WorldWideScience

Sample records for biomolecular chromophores role

  1. Quantum dynamics of electronic excitations in biomolecular chromophores: role of the protein environment and solvent

    CERN Document Server

    Gilmore, J; Gilmore, Joel; Kenzie, Ross H. Mc

    2006-01-01

    We consider continuum dielectric models as minimal models to understand the effect of the surrounding protein and solvent on the quantum dynamics of electronic excitations in a biological chromophore. For these models we describe expressions for the frequency dependent spectral density which describes the coupling of the electronic levels in the chromophore to its environment. We find the contributions to the spectral density from each component of the chromophore environment: the bulk solvent, protein, and water bound to the protein. The relative importance of each component is determined by the time scale on which one is considering the quantum dynamics of the chromophore. Our results provide a natural explanation and model for the different time scales observed in the spectral density extracted from the solvation dynamics probed by ultra-fast laser spectroscopy techniques such as the dynamic Stokes shift and three pulse photon echo spectroscopy. Our results can be used to define under what conditions the d...

  2. Chromophore

    Directory of Open Access Journals (Sweden)

    Roxana Gabriela Zgârian

    2017-02-01

    Full Text Available The paper presents the main results of our study on preparation and characterization of conducting biomembranes to be used as solid polymer electrolytes (SPEs. It bases on deoxyribonucleic acid (DNA, glycerol (GLY and photosensitive chromophores, like Prussian Blue (PB. Its primary application is in fabrication of electrochromic windows. The new SPEs were characterized by UV-VIS and FTIR spectroscopy. They were used in preparation of small electrochromic devices (ECDs. The obtained devices were evaluated by cyclic voltammetry and also by spectroscopic methods. The results show their color change from blue pale to intense blue after application of a direct current (DC electric field, making the composites very interesting for industrial applications in smart windows.

  3. Role of the conjugated spacer in the optimization of second-order nonlinear chromophores

    Science.gov (United States)

    Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.

    2009-08-01

    We investigate the role of the conjugated spacer in the optimization of the first hyperpolarizability of organic chromophores. We propose a novel strategy for the optimization of the first hyperpolarizability that is based on the variation of the degree of conjugation for the bridge that separates the donor and acceptors at the end of push-pull type chromophores. The correlation between the type of conjugated spacer and the experimental nonlinear performance of the chromophores is investigated and interpreted in the context of the quantum limits.

  4. Primary Role of the Chromophore Bond Length Alternation in Reversible Photoconversion of Red Fluorescence Proteins

    Science.gov (United States)

    Drobizhev, Mikhail; Hughes, Thomas E.; Stepanenko, Yuriy; Wnuk, Pawel; O'Donnell, Kieran; Scott, J. Nathan; Callis, Patrik R.; Mikhaylov, Alexander; Dokken, Leslie; Rebane, Aleksander

    2012-01-01

    Rapid photobleaching of fluorescent proteins can limit their use in imaging applications. The underlying kinetics is multi-exponential and strongly depends on the local chromophore environment. The first, reversible, step may be attributed to a rotation around one of the two exocyclic C-C bonds bridging phenol and imidazolinone groups in the chromophore. However it is not clear how the protein environment controls this motion - either by steric hindrances or by modulating the electronic structure of the chromophore through electrostatic interactions. Here we study the first step of the photobleaching kinetics in 13 red fluorescent proteins (RFPs) with different chromophore environment and show that the associated rate strongly correlates with the bond length alternation (BLA) of the two bridge bonds. The sign of the BLA appears to determine which rotation is activated. Our results present experimental evidence for the dominance of electronic effects in the conformational dynamics of the RFP chromophore. PMID:23008753

  5. Primary Role of the Chromophore Bond Length Alternation in Reversible Photoconversion of Red Fluorescence Proteins

    Science.gov (United States)

    Drobizhev, Mikhail; Hughes, Thomas E.; Stepanenko, Yuriy; Wnuk, Pawel; O'Donnell, Kieran; Scott, J. Nathan; Callis, Patrik R.; Mikhaylov, Alexander; Dokken, Leslie; Rebane, Aleksander

    2012-09-01

    Rapid photobleaching of fluorescent proteins can limit their use in imaging applications. The underlying kinetics is multi-exponential and strongly depends on the local chromophore environment. The first, reversible, step may be attributed to a rotation around one of the two exocyclic C-C bonds bridging phenol and imidazolinone groups in the chromophore. However it is not clear how the protein environment controls this motion - either by steric hindrances or by modulating the electronic structure of the chromophore through electrostatic interactions. Here we study the first step of the photobleaching kinetics in 13 red fluorescent proteins (RFPs) with different chromophore environment and show that the associated rate strongly correlates with the bond length alternation (BLA) of the two bridge bonds. The sign of the BLA appears to determine which rotation is activated. Our results present experimental evidence for the dominance of electronic effects in the conformational dynamics of the RFP chromophore.

  6. Grid computing and biomolecular simulation.

    Science.gov (United States)

    Woods, Christopher J; Ng, Muan Hong; Johnston, Steven; Murdock, Stuart E; Wu, Bing; Tai, Kaihsu; Fangohr, Hans; Jeffreys, Paul; Cox, Simon; Frey, Jeremy G; Sansom, Mark S P; Essex, Jonathan W

    2005-08-15

    Biomolecular computer simulations are now widely used not only in an academic setting to understand the fundamental role of molecular dynamics on biological function, but also in the industrial context to assist in drug design. In this paper, two applications of Grid computing to this area will be outlined. The first, involving the coupling of distributed computing resources to dedicated Beowulf clusters, is targeted at simulating protein conformational change using the Replica Exchange methodology. In the second, the rationale and design of a database of biomolecular simulation trajectories is described. Both applications illustrate the increasingly important role modern computational methods are playing in the life sciences.

  7. Theoretical description of protein field effects on electronic excitations of biological chromophores

    Science.gov (United States)

    Varsano, Daniele; Caprasecca, Stefano; Coccia, Emanuele

    2017-01-01

    Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show

  8. Biomolecular simulation: historical picture and future perspectives.

    Science.gov (United States)

    van Gunsteren, Wilfred F; Dolenc, Jozica

    2008-02-01

    Over the last 30 years, computation based on molecular models is playing an increasingly important role in biology, biological chemistry and biophysics. Since only a very limited number of properties of biomolecular systems are actually accessible to measurement by experimental means, computer simulation complements experiments by providing not only averages, but also distributions and time series of any definable, observable or non-observable, quantity. Biomolecular simulation may be used (i) to interpret experimental data, (ii) to provoke new experiments, (iii) to replace experiments and (iv) to protect intellectual property. Progress over the last 30 years is sketched and perspectives are outlined for the future.

  9. Prediction of Biomolecular Complexes

    KAUST Repository

    Vangone, Anna

    2017-04-12

    Almost all processes in living organisms occur through specific interactions between biomolecules. Any dysfunction of those interactions can lead to pathological events. Understanding such interactions is therefore a crucial step in the investigation of biological systems and a starting point for drug design. In recent years, experimental studies have been devoted to unravel the principles of biomolecular interactions; however, due to experimental difficulties in solving the three-dimensional (3D) structure of biomolecular complexes, the number of available, high-resolution experimental 3D structures does not fulfill the current needs. Therefore, complementary computational approaches to model such interactions are necessary to assist experimentalists since a full understanding of how biomolecules interact (and consequently how they perform their function) only comes from 3D structures which provide crucial atomic details about binding and recognition processes. In this chapter we review approaches to predict biomolecular complexesBiomolecular complexes, introducing the concept of molecular dockingDocking, a technique which uses a combination of geometric, steric and energetics considerations to predict the 3D structure of a biological complex starting from the individual structures of its constituent parts. We provide a mini-guide about docking concepts, its potential and challenges, along with post-docking analysis and a list of related software.

  10. Programming in biomolecular computation

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue

    2011-01-01

    Our goal is to provide a top-down approach to biomolecular computation. In spite of widespread discussion about connections between biology and computation, one question seems notable by its absence: Where are the programs? We identify a number of common features in programming that seem conspicu...

  11. Thermodynamic properties of water solvating biomolecular surfaces

    Science.gov (United States)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  12. Biomolecular EPR spectroscopy

    CERN Document Server

    Hagen, Wilfred Raymond

    2008-01-01

    Comprehensive, Up-to-Date Coverage of Spectroscopy Theory and its Applications to Biological SystemsAlthough a multitude of books have been published about spectroscopy, most of them only occasionally refer to biological systems and the specific problems of biomolecular EPR (bioEPR). Biomolecular EPR Spectroscopy provides a practical introduction to bioEPR and demonstrates how this remarkable tool allows researchers to delve into the structural, functional, and analytical analysis of paramagnetic molecules found in the biochemistry of all species on the planet. A Must-Have Reference in an Intrinsically Multidisciplinary FieldThis authoritative reference seamlessly covers all important bioEPR applications, including low-spin and high-spin metalloproteins, spin traps and spin lables, interaction between active sites, and redox systems. It is loaded with practical tricks as well as do's and don'ts that are based on the author's 30 years of experience in the field. The book also comes with an unprecedented set of...

  13. Programming in biomolecular computation

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue

    2010-01-01

    executable, but are also compilable and interpretable. It is universal: all computable functions can be computed (in natural ways and without arcane encodings of data and algorithm); it is also uniform: new “hardware” is not needed to solve new problems; and (last but not least) it is Turing complete......Our goal is to provide a top-down approach to biomolecular computation. In spite of widespread discussion about connections between biology and computation, one question seems notable by its absence: Where are the programs? We introduce a model of computation that is evidently programmable......, by programs reminiscent of low-level computer machine code; and at the same time biologically plausible: its functioning is defined by a single and relatively small set of chemical-like reaction rules. Further properties: the model is stored-program: programs are the same as data, so programs are not only...

  14. Programming in Biomolecular Computation

    DEFF Research Database (Denmark)

    Hartmann, Lars; Jones, Neil; Simonsen, Jakob Grue

    2010-01-01

    Our goal is to provide a top-down approach to biomolecular computation. In spite of widespread discussion about connections between biology and computation, one question seems notable by its absence: Where are the programs? We introduce a model of computation that is evidently programmable......, by programs reminiscent of low-level computer machine code; and at the same time biologically plausible: its functioning is defined by a single and relatively small set of chemical-like reaction rules. Further properties: the model is stored-program: programs are the same as data, so programs are not only...... in a strong sense: a universal algorithm exists, that is able to execute any program, and is not asymptotically inefficient. A prototype model has been implemented (for now in silico on a conventional computer). This work opens new perspectives on just how computation may be specified at the biological level....

  15. Improvements in continuum modeling for biomolecular systems

    CERN Document Server

    Qiao, Yu

    2015-01-01

    Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson-Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulation. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and PNP equations, the coupling of polar and nonpolar interactions, and numerical progress.

  16. Dynamics of biomolecular processes

    Science.gov (United States)

    Behringer, Hans; Eichhorn, Ralf; Wallin, Stefan

    2013-05-01

    The last few years have seen enormous progress in the availability of computational resources, so that the size and complexity of physical systems that can be investigated numerically has increased substantially. The physical mechanisms behind the processes creating life, such as those in a living cell, are of foremost interest in biophysical research. A main challenge here is that complexity not only emerges from interactions of many macro-molecular compounds, but is already evident at the level of a single molecule. An exciting recent development in this context is, therefore, that detailed atomistic level characterization of large-scale dynamics of individual bio-macromolecules, such as proteins and DNA, is starting to become feasible in some cases. This has contributed to a better understanding of the molecular mechanisms of, e.g. protein folding and aggregation, as well as DNA dynamics. Nevertheless, simulations of the dynamical behaviour of complex multicomponent cellular processes at an all-atom level will remain beyond reach for the foreseeable future, and may not even be desirable. Ultimate understanding of many biological processes will require the development of methods targeting different time and length scales and, importantly, ways to bridge these in multiscale approaches. At the scientific programme Dynamics of biomolecular processes: from atomistic representations to coarse-grained models held between 27 February and 23 March 2012, and hosted by the Nordic Institute for Theoretical Physics, new modelling approaches and results for particular biological systems were presented and discussed. The programme was attended by around 30 scientists from the Nordic countries and elsewhere. It also included a PhD and postdoc 'winter school', where basic theoretical concepts and techniques of biomolecular modelling and simulations were presented. One to two decades ago, the biomolecular modelling field was dominated by two widely different and largely

  17. Photoresponse of the protonated Schiff-base retinal chromophore in the gas phase

    DEFF Research Database (Denmark)

    Toker, Jonathan; Rahbek, Dennis Bo; Kiefer, H V

    2013-01-01

    The fragmentation, initiated by photoexcitation as well as collisionally-induced excitation, of several retinal chromophores was studied in the gas phase. The chromophore in the protonated Schiff-base form (RPSB), essential for mammalian vision, shows a remarkably selective photoresponse. The sel......The fragmentation, initiated by photoexcitation as well as collisionally-induced excitation, of several retinal chromophores was studied in the gas phase. The chromophore in the protonated Schiff-base form (RPSB), essential for mammalian vision, shows a remarkably selective photoresponse...... modifications of the chromophore. We propose that isomerizations play an important role in the photoresponse of gas-phase retinal chromophores and guide internal conversion through conical intersections. The role of protein interactions is then to control the specificity of the photoisomerization in the primary...

  18. Variational Methods for Biomolecular Modeling

    CERN Document Server

    Wei, Guo-Wei

    2016-01-01

    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrosta...

  19. Sunlight-induced changes in chromophores and fluorophores of wastewater-derived organic matter in receiving waters--the role of salinity.

    Science.gov (United States)

    Yang, Xiaofang; Meng, Fangang; Huang, Guocheng; Sun, Li; Lin, Zheng

    2014-10-01

    Wastewater-derived organic matter (WOM) is an important constituent of discharge to urban rivers and is suspected of altering the naturally occurring dissolved organic matter (DOM) in water systems. This study investigated sunlight-induced changes in chromophores and fluorophores of WOM with different salinities (S = 0, 10, 20 and 30) that were collected from two wastewater treatment plants (WWTP-A and WWTP-B). The results showed that exposure to sunlight for 5.3 × 10(5) J/m(2) caused significant decreases in UV254-absorbing WOM (45-59% loss) compared to gross dissolved organic carbon (<15% loss). An increase in salinity accelerated the overall photo-degradation rates of the UV254-absorbing chromophores from both WOM and natural DOM. In addition, irradiated WOM at a higher salinity had a larger molecular size than that at a lower salinity. However, natural DOM did not display such behavior. Parallel factor analysis of the excitation-emission matrix determined the presence of two humic-like components (C1 and C2) and two protein-like components (C3 and C4). All the components in WOM followed second-order kinetics, except for the C4 component in WWTP-A, which fit zero-order photoreaction kinetics. The photo-degradation of the C1 component in both WWTPs appeared to be independent of salinity; however, the photo-degradation rates of the C2 and C3 components in both WWTPs and C4 in WWTP-B increased significantly with increasing salinity. In comparison, the photo-degradation of the C1 component was significantly facilitated by increased salinity in natural DOM, fitting first-order photoreaction kinetics. As such, the current knowledge concerning the photo-degradation of naturally occurring DOM cannot be extrapolated for the understanding of WOM photo-degradation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Search for Singlet Fission Chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.

    2012-01-01

    Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.

  1. Optical, redox, and DNA-binding properties of phenanthridinium chromophores: elucidating the role of the phenyl substituent for fluorescence enhancement of ethidium in the presence of DNA.

    Science.gov (United States)

    Prunkl, Christa; Pichlmaier, Markus; Winter, Rainer; Kharlanov, Vladimir; Rettig, Wolfgang; Wagenknecht, Hans-Achim

    2010-03-15

    The phenanthridinium chromophores 5-ethyl-6-phenylphenanthridinium (1), 5-ethyl-6-methylphenanthridinium (2), 3,8-diamino-5-ethyl-6-methylphenanthridinium (3), and 3,8-diamino-5-ethyl-6-(4-N,N-diethylaminophenyl)phenanthridinium (4) were characterized by their optical and redox properties. All dyes were applied in titration experiments with a random-sequence 17mer DNA duplex and their binding affinities were determined. The results were compared to well-known ethidium bromide (E). In general, this set of data allows the influence of substituents in positions 3, 6, and 8 on the optical properties of E to be elucidated. Especially, compound 4 was used to compare the weak electron-donating character of the phenyl substituent at position 6 of E with the more electron-donating 4-N,N-diethylaminophenyl group. Analysis of all of the measurements revealed two pairs of chromophores. The first pair, consisting of 1 and 2, lacks the amino groups in positions 3 and 8, and, as a result, these dyes exhibit clearly altered optical and electrochemical properties compared with E. In the presence of DNA, a significant fluorescence quenching was observed. Their binding affinity to DNA is reduced by nearly one order of magnitude. The electronic effect of the phenyl group in position 6 on this type of dye is rather small. The properties of the second set, 3 and 4, are similar to E due to the presence of the two strongly electron-donating amino groups in positions 3 and 8. However, in contrast to 1 and 2, the electron-donating character of the substituent in position 6 of 3 and 4 is critical. The binding, as well as the fluorescence enhancement, is clearly related to the electron-donating effect of this substituent. Accordingly, compound 4 shows the strongest binding affinity and the strongest fluorescence enhancement. Quantum chemical calculations reveal a general mechanism related to the twisted intramolecular charge transfer (TICT) model. Accordingly, an increase of the twist angle

  2. Smartphones for cell and biomolecular detection.

    Science.gov (United States)

    Liu, Xiyuan; Lin, Tung-Yi; Lillehoj, Peter B

    2014-11-01

    Recent advances in biomedical science and technology have played a significant role in the development of new sensors and assays for cell and biomolecular detection. Generally, these efforts are aimed at reducing the complexity and costs associated with diagnostic testing so that it can be performed outside of a laboratory or hospital setting, requiring minimal equipment and user involvement. In particular, point-of-care (POC) testing offers immense potential for many important applications including medical diagnosis, environmental monitoring, food safety, and biosecurity. When coupled with smartphones, POC systems can offer portability, ease of use and enhanced functionality while maintaining performance. This review article focuses on recent advancements and developments in smartphone-based POC systems within the last 6 years with an emphasis on cell and biomolecular detection. These devices typically comprise multiple components, such as detectors, sample processors, disposable chips, batteries, and software, which are integrated with a commercial smartphone. One of the most important aspects of developing these systems is the integration of these components onto a compact and lightweight platform that requires minimal power. Researchers have demonstrated several promising approaches employing various detection schemes and device configurations, and it is expected that further developments in biosensors, battery technology and miniaturized electronics will enable smartphone-based POC technologies to become more mainstream tools in the scientific and biomedical communities.

