the bulk solution. On the basis of the experimental observations manifesting that the basic aspects of the protein flux through the chaperonin system is independent of the chaperonin, cochaperonin, and protein species, we adopt a simple model system with which we can cover the whole cycle of the protein flux. We calculate the spatial distribution of the solvent-mediated potential of mean force (PMF) between a spherical solute and a cylindrical vessel or vessel/lid complex. The calculation is performed using the three-dimensional integral equation theory, and the PMF is decomposed into energetic and entropic components. We argue that an unfolded protein with a larger excluded volume (EV) and weak hydrophobicity is entropically inserted into the chaperonin cavity and constrained within a small space almost in its center. The switch from insertion to release is achieved by decreasing the EV and turning the protein surface hydrophilic in the folding process. For this release, in which the energetic component is a requisite, the feature that the chaperonin inner surface in the absence of the cochaperonin is not hydrophilic plays essential roles. On the other hand, the inner surface of the chaperonin/cochaperonin complex is hydrophilic, and the protein is energetically repelled from it: The protein remains constrained within the small space mentioned above without contacting the inner surface for correct folding. The structural and inner-surface properties of the

  2. eF-seek: prediction of the functional sites of proteins by searching for similar electrostatic potential and molecular surface shape

    OpenAIRE

    Kinoshita, Kengo; Murakami, Yoichi; Nakamura, Haruki

    2007-01-01

    We have developed a method to predict ligand-binding sites in a new protein structure by searching for similar binding sites in the Protein Data Bank (PDB). The similarities are measured according to the shapes of the molecular surfaces and their electrostatic potentials. A new web server, eF-seek, provides an interface to our search method. It simply requires a coordinate file in the PDB format, and generates a prediction result as a virtual complex structure, with the putative ligands in a ...

  3. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    Biomolecular electronics is rapidly evolving from physics, chemistry, biology, electronics and information technology. Organic materials such as proteins, pigments and conducting polymers have been considered as alternatives for carrying out the functions that are presently being performed by semiconductor silicon.

  4. Processive pectin methylesterases: the role of electrostatic potential, breathing motions and bond cleavage in the rectification of Brownian motions.

    Directory of Open Access Journals (Sweden)

    Davide Mercadante

    Full Text Available Pectin methylesterases (PMEs hydrolyze the methylester groups that are found on the homogalacturonan (HG chains of pectic polysaccharides in the plant cell wall. Plant and bacterial PMEs are especially interesting as the resulting de-methylesterified (carboxylated sugar residues are found to be arranged contiguously, indicating a so-called processive nature of these enzymes. Here we report the results of continuum electrostatics calculations performed along the molecular dynamics trajectory of a PME-HG-decasaccharide complex. In particular it was observed that, when the methylester groups of the decasaccharide were arranged in order to mimic the just-formed carboxylate product of de-methylesterification, a net unidirectional sliding of the model decasaccharide was subsequently observed along the enzyme's binding groove. The changes that occurred in the electrostatic binding energy and protein dynamics during this translocation provide insights into the mechanism by which the enzyme rectifies Brownian motions to achieve processivity. The free energy that drives these molecular motors is thus demonstrated to be incorporated endogenously in the methylesterified groups of the HG chains and is not supplied exogenously.

  5. Web servers and services for electrostatics calculations with APBS and PDB2PQR

    Science.gov (United States)

    Unni, Samir; Huang, Yong; Hanson, Robert; Tobias, Malcolm; Krishnan, Sriram; Li, Wilfred W.; Nielsen, Jens E.; Baker, Nathan A.

    2011-01-01

    APBS and PDB2PQR are widely utilized free software packages for biomolecular electrostatics calculations. Using the Opal toolkit, we have developed a Web services framework for these software packages that enables the use of APBS and PDB2PQR by users who do not have local access to the necessary amount of computational capabilities. This not only increases accessibility of the software to a wider range of scientists, educators, and students but it also increases the availability of electrostatics calculations on portable computing platforms. Users can access this new functionality in two ways. First, an Opal-enabled version of APBS is provided in current distributions, available freely on the web. Second, we have extended the PDB2PQR web server to provide an interface for the setup, execution, and visualization electrostatics potentials as calculated by APBS. This web interface also uses the Opal framework which ensures the scalability needed to support the large APBS user community. Both of these resources are available from the APBS/PDB2PQR website: http://www.poissonboltzmann.org/. PMID:21425296

  6. Multidimensional persistence in biomolecular data.

    Science.gov (United States)

    Xia, Kelin; Wei, Guo-Wei

    2015-07-30

    Persistent homology has emerged as a popular technique for the topological simplification of big data, including biomolecular data. Multidimensional persistence bears considerable promise to bridge the gap between geometry and topology. However, its practical and robust construction has been a challenge. We introduce two families of multidimensional persistence, namely pseudomultidimensional persistence and multiscale multidimensional persistence. The former is generated via the repeated applications of persistent homology filtration to high-dimensional data, such as results from molecular dynamics or partial differential equations. The latter is constructed via isotropic and anisotropic scales that create new simiplicial complexes and associated topological spaces. The utility, robustness, and efficiency of the proposed topological methods are demonstrated via protein folding, protein flexibility analysis, the topological denoising of cryoelectron microscopy data, and the scale dependence of nanoparticles. Topological transition between partial folded and unfolded proteins has been observed in multidimensional persistence. The separation between noise topological signatures and molecular topological fingerprints is achieved by the Laplace-Beltrami flow. The multiscale multidimensional persistent homology reveals relative local features in Betti-0 invariants and the relatively global characteristics of Betti-1 and Betti-2 invariants. © 2015 Wiley Periodicals, Inc.

  7. Effect of the electrostatic surface potential on the oligomerization of full-length human recombinant prion protein at single-molecule level

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin; Xu, Bingqian, E-mail: bxu@engr.uga.edu [Single Molecule Study Laboratory, College of Engineering and Nanoscale Science, and Engineering Center, University of Georgia, Athens, Georgia 30605 (United States); Lou, Zhichao [Single Molecule Study Laboratory, College of Engineering and Nanoscale Science, and Engineering Center, University of Georgia, Athens, Georgia 30605 (United States); College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Zhang, Haiqian [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2016-03-21

    The electrostatic surface potential (ESP) of prion oligomers has critical influences on the aggregating processes of the prion molecules. The atomic force microscopy (AFM) and structural simulation were combined to investigate the molecular basis of the full-length human recombinant prion oligomerization on mica surfaces. The high resolution non-intrusive AFM images showed that the prion oligomers formed different patterns on mica surfaces at different buffer pH values. The basic binding units for the large oligomers were determined to be prion momoners (Ms), dimers (Ds), and trimers (Ts). The forming of the D and T units happened through the binding of hydrophobic β-sheets of the M units. In contrast, the α-helices of these M, D, and T units were the binding areas for the formation of large oligomers. At pH 4.5, the binding units M, D, and T showed clear polarized ESP distributions on the surface domains, while at pH 7.0, they showed more evenly distributed ESPs. Based on the conformations of oligomers observed from AFM images, the D and T units were more abundantly on mica surface at pH 4.5 because the ESP re-distribution of M units helped to stabilize these larger oligomers. The amino acid side chains involved in the binding interfaces were stabilized by hydrogen bonds and electrostatic interactions. The detailed analysis of the charged side chains at pH 4.5 indicated that the polarized ESPs induced the aggregations among M, D, and T to form larger oligomers. Therefore, the hydrogen bonds and electrostatic interactions worked together to form the stabilized prion oligomers.

  8. Effect of the electrostatic surface potential on the oligomerization of full-length human recombinant prion protein at single-molecule level

    Science.gov (United States)

    Wang, Bin; Lou, Zhichao; Zhang, Haiqian; Xu, Bingqian

    2016-03-01

    The electrostatic surface potential (ESP) of prion oligomers has critical influences on the aggregating processes of the prion molecules. The atomic force microscopy (AFM) and structural simulation were combined to investigate the molecular basis of the full-length human recombinant prion oligomerization on mica surfaces. The high resolution non-intrusive AFM images showed that the prion oligomers formed different patterns on mica surfaces at different buffer pH values. The basic binding units for the large oligomers were determined to be prion momoners (Ms), dimers (Ds), and trimers (Ts). The forming of the D and T units happened through the binding of hydrophobic β-sheets of the M units. In contrast, the α-helices of these M, D, and T units were the binding areas for the formation of large oligomers. At pH 4.5, the binding units M, D, and T showed clear polarized ESP distributions on the surface domains, while at pH 7.0, they showed more evenly distributed ESPs. Based on the conformations of oligomers observed from AFM images, the D and T units were more abundantly on mica surface at pH 4.5 because the ESP re-distribution of M units helped to stabilize these larger oligomers. The amino acid side chains involved in the binding interfaces were stabilized by hydrogen bonds and electrostatic interactions. The detailed analysis of the charged side chains at pH 4.5 indicated that the polarized ESPs induced the aggregations among M, D, and T to form larger oligomers. Therefore, the hydrogen bonds and electrostatic interactions worked together to form the stabilized prion oligomers.

  9. Electrostatic control by lipids upon the membrane-bound (Na+ + K+)-ATPase. II. The influence of surface potential upon the activating ion equilibria.

    Science.gov (United States)

    Ahrens, M L

    1983-07-13

    Electrostatic influences upon the enzymatic activity of the (Na+ + K+)-ATPase from ox brain (EC 3.6.1.3) have been studied. (1) The characteristics of the temperature dependence of the activity - the slopes and inflection temperature, Ti, of the Arrhenius plots - have been shown to depend on the total concentration, but not on the specific properties of added monovalent ions. (2) The enzymatic activity has been shown to be subject simultaneously to unspecific and specific influences of alkali-metal ions or NH+4. Ion-specific effects result from different binding constants of complexation between activating ions and enzyme. These stability constants are affected by the formation of an electrical double layer at the membrane surface. With increasing electrostatic screening, the complex formation is destabilized and, as a consequence, the enzymatic activity decreases. (3) This interaction between ion binding and surface electrostatics enables the enzyme to adapt its activity to the actual ionic conditions. This gives rise to a complex net dependence of the enzymatic activity upon the concentrations of activating ions. Such dependencies are analyzed, and an 'activity surface' has been constructed which represents the enzymatic activity as a function of simultaneously varying concentrations of sodium and potassium. The shape of this activity surface is determined by the relations between ion concentrations, surface potential and the resulting stability of the complexation between the activating ions and the enzyme. By means of three-dimensional representation it is demonstrated that the adaptability of the stability constants is of great importance with respect to the maintenance of the optimal ionic concentrations within the living cell. Therefore, by means of the surrounding membrane, the ATPase is provided with a quality, in addition to its substrate specificity and catalytic ability, which is necessary for its function as a transport enzyme.

  10. PCE: web tools to compute protein continuum electrostatics

    Science.gov (United States)

    Miteva, Maria A.; Tufféry, Pierre; Villoutreix, Bruno O.

    2005-01-01

    PCE (protein continuum electrostatics) is an online service for protein electrostatic computations presently based on the MEAD (macroscopic electrostatics with atomic detail) package initially developed by D. Bashford [(2004) Front Biosci., 9, 1082–1099]. This computer method uses a macroscopic electrostatic model for the calculation of protein electrostatic properties, such as pKa values of titratable groups and electrostatic potentials. The MEAD package generates electrostatic energies via finite difference solution to the Poisson–Boltzmann equation. Users submit a PDB file and PCE returns potentials and pKa values as well as color (static or animated) figures displaying electrostatic potentials mapped on the molecular surface. This service is intended to facilitate electrostatics analyses of proteins and thereby broaden the accessibility to continuum electrostatics to the biological community. PCE can be accessed at . PMID:15980492

  11. Optical and electrostatic potential investigations of electrical breakdown phenomena in a low-pressure gas discharge lamp

    Science.gov (United States)

    Gendre, M. F.; Haverlag, M.; Kroesen, G. M. W.

    2010-06-01

    The ignition phase is a critical stage in the operation of gas discharge lamps where the neutral gas enclosed between the electrodes undergoes a transformation from the dielectric state to a conducting phase, eventually enabling the production of light. The phenomena occurring during this phase transition are not fully understood and the related experimental studies are often limited to local optical measurements in environments prone to influencing these transient phenomena. In this work unipolar ignition phenomena at sub-kilovolt levels are investigated in a 3 Torr argon discharge tube. The lamp is placed in a highly controlled environment so as to prevent any bias on the measurements. A fast intensified CCD camera and a specially designed novel electrostatic probe are used simultaneously so as to provide a broad array of measured and computed parameters which are displayed in space-time diagrams for cross comparisons. Experiments show that three distinct phases exist during successful ignitions: upon the application of voltage a first ionization wave starts from the active electrode and propagates in the neutral gas towards the opposite electrode. A local front of high axial E field strength is associated with this process and causes a local ionization to occur, leading to the electrostatic charging of the lamp. Next, a second wave propagates from the ground electrode back towards the active electrode with a higher velocity, and in this process leads to a partial discharging of the lamp. This return stroke draws a homogeneous plasma column which eventually bridges both electrodes at the end of the wave propagation. At this point both electrode sheaths are formed and the common features of a glow discharge are observed. The third phase is an increase in the light intensity of the plasma column until the lamp reaches a steady-state operation. Failed ignitions present only the first phase where the first wave starts its propagation but extinguishes in the lamp

  12. Biomolecular computers with multiple restriction enzymes

    Directory of Open Access Journals (Sweden)

    Sebastian Sakowski

    2017-10-01

    Full Text Available Abstract The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann “bottleneck”. Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro’s group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules as software and input/output signals. This computer represented a two-state two-symbol finite automaton that was subsequently extended by using two restriction enzymes. In this paper, we propose the idea of a multistate biomolecular computer with multiple commercially available restriction enzymes as hardware. Additionally, an algorithmic method for the construction of transition molecules in the DNA computer based on the use of multiple restriction enzymes is presented. We use this method to construct multistate, biomolecular, nondeterministic finite automata with four commercially available restriction enzymes as hardware. We also describe an experimental applicaton of this theoretical model to a biomolecular finite automaton made of four endonucleases.

  13. Biomolecular computers with multiple restriction enzymes

    Science.gov (United States)

    Sakowski, Sebastian; Krasinski, Tadeusz; Waldmajer, Jacek; Sarnik, Joanna; Blasiak, Janusz; Poplawski, Tomasz

    2017-01-01

    Abstract The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann “bottleneck”. Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro’s group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules) as software and input/output signals. This computer represented a two-state two-symbol finite automaton that was subsequently extended by using two restriction enzymes. In this paper, we propose the idea of a multistate biomolecular computer with multiple commercially available restriction enzymes as hardware. Additionally, an algorithmic method for the construction of transition molecules in the DNA computer based on the use of multiple restriction enzymes is presented. We use this method to construct multistate, biomolecular, nondeterministic finite automata with four commercially available restriction enzymes as hardware. We also describe an experimental applicaton of this theoretical model to a biomolecular finite automaton made of four endonucleases. PMID:29064510

  14. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    Conducting polymers such as polypyrroles, polythiophenes and polyanilines have been projected for applications for a wide range of biomolecular electronic devices such as optical, electronic, drug-delivery, memory and biosensing devices. Our group has been actively working towards the application of conducting ...

  15. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    Abstract. Biomolecular electronics is rapidly evolving from physics, chemistry, biology, electron- ics and information technology. Organic materials such as proteins, pigments and conducting poly- mers have been considered as alternatives for carrying out the functions that are presently being performed by semiconductor ...

  16. Biomolecular computers with multiple restriction enzymes.

    Science.gov (United States)

    Sakowski, Sebastian; Krasinski, Tadeusz; Waldmajer, Jacek; Sarnik, Joanna; Blasiak, Janusz; Poplawski, Tomasz

    2017-01-01

    The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann "bottleneck". Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro's group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules) as software and input/output signals. This computer represented a two-state two-symbol finite automaton that was subsequently extended by using two restriction enzymes. In this paper, we propose the idea of a multistate biomolecular computer with multiple commercially available restriction enzymes as hardware. Additionally, an algorithmic method for the construction of transition molecules in the DNA computer based on the use of multiple restriction enzymes is presented. We use this method to construct multistate, biomolecular, nondeterministic finite automata with four commercially available restriction enzymes as hardware. We also describe an experimental applicaton of this theoretical model to a biomolecular finite automaton made of four endonucleases.

  17. Biomolecular engineering for nanobio/bionanotechnology

    Science.gov (United States)

    Nagamune, Teruyuki

    2017-04-01

    Biomolecular engineering can be used to purposefully manipulate biomolecules, such as peptides, proteins, nucleic acids and lipids, within the framework of the relations among their structures, functions and properties, as well as their applicability to such areas as developing novel biomaterials, biosensing, bioimaging, and clinical diagnostics and therapeutics. Nanotechnology can also be used to design and tune the sizes, shapes, properties and functionality of nanomaterials. As such, there are considerable overlaps between nanotechnology and biomolecular engineering, in that both are concerned with the structure and behavior of materials on the nanometer scale or smaller. Therefore, in combination with nanotechnology, biomolecular engineering is expected to open up new fields of nanobio/bionanotechnology and to contribute to the development of novel nanobiomaterials, nanobiodevices and nanobiosystems. This review highlights recent studies using engineered biological molecules (e.g., oligonucleotides, peptides, proteins, enzymes, polysaccharides, lipids, biological cofactors and ligands) combined with functional nanomaterials in nanobio/bionanotechnology applications, including therapeutics, diagnostics, biosensing, bioanalysis and biocatalysts. Furthermore, this review focuses on five areas of recent advances in biomolecular engineering: (a) nucleic acid engineering, (b) gene engineering, (c) protein engineering, (d) chemical and enzymatic conjugation technologies, and (e) linker engineering. Precisely engineered nanobiomaterials, nanobiodevices and nanobiosystems are anticipated to emerge as next-generation platforms for bioelectronics, biosensors, biocatalysts, molecular imaging modalities, biological actuators, and biomedical applications.

  18. Electrostatic potential in a bent piezoelectric nanowire with consideration of size-dependent piezoelectricity and semiconducting characterization.

    Science.gov (United States)

    Wang, Kaifa; Wang, Baolin

    2018-03-26

    Determining the electric potential in a bent piezoelectric nanowire (NW) is a fundamental issue of nanogenerators and nanopiezotronics. The combined influence of the flexoelectric effect, the semiconducting performance and the angle of atomic force microscope (AFM) tip has never been studied previously and will be investigated in this paper. The exact solution for the electric potential of a bent piezoelectric semiconductor NW is derived. The electric potential of the present model with consideration of flexoelectric effect varies along the length of the NW and is different from that of the classical piezoelectric model. Flexoelectric effect enhances but the semiconducting performance reduces the electric potential of the NW. In addition, it is found that if the angle of the AFM tip reaches 30 degrees, the error of the electric potential obtained from the model ignored the effect of the angle of the AFM tip is almost 16%, which is unacceptable. © 2018 IOP Publishing Ltd.

  19. Biomolecular Modification of Inorganic Crystal Growth

    Energy Technology Data Exchange (ETDEWEB)

    De Yoreo, J J

    2007-04-27

    The fascinating shapes and hierarchical designs of biomineralized structures are an inspiration to materials scientists because of the potential they suggest for biomolecular control over materials synthesis. Conversely, the failure to prevent or limit tissue mineralization in the vascular, skeletal, and urinary systems is a common source of disease. Understanding the mechanisms by which organisms direct or limit crystallization has long been a central challenge to the biomineralization community. One prevailing view is that mineral-associated macromolecules are responsible for either inhibiting crystallization or initiating and stabilizing non-equilibrium crystal polymorphs and morphologies through interactions between anionic moieties and cations in solution or at mineralizing surfaces. In particular, biomolecules that present carboxyl groups to the growing crystal have been implicated as primary modulators of growth. Here we review the results from a combination of in situ atomic force microscopy (AFM) and molecular modeling (MM) studies to investigate the effect of specific interactions between carboxylate-rich biomolecules and atomic steps on crystal surfaces during the growth of carbonates, oxalates and phosphates of calcium. Specifically, we how the growth kinetics and morphology depend on the concentration of additives that include citrate, simple amino acids, synthetic Asp-rich polypeptides, and naturally occurring Asp-rich proteins found in both functional and pathological mineral tissues. The results reveal a consistent picture of shape modification in which stereochemical matching of modifiers to specific atomic steps drives shape modification. Inhibition and other changes in growth kinetics are shown to be due to a range of mechanisms that depend on chemistry and molecular size. Some effects are well described by classic crystal growth theories, but others, such as step acceleration due to peptide charge and hydrophylicity, were previously unrealized

  20. Converting biomolecular modelling data based on an XML representation.

    Science.gov (United States)

    Sun, Yudong; McKeever, Steve

    2008-08-25

    Biomolecular modelling has provided computational simulation based methods for investigating biological processes from quantum chemical to cellular levels. Modelling such microscopic processes requires atomic description of a biological system and conducts in fine timesteps. Consequently the simulations are extremely computationally demanding. To tackle this limitation, different biomolecular models have to be integrated in order to achieve high-performance simulations. The integration of diverse biomolecular models needs to convert molecular data between different data representations of different models. This data conversion is often non-trivial, requires extensive human input and is inevitably error prone. In this paper we present an automated data conversion method for biomolecular simulations between molecular dynamics and quantum mechanics/molecular mechanics models. Our approach is developed around an XML data representation called BioSimML (Biomolecular Simulation Markup Language). BioSimML provides a domain specific data representation for biomolecular modelling which can effciently support data interoperability between different biomolecular simulation models and data formats.

  1. Potential profiles in the central core of the cathode in the star mode operation in an inertial-electrostatic fusion neutron source

    International Nuclear Information System (INIS)

    Yoshikawa, K.; Masuda, K.; Toku, H.

    2003-01-01

    After the successful measurements of the localized electric fields in the center-spot mode operation with relatively large space-charge effects by the laser-induced fluorescence (LIF) method, measurements of potential profiles in the star mode operation with small space-charge effects on helium gas are made in the central cathode core region of an Inertial-Electrostatic Confinement Fusion (IECF) neutron source, which is most suitable to neutron calibration in the fusion devices. Since the high-voltage is required to the star mode operation on deuterium gas, it is predicted to bring about very small beam space charge-related potential. To increase accuracy, we adopted n=4 (2 1 S to 4 1 D:HeI) transition, instead of previous n=3, which is most sensitive to the local electric fields in the Stark transition, and verified using the well-known U-shaped hollow cathode potential. The localized electric fields thus measured by LIF method using n=4 transition show negligible electric fields in the star mode compared with the center-spot mode. (author)

  2. Inertial Electrostatic Confinement (IEC) devices

    International Nuclear Information System (INIS)

    Nebel, R.A.; Turner, L.; Tiouririne, T.N.; Barnes, D.C.; Nystrom, W.D.; Bussard, R.W.; Miley, G.H.; Javedani, J.; Yamamoto, Y.

    1994-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P. T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2 * 10 10 neutrons/sec. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. Atomic physics effects strongly influence the performance of all of these systems. Important atomic effects include elastic scattering, ionization, excitation, and charge exchange. This paper discusses how an IEC system is influenced by these effects and how to design around them. Theoretical modeling and experimental results are presented

  3. Limiting assumptions in molecular modeling: electrostatics.

    Science.gov (United States)

    Marshall, Garland R

    2013-02-01

    Molecular mechanics attempts to represent intermolecular interactions in terms of classical physics. Initial efforts assumed a point charge located at the atom center and coulombic interactions. It is been recognized over multiple decades that simply representing electrostatics with a charge on each atom failed to reproduce the electrostatic potential surrounding a molecule as estimated by quantum mechanics. Molecular orbitals are not spherically symmetrical, an implicit assumption of monopole electrostatics. This perspective reviews recent evidence that requires use of multipole electrostatics and polarizability in molecular modeling.

  4. Differences in Electrostatic Potential Around DNA Fragments Containing Adenine and 8-oxo-Adenine. An Analysis Based on Regular Cylindrical Projection

    Energy Technology Data Exchange (ETDEWEB)

    Haranczyk, Maciej; Miller, John H; Gutowski, Maciej S

    2007-07-01

    Changes of electrostatic potential (EP) around the DNA molecule resulting from chemical modifications of nucleotides may play a role in enzymatic recognition of damaged sites. Effects of chemical modifications of nucleotides on the structure of DNA have been characterized through large scale density functional theory computations. Quantum mechanical structural optimizations of DNA fragments with three pairs of nucleotides and accompanying counteractions were performed with a B3LYP exchange-correlation functional and 6-31G** basis sets. The “intact” DNA fragment contained adenine in the middle layer, while the “damaged” fragment had the adenine replaced with 8-oxo-adenine. The electrostatic potential around these DNA fragments was projected on a cylindrical surface around the double helix. The two-dimensional maps of EP of the intact and damaged DNA fragments were analyzed to identify these modifications of EP that result from the occurrence of 8-oxo-adenine (8oA). It was found that distortions of a phosphate group neighboring 8oA and displacements of the accompanying countercation are clearly reflected in the EP maps. Helpful discussions Michel Dupuis are gratefully acknowledged. Authors wish to thank Marcel Swart for directing us to a compilation of van der Waals radii. This work was supported by the: (i) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G. and M.H.), (ii) the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG03-02ER63470 (JHM), (iii) Polish State Committee for Scientific Research (KBN) Grant DS/8221-4-0140-6 (MG), (iv) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic Computer Center in Gdansk (TASK) and at the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a national

  5. Electrostatic melting in a single-molecule field-effect transistor with applications in genomic identification

    Science.gov (United States)

    Vernick, Sefi; Trocchia, Scott M.; Warren, Steven B.; Young, Erik F.; Bouilly, Delphine; Gonzalez, Ruben L.; Nuckolls, Colin; Shepard, Kenneth L.

    2017-05-01

    The study of biomolecular interactions at the single-molecule level holds great potential for both basic science and biotechnology applications. Single-molecule studies often rely on fluorescence-based reporting, with signal levels limited by photon emission from single optical reporters. The point-functionalized carbon nanotube transistor, known as the single-molecule field-effect transistor, is a bioelectronics alternative based on intrinsic molecular charge that offers significantly higher signal levels for detection. Such devices are effective for characterizing DNA hybridization kinetics and thermodynamics and enabling emerging applications in genomic identification. In this work, we show that hybridization kinetics can be directly controlled by electrostatic bias applied between the device and the surrounding electrolyte. We perform the first single-molecule experiments demonstrating the use of electrostatics to control molecular binding. Using bias as a proxy for temperature, we demonstrate the feasibility of detecting various concentrations of 20-nt target sequences from the Ebolavirus nucleoprotein gene in a constant-temperature environment.

  6. Electrostatic interaction between Interball-2 and the ambient plasma. 1. Determination of the spacecraft potential from current calculations

    Directory of Open Access Journals (Sweden)

    M. Bouhram

    2002-03-01

    Full Text Available The Interball-2 spacecraft travels at altitudes extending up to 20 000 km, and becomes positively charged due to the low-plasma densities encountered and the photoemission on its sunlit surface. Therefore, a knowledge of the spacecraft potential Fs is required for correcting accurately thermal ion measurements on Interball-2. The determination of Fs  is based on the balance of currents between escaping photoelectrons and incoming plasma electrons. A three-dimensional model of the potential structure surrounding Interball-2, including a realistic geometry and neglecting the space-charge densities, is used to find, through particle simulations, current-voltage relations of impacting plasma electrons Ie (Fs and escaping photoelectrons Iph (Fs . The inferred relations are compared to analytic relationships in order to quantify the effects of the spacecraft geometry, the ambient magnetic field B0 and the electron temperature Te . We found that the complex geometry has a weak effect on the inferred currents, while the presence of B0 tends to decrease their values. Providing that the photoemission saturation current density Jph0 is known, a relation between Fs and the plasma density Ne can be derived by using the current balance. Since Jph0 is critical to this process, simultaneous measurements of Ne from Z-mode observations in the plasmapause, and data on the potential difference Fs  - Fp  between the spacecraft and an electric probe (p are used in order to reverse the process. A value Jph0 ~ = 32 µAm-2 is estimated, close to laboratory tests, but less than typical measurements in space. Using this value, Ne and Fs  can be derived systematically from electric field measurements without any additional calculation. These values are needed for correcting the distributions of low-energy ions measured by the Hyperboloid experiment on Interball-2. The effects of the potential structure on ion trajectories reaching Hyperboloid are discussed

  7. Search for Effects of an Electrostatic Potential on Clocks in the Frame of Reference of a Charged Particle

    Science.gov (United States)

    Ringermacher, Harry I.; Conradi, Mark S.; Cassenti, Brice

    2005-01-01

    Results of experiments to confirm a theory that links classical electromagnetism with the geometry of spacetime are described. The theory, based on the introduction of a Torsion tensor into Einstein s equations and following the approach of Schroedinger, predicts effects on clocks attached to charged particles, subject to intense electric fields, analogous to the effects on clocks in a gravitational field. We show that in order to interpret this theory, one must re-interpret all clock changes, both gravitational and electromagnetic, as arising from changes in potential energy and not merely potential. The clock is provided naturally by proton spins in hydrogen atoms subject to Nuclear Magnetic Resonance trials. No frequency change of clocks was observed to a resolution of 6310(exp -9). A new "Clock Principle" was postulated to explain the null result. There are two possible implications of the experiments: (a) The Clock Principle is invalid and, in fact, no metric theory incorporating electromagnetism is possible; (b) The Clock Principle is valid and it follows that a negative rest mass cannot exist.

  8. Application of Nanodiamonds in Biomolecular Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ping Cheng

    2010-03-01

    Full Text Available The combination of nanodiamond (ND with biomolecular mass spectrometry (MS makes rapid, sensitive detection of biopolymers from complex biosamples feasible. Due to its chemical inertness, optical transparency and biocompatibility, the advantage of NDs in MS study is unique. Furthermore, functionalization on the surfaces of NDs expands their application in the fields of proteomics and genomics for specific requirements greatly. This review presents methods of MS analysis based on solid phase extraction and elution on NDs and different application examples including peptide, protein, DNA, glycan and others. Owing to the quick development of nanotechnology, surface chemistry, new MS methods and the intense interest in proteomics and genomics, a huge increase of their applications in biomolecular MS analysis in the near future can be predicted.

  9. Role of biomolecular logic systems in biosensors and bioactuators

    Science.gov (United States)

    Mailloux, Shay; Katz, Evgeny

    2014-09-01

    An overview of recent advances in biosensors and bioactuators based on biocomputing systems is presented. Biosensors digitally process multiple biochemical signals through Boolean logic networks of coupled biomolecular reactions and produce an output in the form of a YES/NO response. Compared to traditional single-analyte sensing devices, the biocomputing approach enables high-fidelity multianalyte biosensing, which is particularly beneficial for biomedical applications. Multisignal digital biosensors thus promise advances in rapid diagnosis and treatment of diseases by processing complex patterns of physiological biomarkers. Specifically, they can provide timely detection and alert medical personnel of medical emergencies together with immediate therapeutic intervention. Application of the biocomputing concept has been successfully demonstrated for systems performing logic analysis of biomarkers corresponding to different injuries, particularly as exemplified for liver injury. Wide-ranging applications of multianalyte digital biosensors in medicine, environmental monitoring, and homeland security are anticipated. "Smart" bioactuators, for signal-triggered drug release, for example, were designed by interfacing switchable electrodes with biocomputing systems. Integration of biosensing and bioactuating systems with biomolecular information processing systems advances the potential for further scientific innovations and various practical applications.

  10. Data-driven coarse graining of large biomolecular structures.

    Science.gov (United States)

    Chen, Yi-Ling; Habeck, Michael

    2017-01-01

    Advances in experimental and computational techniques allow us to study the structure and dynamics of large biomolecular assemblies at increasingly higher resolution. However, with increasing structural detail it can be challenging to unravel the mechanism underlying the function of molecular machines. One reason is that atomistic simulations become computationally prohibitive. Moreover it is difficult to rationalize the functional mechanism of systems composed of tens of thousands to millions of atoms by following each atom's movements. Coarse graining (CG) allows us to understand biological structures from a hierarchical perspective and to gradually zoom into the adequate level of structural detail. This article introduces a Bayesian approach for coarse graining biomolecular structures. We develop a probabilistic model that aims to represent the shape of an experimental structure as a cloud of bead particles. The particles interact via a pairwise potential whose parameters are estimated along with the bead positions and the CG mapping between atoms and beads. Our model can also be applied to density maps obtained by cryo-electron microscopy. We illustrate our approach on various test systems.

  11. NMRbox: A Resource for Biomolecular NMR Computation.

    Science.gov (United States)

    Maciejewski, Mark W; Schuyler, Adam D; Gryk, Michael R; Moraru, Ion I; Romero, Pedro R; Ulrich, Eldon L; Eghbalnia, Hamid R; Livny, Miron; Delaglio, Frank; Hoch, Jeffrey C

    2017-04-25

    Advances in computation have been enabling many recent advances in biomolecular applications of NMR. Due to the wide diversity of applications of NMR, the number and variety of software packages for processing and analyzing NMR data is quite large, with labs relying on dozens, if not hundreds of software packages. Discovery, acquisition, installation, and maintenance of all these packages is a burdensome task. Because the majority of software packages originate in academic labs, persistence of the software is compromised when developers graduate, funding ceases, or investigators turn to other projects. To simplify access to and use of biomolecular NMR software, foster persistence, and enhance reproducibility of computational workflows, we have developed NMRbox, a shared resource for NMR software and computation. NMRbox employs virtualization to provide a comprehensive software environment preconfigured with hundreds of software packages, available as a downloadable virtual machine or as a Platform-as-a-Service supported by a dedicated compute cloud. Ongoing development includes a metadata harvester to regularize, annotate, and preserve workflows and facilitate and enhance data depositions to BioMagResBank, and tools for Bayesian inference to enhance the robustness and extensibility of computational analyses. In addition to facilitating use and preservation of the rich and dynamic software environment for biomolecular NMR, NMRbox fosters the development and deployment of a new class of metasoftware packages. NMRbox is freely available to not-for-profit users. Copyright © 2017 Biophysical Society. All rights reserved.

  12. Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes.

    Science.gov (United States)

    Sage, Andrew T; Besant, Justin D; Lam, Brian; Sargent, Edward H; Kelley, Shana O

    2014-08-19

    Electrochemical sensors have the potential to achieve sensitive, specific, and low-cost detection of biomolecules--a capability that is ever more relevant to the diagnosis and monitored treatment of disease. The development of devices for clinical diagnostics based on electrochemical detection could provide a powerful solution for the routine use of biomarkers in patient treatment and monitoring and may overcome the many issues created by current methods, including the long sample-to-answer times, high cost, and limited prospects for lab-free use of traditional polymerase chain reaction, microarrays, and gene-sequencing technologies. In this Account, we summarize the advances in electrochemical biomolecular detection, focusing on a new and integrated platform that exploits the bottom-up fabrication of multiplexed electrochemical sensors composed of electrodeposited noble metals. We trace the evolution of these sensors from gold nanoelectrode ensembles to nanostructured microelectrodes (NMEs) and discuss the effects of surface morphology and size on assay performance. The development of a novel electrocatalytic assay based on Ru(3+) adsorption and Fe(3+) amplification at the electrode surface as a means to enable ultrasensitive analyte detection is discussed. Electrochemical measurements of changes in hybridization events at the electrode surface are performed using a simple potentiostat, which enables integration into a portable, cost-effective device. We summarize the strategies for proximal sample processing and detection in addition to those that enable high degrees of sensor multiplexing capable of measuring 100 different analytes on a single chip. By evaluating the cost and performance of various sensor substrates, we explore the development of practical lab-on-a-chip prototype devices. By functionalizing the NMEs with capture probes specific to nucleic acid, small molecule, and protein targets, we can successfully detect a wide variety of analytes at

  13. PREFACE: Electrostatics 2015

    Science.gov (United States)

    Matthews, James

    2015-10-01

    Electrostatics 2015, supported by the Institute of Physics, was held in the Sir James Matthews building at Southampton Solent University, UK between 12th and 16th April 2015. Southampton is a historic city on the South Coast of England with a strong military and maritime history. Southampton is home to two Universities: Solent University, which hosted the conference, and the University of Southampton, where much work is undertaken related to electrostatics. 37 oral and 44 poster presentations were accepted for the conference, and 60 papers were submitted and accepted for the proceedings. The Bill Bright Memorial Lecture was delivered this year by Professor Mark Horenstein from Boston University who was, until recently, Editor-in-Chief of the Journal of Electrostatics. He spoke on The contribution of surface potential to diverse problems in electrostatics and his thorough knowledge of the subject of electrostatics was evident in the presentation. The first session was chaired by the Conference Chair, Dr Keith Davies, whose experience in the field showed through his frequent contributions to the discussions throughout the conference. Hazards and Electrostatic Discharge have formed a strong core to Electrostatics conferences for many years, and this conference contained sessions on both Hazards and on ESD, including an invited talk from Dr Jeremy Smallwood on ESD in Industry - Present and Future. Another strong theme to emerge from this year's programme was Non-Thermal Plasmas, which was covered in two sessions. There were two invited talks on this subject: Professor Masaaki Okubo gave a talk on Development of super-clean diesel engine and combustor using nonthermal plasma hybrid after treatment and Dr David Go presented a talk on Atmospheric-pressure ionization processes: New approaches and applications for plasmas in contact with liquids. A new innovation to the conference this year was the opportunity for conference sponsors to present to the delegates a technical

  14. SUPPLEMENTARY INFORMATION Molecular electrostatic potential ...

    Indian Academy of Sciences (India)

    Sandhya K S

    PADINJARE VEETIL BIJINA and CHERUMUTTATHU H SURESH. Chemical Sciences and Technology Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695019, India. Email: sureshch@gmail.com. # Celebrating 100 years ...

  15. Interactions of the α-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: a critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials.

    Science.gov (United States)

    Baltoumas, Fotis A; Theodoropoulou, Margarita C; Hamodrakas, Stavros J

    2013-06-01

    G-protein coupled receptors (GPCRs) are one of the largest families of membrane receptors in eukaryotes. Heterotrimeric G-proteins, composed of α, β and γ subunits, are important molecular switches in the mediation of GPCR signaling. Receptor stimulation after the binding of a suitable ligand leads to G-protein heterotrimer activation and dissociation into the Gα subunit and Gβγ heterodimer. These subunits then interact with a large number of effectors, leading to several cell responses. We studied the interactions between Gα subunits and their binding partners, using information from structural, mutagenesis and Bioinformatics studies, and conducted a series of comparisons of sequence, structure, electrostatic properties and intermolecular energies among different Gα families and subfamilies. We identified a number of Gα surfaces that may, in several occasions, participate in interactions with receptors as well as effectors. The study of Gα interacting surfaces in terms of sequence, structure and electrostatic potential reveals features that may account for the Gα subunit's behavior towards its interacting partners. The electrostatic properties of the Gα subunits, which in some cases differ greatly not only between families but also between subfamilies, as well as the G-protein interacting surfaces of effectors and regulators of G-protein signaling (RGS) suggest that electrostatic complementarity may be an important factor in G-protein interactions. Energy calculations also support this notion. This information may be useful in future studies of G-protein interactions with GPCRs and effectors. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Electrostatic point charge fitting as an inverse problem: Revealing the underlying ill-conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Maxim V.; Talipov, Marat R.; Timerghazin, Qadir K., E-mail: qadir.timerghazin@marquette.edu [Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881 (United States)

    2015-10-07

    Atom-centered point charge (PC) model of the molecular electrostatics—a major workhorse of the atomistic biomolecular simulations—is usually parameterized by least-squares (LS) fitting of the point charge values to a reference electrostatic potential, a procedure that suffers from numerical instabilities due to the ill-conditioned nature of the LS problem. To reveal the origins of this ill-conditioning, we start with a general treatment of the point charge fitting problem as an inverse problem and construct an analytical model with the point charges spherically arranged according to Lebedev quadrature which is naturally suited for the inverse electrostatic problem. This analytical model is contrasted to the atom-centered point-charge model that can be viewed as an irregular quadrature poorly suited for the problem. This analysis shows that the numerical problems of the point charge fitting are due to the decay of the curvatures corresponding to the eigenvectors of LS sum Hessian matrix. In part, this ill-conditioning is intrinsic to the problem and is related to decreasing electrostatic contribution of the higher multipole moments, that are, in the case of Lebedev grid model, directly associated with the Hessian eigenvectors. For the atom-centered model, this association breaks down beyond the first few eigenvectors related to the high-curvature monopole and dipole terms; this leads to even wider spread-out of the Hessian curvature values. Using these insights, it is possible to alleviate the ill-conditioning of the LS point-charge fitting without introducing external restraints and/or constraints. Also, as the analytical Lebedev grid PC model proposed here can reproduce multipole moments up to a given rank, it may provide a promising alternative to including explicit multipole terms in a force field.

  17. Electrostatic point charge fitting as an inverse problem: Revealing the underlying ill-conditioning

    International Nuclear Information System (INIS)

    Ivanov, Maxim V.; Talipov, Marat R.; Timerghazin, Qadir K.

    2015-01-01

    Atom-centered point charge (PC) model of the molecular electrostatics—a major workhorse of the atomistic biomolecular simulations—is usually parameterized by least-squares (LS) fitting of the point charge values to a reference electrostatic potential, a procedure that suffers from numerical instabilities due to the ill-conditioned nature of the LS problem. To reveal the origins of this ill-conditioning, we start with a general treatment of the point charge fitting problem as an inverse problem and construct an analytical model with the point charges spherically arranged according to Lebedev quadrature which is naturally suited for the inverse electrostatic problem. This analytical model is contrasted to the atom-centered point-charge model that can be viewed as an irregular quadrature poorly suited for the problem. This analysis shows that the numerical problems of the point charge fitting are due to the decay of the curvatures corresponding to the eigenvectors of LS sum Hessian matrix. In part, this ill-conditioning is intrinsic to the problem and is related to decreasing electrostatic contribution of the higher multipole moments, that are, in the case of Lebedev grid model, directly associated with the Hessian eigenvectors. For the atom-centered model, this association breaks down beyond the first few eigenvectors related to the high-curvature monopole and dipole terms; this leads to even wider spread-out of the Hessian curvature values. Using these insights, it is possible to alleviate the ill-conditioning of the LS point-charge fitting without introducing external restraints and/or constraints. Also, as the analytical Lebedev grid PC model proposed here can reproduce multipole moments up to a given rank, it may provide a promising alternative to including explicit multipole terms in a force field

  18. Intrinsic electrostatic effects in nanostructured ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Uberuaga, Blas Pedro [Los Alamos National Laboratory; Stanek, Chris R [Los Alamos National Laboratory; Nerikar, Pankaj V [Los Alamos National Laboratory

    2009-01-01

    Using empirical potentials, we have found that electrostatic dipoles can be created at grain boundaries formed from non-polar surfaces of fluorite-structured materials. In particular, the {Sigma}5(310)/[001] symmetric tilt grain boundary reconstructs to break the symmetry in the atomic structure at the boundary, forming the dipole. This dipole results in an abrupt change in electrostatic potential across the boundary. In multilayered ceramics composed of stacks of grain boundaries, the change in electrostatic potential at the boundary results in profound electrostatic effects within the crystalline layers, the nature of which depends on the electrostatic boundary conditions. For open-circuit boundary conditions, layers with either high or low electrostatic potential are formed. By contrast, for short-circuit boundary conditions, electric fields can be created within each layer, the strength of which then depends on the thickness of the layers. These electrostatic effects may have important consequences for the behavior of defects and dopants within these materials and offer the possibility of interesting technological applications.

  19. Embedding beyond electrostatics

    DEFF Research Database (Denmark)

    Nåbo, Lina J.; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna

    2016-01-01

    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic...... repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π∗ transition, which was not possible using an embedding method that only includes electrostatics....... This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods....

  20. Scalable Molecular Dynamics for Large Biomolecular Systems

    Directory of Open Access Journals (Sweden)

    Robert K. Brunner

    2000-01-01

    Full Text Available We present an optimized parallelization scheme for molecular dynamics simulations of large biomolecular systems, implemented in the production-quality molecular dynamics program NAMD. With an object-based hybrid force and spatial decomposition scheme, and an aggressive measurement-based predictive load balancing framework, we have attained speeds and speedups that are much higher than any reported in literature so far. The paper first summarizes the broad methodology we are pursuing, and the basic parallelization scheme we used. It then describes the optimizations that were instrumental in increasing performance, and presents performance results on benchmark simulations.