  3. Improvements in continuum modeling for biomolecular systems

    Science.gov (United States)

    Yu, Qiao; Ben-Zhuo, Lu

    2016-01-01

    Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson- Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of the biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulations. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and the PNP equations, the coupling of polar and nonpolar interactions, and numerical progress. Project supported by the National Natural Science Foundation of China (Grant No. 91230106) and the Chinese Academy of Sciences Program for Cross & Cooperative Team of the Science & Technology Innovation.

  4. Biliprotein maturation: the chromophore attachment.

    Science.gov (United States)

    Scheer, H; Zhao, K-H

    2008-04-01

    Biliproteins are a widespread group of brilliantly coloured photoreceptors characterized by linear tetrapyrrolic chromophores, bilins, which are covalently bound to the apoproteins via relatively stable thioether bonds. Covalent binding stabilizes the chromoproteins and is mandatory for phycobilisome assembly; and, it is also important in biliprotein applications such as fluorescence labelling. Covalent binding has, on the other hand, also considerably hindered biliprotein research because autocatalytic chromophore additions are rare, and information on enzymatic addition by lyases was limited to a single example, an EF-type lyase attaching phycocyanobilin to cysteine-alpha84 of C-phycocyanin. The discovery of new activities for the latter lyases, and of new types of lyases, have reinvigorated research activities in the subject. So far, work has mainly concentrated on cyanobacterial phycobiliproteins. Methodological advances in the process, however, as well as the finding of often large numbers of homologues, opens new possibilities for research on the subsequent assembly/disassembly of the phycobilisome in cyanobacteria and red algae, on the assembly and organization of the cryptophyte light-harvesting system, on applications in basic research such as protein folding, and on the use of phycobiliproteins for labelling.

  5. Integrative NMR for biomolecular research.

    Science.gov (United States)

    Lee, Woonghee; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R; Tonelli, Marco; Westler, William M; Butcher, Samuel E; Henzler-Wildman, Katherine A; Markley, John L

    2016-04-01

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html ).

  6. Physics at the biomolecular interface fundamentals for molecular targeted therapy

    CERN Document Server

    Fernández, Ariel

    2016-01-01

    This book focuses primarily on the role of interfacial forces in understanding biological phenomena at the molecular scale. By providing a suitable statistical mechanical apparatus to handle the biomolecular interface, the book becomes uniquely positioned to address core problems in molecular biophysics. It highlights the importance of interfacial tension in delineating a solution to the protein folding problem, in unravelling the physico-chemical basis of enzyme catalysis and protein associations, and in rationally designing molecular targeted therapies. Thus grounded in fundamental science, the book develops a powerful technological platform for drug discovery, while it is set to inspire scientists at any level in their careers determined to address the major challenges in molecular biophysics. The acknowledgment of how exquisitely the structure and dynamics of proteins and their aqueous environment are related attests to the overdue recognition that biomolecular phenomena cannot be effectively understood w...

  7. Primary steps of the photoactive yellow protein: Isolated chromophore dynamics and protein directed function

    OpenAIRE

    Lee, I-Ren; Lee, Wonchul; Zewail, Ahmed H.

    2006-01-01

    The cycle of the photoactive yellow protein (PYP) has been extensively studied, but the dynamics of the isolated chromophore responsible for transduction is unknown. Here, we present real-time observation of the dynamics of the negatively charged chromophore and detection of intermediates along the path of trans-to-cis isomerization using femtosecond mass selection/electron detachment techniques. The results show that the role of the protein environment is not in the first step of double-bond...

  8. [Advances in biomolecular machine: methane monooxygenases].

    Science.gov (United States)

    Lu, Jixue; Wang, Shizhen; Fang, Baishan

    2015-07-01

    Methane monooxygenases (MMO), regarded as "an amazing biomolecular machine", catalyze the oxidation of methane to methanol under aerobic conditions. MMO catalyze the oxidation of methane elaborately, which is a novel way to catalyze methane to methanol. Furthermore, MMO can inspire the biomolecular machine design. In this review, we introduced MMO including structure, gene and catalytic mechanism. The history and the taxonomy of MMO were also introduced.

  9. Bioheterojunction Effect on Fluorescence Origin and Efficiency Improvement of Firefly Chromophores

    CERN Document Server

    Cai, Duanjun; Milne, Bruce F; Nogueira, Fernando; 10.1021/jz1009532

    2010-01-01

    We propose the heterojunction effect in the analysis of the fluorescence mechanism of the firefly chromophore. Following this analysis, and with respect to the HOMO-LUMO gap alignment between the chromophore's functional fragments, three main heterojunction types (I, II, and I*) are identified. Time-dependent density-functional theory optical absorption calculations for the firefly chromophore show that the strongest excitation appears in the deprotonated anion state of the keto form. This can be explained by its high HOMO-LUMO overlap due to strong bio-heterojunction confinement. It is also found that the nitrogen atom in the thiazolyl rings, due to its larger electronegativity, plays a key role in the emission process, its importance growing when HOMO and LUMO overlap at its location. This principle is applied to enhance the chromophore's fluorescence efficiency and to guide the functionalization of molecular optoelectronic devices.

  10. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    B D Malhotra; Rahul Singhal

    2003-08-01

    Biomolecular electronics is rapidly evolving from physics, chemistry, biology, electronics and information technology. Organic materials such as proteins, pigments and conducting polymers have been considered as alternatives for carrying out the functions that are presently being performed by semiconductor silicon. Conducting polymers such as polypyrroles, polythiophenes and polyanilines have been projected for applications for a wide range of biomolecular electronic devices such as optical, electronic, drug-delivery, memory and biosensing devices. Our group has been actively working towards the application of conducting polymers to Schottky diodes, metal–insulator–semiconductor (MIS) devices and biosensors for the past 10 years. This paper is a review of some of the results obtained at our laboratory in the area of conducting polymer biomolecular electronics.

  11. Origin of organic molecules and biomolecular homochirality.

    Science.gov (United States)

    Podlech, J

    2001-01-01

    Theories about the origin of biomolecular homochirality, which seems to be a prerequisite for the creation of life, are discussed. First, possible terrestrial and extraterrestrial sources of organic molecules are outlined. Then, mechanisms for the formation of enantiomerically enriched compounds and for the amplification of their chirality are described.

  12. Biomolecular engineering for nanobio/bionanotechnology

    Science.gov (United States)

    Nagamune, Teruyuki

    2017-04-01

    Biomolecular engineering can be used to purposefully manipulate biomolecules, such as peptides, proteins, nucleic acids and lipids, within the framework of the relations among their structures, functions and properties, as well as their applicability to such areas as developing novel biomaterials, biosensing, bioimaging, and clinical diagnostics and therapeutics. Nanotechnology can also be used to design and tune the sizes, shapes, properties and functionality of nanomaterials. As such, there are considerable overlaps between nanotechnology and biomolecular engineering, in that both are concerned with the structure and behavior of materials on the nanometer scale or smaller. Therefore, in combination with nanotechnology, biomolecular engineering is expected to open up new fields of nanobio/bionanotechnology and to contribute to the development of novel nanobiomaterials, nanobiodevices and nanobiosystems. This review highlights recent studies using engineered biological molecules (e.g., oligonucleotides, peptides, proteins, enzymes, polysaccharides, lipids, biological cofactors and ligands) combined with functional nanomaterials in nanobio/bionanotechnology applications, including therapeutics, diagnostics, biosensing, bioanalysis and biocatalysts. Furthermore, this review focuses on five areas of recent advances in biomolecular engineering: (a) nucleic acid engineering, (b) gene engineering, (c) protein engineering, (d) chemical and enzymatic conjugation technologies, and (e) linker engineering. Precisely engineered nanobiomaterials, nanobiodevices and nanobiosystems are anticipated to emerge as next-generation platforms for bioelectronics, biosensors, biocatalysts, molecular imaging modalities, biological actuators, and biomedical applications.

  13. Synthesis and electrocatalytic water oxidation by electrode-bound helical peptide chromophore-catalyst assemblies.

    Science.gov (United States)

    Ryan, Derek M; Coggins, Michael K; Concepcion, Javier J; Ashford, Dennis L; Fang, Zhen; Alibabaei, Leila; Ma, Da; Meyer, Thomas J; Waters, Marcey L

    2014-08-01

    Artificial photosynthesis based on dye-sensitized photoelectrosynthesis cells requires the assembly of a chromophore and catalyst in close proximity on the surface of a transparent, high band gap oxide semiconductor for integrated light absorption and catalysis. While there are a number of approaches to assemble mixtures of chromophores and catalysts on a surface for use in artificial photosynthesis based on dye-sensitized photoelectrosynthesis cells, the synthesis of discrete surface-bound chromophore-catalyst conjugates is a challenging task with few examples to date. Herein, a versatile synthetic approach and electrochemical characterization of a series of oligoproline-based light-harvesting chromophore-water-oxidation catalyst assemblies is described. This approach combines solid-phase peptide synthesis for systematic variation of the backbone, copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) as an orthogonal approach to install the chromophore, and assembly of the water-oxidation catalyst in the final step. Importantly, the catalyst was found to be incompatible with the conditions both for amide bond formation and for the CuAAC reaction. The modular nature of the synthesis with late-stage assembly of the catalyst allows for systematic variation in the spatial arrangement of light-harvesting chromophore and water-oxidation catalyst and the role of intrastrand distance on chromophore-catalyst assembly properties. Controlled potential electrolysis experiments verified that the surface-bound assemblies function as water-oxidation electrocatalysts, and electrochemical kinetics data demonstrate that the assemblies exhibit greater than 10-fold rate enhancements compared to the homogeneous catalyst alone.

  14. Molecular Selectivity of Brown Carbon Chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey; Roach, Patrick J.; Eckert, Peter A.; Gilles, Mary K.; Wang, Bingbing; Lee, Hyun Ji; Hu, Qichi

    2014-10-21

    Complementary methods of high-resolution mass spectrometry and micro-spectroscopy were utilized for molecular analysis of secondary organic aerosol (SOA) generated from ozonolysis of two structural monoterpene isomers: D-limonene (LSOA) and a-pinene (PSOA). Laboratory simulated aging of LSOA and PSOA, through conversion of carbonyls into imines mediated by NH3 vapors in humid air, resulted in selective browning of the LSOA sample, while the PSOA sample remained white. Comparative analysis of the reaction products in the aged LSOA and PSOA samples provided insights into chemistry relevant to formation of brown carbon chromophores. A significant fraction of carbonyl-imine conversion products with identical molecular formulas were detected in both samples. This reflects the high level of similarity in the molecular composition of these two closely related SOA materials. Several highly conjugated products were detected exclusively in the brown LSOA sample and were identified as potential chromophores responsible for the observed color change. The majority of the unique products in the aged LSOA sample with the highest number of double bonds contain two nitrogen atoms. We conclude that chromophores characteristic of the carbonyl- imine chemistry in LSOA are highly conjugated oligomers of secondary imines (Schiff bases) present at relatively low concentrations. Formation of this type of conjugated compounds in PSOA is hindered by the structural rigidity of the a-pinene oxidation products. Our results suggest that the overall light-absorbing properties of SOA may be determined by trace amounts of strong brown carbon chromophores.

  15. Platinum Acetylide Two-Photon Chromophores (Postprint)

    Science.gov (United States)

    2007-01-01

    advantageous for two reasons. First, by using lower-energy photons, a material will be protected from photodegradation effects. Second, the quadratic...absorbing dyes .19,20,33-39 We show the chromophores depicted in Figure 1 exhibit a remarkable increase in the 2PA cross-section (σ2) over PE2 mentioned

  16. A Possibly Universal Red Chromophore for Jupiter

    Science.gov (United States)

    Sromovsky, Lawrence A.; Baines, Kevin; Fry, Patrick M.

    2016-10-01

    A new laboratory-generated chemical compound made from photodissociated ammonia (NH3) molecules reacting with acetylene (C2H2) was suggested as a possible coloring agent for Jupiter's Great Red Spot (GRS) by Carlson et al. (2016, Icarus 274, 106-115). Baines et al. (2016, AAS/DPS Meeting abstract) showed that the GRS spectrum measured by the visual channels of the Cassini VIMS instrument in 2000 could be accurately fit by a cloud model in which the chromophore appeared as small particles in a physically thin layer immediately above the main cloud layer of the GRS. Here we show that the same chromophore and similar layer structure can also provide close matches to the 0.4-1 micron spectra of many other cloud features on Jupiter, suggesting that this material may be a nearly universal chromophore responsible for the various degrees of red coloration on Jupiter. This is a robust conclusion, even for 12 percent changes in VIMS calibration and large uncertainties in the refractive index of the main cloud layer due to uncertain fractions of NH4SH and NH3 in its cloud particles. The chromophore layer can account for color variations among north and south equatorial belts, equatorial zone, and the Great Red Spot, by varying particle size from 0.12 to 0.29 micron and optical depth from 0.06 to 0.76. The total mass of the chromophore layer is much less variable than its optical depth, staying mainly within 6-10 micrograms/cm2 range, but is only about half that amount in the equatorial zone. We also found a depression of the ammonia volume mixing ratio in the two belt regions, which averaged 0.4-0.5 × 10-4 immediately below the ammonia condensation level, while the other regions averaged twice that value.LAS and PMF acknowledge support from NASA Grant NNX14AH40G.

  17. A statistical mechanical description of biomolecular hydration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    We present an efficient and accurate theoretical description of the structural hydration of biological macromolecules. The hydration of molecules of almost arbitrary size (tRNA, antibody-antigen complexes, photosynthetic reaction centre) can be studied in solution and in the crystal environment. The biomolecular structure obtained from x-ray crystallography, NMR, or modeling is required as input information. The structural arrangement of water molecules near a biomolecular surface is represented by the local water density analogous to the corresponding electron density in an x-ray diffraction experiment. The water-density distribution is approximated in terms of two- and three-particle correlation functions of solute atoms with water using a potentials-of-mean-force expansion.

  18. Application of Nanodiamonds in Biomolecular Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ping Cheng

    2010-03-01

    Full Text Available The combination of nanodiamond (ND with biomolecular mass spectrometry (MS makes rapid, sensitive detection of biopolymers from complex biosamples feasible. Due to its chemical inertness, optical transparency and biocompatibility, the advantage of NDs in MS study is unique. Furthermore, functionalization on the surfaces of NDs expands their application in the fields of proteomics and genomics for specific requirements greatly. This review presents methods of MS analysis based on solid phase extraction and elution on NDs and different application examples including peptide, protein, DNA, glycan and others. Owing to the quick development of nanotechnology, surface chemistry, new MS methods and the intense interest in proteomics and genomics, a huge increase of their applications in biomolecular MS analysis in the near future can be predicted.

  19. Application of Nanodiamonds in Biomolecular Mass Spectrometry

    OpenAIRE

    Ping Cheng; Xianglei Kong

    2010-01-01

    The combination of nanodiamond (ND) with biomolecular mass spectrometry (MS) makes rapid, sensitive detection of biopolymers from complex biosamples feasible. Due to its chemical inertness, optical transparency and biocompatibility, the advantage of NDs in MS study is unique. Furthermore, functionalization on the surfaces of NDs expands their application in the fields of proteomics and genomics for specific requirements greatly. This review presents methods of MS analysis based on solid phase...

  20. Modular Parameter Identification of Biomolecular Networks

    OpenAIRE

    Lang, Moritz; Stelling, Jörg

    2016-01-01

    The increasing complexity of dynamic models in systems and synthetic biology poses computational challenges especially for the identification of model parameters. While modularization of the corresponding optimization problems could help reduce the "curse of dimensionality," abundant feedback and crosstalk mechanisms prohibit a simple decomposition of most biomolecular networks into subnetworks, or modules. Drawing on ideas from network modularization and multiple-shooting optimization, we pr...

  1. Biomolecular electrostatics and solvation: a computational perspective.

    Science.gov (United States)

    Ren, Pengyu; Chun, Jaehun; Thomas, Dennis G; Schnieders, Michael J; Marucho, Marcelo; Zhang, Jiajing; Baker, Nathan A

    2012-11-01

    An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view toward describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g. solvent structure, polarization, ion binding, and non-polar behavior) in order to provide a background to understand the different types of solvation models.

  2. HMGA1a protein unfolds or refolds synthetic DNA-chromophore hybrid polymers: a chaperone-like behavior.

    Science.gov (United States)

    Wan, Wei; Wang, Wei; Li, Alexander D Q

    2008-01-25

    High group mobility protein, HMGA1a, was found to play a chaperone-like role in the folding or unfolding of hybrid polymers that contained well-defined synthetic chromophores and DNA sequences. The synthetic and biological hybrid polymers folded into hydrophobic chromophoric nanostructures in water, but existed as partially unfolded configurations in pH or salt buffers. The presence of HMGA1a induced unfolding of the hybrid DNA-chromophore polymer in pure water, whereas the protein promoted refolding of the same polymer in various pH or salt buffers. The origin of the chaperone-like properties probably comes from the ability of HMGA1a to reversibly bind both synthetic chromophores and single stranded DNA. The unfolding mechanisms and the binding stoichiometry of protein-hybrid polymers depended on the sequence of the synthetic polymers.