  1. Micro and Nanotechnologies Enhanced Biomolecular Sensing

    Directory of Open Access Journals (Sweden)

    Tza-Huei Wang

    2013-07-01

    Full Text Available This editorial summarizes some of the recent advances of micro and nanotechnology-based tools and devices for biomolecular detection. These include the incorporation of nanomaterials into a sensor surface or directly interfacing with molecular probes to enhance target detection via more rapid and sensitive responses, and the use of self-assembled organic/inorganic nanocomposites that inhibit exceptional spectroscopic properties to enable facile homogenous assays with efficient binding kinetics. Discussions also include some insight into microfluidic principles behind the development of an integrated sample preparation and biosensor platform toward a miniaturized and fully functional system for point of care applications.

  2. Perspective: Markov models for long-timescale biomolecular dynamics

    International Nuclear Information System (INIS)

    Schwantes, C. R.; McGibbon, R. T.; Pande, V. S.

    2014-01-01

    Molecular dynamics simulations have the potential to provide atomic-level detail and insight to important questions in chemical physics that cannot be observed in typical experiments. However, simply generating a long trajectory is insufficient, as researchers must be able to transform the data in a simulation trajectory into specific scientific insights. Although this analysis step has often been taken for granted, it deserves further attention as large-scale simulations become increasingly routine. In this perspective, we discuss the application of Markov models to the analysis of large-scale biomolecular simulations. We draw attention to recent improvements in the construction of these models as well as several important open issues. In addition, we highlight recent theoretical advances that pave the way for a new generation of models of molecular kinetics

  3. Biomolecular Assembly of Gold Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Micheel, Christine Marya [Univ. of California, Berkeley, CA (United States)

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  4. Collisionless electrostatic shocks

    DEFF Research Database (Denmark)

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  5. Electrostatic septum, SPS

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight sections 2 and 6 precede the magnetic septa. This picture shows such an electrostatic septum in its tank. See 7501120X, 7501199 and 7501201 for more detailed pictures.

  6. Edutainment Science: Electrostatics

    Science.gov (United States)

    Ahlers, Carl

    2009-01-01

    Electrostatics should find a special place in all primary school science curricula. It is a great learning area that reinforces the basics that underpin electricity and atomic structure. Furthermore, it has many well documented hands-on activities. Unfortunately, the "traditional" electrostatics equipment such as PVC rods, woollen cloths, rabbit…

  7. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    For an excellent summary of the field of supramolecular chemistry, readers are referred to the article by J-M Lehn in Resonance, VaLl,. No.3, p.39, 1996. Electrostatics plays an important role in weak intermolecular interactions. The present series is aimed at understanding these electrostatic aspects. This article presents the.

  8. Improvements in continuum modeling for biomolecular systems

    Science.gov (United States)

    Yu, Qiao; Ben-Zhuo, Lu

    2016-01-01

    Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson- Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of the biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulations. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and the PNP equations, the coupling of polar and nonpolar interactions, and numerical progress. Project supported by the National Natural Science Foundation of China (Grant No. 91230106) and the Chinese Academy of Sciences Program for Cross & Cooperative Team of the Science & Technology Innovation.

  9. Electrostatic Detumble of Space Objects

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrostatic Tractor Technology research explores the harmony of physics and engineering to develop and test electrostatic actuation methods for touchless detumble...

  10. Electrostatic and electromagnetic instabilities associated with electrostatic shocks: Two-dimensional particle-in-cell simulation

    International Nuclear Information System (INIS)

    Kato, Tsunehiko N.; Takabe, Hideaki

    2010-01-01

    A two-dimensional electromagnetic particle-in-cell simulation with the realistic ion-to-electron mass ratio of 1836 is carried out to investigate the electrostatic collisionless shocks in relatively high-speed (∼3000 km s -1 ) plasma flows and also the influence of both electrostatic and electromagnetic instabilities, which can develop around the shocks, on the shock dynamics. It is shown that the electrostatic ion-ion instability can develop in front of the shocks, where the plasma is under counterstreaming condition, with highly oblique wave vectors as was shown previously. The electrostatic potential generated by the electrostatic ion-ion instability propagating obliquely to the shock surface becomes comparable with the shock potential and finally the shock structure is destroyed. It is also shown that in front of the shock the beam-Weibel instability gradually grows as well, consequently suggesting that the magnetic field generated by the beam-Weibel instability becomes important in long-term evolution of the shock and the Weibel-mediated shock forms long after the electrostatic shock vanished. It is also observed that the secondary electrostatic shock forms in the reflected ions in front of the primary electrostatic shock.

  11. A Direct Driver for Electrostatic Transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes a power stage suitable for driving an electrostatic transducer under biasing. Measurement results of a ±400 V prototype amplifier are shown. THD below 1% is reported....

  12. Converting Biomolecular Modelling Data Based on an XML Representation

    Directory of Open Access Journals (Sweden)

    Sun Yudong

    2008-06-01

    Full Text Available Biomolecular modelling has provided computational simulation based methods for investigating biological processes from quantum chemical to cellular levels. Modelling such microscopic processes requires atomic description of a biological system and conducts in fine timesteps. Consequently the simulations are extremely computationally demanding. To tackle this limitation, different biomolecular models have to be integrated in order to achieve high-performance simulations. The integration of diverse biomolecular models needs to convert molecular data between different data representations of different models. This data conversion is often non-trivial, requires extensive human input and is inevitably error prone. In this paper we present an automated data conversion method for biomolecular simulations between molecular dynamics and quantum mechanics/molecular mechanics models. Our approach is developed around an XML data representation called BioSimML (Biomolecular Simulation Markup Language. BioSimML provides a domain specific data representation for biomolecular modelling which can effciently support data interoperability between different biomolecular simulation models and data formats.

  13. Asteroid electrostatic instrumentation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Aplin, K L; Bowles, N E; Urbak, E [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Keane, D; Sawyer, E C, E-mail: k.aplin1@physics.ox.ac.uk [RAL Space, R25, Harwell Oxford, Didcot OX11 0QX (United Kingdom)

    2011-06-23

    Asteroid surface material is expected to become photoelectrically charged, and is likely to be transported through electrostatic levitation. Understanding any movement of the surface material is relevant to proposed space missions to return samples to Earth for detailed isotopic analysis. Motivated by preparations for the Marco Polo sample return mission, we present electrostatic modelling for a real asteroid, Itokawa, for which detailed shape information is available, and verify that charging effects are likely to be significant at the terminator and at the edges of shadow regions for the Marco Polo baseline asteroid, 1999JU3. We also describe the Asteroid Charge Experiment electric field instrumentation intended for Marco Polo. Finally, we find that the differing asteroid and spacecraft potentials on landing could perturb sample collection for the short landing time of 20min that is currently planned.

  14. Electrostatic pickup station

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    Electrostatic pickup station, with 4 interleaved electrodes, to measure beam position in the horizontal and vertical plane. This type is used in the transfer lines leaving the PS (TT2, TT70, TTL2). See also 7904075.

  15. Biomolecular analysis of elastic fibre molecules.

    Science.gov (United States)

    Cain, Stuart A; Raynal, Bertrand; Hodson, Nigel; Shuttleworth, Adrian; Kielty, Cay M

    2008-05-01

    Elastic fibres are macromolecular extracellular matrix assemblies that endow dynamic connective tissues such as arteries, lungs and skin with the property of elastic recoil. Here, we describe how we have purified elastic fibre molecules and then analysed them using a range of biochemical and biomolecular approaches. Such approaches have provided powerful insights into the complex hierarchical processes of extracellular matrix assembly. We outline molecular interaction and kinetics assays using Biacore, biophysical approaches such as multi-angle laser light scattering and analytical ultracentrifugation which provide information on molecular and macromolecular shape and mass in solution, the visualisation of molecules and assemblies using microscopy approaches such as atomic force microscopy and environmental scanning electron microscopy, and compositional analysis of macromolecular complexes using mass spectrometry. Data from these in vitro analytical approaches can be combined to develop powerful new models of elastic fibre assembly.

  16. Micro- and nanodevices integrated with biomolecular probes.

    Science.gov (United States)

    Alapan, Yunus; Icoz, Kutay; Gurkan, Umut A

    2015-12-01

    Understanding how biomolecules, proteins and cells interact with their surroundings and other biological entities has become the fundamental design criterion for most biomedical micro- and nanodevices. Advances in biology, medicine, and nanofabrication technologies complement each other and allow us to engineer new tools based on biomolecules utilized as probes. Engineered micro/nanosystems and biomolecules in nature have remarkably robust compatibility in terms of function, size, and physical properties. This article presents the state of the art in micro- and nanoscale devices designed and fabricated with biomolecular probes as their vital constituents. General design and fabrication concepts are presented and three major platform technologies are highlighted: microcantilevers, micro/nanopillars, and microfluidics. Overview of each technology, typical fabrication details, and application areas are presented by emphasizing significant achievements, current challenges, and future opportunities. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Biomolecular Markers in Cancer of the Tongue

    Directory of Open Access Journals (Sweden)

    Daris Ferrari

    2009-01-01

    Full Text Available The incidence of tongue cancer is increasing worldwide, and its aggressiveness remains high regardless of treatment. Genetic changes and the expression of abnormal proteins have been frequently reported in the case of head and neck cancers, but the little information that has been published concerning tongue tumours is often contradictory. This review will concentrate on the immunohistochemical expression of biomolecular markers and their relationships with clinical behaviour and prognosis. Most of these proteins are associated with nodal stage, tumour progression and metastases, but there is still controversy concerning their impact on disease-free and overall survival, and treatment response. More extensive clinical studies are needed to identify the patterns of molecular alterations and the most reliable predictors in order to develop tailored anti-tumour strategies based on the targeting of hypoxia markers, vascular and lymphangiogenic factors, epidermal growth factor receptors, intracytoplasmatic signalling and apoptosis.

  18. Electrostatic Levitator Electrode Layout

    Science.gov (United States)

    1998-01-01

    Schematic of Electrostatic Levitator (ESL) electrodes and controls system. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  19. Electrostatic Levitator Layout

    Science.gov (United States)

    1998-01-01

    Electrostatic Levitator (ESL) general layout with captions. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  20. Electrostatic Levitator Layout

    Science.gov (United States)

    1998-01-01

    General oayout of Electrostatic Levitator (ESL). The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  1. Magnetosheath electrostatic turbulence

    International Nuclear Information System (INIS)

    Rodriguez, P.

    1979-01-01

    By using measurements with the University of Iowa plasma wave experiment on the Imp 6 satellite a study has been conducted of the spectrum of electrostatic plasma waves in the terrestrial magnetosheath. Electrostatic plasma wave turbulence is almost continuously present throughout the magnetosheath with broadband (20 Hz to 70 kHz) rms field intensities typically 0.01--1.0 mV m -1 . Peak intensities of about 1.0 mV m -1 near the electron plasma frequency (30--60 kHz) have been detected occasionally. Two or three components can usually be identified in the spectrum of magnetosheath electrostatic turbulence: a high-frequency (> or =30kHz) component peaking at the electron plasma frequency f/sub p/e, a low-frequency component with a broad intensity maximum below the nominal ion plasma frequency f/sub p/i (approx. f/sub p/e/43), and a less well defined intermediate component in the range f/sub p/i < f< f/sub p/e. The intensity distribution of magnetosheath electrostatic turbulence clearly shows that the low-frequency component is associated with the bow shock, suggesting that the ion heating begun at the shock continues into the downstream magnetosheath. Electrostatic waves below 1 kHz are polarized along the magnetic field direction, a result consistent with the polarization of electrostatic waves at the shock. The high- and intermediate-frequency components are features of the magnetosheath spectrum which are not characteristic of the shock spectrum but are often detected in the upstream solar wind. The intensity distribution of electrostatic turbulence at the magnetosheath plasma frequency has no apparent correlation with the shock, indicating that electron plasma oscillations are a general feature of the magnetosheath. The plasma wave noise shows a tendency to decrease toward the dawn and dusk regions, consistent with a general decrease in turbulence away from the subsolar magnetosheath

  2. Modeling, Analysis, Simulation, and Synthesis of Biomolecular Networks

    National Research Council Canada - National Science Library

    Ruben, Harvey; Kumar, Vijay; Sokolsky, Oleg

    2006-01-01

    ...) a first example of reachability analysis applied to a biomolecular system (lactose induction), 4) a model of tetracycline resistance that discriminates between two possible mechanisms for tetracycline diffusion through the cell membrane, and 5...

  3. Sustained release vancomycin-coated titanium alloy using a novel electrostatic dry powder coating technique may be a potential strategy to reduce implant-related infection.

    Science.gov (United States)

    Han, Jing; Yang, Yi; Lu, Junren; Wang, Chenzhong; Xie, Youtao; Zheng, Xuebin; Yao, Zhenjun; Zhang, Chi

    2017-07-24

    In order to tackle the implant-related infection, a novel way was developed in this study to coat vancomycin particles mixed with controlled release coating materials onto the surface of titanium alloy by using an electrostatic dry powder coating technique. To characterize this sustained release antibacterial coating, surface morphology, in vitro and in vivo drug release were sequentially evaluated. In vitro cytotoxicity was tested by Cell Counting Kit-8 (CCK-8) assay and cytological changes were observed by inverted microscope. The antibacterial properties against MRSA, including a bacterial growth inhibition assay and a colony-counting test by spread plate method were performed. Results indicated that the vancomycin-coated sample was biocompatible for Human osteoblast cell line MG-63 and displayed effective antibacterial ability against MRSA. The coating film was revealed uniform by scanning electron microscopy. Both the in vitro and in vivo drug release kinetics showed an initially high release rate, followed by an extended period of sustained drug release over 7 days. These results suggest that with good biocompatibility and antibacterial ability, the sustained release antibacterial coating of titanium alloy using our novel electrostatic dry powder coating process may provide a promising candidate for the treatment of orthopedic implant-related infection.

  4. Multiscale Persistent Functions for Biomolecular Structure Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Kelin [Nanyang Technological University (Singapore). Division of Mathematical Sciences, School of Physical, Mathematical Sciences and School of Biological Sciences; Li, Zhiming [Central China Normal University, Wuhan (China). Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics; Mu, Lin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division

    2017-11-02

    Here in this paper, we introduce multiscale persistent functions for biomolecular structure characterization. The essential idea is to combine our multiscale rigidity functions (MRFs) with persistent homology analysis, so as to construct a series of multiscale persistent functions, particularly multiscale persistent entropies, for structure characterization. To clarify the fundamental idea of our method, the multiscale persistent entropy (MPE) model is discussed in great detail. Mathematically, unlike the previous persistent entropy (Chintakunta et al. in Pattern Recognit 48(2):391–401, 2015; Merelli et al. in Entropy 17(10):6872–6892, 2015; Rucco et al. in: Proceedings of ECCS 2014, Springer, pp 117–128, 2016), a special resolution parameter is incorporated into our model. Various scales can be achieved by tuning its value. Physically, our MPE can be used in conformational entropy evaluation. More specifically, it is found that our method incorporates in it a natural classification scheme. This is achieved through a density filtration of an MRF built from angular distributions. To further validate our model, a systematical comparison with the traditional entropy evaluation model is done. Additionally, it is found that our model is able to preserve the intrinsic topological features of biomolecular data much better than traditional approaches, particularly for resolutions in the intermediate range. Moreover, by comparing with traditional entropies from various grid sizes, bond angle-based methods and a persistent homology-based support vector machine method (Cang et al. in Mol Based Math Biol 3:140–162, 2015), we find that our MPE method gives the best results in terms of average true positive rate in a classic protein structure classification test. More interestingly, all-alpha and all-beta protein classes can be clearly separated from each other with zero error only in our model. Finally, a special protein structure index (PSI) is proposed, for the first

  5. Electrostatic septum, SPS

    CERN Multimedia

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Areas, electrostatic septa in long straight sections 2 an 6 precede the magnetic septa. The 2 electrode plates, visible at the entrance to the septum, provide a vertical electric field to remove the ions created by the circulating beam in the residual gas. Here we see one of the electrostatic septa being assembled by Faustin Emery (left) and Jacques Soubeyran (right), in the clean room of building 867. See also 7501199, 7501201, 7801286 and further explanations there.

  6. Yukawa multipole electrostatics and nontrivial coupling between electrostatic and dispersion interactions in electrolytes

    International Nuclear Information System (INIS)

    Kjellander, Roland; Ramirez, Rosa

    2008-01-01

    An exact treatment of screened electrostatics in electrolyte solutions is presented. In electrolytes the anisotropy of the exponentially decaying electrostatic potential from a molecule extends to the far field region. The full directional dependence of the electrostatic potential from a charged or uncharged molecule remains in the longest range tail (i.e. from all multipole moments). In particular, the range of the potential from an ion and that from an electroneutral polar particle is generally exactly the same. This is in contrast to the case in vacuum or pure polar liquids, where the potential from a single charge is longer ranged than that from a dipole, which is, itself, longer ranged than the one from a quadrupole etc. The orientational dependence of the exponentially screened electrostatic interaction between two molecules in electrolytes is therefore rather complex even at long distances. These facts are formalized in Yukawa multipole expansions of the electrostatic potential and the pair interaction free energy based on the Yukawa function family exp(-κr)/r m , where r is the distance, κ is a decay parameter and m is a positive integer. The expansion is formally exact for electrolytes with molecular solvent and in the primitive model, provided the non-Coulombic interactions between the particles are sufficiently short ranged. The results can also be applied in the Poisson-Boltzmann approximation. Differences and similarities to the ordinary multipole expansion of electrostatics are pointed out. On the other hand, when the non-Coulombic interactions between the constituent particles of the electrolyte solution contain a dispersion 1/r 6 potential, the electrostatic potential from a molecule decays like a power law for long distances rather than as a Yukawa function. This is due to nontrivial coupling between the electrostatic and dispersion interactions. There remains an exponentially decaying component in the electrostatic potential, but it becomes

  7. Electrostatics of a Family of Conducting Toroids

    Science.gov (United States)

    Lekner, John

    2009-01-01

    An exact solution is found for the electrostatic potential of a family of conducting charged toroids. The toroids are characterized by two lengths "a" and "b", with "a" greater than or equal to "2b". They are closed, with no hole in the "doughnut". The results are obtained by considering the potential of two equal charges, displaced from the…

  8. Coordination and control inside simple biomolecular machines.

    Science.gov (United States)

    Yu, Jin

    2014-01-01

    Biomolecular machines can achieve physiological functions precisely and efficiently, though they always operate under fluctuations and noises. We review two types of simple machinery that we have recently studied. The machinery can be regarded as molecular motors. They transform chemical free energy from NTP hydrolysis to mechanical work. One type belongs to small monomeric helicases that move directionally along single-stranded nucleic acid, and may further unwind the duplex part for gene replication or repair. The other type belongs to ring-shaped NTPase motors that also move or transport nucleic acid or protein substrate in a directional manner, such as for genome packaging or protein degradation. The central issue in this review is on how the machinery coordinates essential degrees of freedom during the mechanochemical coupling process. Further concerns include how the coordination and control are manifested in experiments, and how they can be captured well in modeling and computational research. We employed atomistic molecular dynamics simulations, coarse-grained analyses, and stochastic modeling techniques to examine the molecular machines at multiple resolutions and timescales. Detailed descriptions on how the protein interacts with its substrate at interface, as well as how multiple protein subunits are coordinated are summarized.

  9. Spectroscopy of mobility-selected biomolecular ions.

    Science.gov (United States)

    Papadopoulos, Georgios; Svendsen, Annette; Boyarkin, Oleg V; Rizzo, Thomas R

    2011-01-01

    We describe here experiments that combine differential ion mobility, which separates conformational isomers of biomolecular ions, with electronic spectroscopy in a cold, radio-frequency ion trap. Although the low temperature attainable in a cold ion trap greatly simplifies the electronic spectra of large molecules, conformational heterogeneity can still be a significant source of congestion, complicating spectroscopic analysis. We demonstrate here that using differential ion mobility to separate gas-phase peptide conformers before injecting them into a cold ion trap allows one to decompose a dense spectrum into contributions from different conformational families. In the inverse sense, cold ion spectroscopy can be used as a conformation-specific detector for ion mobility, allowing one to separate an unresolved peak into contributions from different conformational families. The doubly protonated peptide bradykinin serves as a good test case for the marriage of these two techniques as it exhibits a considerable degree of conformational heterogeneity that results in a highly congested electronic spectrum. Our results demonstrate the feasibility and advantages of directly coupling ion mobility with spectroscopy and provide a diagnostic of conformational isomerization of this peptide after being produced in the gas phase by electrospray.

  10. A multiscale modeling approach for biomolecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Bowling, Alan, E-mail: bowling@uta.edu; Haghshenas-Jaryani, Mahdi, E-mail: mahdi.haghshenasjaryani@mavs.uta.edu [The University of Texas at Arlington, Department of Mechanical and Aerospace Engineering (United States)

    2015-04-15

    This paper presents a new multiscale molecular dynamic model for investigating the effects of external interactions, such as contact and impact, during stepping and docking of motor proteins and other biomolecular systems. The model retains the mass properties ensuring that the result satisfies Newton’s second law. This idea is presented using a simple particle model to facilitate discussion of the rigid body model; however, the particle model does provide insights into particle dynamics at the nanoscale. The resulting three-dimensional model predicts a significant decrease in the effect of the random forces associated with Brownian motion. This conclusion runs contrary to the widely accepted notion that the motor protein’s movements are primarily the result of thermal effects. This work focuses on the mechanical aspects of protein locomotion; the effect ATP hydrolysis is estimated as internal forces acting on the mechanical model. In addition, the proposed model can be numerically integrated in a reasonable amount of time. Herein, the differences between the motion predicted by the old and new modeling approaches are compared using a simplified model of myosin V.

  11. MSMBuilder: Statistical Models for Biomolecular Dynamics.

    Science.gov (United States)

    Harrigan, Matthew P; Sultan, Mohammad M; Hernández, Carlos X; Husic, Brooke E; Eastman, Peter; Schwantes, Christian R; Beauchamp, Kyle A; McGibbon, Robert T; Pande, Vijay S

    2017-01-10

    MSMBuilder is a software package for building statistical models of high-dimensional time-series data. It is designed with a particular focus on the analysis of atomistic simulations of biomolecular dynamics such as protein folding and conformational change. MSMBuilder is named for its ability to construct Markov state models (MSMs), a class of models that has gained favor among computational biophysicists. In addition to both well-established and newer MSM methods, the package includes complementary algorithms for understanding time-series data such as hidden Markov models and time-structure based independent component analysis. MSMBuilder boasts an easy to use command-line interface, as well as clear and consistent abstractions through its Python application programming interface. MSMBuilder was developed with careful consideration for compatibility with the broader machine learning community by following the design of scikit-learn. The package is used primarily by practitioners of molecular dynamics, but is just as applicable to other computational or experimental time-series measurements. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. A New Approach for Studying Bond Rupture/Closure of a Spiro Benzopyran Photochromic Material: Reactivity Descriptors Derived from Frontier Orbitals and DFT Computed Electrostatic Potential Energy Surface Maps

    Directory of Open Access Journals (Sweden)

    M. S. A. Abdel-Mottaleb

    2016-01-01

    Full Text Available This paper focuses on computations technique within the framework of the TD-DFT theory for studying the relationship between structure-properties of reversible conversion of photochromic materials. Specifically, we report on 1′,3′-dihydro-8-methoxy-1′,3′,3′-trimethyl-6-nitrospiro[2H-1-benzopyran-2,2′-(2H-indole] (SP and its isomers. TD-DFT calculated UV-Vis electronic spectra of the closed and open isomers of this photochromic material are in excellent agreement with the experimental results. Moreover, this paper reports on the results of theoretical investigations of reactivity indices that may govern the conversion between spiropyrans and its isomers. In addition, the solvent and rigidity of the medium significantly control the thermal bleaching of the photogenerated colored isomers and hence the switch ability pattern of the photochromic material. The effect of molecular structure computed by DFT in gas-phase and solvents on Cspiro-O bond length has been shown to correlate with photochromic properties. For this compound, DFT optimized geometry could be used to predict photochromism. Furthermore, in an attempt to predict the driving force for MC → SP, this work explores, for the first time, profitable exploitation of the calculated and visualized mapped electrostatic potential energy surfaces (ESP map. Interestingly, it seems that the electrostatic potential forces over the molecular fragments govern spirobond rupture/closure reactions. Thermodynamically, all-trans-colored isomer (CTT is the most stable merocyanine-like form.

  13. Electrostatic shielding of transformers

    Energy Technology Data Exchange (ETDEWEB)

    De Leon, Francisco

    2017-11-28

    Toroidal transformers are currently used only in low-voltage applications. There is no published experience for toroidal transformer design at distribution-level voltages. Toroidal transformers are provided with electrostatic shielding to make possible high voltage applications and withstand the impulse test.

  14. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 2. Electrostatics in Chemistry - Basic Principles. Shridhar R Gadre Pravin K Bhadane. Series Article Volume 4 Issue 2 February 1999 pp 8-19. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. Electrostatically suspended torsion pendulum

    Science.gov (United States)

    Willemenot, E.; Touboul, P.

    2000-01-01

    A torsion pendulum without a torsion wire has been designed and realized, in order to measure very weak forces. The arm of this torsion pendulum (5.40 g, 1.32×10-6 kg m2 of inertia) is electrostatically suspended. Its 6 degrees of freedom are controlled thanks to electrostatic forces, and capacitive position sensing with a noise spectral density between 10-10 and 10-13 m/√Hz . The torque noise spectral density is 1.3×10-14 Nm/√Hz around 0.05 Hz with a 1/√f increase at lower frequency, corresponding to 10-8 rad/s2/√Hz , and 2×10-10 ms-2/√Hz with a lever arm of 2 cm. The residual seismic noise limit the performances above 0.1 Hz. The free oscillating mode has a torsion stiffness of 5.14×10-8 Nm/rad and a Q of 217. This new instrument allows on ground experiments on very weak parasitic forces inside space accelerometers developed in ONERA, with a good representativeness. For example, it is possible to measure electrostatic stiffnesses with high resolution thanks to the low torque noise spectral density; the electrostatic damping phenomenon is also well seen as illustrated by the rather low Q. The instrument design and operation are described, the main performances are given, and the possibilities offered are discussed.

  16. Electrostatic pickup station

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    Electrostatic pickup station, with 4 electrodes, to measure beam position in the horizontal and vertical plane. This type is used in the transfer lines leaving the PS (TT2, TTL2, TT70). See also 8206063, where the electrode shapes are clearly visible.

  17. Electrostatic septum, SPS

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight sections 2 and 6 precede the magnetic septa. This picture is a detail of 7501199, and shows the suspension of the wires. 7801286 shows a septum in its tank. See also 7501120X.

  18. Versatile electrostatic trap

    NARCIS (Netherlands)

    van Veldhoven, J.; Bethlem, H.L.; Schnell, M.; Meijer, G.

    2006-01-01

    A four electrode electrostatic trap geometry is demonstrated that can be used to combine a dipole, quadrupole, and hexapole field. A cold packet of ND315 molecules is confined in both a purely quadrupolar and hexapolar trapping field and additionally, a dipole field is added to a hexapole field to

  19. An asymmetry in electrostatics

    Science.gov (United States)

    Ganci, Salvatore

    2013-11-01

    This paper outlines a misuse of the electrostatic induction concept. A non-symmetrical behaviour was observed in a charge by the induction of an insulated hollow metallic conductor (the Faraday ice pail experiment). The major consequence of this experiment is a quick demonstration that the Earth must have a net negative charge.

  20. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    lar chemistry can be understood on the basis of simple electro- static concepts. The basic rules of the 'electrostatic game' were presented in Part 11. .... the molecules from running into each other, a strategy similar to the one in the B-F model above is employed. The docking process in the search for the minimum energy ...

  1. Self-assembling biomolecular catalysts for hydrogen production

    Science.gov (United States)

    Jordan, Paul C.; Patterson, Dustin P.; Saboda, Kendall N.; Edwards, Ethan J.; Miettinen, Heini M.; Basu, Gautam; Thielges, Megan C.; Douglas, Trevor

    2016-02-01

    The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted Escherichia coli for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis.

  2. Microfluidic Devices for Studying Biomolecular Interactions

    Science.gov (United States)

    Wilson, Wilbur W.; Garcia, Carlos d.; Henry, Charles S.

    2006-01-01

    Microfluidic devices for monitoring biomolecular interactions have been invented. These devices are basically highly miniaturized liquid-chromatography columns. They are intended to be prototypes of miniature analytical devices of the laboratory on a chip type that could be fabricated rapidly and inexpensively and that, because of their small sizes, would yield analytical results from very small amounts of expensive analytes (typically, proteins). Other advantages to be gained by this scaling down of liquid-chromatography columns may include increases in resolution and speed, decreases in the consumption of reagents, and the possibility of performing multiple simultaneous and highly integrated analyses by use of multiple devices of this type, each possibly containing multiple parallel analytical microchannels. The principle of operation is the same as that of a macroscopic liquid-chromatography column: The column is a channel packed with particles, upon which are immobilized molecules of the protein of interest (or one of the proteins of interest if there are more than one). Starting at a known time, a solution or suspension containing molecules of the protein or other substance of interest is pumped into the channel at its inlet. The liquid emerging from the outlet of the channel is monitored to detect the molecules of the dissolved or suspended substance(s). The time that it takes these molecules to flow from the inlet to the outlet is a measure of the degree of interaction between the immobilized and the dissolved or suspended molecules. Depending on the precise natures of the molecules, this measure can be used for diverse purposes: examples include screening for solution conditions that favor crystallization of proteins, screening for interactions between drugs and proteins, and determining the functions of biomolecules.

  3. Electrochemical sensor for multiplex screening of genetically modified DNA: identification of biotech crops by logic-based biomolecular analysis.

    Science.gov (United States)

    Liao, Wei-Ching; Chuang, Min-Chieh; Ho, Ja-An Annie

    2013-12-15

    Genetically modified (GM) technique, one of the modern biomolecular engineering technologies, has been deemed as profitable strategy to fight against global starvation. Yet rapid and reliable analytical method is deficient to evaluate the quality and potential risk of such resulting GM products. We herein present a biomolecular analytical system constructed with distinct biochemical activities to expedite the computational detection of genetically modified organisms (GMOs). The computational mechanism provides an alternative to the complex procedures commonly involved in the screening of GMOs. Given that the bioanalytical system is capable of processing promoter, coding and species genes, affirmative interpretations succeed to identify specified GM event in terms of both electrochemical and optical fashions. The biomolecular computational assay exhibits detection capability of genetically modified DNA below sub-nanomolar level and is found interference-free by abundant coexistence of non-GM DNA. This bioanalytical system, furthermore, sophisticates in array fashion operating multiplex screening against variable GM events. Such a biomolecular computational assay and biosensor holds great promise for rapid, cost-effective, and high-fidelity screening of GMO. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. A Study of Electrostatic Charge on Insulating Film by Electrostatic Force Microscopy

    International Nuclear Information System (INIS)

    Kikunaga, K; Toosaka, K; Kamohara, T; Sakai, K; Nonaka, K

    2011-01-01

    Electrostatic charge properties on polypropylene film have been characterized by atomic force microscopy and electrostatic force microscopy. The measurements have been carried out after the polypropylene film was electrified by contact and separation process in an atmosphere of controlled humidity. The negative and positive charge in concave surface has been observed. The correlation between concave surface and charge position suggests that the electrostatic charges could be caused by localized contact. On the other hand, positive charge on a flat surface has been observed. The absence of a relationship between surface profile and charge position suggests that the electrostatic charge should be caused by discharge during the separation process. The spatial migration of other positive charges through surface roughness has been observed. The results suggest that there could be some electron traps on the surface roughness and some potentials on the polypropylene film.

  5. Electrostatic phenomena in organic semiconductors: fundamentals and implications for photovoltaics.

    Science.gov (United States)

    D'Avino, Gabriele; Muccioli, Luca; Castet, Frédéric; Poelking, Carl; Andrienko, Denis; Soos, Zoltán G; Cornil, Jérôme; Beljonne, David

    2016-11-02

    This review summarizes the current understanding of electrostatic phenomena in ordered and disordered organic semiconductors, outlines numerical schemes developed for quantitative evaluation of electrostatic and induction contributions to ionization potentials and electron affinities of organic molecules in a solid state, and illustrates two applications of these techniques: interpretation of photoelectron spectroscopy of thin films and energetics of heterointerfaces in organic solar cells.

  6. Electrostatic effects on hyaluronic acid configuration

    Science.gov (United States)

    Berezney, John; Saleh, Omar

    2015-03-01

    In systems of polyelectrolytes, such as solutions of charged biopolymers, the electrostatic repulsion between charged monomers plays a dominant role in determining the molecular conformation. Altering the ionic strength of the solvent thus affects the structure of such a polymer. Capturing this electrostatically-driven structural dependence is important for understanding many biological systems. Here, we use single molecule manipulation experiments to collect force-extension behavior on hyaluronic acid (HA), a polyanion which is a major component of the extracellular matrix in all vertebrates. By measuring HA elasticity in a variety of salt conditions, we are able to directly assess the contribution of electrostatics to the chain's self-avoidance and local stiffness. Similar to recent results from our group on single-stranded nucleic acids, our data indicate that HA behaves as a swollen chain of electrostatic blobs, with blob size proportional to the solution Debye length. Our data indicate that the chain structure within the blob is not worm-like, likely due to long-range electrostatic interactions. We discuss potential models of this effect.

  7. IAE pulsed electrostatic accelerator

    International Nuclear Information System (INIS)

    Afanas'ev, V.P.; Ganzhelyuk, M.L.; Kozlov, L.D.; Koltypin, E.A.; Molchanov, Yu.D.; Otroshchenko, G.A.; Yan'kov, G.B.

    1976-01-01

    The modernized pulse electrostatic accelerator using the klystron ion grouping and the beam interruption system prior to acceleration is described. The accelerator is modernized in order to improve parameters of a current pulse and to decrease the background in the measurement room. The ion beam of needed dimensions is obtained with the help of a high-frequency source and a beam grouping and deflection system. The general view of the beam grouping and deflection system is shown. The ion beam forming process is considered in detail. The modernized electrostatic accelerator permits to obtain a pulse current with a pulse length of 1.5 ns and an amplitude of 1.5 - 2 μA. With the repetition frequency of 2 MHz, the average target current is about 6 μA

  8. Theoretical insight into the binding energy and detonation performance of ε-, γ-, β-CL-20 cocrystals with β-HMX, FOX-7, and DMF in different molar ratios, as well as electrostatic potential.

    Science.gov (United States)

    Feng, Rui-Zhi; Zhang, Shu-Hai; Ren, Fu-de; Gou, Rui-Jun; Gao, Li

    2016-06-01

    Molecular dynamics method was employed to study the binding energies on the selected crystal planes of the ε-, γ-, β-conformation 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (ε-, γ-, β-CL-20) cocrystal explosives with 1,1-diamino-2,2-dinitroethylene (FOX-7), 1,3,5,7-tetranitro- 1,3,5,7-tetrazacyclooctane with β-conformation (β-HMX) and N,N-dimethylformamide (DMF) in different molar ratios. The oxygen balance, density, detonation velocity, detonation pressure, and surface electrostatic potential were analyzed. The results indicate that the binding energies E b (*) and stabilities are in the order of 1:1 > 2:1 > 3:1 > 5:1 > 8:1 (CL-20:FOX-7/β-HMX/DMF). The values of E b (*) and stabilities of the energetic-nonenergetic CL-20/DMF cocrystals are far larger than those of the energetic-energetic CL-20/FOX-7 and CL-20/β-HMX, and those of CL-20/β-HMX are the smallest. For CL-20/FOX-7 and CL-20/β-HMX, the largest E b (*) appears in the cocrystals with the 1:1, 1:2 or 1:3 molar ratio, and the stabilities of the cocrystals with the excess ratio of CL-20 are weaker than those in the cocrystals with the excess ratio of FOX-7 or β-HMX. In CL-20/FOX-7, CL-20 prefers adopting the γ-form, and ε-CL-20 is the preference in CL-20/β-HMX, and ε-CL-20 and β-CL-20 can be found in CL-20/DMF. The CL-20/FOX-7 and CL-20/β-HMX cocrystals with low molar ratios can meet the requirements of low sensitive high energetic materials. Surface electrostatic potential reveals the nature of the sensitivity change upon the cocrystal formation. Graphical Abstract MD method was employed to study the binding energies on the selected crystal planes in the ε-, γ-, β-CL-20 cocrystals with FOX-7, β-HMX and DMF in different molar ratios. Surface electrostatic potential reveals the nature of the sensitivity change in cocrystals.

  9. Electrostatic curtain studies

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1992-05-01

    This report presents the results of experiments using electrostatic curtains (ESCS) as a transuranic (TRU) contamination control technique. The TRU contaminants included small (micrometer to sub micrometer) particles of plutonium and americium compounds associated with defense-related waste. Three series of experiments were conducted. The first was with uncontaminated Idaho National Engineering Laboratory (INEL) soil, the second used contaminated soil containing plutonium-239 (from a mixture of Rocky Flats Plant contaminated soil and INEL uncontaminated soil), and the third was uncontaminated INEL soil spiked with plutonium-239. All experiments with contaminated soil were conducted inside a glove box containing a dust generator, low volume cascade impactor (LVCI), electrostatic separator, and electrostatic materials. The data for these experiments consisted of the mass of dust collected on the various material coupons, plates, and filters; radiochemical analysis of selected samples; and photographs, as well as computer printouts giving particle size distributions and dimensions from the scanning electron microscope (SEM). The following results were found: (a) plutonium content (pCi/g) was found to increase with smaller soil particle sizes and (b) the electrostatic field had a stronger influence on smaller particle sizes compared to larger particle sizes. The SEM analysis indicated that the particle size of the tracer Pu239 used in the spiked soil experiments was below the detectable size limit (0.5 μm) of the SEM and, thus, may not be representative of plutonium particles found in defense-related waste. The use of radiochemical analysis indicated that plutonium could be found on separator plates of both polarities, as well as passing through the electric field and collecting on LVCI filters

  10. Electrostatic septum, SPS

    CERN Multimedia

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight section 2 and 6 precede the magnetic septa. The 2 electrode plates, visible at the entrance to the septum, establish a vertical electrical field to remove the ions created by the circulating beam in the residual gas. See 7801286 for such a septum in its tank, and 7501201 for a detailed view of the wire suspension. See also 7501120X.

  11. Novel miniature electrostatic generator

    Science.gov (United States)

    Bakhoum, Ezzat G.

    2008-01-01

    A new and unusual design for an electrostatic high voltage generator is introduced. The prototype device built by the author can generate a voltage up to approximately 180kV; yet, its physical size is only a fraction of the size of a comparable Van de Graaff generator. In recent years there has been increasing demand for high voltage generators that are also very compact and lightweight. The new design introduced here fulfills that requirement.

  12. Electrostatic precipitator for air cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Albertsson, P.; Eriksson, R.; Vlastos, A.

    1981-03-31

    An electrostatic precipitator is disclosed for air cleaning wherein the air passes through in two steps: first passing through a charging portion and next through a separation portion. The charging portion includes wires positioned parallel to and between parallel metal sheets, the wires having an electric potential other than that of the metal sheets. The separation portion includes plural parallel metal sheets, each of which has an electric potential other than that of adjacent metal sheets. The charging portion includes two or more wires between each pair of metal sheets, and the metal sheets of the charging portion extend through and constitute some of the metal sheets of the separation portion, between which are disposed addition metal sheets of an odd number.

  13. Laser photodissociation and spectroscopy of mass-separated biomolecular ions

    CERN Document Server

    Polfer, Nicolas C

    2014-01-01

    This lecture notes book presents how enhanced structural information of biomolecular ions can be obtained from interaction with photons of specific frequency - laser light. The methods described in the book ""Laser photodissociation and spectroscopy of mass-separated biomolecular ions"" make use of the fact that the discrete energy and fast time scale of photoexcitation can provide more control in ion activation. This activation is the crucial process producing structure-informative product ions that cannot be generated with more conventional heating methods, such as collisional activation. Th

  14. Highly Tunable Electrostatic Nanomechanical Resonators

    KAUST Repository

    Kazmi, Syed Naveed Riaz

    2017-11-24

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  15. Innovative Electrostatic Adhesion Technologies

    Science.gov (United States)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  16. Numerical simulations for quantitative analysis of electrostatic interaction between atomic force microscopy probe and an embedded electrode within a thin dielectric: meshing optimization, sensitivity to potential distribution and impact of cantilever contribution

    Science.gov (United States)

    Azib, M.; Baudoin, F.; Binaud, N.; Villeneuve-Faure, C.; Bugarin, F.; Segonds, S.; Teyssedre, G.

    2018-04-01

    Recent experimental results demonstrated that an electrostatic force distance curve (EFDC) can be used for space charge probing in thin dielectric layers. A main advantage of the method is claimed to be its sensitivity to charge localization, which, however, needs to be substantiated by numerical simulations. In this paper, we have developed a model which permits us to compute an EFDC accurately by using the most sophisticated and accurate geometry for the atomic force microscopy probe. To avoid simplifications and in order to reproduce experimental conditions, the EFDC has been simulated for a system constituted of a polarized electrode embedded in a thin dielectric layer (SiN x ). The individual contributions of forces on the tip and on the cantilever have been analyzed separately to account for possible artefacts. The EFDC sensitivity to potential distribution is studied through the change in electrode shape, namely the width and the depth. Finally, the numerical results have been compared with experimental data.

  17. Theoretical insights into the stabilities, detonation performance, and electrostatic potentials of cocrystals containing α- or β-HMX and TATB, FOX-7, NTO, or DMF in various molar ratios.

    Science.gov (United States)

    Song, Ken-Peng; Ren, Fu-de; Zhang, Shu-Hai; Shi, Wen-Jing

    2016-10-01

    A molecular dynamics method was employed to study the binding energies associated with the cocrystallization (at selected crystal planes) of either 1,3,5-triamino-2,4,6-trinitro-benzene (TATB), 1,1-diamino-2,2-dinitroethylene, 3-nitro-1,2,4-triazol-5-one (TATB, FOX-7, and NTO, respectively, all of which are explosives), or N,N-dimethylformamide (DMF, a nonenergetic solvent) in various molar ratios with 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane in its α and β conformations (α-HMX and β-HMX, respectively). The results showed that the cocrystals with low molar ratios (2:1, 1:1, 1:2, and 1:3) were the most stable. The binding energies of HMX/NTO and HMX/DMF were larger than those of HMX/TATB and HMX/FOX-7. According to the calculated stabilities, HMX prefers to adopt its α form in HMX/TATB and its β form in HMX/NTO, whereas the two forms coexist in HMX/FOX-7. For HMX/TATB, HMX/NTO, and α-HMX/FOX-7, increasing the proportion of the cocrystal component with the highest detonation heat (HMX in the first two cases, FOX-7 in the latter) increases the detonation heat, velocity, and pressure of the cocrystal. However, increasing the proportion of the component with the highest detonation heat in β-HMX/FOX-7 and γ-CL-20/FOX-7 increases the detonation heat of the cocrystal but decreases its detonation velocity. An investigation of the surface electrostatic potential revealed how the sensitivity changes upon cocrystal formation. Graphical Abstract Surface electrostatic potential of HMX/TATB.

  18. Spacecraft Electrostatic Radiation Shielding

    Science.gov (United States)

    2008-01-01

    This project analyzed the feasibility of placing an electrostatic field around a spacecraft to provide a shield against radiation. The concept was originally proposed in the 1960s and tested on a spacecraft by the Soviet Union in the 1970s. Such tests and analyses showed that this concept is not only feasible but operational. The problem though is that most of this work was aimed at protection from 10- to 100-MeV radiation. We now appreciate that the real problem is 1- to 2-GeV radiation. So, the question is one of scaling, in both energy and size. Can electrostatic shielding be made to work at these high energy levels and can it protect an entire vehicle? After significant analysis and consideration, an electrostatic shield configuration was proposed. The selected architecture was a torus, charged to a high negative voltage, surrounding the vehicle, and a set of positively charged spheres. Van de Graaff generators were proposed as the mechanism to move charge from the vehicle to the torus to generate the fields necessary to protect the spacecraft. This design minimized complexity, residual charge, and structural forces and resolved several concerns raised during the internal critical review. But, it still is not clear if such a system is costeffective or feasible, even though several studies have indicated usefulness for radiation protection at energies lower than that of the galactic cosmic rays. Constructing such a system will require power supplies that can generate voltages 10 times that of the state of the art. Of more concern is the difficulty of maintaining the proper net charge on the entire structure and ensuring that its interaction with solar wind will not cause rapid discharge. Yet, if these concerns can be resolved, such a scheme may provide significant radiation shielding to future vehicles, without the excessive weight or complexity of other active shielding techniques.