  3. The role of the [CpM(CO)2](-) chromophore in the optical properties of the [Cp2ThMCp(CO)2](+) complexes, where M = Fe, Ru and Os. A theoretical view.

    Science.gov (United States)

    Cantero-López, Plinio; Le Bras, Laura; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2015-12-14

    The chemical bond between actinide and the transition metal unsupported by bridging ligands is not well characterized. In this paper we study the electronic properties, bonding nature and optical spectra in a family of [Cp2ThMCp(CO)2](+) complexes where M = Fe, Ru, Os, based on the relativistic two component density functional theory calculations. The Morokuma-Ziegler energy decomposition analysis shows an important ionic contribution in the Th-M interaction with around 25% of covalent character. Clearly, charge transfer occurs on Th-M bond formation, however the orbital term most likely represents a strong charge rearrangement in the fragments due to the interaction. Finally the spin-orbit-ZORA calculation shows the possible NIR emission induced by the [FeCp(CO)2](-) chromophore accomplishing the antenna effect that justifies the sensitization of the actinide complexes.

  4. New polydiacetylenes with visible chromophoric side groups

    Energy Technology Data Exchange (ETDEWEB)

    Foley, J.L.; Shivshankar, V.; Sandman, D.J.

    1998-07-01

    In the interest of obtaining crystalline polydiacetylene with absorption at longer wavelengths, new derivatives of 2,4-hexadiyne with planar, visible absorbing aromatic chromophores have been designed, synthesized, and thermally polymerized. The resulting polymers have a red shifted maximum with absorption extending to the infrared. Their Raman spectra show the usual polydiacetylene ene-yne structure, and X-ray powder diffraction reveals that the new polymers are crystalline.

  5. Molecular selectivity of brown carbon chromophores.

    Science.gov (United States)

    Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey A; Roach, Patrick; Eckert, Peter; Gilles, Mary K; Wang, Bingbing; Lee, Hyun Ji Julie; Hu, Qichi

    2014-10-21

    Complementary methods of high-resolution mass spectrometry and microspectroscopy were utilized for molecular analysis of secondary organic aerosol (SOA) generated from ozonolysis of two structural monoterpene isomers: D-limonene SOA (LSOA) and α-pinene SOA (PSOA). The LSOA compounds readily formed adducts with Na(+) under electrospray ionization conditions, with only a small fraction of compounds detected in the protonated form. In contrast, a significant fraction of PSOA compounds appeared in the protonated form because of their increased molecular rigidity. Laboratory simulated aging of LSOA and PSOA, through conversion of carbonyls into imines mediated by NH3 vapors in humid air, resulted in selective browning of the LSOA sample, while the PSOA sample remained white. Comparative analysis of the reaction products in the aged LSOA and PSOA samples provided insights into chemistry relevant to formation of brown carbon chromophores. A significant fraction of carbonyl-imine conversion products with identical molecular formulas was detected in both samples. This reflects the high level of similarity in the molecular composition of these two closely related SOA materials. Several highly conjugated products were detected exclusively in the brown LSOA sample and were identified as potential chromophores responsible for the observed color change. The majority of the unique products in the aged LSOA sample with the highest number of double bonds contain two nitrogen atoms. We conclude that chromophores characteristic of the carbonyl-imine chemistry in LSOA are highly conjugated oligomers of secondary imines (Schiff bases) present at relatively low concentrations. Formation of this type of conjugated compounds in PSOA is hindered by the structural rigidity of the α-pinene oxidation products. Our results suggest that the overall light-absorbing properties of SOA may be determined by trace amounts of strong brown carbon chromophores.

  6. Nanoarchitectonics of biomolecular assemblies for functional applications

    Science.gov (United States)

    Avinash, M. B.; Govindaraju, T.

    2014-10-01

    The stringent processes of natural selection and evolution have enabled extraordinary structure-function properties of biomolecules. Specifically, the archetypal designs of biomolecules, such as amino acids, nucleobases, carbohydrates and lipids amongst others, encode unparalleled information, selectivity and specificity. The integration of biomolecules either with functional molecules or with an embodied functionality ensures an eclectic approach for novel and advanced nanotechnological applications ranging from electronics to biomedicine, besides bright prospects in systems chemistry and synthetic biology. Given this intriguing scenario, our feature article intends to shed light on the emerging field of functional biomolecular engineering.

  7. Scalable Molecular Dynamics for Large Biomolecular Systems

    Directory of Open Access Journals (Sweden)

    Robert K. Brunner

    2000-01-01

    Full Text Available We present an optimized parallelization scheme for molecular dynamics simulations of large biomolecular systems, implemented in the production-quality molecular dynamics program NAMD. With an object-based hybrid force and spatial decomposition scheme, and an aggressive measurement-based predictive load balancing framework, we have attained speeds and speedups that are much higher than any reported in literature so far. The paper first summarizes the broad methodology we are pursuing, and the basic parallelization scheme we used. It then describes the optimizations that were instrumental in increasing performance, and presents performance results on benchmark simulations.

  8. Fundamentos biomoleculares de la diabetes mellitus

    OpenAIRE

    2013-01-01

    La diabetes mellitus es una enfermedad endocrina con importantes implicaciones a nivel sistémico, como: angiopatía, neuropatía, retinopatía y nefropatía, entre otras. Estas  complicaciones tienen su origen en eventos biomoleculares desencadenados por la hiperglicemia.  La presente revisión de tema trata sobre la estructura y síntesis de la insulina en las células β del páncreas; los eventos moleculares y bioquímicos que activan su secreción como respuesta a una alta concentración de glucosa e...

  9. Micro and Nanotechnologies Enhanced Biomolecular Sensing

    Directory of Open Access Journals (Sweden)

    Tza-Huei Wang

    2013-07-01

    Full Text Available This editorial summarizes some of the recent advances of micro and nanotechnology-based tools and devices for biomolecular detection. These include the incorporation of nanomaterials into a sensor surface or directly interfacing with molecular probes to enhance target detection via more rapid and sensitive responses, and the use of self-assembled organic/inorganic nanocomposites that inhibit exceptional spectroscopic properties to enable facile homogenous assays with efficient binding kinetics. Discussions also include some insight into microfluidic principles behind the development of an integrated sample preparation and biosensor platform toward a miniaturized and fully functional system for point of care applications.

  10. Crowned Ionic Liquids for Biomolecular Interaction Analysis.

    Science.gov (United States)

    Tseng, Ming-Chung; Yuan, Tsu-Chun; Li, Zhuo; Chu, Yen-Ho

    2016-11-15

    On the basis of affinity recognition with positively charged side chains in peptides and proteins, a series of crowned 1,2,3-triazolium ionic liquids (CIL 1-6) was developed and found to be capable of quantitatively extracting peptides and proteins from the aqueous layer into the ionic liquid phase. All of the synthesized CIL 1-6 are liquid at room temperature. This is the first example of biomolecular recognition of both lysine- and arginine-containing peptides and proteins by CILs in pure ionic liquid phase.

  11. Azurin for Biomolecular Electronics: a Reliability Study

    Science.gov (United States)

    Bramanti, Alessandro; Pompa, Pier Paolo; Maruccio, Giuseppe; Calabi, Franco; Arima, Valentina; Cingolani, Roberto; Corni, Stefano; Di Felice, Rosa; De Rienzo, Francesca; Rinaldi, Ross

    2005-09-01

    The metalloprotein azurin, used in biomolecular electronics, is investigated with respect to its resilience to high electric fields and ambient conditions, which are crucial reliability issues. Concerning the effect of electric fields, two models of different complexity agree indicating an unexpectedly high robustness. Experiments in device-like conditions confirm that no structural modifications occur, according to fluorescence spectra, even after a 40-min exposure to tens of MV/m. Ageing is then investigated experimentally, at ambient conditions and without field, over several days. Only a small conformational rearrangement is observed in the first tens of hours, followed by an equilibrium state.

  12. Nanotube-Based Chemical and Biomolecular Sensors

    Institute of Scientific and Technical Information of China (English)

    J.Koh; B.Kim; S.Hong; H.Lim; H.C.Choi

    2008-01-01

    We present a brief review about recent results regarding carbon nanotube (CNT)-based chemical and biomolecular sensors. For the fabrication of CNT-based sensors, devices containing CNT channels between two metal electrodes are first fabricated usually via chemical vapor deposition (CVD) process or "surface programmed assembly" method. Then, the CNT surfaces are often functionalized to enhance the selectivity of the sensors. Using this process, highly-sensitive CNT-based sensors can be fabricated for the selective detection of various chemical and biological molecules such as hydrogen, ammonia, carbon monoxide, chlorine gas, DNA, glucose, alcohol, and proteins.

  13. Effect of chromophore-chromophore electrostatic interactions in the NLO response of functionalized organic-inorganic sol-gel materials

    Science.gov (United States)

    Reyes-Esqueda, J.; Darracq, B.; García-Macedo, J.; Canva, M.; Blanchard-Desce, M.; Chaput, F.; Lahlil, K.; Boilot, J. P.; Brun, A.; Lévy, Y.

    2001-10-01

    In the last years, important non-linear optical (NLO) results on sol-gel and polymeric materials have been reported, with values comparable to those found in crystals. These new materials contain push-pull chromophores either incorporated as guest in a high Tg polymeric matrix (doped polymers) or grafted onto the polymeric matrix. These systems present several advantages, however they require significant improvement at the molecular level—by designing optimized chromophores with very large molecular figure of merit, specific to each application targeted. Besides, it was recently stated in polymers that the chromophore-chromophore electrostatic interactions, which are dependent of chromophore concentration, have a strong effect into their NLO properties. This has not been explored at all in sol-gel systems. In this work, the sol-gel route was used to prepare hybrid organic-inorganic thin films with different NLO chromophores grafted into the skeleton matrix. Combining a molecular engineering strategy for getting a larger molecular figure of merit and by controlling the intermolecular dipole-dipole interactions through both: the tuning of the push-pull chromophore concentration and the control of tetraethoxysilane concentration, we have obtained a r33 coefficient around 15 pm/V at 633 nm for the classical DR1 azo-chromophore and a r33 around 50 pm/V at 831 nm for a new optimized chromophore structure.

  14. An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Yiyan; Landry, James P.; Zhu, X. D., E-mail: xdzhu@physics.ucdavis.edu [Department of Physics, University of California, One Shields Avenue, Davis, California 95616 (United States); Li, Yanhong; Yu, Hai; Lau, Kam; Huang, Shengshu; Chokhawala, Harshal A.; Chen, Xi [Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616 (United States)

    2013-11-15

    A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400–10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.

  15. Stochastic Simulation of Biomolecular Reaction Networks Using the Biomolecular Network Simulator Software

    Science.gov (United States)

    2008-02-01

    investigate the simulation of a biomolecular reaction network with BNS, a simple model of a generic self-assembling catalytic ligation reaction in a...Amino Acid Pools Nucleotide Triphosphate Pools Nucleotide Monophosphate Pools Ligation Reaction 1551 517 7 RESULTS Simulation of exemplar...and reaction r8 is the catalytic ligation reaction . In figures 5(B) through 5(F), both the time-averaged event rate for a single simulation run

  16. Biomolecular rods and tubes in nanotechnology

    Science.gov (United States)

    Bittner, Alexander M.

    2005-02-01

    Biomolecules are vitally important elements in nanoscale science and also in future nanotechnology. Their shape and their chemical and physical functionality can give them a big advantage over inorganic and organic substances. While this becomes most obvious in proteins and peptides, with their complicated, but easily controlled chemistry, other biomolecular substances such as DNA, lipids and carbohydrates can also be important. In this review, the emphasis is on one-dimensional molecules and on molecules that self-assemble into linear structures, and on their potential applications. An important aspect is that biomolecules can act as templates, i.e. their shape and chemical properties can be employed to arrange inorganic substances such as metals or metal compounds on the nanometre scale. In particular, rod- and tube-like nanostructures can show physical properties that are different from those of the bulk material, and thus these structures are likely to be a basis for new technology.

  17. Enhanced sampling techniques in biomolecular simulations.

    Science.gov (United States)

    Spiwok, Vojtech; Sucur, Zoran; Hosek, Petr

    2015-11-01

    Biomolecular simulations are routinely used in biochemistry and molecular biology research; however, they often fail to match expectations of their impact on pharmaceutical and biotech industry. This is caused by the fact that a vast amount of computer time is required to simulate short episodes from the life of biomolecules. Several approaches have been developed to overcome this obstacle, including application of massively parallel and special purpose computers or non-conventional hardware. Methodological approaches are represented by coarse-grained models and enhanced sampling techniques. These techniques can show how the studied system behaves in long time-scales on the basis of relatively short simulations. This review presents an overview of new simulation approaches, the theory behind enhanced sampling methods and success stories of their applications with a direct impact on biotechnology or drug design. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Nonequilibrium phase transitions in biomolecular signal transduction

    Science.gov (United States)

    Smith, Eric; Krishnamurthy, Supriya; Fontana, Walter; Krakauer, David

    2011-11-01

    We study a mechanism for reliable switching in biomolecular signal-transduction cascades. Steady bistable states are created by system-size cooperative effects in populations of proteins, in spite of the fact that the phosphorylation-state transitions of any molecule, by means of which the switch is implemented, are highly stochastic. The emergence of switching is a nonequilibrium phase transition in an energetically driven, dissipative system described by a master equation. We use operator and functional integral methods from reaction-diffusion theory to solve for the phase structure, noise spectrum, and escape trajectories and first-passage times of a class of minimal models of switches, showing how all critical properties for switch behavior can be computed within a unified framework.

  19. Biomolecular computing systems: principles, progress and potential.

    Science.gov (United States)

    Benenson, Yaakov

    2012-06-12

    The task of information processing, or computation, can be performed by natural and man-made 'devices'. Man-made computers are made from silicon chips, whereas natural 'computers', such as the brain, use cells and molecules. Computation also occurs on a much smaller scale in regulatory and signalling pathways in individual cells and even within single biomolecules. Indeed, much of what we recognize as life results from the remarkable capacity of biological building blocks to compute in highly sophisticated ways. Rational design and engineering of biological computing systems can greatly enhance our ability to study and to control biological systems. Potential applications include tissue engineering and regeneration and medical treatments. This Review introduces key concepts and discusses recent progress that has been made in biomolecular computing.

  20. Biomolecular Markers in Cancer of the Tongue

    Directory of Open Access Journals (Sweden)

    Daris Ferrari

    2009-01-01

    Full Text Available The incidence of tongue cancer is increasing worldwide, and its aggressiveness remains high regardless of treatment. Genetic changes and the expression of abnormal proteins have been frequently reported in the case of head and neck cancers, but the little information that has been published concerning tongue tumours is often contradictory. This review will concentrate on the immunohistochemical expression of biomolecular markers and their relationships with clinical behaviour and prognosis. Most of these proteins are associated with nodal stage, tumour progression and metastases, but there is still controversy concerning their impact on disease-free and overall survival, and treatment response. More extensive clinical studies are needed to identify the patterns of molecular alterations and the most reliable predictors in order to develop tailored anti-tumour strategies based on the targeting of hypoxia markers, vascular and lymphangiogenic factors, epidermal growth factor receptors, intracytoplasmatic signalling and apoptosis.

  1. Fundamentos biomoleculares de la diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Katiana Mendoza

    2013-12-01

    Full Text Available La diabetes mellitus es una enfermedad endocrina con importantes implicaciones a nivel sistémico, como: angiopatía, neuropatía, retinopatía y nefropatía, entre otras. Estas  complicaciones tienen su origen en eventos biomoleculares desencadenados por la hiperglicemia.  La presente revisión de tema trata sobre la estructura y síntesis de la insulina en las células β del páncreas; los eventos moleculares y bioquímicos que activan su secreción como respuesta a una alta concentración de glucosa en sangre; la cascada de señalización generada por la unión de la insulina a su receptor sobre células diana; y las alteraciones metabólicas que los diferentes tipos de diabetes mellitus producen.

  2. Biomolecular simulation on thousands of processors

    Science.gov (United States)

    Phillips, James Christopher

    Classical molecular dynamics simulation is a generally applicable method for the study of biomolecular aggregates of proteins, lipids, and nucleic acids. As experimental techniques have revealed the structures of larger and more complex biomolecular machines, the time required to complete even a single meaningful simulation of such systems has become prohibitive. We have developed the program NAMD to simulate systems of 50,000--500,000 atoms efficiently with full electrostatics on parallel computers with 1000 and more processors. NAMD's scalability is achieved through latency tolerant adaptive message-driven execution and measurement-based load balancing. NAMD is implemented in C++ and uses object-oriented design and threads to shield the basic algorithms from the necessary complexity of high-performance parallel execution. Apolipoprotein A-I is the primary protein constituent of high density lipoprotein particles, which transport cholesterol in the bloodstream. In collaboration with A. Jonas, we have constructed and simulated models of the nascent discoidal form of these particles, providing theoretical insight to the debate regarding the lipid-bound structure of the protein. Recently, S. Sligar and coworkers have created 10 nm phospholipid bilayer nanoparticles comprising a small lipid bilayer disk solubilized by synthetic membrane scaffold proteins derived from apolipoprotein A-I. Membrane proteins may be embedded in the water-soluble disks, with various medical and technological applications. We are working to develop variant scaffold proteins that produce disks of greater size, stability, and homogeneity. Our simulations have demonstrated a significant deviation from idealized cylindrical structure, and are being used in the interpretation of small angle x-ray scattering data.