  19. New functionalities in the GROMOS biomolecular simulation software

    NARCIS (Netherlands)

    Kunz, A.P.E.; Allison, J.R.; Geerke, D.P.; Horta, B.A.C.; Hünenberger, Ph.H.; Riniker, S; Schmid, N.; van Gunsteren, W.F.

    2012-01-01

    Since the most recent description of the functionalities of the GROMOS software for biomolecular simulation in 2005 many new functions have been implemented. In this article, the new functionalities that involve modified forces in a molecular dynamics (MD) simulation are described: the treatment of

  20. Transient response characteristics in a biomolecular integral controller.

    Science.gov (United States)

    Sen, Shaunak

    2016-04-01

    The cellular behaviour of perfect adaptation is achieved through the use of an integral control element in the underlying biomolecular circuit. It is generally unclear how integral action affects the important aspect of transient response in these biomolecular systems, especially in light of the fact that it typically deteriorates the transient response in engineering contexts. To address this issue, the authors investigated the transient response in a computational model of a simple biomolecular integral control system involved in bacterial signalling. They find that the transient response can actually speed up as the integral gain parameter increases. On further analysis, they find that the underlying dynamics are composed of slow and fast modes and the speed-up of the transient response is because of the speed-up of the slow-mode dynamics. Finally, they note how an increase in the integral gain parameter also leads to a decrease in the amplitude of the transient response, consistent with the overall improvement in the transient response. These results should be useful in understanding the overall effect of integral action on system dynamics, particularly for biomolecular systems.

  1. From dynamics to structure and function of model biomolecular systems

    NARCIS (Netherlands)

    Fontaine-Vive-Curtaz, F.

    2007-01-01

    The purpose of this thesis was to extend recent works on structure and dynamics of hydrogen bonded crystals to model biomolecular systems and biological processes. The tools that we have used are neutron scattering (NS) and density functional theory (DFT) and force field (FF) based simulation

  2. Synergy of Two Highly Specific Biomolecular Recognition Events

    DEFF Research Database (Denmark)

    Ejlersen, Maria; Christensen, Niels Johan; Sørensen, Kasper K

    2018-01-01

    Two highly specific biomolecular recognition events, nucleic acid duplex hybridization and DNA-peptide recognition in the minor groove, were coalesced in a miniature ensemble for the first time by covalently attaching a natural AT-hook peptide motif to nucleic acid duplexes via a 2'-amino...

  3. Electrostatic Dust Control on Planetary Surfaces

    Science.gov (United States)

    Clark, P. E.; Calle, C. I.; Curtis, S. A.; Keller, J. F.; Minetto, F.; Mantovani, J. G.

    2007-01-01

    Successful operation for exploration of planetary regoliths will depend on the capability to keep surfaces free of dust which could compromise performance and to collect dust for characterization. Such study is essential in order to resolve issues in dealing with regolith fines identified during the Apollo missions where dust behaved like abrasive Velcro before returning to the Moon. During Moon landings, locally-induced stirring of the regolith caused dust to be suspended long enough to come into contact with conducting surfaces. Lunar fines, because of their electrostatic charging, were difficult to collect and sparsely sampled: bag seals were broken, samples contaminated and lost. Our objectives here are to describe a multi-faceted electrostatically-based approach and methodology for addressing this issue, as well as to present our preliminary results which confirm the view that the successful strategy will deal with dust dynamics resulting from interaction between mechanical and electrostatic forces. Our device concept combines electron or ion beams, acting as a plasma dust sweeper to control the flow of dust by systematic scanning of the surface with an electrostatically controlled potential. A plate of the opposite potential used to induce dust migration in the presence of an electrical field. Our goal is a compact device of dust for sampling as part of the extended exploration process on extensive areas of exposed impact-generated regolith, on Mercury, Mars, asteroids or outer solar system satellites, as well as the Moon.

  4. Electrostatics of Pharmaceutical Aerosols for Pulmonary Delivery.

    Science.gov (United States)

    Lip Kwok, Philip Chi

    2015-01-01

    This paper provides a review on key research findings in the rapidly developing area of pharmaceutical aerosol electrostatics. Solids and liquids can become charged without electric fields, the former by contact or friction and the latter by flowing or spraying. Therefore, charged particles and droplets carrying net charges are produced from pharmaceutical inhalers (e.g. dry powder inhalers, metered dose inhalers, and nebulisers) due to the mechanical processes involved in aerosolisation. The charging depends on many physicochemical factors, such as formulation composition, solid state properties, inhaler material and design, and relative humidity. In silico, in vitro, and limited in vivo studies have shown that electrostatic charges may potentially influence particle deposition in the airways. However, the evidence is not yet conclusive. Furthermore, there are currently no regulatory requirements on the characterisation and control of the electrostatic properties of inhaled formulations. Besides the need for further investigations on the relationship between physicochemical factors and charging characteristics of the aerosols, controlled and detailed in vivo studies are also required to confirm whether charges can affect particle deposition in the airways. Since pharmaceutical aerosol electrostatics is a relatively new research area, much remains to be explored. Thus there is certainly potential for development. New findings in the future may contribute to the advancement of pharmaceutical aerosol formulations and respiratory drug delivery.

  5. SIMION, Electrostatic Lens Analysis and Design

    International Nuclear Information System (INIS)

    Dahl, David A.

    2001-01-01

    1 - Description of program or function: SIMION is an electrostatic lens analysis and design program. In SIMION an electrostatic lens is defined as a two-dimensional electrostatic potential array containing both electrode and non-electrode points. The potential array is refined using over-relaxation methods allowing voltage contours and ion trajectories to be computed and plotted. Planar and cylindrical symmetry assumptions allow the two-dimensional fields to support three-dimensional ion trajectory calculations. In addition, the user has the option of writing simple programs which can among other actions control field scale factors, dynamically adjust electrodes, and define explicit three-dimensional field functions (e.g. a quadrupole) used in lieu of array fields in specified portions of the potential array. Magnetic fields can be specified for computing ion trajectories in many electrostatic and magnetic field environments. An interactive graphics interface that uses a high resolution color display and mouse allows the user to view electrodes, trajectories, and contours on the screen prior to plotting, and a memory zoom feature permits expansion of selected areas in the current view. The mouse can be operated to edit the potential array, initialize voltage gradients, or resize the potential array. 2 - Method of solution: SIMION is designed to model the electrostatic fields and forces created by a collection of shaped electrodes given certain symmetry assumptions. The electrostatic fields are modeled as boundary value problem solutions of a Laplace elliptical partial differential equation. A finite difference technique called dynamically self-adjusting over-relaxation is applied to the two-dimensional potential array of points representing electrode and non-electrode regions to obtain a best estimate of the voltages for those points within the array that depict non-electrode regions. A standard fourth-order Runge-Kutta method is used for numerical integration of

  6. Continuum electrostatics for ionic solutions with non-uniform ionic sizes

    International Nuclear Information System (INIS)

    Li Bo

    2009-01-01

    This work concerns electrostatic properties of an ionic solution with multiple ionic species of possibly different ionic sizes. Such properties are described by the minimization of an electrostatic free-energy functional of ionic concentrations. Bounds are obtained for ionic concentrations with low electrostatic free energies. Such bounds are used to show that there exists a unique set of equilibrium ionic concentrations that minimizes the free-energy functional. The equilibrium ionic concentrations are found to depend sorely on the equilibrium electrostatic potential, resembling the classical Boltzmann distributions that relate the equilibrium ionic concentrations to the equilibrium electrostatic potential. Unless all the ionic and solvent molecular sizes are assumed to be the same, explicit formulae of such dependence are, however, not available in general. It is nevertheless proved that in equilibrium the ionic charge density is a decreasing function of the electrostatic potential. This determines a variational principle with a convex functional for the electrostatic potential

  7. Internal Electrostatic Discharge Monitor - IESDM

    Science.gov (United States)

    Kim, Wousik; Goebel, Dan M.; Jun, Insoo; Garrett, Henry B.

    2011-01-01

    A document discusses an innovation designed to effectively monitor dielectric charging in spacecraft components to measure the potential for discharge in order to prevent damage from internal electrostatic discharge (IESD). High-energy electrons penetrate the structural materials and shielding of a spacecraft and then stop inside dielectrics and keep accumulating. Those deposited charges generate an electric field. If the electric field becomes higher than the breakdown threshold (approx. =2 x 10(exp 5) V/cm), discharge occurs. This monitor measures potentials as a function of dielectric depth. Differentiation of potential with respect to the depth yields electric field. Direct measurement of the depth profile of the potential in a dielectric makes real-time electronic field evaluation possible without simulations. The IESDM has been designed to emulate a multi-layer circuit board, to insert very thin metallic layers between the dielectric layers. The conductors serve as diagnostic monitoring locations to measure the deposited electron-charge and the charge dynamics. Measurement of the time-dependent potential of the metal layers provides information on the amount of charge deposited in the dielectrics and the movement of that charge with time (dynamics).

  8. Electrostatic Plasma Accelerator (EPA)

    Science.gov (United States)

    Brophy, John R.; Aston, Graeme

    1995-01-01

    The application of electric propulsion to communications satellites, however, has been limited to the use of hydrazine thrusters with electric heaters for thrust and specific impulse augmentation. These electrothermal thrusters operate at specific impulse levels of approximately 300 s with heater powers of about 500 W. Low power arcjets (1-3 kW) are currently being investigated as a way to increase specific impulse levels to approximately 500 s. Ion propulsion systems can easily produce specific impulses of 3000 s or greater, but have yet to be applied to communications satellites. The reasons most often given for not using ion propulsion systems are their high level of overall complexity, low thrust with long burn times, and the difficulty of integrating the propulsion system into existing commercial spacecraft busses. The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass.

  9. Interacting with the biomolecular solvent accessible surface via a haptic feedback device

    Directory of Open Access Journals (Sweden)

    Hayward Steven

    2009-10-01

    Full Text Available Abstract Background From the 1950s computer based renderings of molecules have been produced to aid researchers in their understanding of biomolecular structure and function. A major consideration for any molecular graphics software is the ability to visualise the three dimensional structure of the molecule. Traditionally, this was accomplished via stereoscopic pairs of images and later realised with three dimensional display technologies. Using a haptic feedback device in combination with molecular graphics has the potential to enhance three dimensional visualisation. Although haptic feedback devices have been used to feel the interaction forces during molecular docking they have not been used explicitly as an aid to visualisation. Results A haptic rendering application for biomolecular visualisation has been developed that allows the user to gain three-dimensional awareness of the shape of a biomolecule. By using a water molecule as the probe, modelled as an oxygen atom having hard-sphere interactions with the biomolecule, the process of exploration has the further benefit of being able to determine regions on the molecular surface that are accessible to the solvent. This gives insight into how awkward it is for a water molecule to gain access to or escape from channels and cavities, indicating possible entropic bottlenecks. In the case of liver alcohol dehydrogenase bound to the inhibitor SAD, it was found that there is a channel just wide enough for a single water molecule to pass through. Placing the probe coincident with crystallographic water molecules suggests that they are sometimes located within small pockets that provide a sterically stable environment irrespective of hydrogen bonding considerations. Conclusion By using the software, named HaptiMol ISAS (available from http://www.haptimol.co.uk, one can explore the accessible surface of biomolecules using a three-dimensional input device to gain insights into the shape and water

  10. Raman spectroscopy detects biomolecular changes associated with nanoencapsulated hesperetin treatment in experimental oral carcinogenesis

    Science.gov (United States)

    Gurushankar, K.; Gohulkumar, M.; Kumar, Piyush; Krishna, C. Murali; Krishnakumar, N.

    2016-03-01

    Recently it has been shown that Raman spectroscopy possesses great potential in the investigation of biomolecular changes of tumor tissues with therapeutic drug response in a non-invasive and label-free manner. The present study is designed to investigate the antitumor effect of hespertin-loaded nanoparticles (HETNPs) relative to the efficacy of native hesperetin (HET) in modifying the biomolecular changes during 7,12-dimethyl benz(a)anthracene (DMBA)-induced oral carcinogenesis using a Raman spectroscopic technique. Significant differences in the intensity and shape of the Raman spectra between the control and the experimental tissues at 1800-500 cm-1 were observed. Tumor tissues are characterized by an increase in the relative amount of proteins, nucleic acids, tryptophan and phenylalanine and a decrease in the percentage of lipids when compared to the control tissues. Further, oral administration of HET and its nanoparticulates restored the status of the lipids and significantly decreased the levels of protein and nucleic acid content. Treatment with HETNPs showed a more potent antitumor effect than treatment with native HET, which resulted in an overall reduction in the intensity of several biochemical Raman bands in DMBA-induced oral carcinogenesis being observed. Principal component and linear discriminant analysis (PC-LDA), together with leave-one-out cross validation (LOOCV) on Raman spectra yielded diagnostic sensitivities of 100%, 80%, 91.6% and 65% and specificities of 100%, 65%, 60% and 55% for classification of control versus DMBA, DMBA versus DMBA  +  HET, DMBA versus DMBA  +  HETNPs and DMBA  +  HET versus DMBA  +  HETNPs treated tissue groups, respectively. These results further demonstrate that Raman spectroscopy associated with multivariate statistical algorithms could be a valuable tool for developing a comprehensive understanding of the process of biomolecular changes, and could reveal the signatures of the

  11. Antagonistic properties of a natural product-Bicuculline with the gamma-aminobutyric acid receptor: studied through electrostatic potential mapping, electronic and vibrational spectra using ab initio and density functional theory.

    Science.gov (United States)

    Srivastava, Anubha; Tandon, Poonam; Jain, Sudha; Asthana, B P

    2011-12-15

    (+)-Bicuculline (hereinafter referred to as bicuculline), a phthalide isoquinoline alkaloid is of current interest as an antagonist of gamma-aminobutyric acid (GABA). Its inhibitor properties have been studied through molecular electrostatic potential (MEP) mapping of this molecule and GABA receptor. The hot site on the potential surface of bicuculline, which is also isosteric with GABA receptor, has been used to interpret the inhibitor property. A systematic quantum chemical study of the possible conformations, their relative stabilities, FT-Raman, FT-IR and UV-vis spectroscopic analysis of bicuculline has been reported. The optimized geometries, wavenumber and intensity of the vibrational bands of all the conformers of bicuculline have been calculated using ab initio Hartree-Fock (HF) and density functional theory (DFT) employing B3LYP functional and 6-311G(d,p) basis set. Mulliken atomic charges, HOMO-LUMO gap ΔE, ionization potential, dipole moments and total energy have also been obtained for the optimized geometries of both the molecules. TD-DFT method is used to calculate the electronic absorption parameters in gas phase as well as in solvent environment using integral equation formalism-polarizable continuum model (IEF-PCM) employing 6-31G basis set and the results thus obtained are compared with the UV absorption spectra. The combination of experimental and calculated results provides an insight into the structural and vibrational spectroscopic properties of bicuculline. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. LS-VISM: A software package for analysis of biomolecular solvation.

    Science.gov (United States)

    Zhou, Shenggao; Cheng, Li-Tien; Sun, Hui; Che, Jianwei; Dzubiella, Joachim; Li, Bo; McCammon, J Andrew

    2015-05-30

    We introduce a software package for the analysis of biomolecular solvation. The package collects computer codes that implement numerical methods for a variational implicit-solvent model (VISM). The input of the package includes the atomic data of biomolecules under consideration and the macroscopic parameters such as solute-solvent surface tension, bulk solvent density and ionic concentrations, and the dielectric coefficients. The output includes estimated solvation free energies and optimal macroscopic solute-solvent interfaces that are obtained by minimizing the VISM solvation free-energy functional among all possible solute-solvent interfaces enclosing the solute atoms. We review the VISM with various descriptions of electrostatics. We also review our numerical methods that consist mainly of the level-set method for relaxing the VISM free-energy functional and a compact coupling interface method for the dielectric Poisson-Boltzmann equation. Such numerical methods and algorithms constitute the central modules of the software package. We detail the structure of the package, format of input and output files, workflow of the codes, and the postprocessing of output data. Our demo application to a host-guest system illustrates how to use the package to perform solvation analysis for biomolecules, including ligand-receptor binding systems. The package is simple and flexible with respect to minimum adjustable parameters and a wide range of applications. Future extensions of the package use can include the efficient identification of ligand binding pockets on protein surfaces. © 2015 Wiley Periodicals, Inc.

  13. Electrostatic sampling of trace DNA from clothing.

    Science.gov (United States)

    Zieger, Martin; Defaux, Priscille Merciani; Utz, Silvia

    2016-05-01

    During acts of physical aggression, offenders frequently come into contact with clothes of the victim, thereby leaving traces of DNA-bearing biological material on the garments. Since tape-lifting and swabbing, the currently established methods for non-destructive trace DNA sampling from clothing, both have their shortcomings in collection efficiency and handling, we thought about a new collection method for these challenging samples. Testing two readily available electrostatic devices for their potential to sample biological material from garments made of different fabrics, we found one of them, the electrostatic dust print lifter (DPL), to perform comparable to well-established sampling with wet cotton swabs. In simulated aggression scenarios, we had the same success rate for the establishment of single aggressor profiles, suitable for database submission, with both the DPL and wet swabbing. However, we lost a substantial amount of information with electrostatic sampling, since almost no mixed aggressor-victim profiles suitable for database entry could be established, compared to conventional swabbing. This study serves as a proof of principle for electrostatic DNA sampling from items of clothing. The technique still requires optimization before it might be used in real casework. But we are confident that in the future it could be an efficient and convenient contribution to the toolbox of forensic practitioners.

  14. Electrostatics of patchy surfaces.

    Science.gov (United States)

    Adar, Ram M; Andelman, David; Diamant, Haim

    2017-09-01

    In the study of colloidal, biological and electrochemical systems, it is customary to treat surfaces, macromolecules and electrodes as homogeneously charged. This simplified approach is proven successful in most cases, but fails to describe a wide range of heterogeneously charged surfaces commonly used in experiments. For example, recent experiments have revealed a long-range attraction between overall neutral surfaces, locally charged in a mosaic-like structure of positively and negatively charged domains ("patches"). Here, we review experimental and theoretical studies addressing the stability of heterogeneously charged surfaces, their effect on ionic profiles in solution, and the interaction between two such surfaces. We focus on electrostatics, and highlight the important new physical parameters appearing in the heterogeneous case, such as the largest patch size and inter-surface charge correlations. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Lunar electrostatic effects and protection

    International Nuclear Information System (INIS)

    Sun, Yongwei; Yuan, Qingyun; Xiong, Jiuliang

    2013-01-01

    The space environment and features on the moon surface are factors in strong electrostatic electrification. Static electricity will be produced in upon friction between lunar soil and detectors or astronauts on the lunar surface. Lunar electrostatic environment effects from lunar exploration equipment are very harmful. Lunar dust with electrostatic charge may enter the equipment or even cover the instruments. It can affect the normal performance of moon detectors. Owing to the huge environmental differences between the moon and the earth, the electrostatic protection technology on the earth can not be applied. In this paper, we review the electrostatic characteristics of lunar dust, its effects on aerospace equipment and moon static elimination technologies. It was concluded that the effect of charged lunar dust on detectors and astronauts should be completely researched as soon as possible.

  16. Conservation and Role of Electrostatics in Thymidylate Synthase.

    Science.gov (United States)

    Garg, Divita; Skouloubris, Stephane; Briffotaux, Julien; Myllykallio, Hannu; Wade, Rebecca C

    2015-11-27

    Conservation of function across families of orthologous enzymes is generally accompanied by conservation of their active site electrostatic potentials. To study the electrostatic conservation in the highly conserved essential enzyme, thymidylate synthase (TS), we conducted a systematic species-based comparison of the electrostatic potential in the vicinity of its active site. Whereas the electrostatics of the active site of TS are generally well conserved, the TSs from minimal organisms do not conform to the overall trend. Since the genomes of minimal organisms have a high thymidine content compared to other organisms, the observation of non-conserved electrostatics was surprising. Analysis of the symbiotic relationship between minimal organisms and their hosts, and the genetic completeness of the thymidine synthesis pathway suggested that TS from the minimal organism Wigglesworthia glossinidia (W.g.b.) must be active. Four residues in the vicinity of the active site of Escherichia coli TS were mutated individually and simultaneously to mimic the electrostatics of W.g.b TS. The measured activities of the E. coli TS mutants imply that conservation of electrostatics in the region of the active site is important for the activity of TS, and suggest that the W.g.b. TS has the minimal activity necessary to support replication of its reduced genome.

  17. Molecular dynamics simulations suggest changes in electrostatic interactions as a potential mechanism through which serine phosphorylation inhibits DNA Polymerase β's activity.

    Science.gov (United States)

    Homouz, Dirar; Joyce-Tan, Kwee Hong; Shahir Shamsir, Mohd; Moustafa, Ibrahim M; Idriss, Haitham

    2018-01-01

    DNA polymerase β is a 39kDa enzyme that is a major component of Base Excision Repair in human cells. The enzyme comprises two major domains, a 31kDa domain responsible for the polymerase activity and an 8kDa domain, which bind ssDNA and has a deoxyribose phosphate (dRP) lyase activity. DNA polymerase β was shown to be phosphorylated in vitro with protein kinase C (PKC) at serines 44 and 55 (S44 and S55), resulting in loss of its polymerase enzymic activity, but not its ability to bind ssDNA. In this study, we investigate the potential phosphorylation-induced structural changes for DNA polymerase β using molecular dynamics. The simulations show drastic conformational changes of the polymerase structure as a result of S44 phosphorylation. Phosphorylation-induced conformational changes transform the closed (active) enzyme structure into an open one. Further analysis of the results points to a key hydrogen bond and newly formed salt bridges as potential drivers of these structural fluctuations. The changes observed with S44/55 and S55 phosphorylation were less dramatic than S44 and the integrity of the H-bond was not compromised. Thus the phosphorylation of S44 is likely the major contributor to structural fluctuations that lead to loss of enzymatic activity. Copyright © 2017. Published by Elsevier Inc.

  18. An Assembly Funnel Makes Biomolecular Complex Assembly Efficient

    Science.gov (United States)

    Zenk, John; Schulman, Rebecca

    2014-01-01

    Like protein folding and crystallization, the self-assembly of complexes is a fundamental form of biomolecular organization. While the number of methods for creating synthetic complexes is growing rapidly, most require empirical tuning of assembly conditions and/or produce low yields. We use coarse-grained simulations of the assembly kinetics of complexes to identify generic limitations on yields that arise because of the many simultaneous interactions allowed between the components and intermediates of a complex. Efficient assembly occurs when nucleation is fast and growth pathways are few, i.e. when there is an assembly “funnel”. For typical complexes, an assembly funnel occurs in a narrow window of conditions whose location is highly complex specific. However, by redesigning the components this window can be drastically broadened, so that complexes can form quickly across many conditions. The generality of this approach suggests assembly funnel design as a foundational strategy for robust biomolecular complex synthesis. PMID:25360818

  19. Physics at the biomolecular interface fundamentals for molecular targeted therapy

    CERN Document Server

    Fernández, Ariel

    2016-01-01

    This book focuses primarily on the role of interfacial forces in understanding biological phenomena at the molecular scale. By providing a suitable statistical mechanical apparatus to handle the biomolecular interface, the book becomes uniquely positioned to address core problems in molecular biophysics. It highlights the importance of interfacial tension in delineating a solution to the protein folding problem, in unravelling the physico-chemical basis of enzyme catalysis and protein associations, and in rationally designing molecular targeted therapies. Thus grounded in fundamental science, the book develops a powerful technological platform for drug discovery, while it is set to inspire scientists at any level in their careers determined to address the major challenges in molecular biophysics. The acknowledgment of how exquisitely the structure and dynamics of proteins and their aqueous environment are related attests to the overdue recognition that biomolecular phenomena cannot be effectively understood w...

  20. Exploring a charge-central strategy in the solution of Poisson's equation for biomolecular applications.

    Science.gov (United States)

    Liu, Xingping; Wang, Changhao; Wang, Jun; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2013-01-07

    Continuum solvent treatments based on the Poisson-Boltzmann equation have been widely accepted for energetic analysis of biomolecular systems. In these approaches, the molecular solute is treated as a low dielectric region and the solvent is treated as a high dielectric continuum. The existence of a sharp dielectric jump at the solute-solvent interface poses a challenge to model the solvation energetics accurately with such a simple mathematical model. In this study, we explored and evaluated a strategy based on the "induced surface charge" to eliminate the dielectric jump within the finite-difference discretization scheme. In addition to the use of the induced surface charges in solving the equation, the second-order accurate immersed interface method is also incorporated to discretize the equation. The resultant linear system is solved with the GMRES algorithm to explicitly impose the flux conservation condition across the solvent-solute interface. The new strategy was evaluated on both analytical and realistic biomolecular systems. The numerical tests demonstrate the feasibility of utilizing induced surface charge in the finite-difference solution of the Poisson-Boltzmann equation. The analysis data further show that the strategy is consistent with theory and the classical finite-difference method on the tested systems. Limitations of the current implementations and further improvements are also analyzed and discussed to fully bring out its potential of achieving higher numerical accuracy.

  1. Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics.

    Science.gov (United States)

    Kubelka, Jan

    2009-04-01

    Many important biochemical processes occur on the time-scales of nanoseconds and microseconds. The introduction of the laser temperature-jump (T-jump) to biophysics more than a decade ago opened these previously inaccessible time regimes up to direct experimental observation. Since then, laser T-jump methodology has evolved into one of the most versatile and generally applicable methods for studying fast biomolecular kinetics. This perspective is a review of the principles and applications of the laser T-jump technique in biophysics. A brief overview of the T-jump relaxation kinetics and the historical development of laser T-jump methodology is presented. The physical principles and practical experimental considerations that are important for the design of the laser T-jump experiments are summarized. These include the Raman conversion for generating heating pulses, considerations of size, duration and uniformity of the temperature jump, as well as potential adverse effects due to photo-acoustic waves, cavitation and thermal lensing, and their elimination. The laser T-jump apparatus developed at the NIH Laboratory of Chemical Physics is described in detail along with a brief survey of other laser T-jump designs in use today. Finally, applications of the laser T-jump in biophysics are reviewed, with an emphasis on the broad range of problems where the laser T-jump methodology has provided important new results and insights into the dynamics of the biomolecular processes.

  2. Engineering intracellular active transport systems as in vivo biomolecular tools.

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, George David; Carroll-Portillo, Amanda

    2006-11-01

    Active transport systems provide essential functions in terms of cell physiology and metastasis. These systems, however, are also co-opted by invading viruses, enabling directed transport of the virus to and from the cell's nucleus (i.e., the site of virus replication). Based on this concept, fundamentally new approaches for interrogating and manipulating the inner workings of living cells may be achievable by co-opting Nature's active transport systems as an in vivo biomolecular tool. The overall goal of this project was to investigate the ability to engineer kinesin-based transport systems for in vivo applications, specifically the collection of effector proteins (e.g., transcriptional regulators) within single cells. In the first part of this project, a chimeric fusion protein consisting of kinesin and a single chain variable fragment (scFv) of an antibody was successfully produced through a recombinant expression system. The kinesin-scFv retained both catalytic and antigenic functionality, enabling selective capture and transport of target antigens. The incorporation of a rabbit IgG-specific scFv into the kinesin established a generalized system for functionalizing kinesin with a wide range of target-selective antibodies raised in rabbits. The second objective was to develop methods of isolating the intact microtubule network from live cells as a platform for evaluating kinesin-based transport within the cytoskeletal architecture of a cell. Successful isolation of intact microtubule networks from two distinct cell types was demonstrated using glutaraldehyde and methanol fixation methods. This work provides a platform for inferring the ability of kinesin-scFv to function in vivo, and may also serve as a three-dimensional scaffold for evaluating and exploiting kinesin-based transport for nanotechnological applications. Overall, the technology developed in this project represents a first-step in engineering active transport system for in vivo

  3. Electrical operation of electrostatic precipitators

    CERN Document Server

    Parker, Ken

    2003-01-01

    The electrostatic precipitator remains on of the most cost effective means of controlling the emission of particulates from most industrial processes. This book will be of interest to both users and suppliers of electrostatic precipitators as well as advanced students on environmental based courses. The author identifies the physical and engineering basis for the development of electrical equipment for electrostatic precipitators and thoroughly explores the technological factors which optimize the efficiency of the precipitator and hence minimize emissions, as well as future developments in th

  4. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    Directory of Open Access Journals (Sweden)

    Di Chen

    2007-05-01

    Full Text Available Electrostatic micro-electro-mechanical system (MEMS is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  5. Singular electrostatic energy of nanoparticle clusters

    Science.gov (United States)

    Qin, Jian; Krapf, Nathan W.; Witten, Thomas A.

    2016-02-01

    The binding of clusters of metal nanoparticles is partly electrostatic. We address difficulties in calculating the electrostatic energy when high charging energies limit the total charge to a single quantum, entailing unequal potentials on the particles. We show that the energy at small separation h has a singular logarithmic dependence on h . We derive a general form for this energy in terms of the singular capacitance of two spheres in near contact c (h ) , together with nonsingular geometric features of the cluster. Using this form, we determine the energies of various clusters, finding that more compact clusters are more stable. These energies are proposed to be significant for metal-semiconductor binary nanoparticle lattices found experimentally. We sketch how these effects should dictate the relative abundances of metal nanoparticle clusters in nonpolar solvents.

  6. Electrostatically telescoping nanotube nonvolatile memory device

    International Nuclear Information System (INIS)

    Kang, Jeong Won; Jiang Qing

    2007-01-01

    We propose a nonvolatile memory based on carbon nanotubes (CNTs) serving as the key building blocks for molecular-scale computers and investigate the dynamic operations of a double-walled CNT memory element by classical molecular dynamics simulations. The localized potential energy wells achieved from both the interwall van der Waals energy and CNT-metal binding energy make the bistability of the CNT positions and the electrostatic attractive forces induced by the voltage differences lead to the reversibility of this CNT memory. The material for the electrodes should be carefully chosen to achieve the nonvolatility of this memory. The kinetic energy of the CNT shuttle experiences several rebounds induced by the collisions of the CNT onto the metal electrodes, and this is critically important to the performance of such an electrostatically telescoping CNT memory because the collision time is sufficiently long to cause a delay of the state transition

  7. Energy transfer in (bio)molecular systems

    NARCIS (Netherlands)

    Milder, Maaike Theresia Wilhelmina

    This thesis reports, using a variety of optical techniques, the energy transfer pathways in different potential building blocks for molecular electronic devices, namely an antenna, a molecular wire and fluorescent switches. Using pump-probe spectroscopy the time constants of these transfer processes

  8. Ion sources for electrostatic accelerators

    International Nuclear Information System (INIS)

    Hellborg, R.

    1998-01-01

    Maybe the most important part of an electrostatic accelerator system, and also often the most tricky part is the ion source. There has been a rapid growth in activity in ion-source research and development during the last two to three decades. Some of these developments have also been of benefit to electrostatic accelerator users. In this report some of the different types of ion sources used in electrostatic accelerators are described. The list is not complete but more an overview of some of the more commonly used sources. The description is divided into two groups; positive ion sources for single stage electrostatic accelerators and negative ion sources for two stages (i.e. tandem) accelerators

  9. Explosion safety in industrial electrostatics

    International Nuclear Information System (INIS)

    Szabo, S V; Kiss, I; Berta, I

    2011-01-01

    Complicated industrial systems are often endangered by electrostatic hazards, both from atmospheric (lightning phenomenon, primary and secondary lightning protection) and industrial (technological problems caused by static charging and fire and explosion hazards.) According to the classical approach protective methods have to be used in order to remove electrostatic charging and to avoid damages, however no attempt to compute the risk before and after applying the protective method is made, relying instead on well-educated and practiced expertise. The Budapest School of Electrostatics - in close cooperation with industrial partners - develops new suitable solutions for probability based decision support (Static Control Up-to-date Technology, SCOUT) using soft computing methods. This new approach can be used to assess and audit existing systems and - using the predictive power of the models - to design and plan activities in industrial electrostatics.

  10. Correlation lengths of electrostatic turbulence

    International Nuclear Information System (INIS)

    Guiziou, L.; Garbet, X.

    1995-01-01

    This document deals with correlation length of electrostatic turbulence. First, the model of drift waves turbulence is presented. Then, the radial correlation length is determined analytically with toroidal coupling and non linear coupling. (TEC). 5 refs

  11. A Model Kelvin Electrostatic Generator.

    Science.gov (United States)

    Hill, M.; Jacobs, D. J.

    1997-01-01

    Describes how to construct a form of a Kelvin Electrostatics Generator from readily available components and provides an explanation of how it works. The device can generate 10-12 mm long sparks in the air. (DDR)

  12. Electrostatic beam-position monitor

    CERN Multimedia

    CERN PhotoLab

    1969-01-01

    Electrostatic beam-position monitor installed in its final location (bake-out cover removed). The ISR will contain about 110 of these monitors. Their accuracy is better than 1 mm, their band width about 1 MHz.

  13. Supramolecular photochemistry of drugs in biomolecular environments.

    Science.gov (United States)

    Monti, Sandra; Manet, Ilse

    2014-06-21

    In this tutorial review we illustrate how the interaction of photoactive drugs/potential drugs with proteins or DNA in supramolecular complexes can determine the course of the reactions initiated by the drug absorbed photons, evidencing the mechanistic differences with respect to the solution conditions. We focus on photoprocesses, independent of oxygen, that lead to chemical modification of the biomolecules, with formation of new covalent bonds or cleavage of existing bonds. Representative systems are mainly selected from the literature of the last decade. The photoreactivity of some aryl propionic acids, (fluoro)quinolones, furocoumarins, metal coordination complexes, quinine-like compounds, naphthaleneimides and pyrenyl-peptides with proteins or DNA is discussed. The use of light for biomolecule photomodification, historically relevant to biological photosensitization processes and some forms of photochemotherapy, is nowadays becoming more and more important in the development of innovative methods in nanomedicine and biotechnology.

  14. Theory of electrostatics and electrokinetics of soft particles

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ohshima

    2009-01-01

    Full Text Available We investigate theoretically the electrostatics and electrokinetics of a soft particle, i.e. a hard particle covered with an ion-penetrable surface layer of polyelectrolytes. The electric properties of soft particles in an electrolyte solution, which differ from those of hard particles, are essentially determined by the Donnan potential in the surface layer. In particular, the Donnan potential plays an essential role in the electrostatics and electrokinetics of soft particles. Furthermore, the concept of zeta potential, which is important in the electrokinetics of hard particles, loses its physical meaning in the electrokinetics of soft particles. In this review, we discuss the potential distribution around a soft particle, the electrostatic interaction between two soft particles, and the motion of a soft particle in an electric field.

  15. Computational Approach for Quantifying Structural Disorder in Biomolecular Lattices

    Science.gov (United States)

    Bratton, Clayton; Reiser, Karen; Knoesen, Andre; Yankelevich, Diego; Wang, Mingshi; Rocha-Mendoza, Israel

    2009-11-01

    We have developed a novel computational approach for quantifying structural disorder in biomolecular lattices with nonlinear susceptibility based on analysis of polarization-modulated second harmonic signal. Transient, regional disorder at the level of molecular organization is identified using a novel signal-processing algorithms sufficiently compact for near real-time analysis with a desktop computer. Global disorder and regional disorder within the biostructure are assessed and scored using a multiple methodologies. Experimental results suggest our signal processing method represents a robust, scalable tool that allows us to detect both regional and global alterations in signal characteristics of biostructures with a high degree of discrimination.

  16. Application of Hidden Markov Models in Biomolecular Simulations.

    Science.gov (United States)

    Shukla, Saurabh; Shamsi, Zahra; Moffett, Alexander S; Selvam, Balaji; Shukla, Diwakar

    2017-01-01

    Hidden Markov models (HMMs) provide a framework to analyze large trajectories of biomolecular simulation datasets. HMMs decompose the conformational space of a biological molecule into finite number of states that interconvert among each other with certain rates. HMMs simplify long timescale trajectories for human comprehension, and allow comparison of simulations with experimental data. In this chapter, we provide an overview of building HMMs for analyzing bimolecular simulation datasets. We demonstrate the procedure for building a Hidden Markov model for Met-enkephalin peptide simulation dataset and compare the timescales of the process.

  17. Intermolecular configurations dominated by quadrupole-quadrupole electrostatic interactions: explicit correlation treatment of the five-dimensional potential energy surface and infrared spectra for the CO-N2 complex.

    Science.gov (United States)

    Liu, Jing-Min; Zhai, Yu; Zhang, Xiao-Long; Li, Hui

    2018-01-17

    A thorough understanding of the intermolecular configurations of van der Waals complexes is a great challenge due to their weak interactions, floppiness and anharmonic nature. Although high-resolution microwave or infrared spectroscopy provides one of the most direct and precise pieces of experimental evidence, the origin and key role in determining such intermolecular configurations of a van der Waals system strongly depend on its highly accurate potential energy surface (PES) and a detailed analysis of its ro-vibrational wavefunctions. Here, a new five-dimensional potential energy surface for the van der Waals complex of CO-N 2 which explicitly incorporates the dependence on the stretch coordinate of the CO monomer is generated using the explicitly correlated couple cluster (CCSD(T)-F12) method in conjunction with a large basis set. Analytic four-dimensional PESs are obtained by the least-squares fitting of vibrationally averaged interaction energies for v = 0 and v = 1 to the Morse/Long-Range potential mode (V MLR ). These fits to 7966 points have root-mean-square deviations (RMSD) of 0.131 cm -1 and 0.129 cm -1 for v = 0 and v = 1, respectively, with only 315 parameters. Energy decomposition analysis is carried out, and it reveals that the dominant factor in controlling intermolecular configurations is quadrupole-quadrupole electrostatic interactions. Moreover, the rovibrational levels and wave functions are obtained for the first time. The predicted infrared transitions and intensities for the ortho-N 2 -CO complex as well as the calculated energy levels for para-N 2 -CO are in good agreement with the available experimental data with RMSD discrepancies smaller than 0.068 cm -1 . The calculated infrared band origin shift associated with the fundamental band frequency of CO is -0.721 cm -1 for ortho-N 2 -CO which is in excellent agreement with the experimental value of -0.739 cm -1 . The agreement with experimental values validates the high quality of the PESs

  18. A theoretical investigation into the strength of N-NO2 bonds, ring strain and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N-NO2 (n = 2-5), RDX and HMX.

    Science.gov (United States)

    Wang, Bao-Guo; Ren, Fu-de; Shi, Wen-Jing

    2015-11-01

    Changes in N-NO2 bond strength, ring strain energy and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N-NO2 (n = 2-5), RDX and HMX were investigated using DFT-B3LYP and MP2(full) methods with the 6-311++G(2df,2p) and aug-cc-pVTZ basis sets. Analysis of electron density shifts was also carried out. The results indicate that H-bonding energy correlates well with the increment of ring strain energy. Upon complex formation, the strength of the N-NO2 trigger-bond is enhanced, suggesting reduced sensitivity, while judged by the increased ring strain energy, sensitivity is increased. However, some features of the molecular surface electrostatic potential, such as a local maximum above the N-NO2 bond and ring, σ + (2) and electrostatic balance parameter ν, remain essentially unchanged upon complex formation, and only a small change in the impact sensitivity h 50 is suggested. It is not sufficient to determine sensitivity solely on the basis of trigger bond or ring strain; as a global feature of a molecule, the molecular surface electrostatic potential is available to help judge the change of sensitivity in H-bonded complexes. Graphical Abstract The strengthened N-NO2 bond suggests reduced sensitivity, while it is reverse by theincreased ring strain energy upon the complex formation. However, the molecular surfaceelectrostatic potential (V S) shows the little change of h 50. The V S should be taken into accountin the analysis of explosive sensitivity in the H-bonded complex.

  19. Surface electrostatics: theory and computations

    KAUST Repository

    Chatzigeorgiou, G.

    2014-02-05

    The objective of this work is to study the electrostatic response of materials accounting for boundary surfaces with their own (electrostatic) constitutive behaviour. The electric response of materials with (electrostatic) energetic boundary surfaces (surfaces that possess material properties and constitutive structures different from those of the bulk) is formulated in a consistent manner using a variational framework. The forces and moments that appear due to bulk and surface electric fields are also expressed in a consistent manner. The theory is accompanied by numerical examples on porous materials using the finite-element method, where the influence of the surface electric permittivity on the electric displacement, the polarization stress and the Maxwell stress is examined.

  20. Water-soluble luminescent quantum dots and biomolecular conjugates thereof and related compositions and method of use

    Science.gov (United States)

    Nie, Shuming; Chan, Warren C. W.; Emory, Steven R.

    2002-01-01

    The present invention provides a water-soluble luminescent quantum dot, a biomolecular conjugate thereof and a composition comprising such a quantum dot or conjugate. Additionally, the present invention provides a method of obtaining a luminescent quantum dot, a method of making a biomolecular conjugate thereof, and methods of using a biomolecular conjugate for ultrasensitive nonisotopic detection in vitro and in vivo.

  1. Water-soluble luminescent quantum dots and biomolecular conjugates thereof and related compositions and methods of use

    Science.gov (United States)

    Nie, Shuming; Chan, Warren C. W.; Emory, Stephen

    2007-03-20

    The present invention provides a water-soluble luminescent quantum dot, a biomolecular conjugate thereof and a composition comprising such a quantum dot or conjugate. Additionally, the present invention provides a method of obtaining a luminescent quantum dot, a method of making a biomolecular conjugate thereof, and methods of using a biomolecular conjugate for ultrasensitive nonisotopic detection in vitro and in vivo.

  2. An Overview of Biomolecular Event Extraction from Scientific Documents.

    Science.gov (United States)

    Vanegas, Jorge A; Matos, Sérgio; González, Fabio; Oliveira, José L

    2015-01-01

    This paper presents a review of state-of-the-art approaches to automatic extraction of biomolecular events from scientific texts. Events involving biomolecules such as genes, transcription factors, or enzymes, for example, have a central role in biological processes and functions and provide valuable information for describing physiological and pathogenesis mechanisms. Event extraction from biomedical literature has a broad range of applications, including support for information retrieval, knowledge summarization, and information extraction and discovery. However, automatic event extraction is a challenging task due to the ambiguity and diversity of natural language and higher-level linguistic phenomena, such as speculations and negations, which occur in biological texts and can lead to misunderstanding or incorrect interpretation. Many strategies have been proposed in the last decade, originating from different research areas such as natural language processing, machine learning, and statistics. This review summarizes the most representative approaches in biomolecular event extraction and presents an analysis of the current state of the art and of commonly used methods, features, and tools. Finally, current research trends and future perspectives are also discussed.

  3. An Overview of Biomolecular Event Extraction from Scientific Documents

    Directory of Open Access Journals (Sweden)

    Jorge A. Vanegas

    2015-01-01

    Full Text Available This paper presents a review of state-of-the-art approaches to automatic extraction of biomolecular events from scientific texts. Events involving biomolecules such as genes, transcription factors, or enzymes, for example, have a central role in biological processes and functions and provide valuable information for describing physiological and pathogenesis mechanisms. Event extraction from biomedical literature has a broad range of applications, including support for information retrieval, knowledge summarization, and information extraction and discovery. However, automatic event extraction is a challenging task due to the ambiguity and diversity of natural language and higher-level linguistic phenomena, such as speculations and negations, which occur in biological texts and can lead to misunderstanding or incorrect interpretation. Many strategies have been proposed in the last decade, originating from different research areas such as natural language processing, machine learning, and statistics. This review summarizes the most representative approaches in biomolecular event extraction and presents an analysis of the current state of the art and of commonly used methods, features, and tools. Finally, current research trends and future perspectives are also discussed.

  4. Biomolecular logic systems: applications to biosensors and bioactuators

    Science.gov (United States)

    Katz, Evgeny

    2014-05-01

    The paper presents an overview of recent advances in biosensors and bioactuators based on the biocomputing concept. Novel biosensors digitally process multiple biochemical signals through Boolean logic networks of coupled biomolecular reactions and produce output in the form of YES/NO response. Compared to traditional single-analyte sensing devices, biocomputing approach enables a high-fidelity multi-analyte biosensing, particularly beneficial for biomedical applications. Multi-signal digital biosensors thus promise advances in rapid diagnosis and treatment of diseases by processing complex patterns of physiological biomarkers. Specifically, they can provide timely detection and alert to medical emergencies, along with an immediate therapeutic intervention. Application of the biocomputing concept has been successfully demonstrated for systems performing logic analysis of biomarkers corresponding to different injuries, particularly exemplified for liver injury. Wide-ranging applications of multi-analyte digital biosensors in medicine, environmental monitoring and homeland security are anticipated. "Smart" bioactuators, for example for signal-triggered drug release, were designed by interfacing switchable electrodes and biocomputing systems. Integration of novel biosensing and bioactuating systems with the biomolecular information processing systems keeps promise for further scientific advances and numerous practical applications.

  5. Selected topics in solution-phase biomolecular NMR spectroscopy

    Science.gov (United States)

    Kay, Lewis E.; Frydman, Lucio

    2017-05-01

    Solution bio-NMR spectroscopy continues to enjoy a preeminent role as an important tool in elucidating the structure and dynamics of a range of important biomolecules and in relating these to function. Equally impressive is how NMR continues to 'reinvent' itself through the efforts of many brilliant practitioners who ask increasingly demanding and increasingly biologically relevant questions. The ability to manipulate spin Hamiltonians - almost at will - to dissect the information of interest contributes to the success of the endeavor and ensures that the NMR technology will be well poised to contribute to as yet unknown frontiers in the future. As a tribute to the versatility of solution NMR in biomolecular studies and to the continued rapid advances in the field we present a Virtual Special Issue (VSI) that includes over 40 articles on various aspects of solution-state biomolecular NMR that have been published in the Journal of Magnetic Resonance in the past 7 years. These, in total, help celebrate the achievements of this vibrant field.

  6. Charge Transport in Electrostatic Radiography.

    Science.gov (United States)

    Fallone, B. Gino

    A new analytical hyperbolic expression is presented to describe the full saturation curve of parallel-plate ionization chambers filled with air or with high atomic number gases at elevated pressures. It is shown that all parameters of the saturation curve expression can be calculated from one single measurement of ionization current at a given electric field and air gap thickness. Isothermal charge deposition on polymers to form stable foil electrets by using an apparatus resembling parallel-plate ionization chambers is reported. Charge carriers produced by irradiation of the sensitive air volume drift in the externally applied electric field and get trapped on the polymer surface to form electrets. The time dependence of the polarization and depolarization current densities, the effective electric field in the electret chamber, and the electret surface charge densities are presented for the radiation-induced foil electret and an excellent agreement is obtained with the measured electret data. The theory of linear systems is used to derive the electric field and potential in distance space in the electret chamber. The charging characteristics of ionographi latent images are discussed in terms of saturation characteristics of ionographic chambers. The minimum applied electric field needed for an optimized charge collection in the ionographic chamber is presented in terms of both the electret characteristic polarization time and the electret relaxation time. The feasibility of radiographic image subtraction based on electrostatic imaging techniques is demonstrated. Latent image charging at one polarity corresponding to the production of the primary image, and latent image discharging with the opposite chamber polarity, are used to create the final image representing the region of interest.

  7. SPARCLE: Electrostatic Tool for Lunar Dust Control

    International Nuclear Information System (INIS)

    Clark, P. E.; Curtis, S. A.; Minetto, F.; Cheung, C. Y.; Keller, J. F.; Moore, M.; Calle, C. I.

    2009-01-01

    Successful exploration of most planetary surfaces, with their impact-generated dusty regoliths, will depend on the capabilities to keep surfaces free of the dust which could compromise performance and to collect dust for characterization. Solving the dust problem is essential before we return to the Moon. During the Apollo missions, the discovery was made that regolith fines, or dust, behaved like abrasive velcro, coating surfaces, clogging mechanisms, and making movement progressively more difficult as it was mechanically stirred up during surface operations, and abrading surfaces, including spacesuits, when attempts were made to remove it manually. In addition, some of the astronauts experienced breathing difficulties when exposed to dust that got into the crew compartment. The successful strategy will deal with dust dynamics resulting from interaction between mechanical and electrostatic forces. Here we will describe the surface properties of dust particles, the basis for their behavior, and an electrostatically-based approach and methodology for addressing this issue confirmed by our preliminary results. Our device concept utilizes a focused electron beam to control the electrostatic potential of the surface. A plate of the opposite potential is then used to induce dust migration in the presence of an electrical field. Our goal is a compact device of <5 kg mass and using <5 watts of power to be operational in <5 years with heritage from ionic sweepers for active spacecraft potential control (e.g., on POLAR). Rovers could be fitted with devices that could harness the removal of dust for sampling as part of the extended exploration process on Mercury, Mars, asteroids or outer solar system satellites, as well as the Moon.

  8. Electrostatics in wormhole spacetimes

    Directory of Open Access Journals (Sweden)

    B. Nasr Esfahani

    2003-06-01

    Full Text Available   Regarding the static form of Maxwell’s equations in wormhole background geometry, we obtain a generalised form of Laplace’s equation. Because of peculiar geometry of the throat, lines of force that enter the wormhole at one mouth and emerge from the other, initially converge and then diverge. So, for a remote observer the wormhole can act as a charge distribution that modifies the potential, mainly around the throat. Here, the exact solutions for the potential are obtained and by considering an equivalent dielectric media and finding polarisation charge distributions the effect of the wormhole geometry on the potential is justified. It is assumed that real sources of the potential are distributed far from the throat and do not contribute to the stress-energy tensor of the wormhole.

  9. PREFACE: Radiation Damage in Biomolecular Systems (RADAM07)

    Science.gov (United States)

    McGuigan, Kevin G.

    2008-03-01

    The annual meeting of the COST P9 Action `Radiation damage in biomolecular systems' took place from 19-22 June 2007 in the Royal College of Surgeons in Ireland, in Dublin. The conference was structured into 5 Working Group sessions: Electrons and biomolecular interactions Ions and biomolecular interactions Radiation in physiological environments Theoretical developments for radiation damage Track structure in cells Each of the five working groups presented two sessions of invited talks. Professor Ron Chesser of Texas Tech University, USA gave a riveting plenary talk on `Mechanisms of Adaptive Radiation Responses in Mammals at Chernobyl' and the implications his work has on the Linear-No Threshold model of radiation damage. In addition, this was the first RADAM meeting to take place after the Alexander Litvenenko affair and we were fortunate to have one of the leading scientists involved in the European response Professor Herwig Paretzke of GSF-Institut für Strahlenschutz, Neuherberg, Germany, available to speak. The remaining contributions were presented in the poster session. A total of 72 scientific contributions (32 oral, 40 poster), presented by 97 participants from 22 different countries, gave an overview on the current progress in the 5 different subfields. A 1-day pre-conference `Early Researcher Tutorial Workshop' on the same topic kicked off on 19 June attended by more than 40 postgrads, postdocs and senior researchers. Twenty papers, based on these reports, are included in this volume of Journal of Physics: Conference Series. All the contributions in this volume were fully refereed, and they represent a sample of the courses, invited talks and contributed talks presented during RADAM07. The interdisciplinary RADAM07 conference brought together researchers from a variety of different fields with a common interest in biomolecular radiation damage. This is reflected by the disparate backgrounds of the authors of the papers presented in these proceedings

  10. AESOP: A Python Library for Investigating Electrostatics in Protein Interactions.

    Science.gov (United States)

    Harrison, Reed E S; Mohan, Rohith R; Gorham, Ronald D; Kieslich, Chris A; Morikis, Dimitrios

    2017-05-09

    Electric fields often play a role in guiding the association of protein complexes. Such interactions can be further engineered to accelerate complex association, resulting in protein systems with increased productivity. This is especially true for enzymes where reaction rates are typically diffusion limited. To facilitate quantitative comparisons of electrostatics in protein families and to describe electrostatic contributions of individual amino acids, we previously developed a computational framework called AESOP. We now implement this computational tool in Python with increased usability and the capability of performing calculations in parallel. AESOP utilizes PDB2PQR and Adaptive Poisson-Boltzmann Solver to generate grid-based electrostatic potential files for protein structures provided by the end user. There are methods within AESOP for quantitatively comparing sets of grid-based electrostatic potentials in terms of similarity or generating ensembles of electrostatic potential files for a library of mutants to quantify the effects of perturbations in protein structure and protein-protein association. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Some theoretical aspects of electrostatic double layers

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1978-11-01

    A review is presented of the main results of the theoretical work on electrostatic double layers. The general properties of double layers are first considered. Then the time-independent double layer is discussed. The discussion deals with the potential drop, the thickness, and some necessary criteria for the existence and stability of the layer. As a complement to the study of the timeindependent double layer a few remarks are also made upon the timedependent double layer. Finally the question of how double layers are formed and maintained is treated. Several possible formation mechanisms are considered. (author)

  12. Correlation lengths of electrostatic turbulence

    International Nuclear Information System (INIS)

    Guiziou, L.; Garbet, X.

    1995-01-01

    In this paper, the radial correlation length of an electrostatic drift wave turbulence is analytically determined in various regimes. The analysis relies on the calculation of a range of mode non linear interaction, which is an instantaneous correlation length. The link with the usual correlation length has not been investigated yet. (TEC). 5 refs

  13. Electrostatic Doping in Semiconductor Devices

    NARCIS (Netherlands)

    Gupta, Gaurav; Rajasekharan, Bijoy; Hueting, Raymond J.E.

    2017-01-01

    To overcome the limitations of chemical doping in nanometer-scale semiconductor devices, electrostatic doping (ED) is emerging as a broadly investigated alternative to provide regions with a high electron or hole density in a semiconductor device. In this paper, we review various reported ED

  14. Continuous electrodeionization through electrostatic shielding

    International Nuclear Information System (INIS)

    Dermentzis, Konstantinos

    2008-01-01

    We report a new continuous electrodeionization cell with electrostatically shielded concentrate compartments or electrochemical Faraday cages formed by porous electronically and ionically conductive media, instead of permselective ion exchange membranes. Due to local elimination of the applied electric field within the compartments, they electrostatically retain the incoming ions and act as 'electrostatic ion pumps' or 'ion traps' and therefore concentrate compartments. The porous media are chemically and thermally stable. Electrodeionization or electrodialysis cells containing such concentrate compartments in place of ion exchange membranes can be used to regenerate ion exchange resins and produce deionized water, to purify industrial effluents and desalinate brackish or seawater. The cells can work by polarity reversal without any negative impact to the deionization process. Because the electronically and ionically active media constituting the electrostatically shielded concentrate compartments are not permselective and coions are not repelled but can be swept by the migrating counterions, the cells are not affected by the known membrane associated limitations, such as concentration polarization or scaling and show an increased current efficiency

  15. Modern instrumentation of electrostatic accelerators

    International Nuclear Information System (INIS)

    Repnow, R.

    1986-01-01

    For diagnostics and control of electrostatic accelerators complex electronic systems are used also inside the accelerator vessel to an increasing extent. Methods for protection of the equipment and for the data transmission are discussed. Several existing digital control systems are compared and the advantages of digital closed loop regulation systems are indicated. (orig.)

  16. Linac boosters for electrostatic machines

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Brookhaven National Lab., Upton, NY

    1990-01-01

    A survey of linacs which are used as boosters to electrostatic accelerators is presented. Machines both operating and under construction, copper and superconducting, are reviewed. The review includes data on the accelerating structures, performance, rf and control, beam optics, budget, vacuum and cryogenics. (orig.)

  17. Electrostatic energies of crystals in space of arbitrary dimension

    International Nuclear Information System (INIS)

    Takemoto, Hiroki; Tohsaki, Akihiro

    2005-01-01

    We present a new method to evaluate electrostatic energies under periodic boundary conditions. The lattice sum of Coulomb potentials is expressed through the elliptic Q function of the third kind. This enables us to evaluate electrostatic energies of ionic crystals very accurately and with very rapid convergence. In particular, we study the dimensionality of the electrostatic energies of NaCl-type and CsCl-type crystals, whose expressions are functions of the spatial dimension treated as a real number. Furthermore, the expressions we obtain are applicable to computational simulations using molecular dynamics and Monte Carlo methods. We generate random distributions of point charges under periodic boundary conditions, and we analyze the randomness and its anisotropy on the basis of potential distributions. (author)

  18. Blowing Dust Away With Electrostatic Wind

    Science.gov (United States)

    Utter, M. G.

    1984-01-01

    Ionized air molecules drive away contaminants. Electrostatic wind prevents dust buildup and subsequent electrical breakdown in powerlines, transformers, switchgears, Van de Graaff generators, electrostatic precipitators, and other high-voltage equipment. Makes periodic cleaning or airblasting unnecessary.

  19. Effects of electrostatic trapping on neoclassical transport in an impure plasma

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Ware, A.A.

    1976-01-01

    Contamination of a toroidally confined plasma by highly charged impurity ions can produce substantial variation of the electrostatic potential within a magnetic surface. The resulting electrostatic trapping and electrostatic drifts, of hydrogen ions and electrons, yields significant alterations in neoclassical transport theory. A transport theory which includes these effects is derived from the drift-kinetic equation, with an ordering scheme modeled on the parameters of recent tokamak experiments. The theory self-consistently predicts that electrostatic trapping should be fully comparable to magnetic trapping, and provides transport coefficients which, depending quadratically upon the temperature and pressure gradients, differ markedly from the standard neoclassical coefficients for a pure plasma

  20. A strong focussing cylindrical electrostatic quadrupole

    International Nuclear Information System (INIS)

    Sheng Yaochang

    1986-01-01

    The construction and performance of small cylindrical electrostatic quadrupole, which is installed in JM-400 pulse electrostatic accelerator, are described. This electrostatic quadrupole is not only used in neutron generator, but also suitable for ion injector as well as for low energy electron accelerator

  1. Processivity and collectivity of biomolecular motors extracting membrane nanotubes

    Science.gov (United States)

    Fontenele Araujo, Francisco; Storm, Cornelis

    2012-07-01

    Biomolecular motors can pull and viscously drag membranes. The resulting elongations include cell protrusions, tether networks, and sensorial tentacles. Here we focus on the extraction of a single tube from a vesicle. Via a force balance coupled to binding kinetics, we analytically determine the phase diagram of tube formation as function of the motor processivity, the surface viscosity of the membrane ηm', and the density of motors on the vesicle ρ. Three tubulation mechanisms are identified: (i) tip pulling, due to the accumulation of motors at the leading edge of the membrane, (ii) viscous drag, emergent from the translation of motors along the tube, and (iii) hybrid extraction, such that tip pulling and viscous drag are equally important. For experimental values of ηm' and ρ, we find that the growth of bionanotubes tends to be driven by viscous forces, whereas artificial membranes are dominated by tip pulling.

  2. Biomolecular Simulation of Base Excision Repair and Protein Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Straatsma, TP; McCammon, J A; Miller, John H; Smith, Paul E; Vorpagel, Erich R; Wong, Chung F; Zacharias, Martin W

    2006-03-03

    The goal of the Biomolecular Simulation of Base Excision Repair and Protein Signaling project is to enhance our understanding of the mechanism of human polymerase-β, one of the key enzymes in base excision repair (BER) and the cell-signaling enzymes cyclic-AMP-dependent protein kinase. This work used molecular modeling and simulation studies to specifically focus on the • dynamics of DNA and damaged DNA • dynamics and energetics of base flipping in DNA • mechanism and fidelity of nucleotide insertion by BER enzyme human polymerase-β • mechanism and inhibitor design for cyclic-AMP-dependent protein kinase. Molecular dynamics simulations and electronic structure calculations have been performed using the computer resources at the Molecular Science Computing Facility at the Environmental Molecular Sciences Laboratory.

  3. Biomolecular Network-Based Synergistic Drug Combination Discovery

    Directory of Open Access Journals (Sweden)

    Xiangyi Li

    2016-01-01

    Full Text Available Drug combination is a powerful and promising approach for complex disease therapy such as cancer and cardiovascular disease. However, the number of synergistic drug combinations approved by the Food and Drug Administration is very small. To bridge the gap between urgent need and low yield, researchers have constructed various models to identify synergistic drug combinations. Among these models, biomolecular network-based model is outstanding because of its ability to reflect and illustrate the relationships among drugs, disease-related genes, therapeutic targets, and disease-specific signaling pathways as a system. In this review, we analyzed and classified models for synergistic drug combination prediction in recent decade according to their respective algorithms. Besides, we collected useful resources including databases and analysis tools for synergistic drug combination prediction. It should provide a quick resource for computational biologists who work with network medicine or synergistic drug combination designing.

  4. Techniques of biomolecular quantification through AMS detection of radiocarbon

    International Nuclear Information System (INIS)

    Vogel, S.J.; Turteltaub, K.W.; Frantz, C.; Felton, J.S.; Gledhill, B.L.

    1992-01-01

    Accelerator mass spectrometry offers a large gain over scintillation counting in sensitivity for detecting radiocarbon in biomolecular tracing. Application of this sensitivity requires new considerations of procedures to extract or isolate the carbon fraction to be quantified, to inventory all carbon in the sample, to prepare graphite from the sample for use in the spectrometer, and to derive a meaningful quantification from the measured isotope ratio. These procedures need to be accomplished without contaminating the sample with radiocarbon, which may be ubiquitous in laboratories and on equipment previously used for higher dose, scintillation experiments. Disposable equipment, materials and surfaces are used to control these contaminations. Quantification of attomole amounts of labeled substances are possible through these techniques

  5. SWISS-PROT: connecting biomolecular knowledge via a protein database.

    Science.gov (United States)

    Gasteiger, E; Jung, E; Bairoch, A

    2001-07-01

    With the explosive growth of biological data, the development of new means of data storage was needed. More and more often biological information is no longer published in the conventional way via a publication in a scientific journal, but only deposited into a database. In the last two decades these databases have become essential tools for researchers in biological sciences. Biological databases can be classified according to the type of information they contain. There are basically three types of sequence-related databases (nucleic acid sequences, protein sequences and protein tertiary structures) as well as various specialized data collections. It is important to provide the users of biomolecular databases with a degree of integration between these databases as by nature all of these databases are connected in a scientific sense and each one of them is an important piece to biological complexity. In this review we will highlight our effort in connecting biological information as demonstrated in the SWISS-PROT protein database.

  6. DNA-assisted swarm control in a biomolecular motor system.

    Science.gov (United States)

    Keya, Jakia Jannat; Suzuki, Ryuhei; Kabir, Arif Md Rashedul; Inoue, Daisuke; Asanuma, Hiroyuki; Sada, Kazuki; Hess, Henry; Kuzuya, Akinori; Kakugo, Akira

    2018-01-31

    In nature, swarming behavior has evolved repeatedly among motile organisms because it confers a variety of beneficial emergent properties. These include improved information gathering, protection from predators, and resource utilization. Some organisms, e.g., locusts, switch between solitary and swarm behavior in response to external stimuli. Aspects of swarming behavior have been demonstrated for motile supramolecular systems composed of biomolecular motors and cytoskeletal filaments, where cross-linkers induce large scale organization. The capabilities of such supramolecular systems may be further extended if the swarming behavior can be programmed and controlled. Here, we demonstrate that the swarming of DNA-functionalized microtubules (MTs) propelled by surface-adhered kinesin motors can be programmed and reversibly regulated by DNA signals. Emergent swarm behavior, such as translational and circular motion, can be selected by tuning the MT stiffness. Photoresponsive DNA containing azobenzene groups enables switching between solitary and swarm behavior in response to stimulation with visible or ultraviolet light.

  7. The biomolecular corona of nanoparticles in circulating biological media

    Science.gov (United States)

    Pozzi, D.; Caracciolo, G.; Digiacomo, L.; Colapicchioni, V.; Palchetti, S.; Capriotti, A. L.; Cavaliere, C.; Zenezini Chiozzi, R.; Puglisi, A.; Laganà, A.

    2015-08-01

    When nanoparticles come into contact with biological media, they are covered by a biomolecular `corona', which confers a new identity to the particles. In all the studies reported so far nanoparticles are incubated with isolated plasma or serum that are used as a model for protein adsorption. Anyway, bodily fluids are dynamic in nature so the question arises on whether the incubation protocol, i.e. dynamic vs. static incubation, could affect the composition and structure of the biomolecular corona. Here we let multicomponent liposomes interact with fetal bovine serum (FBS) both statically and dynamically, i.e. in contact with circulating FBS (~40 cm s-1). The structure and composition of the liposome-protein corona, as determined by dynamic light scattering, electrophoretic light scattering and liquid chromatography tandem mass spectrometry, were found to be dependent on the incubation protocol. Specifically, following dynamic exposure to FBS, multicomponent liposomes were less enriched in complement proteins and appreciably more enriched in apolipoproteins and acute phase proteins (e.g. alpha-1-antitrypsin and inter-alpha-trypsin inhibitor heavy chain H3) that are involved in relevant interactions between nanoparticles and living systems. Supported by our results, we speculate that efficient predictive modeling of nanoparticle behavior in vivo will require accurate knowledge of nanoparticle-specific protein fingerprints in circulating biological media.When nanoparticles come into contact with biological media, they are covered by a biomolecular `corona', which confers a new identity to the particles. In all the studies reported so far nanoparticles are incubated with isolated plasma or serum that are used as a model for protein adsorption. Anyway, bodily fluids are dynamic in nature so the question arises on whether the incubation protocol, i.e. dynamic vs. static incubation, could affect the composition and structure of the biomolecular corona. Here we let

  8. Review of MEMS differential scanning calorimetry for biomolecular study

    Science.gov (United States)

    Yu, Shifeng; Wang, Shuyu; Lu, Ming; Zuo, Lei

    2017-12-01

    Differential scanning calorimetry (DSC) is one of the few techniques that allow direct determination of enthalpy values for binding reactions and conformational transitions in biomolecules. It provides the thermodynamics information of the biomolecules which consists of Gibbs free energy, enthalpy and entropy in a straightforward manner that enables deep understanding of the structure function relationship in biomolecules such as the folding/unfolding of protein and DNA, and ligand bindings. This review provides an up to date overview of the applications of DSC in biomolecular study such as the bovine serum albumin denaturation study, the relationship between the melting point of lysozyme and the scanning rate. We also introduce the recent advances of the development of micro-electro-mechanic-system (MEMS) based DSCs.

  9. High-speed AFM for Studying Dynamic Biomolecular Processes

    Science.gov (United States)

    Ando, Toshio

    2008-03-01

    Biological molecules show their vital activities only in aqueous solutions. It had been one of dreams in biological sciences to directly observe biological macromolecules (protein, DNA) at work under a physiological condition because such observation is straightforward to understanding their dynamic behaviors and functional mechanisms. Optical microscopy has no sufficient spatial resolution and electron microscopy is not applicable to in-liquid samples. Atomic force microscopy (AFM) can visualize molecules in liquids at high resolution but its imaging rate was too low to capture dynamic biological processes. This slow imaging rate is because AFM employs mechanical probes (cantilevers) and mechanical scanners to detect the sample height at each pixel. It is quite difficult to quickly move a mechanical device of macroscopic size with sub-nanometer accuracy without producing unwanted vibrations. It is also difficult to maintain the delicate contact between a probe tip and fragile samples. Two key techniques are required to realize high-speed AFM for biological research; fast feedback control to maintain a weak tip-sample interaction force and a technique to suppress mechanical vibrations of the scanner. Various efforts have been carried out in the past decade to materialize high-speed AFM. The current high-speed AFM can capture images on video at 30-60 frames/s for a scan range of 250nm and 100 scan lines, without significantly disturbing week biomolecular interaction. Our recent studies demonstrated that this new microscope can reveal biomolecular processes such as myosin V walking along actin tracks and association/dissociation dynamics of chaperonin GroEL-GroES that occurs in a negatively cooperative manner. The capacity of nanometer-scale visualization of dynamic processes in liquids will innovate on biological research. In addition, it will open a new way to study dynamic chemical/physical processes of various phenomena that occur at the liquid-solid interfaces.

  10. Integration of biomolecular logic gates with field-effect transducers

    International Nuclear Information System (INIS)

    Poghossian, A.; Malzahn, K.; Abouzar, M.H.; Mehndiratta, P.; Katz, E.; Schoening, M.J.

    2011-01-01

    Highlights: → Enzyme-based AND/OR logic gates are integrated with a capacitive field-effect sensor. → The AND/OR logic gates compose of multi-enzyme system immobilised on sensor surface. → Logic gates were activated by different combinations of chemical inputs (analytes). → The logic output (pH change) produced by the enzymes was read out by the sensor. - Abstract: The integration of biomolecular logic gates with field-effect devices - the basic element of conventional electronic logic gates and computing - is one of the most attractive and promising approaches for the transformation of biomolecular logic principles into macroscopically useable electrical output signals. In this work, capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensors based on a p-Si-SiO 2 -Ta 2 O 5 structure modified with a multi-enzyme membrane have been used for electronic transduction of biochemical signals processed by enzyme-based OR and AND logic gates. The realised OR logic gate composes of two enzymes (glucose oxidase and esterase) and was activated by ethyl butyrate or/and glucose. The AND logic gate composes of three enzymes (invertase, mutarotase and glucose oxidase) and was activated by two chemical input signals: sucrose and dissolved oxygen. The developed integrated enzyme logic gates produce local pH changes at the EIS sensor surface as a result of biochemical reactions activated by different combinations of chemical input signals, while the pH value of the bulk solution remains unchanged. The pH-induced charge changes at the gate-insulator (Ta 2 O 5 ) surface of the EIS transducer result in an electronic signal corresponding to the logic output produced by the immobilised enzymes. The logic output signals have been read out by means of a constant-capacitance method.

  11. Integration of biomolecular logic gates with field-effect transducers

    Energy Technology Data Exchange (ETDEWEB)

    Poghossian, A., E-mail: a.poghossian@fz-juelich.de [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Institute of Bio- and Nanosystems, Research Centre Juelich GmbH, D-52425 Juelich (Germany); Malzahn, K. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Abouzar, M.H. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Institute of Bio- and Nanosystems, Research Centre Juelich GmbH, D-52425 Juelich (Germany); Mehndiratta, P. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Katz, E. [Department of Chemistry and Biomolecular Science, NanoBio Laboratory (NABLAB), Clarkson University, Potsdam, NY 13699-5810 (United States); Schoening, M.J. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Institute of Bio- and Nanosystems, Research Centre Juelich GmbH, D-52425 Juelich (Germany)

    2011-11-01

    Highlights: > Enzyme-based AND/OR logic gates are integrated with a capacitive field-effect sensor. > The AND/OR logic gates compose of multi-enzyme system immobilised on sensor surface. > Logic gates were activated by different combinations of chemical inputs (analytes). > The logic output (pH change) produced by the enzymes was read out by the sensor. - Abstract: The integration of biomolecular logic gates with field-effect devices - the basic element of conventional electronic logic gates and computing - is one of the most attractive and promising approaches for the transformation of biomolecular logic principles into macroscopically useable electrical output signals. In this work, capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensors based on a p-Si-SiO{sub 2}-Ta{sub 2}O{sub 5} structure modified with a multi-enzyme membrane have been used for electronic transduction of biochemical signals processed by enzyme-based OR and AND logic gates. The realised OR logic gate composes of two enzymes (glucose oxidase and esterase) and was activated by ethyl butyrate or/and glucose. The AND logic gate composes of three enzymes (invertase, mutarotase and glucose oxidase) and was activated by two chemical input signals: sucrose and dissolved oxygen. The developed integrated enzyme logic gates produce local pH changes at the EIS sensor surface as a result of biochemical reactions activated by different combinations of chemical input signals, while the pH value of the bulk solution remains unchanged. The pH-induced charge changes at the gate-insulator (Ta{sub 2}O{sub 5}) surface of the EIS transducer result in an electronic signal corresponding to the logic output produced by the immobilised enzymes. The logic output signals have been read out by means of a constant-capacitance method.

  12. Heating of charged particles by electrostatic wave propagating perpendicularly to uniform magnetic field

    International Nuclear Information System (INIS)

    Niu, Keishiro; Shimojo, Takashi.

    1978-02-01

    Increase in kinetic energy of a charged particle, affected by an electrostatic wave propagating perpendicularly to a uniform magnetic field, is obtained for both the initial and later stages. Detrapping time of the particle from the potential dent of the electrostatic wave and energy increase during trapping of the particle is analytically derived. Numerical simulations are carried out to support theoretical results. (auth.)

  13. Proceedings of the international advisory committee on 'biomolecular dynamics instrument DNA' and the workshop on 'biomolecular dynamics backscattering spectrometers'

    International Nuclear Information System (INIS)

    Arai, Masatoshi; Aizawa, Kazuya; Nakajima, Kenji; Shibata, Kaoru; Takahashi, Nobuaki

    2008-08-01

    A workshop entitled 'Biomolecular Dynamics Backscattering Spectrometers' was held on February 27th - 29th, 2008 at J-PARC Center, Japan Atomic Energy Agency. This workshop was planned to be held for aiming to realize an innovative neutron backscattering instrument, namely DNA, in the MLF and thus four leading scientists in the field of neutron backscattering instruments were invited as the International Advisory Committee (IAC member: Dr. Dan Neumann (Chair); Prof. Ferenc Mezei; Dr. Hannu Mutka; Dr. Philip Tregenna-Piggott) for DNA from institutes in the United States, France and Switzerland, where backscattering instruments are in-service. It was therefore held in the form of lecture anterior and then in the form of the committee posterior. This report includes the executive summary of the IAC and materials of the presentations in the IAC and the workshop. (author)

  14. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  15. Tandem electrostatic accelerators for BNCT

    International Nuclear Information System (INIS)

    Ma, J.C.

    1994-01-01

    The development of boron neutron capture therapy (BNCT) into a viable therapeutic modality will depend, in part, on the availability of suitable neutron sources compatible with installation in a hospital environment. Low-energy accelerator-based intense neutron sources, using electrostatic or radio frequency quadrupole proton accelerators have been suggested for this purpose and are underdevelopment at several laboratories. New advances in tandem electrostatic accelerator technology now allow acceleration of the multi-milliampere proton beams required to produce therapeutic neutron fluxes for BNCT. The relatively compact size, low weight and high power efficiency of these machines make them particularly attractive for installation in a clinical or research facility. The authors will describe the limitations on ion beam current and available neutron flux from tandem accelerators relative to the requirements for BNCT research and therapy. Preliminary designs and shielding requirements for a tandern accelerator-based BNCT research facility will also be presented

  16. Electrostatic accelerators fundamentals and applications

    CERN Document Server

    2005-01-01

    Electrostatic accelerators are an important and widespread subgroup within the broad spectrum of modern, large particle acceleration devices. They are specifically designed for applications that require high-quality ion beams in terms of energy stability and emittance at comparatively low energies (a few MeV). Their ability to accelerate virtually any kind of ion over a continuously tunable range of energies make them a highly versatile tool for investigations in many research fields including, but not limited to, atomic and nuclear spectroscopy, heavy ion reactions, accelerator mass spectroscopy as well as ion-beam analysis and modification. The book is divided into three parts. The first part concisely introduces the field of accelerator technology and techniques that emphasize their major modern applications. The second part treats the electrostatic accelerator per se: its construction and operational principles as well as its maintenance. The third part covers all relevant applications in which electrosta...

  17. Characterization of zonal flow generation in weak electrostatic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Negrea, M; Petrisor, I [Department of Physics, Association Euratom-MEdC, Romania, University of Craiova, 13 A.I. Cuza Street, 200585 Craiova (Romania); Weyssow, B [Physique Statistique-Plasmas, Association Euratom-Etat Belge, Universite Libre de Bruxelles, Campus Plaine, Bd. du Triomphe, 1050 Bruxelles (Belgium)], E-mail: mnegrea@yahoo.com

    2008-05-15

    The influence of the diamagnetic Kubo number, which is proportional to the diamagnetic drift velocity, on the zonal flow generation by an anisotropic stochastic electrostatic potential is considered from a semi-analytic point of view. The analysis is performed in the weak turbulence limit and as an analytical tool the decorrelation trajectory method is used. It is shown that the fragmentation of the drift wave structures (a signature of the zonal flow generation) is influenced not only by the anisotropy parameter and the electrostatic Kubo number as expected, but also by the diamagnetic Kubo number. Global Lagrangian averages of characteristic quantities are calculated and interpreted.

  18. Laboratory Measurements of Electrostatic Solitary Structures Generated by Beam Injection

    International Nuclear Information System (INIS)

    Lefebvre, Bertrand; Chen, Li-Jen; Gekelman, Walter; Pribyl, Patrick; Vincena, Stephen; Kintner, Paul; Pickett, Jolene; Chiang, Franklin; Judy, Jack

    2010-01-01

    Electrostatic solitary structures are generated by injection of a suprathermal electron beam parallel to the magnetic field in a laboratory plasma. Electric microprobes with tips smaller than the Debye length (λ De ) enabled the measurement of positive potential pulses with half-widths 4 to 25λ De and velocities 1 to 3 times the background electron thermal speed. Nonlinear wave packets of similar velocities and scales are also observed, indicating that the two descend from the same mode which is consistent with the electrostatic whistler mode and result from an instability likely to be driven by field-aligned currents.

  19. Electrostatic field distributions in the Harwell Tandem accelerator

    International Nuclear Information System (INIS)

    Read, P.M.

    1981-11-01

    The electrostatic field distributions in the Harwell Tandem accelerator have been precisely calculated using the electrostatics program FINALE. The results indicate that the accelerator which presently has an upper voltage limit of 6.5 MV has the potential to operate at 8 MV. Such an upgrade could be achieved by a modification to the high voltage terminal. Replacement of the existing accelerator tubes with accelerator tubes capable of a gradient of 1.8 MV/m would also be required. The existing stack may also require replacement. The terminal modification itself would reduce the terminal to tank breakdown frequency. (author)

  20. Flexural-Phonon Scattering Induced by Electrostatic Gating in Graphene

    DEFF Research Database (Denmark)

    Gunst, Tue; Kaasbjerg, Kristen; Brandbyge, Mads

    2017-01-01

    Graphene has an extremely high carrier mobility partly due to its planar mirror symmetry inhibiting scattering by the highly occupied acoustic flexural phonons. Electrostatic gating of a graphene device can break the planar mirror symmetry, yielding a coupling mechanism to the flexural phonons......-limiting factor, and show how the carrier density and temperature scaling of the mobility depends on the electrostatic environment. Our findings may explain the high deformation potential for in-plane acoustic phonons extracted from experiments and, furthermore, suggest a direct relation between device symmetry...

  1. Electrostatic septa for SPS extraction

    CERN Multimedia

    1975-01-01

    The extraction system for the N-Area is located in LSS2 (another one for the W-Area, now abandoned, was in LSS6). The electrostatic septum consists of 4 parts, each 3 m long. It is made of W-wires, 0.12 mm thick. The nominal electric field is 100 kV/cm. See also Annual Report 1975, p.175.

  2. Stray capacitances in the watt balance operation: electrostatic forces

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Mana, G.

    2014-01-01

    In a watt balance, stray capacitances exist between the coil and the magnet. Since the electric current flowing in the coil creates a difference in electric potentials between the coil and magnet, their electrostatic interactions must be taken into account. This paper reports the results of a fin...

  3. Beam optics: computer program for electrostatic optical systems

    International Nuclear Information System (INIS)

    Roussel, Joseph.

    1976-06-01

    A computer program has been written to calculate the parameters of electrostatic optical systems with a cylindrical geometry required for atomic physics experiments. Very easy to use, this program allows the calculation of the electric potential chart to be performed by an iterative method (Frankel and Young method). The equipotentials and trajectories can be plotted, to make easier the interpretation of the results [fr

  4. Electrostatic sheath at the boundary of a collisional dusty plasma

    Indian Academy of Sciences (India)

    Abstract. Considering the Boltzmann response of the ions and electrons in plasma dynamics and inertial dynamics of the dust charged grains in a highly collisional dusty plasma, the nature of the electrostatic potential near a boundary is investigated. Based on the fluid approximation, the forma- tion as well as the ...

  5. Anode wire in cylindrical cathode tube : destabilizing electrostatic force

    CERN Document Server

    Wertelaers, P

    2017-01-01

    A two-dimensional -- cross-sectional -- discussion suffices. The tube is offset, and the electrostatic potential is found analytically with perturbative methods. Then, the force is established with the Maxwell stress tensor. Alternatively, trying to find the force with energy methods, fails. Finally, finite element tests are performed in order to report on the degree of non-linearity for large offsets.

  6. Bonding and Reactivity Patterns from Electrostatic Landscapes of ...

    Indian Academy of Sciences (India)

    the electron rich atoms in the molecule and also provides the details of the preferred direction of approach of an electrophile. This perspective briefly summarizes the prominent features of MESP topography and provides a future outlook. Keywords. Molecular electrostatic potential; molecular electron density; critical points; ...

  7. Effects of electrostatic interactions on electron transfer reactions

    International Nuclear Information System (INIS)

    Hickel, B.

    1987-01-01

    The fast reactions of electron transfer are studied by pulse radiolysis. This technique allows the creation in about 10 -8 second radicals and radical ions with high redox potentials. For solvated electrons electrostatic interaction on the kinetics of reactions limited by diffusion is described by Debye's equation when ion mobility is known. Deviation from theory can occur in ion pairs formation. This is evidenced experimentally for anions by cation complexation with a cryptate. Relatively slow reactions are more sensitive to electrostatic interactions than limited by diffusion. If ion pairs are not formed kinetics constant depends on dielectric constant of solvent and reaction radius. Experimentally is studied the effect of electrostatic interaction on the rate constants of solvated electrons with anions and cations in water-ethanol mixtures where the dielectric constant change from 80 to 25 at room temperature. 17 refs

  8. Program for beam optical computation of axial symmetrical electrostatic systems

    International Nuclear Information System (INIS)

    Ke Jianlin; Wu Chunlei; Zhou Changgeng

    2012-01-01

    The beam optical computation of axial symmetrical electrostatic systems is very important in the design and test of low-energy accelerators such as Cock-Croft and Van de Graaf accelerators. In this paper, a program for the beam optical computation of these structures has been developed using transfer matrix method. The electrostatic field region is divided into several small intervals in the program, and then the beam envelope is calculated interval-to-interval from the axial potential distribution, which is calculated by other electromagnetic field simulation software such as Maxwell SV. Space charge effect is included so that the program can be used in the computation of intense beam, while nonlinear effect is beyond its ability. The program can be used in the calculation of beam optics in most complicated axial symmetrical electrostatic fields, and the computing time required is very short. (authors)

  9. Quantitative nanoscale electrostatics of viruses.

    Science.gov (United States)

    Hernando-Pérez, M; Cartagena-Rivera, A X; Lošdorfer Božič, A; Carrillo, P J P; San Martín, C; Mateu, M G; Raman, A; Podgornik, R; de Pablo, P J

    2015-11-07

    Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed ϕ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of charge is a distinguishing characteristic of each virus, depending crucially on the nature of the viral capsid and the presence/absence of the genetic material.

  10. Voltage limitations of electrostatic accelerators

    International Nuclear Information System (INIS)

    Hyder, H. R. McK.

    1999-01-01

    The history of electrostatic accelerators has been punctuated by a series of projects in which innovative designs have failed to meet the expectations of their designers. From the early, air-insulated Van de Graaffs at Round Hill to certain of the large pressurized heavy ion accelerators of the 1970s and 1980s, increases in size or changes in design and materials have not always led to the maximum voltages expected or extrapolated. Since these failures have continued beyond childhood into a mature technology, it is reasonable to assume that the causes of voltage limitation are varied and complex. They have remained poorly understood for a number of reasons: resources for an extended program of research into breakdown and failure of electrostatic generators have always been meager, especially for large machines devoted to nuclear research; the inaccessibility of pressurized generators makes instrumentation difficult and testing slow; the calculation of transient and dynamic effects is laborious and the results difficult to verify; voltage test experiments on operating accelerators are inhibited by the significant risk of damage due to energy release on breakdown: and the total voltages (though not the local fields) achieved in many electrostatic accelerators exceed those produced in any other man-made environment. In this review, the behavior of several generators of different designs is examined in order to assess the importance of the various design features and operating conditions that control the maximum voltage achievable in a working machine

  11. Voltage limitations of electrostatic accelerators

    International Nuclear Information System (INIS)

    Hyder, H.R.

    1999-01-01

    The history of electrostatic accelerators has been punctuated by a series of projects in which innovative designs have failed to meet the expectations of their designers. From the early, air-insulated Van de Graaffs at Round Hill to certain of the large pressurized heavy ion accelerators of the 1970s and 1980s, increases in size or changes in design and materials have not always led to the maximum voltages expected or extrapolated. Since these failures have continued beyond childhood into a mature technology, it is reasonable to assume that the causes of voltage limitation are varied and complex. They have remained poorly understood for a number of reasons: resources for an extended program of research into breakdown and failure of electrostatic generators have always been meager, especially for large machines devoted to nuclear research; the inaccessibility of pressurized generators makes instrumentation difficult and testing slow; the calculation of transient and dynamic effects is laborious and the results difficult to verify; voltage test experiments on operating accelerators are inhibited by the significant risk of damage due to energy release on breakdown: and the total voltages (though not the local fields) achieved in many electrostatic accelerators exceed those produced in any other man-made environment. In this review, the behavior of several generators of different designs is examined in order to assess the importance of the various design features and operating conditions that control the maximum voltage achievable in a working machine. copyright 1999 American Institute of Physics

  12. Electrostatic axisymmetric mirror with removable spherical aberration

    International Nuclear Information System (INIS)

    Birmuzaev, S.B.; Serikbaeva, G.S.; Hizirova, M.A.

    1999-01-01

    The electrostatic axisymmetric mirror, assembled from three coaxial cylinders with an equal diameter d and under the potential v1, v2 and v3, was computed. The proportions of geometrical and electric parameters of the mirror, with which the spherical 3-order aberration may be eliminated, were determined. The computation outcomes of the case, when the focal power of the mirror is enough large and the object plane in the focus is out of its field, are presented (Fig. 1 - potentials proportion that makes elimination of the spherical aberration possible; Fig. 2 - the focus coordinates when the spherical aberration is eliminated). The geometrical values are presented by d, and the electric ones are presented by v1. The figures on the curves present a length of the second (middle) electrode. The zero point is located in the middle of the gap between the first and second electrodes The investigated mirror may be used as a lens for the transmission electron microscope

  13. Ultra-Compact Electrostatic Confinement Fusion Device

    Science.gov (United States)

    Young, Garrett

    2017-10-01

    A unique, linear dual-beam configuration with an internal volume of 144 cc was simulated and operated. Deuteron ion paths were simulated using Mathematica and the electric field distribution was optimized relative to convergence density, potential well efficiency, and confinement time. The resulting cathode design is a departure from conventional systems, with gradual conical surfaces. The simulated trajectories correlated well to the observed operation, evidenced by two principle factors. First, the high transparency of the cathode due to the focused beams allowed for >1 kW operation without duration-limiting temperature rise. Second, when compared to inertial electrostatic configurations, the constructed device achieved record steady-state D-D fusion rates per internal volume including 3.7E +4 fusions/sec/cc at 52 kV applied potential and 28 mTorr operating pressure.

  14. QM/MM based fitting of atomic polarizabilities for use in condensed-phase biomolecular simulation

    NARCIS (Netherlands)

    Vosmeer, C.R.; Rustenburg, A.S.; Rice, J.E.; Horn, H.W.; Swope, W.C.; Geerke, D.P.

    2012-01-01

    Accounting for electronic polarization effects in biomolecular simulation (by using a polarizable force field) can increase the accuracy of simulation results. However, the use of gas-phase estimates of atomic polarizabilities α

  15. Development of Electrostatically Clean Solar Array Panels

    Science.gov (United States)

    Stern, Theodore G.

    2000-01-01

    Certain missions require Electrostatically Clean Solar Array (ECSA) panels to establish a favorable environment for the operation of sensitive scientific instruments. The objective of this program was to demonstrate the feasibility of an ECSA panel that minimizes panel surface potential below 100mV in LEO and GEO charged particle environments, prevents exposure of solar cell voltage and panel insulating surfaces to the ambient environment, and provides an equipotential, grounded structure surrounding the entire panel. An ECSA panel design was developed that uses a Front Side Aperture-Shield (FSA) that covers all inter-cell areas with a single graphite composite laminate, composite edge clips for connecting the FSA to the panel substrate, and built-in tabs that interconnect the FSA to conductive coated coverglasses using a conductive adhesive. Analysis indicated the ability of the design to meet the ECSA requirements. Qualification coupons and a 0.5m x 0.5m prototype panel were fabricated and tested for photovoltaic performance and electrical grounding before and after exposure to acoustic and thermal cycling environments. The results show the feasibility of achieving electrostatic cleanliness with a small penalty in mass, photovoltaic performance and cost, with a design is structurally robust and compatible with a wide range of current solar panel technologies.

  16. hPDB – Haskell library for processing atomic biomolecular structures in protein data bank format

    OpenAIRE

    Gajda, Michał Jan

    2013-01-01

    Background Protein DataBank file format is used for the majority of biomolecular data available today. Haskell is a lazy functional language that enjoys a high-level class-based type system, a growing collection of useful libraries and a reputation for efficiency. Findings I present a fast library for processing biomolecular data in the Protein Data Bank format. I present benchmarks indicating that this library is faster than other frequently used Protein Data Bank parsing programs. The propo...