  3. Global Langevin model of multidimensional biomolecular dynamics

    Science.gov (United States)

    Schaudinnus, Norbert; Lickert, Benjamin; Biswas, Mithun; Stock, Gerhard

    2016-11-01

    Molecular dynamics simulations of biomolecular processes are often discussed in terms of diffusive motion on a low-dimensional free energy landscape F ( 𝒙 ) . To provide a theoretical basis for this interpretation, one may invoke the system-bath ansatz á la Zwanzig. That is, by assuming a time scale separation between the slow motion along the system coordinate x and the fast fluctuations of the bath, a memory-free Langevin equation can be derived that describes the system's motion on the free energy landscape F ( 𝒙 ) , which is damped by a friction field and driven by a stochastic force that is related to the friction via the fluctuation-dissipation theorem. While the theoretical formulation of Zwanzig typically assumes a highly idealized form of the bath Hamiltonian and the system-bath coupling, one would like to extend the approach to realistic data-based biomolecular systems. Here a practical method is proposed to construct an analytically defined global model of structural dynamics. Given a molecular dynamics simulation and adequate collective coordinates, the approach employs an "empirical valence bond"-type model which is suitable to represent multidimensional free energy landscapes as well as an approximate description of the friction field. Adopting alanine dipeptide and a three-dimensional model of heptaalanine as simple examples, the resulting Langevin model is shown to reproduce the results of the underlying all-atom simulations. Because the Langevin equation can also be shown to satisfy the underlying assumptions of the theory (such as a delta-correlated Gaussian-distributed noise), the global model provides a correct, albeit empirical, realization of Zwanzig's formulation. As an application, the model can be used to investigate the dependence of the system on parameter changes and to predict the effect of site-selective mutations on the dynamics.

  4. Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks

    Directory of Open Access Journals (Sweden)

    Nielsen Jens

    2008-02-01

    Full Text Available Abstract Background Uncovering the operating principles underlying cellular processes by using 'omics' data is often a difficult task due to the high-dimensionality of the solution space that spans all interactions among the bio-molecules under consideration. A rational way to overcome this problem is to use the topology of bio-molecular interaction networks in order to constrain the solution space. Such approaches systematically integrate the existing biological knowledge with the 'omics' data. Results Here we introduce a hypothesis-driven method that integrates bio-molecular network topology with transcriptome data, thereby allowing the identification of key biological features (Reporter Features around which transcriptional changes are significantly concentrated. We have combined transcriptome data with different biological networks in order to identify Reporter Gene Ontologies, Reporter Transcription Factors, Reporter Proteins and Reporter Complexes, and use this to decipher the logic of regulatory circuits playing a key role in yeast glucose repression and human diabetes. Conclusion Reporter Features offer the opportunity to identify regulatory hot-spots in bio-molecular interaction networks that are significantly affected between or across conditions. Results of the Reporter Feature analysis not only provide a snapshot of the transcriptional regulatory program but also are biologically easy to interpret and provide a powerful way to generate new hypotheses. Our Reporter Features analyses of yeast glucose repression and human diabetes data brings hints towards the understanding of the principles of transcriptional regulation controlling these two important and potentially closely related systems.

  5. Multi-core CPU or GPU-accelerated Multiscale Modeling for Biomolecular Complexes.

    Science.gov (United States)

    Liao, Tao; Zhang, Yongjie; Kekenes-Huskey, Peter M; Cheng, Yuhui; Michailova, Anushka; McCulloch, Andrew D; Holst, Michael; McCammon, J Andrew

    2013-07-01

    Multi-scale modeling plays an important role in understanding the structure and biological functionalities of large biomolecular complexes. In this paper, we present an efficient computational framework to construct multi-scale models from atomic resolution data in the Protein Data Bank (PDB), which is accelerated by multi-core CPU and programmable Graphics Processing Units (GPU). A multi-level summation of Gaus-sian kernel functions is employed to generate implicit models for biomolecules. The coefficients in the summation are designed as functions of the structure indices, which specify the structures at a certain level and enable a local resolution control on the biomolecular surface. A method called neighboring search is adopted to locate the grid points close to the expected biomolecular surface, and reduce the number of grids to be analyzed. For a specific grid point, a KD-tree or bounding volume hierarchy is applied to search for the atoms contributing to its density computation, and faraway atoms are ignored due to the decay of Gaussian kernel functions. In addition to density map construction, three modes are also employed and compared during mesh generation and quality improvement to generate high quality tetrahedral meshes: CPU sequential, multi-core CPU parallel and GPU parallel. We have applied our algorithm to several large proteins and obtained good results.

  6. Chromophore design for large two-photon absorption

    Science.gov (United States)

    Dudley, Christopher

    2014-11-01

    Conjugated oligothiophene chromophores are compared and studied for designing large linear and nonlinear absorption cross-sections. Optical properties of chromophores synthesized by the Naval Research Laboratory are modeled to construct a design factor of merit to predict and understand two-photon absorption (TPA) designs. Computer modeling to optimize parameters to produce photo active chromophores is conducted. Geometry, π-center (electron relay) and the electron donor or acceptor groups attached to the π-centers are considered for importance in TPA. This work could serve equally well as guide for quick back of the envelop research or industrial design verifications as well as an outline for introducing computation methods to students.

  7. Investigation into chromophore excited-state coupling in allophycocyanin

    Science.gov (United States)

    Zheng, Xiguang; Zhao, Fuli; Wang, He Z.; Gao, Zhaolan; Yu, Zhenxin; Zhu, Jinchang; Xia, Andong; Jiang, Lijin

    1994-08-01

    Both theoretical and experimental studies are presented on chromophore excited-state coupling in linker-free allophycocyanin (APC), one of the antenna phycobiliproteins in algal photosynthesis. A three-site-coupling model has been introduced to describe the exciton interaction mechanism amoung the excited (beta) chromophore in APC, and the exciton energy splitting is estimated. Picosecond polarized fluorescence experiments both on monomeric and trimeric APC isolated from alga Spirulina platensis have been performed. The experimental results show that APC monomer and trimer exhibit remarkedly different spectropic characteristics, and satisfy the suggestion of strong excited- state coupling among chromophores in APC.

  8. Photo-initiated dynamics and spectroscopy of the deprotonated Green Fluorescent Protein chromophore

    DEFF Research Database (Denmark)

    Bochenkova, Anastasia; Andersen, Lars Henrik

    2013-01-01

    . Knowledge of intrinsic properties of the GFP photoabsorbing molecular unit is a prerequisite in understanding the atomic-scale interactions that play a key role for the diverse functioning of these proteins. Here, we show how recent developments in action and photoelectron spectroscopy combined with state......-of-the-art electronic structure theory provide valuable insights into photo-initiated quantum dynamics and enable to disclose mechanisms of multiple intrinsic excited-state decay channels in the bare GFP chromophore anion. When taken out of the protein, the deprotonated chromophore exhibits the ultrafast excited state...... efficiently compete with each other in spite of their inherently different intrinsic timescales. The reason behind this is an efficient coupling between the nuclear and electronic motion in the photo-initiated dynamics, where the energy may be transferred from nuclei to electrons and from electrons to nuclei...

  9. MSMBuilder: Statistical Models for Biomolecular Dynamics.

    Science.gov (United States)

    Harrigan, Matthew P; Sultan, Mohammad M; Hernández, Carlos X; Husic, Brooke E; Eastman, Peter; Schwantes, Christian R; Beauchamp, Kyle A; McGibbon, Robert T; Pande, Vijay S

    2017-01-10

    MSMBuilder is a software package for building statistical models of high-dimensional time-series data. It is designed with a particular focus on the analysis of atomistic simulations of biomolecular dynamics such as protein folding and conformational change. MSMBuilder is named for its ability to construct Markov state models (MSMs), a class of models that has gained favor among computational biophysicists. In addition to both well-established and newer MSM methods, the package includes complementary algorithms for understanding time-series data such as hidden Markov models and time-structure based independent component analysis. MSMBuilder boasts an easy to use command-line interface, as well as clear and consistent abstractions through its Python application programming interface. MSMBuilder was developed with careful consideration for compatibility with the broader machine learning community by following the design of scikit-learn. The package is used primarily by practitioners of molecular dynamics, but is just as applicable to other computational or experimental time-series measurements. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Label-free screening of bio-molecular interactions.

    Science.gov (United States)

    Cooper, Matthew A

    2003-11-01

    The majority of techniques currently employed to interrogate a biomolecular interaction require some type of radio- or enzymatic- or fluorescent-labelling to report the binding event. However, there is an increasing awareness of novel techniques that do not require labelling of the ligand or the receptor, and that allow virtually any complex to be screened with minimal assay development. This review focuses on three major label-free screening platforms: surface plasmon resonance biosensors, acoustic biosensors, and calorimetric biosensors. Scientists in both academia and industry are using biosensors in areas that encompass almost all areas drug discovery, diagnostics, and the life sciences. The capabilities and advantages of each technique are compared and key applications involving small molecules, proteins, oligonucleotides, bacteriophage, viruses, bacteria, and cells are reviewed. The role of the interface between the biosensor surface (in the case of SPR and acoustic biosensors) and the chemical or biological systems to be studied is also covered with attention to the covalent and non-covalent coupling chemistries commonly employed.

  11. [Biobanking and Biomolecular Resources Research Infrastructure (BBMRI). Implications for pathology].

    Science.gov (United States)

    Viertler, C; Zatloukal, K

    2008-11-01

    High quality human biological samples (e.g. blood, tissue or DNA) with associated, well documented clinical and research data are key resources for advancement of life sciences, biotechnology, clinical medicine, drug development and also molecular pathology. Millions of samples of diseased tissues have been collected in the context of routine histopathological diagnosis and are stored in the archives of hospitals and institutes of pathology. A concerted effort is necessary to overcome the current fragmentation of the European biobanking community in order to tap the full research potential of existing biobanks. A pan-European research infrastructure for biobanking and biomolecular resources (BBMRI) is currently in its planning phase. The mission is to link and provide access to local biobanks of different formats, including tissue collections, harmonize standards, establish operational procedures which properly consider ethical, legal, societal aspects, and to secure sustainable funding. Pathology plays a key role in development and administration of tissue banks and is, thus, a major partner for collaboration, expertise and construction of this pan-European research infrastructure.

  12. Relating Chromophoric and Structural Disorder in Conjugated Polymers

    CERN Document Server

    Simine, Lena

    2016-01-01

    The optoelectronic properties of amorphous conjugated polymers are sensitive to conformational disorder and spectroscopy provides the means for structural characterization of the fragments of the chain which interact with light - "chromophores". A faithful interpretation of spectroscopic conformational signatures, however, presents a key challenge. We investigate the relationship between the ground state optical gaps, the properties of the excited states, and the structural features of chromophores of a single molecule poly(3-hexyl)-thiophene (P3HT), using quantum-classical atomistic simulations. Our results demonstrate that chromophoric disorder reflects an interplay between excited state de-localization and electron-hole polarization, and is controlled by torsional disorder that is specifically associated with the presence of side chains. Within this conceptual framework, we predict and explain a counter-intuitive spectral signature of P3HT: a red-shifted absorption, despite shortening of chromophores, with...

  13. Highly fluorescent benzofuran derivatives of the GFP chromophore

    DEFF Research Database (Denmark)

    Christensen, Mikkel Andreas; Jennum, Karsten Stein; Abrahamsen, Peter Bæch

    2012-01-01

    Intramolecular cyclization reactions of Green Fluorescent Protein chromophores (GFPc) containing an arylethynyl ortho-substituent at the phenol ring provide new aryl-substituted benzofuran derivatives of the GFPc. Some of these heteroaromatic compounds exhibit significantly enhanced fluorescence...

  14. Unraveling the chromophoric disorder of poly(3-hexylthiophene)

    CERN Document Server

    Thiessen, Alexander; Adachi, Takuji; Steiner, Florian; Bout, David Vanden; Lupton, John M

    2015-01-01

    The spectral breadth of conjugated polymers gives these materials a clear advantage over other molecular compounds for organic photovoltaic applications and is a key factor in recent efficiencies topping 10%. But why do excitonic transitions, which are inherently narrow, lead to absorption over such a broad range of wavelengths in the first place? Using single-molecule spectroscopy, we address this fundamental question in a model material, poly(3-hexylthiophene). Narrow zero-phonon lines from single chromophores are found to scatter over 200nm, an unprecedented inhomogeneous broadening which maps the ensemble. The giant red-shift between solution and bulk films arises from energy transfer to the lowest-energy chromophores in collapsed polymer chains which adopt a highly-ordered morphology. We propose that the extreme energetic disorder of chromophores is structural in origin. This structural disorder on the single-chromophore level may actually enable the high degree of polymer chain ordering found in bulk fi...

  15. Optical properties of distyrylbenzene chromophores and their segmented copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Benfaremo, N.; Sandman, D.J.; Tripathy, S.; Kumar, J.; Yang, K.; Rubner, M.F.; Lyons, C.

    1998-07-01

    A new segmented polymer consisting of a distyrylbenzene chromophore separated by polyethylene glycol segments has been prepared by two independent methods: a novel, polymer analogous Mitsunobu reaction and convention double displacement reaction. The polymer is soluble in a variety of organic solvents, forms excellent, optically clear films and exhibits strong fluorescence. The properties of the chromophore and the polymer, as well as the scope and limitations of the novel Mitsonobu polymerization are presented. Attempts to use polymer in electroluminescent devices are also discussed.

  16. Fluorescence of Phytochrome Adducts with Synthetic Locked Chromophores*

    OpenAIRE

    Zienicke, Benjamin; Chen, Li-Yi; Khawn, Htoi; Hammam, Mostafa A. S.; Kinoshita, Hideki; Reichert, Johannes; Ulrich, Anne S.; Inomata, Katsuhiko; Lamparter, Tilman

    2010-01-01

    We performed steady state fluorescence measurements with phytochromes Agp1 and Agp2 of Agrobacterium tumefaciens and three mutants in which photoconversion is inhibited. These proteins were assembled with the natural chromophore biliverdin (BV), with phycoerythrobilin (PEB), which lacks a double bond in the ring C-D-connecting methine bridge, and with synthetic bilin derivatives in which the ring C-D-connecting methine bridge is locked. All PEB and locked chromophore adducts are photoinactive...

  17. Fluorescence of Phytochrome Adducts with Synthetic Locked Chromophores*

    Science.gov (United States)

    Zienicke, Benjamin; Chen, Li-Yi; Khawn, Htoi; Hammam, Mostafa A. S.; Kinoshita, Hideki; Reichert, Johannes; Ulrich, Anne S.; Inomata, Katsuhiko; Lamparter, Tilman

    2011-01-01

    We performed steady state fluorescence measurements with phytochromes Agp1 and Agp2 of Agrobacterium tumefaciens and three mutants in which photoconversion is inhibited. These proteins were assembled with the natural chromophore biliverdin (BV), with phycoerythrobilin (PEB), which lacks a double bond in the ring C-D-connecting methine bridge, and with synthetic bilin derivatives in which the ring C-D-connecting methine bridge is locked. All PEB and locked chromophore adducts are photoinactive. According to fluorescence quantum yields, the adducts may be divided into four different groups: wild type BV adducts exhibiting a weak fluorescence, mutant BV adducts with about 10-fold enhanced fluorescence, adducts with locked chromophores in which the fluorescence quantum yields are around 0.02, and PEB adducts with a high quantum yield of around 0.5. Thus, the strong fluorescence of the PEB adducts is not reached by the locked chromophore adducts, although the photoconversion energy dissipation pathway is blocked. We therefore suggest that ring D of the bilin chromophore, which contributes to the extended π-electron system of the locked chromophores, provides an energy dissipation pathway that is independent on photoconversion. PMID:21071442

  18. Fluorescence of phytochrome adducts with synthetic locked chromophores.

    Science.gov (United States)

    Zienicke, Benjamin; Chen, Li-Yi; Khawn, Htoi; Hammam, Mostafa A S; Kinoshita, Hideki; Reichert, Johannes; Ulrich, Anne S; Inomata, Katsuhiko; Lamparter, Tilman

    2011-01-14

    We performed steady state fluorescence measurements with phytochromes Agp1 and Agp2 of Agrobacterium tumefaciens and three mutants in which photoconversion is inhibited. These proteins were assembled with the natural chromophore biliverdin (BV), with phycoerythrobilin (PEB), which lacks a double bond in the ring C-D-connecting methine bridge, and with synthetic bilin derivatives in which the ring C-D-connecting methine bridge is locked. All PEB and locked chromophore adducts are photoinactive. According to fluorescence quantum yields, the adducts may be divided into four different groups: wild type BV adducts exhibiting a weak fluorescence, mutant BV adducts with about 10-fold enhanced fluorescence, adducts with locked chromophores in which the fluorescence quantum yields are around 0.02, and PEB adducts with a high quantum yield of around 0.5. Thus, the strong fluorescence of the PEB adducts is not reached by the locked chromophore adducts, although the photoconversion energy dissipation pathway is blocked. We therefore suggest that ring D of the bilin chromophore, which contributes to the extended π-electron system of the locked chromophores, provides an energy dissipation pathway that is independent on photoconversion.