  17. A compact hard X-ray source for medical imaging and biomolecular studies

    International Nuclear Information System (INIS)

    Cline, D.B.; Green, M.A.; Kolonko, J.

    1995-01-01

    There are a large number of synchrotron light sources in the world. However, these sources are designed for physics, chemistry, and engineering studies. To our knowledge, none have been optimized for either medical imaging or biomolecular studies. There are special needs for these applications. We present here a preliminary design of a very compact source, small enough for a hospital or a biomolecular laboratory, that is suitable for these applications. (orig.)

  18. Fueling and Stabilizing a Biomolecular Motor-Powered Biosensor for Remote Detection Scenarios

    Science.gov (United States)

    2007-10-01

    National Lab, Naval Research Lab, ETH Zurich, AECOM New York) is to demonstrate a biomolecular motor-powered "smart dust" biosensor, which can be read...and Florida Society for Microscopy, Orlando, FL, (2006), invited H. Hess: "From Molecular Robotics to Active Self -assembly: Biomolecular Motors do the...as "hooks" which gain strength under load, DNA-DNA linkages act like " adhesive tape", and Nickel-His-tag linkages resemble "magnets". Translating the

  19. Coulomb torque - a general theory for electrostatic forces in many-body systems

    International Nuclear Information System (INIS)

    Khachatourian, Armik V M; Wistrom, Anders O

    2003-01-01

    In static experiments that comprise three conducting spheres suspended by torsion wires and held at constant electric potential, a net angular displacement about their centres has been observed. We demonstrate that the observed rotation is consistent with Coulomb's law of electrical forces complemented by Gauss' surface integrals for electrical potential. Analysis demonstrates that electrostatic torque is the result of electrostatic forces acting on an asymmetric distribution of charges residing on the surfaces of the spheres. The asymptotic value for electrostatic torque is proportional to the inverse of the fourth power of separation distance with the rotation direction, up or down taken perpendicular to a plane passing through sphere centres, given explicitly by the equation for torque. The identification of electrostatic torque prompts further analysis of models of matter at all size scales where electrostatic forces are the dominant operative force

  20. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J. [eds.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database.

  1. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    International Nuclear Information System (INIS)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database

  2. Ion injector for electrostatic accelerator

    International Nuclear Information System (INIS)

    Novikov, M.T.; Tsygikalo, A.A.

    1980-01-01

    Basing on the analysis of formulae connecting beam parameters at the input and output of an electrostatic accelerator, a design of an ion injector for a charge-exchange accelerator is suggested. The distinguishing injector feature is that it contains a preaccelerator with autofocusing of the beam at its output, which provides better matching of ion source and accelerator operating conditions when preserving the conditions of beam autofocusing in the accelerator. Such an injector is a self-contained instrument. It allows control, within certain limits, of ion optics of inlet lenses of the accelerator and preaccelerator during operation when preserving better matching of ion source operation with the accelerator [ru

  3. Biomolecular immunoreactivity factor in antibody labelling design for potent radiopharmaceutical

    International Nuclear Information System (INIS)

    Best, M.P.

    1990-01-01

    Biomolecular factors' importance in optimum immunoconjugate design when high specific labelling is attempted is discussed. High specific labelling allows a small dose to be administered avoiding saturating antigen binding sites and to compensate for loss of bivalency etc. upon fragmentation. Clinical therapeutic and diagnostic applications result in adverse toxicity and poor scintigraphic resolution from the corrupted distribution upon labelling. DTPA is a strong chelator and forms a tight sequestering cryptate structure of small dimensions with the radioactive metals Tc-99m and In-111. Size severely affects permeability with reticuloendothelial accumulation. Compact scaled radiolabels are advantageous as potent payload moieties for radiotherapy as well as imaging. The antibody binding site requires close surface contact with its epitope to effect the specificity of immunoreaction. Binding site exposure to coupling chemistry can be directed via affinity purification methodology. The globular antibody with an amphiphilic structure presents conformed surface chemistry and is relatively inert requiring excess reaction stoichiometry. Radiolabelled antibodies to calcitonin (a 32 aminoacid polypeptide ectopic lung tumor antigen) in a solid phase immunoreactivity assay demonstrate 48 hours for 90% uptake. Site directed radiolabelling is of interest in preservation of immunoreactivity in protein engineering. 19 refs., 8 figs

  4. Spin valve sensor for biomolecular identification: Design, fabrication, and characterization

    Science.gov (United States)

    Li, Guanxiong

    Biomolecular identification, e.g., DNA recognition, has broad applications in biology and medicine such as gene expression analysis, disease diagnosis, and DNA fingerprinting. Therefore, we have been developing a magnetic biodetection technology based on giant magnetoresistive spin valve sensors and magnetic nanoparticle (developed for the magnetic nanoparticle detection, assuming the equivalent average field of magnetic nanoparticles and the coherent rotation of spin valve free layer magnetization. Micromagnetic simulations have also been performed for the spin valve sensors. The analytical model and micromagnetic simulations are found consistent with each other and are in good agreement with experiments. The prototype spin valve sensors have been fabricated at both micron and submicron scales. We demonstrated the detection of a single 2.8-mum magnetic microbead by micron-sized spin valve sensors. Based on polymer-mediated self-assembly and fine lithography, a bilayer lift-off process was developed to deposit magnetic nanoparticles onto the sensor surface in a controlled manner. With the lift-off deposition method, we have successfully demonstrated the room temperature detection of monodisperse 16-nm Fe3O 4 nanoparticles in a quantity from a few tens to several hundreds by submicron spin valve sensors, proving the feasibility of the nanoparticle detection. As desired for quantitative biodetection, a fairly linear dependence of sensor signal on the number of nanoparticles has been confirmed. The initial detection of DNA hybridization events labeled by magnetic nanoparticles further proved the magnetic biodetection concept.

  5. Dose controlled low energy electron irradiator for biomolecular films.

    Science.gov (United States)

    Kumar, S V K; Tare, Satej T; Upalekar, Yogesh V; Tsering, Thupten

    2016-03-01

    We have developed a multi target, Low Energy Electron (LEE), precise dose controlled irradiator for biomolecular films. Up to seven samples can be irradiated one after another at any preset electron energy and dose under UHV conditions without venting the chamber. In addition, one more sample goes through all the steps except irradiation, which can be used as control for comparison with the irradiated samples. All the samples are protected against stray electron irradiation by biasing them at -20 V during the entire period, except during irradiation. Ethernet based communication electronics hardware, LEE beam control electronics and computer interface were developed in house. The user Graphical User Interface to control the irradiation and dose measurement was developed using National Instruments Lab Windows CVI. The working and reliability of the dose controlled irradiator has been fully tested over the electron energy range of 0.5 to 500 eV by studying LEE induced single strand breaks to ΦX174 RF1 dsDNA.

  6. The Role of the Electrostatic Force in Spore Adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eunhyea [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Lee, Ida [University of Tennessee, Knoxville (UTK); Tsouris, Costas [ORNL

    2010-01-01

    Electrostatic force is investigated as one of the components of the adhesion force between Bacillus thuringiensis (Bt) spores and planar surfaces. The surface potentials of a Bt spore and a mica surface are experimentally obtained using a combined atomic force microscopy (AFM)-scanning surface potential microscopy technique. On the basis of experimental information, the surface charge density of the spores is estimated at 0.03 {micro}C/cm{sup 2} at 20% relative humidity and decreases with increasing humidity. The Coulombic force is introduced for the spore-mica system (both charged, nonconductive surfaces), and an electrostatic image force is introduced to the spore-gold system because gold is electrically conductive. The Coulombic force for spore-mica is repulsive because the components are similarly charged, while the image force for the spore-gold system is attractive. The magnitude of both forces decreases with increasing humidity. The electrostatic forces are added to other force components, e.g., van der Waals and capillary forces, to obtain the adhesion force for each system. The adhesion forces measured by AFM are compared to the estimated values. It is shown that the electrostatic (Coulombic and image) forces play a significant role in the adhesion force between spores and planar surfaces.

  7. Invited review article: the electrostatic plasma lens.

    Science.gov (United States)

    Goncharov, Alexey

    2013-02-01

    The fundamental principles, experimental results, and potential applications of the electrostatic plasma lens for focusing and manipulating high-current, energetic, heavy ion beams are reviewed. First described almost 50 years ago, this optical beam device provides space charge neutralization of the ion beam within the lens volume, and thus provides an effective and unique tool for focusing high current beams where a high degree of neutralization is essential to prevent beam blow-up. Short and long lenses have been explored, and a lens in which the magnetic field is provided by rare-earth permanent magnets has been demonstrated. Applications include the use of this kind of optical tool for laboratory ion beam manipulation, high dose ion implantation, heavy ion accelerator injection, in heavy ion fusion, and other high technology.

  8. Electrostatics, structure prediction, and the energy landscapes for protein folding and binding.

    Science.gov (United States)

    Tsai, Min-Yeh; Zheng, Weihua; Balamurugan, D; Schafer, Nicholas P; Kim, Bobby L; Cheung, Margaret S; Wolynes, Peter G

    2016-01-01

    While being long in range and therefore weakly specific, electrostatic interactions are able to modulate the stability and folding landscapes of some proteins. The relevance of electrostatic forces for steering the docking of proteins to each other is widely acknowledged, however, the role of electrostatics in establishing specifically funneled landscapes and their relevance for protein structure prediction are still not clear. By introducing Debye-Hückel potentials that mimic long-range electrostatic forces into the Associative memory, Water mediated, Structure, and Energy Model (AWSEM), a transferable protein model capable of predicting tertiary structures, we assess the effects of electrostatics on the landscapes of thirteen monomeric proteins and four dimers. For the monomers, we find that adding electrostatic interactions does not improve structure prediction. Simulations of ribosomal protein S6 show, however, that folding stability depends monotonically on electrostatic strength. The trend in predicted melting temperatures of the S6 variants agrees with experimental observations. Electrostatic effects can play a range of roles in binding. The binding of the protein complex KIX-pKID is largely assisted by electrostatic interactions, which provide direct charge-charge stabilization of the native state and contribute to the funneling of the binding landscape. In contrast, for several other proteins, including the DNA-binding protein FIS, electrostatics causes frustration in the DNA-binding region, which favors its binding with DNA but not with its protein partner. This study highlights the importance of long-range electrostatics in functional responses to problems where proteins interact with their charged partners, such as DNA, RNA, as well as membranes. © 2015 The Protein Society.

  9. Electrostatic Climber for Space Elevator and Launcher

    OpenAIRE

    Bolonkin, A.

    2007-01-01

    Author details research on the new, very prospective, electrostatic Space Elevator climber based on a new electrostatic linear engine previously offered at the 42nd Joint Propulsion Conference (AIAA-2006-5229) and published in AEAT, Vol.78, No.6, 2006, pp. 502-508. The electrostatic climber discussed can have any speed (and braking), the energy for climber movement is delivered by a lightweight high-voltage line into a Space Elevator-holding cable from Earth electric generator. This electric ...

  10. Electrostatics in pharmaceutical aerosols for inhalation.

    Science.gov (United States)

    Wong, Jennifer; Chan, Hak-Kim; Kwok, Philip Chi Lip

    2013-08-01

    Electrostatics continues to play an important role in pharmaceutical aerosols for inhalation. Despite its ubiquitous nature, the charging process is complex and not well understood. Nonetheless, significant advances in the past few years continue to improve understanding and lead to better control of electrostatics. The purpose of this critical review is to present an overview of the literature, with an emphasis on how electrostatic charge can be useful in improving pulmonary drug delivery.

  11. Preconceptual design for the electrostatic enclosure

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1992-09-01

    This report presents a preconceptual design (design criteria and assumptions) for electrostatic enclosures to be used during buried transuranic waste recovery operations. These electrostatic enclosures (along with the application of dust control products) will provide an in-depth contamination control strategy. As part of this preconceptual design, options for electrostatic curtain design are given including both hardwall and fabric enclosures. Ventilation systems, doors, air locks, electrostatic curtains, and supporting systems also are discussed. In addition to the conceptual design, engineering scale tests are proposed to be run at the Test Reactor Area. The planned engineering scale tests will give final material specifications for full-scale retrieval demonstrations

  12. Industrial Electrostatic-Gecko Gripper, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Perception Robotics is developing an innovative product, the Electrostatic Gecko Gripper? (ESG Gripper), for the industrial automation market. This unique gripping...

  13. Industrial Electrostatic-Gecko Gripper, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Perception Robotics is developing an innovative product, the "Electrostatic Gecko Gripper" (ESG Gripper), for the industrial automation market. This unique gripping...

  14. Nanoscale electrostatic actuators in liquid electrolytes.

    Science.gov (United States)

    Boyd, James G; Kim, Doyoung

    2006-09-15

    Equilibrium and energy analyses were performed for an electrostatic actuator consisting of two plane parallel electrodes, operated using DC voltages, separated by a liquid electrolyte. One electrode is fixed, and the other electrode is connected to a spring and is free to move. The mechanical equilibrium includes the spring force, the van der Waals force, and the electrochemical force as given by the solution of the linearized Poisson-Boltzmann equation. The electrode separation is determined as a function of the applied potential, the natural (i.e., zeta) potential, the Debeye length, the initial electrode separation, the spring constant, and the Hamaker constant. The actuator exhibits the classical "pull-in" instability. The natural potential increases the critical applied potential but does not significantly affect the critical separation. For zero natural potential, the spring constant does not affect the critical separation. Ratios of the maximum spring energy, the maximum van der Waals energy, and the maximum electrochemical energy were plotted as functions of the Hamaker constant and the initial electrode separation.

  15. Electrostatic analogy for symmetron gravity

    Science.gov (United States)

    Ogden, Lillie; Brown, Katherine; Mathur, Harsh; Rovelli, Kevin

    2017-12-01

    The symmetron model is a scalar-tensor theory of gravity with a screening mechanism that suppresses the effect of the symmetron field at high densities characteristic of the Solar System and laboratory scales but allows it to act with gravitational strength at low density on the cosmological scale. We elucidate the screening mechanism by showing that in the quasistatic Newtonian limit there are precise analogies between symmetron gravity and electrostatics for both strong and weak screening. For strong screening we find that large dense bodies behave in a manner analogous to perfect conductors in electrostatics. Based on this analogy we find that the symmetron field exhibits a lightning rod effect wherein the field gradients are enhanced near the ends of pointed or elongated objects. An ellipsoid placed in a uniform symmetron gradient is shown to experience a torque. By symmetry there is no gravitational torque in this case. Hence this effect unmasks the symmetron and might serve as the basis for future laboratory experiments. The symmetron force between a point mass and a large dense body includes a component corresponding to the interaction of the point mass with its image in the larger body. None of these effects have counterparts in the Newtonian limit of Einstein gravity. We discuss the similarities between symmetron gravity and the chameleon model as well as the differences between the two.

  16. Microencapsulation and Electrostatic Processing Device

    Science.gov (United States)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor); Cassanto, John M. (Inventor)

    2001-01-01

    A microencapsulation and electrostatic processing (MEP) device is provided for forming microcapsules. In one embodiment, the device comprises a chamber having a filter which separates a first region in the chamber from a second region in the chamber. An aqueous solution is introduced into the first region through an inlet port, and a hydrocarbon/ polymer solution is introduced into the second region through another inlet port. The filter acts to stabilize the interface and suppress mixing between the two immiscible solutions as they are being introduced into their respective regions. After the solutions have been introduced and have become quiescent, the interface is gently separated from the filter. At this point, spontaneous formation of microcapsules at the interface may begin to occur, or some fluid motion may be provided to induce microcapsule formation. In any case, the fluid shear force at the interface is limited to less than 100 dynes/sq cm. This low-shear approach to microcapsule formation yields microcapsules with good sphericity and desirable size distribution. The MEP device is also capable of downstream processing of microcapsules, including rinsing, re-suspension in tertiary fluids, electrostatic deposition of ancillary coatings, and free-fluid electrophoretic separation of charged microcapsules.

  17. Electrostatic discharge concepts and definitions

    Energy Technology Data Exchange (ETDEWEB)

    Borovina, Dan L [Los Alamos National Laboratory

    2008-01-01

    Many objects -like a human body, plastic wrap, or a rolling cart -that are electrically neutral, overall, can gain a net electrostatic charge by means of one of three methods: induction, physical transfer, or triboelectric charging (separation of conductive surfaces). The result is a voltage difference between the charged object and other objects, creating a situation where current flow is likely if two objects come into contact or close proximity. This current flow is known as electrostatic discharge, or ESD. The energy and voltage of the discharge can be influenced by factors such as the temperature and humidity in the room, the types of materials or flooring involved, or the clothing and footwear a person uses. Given the possible ranges of the current and voltage characteristic of an ESD pulse, it is important to consider the safety risks associated with detonator handling, assembly and disassembly, transportation and maintenance. For main charge detonators, these safety risks include high explosive violent reactions (HEVR) as well as inadvertent nuclear detonations (lND).

  18. Variation in the biomolecular interactions of nickel(II) hydrazone complexes upon tuning the hydrazide fragment.

    Science.gov (United States)

    Krishnamoorthy, Paramasivam; Sathyadevi, Palanisamy; Butorac, Rachel R; Cowley, Alan H; Bhuvanesh, Nattamai S P; Dharmaraj, Nallasamy

    2012-06-14

    Three new bivalent nickel hydrazone complexes have been synthesised from the reactions of [NiCl(2)(PPh(3))(2)] with H(2)L {L = dianion of the hydrazones derived from the condensation of o-hydroxynaphthaldehyde with furoic acid hydrazide (H(2)L(1)) (1)/thiophene-2-acid hydrazide (H(2)L(2)) (2)/isonicotinic acid hydrazide (H(2)L(3)) (3)} and formulated as [Ni(L(1))(PPh(3))] (4), [Ni(L(2))(PPh(3))] (5) and [Ni(L(3))(PPh(3))] (6). Structural characterization of these compounds 4-6 were accomplished by using various physico-chemical techniques. Single crystal X-ray diffraction data of complexes 4 and 5 proved their distorted square planar geometry. In order to ascertain the potential of the above synthesised compounds towards biomolecular interactions, additional experiments involving interaction with calf thymus DNA (CT DNA) and bovine serum albumin (BSA) were carried out. All the ligands and corresponding nickel(ii) chelates have been screened for their scavenging effect towards O(2)(-), OH and NO radicals. The efficiency of complexes 4-6 to arrest the growth of HeLa, HepG-2 and A431 tumour cell lines has been studied along with the cell viability test against the non-cancerous NIH 3T3 cells under in vitro conditions.

  19. Gold-enhanced biomolecular surface imaging of cells and tissue by SIMS and MALDI mass spectrometry.

    Science.gov (United States)

    Altelaar, A F Maarten; Klinkert, Ivo; Jalink, Kees; de Lange, Robert P J; Adan, Roger A H; Heeren, Ron M A; Piersma, Sander R

    2006-02-01

    Surface metallization by plasma coating enhances desorption/ionization of membrane components such as lipids and sterols in imaging time-of-flight secondary ion mass spectrometry (TOF-SIMS) of tissues and cells. High-resolution images of cholesterol and other membrane components were obtained for neuroblastoma cells and revealed subcellular details (resolving power 1.5 mum). Alternatively, in matrix-enhanced SIMS, 2,5-dihydroxybenzoic acid electrosprayed on neuroblastoma cells allowed intact molecular ion imaging of phosphatidylcholine and sphingomyelin at the cellular level. Gold deposition on top of matrix-coated rat brain tissue sections strongly enhanced image quality and signal intensity in stigmatic matrix-assisted laser desorption/ionization imaging mass spectrometry. High-quality total ion count images were acquired, and the neuropeptide vasopressin was localized in the rat brain tissue section at the hypothalamic area around the third ventricle. Although the mechanism of signal enhancement by gold deposition is under debate, the results we have obtained for cells and tissue sections illustrate the potential of this sample preparation technique for biomolecular surface imaging by mass spectrometry.

  20. Pre-Clinical Tests of an Integrated CMOS Biomolecular Sensor for Cardiac Diseases Diagnosis.

    Science.gov (United States)

    Lee, Jen-Kuang; Wang, I-Shun; Huang, Chi-Hsien; Chen, Yih-Fan; Huang, Nien-Tsu; Lin, Chih-Ting

    2017-11-26

    Coronary artery disease and its related complications pose great threats to human health. In this work, we aim to clinically evaluate a CMOS field-effect biomolecular sensor for cardiac biomarkers, cardiac-specific troponin-I (cTnI), N -terminal prohormone brain natriuretic peptide (NT-proBNP), and interleukin-6 (IL-6). The CMOS biosensor is implemented via a standard commercialized 0.35 μm CMOS process. To validate the sensing characteristics, in buffer conditions, the developed CMOS biosensor has identified the detection limits of IL-6, cTnI, and NT-proBNP as being 45 pM, 32 pM, and 32 pM, respectively. In clinical serum conditions, furthermore, the developed CMOS biosensor performs a good correlation with an enzyme-linked immuno-sorbent assay (ELISA) obtained from a hospital central laboratory. Based on this work, the CMOS field-effect biosensor poses good potential for accomplishing the needs of a point-of-care testing (POCT) system for heart disease diagnosis.

  1. Entropy-enthalpy compensation: Role and ramifications in biomolecular ligand recognition and design

    Science.gov (United States)

    Chodera, John D.; Mobley, David L.

    2014-01-01

    Recent calorimetric studies of small molecule interactions with biomolecular targets have generated renewed interest in the phenomenon of entropy-enthalpy compensation. In these studies, entropic and enthalpic contributions to binding are observed to vary substantially and in an opposing manner as the ligand or protein is modified while the binding free energy varies little. In severe examples, engineered enthalpic gains can lead to completely compensating entropic penalties, frustrating ligand design. Here, we examine the evidence for compensation, as well as its potential origins, prevalence, severity, and ramifications for ligand engineering. We find the evidence for severe compensation to be weak in light of the large magnitude of and correlation between errors in experimental measurements of entropic and enthalpic contributions to binding, though a limited form of compensation may be common. Given the difficulty of predicting or measuring entropic and enthalpic changes to useful precision, or using this information in design, we recommend ligand engineering efforts instead focus on computational and experimental methodologies to directly assess changes in binding free energy. PMID:23654303

  2. A cyber-linked undergraduate research experience in computational biomolecular structure prediction and design.

    Science.gov (United States)

    Alford, Rebecca F; Leaver-Fay, Andrew; Gonzales, Lynda; Dolan, Erin L; Gray, Jeffrey J

    2017-12-01

    Computational biology is an interdisciplinary field, and many computational biology research projects involve distributed teams of scientists. To accomplish their work, these teams must overcome both disciplinary and geographic barriers. Introducing new training paradigms is one way to facilitate research progress in computational biology. Here, we describe a new undergraduate program in biomolecular structure prediction and design in which students conduct research at labs located at geographically-distributed institutions while remaining connected through an online community. This 10-week summer program begins with one week of training on computational biology methods development, transitions to eight weeks of research, and culminates in one week at the Rosetta annual conference. To date, two cohorts of students have participated, tackling research topics including vaccine design, enzyme design, protein-based materials, glycoprotein modeling, crowd-sourced science, RNA processing, hydrogen bond networks, and amyloid formation. Students in the program report outcomes comparable to students who participate in similar in-person programs. These outcomes include the development of a sense of community and increases in their scientific self-efficacy, scientific identity, and science values, all predictors of continuing in a science research career. Furthermore, the program attracted students from diverse backgrounds, which demonstrates the potential of this approach to broaden the participation of young scientists from backgrounds traditionally underrepresented in computational biology.

  3. A cyber-linked undergraduate research experience in computational biomolecular structure prediction and design.

    Directory of Open Access Journals (Sweden)

    Rebecca F Alford

    2017-12-01

    Full Text Available Computational biology is an interdisciplinary field, and many computational biology research projects involve distributed teams of scientists. To accomplish their work, these teams must overcome both disciplinary and geographic barriers. Introducing new training paradigms is one way to facilitate research progress in computational biology. Here, we describe a new undergraduate program in biomolecular structure prediction and design in which students conduct research at labs located at geographically-distributed institutions while remaining connected through an online community. This 10-week summer program begins with one week of training on computational biology methods development, transitions to eight weeks of research, and culminates in one week at the Rosetta annual conference. To date, two cohorts of students have participated, tackling research topics including vaccine design, enzyme design, protein-based materials, glycoprotein modeling, crowd-sourced science, RNA processing, hydrogen bond networks, and amyloid formation. Students in the program report outcomes comparable to students who participate in similar in-person programs. These outcomes include the development of a sense of community and increases in their scientific self-efficacy, scientific identity, and science values, all predictors of continuing in a science research career. Furthermore, the program attracted students from diverse backgrounds, which demonstrates the potential of this approach to broaden the participation of young scientists from backgrounds traditionally underrepresented in computational biology.

  4. Review of Transducer Principles for Label-Free Biomolecular Interaction Analysis

    Directory of Open Access Journals (Sweden)

    Janos Vörös

    2011-07-01

    Full Text Available Label-free biomolecular interaction analysis is an important technique to study the chemical binding between e.g., protein and protein or protein and small molecule in real-time. The parameters obtained with this technique, such as the affinity, are important for drug development. While the surface plasmon resonance (SPR instruments are most widely used, new types of sensors are emerging. These developments are generally driven by the need for higher throughput, lower sample consumption or by the need of complimentary information to the SPR data. This review aims to give an overview about a wide range of sensor transducers, the working principles and the peculiarities of each technology, e.g., concerning the set-up, sensitivity, sensor size or required sample volume. Starting from optical technologies like the SPR and waveguide based sensors, acoustic sensors like the quartz crystal microbalance (QCM and the film bulk acoustic resonator (FBAR, calorimetric and electrochemical sensors are covered. Technologies long established in the market are presented together with those newly commercially available and with technologies in the early development stage. Finally, the commercially available instruments are summarized together with their sensitivity and the number of sensors usable in parallel and an outlook for potential future developments is given.

  5. Equilibrium electrostatics of responsive polyelectrolyte monolayers.

    Science.gov (United States)

    Wang, Kang; Zangmeister, Rebecca A; Levicky, Rastislav

    2009-01-14

    The physical behavior of polyelectrolytes at solid-liquid interfaces presents challenges both in measurement and in interpretation. An informative, yet often overlooked, property that characterizes the equilibrium organization of these systems is their membrane or rest potential. Here a general classification scheme is presented of the relationship between the rest potential and structural response of polyelectrolyte films to salt concentration. A numerical lattice theory, adapted from the polymer community, is used to analyze the rest potential response of end-tethered polyelectrolyte layers in which electrostatics and short-range contact interactions conspire to bring about different structural states. As an experimental quantity the rest potential is a readily accessible, nonperturbing metric of the equilibrium structure of a polyelectrolyte layer. A first set of measurements is reported on monolayers of end-tethered, single-stranded DNA in monovalent (NaCl) and divalent (MgCl(2)) counterion environments. Intriguingly, in NaCl electrolyte at least two different mechanisms appear by which the DNA layers can structurally relax in response to changing salt conditions. In MgCl(2) the layers appear to collapse. The possible molecular mechanisms behind these behaviors are discussed. These studies provide insight into phenomena more generally underlying polyelectrolyte applications in the chemical, environmental, and biotechnological fields.

  6. ON ELECTROSTATIC ANALOGY OF MAGNETOSTATIC FIELD IN INHOMOGENEOUS MAGNETIZED MEDIUM

    Directory of Open Access Journals (Sweden)

    V. M. Mikhailov

    2017-10-01

    Full Text Available Purpose. The application in electrostatic analogy of magnetostatics for inhomogeneous magnetized media of two known magnetization models. Methodology. A comparison of basic equations and formulas of electrostatic and magnetostatic field in immoveable isotropic inhomogeneous polarized medium for dipole model and the magnetization model by molecular currents is made. The value-analogues for dipole model of magnetization are established. Results. We have shown that the using of dipole model of magnetization is correct. There is not even formal analogy with electrostatic field in the case of using the magnetization model by molecular currents. The relation between the magnetizations for various models is obtained. It allows us to justify the using magnetization by molecular currents in electrostatic analogy. Originality. The magnetization for dipole model is introduced and the possibility of using magnetization by molecular currents in the formulas for calculating potential magnetostatic field in magnetized medium is substantiated. Practical value. The results allow to obtain correct formulation and solution of the problem of magnetostatic field calculation in inhomogeneous magnetized medium.

  7. Efficient Algorithms for Electrostatic Interactions Including Dielectric Contrasts

    Directory of Open Access Journals (Sweden)

    Christian Holm

    2013-10-01

    Full Text Available Coarse-grained models of soft matter are usually combined with implicit solvent models that take the electrostatic polarizability into account via a dielectric background. In biophysical or nanoscale simulations that include water, this constant can vary greatly within the system. Performing molecular dynamics or other simulations that need to compute exact electrostatic interactions between charges in those systems is computationally demanding. We review here several algorithms developed by us that perform exactly this task. For planar dielectric surfaces in partial periodic boundary conditions, the arising image charges can be either treated with the MMM2D algorithm in a very efficient and accurate way or with the electrostatic layer correction term, which enables the user to use his favorite 3D periodic Coulomb solver. Arbitrarily-shaped interfaces can be dealt with using induced surface charges with the induced charge calculation (ICC* algorithm. Finally, the local electrostatics algorithm, MEMD(Maxwell Equations Molecular Dynamics, even allows one to employ a smoothly varying dielectric constant in the systems. We introduce the concepts of these three algorithms and an extension for the inclusion of boundaries that are to be held fixed at a constant potential (metal conditions. For each method, we present a showcase application to highlight the importance of dielectric interfaces.

  8. Scanning probe and micropatterning approaches for biomolecular screening applications

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, Lisa M

    2002-07-01

    Force mapping using atomic force microscopy (AFM) allows for the simultaneous acquisition of topography and probe-sample interaction data. For example, AFM probes functionalised with an antigen can be employed to map the spatial distribution of recognition events on a substrate functionalised with the complementary specific antibody. However, this technique is currently limited to the detection of a single receptor-ligand species. Were the detection of multiple receptor-ligand interactions possible, AFM force mapping would offer greater scope as a sensitive tool for bioassay and screening applications. This thesis outlines developments in probe and substrate immobilisation methods to facilitate this process. We have developed an immobilisation strategy, which allows two antigen species, human serum albumin (HSA) and the beta subunit of human chorionic gonadotropin ({beta}hCG) to be simultaneously present on an AFM probe. Single point force spectroscopy results have revealed the ability of such probes to discriminate between their corresponding antibodies (anti-HSA and anti-{beta}hCG lgG antibodies). In addition, these antibodies have been employed in the fabrication of a 2-D biomolecular array using microfluidic network patterning. The formed chequered pattern was visualised with fluorescence microscopy using fluorescently tagged anti-IgG antibodies. In parallel with such developments we have employed AFM force volume imaging to investigate the distribution of antigen binding sites on an antibody functionalised substrate. Highly resolved adhesion maps were obtained of surfaces functionalised with anti-HSA lgG antibodies using HSA functionalised AFM probes, adopting the sample molecular tether immobilisation strategy employed in the single point force spectroscopy investigations. The observed forces were seen to be comparable with previous investigations. The addition of free HSA into the system was found to result in a significant reduction in the number of

  9. Evolution of biomolecular loadings along a major river system

    Science.gov (United States)

    Freymond, Chantal V.; Kündig, Nicole; Stark, Courcelle; Peterse, Francien; Buggle, Björn; Lupker, Maarten; Plötze, Michael; Blattmann, Thomas M.; Filip, Florin; Giosan, Liviu; Eglinton, Timothy I.

    2018-02-01

    Understanding the transport history and fate of organic carbon (OC) within river systems is crucial in order to constrain the dynamics and significance of land-ocean interactions as a component of the global carbon cycle. Fluvial export and burial of terrestrial OC in marine sediments influences atmospheric CO2 over a range of timescales, while river-dominated sedimentary sequences can provide valuable archives of paleoenvironmental information. While there is abundant evidence that the association of organic matter (OM) with minerals exerts an important influence on its stability as well as hydrodynamic behavior in aquatic systems, there is a paucity of information on where such associations form and how they evolve during fluvial transport. Here, we track total organic carbon (TOC) and terrestrial biomarker concentrations (plant wax-derived long-chain fatty acids (FA), branched glycerol dialkyl glycerol tetraethers (brGDGTs) and lignin-derived phenols) in sediments collected along the entire course of the Danube River system in the context of sedimentological parameters. Mineral-specific surface area-normalized biomarker and TOC concentrations show a systematic decrease from the upper to the lower Danube basin. Changes in OM loading of the available mineral phase correspond to a net decrease of 70-80% of different biomolecular components. Ranges for biomarker loadings on Danube River sediments, corresponding to 0.4-1.5 μgFA/m2 for long-chain (n-C24-32) fatty acids and 17-71 ngbrGDGT/m2 for brGDGTs, are proposed as a benchmark for comparison with other systems. We propose that normalizing TOC as well as biomarker concentrations to mineral surface area provides valuable quantitative constraints on OM dynamics and organo-mineral interactions during fluvial transport from terrigenous source to oceanic sink.

  10. Biomolecular detection using a metal semiconductor field effect transistor

    Science.gov (United States)

    Estephan, Elias; Saab, Marie-Belle; Buzatu, Petre; Aulombard, Roger; Cuisinier, Frédéric J. G.; Gergely, Csilla; Cloitre, Thierry

    2010-04-01

    In this work, our attention was drawn towards developing affinity-based electrical biosensors, using a MESFET (Metal Semiconductor Field Effect Transistor). Semiconductor (SC) surfaces must be prepared before the incubations with biomolecules. The peptides route was adapted to exceed and bypass the limits revealed by other types of surface modification due to the unwanted unspecific interactions. As these peptides reveal specific recognition of materials, then controlled functionalization can be achieved. Peptides were produced by phage display technology using a library of M13 bacteriophage. After several rounds of bio-panning, the phages presenting affinities for GaAs SC were isolated; the DNA of these specific phages were sequenced, and the peptide with the highest affinity was synthesized and biotinylated. To explore the possibility of electrical detection, the MESFET fabricated with the GaAs SC were used to detect the streptavidin via the biotinylated peptide in the presence of the bovine Serum Albumin. After each surface modification step, the IDS (current between the drain and the source) of the transistor was measured and a decrease in the intensity was detected. Furthermore, fluorescent microscopy was used in order to prove the specificity of this peptide and the specific localisation of biomolecules. In conclusion, the feasibility of producing an electrical biosensor using a MESFET has been demonstrated. Controlled placement, specific localization and detection of biomolecules on a MESFET transistor were achieved without covering the drain and the source. This method of functionalization and detection can be of great utility for biosensing application opening a new way for developing bioFETs (Biomolecular Field-Effect Transistor).

  11. Bases biomoleculares do fotoenvelhecimento Molecular basis of photoaging

    Directory of Open Access Journals (Sweden)

    Suelen Montagner

    2009-07-01

    Full Text Available Com o aumento da expectativa de vida, o estudo do processo de envelhecimento orgânico tem sido estimulado. O envelhecimento da pele, órgão que espelha os sinais do tempo, é processo de deterioração progressiva, tempo-dependente, e pode ser intensificado pela exposição solar, então designado fotoenvelhecimento. O dano das radiações sobre diversas estruturas celulares e cutâneas leva a alterações morfológicas nesses componentes, fruto de modificações biomoleculares. Muitas pesquisas são desenvolvidas com o intuito de combater ou minimizar os efeitos do fotoenvelhecimento, porém a principal estratégia nesse sentido continua sendo a prevenção, só conseguida pelo progressivo desvendar dos mecanismos fisiopatogênicos envolvidos nesse processo.As a result of the increase in life expectancy, the study of the organic process of aging has been stimulated. Skin ageing, which reflects the signs of time, is a time-dependent process of progressive deterioration that can be intensified by sun exposure, which is known as photoaging. The damage of radiation on various cell structures and on the skin results in molecular and morphological changes to these components. Many research studies are performed to try to minimize the effects of photoaging; however, the main strategy to manage it is still prevention, which will only be achieved once we learn about the mechanisms involved in the process.

  12. Development of an informatics infrastructure for data exchange of biomolecular simulations: Architecture, data models and ontology.

    Science.gov (United States)

    Thibault, J C; Roe, D R; Eilbeck, K; Cheatham, T E; Facelli, J C

    2015-01-01

    Biomolecular simulations aim to simulate structure, dynamics, interactions, and energetics of complex biomolecular systems. With the recent advances in hardware, it is now possible to use more complex and accurate models, but also reach time scales that are biologically significant. Molecular simulations have become a standard tool for toxicology and pharmacology research, but organizing and sharing data - both within the same organization and among different ones - remains a substantial challenge. In this paper we review our recent work leading to the development of a comprehensive informatics infrastructure to facilitate the organization and exchange of biomolecular simulations data. Our efforts include the design of data models and dictionary tools that allow the standardization of the metadata used to describe the biomedical simulations, the development of a thesaurus and ontology for computational reasoning when searching for biomolecular simulations in distributed environments, and the development of systems based on these models to manage and share the data at a large scale (iBIOMES), and within smaller groups of researchers at laboratory scale (iBIOMES Lite), that take advantage of the standardization of the meta data used to describe biomolecular simulations.

  13. Review on the Modeling of Electrostatic MEMS

    Science.gov (United States)

    Chuang, Wan-Chun; Lee, Hsin-Li; Chang, Pei-Zen; Hu, Yuh-Chung

    2010-01-01

    Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices. PMID:22219707

  14. Electrostatics with Computer-Interfaced Charge Sensors

    Science.gov (United States)

    Morse, Robert A.

    2006-01-01

    Computer interfaced electrostatic charge sensors allow both qualitative and quantitative measurements of electrostatic charge but are quite sensitive to charges accumulating on modern synthetic materials. They need to be used with care so that students can correctly interpret their measurements. This paper describes the operation of the sensors,…

  15. Preliminary tests of the electrostatic plasma accelerator

    Science.gov (United States)

    Aston, G.; Acker, T.

    1990-01-01

    This report describes the results of a program to verify an electrostatic plasma acceleration concept and to identify those parameters most important in optimizing an Electrostatic Plasma Accelerator (EPA) thruster based upon this thrust mechanism. Preliminary performance measurements of thrust, specific impulse and efficiency were obtained using a unique plasma exhaust momentum probe. Reliable EPA thruster operation was achieved using one power supply.

  16. Application trends for electrostatic ion beam accelerators

    International Nuclear Information System (INIS)

    Norton, G. A.

    2010-01-01

    Since 1930 to 1960 electrostatic accelerators were used primarily for nuclear structure research. This has changed dramatically in the decades that followed. This talk will discuss the applications and their effect on accelerator design and performance. The most recent use for electrostatic accelerators is in the field of pharmacokinetics, which is discussed with a tentative look for the future. (Author)

  17. Electrostatic mask protection for extreme ultraviolet lithography

    NARCIS (Netherlands)

    Moors, R.; Heerens, G.J.

    2002-01-01

    Electrostatic protection of mask for extreme ultraviolet lithography (EUVL) was discussed. Both charged and neutral particles could be prevented from moving towards the mask by choosing a nonuniform electrical field. Benefits of electrostatic protection are that it does not affect the EUV beam and

  18. Large aperture electrostatic dust detector

    International Nuclear Information System (INIS)

    Skinner, C.H.; Hensley, R.; Roquemore, A.L.

    2008-01-01

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 V has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5 x 5 cm) detector to microgram quantities of dust particles

  19. Large Aperture Electrostatic Dust Detector

    International Nuclear Information System (INIS)

    Skinner, C.H.; Hensley, R.; Roquemore, A.L.

    2007-01-01

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 v has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  20. Microencapsulation and Electrostatic Processing Method

    Science.gov (United States)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2000-01-01

    Methods are provided for forming spherical multilamellar microcapsules having alternating hydrophilic and hydrophobic liquid layers, surrounded by flexible, semi-permeable hydrophobic or hydrophilic outer membranes which can be tailored specifically to control the diffusion rate. The methods of the invention rely on low shear mixing and liquid-liquid diffusion process and are particularly well suited for forming microcapsules containing both hydrophilic and hydrophobic drugs. These methods can be carried out in the absence of gravity and do not rely on density-driven phase separation, mechanical mixing or solvent evaporation phases. The methods include the process of forming, washing and filtering microcapsules. In addition, the methods contemplate coating microcapsules with ancillary coatings using an electrostatic field and free fluid electrophoresis of the microcapsules. The microcapsules produced by such methods are particularly useful in the delivery of pharmaceutical compositions.

  1. Electrostatic effect for the collisionless tearing mode

    International Nuclear Information System (INIS)

    Hoshino, M.

    1987-01-01

    Electron dynamics has not been self-consistently considered in collisionless tearing mode theories to date because of the mathematical complexity of the Vlasov-Maxwell equations. We have found using computer simulations that electrostatic fields play an important role in the tearing mode. Vlasov theory, including the electrostatic field, is investigated for topologies with both antiparallel and nonantiparallel magnetic field lines. The electrostatic field influences the resonant current in the neutral sheet which is a non-MHD effect, and modifies the linear growth rate. At the magnetopause, where the field lines are not antiparallel, the electrostatic effect acts to raise the linear growth rate of the tearing mode. On the other hand, in the magnetotail, where magnetic field lines are antiparallel, the electrostatic effect reduces the tearing mode growth rate. copyright American Geophysical Union 1987

  2. Integrating electrostatic adhesion to composite structures

    Science.gov (United States)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2015-04-01

    Additional functionality within load bearing components holds potential for adding value to a structure, design or product. We consider the adaptation of an established technology, electrostatic adhesion or electroadhesion, for application in glass fibre reinforced polymer (GFRP) composite materials. Electroadhesion uses high potential difference (~2-3 kV) between co-planar electrodes to generate temporary holding forces to both electrically conductive and nonconductive contact surfaces. Using a combination of established fabrication techniques, electroadhesive elements are co-cured within a composite host structure during manufacture. This provides an almost symbiotic relationship between the electroadhesive and the composite structure, with the electroadhesive providing an additional functionality, whilst the epoxy matrix material of the composite acts as a dielectric for the high voltage electrodes of the device. Silicone rubber coated devices have been shown to offer high shear load (85kPa) capability for GFRP components held together using this technique. Through careful control of the connection interface, we consider the incorporation of these devices within complete composite structures for additional functionality. The ability to vary the internal connectivity of structural elements could allow for incremental changes in connectivity between discrete sub-structures, potentially introducing variable stiffness to the global structure.

  3. Electrostatic turbulence in the Tokamak TBR-1

    International Nuclear Information System (INIS)

    Castro, R.M. de.

    1991-01-01

    Characteristics of turbulence at plasma edge of tokamak TBR - 1 are determined from measurements of potentials and density fluctuations, done with a square array of four single Langmuir probes. Two adjacent probes are used to measure the floating potential of the plasma in either poloidal or toroidal directions, the remaining two probes are used to measure saturation current also in poloidal and toroidal directions. Using multiple shot data from the four probe array the radial fluctuation density (n ∼ ) and floating potential (φ ∼ ) profiles are estimated. Analysing the fluctuations spectra the wavenumber-frequency spectrum S(k,ω) from two points measurements is determined. An extension of the cross-correlation concept to a three points correlations leads to the estimation of the fluctuation induced particle flux, from which the particle diffusion coefficient and the convected heat flux can be estimated. All this measurements were performed with and without a resonant magnetic field to verify the eventual influence of this field on the data already mentioned. It was verified that the particle flux is outward and due to electrostatic fluctuations with frequencies lower than 150 khz. (author)

  4. Response of an electrostatic probe for a right cylindrical spacer

    DEFF Research Database (Denmark)

    Rerup, T; Crichton, George C; McAllister, Iain Wilson

    1994-01-01

    During the last decade many experimental studies of surface charge phenomena have been undertaken employing right cylindrical spacers. Measurement of the surface charge was performed using small electrostatic field probes to scan across the dielectric surface. Charges are electrostatically induced...... on the sensor plate by the ambient surface charge, and hence as the probe is moved parallel to the surface the potential of the sensor plate changes. The probe sensor-plate potential is thus the parameter of interest as this parameter can be related in a quantitative manner to the surface charge density....... In the present study, the influence of the spacer geometry upon the λ-function is examined. This knowledge allows the response of the probe with reference to detection sensitivity and spatial selectivity to be considered. Such probe characteristics enable general conclusions to be reached about...

  5. Electrostatic twisted modes in multi-component dusty plasmas

    International Nuclear Information System (INIS)

    Ayub, M. K.; Ali, S.; Ikram, M.

    2016-01-01

    Various electrostatic twisted modes are re-investigated with finite orbital angular momentum in an unmagnetized collisionless multi-component dusty plasma, consisting of positive/negative charged dust particles, ions, and electrons. For this purpose, hydrodynamical equations are employed to obtain paraxial equations in terms of density perturbations, while assuming the Gaussian and Laguerre-Gaussian (LG) beam solutions. Specifically, approximated solutions for potential problem are studied by using the paraxial approximation and expressed the electric field components in terms of LG functions. The energy fluxes associated with these modes are computed and corresponding expressions for orbital angular momenta are derived. Numerical analyses reveal that radial/angular mode numbers as well as dust number density and dust charging states strongly modify the LG potential profiles attributed to different electrostatic modes. Our results are important for understanding particle transport and energy transfer due to wave excitations in multi-component dusty plasmas

  6. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Arjun Verma

    2016-07-01

    Full Text Available We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed.

  7. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications.

    Science.gov (United States)

    Verma, Arjun; Fratto, Brian E; Privman, Vladimir; Katz, Evgeny

    2016-07-05

    We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s) as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed.

  8. Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks

    DEFF Research Database (Denmark)

    Soberano de Oliveira, Ana Paula; Patil, Kiran Raosaheb; Nielsen, Jens

    2008-01-01

    is to use the topology of bio-molecular interaction networks in order to constrain the solution space. Such approaches systematically integrate the existing biological knowledge with the 'omics' data. Results: Here we introduce a hypothesis-driven method that integrates bio-molecular network topology...... with transcriptome data, thereby allowing the identification of key biological features (Reporter Features) around which transcriptional changes are significantly concentrated. We have combined transcriptome data with different biological networks in order to identify Reporter Gene Ontologies, Reporter Transcription...... Factors, Reporter Proteins and Reporter Complexes, and use this to decipher the logic of regulatory circuits playing a key role in yeast glucose repression and human diabetes. Conclusion: Reporter Features offer the opportunity to identify regulatory hot-spots in bio-molecular interaction networks...

  9. Toward in silico biomolecular manipulation through static modes: atomic scale characterization of HIV-1 protease flexibility.

    Science.gov (United States)

    Brut, Marie; Estève, Alain; Landa, Georges; Djafari Rouhani, Mehdi

    2014-03-20

    Probing biomolecular flexibility with atomic-scale resolution is a challenging task in current computational biology for fundamental understanding and prediction of biomolecular interactions and associated functions. This paper makes use of the static mode method to study HIV-1 protease considered as a model system to investigate the full biomolecular flexibility at the atomic scale, the screening of active site biomechanical properties, the blind prediction of allosteric sites, and the design of multisite strategies to target deformations of interest. Relying on this single calculation run of static modes, we demonstrate that in silico predictive design of an infinite set of complex excitation fields is reachable, thanks to the storage of the static modes in a data bank that can be used to mimic single or multiatom contact and efficiently anticipate conformational changes arising from external stimuli. All along this article, we compare our results to data previously published and propose a guideline for efficient, predictive, and custom in silico experiments.

  10. An electrostatic elliptical mirror for neutral polar molecules

    OpenAIRE

    Flórez, A. Isabel González; Meek, Samuel A.; Haak, Henrik; Conrad, Horst; Santambrogio, Gabriele; Meijer, Gerard

    2011-01-01

    Focusing optics for neutral molecules finds application in shaping and steering molecular beams. Here we present an electrostatic elliptical mirror for polar molecules consisting of an array of microstructured gold electrodes deposited on a glass substrate. Alternating positive and negative voltages applied to the electrodes create a repulsive potential for molecules in low-field-seeking states. The equipotential lines are parallel to the substrate surface, which is bent in an elliptical shap...

  11. Correlating Nitrile IR Frequencies to Local Electrostatics Quantifies Noncovalent Interactions of Peptides and Proteins.

    Science.gov (United States)

    Deb, Pranab; Haldar, Tapas; Kashid, Somnath M; Banerjee, Subhrashis; Chakrabarty, Suman; Bagchi, Sayan

    2016-05-05

    Noncovalent interactions, in particular the hydrogen bonds and nonspecific long-range electrostatic interactions are fundamental to biomolecular functions. A molecular understanding of the local electrostatic environment, consistently for both specific (hydrogen-bonding) and nonspecific electrostatic (local polarity) interactions, is essential for a detailed understanding of these processes. Vibrational Stark Effect (VSE) has proven to be an extremely useful method to measure the local electric field using infrared spectroscopy of carbonyl and nitrile based probes. The nitrile chemical group would be an ideal choice because of its absorption in an infrared spectral window transparent to biomolecules, ease of site-specific incorporation into proteins, and common occurrence as a substituent in various drug molecules. However, the inability of VSE to describe the dependence of IR frequency on electric field for hydrogen-bonded nitriles to date has severely limited nitrile's utility to probe the noncovalent interactions. In this work, using infrared spectroscopy and atomistic molecular dynamics simulations, we have reported for the first time a linear correlation between nitrile frequencies and electric fields in a wide range of hydrogen-bonding environments that may bridge the existing gap between VSE and H-bonding interactions. We have demonstrated the robustness of this field-frequency correlation for both aromatic nitriles and sulfur-based nitriles in a wide range of molecules of varying size and compactness, including small molecules in complex solvation environments, an amino acid, disordered peptides, and structured proteins. This correlation, when coupled to VSE, can be used to quantify noncovalent interactions, specific or nonspecific, in a consistent manner.

  12. A self-consistent transport model for molecular conduction based on extended Huckel theory with full three-dimensional electrostatics

    DEFF Research Database (Denmark)

    Zahid, F.; Paulsson, Magnus; Polizzi, E.

    2005-01-01

    overlap) method and the electrostatic effects of metallic leads (bias and image charges) are included through a three-dimensional finite element method. This allows us to capture spatial details of the electrostatic potential profile, including effects of charging, screening, and complicated electrode...

  13. Introduction to numerical electrostatics using MATLAB

    CERN Document Server

    Dworsky, Lawrence N

    2014-01-01

    The first of its kind uniquely devoted to the field of computational electrostatics, this book dives headfirst into the actual problems that engineers are expected to solve using method of moment (MoM), finite difference, and finite element techniques. Readers are guided step by step through specific problems and challenges, covering all aspects of electrostatics with an emphasis on numerical procedures. Focusing on practical examples, mathematical equations, and common issues with algorithms, this is an ideal text for students in engineering, physics, and electrostatics-and working engineers

  14. Specific Electrostatic Molecular Recognition in Water

    DEFF Research Database (Denmark)

    Li, Ming; Hoeck, Casper; Schoffelen, Sanne

    2016-01-01

    The identification of pairs of small peptides that recognize each other in water exclusively through electrostatic interactions is reported. The target peptide and a structure-biased combinatorial ligand library consisting of ≈78 125 compounds were synthesized on different sized beads. Peptide......-bead binding assay and by 2D NMR spectroscopy. Molecular dynamics (MD) studies revealed a putative mode of interaction for this unusual electrostatic binding event. High binding specificity occurred through a combination of topological matching and electrostatic and hydrogen-bond complementarities. From MD...

  15. Nonlinear dynamics of resistive electrostatic drift waves

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.

    1999-01-01

    The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... polarity, i.e. a pair of electrostatic convective cells....

  16. Wall Climbing Robot Using Electrostatic Adhesion Force Generated by Flexible Interdigital Electrodes

    Directory of Open Access Journals (Sweden)

    Rong Liu

    2013-01-01

    Full Text Available Electrostatic adhesion technology has broad application prospects on wall climbing robots because of its unique characteristics compared with other types of adhesion technologies. A double tracked wall climbing robot based on electrostatic adhesion technology is presented including electrode panel design, mechanical structure design, power supply system design and control system design. A theoretical adhesion model was established and the electrostatic potential and field were expressed by series expansions in terms of solutions of the Laplace function. Based on this model, the electrostatic adhesion force was calculated using the Maxwell stress tensor formulation. Several important factors which may influence the electrostatic adhesion force were analysed and discussed by both FEM simulation and theoretical calculation. In addition, experiments on the adhesion performance of the electrode panel and the climbing performance of the robot on various wall materials were carried out. Both the simulation and experiment results verify the feasibility of electrostatic adhesion technology being applied on wall climbing robots. The theoretical model and calculation method for the electrostatic adhesion force proposed in this paper are also justified.

  17. Electrostatics in the Surroundings of a Topologically Charged Black Hole in the Brane

    Directory of Open Access Journals (Sweden)

    Alexis Larrañaga

    2014-01-01

    Full Text Available We determine the expression for the electrostatic potential generated by a point charge held stationary in the topologically charged black hole spacetime arising from the Randall-Sundrum II braneworld model. We treat the static electric point charge as a linear perturbation on the black hole background and an expression for the electrostatic multipole solution is given: PACS: 04.70.-s, 04.50.Gh, 11.25.-w, 41.20.-q, 41.90.+e.

  18. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    OpenAIRE

    Minárik Stanislav

    2015-01-01

    A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensit...

  19. Hybrid Quantum Mechanics/Molecular Mechanics/Coarse Grained Modeling: A Triple-Resolution Approach for Biomolecular Systems.

    Science.gov (United States)

    Sokkar, Pandian; Boulanger, Eliot; Thiel, Walter; Sanchez-Garcia, Elsa

    2015-04-14

    We present a hybrid quantum mechanics/molecular mechanics/coarse-grained (QM/MM/CG) multiresolution approach for solvated biomolecular systems. The chemically important active-site region is treated at the QM level. The biomolecular environment is described by an atomistic MM force field, and the solvent is modeled with the CG Martini force field using standard or polarizable (pol-CG) water. Interactions within the QM, MM, and CG regions, and between the QM and MM regions, are treated in the usual manner, whereas the CG-MM and CG-QM interactions are evaluated using the virtual sites approach. The accuracy and efficiency of our implementation is tested for two enzymes, chorismate mutase (CM) and p-hydroxybenzoate hydroxylase (PHBH). In CM, the QM/MM/CG potential energy scans along the reaction coordinate yield reaction energies that are too large, both for the standard and polarizable Martini CG water models, which can be attributed to adverse effects of using large CG water beads. The inclusion of an atomistic MM water layer (10 Å for uncharged CG water and 5 Å for polarizable CG water) around the QM region improves the energy profiles compared to the reference QM/MM calculations. In analogous QM/MM/CG calculations on PHBH, the use of the pol-CG description for the outer water does not affect the stabilization of the highly charged FADHOOH-pOHB transition state compared to the fully atomistic QM/MM calculations. Detailed performance analysis in a glycine-water model system indicates that computation times for QM energy and gradient evaluations at the density functional level are typically reduced by 40-70% for QM/MM/CG relative to fully atomistic QM/MM calculations.

  20. Zwitterionic Silane Copolymer for Ultra-Stable and Bright Biomolecular Probes Based on Fluorescent Quantum Dot Nanoclusters.

    Science.gov (United States)

    Dembele, Fatimata; Tasso, Mariana; Trapiella-Alfonso, Laura; Xu, Xiangzhen; Hanafi, Mohamed; Lequeux, Nicolas; Pons, Thomas

    2017-05-31

    Fluorescent semiconductor quantum dots (QDs) exhibit several unique properties that make them suitable candidates for biomolecular sensing, including high brightness, photostability, broad excitation, and narrow emission spectra. Assembling these QDs into robust and functionalizable nanosized clusters (QD-NSCs) can provide fluorescent probes that are several orders of magnitude brighter than individual QDs, thus allowing an even greater sensitivity of detection with simplified instrumentation. However, the formation of compact, antifouling, functionalizable, and stable QD-NSCs remains a challenging task, especially for a use at ultralow concentrations for single-molecule detection. Here, we describe the development of fluorescent QD-NSCs envisioned as a tool for fast and sensitive biomolecular recognition. First, QDs were assembled into very compact 100-150 nm diameter spherical aggregates; the final QD-NSCs were obtained by growing a cross-linked silica shell around these aggregates. Hydrolytic stability in several concentration and pH conditions is a key requirement for a potential and efficient single-molecule detection tool. However, the hydrolysis of Si-O-Si bonds leads to desorption of monosilane-based surface groups at very low silica concentrations or in a slightly basic medium. Thus, we designed a novel multidentate copolymer composed of multiple silane as well as zwitterionic monomers. Coating silica beads with this multidentate copolymer provided a robust surface chemistry that was demonstrated to be stable against hydrolysis, even at low concentrations. Copolymer-coated silica beads also showed low fouling properties and high colloidal stability in saline solutions. Furthermore, incorporation of additional azido-monomers enabled easy functionalization of QD-NSCs using copper-free bio-orthogonal cyclooctyne-azide click chemistry, as demonstrated by a biotin-streptavidin affinity test.

  1. Molecular electrostatics for probing lone pair-π interactions.

    Science.gov (United States)

    Mohan, Neetha; Suresh, Cherumuttathu H; Kumar, Anmol; Gadre, Shridhar R

    2013-11-14

    An electrostatics-based approach has been proposed for probing the weak interactions between lone pair containing molecules and π deficient molecular systems. For electron-rich molecules, the negative minima in molecular electrostatic potential (MESP) topography give the location of electron localization and the MESP value at the minimum (Vmin) quantifies the electron-rich character of that region. Interactive behavior of a lone pair bearing molecule with electron deficient π-systems, such as hexafluorobenzene, 1,3,5-trinitrobenzene, 2,4,6-trifluoro-1,3,5-triazine and 1,2,4,5-tetracyanobenzene explored within DFT brings out good correlation of the lone pair-π interaction energy (E(int)) with the Vmin value of the electron-rich system. Such interaction is found to be portrayed well with the Electrostatic Potential for Intermolecular Complexation (EPIC) model. On the basis of the precise location of MESP minimum, a prediction for the orientation of a lone pair bearing molecule with an electron deficient π-system is possible in the majority of the cases studied.

  2. Effect of electrostatic interactions on electron-transfer reactions

    International Nuclear Information System (INIS)

    Hickel, B.

    1987-01-01

    Fast reactions of electron transfer are studied by pulsed radiolysis. By this technique radicals and ionic radicals with high redox potentials are created homogeneously in the solution in about 10 -8 second. For solvated electron effect of electrostatic interaction on kinetics of reactions limited by diffusion is obtained with a good approximation by the Debye equation when ion mobility is known. Deviation from the theory occurs in ion pair formation, which is evidenced experimentally in reactions between anions when cations are complexed by a cryptate. Slow reactions k 8 M -1 s -1 are more sensitive to electrostatic interactions than reactions limited by diffusion. When there is no ion pair formation the velocity constant depends upon dielectric constant of the solvent and reaction distance. 17 refs

  3. The Electrocardiogram as an Example of Electrostatics

    Science.gov (United States)

    Hobbie, Russell K.

    1973-01-01

    Develops a simplified electrostatic model of the heart with conduction within the torso neglected to relate electrocardiogram patterns to the charge distribution within the myocardium. Suggests its application to explanation of Coulomb's law in general physics. (CC)

  4. The Electrostatic Actuated Next Generation Microshutter Arrays

    Data.gov (United States)

    National Aeronautics and Space Administration — The field of view required for future missions is much larger than James Webb Space Telescope (JWST). We need to use electrostatic actuation to replace magnetic...

  5. Electrostatic correlations: from plasma to biology

    International Nuclear Information System (INIS)

    Levin, Yan

    2002-01-01

    Electrostatic correlations play an important role in physics, chemistry and biology. In plasmas they result in thermodynamic instability similar to the liquid-gas phase transition of simple molecular fluids. For charged colloidal suspensions the electrostatic correlations are responsible for screening and colloidal charge renormalization. In aqueous solutions containing multivalent counterions they can lead to charge inversion and flocculation. In biological systems the correlations account for the organization of cytoskeleton and the compaction of genetic material. In spite of their ubiquity, the true importance of electrostatic correlations has come to be fully appreciated only quite recently. In this paper, we will review the thermodynamic consequences of electrostatic correlations in a variety of systems ranging from classical plasmas to molecular biology

  6. Electrostatic Spectrometer for Mars Rover Wheel

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a simple electrostatic spectrometer that can be mounted on the wheels of a Mars rover to continuously and unobtrusively determine the mineral composition and...

  7. Electrostatic interactions in gas-solid chromatography.

    Science.gov (United States)

    Benson, S. W.; King, J., Jr.

    1966-01-01

    Electrostatic theory of physical adsorption applied to gas-solid chromatography, discussing chromatographic inseparability of argon and oxygen at room temperature, prediction of elution order of many gases, etc

  8. Conformation of bovine submaxillary mucin layers on hydrophobic surface as studied by biomolecular probes

    DEFF Research Database (Denmark)

    Pakkanen, Kirsi I.; Madsen, Jan Busk; Lee, Seunghwan

    2015-01-01

    non-linear responses with increasing surface concentration. The results from this study support the conventional amphiphilic, triblock model of BSM in the adsorption onto hydrophobic surface from aqueous solution.The biomolecular probe-based approaches employed in this study, however, provided further...

  9. Affinity Capillary Electrophoresis – A Powerful Tool to Investigate Biomolecular Interactions

    Czech Academy of Sciences Publication Activity Database

    Kašička, Václav

    2017-01-01

    Roč. 30, č. 5 (2017), s. 248 ISSN 1471-6577 Institutional support: RVO:61388963 Keywords : capillary affinity electrophoresis * biomolecular interactions * binding constants Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 0.663, year: 2016

  10. Optical Coherence Tomography and Biomolecular Imaging with Coherent Raman Scattering Microscopy

    DEFF Research Database (Denmark)

    Andersson-Engels, Stefan; Andersen, Peter E.

    2014-01-01

    The Special Section on Selected Topics in Biophotonics: Optical Coherence Tomography and Biomolecular Imaging with Coherent Raman Scattering Microscopy comprises two invited review papers and several contributed papers from the summer school Biophotonics ’13, as well as contributed papers within...

  11. Computer Programming and Biomolecular Structure Studies: A Step beyond Internet Bioinformatics

    Science.gov (United States)

    Likic, Vladimir A.

    2006-01-01

    This article describes the experience of teaching structural bioinformatics to third year undergraduate students in a subject titled "Biomolecular Structure and Bioinformatics." Students were introduced to computer programming and used this knowledge in a practical application as an alternative to the well established Internet bioinformatics…

  12. Review on the Modeling of Electrostatic MEMS

    Directory of Open Access Journals (Sweden)

    Wan-Chun Chuang

    2010-06-01

    Full Text Available Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices.

  13. Test plan for electrostatic curtain studies

    International Nuclear Information System (INIS)

    Meyer, L.C.; Loomis, G.G.

    1991-03-01

    This test plan describes experimental details of engineering-scale electrostatic curtain research experiments to be performed at the Idaho National Engineering Laboratory in FY-91. These experiments will investigate the feasibility of using electrostatic curtains as devices to control the spread of contaminants during transuranic waste handling operations. Test objectives, detailed experimental procedures, and data quality objectives necessary to perform the FY-91 experiments are included in this plan. 11 refs

  14. Electrostatic Levitation Furnace for the ISS

    Science.gov (United States)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  15. Nonlinear Electrostatic Wave Equations for Magnetized Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans

    1984-01-01

    The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....

  16. Energy Balance in an Electrostatic Accelerator

    OpenAIRE

    Zolotorev, Max S.; McDonald, Kirk T.

    2000-01-01

    The principle of an electrostatic accelerator is that when a charge e escapes from a conducting plane that supports a uniform electric field of strength E_0, then the charge gains energy e E_0 d as it moves distance d from the plane. Where does this energy come from? We that the mechanical energy gain of the electron is balanced by the decrease in the electrostatic field energy of the system.

  17. Optics Elements for Modeling Electrostatic Lenses and Accelerator Components: III. Electrostatic Deflectors

    International Nuclear Information System (INIS)

    Brown, T.A.; Gillespie, G.H.

    1999-01-01

    Ion-beam optics models for simulating electrostatic prisms (deflectors) of different geometries have been developed for the computer code TRACE 3-D. TRACE 3-D is an envelope (matrix) code, which includes a linear space charge model, that was originally developed to model bunched beams in magnetic transport systems and radiofrequency (RF) accelerators. Several new optical models for a number of electrostatic lenses and accelerator columns have been developed recently that allow the code to be used for modeling beamlines and accelerators with electrostatic components. The new models include a number of options for: (1) Einzel lenses, (2) accelerator columns, (3) electrostatic prisms, and (4) electrostatic quadrupoles. A prescription for setting up the initial beam appropriate to modeling 2-D (continuous) beams has also been developed. The models for electrostatic prisms are described in this paper. The electrostatic prism model options allow the modeling of cylindrical, spherical, and toroidal electrostatic deflectors. The application of these models in the development of ion-beam transport systems is illustrated through the modeling of a spherical electrostatic analyzer as a component of the new low energy beamline at CAMS

  18. ALTERNATIVAS BIOMOLECULARES EN EL TRATAMIENTO DE LA OBESIDAD

    Directory of Open Access Journals (Sweden)

    Fernando Lizcano

    2010-09-01

    Full Text Available

    Resumen

    La obesidad se ha convertido en un problema de salud pública que cobija tanto a países desarrollados como a aquellos en vía de desarrollo. En la mayoría de los casos las políticas de salud no han tenido el efecto deseado para reducir la prevalencia de esta patología y muchos de los fármacos útiles para contrarrestar la obesidad no han podido continuar en el mercado debido a serios efectos secundarios. Algunas alternativas terapéuticas más agresivas como la cirugías reductivas han demostrado una utilidad restringida. Incluso, recientes observaciones han puesto de manifiesto las consecuencias a largo plazo de este tipo de intervenciones.

    En la búsqueda de nuevas estrategias para el tratamiento de la obesidad se ha investigado, tanto en la propia célula grasa como en los genes que podrían ser modificados y cuya función está enfocada en regular el gasto calórico y la termogénesis adaptativa. Algunos de estos genes son modificados por factores de transcripción que pueden determinar la característica fenotípica de la célula grasa. Recientemente se ha observado que en la persona adulta es posible evidenciar vestigios de célula grasa parda que puede gastar energía en forma de calor y esta modificación podría ser una alternativa terapéutica en la obesidad. Nuestro grupo de investigación ha observado que mediante la modificación de la función de la proteína del retinoblastoma (pRb se pueden aumentar los genes que estimulan la pérdida calórica en el adipocito.

    Palabras clave: Grasa Parda, Obesidad, transcripción, EID1, transdiferenciación

    BIOMOLECULAR OPTIONS IN TREATING OBESITY

    Abstract

    Obesity is a public health issue for both developed and third world countries. Although many efforts have been made to reverse the trend of this prevalent pathology, no results have been obtained with public health policies in most cases. Furthermore, many medicines approved for

  19. Quantifying the topography of the intrinsic energy landscape of flexible biomolecular recognition

    Science.gov (United States)

    Chu, Xiakun; Gan, Linfeng; Wang, Erkang; Wang, Jin

    2013-01-01

    Biomolecular functions are determined by their interactions with other molecules. Biomolecular recognition is often flexible and associated with large conformational changes involving both binding and folding. However, the global and physical understanding for the process is still challenging. Here, we quantified the intrinsic energy landscapes of flexible biomolecular recognition in terms of binding–folding dynamics for 15 homodimers by exploring the underlying density of states, using a structure-based model both with and without considering energetic roughness. By quantifying three individual effective intrinsic energy landscapes (one for interfacial binding, two for monomeric folding), the association mechanisms for flexible recognition of 15 homodimers can be classified into two-state cooperative “coupled binding–folding” and three-state noncooperative “folding prior to binding” scenarios. We found that the association mechanism of flexible biomolecular recognition relies on the interplay between the underlying effective intrinsic binding and folding energy landscapes. By quantifying the whole global intrinsic binding–folding energy landscapes, we found strong correlations between the landscape topography measure Λ (dimensionless ratio of energy gap versus roughness modulated by the configurational entropy) and the ratio of the thermodynamic stable temperature versus trapping temperature, as well as between Λ and binding kinetics. Therefore, the global energy landscape topography determines the binding–folding thermodynamics and kinetics, crucial for the feasibility and efficiency of realizing biomolecular function. We also found “U-shape” temperature-dependent kinetic behavior and a dynamical cross-over temperature for dividing exponential and nonexponential kinetics for two-state homodimers. Our study provides a unique way to bridge the gap between theory and experiments. PMID:23754431

  20. Ultrafast Electrons and X-rays as Probe of Biomolecular Dynamics

    Science.gov (United States)

    Subramanian, Ganesh

    The structure-function relation in Biology suggests that every biological molecule has evolved its structure to carry out a specific function. However, for many of these processes (such as those with catalytic activity) the structure of the biomolecule changes during the course of a reaction. Understanding the structure-function relation thus becomes a question of understanding biomolecular dynamics that span a variety of timescales (from electronic rearrangements in the femtoseconds to side-chain alteration in the microseconds and more). This dissertation deals with the study of biomolecular dynamics in the ultrafast timescales (fs-ns) using electron and X-ray probes in both time and frequency domains. It starts with establishing the limitations of traditional electron diffraction coupled with molecular replacement to study biomolecular structure and proceeds to suggest a pulsed electron source Hollow-Cone Transmission Electron Microscope as an alternative scheme to pursue ultrafast biomolecular imaging. In frequency domain, the use of Electron Energy Loss Spectroscopy as a tool to access ultrafast nuclear dynamics in the steady state, is detailed with the new monochromated NiON UltraSTEM and examples demonstrating this instrument's capability are provided. Ultrafast X-ray spectroscopy as a tool to elucidate biomolecular dynamics is presented in studying X-ray as a probe, with the study of the photolysis of Methylcobalamin using time-resolved laser pump--X-ray probe absorption spectroscopy. The analysis in comparison to prior literature as well as DFT based XAS simulations offer good agreement and understanding to the steady state spectra but are so far inadequate in explaining the time-resolved data. However, the trends in the absorption simulations for the transient intermediates show a strong anisotropic dependence on the axial ligation, which would define the direction for future studies on this material to achieve a solution.

  1. Imaging latex–carbon nanotube composites by subsurface electrostatic force microscopy

    International Nuclear Information System (INIS)

    Patel, Sajan; Petty, Clayton W.; Krafcik, Karen Lee

    2016-01-01

    Electrostatic modes of atomic force microscopy have shown to be non-destructive and relatively simple methods for imaging conductors embedded in insulating polymers. Here we use electrostatic force microscopy to image the dispersion of carbon nanotubes in a latex-based conductive composite, which brings forth features not observed in previously studied systems employing linear polymer films. A fixed-potential model of the probe-nanotube electrostatics is presented which in principle gives access to the conductive nanoparticle's depth and radius, and the polymer film dielectric constant. Comparing this model to the data results in nanotube depths that appear to be slightly above the film–air interface. Furthermore, this result suggests that water-mediated charge build-up at the film–air interface may be the source of electrostatic phase contrast in ambient conditions.

  2. Effective electrostatic interactions in colloid-nanoparticle mixtures

    Science.gov (United States)

    Denton, Alan R.

    2017-12-01

    Interparticle interactions and bulk properties of colloidal suspensions can be substantially modified by the addition of nanoparticles. Extreme asymmetries in size and charge between colloidal particles and nanoparticles present severe computational challenges to molecular-scale modeling of such complex systems. We present a statistical mechanical theory of effective electrostatic interactions that can greatly ease large-scale modeling of charged colloid-nanoparticle mixtures. By applying a sequential coarse-graining procedure, we show that a multicomponent mixture of charged colloids, nanoparticles, counterions, and coions can be mapped first onto a binary mixture of colloids and nanoparticles and then onto a one-component model of colloids alone. In a linear-response approximation, the one-component model is governed by a single effective pair potential and a one-body volume energy, whose parameters depend nontrivially on nanoparticle size, charge, and concentration. To test the theory, we perform molecular dynamics simulations of the two-component and one-component models and compute structural properties. For moderate electrostatic couplings, colloid-colloid radial distribution functions and static structure factors agree closely between the two models, validating the sequential coarse-graining approach. Nanoparticles of sufficient charge and concentration enhance screening of electrostatic interactions, weakening correlations between charged colloids and destabilizing suspensions, consistent with experiments.

  3. GroPBS: Fast Solver for Implicit Electrostatics of Biomolecules

    Directory of Open Access Journals (Sweden)

    Franziska eBertelshofer

    2015-11-01

    Full Text Available Knowledge about the electrostatic potential on the surface of biomolecules or biomembranes under physiological conditions is an important step in the attempt to characterize the physico-chemical properties of these molecules and in particular also their interactions with each other. Additionally, knowledge about solution electrostatics may guide also the design of molecules with specified properties. However, explicit water models come at a high computational cost, rendering them unsuitable for large design studies or for docking purposes. Implicit models with the water phase treated as a continuum require the numerical solution of the Poisson-Boltzmann Equation (PBE. Here, we present a new flexible program for the numerical solution of the PBE, allowing for different geometries, and the explicit and implicit inclusion of membranes. It involves a discretization of space and the computation of the molecular surface. The PBE is solved using finite differences, the resulting set of equations is solved using a Gauss-Seidel method. It is shown for the example of the sucrose transporter ScrY that the implicit inclusion of a surrounding membrane has a strong effect also on the electrostatics within the pore region and thus need to be carefully considered e.g. in design studies on membrane proteins.

  4. Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations.

    Science.gov (United States)

    Marcoline, Frank V; Bethel, Neville; Guerriero, Christopher J; Brodsky, Jeffrey L; Grabe, Michael

    2015-08-04

    The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem, including full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane-induced pKa shifts, calculation of non-polar energies, and command-line scripting for large-scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane, potentially revealing interesting functional information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Electrostatic adhesion for added functionality of composite structures

    International Nuclear Information System (INIS)

    Heath, Callum J C; Bond, Ian P; Potter, Kevin D

    2016-01-01

    Electrostatic adhesion can be used as a means of reversible attachment. The incorporation of electrostatic adhesion into fibre reinforced polymer (FRP) composite structures could provide significant value added functionality. Imparting large potential differences (∼2 kV) across electrodes generates an attractive force, thus providing a means of attachment. This could be used as a reversible latching mechanism or as a means of controllable internal connectivity. Varying the connectivity for discrete elements of a substructure of a given design allows for control of internal load paths and moment of area of the cross section. This could facilitate variable stiffness (both in bending and torsion). Using a combination of existing fabrication techniques, functional electrodes have been integrated within a FRP. Copper polyimide thin film laminate material has been both co-cured with carbon fibre reinforced epoxy and bonded to PVC closed cell foam core material to provide a range of structural configurations with integrated electrodes. The ability of such integrated devices to confer variations in global bending stiffness of basic beam structures is investigated. Through the application of 4 kV across integrated electrostatic adhesive devices, a 112% increase in flexural stiffness has been demonstrated for a composite sandwich structure. (paper)

  6. Electrostatic adhesion for added functionality of composite structures

    Science.gov (United States)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2016-02-01

    Electrostatic adhesion can be used as a means of reversible attachment. The incorporation of electrostatic adhesion into fibre reinforced polymer (FRP) composite structures could provide significant value added functionality. Imparting large potential differences (˜2 kV) across electrodes generates an attractive force, thus providing a means of attachment. This could be used as a reversible latching mechanism or as a means of controllable internal connectivity. Varying the connectivity for discrete elements of a substructure of a given design allows for control of internal load paths and moment of area of the cross section. This could facilitate variable stiffness (both in bending and torsion). Using a combination of existing fabrication techniques, functional electrodes have been integrated within a FRP. Copper polyimide thin film laminate material has been both co-cured with carbon fibre reinforced epoxy and bonded to PVC closed cell foam core material to provide a range of structural configurations with integrated electrodes. The ability of such integrated devices to confer variations in global bending stiffness of basic beam structures is investigated. Through the application of 4 kV across integrated electrostatic adhesive devices, a 112% increase in flexural stiffness has been demonstrated for a composite sandwich structure.

  7. Effects of electrostatic interactions on ligand dissociation kinetics

    Science.gov (United States)

    Erbaş, Aykut; de la Cruz, Monica Olvera; Marko, John F.

    2018-02-01

    We study unbinding of multivalent cationic ligands from oppositely charged polymeric binding sites sparsely grafted on a flat neutral substrate. Our molecular dynamics simulations are suggested by single-molecule studies of protein-DNA interactions. We consider univalent salt concentrations spanning roughly a 1000-fold range, together with various concentrations of excess ligands in solution. To reveal the ionic effects on unbinding kinetics of spontaneous and facilitated dissociation mechanisms, we treat electrostatic interactions both at a Debye-Hückel (DH) (or implicit ions, i.e., use of an electrostatic potential with a prescribed decay length) level and by the more precise approach of considering all ionic species explicitly in the simulations. We find that the DH approach systematically overestimates unbinding rates, relative to the calculations where all ion pairs are present explicitly in solution, although many aspects of the two types of calculation are qualitatively similar. For facilitated dissociation (FD) (acceleration of unbinding by free ligands in solution) explicit-ion simulations lead to unbinding at lower free-ligand concentrations. Our simulations predict a variety of FD regimes as a function of free-ligand and ion concentrations; a particularly interesting regime is at intermediate concentrations of ligands where nonelectrostatic binding strength controls FD. We conclude that explicit-ion electrostatic modeling is an essential component to quantitatively tackle problems in molecular ligand dissociation, including nucleic-acid-binding proteins.

  8. MEMS-Based Piezoelectric/Electrostatic Inchworm Actuator

    Science.gov (United States)

    Yang, Eui-Hyeok

    2003-01-01

    A proposed inchworm actuator, to be designed and fabricated according to the principles of microelectromechanical systems (MEMS), would effect linear motion characterized by steps as small as nanometers and an overall range of travel of hundreds of microns. Potential applications for actuators like this one include precise positioning of optical components and active suppression of noise and vibration in scientific instruments, conveyance of wafers in the semiconductor industry, precise positioning for machine tools, and positioning and actuation of micro-surgical instruments. The inchworm motion would be generated by a combination of piezoelectric driving and electrostatic clamping. The actuator (see figure), would include a pair of holders (used for electrostatic clamping), a slider (the part that would engage in the desired linear motion), a driver, a piezoelectric stack under the driver, and a pair of polymer beams centrally clamped to the flexure beam via a T bar. The holders would be held stationary. One end of the piezoelectric stack would be held stationary; the other end would be connected to the bottom of the driver, which would be free to move up and down. All of these components except the piezoelectric stack and the polymer beams would be micromachined from a 500- m-thick silicon wafer by deep reactive-ion etching. The inchworm motion would be perpendicular to the broad faces of the wafer (perpendicular to the plane of the figure). The combination of the polymer beams and the centrally clamped flexure beam would spring-bias the slider into a position such that, in the absence of electrostatic clamping, the gap between the slider on the one hand and both the driver and the holder on the other hand would be no more than a few microns. This arrangement would make it possible to electrostatically pull the slider into contact with either the holders or the driver at a clamping force of the order of 1 N by applying a reasonably small voltage (of the order of

  9. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    Science.gov (United States)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other

  10. The first step in layer-by-layer deposition: Electrostatics and/or non-electrostatics?

    NARCIS (Netherlands)

    Lyklema, J.; Deschênes, L.

    2011-01-01

    A critical discussion is presented on the properties and prerequisites of adsorbed polyelectrolytes that have to function as substrates for further layer-by-layer deposition. The central theme is discriminating between the roles of electrostatic and non-electrostatic interactions. In order to

  11. Clustering of HIV-1 Subtypes Based on gp120 V3 Loop electrostatic properties

    Directory of Open Access Journals (Sweden)

    López de Victoria Aliana

    2012-02-01

    Full Text Available Abstract Background The V3 loop of the glycoprotein gp120 of HIV-1 plays an important role in viral entry into cells by utilizing as coreceptor CCR5 or CXCR4, and is implicated in the phenotypic tropisms of HIV viruses. It has been hypothesized that the interaction between the V3 loop and CCR5 or CXCR4 is mediated by electrostatics. We have performed hierarchical clustering analysis of the spatial distributions of electrostatic potentials and charges of V3 loop structures containing consensus sequences of HIV-1 subtypes. Results Although the majority of consensus sequences have a net charge of +3, the spatial distribution of their electrostatic potentials and charges may be a discriminating factor for binding and infectivity. This is demonstrated by the formation of several small subclusters, within major clusters, which indicates common origin but distinct spatial details of electrostatic properties. Some of this information may be present, in a coarse manner, in clustering of sequences, but the spatial details are largely lost. We show the effect of ionic strength on clustering of electrostatic potentials, information that is not present in clustering of charges or sequences. We also make correlations between clustering of electrostatic potentials and net charge, coreceptor selectivity, global prevalence, and geographic distribution. Finally, we interpret coreceptor selectivity based on the N6X7T8|S8X9 sequence glycosylation motif, the specific positive charge location according to the 11/24/25 rule, and the overall charge and electrostatic potential distribution. Conclusions We propose that in addition to the sequence and the net charge of the V3 loop of each subtype, the spatial distributions of electrostatic potentials and charges may also be important factors for receptor recognition and binding and subsequent viral entry into cells. This implies that the overall electrostatic potential is responsible for long-range recognition of the V3

  12. Clustering of HIV-1 Subtypes Based on gp120 V3 Loop electrostatic properties

    International Nuclear Information System (INIS)

    López de Victoria, Aliana; Kieslich, Chris A; Rizos, Apostolos K; Krambovitis, Elias; Morikis, Dimitrios

    2012-01-01

    The V3 loop of the glycoprotein gp120 of HIV-1 plays an important role in viral entry into cells by utilizing as coreceptor CCR5 or CXCR4, and is implicated in the phenotypic tropisms of HIV viruses. It has been hypothesized that the interaction between the V3 loop and CCR5 or CXCR4 is mediated by electrostatics. We have performed hierarchical clustering analysis of the spatial distributions of electrostatic potentials and charges of V3 loop structures containing consensus sequences of HIV-1 subtypes. Although the majority of consensus sequences have a net charge of +3, the spatial distribution of their electrostatic potentials and charges may be a discriminating factor for binding and infectivity. This is demonstrated by the formation of several small subclusters, within major clusters, which indicates common origin but distinct spatial details of electrostatic properties. Some of this information may be present, in a coarse manner, in clustering of sequences, but the spatial details are largely lost. We show the effect of ionic strength on clustering of electrostatic potentials, information that is not present in clustering of charges or sequences. We also make correlations between clustering of electrostatic potentials and net charge, coreceptor selectivity, global prevalence, and geographic distribution. Finally, we interpret coreceptor selectivity based on the N 6 X 7 T 8 |S 8 X 9 sequence glycosylation motif, the specific positive charge location according to the 11/24/25 rule, and the overall charge and electrostatic potential distribution. We propose that in addition to the sequence and the net charge of the V3 loop of each subtype, the spatial distributions of electrostatic potentials and charges may also be important factors for receptor recognition and binding and subsequent viral entry into cells. This implies that the overall electrostatic potential is responsible for long-range recognition of the V3 loop with coreceptors CCR5/CXCR4, whereas the charge

  13. Electrostatic coating technologies for food processing.

    Science.gov (United States)

    Barringer, Sheryl A; Sumonsiri, Nutsuda

    2015-01-01

    The application of electrostatics in both powder and liquid coating can improve the quality of food, such as its appearance, aroma, taste, and shelf life. Coatings can be found most commonly in the snack food industry, as well as in confectionery, bakery, meat and cheese processing. In electrostatic powder coating, the most important factors influencing coating quality are powder particle size, density, flowability, charge, and resistivity, as well as the surface properties and characteristics of the target. The most important factors during electrostatic liquid coating, also known as electrohydrodynamic coating, include applied voltage and electrical resistivity and viscosity of the liquid. A good understanding of these factors is needed for the design of optimal coating systems for food processing.

  14. Field distribution in a coaxial electrostatic wiggler

    Directory of Open Access Journals (Sweden)

    Shi-Chang Zhang

    2010-09-01

    Full Text Available The field distribution in a coaxial electrostatic wiggler corresponds to the special solution of a Laplace equation in a cylindrical coordinate system with a boundary value problem of sinusoidal ripples. This paper is devoted to the physical and mathematical treatment for an analytical solution of the field distribution in the coaxial electrostatic wiggler. The explicit expression of the solution indicates that the field distribution in the coaxial electrostatic wiggler varies according to a periodic function in the longitudinal direction, and is related to the first and second kinds of modified Bessel functions in the radial direction, respectively. Comparison shows excellent agreement between the analytical formula and the computer simulation technology (CST results. The physical application of the considered system and its analytical solution are discussed.

  15. Electrostatic assembly of zwitterionic and amphiphilic supraparticles.

    Science.gov (United States)

    Maas, Michael; Silvério, Carolina C; Laube, Jens; Rezwan, Kurosch

    2017-09-01

    We demonstrate the electrostatic assembly of oppositely charged silica particles into an ensemble of well-defined core-satellite supraparticles, which are a type of patchy particle. To achieve controlled heteroaggregation, we used oppositely charged silica particles with different sizes ranging from 5nm to 150nm at several concentrations. The assembly works best with larger particles, resulting in a fairly low polydispersity and a low amount of bridging between the individual clusters. Using smaller particles produces high polydispersity, large clusters and uncontrolled aggregation and bridging. Furthermore, even with controlled aggregation into well-defined clusters in the case of bigger particles, we observe an uneven covering of the central particles with around 1-6 satellite particles adsorbed to the central particle. This behavior is not predicted by simple pairwise DLVO potentials which would anticipate an even spacing of the satellite particles on the core. We explain these observations by taking into account the interactions of the adsorbing particles within the ionic cloud of the central particle. We hypothesize that when the adsorbing satellite particles are small compared to the diameter of the ion cloud of the core particle, they aggregate within the ion cloud and therefore do not create a well-defined monolayer on the surface of the core particle, instead forming small agglomerates during adsorption. Finally, both the assembled zwitterionic clusters and clusters that were partially hydrophobized were tested for their capabilities as Pickering emulsifiers. The zwitterionic clusters showed a strongly increased surface activity compared to the individual particles, while the hydrophobized particles changed the emulsion type from w/o to o/w. Interfacial dilatational rheological tests supported the observations from the emulsion tests. With this, we demonstrate that a relatively unordered ensemble of supraparticles is able to show well-defined functionality

  16. Electrostatic Dust Detection and Removal for ITER

    International Nuclear Information System (INIS)

    C.H. Skinner; A. Campos; H. Kugel; J. Leisure; A.L. Roquemore; S. Wagner

    2008-01-01

    We present some recent results on two innovative applications of microelectronics technology to dust inventory measurement and dust removal in ITER. A novel device to detect the settling of dust particles on a remote surface has been developed in the laboratory. A circuit board with a grid of two interlocking conductive traces with 25 (micro)m spacing is biased to 30-50 V. Carbon particles landing on the energized grid create a transient short circuit. The current flowing through the short circuit creates a voltage pulse that is recorded by standard nuclear counting electronics and the total number of counts is related to the mass of dust impinging on the grid. The particles typically vaporize in a few seconds restoring the previous voltage standoff. Experience on NSTX however, showed that in a tokamak environment it was still possible for large particles or fibers to remain on the grid causing a long term short circuit. We report on the development of a gas puff system that uses helium to clear such particles. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have given an optimal configuration that effectively removes particles from an area up to 25 cm 2 with a single nozzle. In a separate experiment we are developing an advanced circuit grid of three interlocking traces that can generate a miniature electrostatic traveling wave for transporting dust to a suitable exit port. We have fabricated such a 3-pole circuit board with 25 micron insulated traces that operates with voltages up to 200 V. Recent results showed motion of dust particles with the application of only 50 V bias voltage. Such a device could potentially remove dust continuously without dedicated interventions and without loss of machine availability for plasma operations

  17. STABILITY OF A CYLINDRICAL SOLUTE-SOLVENT INTERFACE: EFFECT OF GEOMETRY, ELECTROSTATICS, AND HYDRODYNAMICS.

    Science.gov (United States)

    Li, B O; Sun, Hui; Zhou, Shenggao

    The solute-solvent interface that separates biological molecules from their surrounding aqueous solvent characterizes the conformation and dynamics of such molecules. In this work, we construct a solvent fluid dielectric boundary model for the solvation of charged molecules and apply it to study the stability of a model cylindrical solute-solvent interface. The motion of the solute-solvent interface is defined to be the same as that of solvent fluid at the interface. The solvent fluid is assumed to be incompressible and is described by the Stokes equation. The solute is modeled simply by the ideal-gas law. All the viscous force, hydrostatic pressure, solute-solvent van der Waals interaction, surface tension, and electrostatic force are balanced at the solute-solvent interface. We model the electrostatics by Poisson's equation in which the solute-solvent interface is treated as a dielectric boundary that separates the low-dielectric solute from the high-dielectric solvent. For a cylindrical geometry, we find multiple cylindrically shaped equilibrium interfaces that describe polymodal (e.g., dry and wet) states of hydration of an underlying molecular system. These steady-state solutions exhibit bifurcation behavior with respect to the charge density. For their linearized systems, we use the projection method to solve the fluid equation and find the dispersion relation. Our asymptotic analysis shows that, for large wavenumbers, the decay rate is proportional to wavenumber with the proportionality half of the ratio of surface tension to solvent viscosity, indicating that the solvent viscosity does affect the stability of a solute-solvent interface. Consequences of our analysis in the context of biomolecular interactions are discussed.