  19. Biomolecular Modification of Inorganic Crystal Growth

    Energy Technology Data Exchange (ETDEWEB)

    De Yoreo, J J

    2007-04-27

    The fascinating shapes and hierarchical designs of biomineralized structures are an inspiration to materials scientists because of the potential they suggest for biomolecular control over materials synthesis. Conversely, the failure to prevent or limit tissue mineralization in the vascular, skeletal, and urinary systems is a common source of disease. Understanding the mechanisms by which organisms direct or limit crystallization has long been a central challenge to the biomineralization community. One prevailing view is that mineral-associated macromolecules are responsible for either inhibiting crystallization or initiating and stabilizing non-equilibrium crystal polymorphs and morphologies through interactions between anionic moieties and cations in solution or at mineralizing surfaces. In particular, biomolecules that present carboxyl groups to the growing crystal have been implicated as primary modulators of growth. Here we review the results from a combination of in situ atomic force microscopy (AFM) and molecular modeling (MM) studies to investigate the effect of specific interactions between carboxylate-rich biomolecules and atomic steps on crystal surfaces during the growth of carbonates, oxalates and phosphates of calcium. Specifically, we how the growth kinetics and morphology depend on the concentration of additives that include citrate, simple amino acids, synthetic Asp-rich polypeptides, and naturally occurring Asp-rich proteins found in both functional and pathological mineral tissues. The results reveal a consistent picture of shape modification in which stereochemical matching of modifiers to specific atomic steps drives shape modification. Inhibition and other changes in growth kinetics are shown to be due to a range of mechanisms that depend on chemistry and molecular size. Some effects are well described by classic crystal growth theories, but others, such as step acceleration due to peptide charge and hydrophylicity, were previously unrealized

  20. Factors affecting the estimation of the relative amount of chromophore and chromophore area by the two-wavelength method of Patau and Ornstein.

    Science.gov (United States)

    Van Oostveldt, P; Boeken, G

    1976-05-28

    Factors influencing the calculation of the relative amount of chromophore and the chromophore area by the two-wavelength method are examined. The study was carried out with the help of models and further tested on Feulgen stained preparations. Except for certain restrictions the difference between the chromophore area as calculated from the two transmissions measurements and the chromophore area obtained by planimetry can be used as a guide for determining the proper measuring conditions, including the choise of the two wavelengths.

  1. Eumelanin broadband absorption develops from aggregation-modulated chromophore interactions under structural and redox control

    Science.gov (United States)

    Micillo, Raffaella; Panzella, Lucia; Iacomino, Mariagrazia; Prampolini, Giacomo; Cacelli, Ivo; Ferretti, Alessandro; Crescenzi, Orlando; Koike, Kenzo; Napolitano, Alessandra; d’Ischia, Marco

    2017-01-01

    Eumelanins, the chief photoprotective pigments in man and mammals, owe their black color to an unusual broadband absorption spectrum whose origin is still a conundrum. Excitonic effects from the interplay of geometric order and disorder in 5,6-dihydroxyindole (DHI)-based oligomeric/polymeric structures play a central role, however the contributions of structural (scaffold-controlled) and redox (π-electron-controlled) disorder have remained uncharted. Herein, we report an integrated experimental-theoretical entry to eumelanin chromophore dynamics based on poly(vinyl alcohol)-controlled polymerization of a large set of 5,6-dihydroxyindoles and related dimers. The results a) uncover the impact of the structural scaffold on eumelanin optical properties, disproving the widespread assumption of a universal monotonic chromophore; b) delineate eumelanin chromophore buildup as a three-step dynamic process involving the rapid generation of oxidized oligomers, termed melanochromes (phase I), followed by a slow oxidant-independent band broadening (phase II) leading eventually to scattering (phase III); c) point to a slow reorganization-stabilization of melanochromes via intermolecular redox interactions as the main determinant of visible broadband absorption. PMID:28150707

  2. Chromophoric dissolved organic matter export from U.S. rivers

    Science.gov (United States)

    Spencer, Robert G. M.; Aiken, George R.; Dornblaser, Mark M.; Butler, Kenna D.; Holmes, R. Max; Fiske, Greg; Mann, Paul J.; Stubbins, Aron

    2013-01-01

    Chromophoric dissolved organic matter (CDOM) fluxes and yields from 15 major U.S. rivers draining an assortment of terrestrial biomes are presented. A robust relationship between CDOM and dissolved organic carbon (DOC) loads is established (e.g., a350 versus DOC; r2 = 0.96, p export from ungauged watersheds. A large variation in CDOM yields was found across the rivers. The two rivers in the north-eastern U.S. (Androscoggin and Penobscot), the Edisto draining into the South Atlantic Bight, and some rivers draining into the Gulf of Mexico (Atchafalaya and Mobile) exhibit the highest CDOM yields, linked to extensive wetlands in these watersheds. If the Edisto CDOM yield is representative of other rivers draining into the South Atlantic Bight, this would result in a CDOM load equivalent to that of the Mississippi from a region of approximately 10% of the Mississippi watershed, indicating the importance of certain regions with respect to the role of terrigenous CDOM in ocean color budgets.

  3. A mechanical Turing machine: blueprint for a biomolecular computer.

    Science.gov (United States)

    Shapiro, Ehud

    2012-08-06

    We describe a working mechanical device that embodies the theoretical computing machine of Alan Turing, and as such is a universal programmable computer. The device operates on three-dimensional building blocks by applying mechanical analogues of polymer elongation, cleavage and ligation, movement along a polymer, and control by molecular recognition unleashing allosteric conformational changes. Logically, the device is not more complicated than biomolecular machines of the living cell, and all its operations are part of the standard repertoire of these machines; hence, a biomolecular embodiment of the device is not infeasible. If implemented, such a biomolecular device may operate in vivo, interacting with its biochemical environment in a program-controlled manner. In particular, it may 'compute' synthetic biopolymers and release them into its environment in response to input from the environment, a capability that may have broad pharmaceutical and biological applications.

  4. Laser photodissociation and spectroscopy of mass-separated biomolecular ions

    CERN Document Server

    Polfer, Nicolas C

    2014-01-01

    This lecture notes book presents how enhanced structural information of biomolecular ions can be obtained from interaction with photons of specific frequency - laser light. The methods described in the book ""Laser photodissociation and spectroscopy of mass-separated biomolecular ions"" make use of the fact that the discrete energy and fast time scale of photoexcitation can provide more control in ion activation. This activation is the crucial process producing structure-informative product ions that cannot be generated with more conventional heating methods, such as collisional activation. Th

  5. Spectral diffusion and drift: single chromophore and en masse.

    Science.gov (United States)

    Lubchenko, Vassiliy; Silbey, Robert J

    2007-02-14

    We develop a systematic description of spectral diffusion of ideal chromophores interacting with incoherently relaxing two-state, localized environmental degrees of freedom ("spins") for general initial environment configurations. We remedy the existing, incomplete treatments by formulating the problem in terms of the proper correlation function and by obtaining an accurate solution for generic aperiodic arrangements of environmental spins, nearly free of the customary simplifying assumptions on the multiparticle spin coordinate distribution. We report and estimate, for the first time, the effects of the drift and distortion of a narrow spectral line that arise when the line is not in the center of the inhomogeneous band. While the drift turns out to be modest in most ensemble measurements, accounting for its effects is imperative in analyzing single chromophore spectral jumps, to which end the authors propose a novel experiment. Further, we argue that by employing a sufficiently large chromophore one can decouple the concentration of the fluctuating centers from the strength of their interaction with the chromophore. Finally, the additional line broadening, owing to a distribution of the central chromophore frequencies, is evaluated. Upper estimates for an analogous broadening stemming from a nonequilibrium environment are made.

  6. Photostability of amino acids: photodissociation dynamics of phenylalanine chromophores.

    Science.gov (United States)

    Tseng, Chien-Ming; Lin, Ming-Fu; Yang, Yi Lin; Ho, Yu Chieh; Ni, Chi-Kung; Chang, Jia-Lin

    2010-05-21

    The theoretical prediction of H atom elimination on the excited state of phenol, imidazole and indole, the respective chromophores for the amino acids tyrosine, histidine and tryptophan, and the confirmation of theoretical prediction by experimental observations have a great impact on the explanation of photostability of amino acids upon irradiation with UV photons. On the other hand, no theoretical prediction of the excited state photodissociation dynamics has been made on the other aromatic amino acid, phenylalanine. In this work, photodissociation dynamics for various phenylalanine chromophores, including, phenylethylamine, N-methyl-phenylethylamine, and N-acetyl phenylalanine methyl ester was investigated in a molecular beam at 248 and 193 nm using multimass ion imaging techniques. The major dissociation channel for these compounds is the C-C bond cleavage. However, the photofragment translational energy distribution of phenylethylamine contains two components. The slow component corresponds to the dissociation on the ground state surface after internal conversion, and the fast component represents the dissociation from an excited state with a large exit barrier. The competition between the dissociation on the ground state and on the excited state changes as the size of chromophores increases. Internal conversion to the ground state prior to dissociation becomes the major nonradiative process for large chromophores. This study reveals the size-dependent photostability for these amino acid chromophores.

  7. Synthesis, crystals of centrosymmetric triphenylamine chromophores bearing prodigious two-photon absorption cross-section and biological imaging

    Science.gov (United States)

    Wang, Shichao; Xu, Shasha; Wang, Yiming; Tian, Xiaohe; Zhang, Yujin; Wang, Chuankui; Wu, Jieying; Yang, Jiaxiang; Tian, Yupeng

    2017-02-01

    Two centrosymmetric D-π-D type triphenylamine chromophores with long π-conjugated bridge and strong electron-donating moiety were designed, synthesized and fully characterized. The crystal analysis revealed that multiple Csbnd H ⋯ π interactions existed in two chromophores, which played a crucial role in generating molecular 1D chains and 2D layers structures. Linear and nonlinear optical properties of the chromophores were systematically investigated with the aid of theoretical calculations. Two chromophores both exhibited intense and wide-dispersed one-photon/two-photon excited fluorescence, bear prodigious 2PA cross section (δ). Especially for Dye2, with ethyoxyl groups, displayed the strong 2PA activity, large cross-sections (δmax > 16,000 GM) and high NLO efficiency (δmax/MW > 16 GM/(g·mol)) in the range of 680-830 nm in DMF. In addition, one- and two-photon fluorescence microscopy images of HepG2 cells incubated with Dye2 were obtained and found that Dye2 could effectively uptake toward living cells and display a uniformly localized in cytosolic space.

  8. Theoretical investigation of nonlinear properties of electrooptical chromophores

    Institute of Scientific and Technical Information of China (English)

    Zhou Yu-fang; Zhuang De-xin

    2004-01-01

    Organic electrooptical (EO) chromophores are now gaining more attention because the property of organic photorefrative (PR) materials could be controlled by doped EO chromophores. In this paper, nonlinear optical (NLO) properties of a new group of organic electrooptical chromophores, synthesized recently in our laboratory, were elucidated theoretically with the quantum chemical density functional theory (DFT) and the intermediate neglect of differential overlap Hamilton and the configuration interaction (INDO/CI), as well as semiemperical Austin Model 1 (AM1) methods. The electronic transition intensity, dipole moment and the second- order polarizability were obtained. The results show this group of chrormophores possess appropriate optical absorption property and good electrooptical property and optical activity. The second-order polarizabilities βare as large as the order of 10-29 to 10-28 ESU, indicating the promising applications in the future. The physical mechanism of NLO is discussed by means of molecular orbital and electronic charge distribution.

  9. Supramolecular clippers for controlling photophysical processes through preorganized chromophores.

    Science.gov (United States)

    Kumar, Mohit; Ushie, Onumashi Afi; George, Subi J

    2014-04-22

    A novel supramolecular clipping design for influencing the photophysical properties of functional molecular assemblies, by the preorganization (clipping) of chromophores, is described. Several chromophores end functionalized with molecular recognition units were designed. These molecular recognition units serve as handles to appropriately position these systems upon noncovalent interactions with multivalent guest molecules (supramolecular clippers). Towards this goal, we have synthesized 1,5-dialkoxynaphthalene (DAN) and naphthalenediimide (NDI) functionalized with dipicolylethylenediamine (DPA) motifs. These molecules could preorganize upon noncovalent clipping with adenosine di- or triphosphates, which resulted in preassociated excimers and mixed (cofacial) charge-transfer (CT) assemblies. Chiral guest binding could also induce supramolecular chirality, not only into the individual chromophoric assembly but also into the heteromeric CT organization, as seen from the strong circular dichroism (CD) signal of the CT transition. The unique ability of this design to influence the intermolecular interactions by changing the binding strength of the clippers furthermore makes it very attractive for controlling the bimolecular photophysical processes.

  10. Molecular design of new chromophores for high performance poled polymers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the principles of molecular engineering, a series of new chromophores with high second-or der nonlinear optical(NLO)activities have been designed for achieving a trade-off of the nonlinearity-transparency-ther mal stability. The NLO properties of these chromophores have been investigated theoretically by employing the AMI/Fi nite Field approach. It is found that the calculated μβ0 values of some designed chromophores can reach the magnitude of 10-45 esu, and the highest decomposition temperature Td can be as high as 377℃, the highest glass transition tem perature Ts of their donor-embedded addition-type polyimides can be as high as 324℃.

  11. Transient response characteristics in a biomolecular integral controller.

    Science.gov (United States)

    Sen, Shaunak

    2016-04-01

    The cellular behaviour of perfect adaptation is achieved through the use of an integral control element in the underlying biomolecular circuit. It is generally unclear how integral action affects the important aspect of transient response in these biomolecular systems, especially in light of the fact that it typically deteriorates the transient response in engineering contexts. To address this issue, the authors investigated the transient response in a computational model of a simple biomolecular integral control system involved in bacterial signalling. They find that the transient response can actually speed up as the integral gain parameter increases. On further analysis, they find that the underlying dynamics are composed of slow and fast modes and the speed-up of the transient response is because of the speed-up of the slow-mode dynamics. Finally, they note how an increase in the integral gain parameter also leads to a decrease in the amplitude of the transient response, consistent with the overall improvement in the transient response. These results should be useful in understanding the overall effect of integral action on system dynamics, particularly for biomolecular systems.

  12. Biomolecular recognition mechanisms studied by NMR spectroscopy and MD simulations

    NARCIS (Netherlands)

    Hsu, Shang-Te Danny

    2004-01-01

    This thesis describes the use of solution Nuclear Magnetic Resonance (NMR) spectroscopy and Molecular Dynamics (MD) simulations to study the mechanism of biomolecular recognition with two model systems: i) lipid II-binding lantibiotics (lanthionine-containing antibiotics) and ii) the human immunodef

  13. Exposing biomolecular properties one molecule at a time

    NARCIS (Netherlands)

    Elmalk, Abdalmohsen

    2012-01-01

    The work described in this thesis was aimed at the study of the functional properties of (isolated and purified) biomolecular systems at the single-molecule level. Two prerequisites are essential for successfully achieving this goal. First of all, single biomolecules should be observable, which mean

  14. The HADDOCK web server for data-driven biomolecular docking

    NARCIS (Netherlands)

    de Vries, S.J.; van Dijk, M.; Bonvin, A.M.J.J.

    2010-01-01

    Computational docking is the prediction or modeling of the three-dimensional structure of a biomolecular complex, starting from the structures of the individual molecules in their free, unbound form. HADDOC K is a popular docking program that takes a datadriven approach to docking, with support for

  15. From dynamics to structure and function of model biomolecular systems

    NARCIS (Netherlands)

    Fontaine-Vive-Curtaz, F.

    2007-01-01

    The purpose of this thesis was to extend recent works on structure and dynamics of hydrogen bonded crystals to model biomolecular systems and biological processes. The tools that we have used are neutron scattering (NS) and density functional theory (DFT) and force field (FF) based simulation method

  16. Synthesis of Polymers Containing Covalently Bonded NLO Chromophores

    Science.gov (United States)

    Denga, Xiao-Hua; Sanghadasa, Mohan; Walton, Connie; Penn, Benjamin B.; Amai, Robert L. S.; Clark, Ronald D.

    1998-01-01

    Polymers containing covalently bonded nonlinear optical (NLO) chromophores are expected to possess special properties such as greater stability, better mechanical processing, and easier film formation than their non-polymeric equivalent. For the present work, polymethylmethacrylate (PMMA) was selected as the basic polymer unit on which to incorporate different NLO chromophores. The NLO components were variations of DIVA {[2-methoxyphenyl methylidene]-propanedinitrile} which we prepared from vanillin derivatives and malononitrile. These were esterified with methacrylic acid and polymerized either directly or with methyl methacrylate to form homopolymers or copolymers respectively. Characterization of the polymers and NLO property studies are underway.

  17. The universal statistical distributions of the affinity, equilibrium constants, kinetics and specificity in biomolecular recognition.

    Directory of Open Access Journals (Sweden)

    Xiliang Zheng

    2015-04-01

    Full Text Available We uncovered the universal statistical laws for the biomolecular recognition/binding process. We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity, the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor. The results of the analytical studies are confirmed by the microscopic flexible docking simulations. The distribution of binding affinity is Gaussian around the mean and becomes exponential near the tail. The equilibrium constants of the binding follow a log-normal distribution around the mean and a power law distribution in the tail. The intrinsic specificity for biomolecular recognition measures the degree of discrimination of native versus non-native binding and the optimization of which becomes the maximization of the ratio of the free energy gap between the native state and the average of non-native states versus the roughness measured by the variance of the free energy landscape around its mean. The intrinsic specificity obeys a Gaussian distribution near the mean and an exponential distribution near the tail. Furthermore, the kinetics of binding follows a log-normal distribution near the mean and a power law distribution at the tail. Our study provides new insights into the statistical nature of thermodynamics, kinetics and function from different ligands binding with a specific receptor or equivalently specific ligand binding with different receptors. The elucidation of distributions of the kinetics and free energy has guiding roles in studying biomolecular recognition and function through small-molecule evolution and chemical genetics.