  18. Histidine in Continuum Electrostatics Protonation State Calculations

    Science.gov (United States)

    Couch, Vernon; Stuchebruckhov, Alexei

    2014-01-01

    A modification to the standard continuum electrostatics approach to calculate protein pKas which allows for the decoupling of histidine tautomers within a two state model is presented. Histidine with four intrinsically coupled protonation states cannot be easily incorporated into a two state formalism because the interaction between the two protonatable sites of the imidazole ring is not purely electrostatic. The presented treatment, based on a single approximation of the interrelation between histidine’s charge states, allows for a natural separation of the two protonatable sites associated with the imidazole ring as well as the inclusion of all protonation states within the calculation. PMID:22072521

  19. Design of an electrostatic magnetic quadrupole accelerator

    International Nuclear Information System (INIS)

    Mizuno, M.; Ohara, Y.

    1993-01-01

    A new type of electrostatic acceleration system, electrostatic magnetic quadrupole (ESMQ) acceleration system, is proposed for efficient acceleration of negative ion beams. In this system, permanent magnets are buried in the acceleration electrodes so as to produce a quadrupole magnetic field in the electrode aperture region. Envelope simulation indicates that the quadrupole field can deflect electrons stripped from the negative ions. Beam envelope simulations for deuterium ions and electrons have been carried out using the beam envelope code TRACE. Electrons are largely divergent and most appear likely to hit downstream electrodes. Furthermore, maximum beam divergence of the deuterium ions is reduced to the focusing effect of the quadrupole magnetic field

  20. Electrostatic collection efficiency in binary fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Romero, A.; Guardiola, J.; Rincon, J. (Univ. of Alcala de Henares, Madrid (Spain))

    1992-01-01

    Fluidized beds of binary mixtures have been used to clean air streams containing dust particles in the size range 4.4 to 14 {mu}m. All beds were composed of glass beads and plastic granules mixed at different proportions. The effect on the electrostatic collection efficiency of a number of variables, including type of collecting mixture, bed height, and gas velocity, was examined. To calculate the single collection efficiency from experimental results, an early model proposed by Clift et al. was used. The electrostatic collection efficiency was determined by subtracting the other individual mechanism efficiencies from the single particle collection efficiency.

  1. Electrostatic air filters generated by electric fields

    International Nuclear Information System (INIS)

    Bergman, W.; Biermann, A.H.; Hebard, H.D.; Lum, B.Y.; Kuhl, W.D.

    1981-01-01

    This paper presents theoretical and experimental findings on fibrous filters converted to electrostatic operation by a nonionizing electric field. Compared to a conventional fibrous filter, the electrostatic filter has a higher efficiency and a longer, useful life. The increased efficiency is attributed to a time independent attraction between polarized fibers and charged, polarized particles and a time dependent attraction between charged fibers and charged, polarized particles. The charge on the fibers results from a dynamic process of charge accumulation due to the particle deposits and a charge dissipation due to the fiber conductivity

  2. HPDB-Haskell library for processing atomic biomolecular structures in Protein Data Bank format.

    Science.gov (United States)

    Gajda, Michał Jan

    2013-11-23

    Protein DataBank file format is used for the majority of biomolecular data available today. Haskell is a lazy functional language that enjoys a high-level class-based type system, a growing collection of useful libraries and a reputation for efficiency. I present a fast library for processing biomolecular data in the Protein Data Bank format. I present benchmarks indicating that this library is faster than other frequently used Protein Data Bank parsing programs. The proposed library also features a convenient iterator mechanism, and a simple API modeled after BioPython. I set a new standard for convenience and efficiency of Protein Data Bank processing in a Haskell library, and release it to open source.

  3. A 3D printing method for droplet-based biomolecular materials

    Science.gov (United States)

    Challita, Elio J.; Najem, Joseph S.; Freeman, Eric C.; Leo, Donald J.

    2017-04-01

    The field of developing biomolecular droplet-based materials using a bottom-up approach remains underexplored. Producing tissue-like materials, from entirely synthetic components, presents an innovative method to reconstruct the functions of life within artificial materials. Aqueous droplets, encased with lipid monolayers, may be linked via bilayer interfaces to make up structures that resemble biological tissues. Here we present the design and development of an easy-to-build 3D printer for the fabrication of tissue-like biomolecular materials from cell-sized aqueous droplets. The droplets are generated using a snap off technique, capable of generating 30 droplets per minute. The printed network of droplets may also be functionalized with various types of membrane proteins to achieve desired engineering applications like sensing and actuation, or to mimic electrical communication in biological systems. Voltage sensitive channels are introduced into selected droplets to create a conductive path with the material in the presence of an external field.

  4. Modeling of equilibrium hollow objects stabilized by electrostatics.

    Science.gov (United States)

    Mani, Ethayaraja; Groenewold, Jan; Kegel, Willem K

    2011-05-18

    The equilibrium size of two largely different kinds of hollow objects behave qualitatively differently with respect to certain experimental conditions. Yet, we show that they can be described within the same theoretical framework. The objects we consider are 'minivesicles' of ionic and nonionic surfactant mixtures, and shells of Keplerate-type polyoxometalates. The finite-size of the objects in both systems is manifested by electrostatic interactions. We emphasize the importance of constant charge and constant potential boundary conditions. Taking these conditions into account, indeed, leads to the experimentally observed qualitatively different behavior of the equilibrium size of the objects.

  5. Modeling of equilibrium hollow objects stabilized by electrostatics

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Ethayaraja; Groenewold, Jan; Kegel, Willem K, E-mail: w.k.kegel@uu.nl [Van' t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands)

    2011-05-18

    The equilibrium size of two largely different kinds of hollow objects behave qualitatively differently with respect to certain experimental conditions. Yet, we show that they can be described within the same theoretical framework. The objects we consider are 'minivesicles' of ionic and nonionic surfactant mixtures, and shells of Keplerate-type polyoxometalates. The finite-size of the objects in both systems is manifested by electrostatic interactions. We emphasize the importance of constant charge and constant potential boundary conditions. Taking these conditions into account, indeed, leads to the experimentally observed qualitatively different behavior of the equilibrium size of the objects.

  6. Numerical solution of electrostatic problems of the accelerator project VICKSI

    International Nuclear Information System (INIS)

    Janetzki, U.

    1975-03-01

    In this work, the numerical solution to a few of the electrostatic problems is dealt with which have occured within the framework of the heavy ion accelerator project VICKSI. By means of these selected examples, the versatile applicability of the numerical method is to be demonstrated, and simultaneously assistance is given for the solution of similar problems. The numerical process for solving ion-optics problems consists generally of two steps. In the first step, the potential distribution for a given boundary value problem is iteratively calculated for the Laplace equation, and then the image characteristics of the electostatic lense are investigated using the Raytrace method. (orig./LH) [de

  7. Simulation-based Investigations of Electrostatic Beam Energy Analysers

    CERN Document Server

    Pahl, Hannes

    2015-01-01

    An energy analyser is needed to measure the beam energy profile behind the REX-EBIS at ISOLDE. The device should be able to operate with an accuracy of 1 V at voltages up to 30 kV. In order to find a working concept for an electrostatic energy analyser different designs were evaluated with simulations. A spherical device and its design issues are presented. The potential deformation effects of grids at high voltages and their influence on the energy resolution were investigated. First tests were made with a grid-free ring electrode device and show promising results.

  8. An electrostatic elliptical mirror for neutral polar molecules.

    Science.gov (United States)

    González Flórez, A Isabel; Meek, Samuel A; Haak, Henrik; Conrad, Horst; Santambrogio, Gabriele; Meijer, Gerard

    2011-11-14

    Focusing optics for neutral molecules finds application in shaping and steering molecular beams. Here we present an electrostatic elliptical mirror for polar molecules consisting of an array of microstructured gold electrodes deposited on a glass substrate. Alternating positive and negative voltages applied to the electrodes create a repulsive potential for molecules in low-field-seeking states. The equipotential lines are parallel to the substrate surface, which is bent in an elliptical shape. The mirror is characterized by focusing a beam of metastable CO molecules and the results are compared to the outcome of trajectory simulations.

  9. Introduction to a Protein Interaction System Used for Quantitative Evaluation of Biomolecular Interactions

    OpenAIRE

    Yamniuk, Aaron

    2013-01-01

    A central goal of molecular biology is the determination of biomolecular function. This comes largely from a knowledge of the non-covalent interactions that biological small and macro-molecules experience. The fundamental mission of the Molecular Interactions Research Group (MIRG) of the ABRF is to show how solution biophysical tools are used to quantitatively characterize molecular interactions, and to educate the ABRF members and scientific community on the utility and limitations of core t...

  10. The Shadow Map: A General Contact Definition for Capturing the Dynamics of Biomolecular Folding and Function

    OpenAIRE

    Noel, Jeffrey K.; Whitford, Paul C.; Onuchic, José N

    2012-01-01

    Structure-based models (SBMs) are simplified models of the biomolecular dynamics that arise from funneled energy landscapes. We recently introduced an all-atom SBM that explicitly represents the atomic geometry of a biomolecule. While this initial study showed the robustness of the all-atom SBM Hamiltonian to changes in many of the energetic parameters, an important aspect, which has not been explored previously, is the definition of native interactions. In this study, we propose a general de...

  11. Mathematical model for biomolecular quantification using large-area surface-enhanced Raman spectroscopy mapping

    DEFF Research Database (Denmark)

    Palla, Mirkó; Bosco, Filippo; Yang, Jaeyoung

    2015-01-01

    Surface-enhanced Raman spectroscopy (SERS) based on nanostructured platforms is a promising technique for quantitative and highly sensitive detection of biomolecules in the field of analytical biochemistry. Here, we report a mathematical model to predict experimental SERS signal (or hotspot......) intensity distributions of target molecules on receptor-functionalized nanopillar substrates for biomolecular quantification. We demonstrate that by utilizing only a small set of empirically determined parameters, our general theoretical framework agrees with the experimental data particularly well...

  12. Parity Violation in Chiral Molecules: From Theory towards Spectroscopic Experiment and the Evolution of Biomolecular Homochirality

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The observation of biomolecular homochirality can be considered as a quasi-fossil of the evolution of life [1], the interpretation of which has been an open question for more than a century, with numerous related hypotheses, but no definitive answers. We shall briefly discuss the current status and the relation to the other two questions. The discovery of parity violation led to important developm...

  13. The Molecular Origin of Enthalpy/Entropy Compensation in Biomolecular Recognition.

    Science.gov (United States)

    Fox, Jerome M; Zhao, Mengxia; Fink, Michael J; Kang, Kyungtae; Whitesides, George M

    2018-03-05

    Biomolecular recognition can be stubborn; changes in the structures of associating molecules, or the environments in which they associate, often yield compensating changes in enthalpies and entropies of binding and no net change in affinities. This phenomenon-termed enthalpy/entropy (H/S) compensation-hinders efforts in biomolecular design, and its incidence-often a surprise to experimentalists-makes interactions between biomolecules difficult to predict. Although characterizing H/S compensation requires experimental care, it is unquestionably a real phenomenon that has, from an engineering perspective, useful physical origins. Studying H/S compensation can help illuminate the still-murky roles of water and dynamics in biomolecular recognition and self-assembly. This review summarizes known sources of H/S compensation (real and perceived) and lays out a conceptual framework for understanding and dissecting- and, perhaps, avoiding or exploiting-this phenomenon in biophysical systems. Expected final online publication date for the Annual Review of Biophysics Volume 47 is May 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  14. Reverse engineering biomolecular systems using −omic data: challenges, progress and opportunities

    Science.gov (United States)

    Quo, Chang F.; Kaddi, Chanchala; Phan, John H.; Zollanvari, Amin; Xu, Mingqing

    2012-01-01

    Recent advances in high-throughput biotechnologies have led to the rapid growing research interest in reverse engineering of biomolecular systems (REBMS). ‘Data-driven’ approaches, i.e. data mining, can be used to extract patterns from large volumes of biochemical data at molecular-level resolution while ‘design-driven’ approaches, i.e. systems modeling, can be used to simulate emergent system properties. Consequently, both data- and design-driven approaches applied to –omic data may lead to novel insights in reverse engineering biological systems that could not be expected before using low-throughput platforms. However, there exist several challenges in this fast growing field of reverse engineering biomolecular systems: (i) to integrate heterogeneous biochemical data for data mining, (ii) to combine top–down and bottom–up approaches for systems modeling and (iii) to validate system models experimentally. In addition to reviewing progress made by the community and opportunities encountered in addressing these challenges, we explore the emerging field of synthetic biology, which is an exciting approach to validate and analyze theoretical system models directly through experimental synthesis, i.e. analysis-by-synthesis. The ultimate goal is to address the present and future challenges in reverse engineering biomolecular systems (REBMS) using integrated workflow of data mining, systems modeling and synthetic biology. PMID:22833495

  15. Reverse engineering biomolecular systems using -omic data: challenges, progress and opportunities.

    Science.gov (United States)

    Quo, Chang F; Kaddi, Chanchala; Phan, John H; Zollanvari, Amin; Xu, Mingqing; Wang, May D; Alterovitz, Gil

    2012-07-01

    Recent advances in high-throughput biotechnologies have led to the rapid growing research interest in reverse engineering of biomolecular systems (REBMS). 'Data-driven' approaches, i.e. data mining, can be used to extract patterns from large volumes of biochemical data at molecular-level resolution while 'design-driven' approaches, i.e. systems modeling, can be used to simulate emergent system properties. Consequently, both data- and design-driven approaches applied to -omic data may lead to novel insights in reverse engineering biological systems that could not be expected before using low-throughput platforms. However, there exist several challenges in this fast growing field of reverse engineering biomolecular systems: (i) to integrate heterogeneous biochemical data for data mining, (ii) to combine top-down and bottom-up approaches for systems modeling and (iii) to validate system models experimentally. In addition to reviewing progress made by the community and opportunities encountered in addressing these challenges, we explore the emerging field of synthetic biology, which is an exciting approach to validate and analyze theoretical system models directly through experimental synthesis, i.e. analysis-by-synthesis. The ultimate goal is to address the present and future challenges in reverse engineering biomolecular systems (REBMS) using integrated workflow of data mining, systems modeling and synthetic biology.

  16. Existence domain of electrostatic solitary waves in the lunar wake

    Science.gov (United States)

    Rubia, R.; Singh, S. V.; Lakhina, G. S.

    2018-03-01

    Electrostatic solitary waves (ESWs) and double layers are explored in a four-component plasma consisting of hot protons, hot heavier ions (He++), electron beam, and suprathermal electrons having κ-distribution using the Sagdeev pseudopotential method. Three modes exist: slow and fast ion-acoustic modes and electron-acoustic mode. The occurrence of ESWs and their existence domain as a function of various plasma parameters, such as the number densities of ions and electron beam, the spectral index, κ, the electron beam velocity, the temperatures of ions, and electron beam, are analyzed. It is observed that both the slow and fast ion-acoustic modes support both positive and negative potential solitons as well as their coexistence. Further, they support a "forbidden gap," the region in which the soliton ceases to propagate. In addition, slow ion-acoustic solitons support the existence of both positive and negative potential double layers. The electron-acoustic mode is only found to support negative potential solitons for parameters relevant to the lunar wake plasma. Fast Fourier transform of a soliton electric field produces a broadband frequency spectrum. It is suggested that all three soliton types taken together can provide a good explanation for the observed electrostatic waves in the lunar wake.

  17. Protein-Ligand Informatics Force Field (PLIff): Toward a Fully Knowledge Driven "Force Field" for Biomolecular Interactions.

    Science.gov (United States)

    Verdonk, Marcel L; Ludlow, R Frederick; Giangreco, Ilenia; Rathi, Prakash Chandra

    2016-07-28

    The Protein Data Bank (PDB) contains a wealth of data on nonbonded biomolecular interactions. If this information could be distilled down to nonbonded interaction potentials, these would have some key advantages over standard force fields. However, there are some important outstanding issues to address in order to do this successfully. This paper introduces the protein-ligand informatics "force field", PLIff, which begins to address these key challenges ( https://bitbucket.org/AstexUK/pli ). As a result of their knowledge-based nature, the next-generation nonbonded potentials that make up PLIff automatically capture a wide range of interaction types, including special interactions that are often poorly described by standard force fields. We illustrate how PLIff may be used in structure-based design applications, including interaction fields, fragment mapping, and protein-ligand docking. PLIff performs at least as well as state-of-the art scoring functions in terms of pose predictions and ranking compounds in a virtual screening context.

  18. Electrostatically biased binding of kinesin to microtubules.

    Directory of Open Access Journals (Sweden)

    Barry J Grant

    2011-11-01

    Full Text Available The minimum motor domain of kinesin-1 is a single head. Recent evidence suggests that such minimal motor domains generate force by a biased binding mechanism, in which they preferentially select binding sites on the microtubule that lie ahead in the progress direction of the motor. A specific molecular mechanism for biased binding has, however, so far been lacking. Here we use atomistic Brownian dynamics simulations combined with experimental mutagenesis to show that incoming kinesin heads undergo electrostatically guided diffusion-to-capture by microtubules, and that this produces directionally biased binding. Kinesin-1 heads are initially rotated by the electrostatic field so that their tubulin-binding sites face inwards, and then steered towards a plus-endwards binding site. In tethered kinesin dimers, this bias is amplified. A 3-residue sequence (RAK in kinesin helix alpha-6 is predicted to be important for electrostatic guidance. Real-world mutagenesis of this sequence powerfully influences kinesin-driven microtubule sliding, with one mutant producing a 5-fold acceleration over wild type. We conclude that electrostatic interactions play an important role in the kinesin stepping mechanism, by biasing the diffusional association of kinesin with microtubules.

  19. Electrostatic model of semiconductor nanoparticles trapped

    Indian Academy of Sciences (India)

    A simple electrostatic model is applied to study the solvation energy and localization energy to inorganic semiconductor nanocrystallites trapped in polymer and ion conducting polymer electrolytes. The effective mass approximation has been applied to the system. In the single charge configuration, the dielectric constant of ...

  20. The Electrostatic Environments of Mars: Atmospheric Discharges

    Science.gov (United States)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James, III; Cox, Rachel E.

    2016-01-01

    The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.

  1. Surface charge measurement using an electrostatic probe

    DEFF Research Database (Denmark)

    Crichton, George C; McAllister, Iain Wilson

    1998-01-01

    During the 1960s, the first measurements of charge on dielectric surfaces using simple electrostatic probes were reported. However it is only within the last 10 years that a proper understanding of the probe response has been developed. This situation arose as a consequence of the earlier studies...

  2. Collapse of Electrostatic Waves in Magnetoplasmas

    DEFF Research Database (Denmark)

    Shukla, P. K.; Yu, M. Y.; Juul Rasmussen, Jens

    1984-01-01

    The two-fluid model is employed to investigate the collapse of electrostatic waves in magnetized plasmas. It is found that nonlinear interaction of ion cyclotron, upper-, and lower-hybrid waves with adiabatic particle motion along the external magnetic field can cause wave-field collapse....

  3. Electrostatic model of semiconductor nanoparticles trapped in ...

    Indian Academy of Sciences (India)

    A simple electrostatic model is applied to study the solvation energy and localization energy to inorganic semiconductor nanocrystallites trapped in polymer and ion conducting polymer electrolytes. The effective mass approximation has been applied to the system. In the single charge configuration, the dielectric constant of ...

  4. Resolving beam transport problems in electrostatic accelerators

    International Nuclear Information System (INIS)

    Larson, J.D.

    1977-01-01

    This paper reviews problem areas in beam transmission which are frequently encountered during the design, operation and upgrading of electrostatic accelerators. Examples are provided of analytic procedures that clarify accelerator ion optics and lead to more effective beam transport. Suggestions are made for evaluating accelerator design with the goal of improved performance

  5. Electrostatic fuel conditioning of internal combustion engines

    Science.gov (United States)

    Gold, P. I.

    1982-01-01

    Diesel engines were tested to determine if they are influenced by the presence of electrostatic and magnetic fields. Field forces were applied in a variety of configurations including pretreatment of the fuel and air, however, no affect on engine performance was observed.

  6. Electrostatic MEMS devices with high reliability

    Science.gov (United States)

    Goldsmith, Charles L; Auciello, Orlando H; Sumant, Anirudha V; Mancini, Derrick C; Gudeman, Chris; Sampath, Suresh; Carlilse, John A; Carpick, Robert W; Hwang, James

    2015-02-24

    The present invention provides for an electrostatic microelectromechanical (MEMS) device comprising a dielectric layer separating a first conductor and a second conductor. The first conductor is moveable towards the second conductor, when a voltage is applied to the MEMS device. The dielectric layer recovers from dielectric charging failure almost immediately upon removal of the voltage from the MEMS device.

  7. Cumulative atomic multipole moments complement any atomic charge model to obtain more accurate electrostatic properties

    Science.gov (United States)

    Sokalski, W. A.; Shibata, M.; Ornstein, R. L.; Rein, R.

    1992-01-01

    The quality of several atomic charge models based on different definitions has been analyzed using cumulative atomic multipole moments (CAMM). This formalism can generate higher atomic moments starting from any atomic charges, while preserving the corresponding molecular moments. The atomic charge contribution to the higher molecular moments, as well as to the electrostatic potentials, has been examined for CO and HCN molecules at several different levels of theory. The results clearly show that the electrostatic potential obtained from CAMM expansion is convergent up to R-5 term for all atomic charge models used. This illustrates that higher atomic moments can be used to supplement any atomic charge model to obtain more accurate description of electrostatic properties.

  8. Strain-induced electrostatic enhancements of BiFeO3 nanowire loops.

    Science.gov (United States)

    Liu, Jun; Prashanthi, Kovur; Li, Zhi; McGee, Ryan T; Ahadi, Kaveh; Thundat, Thomas

    2016-08-17

    Semiconductor nanowires (NWs), due to their intriguing structural and physical properties, offer tremendous potential for future technological applications. The existence of strain in NWs can greatly affect, for instance, their mechanical, electrical and optical properties. Here, we report an extraordinary electrostatic response of semiconductor BiFeO3 NW loops, based on Kelvin probe force microscopy (KPFM) and electrostatic force microscopy (EFM). A substantial ∼300 mV surface potential difference, accompanied by an ∼29% higher surface charge density, was found on the NW loop. We also found that the electrostatic enhancement is strongly related to the strain present at the curvature of the NW loops. We propose that the electric polarization coupled with mechanical strain (piezoelectric effect) or strain gradient (flexoelectricity) as possible reasons to account for our observation. These findings provide new insights into multiferroic based semiconductor NWs under external stimuli as well as significant inspiration towards strain sensors and electromechanical devices with multifunctional sensing abilities.

  9. A Novel Electrostatic/Microstructured Adhesive with Dust Mitigation Capabilities

    Data.gov (United States)

    National Aeronautics and Space Administration — This work will develop a novel electrostatic/gecko-like adhesive that will demonstrate an order-of-magnitude improvement of electrostatic adhesion pressure coupled...

  10. Hybrid fuzzy cluster ensemble framework for tumor clustering from biomolecular data.

    Science.gov (United States)

    Yu, Zhiwen; Chen, Hantao; You, Jane; Han, Guoqiang; Li, Le

    2013-01-01

    Cancer class discovery using biomolecular data is one of the most important tasks for cancer diagnosis and treatment. Tumor clustering from gene expression data provides a new way to perform cancer class discovery. Most of the existing research works adopt single-clustering algorithms to perform tumor clustering is from biomolecular data that lack robustness, stability, and accuracy. To further improve the performance of tumor clustering from biomolecular data, we introduce the fuzzy theory into the cluster ensemble framework for tumor clustering from biomolecular data, and propose four kinds of hybrid fuzzy cluster ensemble frameworks (HFCEF), named as HFCEF-I, HFCEF-II, HFCEF-III, and HFCEF-IV, respectively, to identify samples that belong to different types of cancers. The difference between HFCEF-I and HFCEF-II is that they adopt different ensemble generator approaches to generate a set of fuzzy matrices in the ensemble. Specifically, HFCEF-I applies the affinity propagation algorithm (AP) to perform clustering on the sample dimension and generates a set of fuzzy matrices in the ensemble based on the fuzzy membership function and base samples selected by AP. HFCEF-II adopts AP to perform clustering on the attribute dimension, generates a set of subspaces, and obtains a set of fuzzy matrices in the ensemble by performing fuzzy c-means on subspaces. Compared with HFCEF-I and HFCEF-II, HFCEF-III and HFCEF-IV consider the characteristics of HFCEF-I and HFCEF-II. HFCEF-III combines HFCEF-I and HFCEF-II in a serial way, while HFCEF-IV integrates HFCEF-I and HFCEF-II in a concurrent way. HFCEFs adopt suitable consensus functions, such as the fuzzy c-means algorithm or the normalized cut algorithm (Ncut), to summarize generated fuzzy matrices, and obtain the final results. The experiments on real data sets from UCI machine learning repository and cancer gene expression profiles illustrate that 1) the proposed hybrid fuzzy cluster ensemble frameworks work well on real

  11. Charging and absorption characteristics of small particulates under alternative and electrostatic voltages in an electrostatic precipitator

    International Nuclear Information System (INIS)

    Jiang Xue-Dong; Xu He; Wang Xin

    2014-01-01

    The charge quantity of small particulates such as PM2.5 plays a key role in the collection efficiency of an electrostatic precipitator (ESP). Under a single electrostatic voltage, it is difficult to charge and absorb small particulates. A new method of superimposing an alternative voltage on the electrostatic voltage is provided in this paper. Characteristics of small particulates are analyzed under alternative and electrostatic voltages. It is demonstrated that an alternative voltage can significantly improve the collection efficiency in three aspects: preventing anti-corona, increasing the charge quantity of small particulates, and increasing the median particulate size by electric agglomeration. In addition, practical usage with the superposition of alternative voltage is provided, and the results are in agreement with the theoretical analysis. (physics of gases, plasmas, and electric discharges)

  12. On-Orbit 3-Dimensional Electrostatic Detumble for Generic Spacecraft Geometries

    Science.gov (United States)

    Bennett, Trevor J.

    In recent years, there is a growing interest in active debris removal and on-orbit servicing of Earth orbiting assets. The growing need for such approaches is often exemplified by the Iridium-Kosmos collision in 2009 that generated thousands of debris fragments. There exists a variety of active debris removal and on-orbit servicing technologies in development. Conventional docking mechanisms and mechanical capture by actuated manipulators, exemplified by NASA's Restore-L mission, require slow target tumble rates or more aggressive circumnavigation rate matching. The tumble rate limitations can be overcome with flexible capture systems such nets, harpoons, or tethers yet these systems require complex deployment, towing, and/or interfacing strategies to avoid servicer and target damage. Alternatively, touchless methods overcome the tumble rate limitations by provide detumble control prior to a mechanical interface. This thesis explores electrostatic detumble technology to touchlessly reduce large target rotation rates of Geostationary satellites and debris. The technical challenges preceding flight implementation largely reside in the long-duration formation flying guidance, navigation, and control of a servicer spacecraft equipped with electrostatic charge transfer capability. Leveraging prior research into the electrostatic charging of spacecraft, electrostatic detumble control formulations are developed for both axisymmetric and generic target geometries. A novel relative position vector and associated relative orbit control approach is created to manage the long-duration proximity operations. Through detailed numerical simulations, the proposed detumble and relative motion control formulations demonstrate detumble of several thousand kilogram spacecraft tumbling at several degrees per second in only several days. The availability, either through modeling or sensing, of the relative attitude, relative position, and electrostatic potential are among key concerns

  13. Self focusing in a spatially modulated electrostatic field particle accelerator

    Science.gov (United States)

    Russman, F.; Marini, S.; Peter, E.; de Oliveira, G. I.; Rizzato, F. B.

    2018-02-01

    In the present analysis, we study the action of a three-dimensional (3D) modulated electrostatic wave over a charged particle. Meanwhile, the particle's velocity is smaller than the phase-velocity of the carrier, and the particle could be reflected by the potential or could pass through the potential with no significant change in the longitudinal velocity—and its dynamics could be described by a ponderomotive approximation. Otherwise, the particle is trapped by the potential and it is accelerated towards the speed of light, independently of the initial particle's phase—in this case, the ponderomotive approximation is no longer valid. During the acceleration process, numerical simulations show the particle is focused, simultaneously. These results suggest the accelerator proposed here is promising.

  14. Electrostatic behavior of the charge-regulated bacterial cell surface.

    Science.gov (United States)

    Hong, Yongsuk; Brown, Derick G

    2008-05-06

    The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition. Assuming a polyelectrolytic polymeric bacterial cell surface, these experimental and numerical analyses were used to determine the effective site numbers of cell surface acid-base functional groups and Ca(2+) sorption coefficients. Using effective site concentrations determined from 1:1 electrolyte (NaCl) experimental data, the charge-regulation model was able to replicate the effects of 2:1 electrolyte (CaCl(2)), both alone and as a mixture with NaCl, on the measured zeta potential using a single Ca(2+) surface binding constant for each of the bacterial species. This knowledge is vital for understanding how cells respond to changes in solution pH and electrolyte composition as well as how they interact with other surfaces. The latter is especially important due to the widespread use of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in the interpretation of bacterial adhesion. As surface charge and surface potential both vary on a charge-regulated surface, accurate modeling of bacterial interactions with surfaces ultimately requires use of an electrostatic model that accounts for the charge-regulated nature of the cell surface.

  15. The effect of electrostatic shielding using invisibility cloak

    Directory of Open Access Journals (Sweden)

    Ruo-Yang Zhang

    2011-12-01

    Full Text Available The effect of electrostatic shielding for a spherical invisibility cloak with arbitrary charges inside is investigated. Our result reveals that the charge inside the cloak is a crucial factor to determine the detection. When charged bodies are placed inside the cloak with an arbitrary distribution, the electric fields outside are purely determined by the total charges just as the fields of a point charge at the center of the cloak. As the total charges reduce to zero, the bodies can not be detected. On the other hand, if the total charges are nonzero, the electrostatic potential inside an ideal cloak tends to infinity. For unideal cloaks, this embarrassment is overcome, while they still have good behaviors of shielding. In addition, the potential across the inner surface of an ideal cloak is discontinuous due to the infinite polarization of the dielectric, however it can be alternatively interpreted as the dual Meissner effect of a dual superconductive layer with a surface magnetic current.

  16. PREFACE: 13th International Conference on Electrostatics

    Science.gov (United States)

    Taylor, D. Martin

    2011-06-01

    Electrostatics 2011 was held in the city of Bangor which is located in North West Wales in an area of outstanding natural beauty close to the Snowdonia mountain range and bordering the Irish Sea. The history of the area goes back into the mists of times, but a continuous technological thread can be traced from the stone- and bronze-age craftsmen, who inhabited the area several thousand years ago, via the civil engineering and fortifications of the Romans and Edward I of England, through Marconi's long-wave trans-Atlantic transmitter near Caernarfon to the conference host. The School of Electronic Engineering at Bangor University has contributed much to the discipline of Electrostatics not only in teaching and research but also in supporting industry. It was a great pleasure for me, therefore, to have the pleasure of welcoming the world's experts in Electrostatics to Bangor in April 2011. In my preface to the Proceedings of Electrostatics 1999, I reported that almost 90 papers were presented. Interestingly, a similar number were presented in 2011 testifying to the importance and endurance of the subject. The all-embracing nature of electrostatics is captured in the pictorial depiction used for the conference logo: a hand-held plasma ball with its close link to gaseous discharges and the superimposed Antarctic aurora highlighting the featured conference themes of atmospheric, planetary and environmental electrostatics. Leading these themes were three invited contributions, the first by Giles Harrison who delivered the Bill Bright Memorial Lecture 'Fair weather atmospheric electricity', Carlos Calle on 'The electrostatic environments of Mars and the Moon' and Istvan Berta on 'Lightning protection - challenges, solutions and questionable steps in the 21st century'. Leading other key sessions were invited papers by Atsushi Ohsawa on 'Statistical analysis of fires and explosions attributed to static electricity over the last 50 years in Japanese industry' and Antonio

  17. Cluster Crystals Stabilized by Hydrophobic and Electrostatic Interactions.

    Science.gov (United States)

    Baumketner, A; Stelmakh, A; Cai, W

    2018-03-08

    Cluster crystals are crystalline materials in which each site is occupied by multiple identical particles, atoms, colloids, or polymers. There are two classes of systems that make cluster crystals. One is composed of particles that interact via potentials that are bound at the origin and thus are able to penetrate each other. The other consists of non-interpenetrating particles whose interaction potential diverges at the origin. The goal of this work is to find which systems of the second class can make cluster crystals that are stable at room temperature. First, the general properties of the required potentials are established using an analytical model and Monte Carlo simulations. Next, we ask how such potentials can be constructed by combining hydrophobic attraction and electrostatic repulsion. A colloid model with a hard-sphere core and a repulsive wall is introduced to mimic the hydrophobic interaction. Charge is added to create long-range repulsion. A search in the parameter space of the colloid size, counterion type, and charge configuration uncovers several models for which effective colloid-colloid interaction, determined in explicit solvent as a potential of mean force, has the necessary shape. For the effective potential, cluster crystals are confirmed as low free-energy configurations in replica-exchange molecular dynamics simulations, which also generate the respective transition temperature. The model that exhibits a transition above room temperature is further studied in explicit solvent. Simulations on a 10 ns time scale show that crystalline conformations are stable below the target temperature but disintegrate rapidly above it, supporting the idea that hydrophobic and electrostatic interactions are sufficient to induce an assembly of cluster crystals. Finally, we discuss which physical systems are good candidates for experimental observations of cluster crystals.

  18. Long-pore Electrostatics in Inward-rectifier Potassium Channels

    Science.gov (United States)

    Robertson, Janice L.; Palmer, Lawrence G.; Roux, Benoît

    2008-01-01

    Inward-rectifier potassium (Kir) channels differ from the canonical K+ channel structure in that they possess a long extended pore (∼85 Å) for ion conduction that reaches deeply into the cytoplasm. This unique structural feature is presumably involved in regulating functional properties specific to Kir channels, such as conductance, rectification block, and ligand-dependent gating. To elucidate the underpinnings of these functional roles, we examine the electrostatics of an ion along this extended pore. Homology models are constructed based on the open-state model of KirBac1.1 for four mammalian Kir channels: Kir1.1/ROMK, Kir2.1/IRK, Kir3.1/GIRK, and Kir6.2/KATP. By solving the Poisson-Boltzmann equation, the electrostatic free energy of a K+ ion is determined along each pore, revealing that mammalian Kir channels provide a favorable environment for cations and suggesting the existence of high-density regions in the cytoplasmic domain and cavity. The contribution from the reaction field (the self-energy arising from the dielectric polarization induced by the ion's charge in the complex geometry of the pore) is unfavorable inside the long pore. However, this is well compensated by the electrostatic interaction with the static field arising from the protein charges and shielded by the dielectric surrounding. Decomposition of the static field provides a list of residues that display remarkable correspondence with existing mutagenesis data identifying amino acids that affect conduction and rectification. Many of these residues demonstrate interactions with the ion over long distances, up to 40 Å, suggesting that mutations potentially affect ion or blocker energetics over the entire pore. These results provide a foundation for understanding ion interactions in Kir channels and extend to the study of ion permeation, block, and gating in long, cation-specific pores. PMID:19001143

  19. Temperature Controlled Electrostatic Disorder and Polymorphism in Ultrathin Films of α-Sexithiophene

    Science.gov (United States)

    Hoffman, Benjamin; Jafari, Sara; McAfee, Terry; Apperson, Aubrey; O'Connor, Brendan; Dougherty, Daniel

    Competing phases in well-ordered alpha-sexithiophene (α-6T) are shown to contribute to electrostatic disorder observed by differences in surface potential between mono- and bi-layer crystallites. Ultrathin films are of key importance to devices in which charge transport occurs in the first several monolayers nearest to a dielectric interface (e.g. thin film transistors) and complex structures in this regime impact the general electrostatic landscape. This study is comprised of 1.5 ML sample crystals grown via organic molecular beam deposition onto a temperature controlled hexamethyldisilazane (HMDS) passivated SiO2 substrate to produce well-ordered layer-by-layer type growth. Sample topography and surface potential were characterized simultaneously using Kelvin Probe Force Microscopy to then isolate contact potential differences by first and second layer α-6T regions. Films grown on 70° C, 120° C substrates are observed to have a bilayer with lower, higher potential than the monolayer, respectively. Resulting interlayer potential differences are a clear source of electrostatic disorder and are explained as subtle shifts in tilt-angles between layers relative to the substrate. These empirical results continue our understanding of how co-existing orientations contribute to the complex electrostatics influencing charge transport. NSF CAREER award DMR-1056861.

  20. Label-free biomolecular characterization of human breast cancer tissue with stimulated Raman scattering (SRS) spectral imaging (Conference Presentation)

    Science.gov (United States)

    Lu, Fa-Ke F.; Calligaris, David; Suo, Yuanzhen; Santagata, Sandro; Golby, Alexandra J.; Xie, X. Sunney; Mallory, Melissa A.; Golshan, Mehra; Dillon, Deborah A.; Agar, Nathalie Y. R.

    2017-02-01

    Stimulated Raman scattering (SRS) microscopy has been used for rapid label-free imaging of various biomolecules and drugs in living cells and tissues (Science, doi:10.1126/science.aaa8870). Our recent work has demonstrated that lipid and protein mapping of cancer tissue renders pathology-like images, providing essential histopathological information with subcellular resolution of the entire specimen (Cancer Research, doi: 10.1158/0008-5472.CAN-16-027). We have also established the first SRS imaging Atlas of human brain tumors (Harvard Dataverse, doi: (doi:10.7910/DVN/EZW4EK). SRS imaging of tissue could provide invaluable information for cancer diagnosis and surgical guidance in two aspects: rapid surgical pathology and quantitative biomolecular characterization. In this work, we present the use of SRS microscopy for characterization of a few essential biomolecules in breast cancer. Human breast cancer tissue specimens at the tumor core, tumor margin and normal area (5 cm away from the tumor) from surgical cases will be imaged with SRS at multiple Raman shifts, including the peaks for lipid, protein, blood (absorption), collagen, microcalcification (calcium phosphates and calcium oxalate) and carotenoids. Most of these Raman shifts have relatively strong Raman cross sections, which ensures high-quality and fast imaging. This proof-of-principle study is sought to demonstrate the feasibility and potential of SRS imaging for ambient diagnosis and surgical guidance of breast cancer.

  1. The Static Modes: an alternative approach for the treatment of macro- and bio-molecular induced-fit flexibility.

    Science.gov (United States)

    Brut, M; Estève, A; Landa, G; Renvez, G; Djafari Rouhani, M

    2009-01-01

    We present a new competitive method for the atomic scale treatment of macromolecular flexibility called Static Mode method. This method is based on the "induced-fit" concept, i.e. it maps the intrinsic deformations of a macromolecule subject to diverse external excitations. The algorithm makes it possible to obtain a set of deformations, each one corresponding to a specific interaction on a specific molecular site, in terms of force constants contained in the energy model. In this frame, the docking problem can be expressed in terms of interaction sites between the two molecules, the molecular deformations being extracted from the pre-calculated Static Modes of each molecule. Some preliminary basic examples aimed at illustrating potential applications where macro- or bio-molecular flexibility is of key importance are given: flexibility inducing conformational changes in the case of furanose ring and flexibility for the characterization, including allostery, of poly(N-isopropylacrylamide)(P-NIPAM) active sites. We also discuss how this procedure allows "induced-fit" flexible molecular docking, beyond state-of-the-art semi-rigid methods.

  2. Electrostatics of aquaporin and aquaglyceroporin channels correlates with their transport selectivity

    Science.gov (United States)

    Oliva, Romina; Calamita, Giuseppe; Thornton, Janet M.; Pellegrini-Calace, Marialuisa

    2010-01-01

    Aquaporins are homotetrameric channel proteins, which allow the diffusion of water and small solutes across biological membranes. According to their transport function, aquaporins can be divided into “orthodox aquaporins”, which allow the flux of water molecules only, and “aquaglyceroporins”, which facilitate the diffusion of glycerol and other small solutes in addition to water. The contribution of individual residues in the pore to the selectivity of orthodox aquaporins and aquaglyceroporins is not yet fully understood. To gain insights into aquaporin selectivity, we focused on the sequence variation and electrostatics of their channels. The continuum Poisson-Boltzmann electrostatic potential along the channel was calculated and compared for ten three-dimensional-structures which are representatives of different aquaporin subfamilies, and a panel of functionally characterized mutants, for which high-accuracy three-dimensional-models could be derived. Interestingly, specific electrostatic profiles associated with the main selectivity to water or glycerol could be identified. In particular: (i) orthodox aquaporins showed a distinctive electrostatic potential maximum at the periplasmic side of the channel around the aromatic/Arg (ar/R) constriction site; (ii) aquaporin-0 (AQP0), a mammalian aquaporin with considerably low water permeability, had an additional deep minimum at the cytoplasmic side; (iii) aquaglyceroporins showed a rather flat potential all along the channel; and (iv) the bifunctional protozoan PfAQP had an unusual all negative profile. Evaluation of electrostatics of the mutants, along with a thorough sequence analysis of the aquaporin pore-lining residues, illuminated the contribution of specific residues to the electrostatics of the channels and possibly to their selectivity. PMID:20147624

  3. Aerial electrostatic-charged sprays for deposition and efficacy against sweet potato whitefly (Bemisia tabaci) on cotton.

    Science.gov (United States)

    Latheef, Mohamed A; Carlton, James B; Kirk, Ivan W; Hoffmann, W Clint

    2009-07-01

    The efficacy of aerial electrostatic-charged sprays was evaluated for spray deposit characteristics and season-long control of sweet potato whitefly (SWF), Bemisia tabaci Genn. biotype B (aka B. argentifolii Bellows & Perring), in an irrigated 24 ha cotton field. Treatments included electrostatic-charged sprays at full and half active ingredient (AI) label rate, uncharged sprays and conventional sprays applied with CP nozzles at full label rate with several different insecticides. Spray droplet size was significantly smaller for electrostatic-charged sprays than for conventional sprays in top- and mid-canopy locations. The seasonal mean numbers of viable eggs and live large nymphs on cotton treated with electrostatic-charged sprays were comparable with those on cotton treated with conventional applications. Lethal concentration (LC(50)) for adults for electrostatic-charged sprays was comparable with that for conventional sprays. The amenability of electrostatic-charged sprays to a wide array of pesticides with different chemistries should be a useful tool in combating insect resistance. Results reported here suggest that the potential exists for obtaining increased efficacy against whiteflies using an electrostatic spray charging system, and that additional research will be required to improve charge-to-mass (Q/M) ratio in order to increase deposition of pest control materials to the lower surfaces of cotton leaves where the whiteflies reside. (c) 2009 Society of Chemical Industry.

  4. Effect of electrostatic charge in plastic spacers on the lung delivery of HFA-salbutamol in children

    DEFF Research Database (Denmark)

    Anhøj, J; Bisgaard, H; Lipworth, B J

    1999-01-01

    AIMS: The effect of the electrostatic charge in plastic spacers in vivo on drug delivery to the lung of hydrofluoroalkane (HFA) salbutamol spray was studied in children. METHODS: Five children, aged 7-12 years, were included in a 3-way crossover randomised single-blind trial. Salbutamol HFA spray...... delivered a significantly (Pcharge in plastic spacers reduces lung dose in children by more than two-fold. This is clinically significant and the use of potentially electrostatically charged...

  5. Plucked Human Hair Shafts and Biomolecular Medical Research

    Directory of Open Access Journals (Sweden)

    Kevin Schembri

    2013-01-01

    Full Text Available The hair follicle is a skin integument at the boundary between an organism and its immediate environment. The biological role of the human hair follicle has lost some of its ancestral importance. However, an indepth investigation of this miniorgan reveals hidden complexity with huge research potential. An essential consideration when dealing with human research is the awareness of potential harm and thus the absolute need not to harm—a rule aptly qualified by the Latin term “primum non nocere” (first do no harm. The plucked hair shaft offers such advantages. The use of stem cells found in hair follicles cells is gaining momentum in the field of regenerative medicine. Furthermore, current diagnostic and clinical applications of plucked hair follicles include their use as autologous and/or three-dimensional epidermal equivalents, together with their utilization as surrogate tissue in pharmacokinetic and pharmacodynamics studies. Consequently, the use of noninvasive diagnostic procedures on hair follicle shafts, posing as a surrogate molecular model for internal organs in the individual patient for a spectrum of human disease conditions, can possibly become a reality in the near future.

  6. Study on the electrostatic and piezoelectric properties of positive polypropylene electret cyclosporine A patch

    International Nuclear Information System (INIS)

    Guo, X; Liang, Y Y; Jiang, J; Liu, H Y; Cui, L L

    2013-01-01

    Corona charged electrets at voltages of +500 V, +1000 V and +1500 V were prepared for manufacturing polypropylene (PP) electret blank patches and PP electret drug patches. The stability of external electrostatic field of the electret patch and the polarization of the drug in patch under the internal electrostatic field of the electret were studied. The results indicate that all the electret drug patches had good charge storage stabilities. However, the non-electrode coated electret drug patch had better stability in the external electrostatic field than that of the electrode coated electret drug patch. The higher the charging voltage of the electret, the faster the surface potential of the electret drug patch decayed, and the worse the stability of the external electrostatic field. All the electrets used in this study could result in the polarization of the model drug in patch. The piezoelectric properties of non-electrode coated electret drug patch increased with the charging voltage of the electret. However, excessively higher charging voltage could result in the decreased polarization of the drug in patch. Both the stability of the external electrostatic field of electret and the polarization of drug were the key factors for controlled drug release and skin permeation.

  7. On electrostatic and Casimir force measurements between conducting surfaces in a sphere-plane configuration

    International Nuclear Information System (INIS)

    Kim, W J; Brown-Hayes, M; Brownell, J H; Dalvit, D A R; Onofrio, R

    2009-01-01

    We report on measurements of forces acting between two conducting surfaces in a spherical-plane configuration in the 35 nm-1 μm separation range. The measurements are obtained by performing electrostatic calibrations followed by a residuals analysis after subtracting the electrostatic-dependent component. We find in all runs optimal fitting of the calibrations for exponents smaller than the one predicted by electrostatics for an ideal sphere-plane geometry. We also find that the external bias potential necessary to minimize the electrostatic contribution depends on the sphere-plane distance. In spite of these anomalies, by implementing a parametrization-dependent subtraction of the electrostatic contribution we have found evidence for short-distance attractive forces of magnitude comparable to the expected Casimir-Lifshitz force. We finally discuss the relevance of our findings in the more general context of Casimir-Lifshitz force measurements, with particular regard to the critical issues of the electrical and geometrical characterization of the involved surfaces.

  8. Narrow infrasound pulses from lightning; are they of electrostatic or thermal origin?

    Science.gov (United States)

    CHUM, Jaroslav; Diendorfer, Gerhard; Šindelářová, Tereza; Baše, Jiří; Hruška, František

    2014-05-01

    Narrow (~1-2 s) infrasound pulses that followed, with ~11 to ~50 s delays, rapid changes of electrostatic field were observed by a microbarometer array in the Czech Republic during thunderstorm activity. The angles of arrival (azimuth and elevation) were analyzed for selected distinct events. Comparisons of distances and azimuths of infrasound sources from the center of microbarometer array with lightning locations determined by EUCLID lightning detection network show that most of the selected events are most likely associated with intra-cloud (IC) discharges. Preceding rapid changes of electrostatic field, potential association of infrasound pulses with IC discharges, and high elevation angles of arrival for near infrasound sources indicate that an electrostatic mechanism is probably responsible for their generation. It is discussed that distinguishing of the relative role of thermal and electrostatic mechanism is difficult, and that none of published models of electrostatic production of infrasound thunder can explain the presented observations precisely. A modification of the current models, based on consideration of at least two charged layers is suggested. Further theoretical and experimental investigations are however needed to get a better description of the generation mechanism of those infrasound pulses.

  9. Infrasound pulses from lightning and electrostatic field changes: Observation and discussion

    Science.gov (United States)

    Chum, J.; Diendorfer, G.; Å indelářová, T.; Baše, J.; Hruška, F.

    2013-10-01

    Narrow (~1-2 s) infrasound pulses that followed, with ~11 to ~50 s delays, rapid changes of electrostatic field were observed by a microbarometer array in the Czech Republic during thunderstorm activity. A positive pressure fluctuation (compression phase) always preceded decompression; the compression was usually higher than the decompression. The angles of arrival (azimuth and elevation) were analyzed for selected distinct events. Comparisons of distances and azimuths of infrasound sources from the center of microbarometer array with lightning locations determined by the European Cooperation for Lighting Detection lightning detection network show that most of the selected events can be very likely associated with intracloud (IC) discharges. The preceding rapid changes of electrostatic field, their potential association with IC discharges, and high-elevation angles of arrival for near infrasound sources indicate that an electrostatic mechanism is probably responsible for their generation. It is discussed that distinguishing the relative role of thermal and electrostatic mechanism is difficult and that none of the published models of electrostatic production of infrasound thunder can explain the presented observations precisely. A modification of the current models, based on consideration of at least two charged layers, is suggested. Further theoretical and experimental investigations are however needed to get a better description of the generation mechanism.

  10. An electrostatic autoresonant ion trap mass spectrometer

    International Nuclear Information System (INIS)

    Ermakov, A. V.; Hinch, B. J.

    2010-01-01

    A new method for ion extraction from an anharmonic electrostatic trap is introduced. Anharmonicity is a common feature of electrostatic traps which can be used for small scale spatial confinement of ions, and this feature is also necessary for autoresonant ion extraction. With the aid of ion trajectory simulations, novel autoresonant trap mass spectrometers (ART-MSs) have been designed based on these very simple principles. A mass resolution ∼60 is demonstrated for the prototypes discussed here. We report also on the pressure dependencies, and the (mV) rf field strength dependencies of the ART-MS sensitivity. Importantly the new MS designs do not require heavy magnets, tight manufacturing tolerances, introduction of buffer gases, high power rf sources, nor complicated electronics. The designs described here are very inexpensive to implement relative to other instruments, and can be easily miniaturized. Possible applications are discussed.

  11. Corrected electrostatic lens systems for ion beams

    International Nuclear Information System (INIS)

    Dalgish, R.L.

    1981-01-01

    Recent work in our laboratory has introduced a new class of electrostatic focus forming element for beams, the ELCO lens. It compares favourably with the electrostatic and magnetic quadrupole elements conventionally used for microbeam formation. The ELCO lens does however have disadvantages associated with apertures and alignment. We have continued with the development of ion beam lenses and have evolved a further class of lens element which eliminates aperture and alignment problems. This new element can be combined like optical lenses into an aberration corrected system. Experimental measurement on the basic lens element has confirmed mathematical analysis of ion trajectories through the element. This mathematical analysis predicts that the basic element can be combined into a corrected lens system for, either: (1) high resolution microprobe formation with intrinsic rastering ability, the spot size limited only by the beam properties; or (2) high quality image formation with large magnification/demagnification ratio and wide angular aperture. (orig.)

  12. RFID reader immunity test against electrostatic discharge

    Directory of Open Access Journals (Sweden)

    Pospisilik Martin

    2016-01-01

    Full Text Available This paper provides a description of an immunity test against the electrostatic discharge according to the standard EN 61000-4-2 that was applied to an RFID reader. The RFID reader was primarily developed for access systems, employing the on-board recognition of the RFID tags. The results obtained by the test are described hereby as well as the discussion on the security of this solution. The results of this experiment are beneficial for the developers of RFID devices, as these devices are endangered by the electrostatic discharge brought by their users. The hereby described results also shown a security hole in a simple access system based on the RFID technology. Details can be found in the paper.

  13. 2D Electrostatic Actuation of Microshutter Arrays

    Science.gov (United States)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  14. Contemporary NMR Studies of Protein Electrostatics.

    Science.gov (United States)

    Hass, Mathias A S; Mulder, Frans A A

    2015-01-01

    Electrostatics play an important role in many aspects of protein chemistry. However, the accurate determination of side chain proton affinity in proteins by experiment and theory remains challenging. In recent years the field of nuclear magnetic resonance spectroscopy has advanced the way that protonation states are measured, allowing researchers to examine electrostatic interactions at an unprecedented level of detail and accuracy. Experiments are now in place that follow pH-dependent (13)C and (15)N chemical shifts as spatially close as possible to the sites of protonation, allowing all titratable amino acid side chains to be probed sequence specifically. The strong and telling response of carefully selected reporter nuclei allows individual titration events to be monitored. At the same time, improved frameworks allow researchers to model multiple coupled protonation equilibria and to identify the underlying pH-dependent contributions to the chemical shifts.

  15. Electrostatic demonstration of free-fall weightlessness

    Science.gov (United States)

    Balukovic, Jasmina; Slisko, Josip; Corona Cruz, Adrian

    2015-05-01

    The phenomena of free-fall weightlessness have been demonstrated to students for many years in a number of different ways. The essential basis of all these demonstrations is the fact that in free-falling, gravitationally accelerated systems, the weight force and weight-related forces (for example, friction and hydrostatic forces) disappear. In this article, an original electrostatic demonstration of weightlessness is presented. A charged balloon fixed at the opening of a plastic container cannot lift a light styrofoam sphere sitting on the bottom when the container is at rest. However, while the system is in free-fall, the sphere becomes weightless and the charged balloon is able to lift it electrostatically.

  16. Electrostatic Dust Detector with Improved Sensitivity

    International Nuclear Information System (INIS)

    Boyle, D.P.; Skinner, C.H.; Roquemore, A.L.

    2008-01-01

    Methods to measure the inventory of dust particles and to remove dust if it approaches safety limits will be required in next-step tokamaks such as ITER. An electrostatic dust detector, based on a fine grid of interlocking circuit traces, biased to 30 or 50 V, has been developed for the detection of dust on remote surfaces in air and vacuum environments. Gaining operational experience of dust detection on surfaces in tokamaks is important, however the level of dust generated in contemporary short-pulse tokamaks is comparatively low and high sensitivity is necessary to measure dust on a shot-by-shot basis. We report on modifications in the detection electronics that have increased the sensitivity of the electrostatic dust detector by a factor of up to 120, - a level suitable for measurements on contemporary tokamaks.

  17. Modification of equivalent charge method for the Roben three-dimensional problem in electrostatics

    International Nuclear Information System (INIS)

    Barsukov, A.B.; Surenskij, A.V.

    1989-01-01

    The approach of the Roben problem solution for the calculation of the potential of intermediate electrode of accelerating structure with HFQ focusing is considered. The solution is constructed on the basis of variational formulation of the equivalent charge method, where electrostatic problem is reduced to equations of root-mean-square residuals on the system conductors. The technique presented permits to solve efficiently the three-dimensional problems of electrostatics for rather complicated from geometrical viewpoint systems of electrodes. Processing time is comparable with methods of integral equations. 5 refs.; 2 figs

  18. Analysis of the instability underlying electrostatic suppression of the Leidenfrost state

    Science.gov (United States)

    Shahriari, Arjang; Das, Soumik; Bahadur, Vaibhav; Bonnecaze, Roger T.

    2017-03-01

    A liquid droplet on a hot solid can generate enough vapor to prevent its contact on the surface and reduce the rate of heat transfer, the so-called Leidenfrost effect. We show theoretically and experimentally that for a sufficiently high electrostatic potential on the droplet, the formation of the vapor layer is suppressed. The interplay of the destabilizing electrostatic force and stabilizing capillary force and evaporation determines the minimum or threshold voltage to suppress the Leidenfrost effect. Linear stability theory accurately predicts threshold voltages for different size droplets and varying temperatures.

  19. Compensating electrostatic forces by single-scan Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Ziegler, Dominik; Rychen, Joerg; Naujoks, Nicola; Stemmer, Andreas

    2007-01-01

    We describe a novel method of single-scan Kelvin probe force microscopy, operating simultaneously with amplitude-modulation distance control in ambient air. A separate Kelvin probe feedback control loop compensates for potential differences between tip and sample by minimizing electrostatic forces. As a result, electrostatically induced height errors in topography are automatically cancelled. To prevent crosstalk from topography or errors in distance control, the Kelvin probe feedback employs phase information resulting from a combination of mechanical and electrical excitation of the cantilever at its second flexural eigenmode. The feedback for amplitude-modulation distance control operates as usual close to the first eigenfrequency

  20. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    Directory of Open Access Journals (Sweden)

    Minárik Stanislav

    2015-08-01

    Full Text Available A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensity acts on ions in any stage.

  1. Development of a micromachined electrostatically suspended gyroscope

    OpenAIRE

    Damrongsak, Badin

    2009-01-01

    In this thesis, a new approach based on an electrostatically suspended gyroscope (ESG) was explored in order to improve the performance of micromachined gyroscopes. Typically, a conventional micromachined gyroscope consists of a vibrating mass suspended on elastic beams that are anchored to a substrate. It measures the rotation rate of a body of interest by detecting rotation-induced Coriolis acceleration of a vibrating structure. Such a gyro is sensitive to fabrication imperfections an...

  2. SUBMICRON PARTICLES EMISSION CONTROL BY ELECTROSTATIC AGGLOMERATION

    Directory of Open Access Journals (Sweden)

    Andrzej Krupa

    2017-04-01

    Full Text Available The aim of the study was to develop a device for more effective treatment of flue gases from submicron particles emitted by power plants burning bituminous coal and by this way the reduction of environment pollution. Electrostatic processes were employed to this goal, as the most effective solution. The solutions hitherto applied in electrostatic precipitation techniques were designed for large particles, typically with sizes> 5 µm, which are easily removed by the action of electrostatic force on the electrically charged particles. In submicron size range (0.1-1 µm the collection efficiency of an ESP is minimal, because of the low value of electric charge on such particles. In order to avoid problems with the removal of submicron particles of fly ash from the flue gases electrostatic agglomeration has been used. In this process, by applying an alternating electric field, larger charged particles (> 1 µm oscillate, and the particles "collect" smaller uncharged particles. In the developed agglomerator with alternating electric field, the charging of particles and the coagulation takes place in one stage that greatly simplified the construction of the device, compared to other solutions. The scope of this study included measurements of fractional collection efficiency of particles in the system comprising of agglomerator and ESP for PM1 and PM2.5 ranges, in device made in pilot scale. The collection efficiency for PM2.5 was greater than 90% and PM1 slightly dropped below 90%. The mass collection efficiency for PM2.5 was greater than 95%. The agglomerator stage increases the collection efficiency for PM1 at a level of 5-10%.

  3. Cost estimate for electrostatically plugged cusp reactor

    International Nuclear Information System (INIS)

    Dolan, T.J.

    1977-01-01

    A preliminary design of an electrostatically plugged cusp reactor was presented in (UCRL-52142(1976)). The capital costs of the various components of this reactor are estimated and totaled for two different blanket configurations: one having an energy multiplication factor M = 1.2, and the other having M = 1.68. The unoptimized direct capital costs for these cases are found to be about 1400 and 950 $/kWe, respectively

  4. Electrostatically actuated torsional resonant sensors and switches

    KAUST Repository

    Younis, Mohammad I.

    2016-12-29

    Embodiments in accordance of a torsional resonant sensor disclosure is configured to actuate a beam structure using electrostatic actuation with an AC harmonic load (e.g., AC and DC voltage sources) that is activated upon detecting a particular agent having a mass above a predefined level. In various embodiments, the beam structure may be different types of resonant structures that is at least partially coated or layered with a selective material.

  5. Low-Shear Microencapsulation and Electrostatic Coating

    Science.gov (United States)

    Morrison, Dennis R.; Mosier, Benjamin

    2005-01-01

    A report presents additional information on the topic of a microencapsulation electrostatic processing system. Information in the report includes micrographs of some microcapsules, a set of diagrams that schematically depict the steps of an encapsulation process, and brief descriptions of (1) alternative versions of the present encapsulation processes, (2) advantages of the present microencapsulation processes over prior microencapsulation processes, and (3) unique and advantageous features of microcapsules produced by the present processes.

  6. Electrostatics of a Point Charge between Intersecting Planes: Exact Solutions and Method of Images

    Science.gov (United States)

    Mei, W. N.; Holloway, A.

    2005-01-01

    In this work, the authors present a commonly used example in electrostatics that could be solved exactly in a conventional manner, yet expressed in a compact form, and simultaneously work out special cases using the method of images. Then, by plotting the potentials and electric fields obtained from these two methods, the authors demonstrate that…

  7. A wet electrostatic precipitator (WESP) as countermeasure to mist formation in amine based carbon capture

    NARCIS (Netherlands)

    Mertens, J.; Anderlohr, C.; Rogiers, P.; Brachert, L.; Khakharia, P.M.; Goetheer, E.L.V.; Schaber, K.

    2014-01-01

    This study is to our knowledge the first to evaluate the potential of a wet electrostatic precipitator (WESP) to prevent aerosol formation issues inside amine based carbon capture installations. A WESP is a suitable option since this study proves that it is very efficient for the removal of the mist

  8. Guided assembly of nanoparticles on electrostatically charged nanocrystalline diamond thin films

    Directory of Open Access Journals (Sweden)

    Verveniotis Elisseos

    2011-01-01

    Full Text Available Abstract We apply atomic force microscope for local electrostatic charging of oxygen-terminated nanocrystalline diamond (NCD thin films deposited on silicon, to induce electrostatically driven self-assembly of colloidal alumina nanoparticles into micro-patterns. Considering possible capacitive, sp2 phase and spatial uniformity factors to charging, we employ films with sub-100 nm thickness and about 60% relative sp2 phase content, probe the spatial material uniformity by Raman and electron microscopy, and repeat experiments at various positions. We demonstrate that electrostatic potential contrast on the NCD films varies between 0.1 and 1.2 V and that the contrast of more than ±1 V (as detected by Kelvin force microscopy is able to induce self-assembly of the nanoparticles via coulombic and polarization forces. This opens prospects for applications of diamond and its unique set of properties in self-assembly of nano-devices and nano-systems.

  9. Measurement of the electrostatic edge effect in wurtzite GaN nanowires

    International Nuclear Information System (INIS)

    Henning, Alex; Rosenwaks, Yossi; Klein, Benjamin; Bertness, Kris A.; Blanchard, Paul T.; Sanford, Norman A.

    2014-01-01

    The electrostatic effect of the hexagonal corner on the electronic structure in wurtzite GaN nanowires (NWs) was directly measured using Kelvin probe force microscopy (KPFM). By correlating electrostatic simulations with the measured potential difference between the nanowire face and the hexagonal vertices, the surface state concentration and band bending of GaN NWs were estimated. The surface band bending is important for an efficient design of high electron mobility transistors and for opto-electronic devices based on GaN NWs. This methodology provides a way to extract NW parameters without making assumptions concerning the electron affinity. We are taking advantage of electrostatic modeling and the high precision that KPFM offers to circumvent a major source of uncertainty in determining the surface band bending

  10. Molecular electrostatic potential analysis of non-covalent complexes

    Indian Academy of Sciences (India)

    and acceptor atoms due to complex formation) and interaction energy, Eint for a large variety of the non- covalent dimers in the categories HB, DHB, and XB. The MESP based eDA concept proposed by Mohan and. Suresh has unified the HB, DHB, and XB non-covalent complexes in a single category, the eDA complex.61.

  11. The Electrostatic Potential of a Uniformly Charged Ring

    Science.gov (United States)

    Ciftja, Orion; Babineaux, Arica; Hafeez, Nadia

    2009-01-01

    When faced with mathematical methods, undergraduate students have difficulty in grasping the reality of various approaches and special functions. It is only when they take a more specialized course such as classical electromagnetism that they finally see the connection. A problem that we believe illustrates very well the depth and variety of…

  12. Molecular electrostatic potential analysis of non-covalent complexes

    Indian Academy of Sciences (India)

    mum (Vmin) in the free and complexed states of the donor and acceptor molecules as well as in terms of MESP at the donor and acceptor atoms (Vn) of the free monomers and complexes. The change in Vmin or Vn on the donor molecule ( Vmin(D) or Vn(D)) during complex formation is proportional to its electron donating ...

  13. Electrostatic potential profile and nonlinear current in an interacting ...

    Indian Academy of Sciences (India)

    Unknown

    voltage-dependent Green's function matrix element taken between the first and the Nth site of the wire. ∆L and ∆R refer ... Since we are using Landauer formula for computing the transport properties, we solve the above .... The converged Hamiltonian matrix is then used to compute the Green's function and subsequently the ...

  14. 2D Electrostatic Potential Solver for Hall Thruster Simulation

    National Research Council Canada - National Science Library

    Koo, Justin W

    2006-01-01

    ...) for Hall thruster simulation. It is based on a finite volume discretization of a current conservation equation where the electron current density is described by a Generalized Ohm's law description...

  15. Surface-enhanced Raman spectroscopy bioanalytical, biomolecular and medical applications

    CERN Document Server

    Procházka, Marek

    2016-01-01

    This book gives an overview of recent developments in RS and SERS for sensing and biosensing considering also limitations, possibilities and prospects of this technique. Raman scattering (RS) is a widely used vibrational technique providing highly specific molecular spectral patterns. A severe limitation for the application of this spectroscopic technique lies in the low cross section of RS. Surface-enhanced Raman scattering (SERS) spectroscopy overcomes this problem by 6-11 orders of magnitude enhancement compared with the standard RS for molecules in the close vicinity of certain rough metal surfaces. Thus, SERS combines molecular fingerprint specificity with potential single-molecule sensitivity. Due to the recent development of new SERS-active substrates, labeling and derivatization chemistry as well as new instrumentations, SERS became a very promising tool for many varied applications, including bioanalytical studies and sensing. Both intrinsic and extrinsic SERS biosensing schemes have been employed to...

  16. Theoretical description of biomolecular hydration - Application to A-DNA

    International Nuclear Information System (INIS)

    Garcia, A.E.; Hummer, G.; Soumpasis, D.M.

    1994-01-01

    The local density of water molecules around a biomolecule is constructed from calculated two- and three-points correlation functions of polar solvents in water using a Potential-of-Mean-Force (PMF) expansion. As a simple approximation, the hydration of all polar (including charged) groups in a biomolecule is represented by the hydration of water oxygen in bulk water, and the effect of non-polar groups on hydration are neglected, except for excluded volume effects. Pair and triplet correlation functions are calculated by molecular dynamics simulations. We present calculations of the structural hydration for ideal A-DNA molecules with sequences [d(CG) 5 ] 2 and [d(C 5 G 5 )] 2 . We find that this method can accurately reproduce the hydration patterns of A-DNA observed in neutron diffraction experiments on oriented DNA fibers

  17. Influence of solvent polarization and non-uniform ion size on electrostatic properties between charged surfaces in an electrolyte solution

    Science.gov (United States)

    Sin, Jun-Sik

    2017-12-01

    In this paper, we study electrostatic properties between two similar or oppositely charged surfaces immersed in an electrolyte solution by using the mean-field approach accounting for solvent polarization and non-uniform size effects. Applying a free energy formalism accounting for unequal ion sizes and orientational ordering of water dipoles, we derive coupled and self-consistent equations to calculate electrostatic properties between charged surfaces. Electrostatic properties for similarly charged surfaces depend on the counterion size but not on the coion size. Moreover, electrostatic potential and osmotic pressure between similarly charged surfaces are found to be increased with increasing counterion size. On the other hand, the corresponding ones between oppositely charged surfaces are related to both sizes of positive and negative ions. For oppositely charged surfaces, the electrostatic potential, number density of solvent molecules, and relative permittivity of an electrolyte having unequal ion sizes are not symmetric about the centerline between the charged surfaces. For either case, the consideration of solvent polarization results in a decrease in the electrostatic potential and the osmotic pressure compared to the case without the effect.

  18. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity.

    Science.gov (United States)

    Kieslich, Chris A; Morikis, Dimitrios

    2012-01-01

    The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the

  19. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity.

    Directory of Open Access Journals (Sweden)

    Chris A Kieslich

    Full Text Available The interaction between complement fragment C3d and complement receptor 2 (CR2 is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2, which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3

  20. Nonlinear Dynamics of Electrostatically Actuated MEMS Arches

    KAUST Repository

    Al Hennawi, Qais M.

    2015-05-01

    In this thesis, we present theoretical and experimental investigation into the nonlinear statics and dynamics of clamped-clamped in-plane MEMS arches when excited by an electrostatic force. Theoretically, we first solve the equation of motion using a multi- mode Galarkin Reduced Order Model (ROM). We investigate the static response of the arch experimentally where we show several jumps due to the snap-through instability. Experimentally, a case study of in-plane silicon micromachined arch is studied and its mechanical behavior is measured using optical techniques. We develop an algorithm to extract various parameters that are needed to model the arch, such as the induced axial force, the modulus of elasticity, and the initially induced initial rise. After that, we excite the arch by a DC electrostatic force superimposed to an AC harmonic load. A softening spring behavior is observed when the excitation is close to the first resonance frequency due to the quadratic nonlinearity coming from the arch geometry and the electrostatic force. Also, a hardening spring behavior is observed when the excitation is close to the third (second symmetric) resonance frequency due to the cubic nonlinearity coming from mid-plane stretching. Then, we excite the arch by an electric load of two AC frequency components, where we report a combination resonance of the summed type. Agreement is reported among the theoretical and experimental work.

  1. Fabrication of a New Electrostatic Linear Actuator

    Science.gov (United States)

    Matsunaga, Takashi; Kondoh, Kazuya; Kumagae, Michihiro; Kawata, Hiroaki; Yasuda, Masaaki; Murata, Kenji; Yoshitake, Masaaki

    2000-12-01

    We propose a new electrostatic linear actuator with a large stroke and a new process for fabricating the actuator. A moving slider with many teeth on both sides is suspended above lower electrodes on a substrate by two bearings. A photoresist is used as a sacrificial layer. Both the slider and the bearings are fabricated by Ni electroplating. The bearings are fabricated by the self-alignment technique. Bearings with 0.6 μm clearance can be easily fabricated. All processes are performed at low temperatures up to 110°C. It is confirmed that the slider can be moved mechanically, and also can be moved by about 10 μm when a voltage pulse of 50 V is applied between the slider and the lower electrodes when the slider is upside down. However, the slider cannot move continuously because of friction. We also calculate the electrostatic force acting on one slider tooth. The simulation result shows that the reduction of the electrostatic force to the vertical direction is very important for mechanical movement of the actuator.

  2. Poisson-Fermi Formulation of Nonlocal Electrostatics in Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    Liu Jinn-Liang

    2017-10-01

    Full Text Available We present a nonlocal electrostatic formulation of nonuniform ions and water molecules with interstitial voids that uses a Fermi-like distribution to account for steric and correlation efects in electrolyte solutions. The formulation is based on the volume exclusion of hard spheres leading to a steric potential and Maxwell’s displacement field with Yukawa-type interactions resulting in a nonlocal electric potential. The classical Poisson-Boltzmann model fails to describe steric and correlation effects important in a variety of chemical and biological systems, especially in high field or large concentration conditions found in and near binding sites, ion channels, and electrodes. Steric effects and correlations are apparent when we compare nonlocal Poisson-Fermi results to Poisson-Boltzmann calculations in electric double layer and to experimental measurements on the selectivity of potassium channels for K+ over Na+.

  3. Development of coaxial speaker-like non-contact electrostatic sensor for aviation engine exhaust electrostatic character research

    Directory of Open Access Journals (Sweden)

    Du Zhaoheng

    2015-01-01

    Full Text Available Electrostatic sensor is the most important equipment in aero-engine exhaust electrostatic character research. By comparing a variety of sensor test programs, the coaxial speaker-like noncontact electrostatic sensor program is proposed. Numerical simulation analysis indicates the electric field distribution of electrostatic sensor, the influence principle of gap width, outer diameter, center diameter, angle and other factors on the sensor capacitance values which identify the key indicators of electrostatic sensor. The experiment test shows that the simulation analysis is in good agreement with the experimental results.

  4. Disruption of magnetospheric current sheet by quasi-electrostatic field

    Directory of Open Access Journals (Sweden)

    W. W. Liu

    2009-05-01

    Full Text Available Recent observational evidence has indicated that local current sheet disruptions are excited by an external perturbation likely associated with the kinetic ballooning (KB instability initiating at the transition region separating the dipole- and tail-like geometries. Specifically a quasi-electrostatic field pointing to the neutral sheet was identified in the interval between the arrival of KB perturbation and local current disruption. How can such a field drive the local current sheet unstable? This question is considered through a fluid treatment of thin current sheet (TCS where the generalized Ohm's law replaces the frozen-in-flux condition. A perturbation with the wavevector along the current is applied, and eigenmodes with frequency much below the ion gyrofrequency are sought. We show that the second-order derivative of ion drift velocity along the thickness of the current sheet is a critical stability parameter. In an E-field-free Harris sheet in which the drift velocity is constant, the current sheet is stable against this particular mode. As the electrostatic field grows, however, potential for instability arises. The threshold of instability is identified through an approximate analysis of the theory. For a nominal current sheet half-thickness of 1000 km, the estimated instability threshold is E~4 mV/m. Numerical solutions indicate that the two-fluid theory gives growth rate and wave period consistent with observations.

  5. Imaging electrostatically confined Dirac fermions in graphene quantum dots

    Science.gov (United States)

    Lee, Juwon; Wong, Dillon; Velasco, Jairo, Jr.; Rodriguez-Nieva, Joaquin F.; Kahn, Salman; Tsai, Hsin-Zon; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Levitov, Leonid S.; Crommie, Michael F.

    2016-11-01

    Electrostatic confinement of charge carriers in graphene is governed by Klein tunnelling, a relativistic quantum process in which particle-hole transmutation leads to unusual anisotropic transmission at p-n junction boundaries. Reflection and transmission at these boundaries affect the quantum interference of electronic waves, enabling the formation of novel quasi-bound states. Here we report the use of scanning tunnelling microscopy to map the electronic structure of Dirac fermions confined in quantum dots defined by circular graphene p-n junctions. The quantum dots were fabricated using a technique involving local manipulation of defect charge within the insulating substrate beneath a graphene monolayer. Inside such graphene quantum dots we observe resonances due to quasi-bound states and directly visualize the quantum interference patterns arising from these states. Outside the quantum dots Dirac fermions exhibit Friedel oscillation-like behaviour. Bolstered by a theoretical model describing relativistic particles in a harmonic oscillator potential, our findings yield insights into the spatial behaviour of electrostatically confined Dirac fermions.

  6. Auroral and sub-auroral phenomena: an electrostatic picture

    Directory of Open Access Journals (Sweden)

    J. De Keyser

    2010-02-01

    Full Text Available Many auroral and sub-auroral phenomena are manifestations of an underlying magnetosphere-ionosphere coupling. In the electrostatic perspective the associated auroral current circuit describes how the generator (often in the magnetosphere is connected to the load (often in the ionosphere through field-aligned currents. The present paper examines the generic properties of the current continuity equation that characterizes the auroral circuit. The physical role of the various elements of the current circuit is illustrated by considering a number of magnetospheric configurations, various auroral current-voltage relations, and different types of behaviour of the ionospheric conductivity. Based on realistic assumptions concerning the current-voltage relation and the ionospheric conductivity, a comprehensive picture of auroral and sub-auroral phenomena is presented, including diffuse aurora, discrete auroral arcs, black aurora, and subauroral ion drift. The electrostatic picture of field-aligned potential differences, field-aligned currents, ionospheric electric fields and plasma drift, and spatial scales for all these phenomena is in qualitative agreement with observations.

  7. Multiresolution persistent homology for excessively large biomolecular datasets

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Kelin; Zhao, Zhixiong [Department of Mathematics, Michigan State University, East Lansing, Michigan 48824 (United States); Wei, Guo-Wei, E-mail: wei@math.msu.edu [Department of Mathematics, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (United States)

    2015-10-07

    Although persistent homology has emerged as a promising tool for the topological simplification of complex data, it is computationally intractable for large datasets. We introduce multiresolution persistent homology to handle excessively large datasets. We match the resolution with the scale of interest so as to represent large scale datasets with appropriate resolution. We utilize flexibility-rigidity index to access the topological connectivity of the data set and define a rigidity density for the filtration analysis. By appropriately tuning the resolution of the rigidity density, we are able to focus the topological lens on the scale of interest. The proposed multiresolution topological analysis is validated by a hexagonal fractal image which has three distinct scales. We further demonstrate the proposed method for extracting topological fingerprints from DNA molecules. In particular, the topological persistence of a virus capsid with 273 780 atoms is successfully analyzed which would otherwise be inaccessible to the normal point cloud method and unreliable by using coarse-grained multiscale persistent homology. The proposed method has also been successfully applied to the protein domain classification, which is the first time that persistent homology is used for practical protein domain analysis, to our knowledge. The proposed multiresolution topological method has potential applications in arbitrary data sets, such as social networks, biological networks, and graphs.

  8. In situ monitoring of biomolecular processes in living systems using surface-enhanced Raman scattering

    Science.gov (United States)

    Altunbek, Mine; Kelestemur, Seda; Culha, Mustafa

    2015-12-01

    Surface-enhanced Raman scattering (SERS) continues to strive to gather molecular level information from dynamic biological systems. It is our ongoing effort to utilize the technique for understanding of the biomolecular processes in living systems such as eukaryotic and prokaryotic cells. In this study, the technique is investigated to identify cell death mechanisms in 2D and 3D in vitro cell culture models, which is a very important process in tissue engineering and pharmaceutical applications. Second, in situ biofilm formation monitoring is investigated to understand how microorganisms respond to the environmental stimuli, which inferred information can be used to interfere with biofilm formation and fight against their pathogenic activity.

  9. The use of gold nanoparticle aggregation for DNA computing and logic-based biomolecular detection

    International Nuclear Information System (INIS)

    Lee, In-Hee; Yang, Kyung-Ae; Zhang, Byoung-Tak; Lee, Ji-Hoon; Park, Ji-Yoon; Chai, Young Gyu; Lee, Jae-Hoon

    2008-01-01

    The use of DNA molecules as a physical computational material has attracted much interest, especially in the area of DNA computing. DNAs are also useful for logical control and analysis of biological systems if efficient visualization methods are available. Here we present a quick and simple visualization technique that displays the results of the DNA computing process based on a colorimetric change induced by gold nanoparticle aggregation, and we apply it to the logic-based detection of biomolecules. Our results demonstrate its effectiveness in both DNA-based logical computation and logic-based biomolecular detection

  10. An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Yiyan; Landry, James P.; Zhu, X. D., E-mail: xdzhu@physics.ucdavis.edu [Department of Physics, University of California, One Shields Avenue, Davis, California 95616 (United States); Li, Yanhong; Yu, Hai; Lau, Kam; Huang, Shengshu; Chokhawala, Harshal A.; Chen, Xi [Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616 (United States)

    2013-11-15

    A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400–10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.

  11. An expanded genetic code for probing the role of electrostatics in enzyme catalysis by vibrational Stark spectroscopy.

    Science.gov (United States)

    Völler, Jan-Stefan; Biava, Hernan; Hildebrandt, Peter; Budisa, Nediljko

    2017-11-01

    To find experimental validation for electrostatic interactions essential for catalytic reactions represents a challenge due to practical limitations in assessing electric fields within protein structures. This review examines the applications of non-canonical amino acids (ncAAs) as genetically encoded probes for studying the role of electrostatic interactions in enzyme catalysis. ncAAs constitute sensitive spectroscopic probes to detect local electric fields by exploiting the vibrational Stark effect (VSE) and thus have the potential to map the protein electrostatics. Mapping the electrostatics in proteins will improve our understanding of natural catalytic processes and, in beyond, will be helpful for biocatalyst engineering. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. On the electrostatic and steric similarity of lactam compounds and the natural substrate for bacterial cell-wall biosynthesis

    Science.gov (United States)

    Frau, J.; Price, S. L.

    1996-04-01

    Electrostatic and structural properties of a set of β-lactam, γ-lactam and nonlactam compounds have been analyzed and compared with those of a model of the natural substrate d-alanyl- d-alanine for the carboxy- and transpeptidase enzymes. This first comparison of the electrostatic properties has been based on a distributed multipole analysis of high-quality ab initio wave functions of the substrate and potential antibiotics. The electrostatic similarity of the substrate and active compounds is apparent, and contrasts with the electrostatic properties of the noninhibitors. This has been quantified to give a reasonable correlation with the MIC (Minimum Concentration for Inhibition) and with kinetic data (k2/K) in accordance with the model for interaction of the lactam compounds with dd-peptidase. These correlations provide a better prediction of antibacterial activity than purely structural criteria.

  13. Single-molecule imaging and manipulation of biomolecular machines and systems.

    Science.gov (United States)

    Iino, Ryota; Iida, Tatsuya; Nakamura, Akihiko; Saita, Ei-Ichiro; You, Huijuan; Sako, Yasushi

    2018-02-01

    Biological molecular machines support various activities and behaviors of cells, such as energy production, signal transduction, growth, differentiation, and migration. We provide an overview of single-molecule imaging methods involving both small and large probes used to monitor the dynamic motions of molecular machines in vitro (purified proteins) and in living cells, and single-molecule manipulation methods used to measure the forces, mechanical properties and responses of biomolecules. We also introduce several examples of single-molecule analysis, focusing primarily on motor proteins and signal transduction systems. Single-molecule analysis is a powerful approach to unveil the operational mechanisms both of individual molecular machines and of systems consisting of many molecular machines. Quantitative, high-resolution single-molecule analyses of biomolecular systems at the various hierarchies of life will help to answer our fundamental question: "What is life?" This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems

    Energy Technology Data Exchange (ETDEWEB)

    Radak, Brian K. [Leadership; Chipot, Christophe [Laboratoire; Department; Suh, Donghyuk [Department; Jo, Sunhwan [Leadership; Jiang, Wei [Leadership; Phillips, James C. [Theoretical; Schulten, Klaus [Department; Theoretical; Roux, Benoît [Department; Department; Center for

    2017-11-22

    An increasingly important endeavor is to develop computational strategies that enable molecular dynamics (MD) simulations of biomolecular systems with spontaneous changes in protonation states under conditions of constant pH. The present work describes our efforts to implement the powerful constant-pH MD simulation method, based on a hybrid nonequilibrium MD/Monte Carlo (neMD/MC) technique within the highly scalable program NAMD. The constant-pH hybrid neMD/MC method has several appealing features; it samples the correct semigrand canonical ensemble rigorously, the computational cost increases linearly with the number of titratable sites, and it is applicable to explicit solvent simulations. The present implementation of the constant-pH hybrid neMD/MC in NAMD is designed to handle a wide range of biomolecular systems with no constraints on the choice of force field. Furthermore, the sampling efficiency can be adaptively improved on-the-fly by adjusting algorithmic parameters during the simulation. Illustrative examples emphasizing medium- and large-scale applications on next-generation supercomputing architectures are provided.

  15. DockScreen: A Database of In Silico Biomolecular Interactions to Support Computational Toxicology

    Directory of Open Access Journals (Sweden)

    Michael-Rock Goldsmith

    2014-01-01

    Full Text Available We have developed DockScreen, a database of in silico biomolecular interactions designed to enable rational molecular toxicological insight within a computational toxicology framework. This database is composed of chemical/target (receptor and enzyme binding scores calculated by molecular docking of more than 1000 chemicals into 150 protein targets and contains nearly 135 thousand unique ligand/target binding scores. Obtaining this dataset was achieved using eHiTS (Simbiosys Inc., a fragment-based molecular docking approach with an exhaustive search algorithm, on a heterogeneous distributed high-performance computing framework. The chemical landscape covered in DockScreen comprises selected environmental and therapeutic chemicals. The target landscape covered in DockScreen was selected based on the availability of high-quality crystal structures that covered the assay space of phase I ToxCast in vitro assays. This in silico data provides continuous information that establishes a means for quantitatively comparing, on a structural biophysical basis, a chemical’s profile of biomolecular interactions. The combined minimum-score chemical/target matrix is provided.

  16. The interplay of intrinsic and extrinsic bounded noises in biomolecular networks.

    Science.gov (United States)

    Caravagna, Giulio; Mauri, Giancarlo; d'Onofrio, Alberto

    2013-01-01

    After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a biomolecular network. The influence of intrinsic and extrinsic noises on biomolecular networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i) the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii) a model of enzymatic futile cycle and (iii) a genetic toggle switch. In (ii) and (iii) we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possible functional role of bounded noises.

  17. Optimal number of coarse-grained sites in different components of large biomolecular complexes.

    Science.gov (United States)

    Sinitskiy, Anton V; Saunders, Marissa G; Voth, Gregory A

    2012-07-26

    The computational study of large biomolecular complexes (molecular machines, cytoskeletal filaments, etc.) is a formidable challenge facing computational biophysics and biology. To achieve biologically relevant length and time scales, coarse-grained (CG) models of such complexes usually must be built and employed. One of the important early stages in this approach is to determine an optimal number of CG sites in different constituents of a complex. This work presents a systematic approach to this problem. First, a universal scaling law is derived and numerically corroborated for the intensity of the intrasite (intradomain) thermal fluctuations as a function of the number of CG sites. Second, this result is used for derivation of the criterion for the optimal number of CG sites in different parts of a large multibiomolecule complex. In the zeroth-order approximation, this approach validates the empirical rule of taking one CG site per fixed number of atoms or residues in each biomolecule, previously widely used for smaller systems (e.g., individual biomolecules). The first-order corrections to this rule are derived and numerically checked by the case studies of the Escherichia coli ribosome and Arp2/3 actin filament junction. In different ribosomal proteins, the optimal number of amino acids per CG site is shown to differ by a factor of 3.5, and an even wider spread may exist in other large biomolecular complexes. Therefore, the method proposed in this paper is valuable for the optimal construction of CG models of such complexes.

  18. The interplay of intrinsic and extrinsic bounded noises in biomolecular networks.

    Directory of Open Access Journals (Sweden)

    Giulio Caravagna

    Full Text Available After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a biomolecular network. The influence of intrinsic and extrinsic noises on biomolecular networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii a model of enzymatic futile cycle and (iii a genetic toggle switch. In (ii and (iii we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possible functional role of bounded noises.

  19. Designing Electrostatic Accelerometers for Next Gravity Missions

    Science.gov (United States)

    Huynh, Phuong-Anh; Foulon, Bernard; Christophe, Bruno; Liorzou, Françoise; Boulanger, Damien; Lebat, Vincent

    2016-04-01

    Square cuboid electrostatic accelerometers sensor core have been used in various combinations in recent and still flying missions (CHAMP, GRACE, GOCE). ONERA is now in the process of delivering such accelerometers for the GRACE Follow-On mission. The goal is to demonstrate the performance benefits of an interferometry laser ranging method for future low-low satellite to satellite missions. The electrostatic accelerometer becoming thus the system main performance limiter, we propose for future missions a new symmetry which will allow for three ultrasensitive axes instead of two. This implies no performance ground testing, as the now cubic proof-mass will be too heavy, but only free fall tests in catapult mode, taking advantage of the additional microgravity testing time offered by the updated ZARM tower. The updated mission will be in better adequacy with the requirements of a next generation of smaller and drag compensated micro-satellites. In addition to the measurement of the surface forces exerted on the spacecraft by the atmospheric drag and by radiation pressures, the accelerometer will become a major part of the attitude and orbit control system by acting as drag free sensor and by accurately measuring the angular accelerations. ONERA also works on a hybridization of the electrostatic accelerometer with an atomic interferometer to take advantage of the absolute nature of the atomic interferometer acceleration measurement and its great accuracy in the [5-100] mHz bandwidth. After a description of the improvement of the GRACE-FO accelerometer with respect to the still in-orbit previous models and a status of its development, the presentation will describe the new cubic configuration and how its operations and performances can be verified in the Bremen drop tower.

  20. Resonant behavior of dielectric objects (electrostatic resonances).

    Science.gov (United States)

    Fredkin, D R; Mayergoyz, I D

    2003-12-19

    Resonant behavior of dielectric objects occurs at certain frequencies for which the object permittivity is negative and the free-space wavelength is large in comparison with the object dimensions. Unique physical features of these resonances are studied and a novel technique for the calculation of resonance values of permittivity, and hence resonance frequencies, is proposed. Scale invariance of resonance frequencies, unusually strong orthogonality properties of resonance modes, and a two-dimensional phenomenon of "twin" spectra are reported. The paper concludes with brief discussions of optical controllability of these resonances in semiconductor nanoparticles and a plausible, electrostatic resonance based, mechanism for nucleation and formation of ball lightning.