  18. The Universal Statistical Distributions of the Affinity, Equilibrium Constants, Kinetics and Specificity in Biomolecular Recognition

    Science.gov (United States)

    Zheng, Xiliang; Wang, Jin

    2015-01-01

    We uncovered the universal statistical laws for the biomolecular recognition/binding process. We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity), the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor. The results of the analytical studies are confirmed by the microscopic flexible docking simulations. The distribution of binding affinity is Gaussian around the mean and becomes exponential near the tail. The equilibrium constants of the binding follow a log-normal distribution around the mean and a power law distribution in the tail. The intrinsic specificity for biomolecular recognition measures the degree of discrimination of native versus non-native binding and the optimization of which becomes the maximization of the ratio of the free energy gap between the native state and the average of non-native states versus the roughness measured by the variance of the free energy landscape around its mean. The intrinsic specificity obeys a Gaussian distribution near the mean and an exponential distribution near the tail. Furthermore, the kinetics of binding follows a log-normal distribution near the mean and a power law distribution at the tail. Our study provides new insights into the statistical nature of thermodynamics, kinetics and function from different ligands binding with a specific receptor or equivalently specific ligand binding with different receptors. The elucidation of distributions of the kinetics and free energy has guiding roles in studying biomolecular recognition and function through small-molecule evolution and chemical genetics. PMID:25885453

  19. The interplay of intrinsic and extrinsic bounded noises in biomolecular networks.

    Directory of Open Access Journals (Sweden)

    Giulio Caravagna

    Full Text Available After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a biomolecular network. The influence of intrinsic and extrinsic noises on biomolecular networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii a model of enzymatic futile cycle and (iii a genetic toggle switch. In (ii and (iii we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possible functional role of bounded noises.

  20. The Structure of the Chromophore within a Red Fluorescent Protein from Zoanthus sp.

    Science.gov (United States)

    2006-05-01

    chromophore interacts with a protein environment. In the denatured state chromophore interactions with aminoacid side chains do not contribute...of aminoacid sequence of the chromopeptide The zFP576 chromophore-bearing peptide derived from extensive chymotryptic digestion was subjected to

  1. Chromophore Deprotonation State Alters the Optical Properties of Blue Chromoprotein.

    Directory of Open Access Journals (Sweden)

    Cheng-Yi Chiang

    Full Text Available Chromoproteins (CPs have unique colors and can be used in biological applications. In this work, a novel blue CP with a maximum absorption peak (λmax at 608 nm was identified from the carpet anemone Stichodactyla gigantea (sgBP. In vivo expression of sgBP in zebrafish would change the appearance of the fishes to have a blue color, indicating the potential biomarker function. To enhance the color properties, the crystal structure of sgBP at 2.25 Å resolution was determined to allow structure-based protein engineering. Among the mutations conducted in the Gln-Tyr-Gly chromophore and chromophore environment, a S157C mutation shifted the λmax to 604 nm with an extinction coefficient (ε of 58,029 M-1·cm-1 and darkened the blue color expression. The S157C mutation in the sgBP chromophore environment could affect the color expression by altering the deprotonation state of the phenolic group in the chromophore. Our results provide a structural basis for the blue color enhancement of the biomarker development.

  2. Photonic engineering of hybrid metal-organic chromophores

    CERN Document Server

    Busson, Mickaël P; Stout, Brian; Bonod, Nicolas; Wenger, Jérôme; Bidault, Sébastien; 10.1002/anie.201205995

    2012-01-01

    We experimentally demonstrate control of the absorption and emission properties of individual emitters by photonic antennas in suspension. The method results in a new class of water-soluble chromophores with unprecedented photophysical properties, such as short lifetime, low quantum yield but high brightness.

  3. Two-Photon Absorption of Metal-Assisted Chromophores.

    Science.gov (United States)

    Li, Xin; Rinkevicius, Zilvinas; Ågren, Hans

    2014-12-09

    Aiming to understand the effect of a metal surface on nonlinear optical properties and the combined effects of surface and solvent environments on such properties, we present a multiscale response theory study, integrated with dynamics of the two-photon absorption of 4-nitro-4'-amino-trans-stilbene physisorbed on noble metal surfaces, considering two such surfaces, Ag(111) and Au(111), and two solvents, cyclohexane and water, as cases for demonstration. A few conclusions of general character could be drawn: While the geometrical change of the chromophore induced by the environment was found to notably alter (diminish) the two-photon absorption cross section in the polar medium, the effects of the metal surface and solvent on the electronic structure of the chromophore surpasses the geometrical effects and leads to a considerably enhanced two-photon absorption cross section in the polar solvent. This enhancement of two-photon absorption arises essentially from the metal charge image induced enlargement of the difference between the dipole moment of the excited state and the ground state. The orientation-dependence of the two-photon absorption is found to connect with the lateral rotation of the chromophore, where the two-photon absorption reaches its maximum when the polarization of the incident light coincides with the long-axis of the chromophore. Our results demonstrate a distinct enhancement of the two-photon absorption by a metal surface and a polar medium and envisage the employment of metal-chromophore composite materials for future development of nonlinear optical materials with desirable properties.

  4. Chromophore photophysics and dynamics in fluorescent proteins of the GFP family

    Science.gov (United States)

    Nienhaus, Karin; Nienhaus, G. Ulrich

    2016-11-01

    Proteins of the green fluorescent protein (GFP) family are indispensable for fluorescence imaging experiments in the life sciences, particularly of living specimens. Their essential role as genetically encoded fluorescence markers has motivated many researchers over the last 20 years to further advance and optimize these proteins by using protein engineering. Amino acids can be exchanged by site-specific mutagenesis, starting with naturally occurring proteins as templates. Optical properties of the fluorescent chromophore are strongly tuned by the surrounding protein environment, and a targeted modification of chromophore-protein interactions requires a profound knowledge of the underlying photophysics and photochemistry, which has by now been well established from a large number of structural and spectroscopic experiments and molecular-mechanical and quantum-mechanical computations on many variants of fluorescent proteins. Nevertheless, such rational engineering often does not meet with success and thus is complemented by random mutagenesis and selection based on the optical properties. In this topical review, we present an overview of the key structural and spectroscopic properties of fluorescent proteins. We address protein-chromophore interactions that govern ground state optical properties as well as processes occurring in the electronically excited state. Special emphasis is placed on photoactivation of fluorescent proteins. These light-induced reactions result in large structural changes that drastically alter the fluorescence properties of the protein, which enables some of the most exciting applications, including single particle tracking, pulse chase imaging and super-resolution imaging. We also present a few examples of fluorescent protein application in live-cell imaging experiments.

  5. Quantum dynamics of bio-molecular systems in noisy environments

    OpenAIRE

    Huelga S.F.; Plenio M.B.

    2012-01-01

    We discuss three different aspects of the quantum dynamics of bio-molecular systems and more generally complex networks in the presence of strongly coupled environments. Firstly, we make a case for the systematic study of fundamental structural elements underlying the quantum dynamics of these systems, identify such elements and explore the resulting interplay of quantum dynamics and environmental decoherence. Secondly, we critically examine some existing approaches to the numerical descripti...

  6. Retroactivity in the Context of Modularly Structured Biomolecular Systems

    Science.gov (United States)

    Pantoja-Hernández, Libertad; Martínez-García, Juan Carlos

    2015-01-01

    Synthetic biology has intensively promoted the technical implementation of modular strategies in the fabrication of biological devices. Modules are considered as networks of reactions. The behavior displayed by biomolecular systems results from the information processes carried out by the interconnection of the involved modules. However, in natural systems, module wiring is not a free-of-charge process; as a consequence of interconnection, a reactive phenomenon called retroactivity emerges. This phenomenon is characterized by signals that propagate from downstream modules (the modules that receive the incoming signals upon interconnection) to upstream ones (the modules that send the signals upon interconnection). Such retroactivity signals, depending of their strength, may change and sometimes even disrupt the behavior of modular biomolecular systems. Thus, analysis of retroactivity effects in natural biological and biosynthetic systems is crucial to achieve a deeper understanding of how this interconnection between functionally characterized modules takes place and how it impacts the overall behavior of the involved cell. By discussing the modules interconnection in natural and synthetic biomolecular systems, we propose that such systems should be considered as quasi-modular. PMID:26137457

  7. Solution influence on biomolecular equilibria - Nucleic acid base associations

    Science.gov (United States)

    Pohorille, A.; Pratt, L. R.; Burt, S. K.; Macelroy, R. D.

    1984-01-01

    Various attempts to construct an understanding of the influence of solution environment on biomolecular equilibria at the molecular level using computer simulation are discussed. First, the application of the formal statistical thermodynamic program for investigating biomolecular equilibria in solution is presented, addressing modeling and conceptual simplications such as perturbative methods, long-range interaction approximations, surface thermodynamics, and hydration shell. Then, Monte Carlo calculations on the associations of nucleic acid bases in both polar and nonpolar solvents such as water and carbon tetrachloride are carried out. The solvent contribution to the enthalpy of base association is positive (destabilizing) in both polar and nonpolar solvents while negative enthalpies for stacked complexes are obtained only when the solute-solute in vacuo energy is added to the total energy. The release upon association of solvent molecules from the first hydration layer around a solute to the bulk is accompanied by an increase in solute-solvent energy and decrease in solvent-solvent energy. The techniques presented are expectd to displace less molecular and more heuristic modeling of biomolecular equilibria in solution.

  8. Biomolecular recognition and detection using gold-based nanoprobes

    Science.gov (United States)

    Crew, Elizabeth

    The ability to control the biomolecular interactions is important for developing bioanalytical probes used in biomolecule and biomarker detections. This work aims at a fundamental understanding of the interactions and reactivities involving DNA, miRNA, and amino acids using gold-based nanoparticles as nanoprobes, which has implications for developing new strategies for the early detection of diseases, such as cancer, and controlled delivery of drugs. Surface modifications of the nanoprobes with DNA, miRNA, and amino acids and the nanoprobe directed biomolecular reactivities, such as complementary-strand binding, enzymatic cutting and amino acid interactions, have been investigated. Among various analytical techniques employed for the analysis of the biomolecule-nanoprobe interactions, surface enhanced Raman scattering spectroscopy (SERS) has been demonstrated to provide a powerful tool for real time monitoring of the DNA assembly and enzymatic cutting processes in solutions. This demonstration harnesses the "hot-spot" characteristic tuned by the interparticle biomolecular-regulated interactions and distances. The assembly of gold nanoparticles has also been exploited as sensing thin films on chemiresistor arrays for the detection of volatile organic compounds, including biomarker molecules associated with diabetes. Important findings of the nanoprobes in delivering miRNA to cells, detecting DNA hybridization kinetics, discerning chiral recognition with enantiomeric cysteines, and sensing biomarker molecules with the nanostructured thin films will be discussed, along with their implications to enhancing sensitivity, selectivity and limits of detection.

  9. The electronic excited states of green fluorescent protein chromophore models

    Science.gov (United States)

    Olsen, Seth Carlton

    We explore the properties of quantum chemical approximations to the excited states of model chromophores of the green fluorescent protein of A. victoria. We calculate several low-lying states by several methods of quantum chemical calculation, including state-averaged complete active space SCF (CASSCF) methods, time dependent density functional theory (TDDFT), equation-of motion coupled cluster (EOM-CCSD) and multireference perturbation theory (MRPT). Amongst the low-lying states we identify the optically bright pipi* state of the molecules and examine its properties. We demonstrate that the state is dominated by a single configuration function. We calculate zero-time approximations to the resonance Raman spectrum of GFP chromophore models, and assign published spectra based upon these.

  10. Visible Multiphoton Dissociation of Chromophore-Tagged Peptides

    Science.gov (United States)

    Bouakil, Mathilde; Kulesza, Alexander; Daly, Steven; MacAleese, Luke; Antoine, Rodolphe; Dugourd, Philippe

    2017-10-01

    The visible photodissociation mechanisms of QSY7-tagged peptides of increasing size have been investigated by coupling a mass spectrometer and an optical parametric oscillator laser beam. The experiments herein consist of energy resolved collision- and laser-induced dissociation measurements on the chromophore-tagged peptides. The results show that fragmentation occurs by similar channels in both activation methods, but that the branching ratios are vastly different. Observation of a size-dependent minimum laser pulse energy required to induce fragmentation, and collisional cooling rates in time resolved experiments show that laser-induced dissociation occurs through the absorption of multiple photons by the chromophore and the subsequent heating through vibrational energy redistribution. The differences in branching ratio between collision- and laser-induced dissociation can then be understood by the highly anisotropic energy distribution following absorption of a photon. [Figure not available: see fulltext.

  11. DNA-Conjugated Organic Chromophores in DNA Stacking Interactions

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V.; Pedersen, Erik Bjerregaard

    2009-01-01

    Since the discovery of the intercalation of acridine derivatives into DNA (1961), chemists have synthesized many intercalators tethered to DNA. Advances in the chemical synthesis of modified nucleosides along with progress in oligonucleotide synthesis have made it possible to introduce organic...... review presents those efforts in the design of intercalators/organic chromophores as oligonucleotide conjugates that form a foundation for the generation of novel nucleic acid architectures...

  12. The Biogeochemistry of Chromophoric Dissolved Organic Matter in Coastal Waters

    Science.gov (United States)

    2016-06-07

    The Biogeochemistry of Chromophoric Dissolved Organic Matter in Coastal Waters Robert F. Chen Environmental , Coastal and Ocean Sciences University of...properties to governing physical processes in high energy environments such as coastal seas. In addition, large spatial coverage over a wide range of...optical measurements of CDOM. In order to reliably predict the important photochemical, biological, and chemical processes governing CDOM, and hence its

  13. Method Of Signal Amplification In Multi-Chromophore Luminescence Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Levitsky, Igor A. (Fall River, MA); Krivoshlykov, Sergei G. (Shrewsbury, MA)

    2004-02-03

    A fluorescence-based method for highly sensitive and selective detection of analyte molecules is proposed. The method employs the energy transfer between two or more fluorescent chromophores in a carefully selected polymer matrix. In one preferred embodiment, signal amplification has been achieved in the fluorescent sensing of dimethyl methylphosphonate (DMMP) using two dyes, 3-aminofluoranthene (AM) and Nile Red (NR), in a hydrogen bond acidic polymer matrix. The selected polymer matrix quenches the fluorescence of both dyes and shifts dye emission and absorption spectra relative to more inert matrices. Upon DMMP sorption, the AM fluorescence shifts to the red at the same time the NR absorption shifts to the blue, resulting in better band overlap and increased energy transfer between chromophores. In another preferred embodiment, the sensitive material is incorporated into an optical fiber system enabling efficient excitation of the dye and collecting the fluorescent signal form the sensitive material on the remote end of the system. The proposed method can be applied to multichromophore luminescence sensor systems incorporating N-chromophores leading to N-fold signal amplification and improved selectivity. The method can be used in all applications where highly sensitive detection of basic gases, such as dimethyl methylphosphonate (DMMP), Sarin, Soman and other chemical warfare agents having basic properties, is required, including environmental monitoring, chemical industry and medicine.

  14. Thermal coupling at aqueous and biomolecular interfaces

    Science.gov (United States)

    Shenogina, Natalia B.

    Heat flow in the materials with nanoscopic features is dominated by thermal properties of the interfaces. While thermal properties of the solid-solid and solid-liquid interfaces are well studied, research of the thermal transport properties across soft (liquid-liquid) interfaces is very limited. Such interfaces are, however, plentiful in biological systems. In such systems the temperature control is of a great importance, because biochemical reactions, conformation of biomolecules as well as processes in biological cells and membranes have strong temperature sensitivity. The critical ingredient to temperature control in biological systems is the understanding of heat flow and thermal coupling across soft interfaces. To investigate heat transfer across biological and aqueous interfaces we chose to study a number of soft interfacial systems by means of molecular dynamic simulations. One of the interfaces under our investigation is the interface between protein (specifically green fluorescent protein) and water. Using this model we concentrated on the importance of vibrational frequency on coupling between water and proteins, and on significant differences between the roles of low and high frequency vibrations. Our thermal interfacial analysis allowed us to shed new light on to the issue of protein to water slaving, i.e., the concept of water controlling protein dynamics. Considering that the surface of the protein is composed of a complicated mixture of the hydrophobic and hydrophilic domains, to systematically explore the role of interfacial interactions we studied less complicated models with homogenous interfaces whith interfacial chemistry that could be changed in a controlled manner. We demonstrated that thermal transport measurements can be used to probe interfacial environments and to quantify interfacial bonding strength. Such ability provides a unique opportunity to characterize a variety of interfaces, which can be difficult to achieve with more direct

  15. High-sensitivity neutron diffraction of membranes: Location of the Schiff base end of the chromophore of bacteriorhodopsin.

    Science.gov (United States)

    Heyn, M P; Westerhausen, J; Wallat, I; Seiff, F

    1988-04-01

    THREE IMPORTANT EVENTS IN THE FUNCTIONAL CYCLE OF BACTERIORHODOPSIN OCCUR AT THE CHROMOPHORE: the primary absorption of light, the isomerization from the alltrans to the 13-cis form, and the deprotonation and reprotonation of its Schiff base. The protonated Schiff base linkage of the chromophore with lysine-216 plays an essential role in the color regulation of the pigment and is most likely directly involved in the charge translocation of this light-driven proton pump. Although much is known about the structure of the protein, the position of this key functional group has not yet been determined. We have synthesized a retinal in which the five protons closest to the Schiff base are replaced by deuterons. The labeled retinal was spontaneously incorporated into bacteriorhodopsin by using a mutant of Halobacterium halobium that is deficient in the synthesis of retinal. The position of the labeled Schiff base end of the chromophore was determined in the two-dimensional projected density of dark-adapted bacteriorhodopsin by neutron diffraction. The result fits very well with our previous work using retinals that were selectively deuterated in the middle of the polyene chain or in the cyclohexene ring. A coherent structure emerges with the three labeled positions on one line, separated by distances that are in good agreement with the tilt angle of the polyene chain (about 20 degrees ). The chromophore is located in the interior of the protein with the nitrogen of the Schiff base between helices 2 and 6 and with its ring in the vicinity of helix 4. Our results show that it is possible to locate a small group containing as few as five deuterons in a membrane protein of molecular weight 27,000.

  16. Scanning probe and optical tweezer investigations of biomolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Rigby-Singleton, Shellie

    2002-07-01

    A complex array of intermolecular forces controls the interactions between and within biological molecules. The desire to empirically explore the fundamental forces has led to the development of several biophysical techniques. Of these, the atomic force microscope (AFM) and the optical tweezers have been employed throughout this thesis to monitor the intermolecular forces involved in biomolecular interactions. The AFM is a well-established force sensing technique capable of measuring biomolecular interactions at a single molecule level. However, its versatility has not been extrapolated to the investigation of a drug-enzyme complex. The energy landscape for the force induced dissociation of the DHFR-methotrexate complex was studied. Revealing an energy barrier to dissociation located {approx}0.3 nm from the bound state. Unfortunately, the AFM has a limited range of accessible loading rates and in order to profile the complete energy landscape alternative force sensing instrumentation should be considered, for example the BFP and optical tweezers. Thus, this thesis outlines the development and construction an optical trap capable of measuring intermolecular forces between biomolecules at the single molecule level. To demonstrate the force sensing abilities of the optical set up, proof of principle measurements were performed which investigate the interactions between proteins and polymer surfaces subjected to varying degrees of argon plasma treatment. Complementary data was gained from measurements performed independently by the AFM. Changes in polymer resistance to proteins as a response to changes in polymer surface chemistry were detected utilising both AFM and optical tweezers measurements. Finally, the AFM and optical tweezers were employed as ultrasensitive biosensors. Single molecule investigations of the antibody-antigen interaction between the cardiac troponin I marker and its complementary antibody, reveals the impact therapeutic concentrations of heparin

  17. LDRD final report : energy conversion using chromophore-functionalized carbon nanotubes.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Zifer, Thomas; Zhou, Xinjian; Leonard, Francois Leonard; Wong, Bryan Matthew; Kane, Alexander; Katzenmeyer, Aaron Michael; Krafcik, Karen Lee

    2010-09-01

    With the goal of studying the conversion of optical energy to electrical energy at the nanoscale, we developed and tested devices based on single-walled carbon nanotubes functionalized with azobenzene chromophores, where the chromophores serve as photoabsorbers and the nanotube as the electronic read-out. By synthesizing chromophores with specific absorption windows in the visible spectrum and anchoring them to the nanotube surface, we demonstrated the controlled detection of visible light of low intensity in narrow ranges of wavelengths. Our measurements suggested that upon photoabsorption, the chromophores isomerize to give a large change in dipole moment, changing the electrostatic environment of the nanotube. All-electron ab initio calculations were used to study the chromophore-nanotube hybrids, and show that the chromophores bind strongly to the nanotubes without disturbing the electronic structure of either species. Calculated values of the dipole moments supported the notion of dipole changes as the optical detection mechanism.

  18. trans and cis Chromophore structures in the kindling fluorescent protein asFP595

    Science.gov (United States)

    Grigorenko, Bella; Savitsky, Alexander; Topol, Igor; Burt, Stanley; Nemukhin, Alexander

    2006-06-01

    The ab initio QM/MM calculations are used to optimize geometry configurations of the chromophore and surrounding residues for the kindling protein asFP595. The time-dependent DFT method is applied to estimate parameters of the S 0-S 1 vertical transition of the chromophore at the protein geometry taking into account effects from the nearest residues. The results of simulations provide a theoretical support to the hypothesis on the possibility of trans-cis izomerization of the chromophore in the mechanism of kindling. The system can absorb light in the trans anion form of the chromophore and emit at longer wavelength in the cis anion form.

  19. The effect of rotational isomerism on the first hyperpolarizability of chromophores with divinyl quinoxaline conjugated bridge

    Science.gov (United States)

    Levitskaya, A. I.; Kalinin, A. A.; Fominykh, O. D.; Balakina, M. Yu.

    2017-08-01

    The effect of rotational isomerism on the values of first hyperpolarizability is studied by the example of two chromophores 7-DMA-VQV-TCP and 3-DMA-VQonV-TCP with quinoxaline and quinoxalinone moieties in the π-electron bridge. At the isomers formation the rotations about three single bonds are considered, thus providing eight possible conformers for each chromophore. The analysis of the results of DFT calculations demonstrates the presence of one lowest-energy conformer characterized by dominating probability for each chromophore. The calculations show that for both chromophores all rotational isomers are characterized by the first hyperpolarizability values rather close (within 8% and 11%) to statistically averaged ones.

  20. H- and J-aggregation of fluorene-based chromophores.

    Science.gov (United States)

    Deng, Yonghong; Yuan, Wen; Jia, Zhe; Liu, Gao

    2014-12-11

    Understanding of H- and J-aggregation behaviors in fluorene-based polymers is significant both for determining the origin of various red-shifted emissions occurring in blue-emitting polyfluorenes and for developing polyfluorene-based device performance. In this contribution, we demonstrate a new theory of the H- and J-aggregation of polyfluorenes and oligofluorenes, and understand the influence of chromosphere aggregation on their photoluminescent properties. H- and J-aggregates are induced by a continuous increasing concentration of the oligofluorene or polyfluorene solution. A relaxed molecular configuration is simulated to illustrate the spatial arrangement of the bonding of fluorenes. It is indicated that the relaxed state adopts a 21 helical backbone conformation with a torsion angle of 18° between two connected repeat units. This configuration makes the formation of H- and J-aggregates through the strong π-π interaction between the backbone rings. A critical aggregation concentration is observed to form H- and J-aggregates for both polyfluorenes and oligofluorenes. These aggregates show large spectral shifts and distinct shape changes in photoluminescent excitation (PLE) and emission (PL) spectroscopy. Compared with "isolated" chromophores, H-aggregates induce absorption spectral blue-shift and fluorescence spectral red-shift but largely reduce fluorescence efficiency. "Isolated" chromophores not only refer to "isolated molecules" but also include those associated molecules if their conjugated backbones are not compact enough to exhibit perturbed absorption and emission. J-aggregates induce absorption spectral red-shift and fluorescence spectral red-shift but largely enhance fluorescence efficiency. The PLE and PL spectra also show that J-aggregates dominate in concentrated solutions. Different from the excimers, the H- and J-aggregate formation changes the ground-state absorption of fluorene-based chromophores. H- and J-aggregates show changeable

  1. Knowledge based cluster ensemble for cancer discovery from biomolecular data.

    Science.gov (United States)

    Yu, Zhiwen; Wongb, Hau-San; You, Jane; Yang, Qinmin; Liao, Hongying

    2011-06-01

    The adoption of microarray techniques in biological and medical research provides a new way for cancer diagnosis and treatment. In order to perform successful diagnosis and treatment of cancer, discovering and classifying cancer types correctly is essential. Class discovery is one of the most important tasks in cancer classification using biomolecular data. Most of the existing works adopt single clustering algorithms to perform class discovery from biomolecular data. However, single clustering algorithms have limitations, which include a lack of robustness, stability, and accuracy. In this paper, we propose a new cluster ensemble approach called knowledge based cluster ensemble (KCE) which incorporates the prior knowledge of the data sets into the cluster ensemble framework. Specifically, KCE represents the prior knowledge of a data set in the form of pairwise constraints. Then, the spectral clustering algorithm (SC) is adopted to generate a set of clustering solutions. Next, KCE transforms pairwise constraints into confidence factors for these clustering solutions. After that, a consensus matrix is constructed by considering all the clustering solutions and their corresponding confidence factors. The final clustering result is obtained by partitioning the consensus matrix. Comparison with single clustering algorithms and conventional cluster ensemble approaches, knowledge based cluster ensemble approaches are more robust, stable and accurate. The experiments on cancer data sets show that: 1) KCE works well on these data sets; 2) KCE not only outperforms most of the state-of-the-art single clustering algorithms, but also outperforms most of the state-of-the-art cluster ensemble approaches.

  2. MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations

    Science.gov (United States)

    Vergara-Perez, Sandra; Marucho, Marcelo

    2016-01-01

    One of the most used and efficient approaches to compute electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation. There are several software packages available that solve the PB equation for molecules in aqueous electrolyte solutions. Most of these software packages are useful for scientists with specialized training and expertise in computational biophysics. However, the user is usually required to manually take several important choices, depending on the complexity of the biological system, to successfully obtain the numerical solution of the PB equation. This may become an obstacle for researchers, experimentalists, even students with no special training in computational methodologies. Aiming to overcome this limitation, in this article we present MPBEC, a free, cross-platform, open-source software that provides non-experts in the field an easy and efficient way to perform biomolecular electrostatic calculations on single processor computers. MPBEC is a Matlab script based on the Adaptative Poisson-Boltzmann Solver, one of the most popular approaches used to solve the PB equation. MPBEC does not require any user programming, text editing or extensive statistical skills, and comes with detailed user-guide documentation. As a unique feature, MPBEC includes a useful graphical user interface (GUI) application which helps and guides users to configure and setup the optimal parameters and approximations to successfully perform the required biomolecular electrostatic calculations. The GUI also incorporates visualization tools to facilitate users pre- and post-analysis of structural and electrical properties of biomolecules.

  3. Programming in Biomolecular Computation: Programs, Self-Interpretation and Visualisation

    Directory of Open Access Journals (Sweden)

    J.G. Simonsen

    2011-01-01

    Full Text Available Our goal is to provide a top-down approach to biomolecular computation. In spite of widespread discussion about connections between biology and computation, one question seems notable by its absence: Where are the programs? We identify a number of common features in programming that seem conspicuously absent from the literature on biomolecular computing; to partially redress this absence, we introduce a model of computation that is evidently programmable, by programs reminiscent of low-level computer machine code; and at the same time biologically plausible: its functioning is defined by a single and relatively small set of chemical-like reaction rules. Further properties: the model is stored-program: programs are the same as data, so programs are not only executable, but are also compilable and interpretable. It is universal: all computable functions can be computed (in natural ways and without arcane encodings of data and algorithm; it is also uniform: new ``hardware'' is not needed to solve new problems; and (last but not least it is Turing complete in a strong sense: a universal algorithm exists, that is able to execute any program, and is not asymptotically inefficient.

  4. MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations.

    Science.gov (United States)

    Vergara-Perez, Sandra; Marucho, Marcelo

    2016-01-01

    One of the most used and efficient approaches to compute electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation. There are several software packages available that solve the PB equation for molecules in aqueous electrolyte solutions. Most of these software packages are useful for scientists with specialized training and expertise in computational biophysics. However, the user is usually required to manually take several important choices, depending on the complexity of the biological system, to successfully obtain the numerical solution of the PB equation. This may become an obstacle for researchers, experimentalists, even students with no special training in computational methodologies. Aiming to overcome this limitation, in this article we present MPBEC, a free, cross-platform, open-source software that provides non-experts in the field an easy and efficient way to perform biomolecular electrostatic calculations on single processor computers. MPBEC is a Matlab script based on the Adaptative Poisson Boltzmann Solver, one of the most popular approaches used to solve the PB equation. MPBEC does not require any user programming, text editing or extensive statistical skills, and comes with detailed user-guide documentation. As a unique feature, MPBEC includes a useful graphical user interface (GUI) application which helps and guides users to configure and setup the optimal parameters and approximations to successfully perform the required biomolecular electrostatic calculations. The GUI also incorporates visualization tools to facilitate users pre- and post- analysis of structural and electrical properties of biomolecules.

  5. Photochirogenesis: Photochemical Models on the Origin of Biomolecular Homochirality

    Directory of Open Access Journals (Sweden)

    Cornelia Meinert

    2010-05-01

    Full Text Available Current research focuses on a better understanding of the origin of biomolecular asymmetry by the identification and detection of the possibly first chiral molecules that were involved in the appearance and evolution of life on Earth. We have reasons to assume that these molecules were specific chiral amino acids. Chiral amino acids have been identified in both chondritic meteorites and simulated interstellar ices. Present research reasons that circularly polarized electromagnetic radiation was identified in interstellar environments and an asymmetric interstellar photon-molecule interaction might have triggered biomolecular symmetry breaking. We review on the possible prebiotic interaction of ‘chiral photons’ in the form of circularly polarized light, with early chiral organic molecules. We will highlight recent studies on enantioselective photolysis of racemic amino acids by circularly polarized light and experiments on the asymmetric photochemical synthesis of amino acids from only one C and one N containing molecules by simulating interstellar environments. Both approaches are based on circular dichroic transitions of amino acids that will be presented as well.

  6. Surface chemistry for stable and smart molecular and biomolecular interfaces via photochemical grafting of alkenes.

    Science.gov (United States)

    Wang, Xiaoyu; Landis, Elizabeth C; Franking, Ryan; Hamers, Robert J

    2010-09-21

    Many emerging fields such as biotechnology and renewable energy require functionalized surfaces that are "smart" and highly stable. Surface modification schemes developed previously have often been limited to simple molecules or have been based on weakly bound layers that have limited stability. In this Account, we report on recent developments enabling the preparation of molecular and biomolecular interfaces that exhibit high selectivity and unprecedented stability on a range of covalent materials including diamond, vertically aligned carbon nanofibers, silicon, and metal oxides. One particularly successful pathway to ultrastable interfaces involves the photochemical grafting of organic alkenes to the surfaces. Bifunctional alkenes with a suitable functional group at the distal end can directly impart functionality and can serve as attachment points for linking complex structures such as DNA and proteins. The successful application of photochemical grafting to a surprisingly wide range of materials has motivated researchers to better understand the underlying photochemical reaction mechanisms. The resulting studies using experimental and computational methods have provided fundamental insights into the electronic structure of the molecules and the surface control photochemical reactivity. Such investigations have revealed the important role of a previously unrecognized process, photoelectron emission, in initiating photochemical grafting of alkenes to surfaces. Molecular and biomolecular interfaces formed on diamond and other covalent materials are leading to novel types of molecular electronic interfaces. For example, electrical, optical, or electromechanical structures that convert biological information directly into analytical signals allow for direct label-free detection of DNA and proteins. Because of the preferential adherence of molecules to graphitic edge-plane sites, the grafting of redox-active species to vertically aligned carbon nanofibers leads to

  7. Systematic evaluation of bundled SPC water for biomolecular simulations.

    Science.gov (United States)

    Gopal, Srinivasa M; Kuhn, Alexander B; Schäfer, Lars V

    2015-04-07

    In bundled SPC water models, the relative motion of groups of four water molecules is restrained by distance-dependent potentials. Bundled SPC models have been used in hybrid all-atom/coarse-grained (AA/CG) multiscale simulations, since they enable to couple atomistic SPC water with supra-molecular CG water models that effectively represent more than a single water molecule. In the present work, we systematically validated and critically tested bundled SPC water models as solvent for biomolecular simulations. To that aim, we investigated both thermodynamic and structural properties of various biomolecular systems through molecular dynamics (MD) simulations. Potentials of mean force of dimerization of pairs of amino acid side chains as well as hydration free energies of single side chains obtained with bundled SPC and standard (unrestrained) SPC water agree closely with each other and with experimental data. Decomposition of the hydration free energies into enthalpic and entropic contributions reveals that in bundled SPC, this favorable agreement of the free energies is due to a larger degree of error compensation between hydration enthalpy and entropy. The Ramachandran maps of Ala3, Ala5, and Ala7 peptides are similar in bundled and unrestrained SPC, whereas for the (GS)2 peptide, bundled water leads to a slight overpopulation of extended conformations. Analysis of the end-to-end distance autocorrelation times of the Ala5 and (GS)2 peptides shows that sampling in more viscous bundled SPC water is about two times slower. Pronounced differences between the water models were found for the structure of a coiled-coil dimer, which is instable in bundled SPC but not in standard SPC. In addition, the hydration of the active site of the serine protease α-chymotrypsin depends on the water model. Bundled SPC leads to an increased hydration of the active site region, more hydrogen bonds between water and catalytic triad residues, and a significantly slower exchange of water

  8. A bola-phospholipid bearing tetrafluorophenylazido chromophore as a promising lipid probe for biomembrane photolabeling studies.

    Science.gov (United States)

    Xia, Yi; Sengupta, Kheya; Maggiani, Alain; Qu, Fanqi; Peng, Ling

    2013-08-14

    A bola-phospholipid probe, carrying a tetrafluorophenylazido chromophore in the middle of the transmembrane diacyl chain, was synthesized and characterized with a view to studying biomembranes by a photolabeling approach. This probe shows the advantageous stability of bola-lipids in giant vesicle formation alongside excellent photochemical properties conferred by the tetrafluorophenylazido chromophore, and thus constitutes a promising probe for biomembrane photolabeling studies.

  9. Absorption tuning of the green fluorescent protein chromophore: synthesis and studies of model compounds

    DEFF Research Database (Denmark)

    Brøndsted Nielsen, Mogens; Andersen, Lars Henrik; Rinza, Tomás Rocha

    2011-01-01

    The green fluorescent protein (GFP) chromophore is a heterocyclic compound containing a p-hydroxybenzylidine attached to an imidazol-5(4H)-one ring. This review covers the synthesis of a variety of model systems for elucidating the intrinsic optical properties of the chromophore in the gas phase...

  10. Chromophores arranged as "magnetic meta atoms": building blocks for molecular metamaterials.

    Science.gov (United States)

    Langhals, Heinz; Hofer, Alexander

    2013-06-21

    Benzoperylenetriscarboximides were parallel arranged by stiff spacers where exciton interactions could be controlled by their distance. The most bathochromic electronic transition of the chromophores essentially exhibits only an electric component where an orthogonal magnetic component was established by the distance-controlled interaction of chromophores. Such arrangements were discussed as building blocks for molecular metamaterials.

  11. Direct Measurement of the Isomerization Barrier of the Isolated Retinal Chromophore

    DEFF Research Database (Denmark)

    Dilger, Jonathan; Musbat, Lihi; Sheves, Mordechai;

    2015-01-01

    Isomerizations of the retinal chromophore were investigated using the IMS-IMS technique. Four different structural features of the chromophore were observed, isolated, excited collisionally, and the resulting isomer and fragment distributions were measured. By establishing the threshold activatio......V, which is significantly lower than that observed for the reaction within opsin proteins....

  12. Recovery of red fluorescent protein chromophore maturation deficiency through rational design.

    Directory of Open Access Journals (Sweden)

    Matthew M Moore

    Full Text Available Red fluorescent proteins (RFPs derived from organisms in the class Anthozoa have found widespread application as imaging tools in biological research. For most imaging experiments, RFPs that mature quickly to the red chromophore and produce little or no green chromophore are most useful. In this study, we used rational design to convert a yellow fluorescent mPlum mutant to a red-emitting RFP without reverting any of the mutations causing the maturation deficiency and without altering the red chromophore's covalent structure. We also created an optimized mPlum mutant (mPlum-E16P that matures almost exclusively to the red chromophore. Analysis of the structure/function relationships in these proteins revealed two structural characteristics that are important for efficient red chromophore maturation in DsRed-derived RFPs. The first is the presence of a lysine residue at position 70 that is able to interact directly with the chromophore. The second is an absence of non-bonding interactions limiting the conformational flexibility at the peptide backbone that is oxidized during red chromophore formation. Satisfying or improving these structural features in other maturation-deficient RFPs may result in RFPs with faster and more complete maturation to the red chromophore.

  13. Off-Resonant Two-Photon Absorption Cross-Section Enhancement of an Organic Chromophore on Gold Nanorods

    Science.gov (United States)

    Sivapalan, Sean T.; Vella, Jarrett H.; Yang, Timothy K.; Dalton, Matthew J.; Haley, Joy E.; Cooper, Thomas M.; Urbas, Augustine M.; Tan, Loon-Seng; Murphy, Catherine J.

    2013-01-01

    Surface-plasmon-initiated interference effects of polyelectrolyte-coated gold nanorods on the two-photon absorption of an organic chromophore were investigated. With polyelectrolyte bearing gold nanorods of 2,4,6 and 8 layers, the role of the plasmonic fields as function of distance on such effects was examined. An unusual distance dependence was found: enhancements in the two-photon cross-section were at a minimum at an intermediate distance, then rose again at a further distance. The observed values of enhancement were compared to theoretical predictions using finite element analysis and showed good agreementdue to constructive and destructive interference effects. PMID:23687561

  14. Unraveling the biomolecular snapshots of mitosis in healthy and cancer cells using plasmonically-enhanced Raman spectroscopy.

    Science.gov (United States)

    Panikkanvalappil, Sajanlal R; Hira, Steven M; Mahmoud, Mahmoud A; El-Sayed, Mostafa A

    2014-11-12

    Owing to the dynamic and complex nature of mitosis, precise and timely executions of biomolecular events are critical for high fidelity cell division. In this context, visualization of such complex events at the molecular level can provide vital information on the biomolecular processes in abnormal cells. Here, we explored the plasmonically enhanced light scattering properties of functionalized gold nanocubes (AuNCs) together with surface-enhanced Raman spectroscopy (SERS) to unravel the complex and dynamic biological processes involved in mitosis of healthy and cancerous cells from its molecular perspectives. By monitoring various stages of mitosis using SERS, we noticed that relatively high rate of conversion of mitotic proteins from their α-helix structure to β-sheet conformation is likely in the cancer cells during meta-, ana-, and telophases. Unique biochemical modifications to the lipid and amino acid moieties, associated with the observed protein conformational modifications, were also identified. However, in healthy cells, the existence of proteins in their β conformation was momentary and was largely in the α-helix form. The role of abnormal conformational modifications of mitotic proteins on the development of anomalous mitotic activities was further confirmed by looking at plasmonic nanoparticle-induced cytokinesis failure in cancer cells. Our findings illustrate the vast possibilities of SERS in real-time tracking of complex, subtle, and momentary modifications of biomolecules in live cells, which could provide new insights to the role of protein conformation dynamics during mitosis on the development of cancer and many other diseases.

  15. Binding, tuning and mechanical function of the 4-hydroxy-cinnamic acid chromophore in photoactive yellow protein

    NARCIS (Netherlands)

    Horst, M.A. van der; Arents, J.C.; Kort, R.; Hellingwerf, K.J.

    2007-01-01

    The bacterial photoreceptor protein photoactive yellow protein (PYP) covalently binds the chromophore 4-hydroxy coumaric acid, tuning (spectral) characteristics of this cofactor. Here, we study this binding and tuning using a combination of pointmutations and chromophore analogs. In all photosensor

  16. Evolution of biomolecular networks: lessons from metabolic and protein interactions.

    Science.gov (United States)

    Yamada, Takuji; Bork, Peer

    2009-11-01

    Despite only becoming popular at the beginning of this decade, biomolecular networks are now frameworks that facilitate many discoveries in molecular biology. The nodes of these networks are usually proteins (specifically enzymes in metabolic networks), whereas the links (or edges) are their interactions with other molecules. These networks are made up of protein-protein interactions or enzyme-enzyme interactions through shared metabolites in the case of metabolic networks. Evolutionary analysis has revealed that changes in the nodes and links in protein-protein interaction and metabolic networks are subject to different selection pressures owing to distinct topological features. However, many evolutionary constraints can be uncovered only if temporal and spatial aspects are included in the network analysis.

  17. Design and implementation of a biomolecular concentration tracker.

    Science.gov (United States)

    Hsiao, Victoria; de los Santos, Emmanuel L C; Whitaker, Weston R; Dueber, John E; Murray, Richard M

    2015-02-20

    As a field, synthetic biology strives to engineer increasingly complex artificial systems in living cells. Active feedback in closed loop systems offers a dynamic and adaptive way to ensure constant relative activity independent of intrinsic and extrinsic noise. In this work, we use synthetic protein scaffolds as a modular and tunable mechanism for concentration tracking through negative feedback. Input to the circuit initiates scaffold production, leading to colocalization of a two-component system and resulting in the production of an inhibitory antiscaffold protein. Using a combination of modeling and experimental work, we show that the biomolecular concentration tracker circuit achieves dynamic protein concentration tracking in Escherichia coli and that steady state outputs can be tuned.

  18. Ion irradiation and biomolecular radiation damage II. Indirect effect

    CERN Document Server

    Wang, Wei; Su, Wenhui

    2010-01-01

    It has been reported that damage of genome in a living cell by ionizing radiation is about one-third direct and two-thirds indirect. The former which has been introduced in our last paper, concerns direct energy deposition and ionizing reactions in the biomolecules; the latter results from radiation induced reactive species (mainly radicals) in the medium (mainly water) surrounding the biomolecules. In this review, a short description of ion implantation induced radical formation in water is presented. Then we summarize the aqueous radical reaction chemistry of DNA, protein and their components, followed by a brief introduction of biomolecular damage induced by secondary particles (ions and electron). Some downstream biological effects are also discussed.

  19. Biomolecular Simulation of Base Excision Repair and Protein Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Straatsma, TP; McCammon, J A; Miller, John H; Smith, Paul E; Vorpagel, Erich R; Wong, Chung F; Zacharias, Martin W

    2006-03-03

    The goal of the Biomolecular Simulation of Base Excision Repair and Protein Signaling project is to enhance our understanding of the mechanism of human polymerase-β, one of the key enzymes in base excision repair (BER) and the cell-signaling enzymes cyclic-AMP-dependent protein kinase. This work used molecular modeling and simulation studies to specifically focus on the • dynamics of DNA and damaged DNA • dynamics and energetics of base flipping in DNA • mechanism and fidelity of nucleotide insertion by BER enzyme human polymerase-β • mechanism and inhibitor design for cyclic-AMP-dependent protein kinase. Molecular dynamics simulations and electronic structure calculations have been performed using the computer resources at the Molecular Science Computing Facility at the Environmental Molecular Sciences Laboratory.

  20. Quantum dynamics of bio-molecular systems in noisy environments

    CERN Document Server

    Plenio, M B

    2012-01-01

    We discuss three different aspects of the quantum dynamics of bio-molecular systems and more generally complex networks in the presence of strongly coupled environments. Firstly, we make a case for the systematic study of fundamental structural elements underlying the quantum dynamics of these systems, identify such elements and explore the resulting interplay of quantum dynamics and environmental decoherence. Secondly, we critically examine some existing approaches to the numerical description of system-environment interaction in the non-perturbative regime and present a promising new method that can overcome some limitations of existing methods. Thirdly, we present an approach towards deciding and quantifying the non-classicality of the action of the environment and the observed system-dynamics. We stress the relevance of these tools for strengthening the interplay between theoretical and experimental research in this field.

  1. Biomolecular decision-making process for self assembly.

    Energy Technology Data Exchange (ETDEWEB)

    Osbourn, Gordon Cecil

    2005-01-01

    The brain is often identified with decision-making processes in the biological world. In fact, single cells, single macromolecules (proteins) and populations of molecules also make simple decisions. These decision processes are essential to survival and to the biological self-assembly and self-repair processes that we seek to emulate. How do these tiny systems make effective decisions? How do they make decisions in concert with a cooperative network of other molecules or cells? How can we emulate the decision-making behaviors of small-scale biological systems to program and self-assemble microsystems? This LDRD supported research to answer these questions. Our work included modeling and simulation of protein populations to help us understand, mimic, and categorize molecular decision-making mechanisms that nonequilibrium systems can exhibit. This work is an early step towards mimicking such nanoscale and microscale biomolecular decision-making processes in inorganic systems.

  2. The biomolecular corona of nanoparticles in circulating biological media

    Science.gov (United States)

    Pozzi, D.; Caracciolo, G.; Digiacomo, L.; Colapicchioni, V.; Palchetti, S.; Capriotti, A. L.; Cavaliere, C.; Zenezini Chiozzi, R.; Puglisi, A.; Laganà, A.

    2015-08-01

    When nanoparticles come into contact with biological media, they are covered by a biomolecular `corona', which confers a new identity to the particles. In all the studies reported so far nanoparticles are incubated with isolated plasma or serum that are used as a model for protein adsorption. Anyway, bodily fluids are dynamic in nature so the question arises on whether the incubation protocol, i.e. dynamic vs. static incubation, could affect the composition and structure of the biomolecular corona. Here we let multicomponent liposomes interact with fetal bovine serum (FBS) both statically and dynamically, i.e. in contact with circulating FBS (~40 cm s-1). The structure and composition of the liposome-protein corona, as determined by dynamic light scattering, electrophoretic light scattering and liquid chromatography tandem mass spectrometry, were found to be dependent on the incubation protocol. Specifically, following dynamic exposure to FBS, multicomponent liposomes were less enriched in complement proteins and appreciably more enriched in apolipoproteins and acute phase proteins (e.g. alpha-1-antitrypsin and inter-alpha-trypsin inhibitor heavy chain H3) that are involved in relevant interactions between nanoparticles and living systems. Supported by our results, we speculate that efficient predictive modeling of nanoparticle behavior in vivo will require accurate knowledge of nanoparticle-specific protein fingerprints in circulating biological media.When nanoparticles come into contact with biological media, they are covered by a biomolecular `corona', which confers a new identity to the particles. In all the studies reported so far nanoparticles are incubated with isolated plasma or serum that are used as a model for protein adsorption. Anyway, bodily fluids are dynamic in nature so the question arises on whether the incubation protocol, i.e. dynamic vs. static incubation, could affect the composition and structure of the biomolecular corona. Here we let

  3. Orientation of biomolecular assemblies in a microfluidic jet

    Energy Technology Data Exchange (ETDEWEB)

    Priebe, M; Kalbfleisch, S; Tolkiehn, M; Salditt, T [Institut fuer Roentgenphysik, Universitaet Goettingen, Goettingen (Germany); Koester, S [Courant Research Centre Nano-Spectroscopy and X-Ray Imaging, Universitaet Goettingen, Goettingen (Germany); Abel, B [Institut fuer Physikalische Chemie, Universitaet Goettingen, Goettingen (Germany); Davies, R J, E-mail: tsalditt@gwdg.d [ID13, ESRF, Grenoble (France)

    2010-04-15

    We have investigated multilamellar lipid assemblies in a microfluidic jet, operating at high shear rates of the order of 10{sup 7} s{sup -1}. Compared to classical Couette cells or rheometers, the shear rate was increased by at least 2-3 orders of magnitude, and the sample volume was scaled down correspondingly. At the same time, the jet is characterized by high extensional stress due to elongational flow. A focused synchrotron x-ray beam was used to measure the structure and orientation of the lipid assemblies in the jet. The diffraction patterns indicate conventional multilamellar phases, aligned with the membrane normals oriented along the velocity gradient of the jet. The results indicate that the setup may be well suited for coherent diffractive imaging of oriented biomolecular assemblies and macromolecules at the future x-ray free electron laser (XFEL) sources.

  4. Computational and theoretical aspects of biomolecular structure and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.E.; Berendzen, J.; Catasti, P., Chen, X. [and others

    1996-09-01

    This is the final report for a project that sought to evaluate and develop theoretical, and computational bases for designing, performing, and analyzing experimental studies in structural biology. Simulations of large biomolecular systems in solution, hydrophobic interactions, and quantum chemical calculations for large systems have been performed. We have developed a code that implements the Fast Multipole Algorithm (FMA) that scales linearly in the number of particles simulated in a large system. New methods have been developed for the analysis of multidimensional NMR data in order to obtain high resolution atomic structures. These methods have been applied to the study of DNA sequences in the human centromere, sequences linked to genetic diseases, and the dynamics and structure of myoglobin.

  5. Simulation of Parallel Logical Operations with Biomolecular Computing

    Directory of Open Access Journals (Sweden)

    Mahnaz Kadkhoda

    2008-01-01

    Full Text Available Biomolecular computing is the computational method that uses the potential of DNA as a parallel computing device. DNA computing can be used to solve NP-complete problems. An appropriate application of DNA computation is large-scale evaluation of parallel computation models such as Boolean Circuits. In this study, we present a molecular-based algorithm for evaluation of Nand-based Boolean Circuits. The contribution of this paper is that the proposed algorithm has been implemented using only three molecular operations and the number of passes in each level is decreased to less than half of previously addressed in the literature. Thus, the proposed algorithm is much easier to implement in the laboratory.

  6. Structure and Interactions of Isolated Biomolecular Building Blocks.

    Science.gov (United States)

    de Vries, Mattanjah

    2006-03-01

    We investigate biomolecular building blocks and their clusters with each other and with water on a single molecular level. The motivation is the need to distinguish between intrinsic molecular properties and those that result from the biological environment. This is achieved by a combination of laser desorption and jet cooling, applied to aromatic amino acids, small peptides containing those, nucleobases and nucleosides. This approach is coupled with a number of laser spectroscopic techniques, including resonant multi-photon ionization, spectral hole burning and infra-red ion-dip spectroscopy. We will discuss examples illustrating how information can be obtained on spatial structure of individual biomolecules, including peptide conformations and details of DNA base-pairing.

  7. Insights into cancer severity from biomolecular interaction mechanisms

    Science.gov (United States)

    Raimondi, Francesco; Singh, Gurdeep; Betts, Matthew J.; Apic, Gordana; Vukotic, Ranka; Andreone, Pietro; Stein, Lincoln; Russell, Robert B.

    2016-01-01

    To attain a deeper understanding of diseases like cancer, it is critical to couple genetics with biomolecular mechanisms. High-throughput sequencing has identified thousands of somatic mutations across dozens of cancers, and there is a pressing need to identify the few that are pathologically relevant. Here we use protein structure and interaction data to interrogate nonsynonymous somatic cancer mutations, identifying a set of 213 molecular interfaces (protein-protein, -small molecule or –nucleic acid) most often perturbed in cancer, highlighting several potentially novel cancer genes. Over half of these interfaces involve protein-small-molecule interactions highlighting their overall importance in cancer. We found distinct differences in the predominance of perturbed interfaces between cancers and histological subtypes and presence or absence of certain interfaces appears to correlate with cancer severity. PMID:27698488

  8. Review of MEMS differential scanning calorimetry for biomolecular study

    Science.gov (United States)

    Yu, Shifeng; Wang, Shuyu; Lu, Ming; Zuo, Lei

    2017-07-01

    Differential scanning calorimetry (DSC) is one of the few techniques that allow direct determination of enthalpy values for binding reactions and conformational transitions in biomolecules. It provides the thermodynamics information of the biomolecules which consists of Gibbs free energy, enthalpy and entropy in a straightforward manner that enables deep understanding of the structure function relationship in biomolecules such as the folding/unfolding of protein and DNA, and ligand bindings. This review provides an up to date overview of the applications of DSC in biomolecular study such as the bovine serum albumin denaturation study, the relationship between the melting point of lysozyme and the scanning rate. We also introduce the recent advances of the development of micro-electro-mechanic-system (MEMS) based DSCs.

  9. Biomolecular Network-Based Synergistic Drug Combination Discovery

    Directory of Open Access Journals (Sweden)

    Xiangyi Li

    2016-01-01

    Full Text Available Drug combination is a powerful and promising approach for complex disease therapy such as cancer and cardiovascular disease. However, the number of synergistic drug combinations approved by the Food and Drug Administration is very small. To bridge the gap between urgent need and low yield, researchers have constructed various models to identify synergistic drug combinations. Among these models, biomolecular network-based model is outstanding because of its ability to reflect and illustrate the relationships among drugs, disease-related genes, therapeutic targets, and disease-specific signaling pathways as a system. In this review, we analyzed and classified models for synergistic drug combination prediction in recent decade according to their respective algorithms. Besides, we collected useful resources including databases and analysis tools for synergistic drug combination prediction. It should provide a quick resource for computational biologists who work with network medicine or synergistic drug combination designing.

  10. Hybrid organic semiconductor lasers for bio-molecular sensing.

    Science.gov (United States)

    Haughey, Anne-Marie; Foucher, Caroline; Guilhabert, Benoit; Kanibolotsky, Alexander L; Skabara, Peter J; Burley, Glenn; Dawson, Martin D; Laurand, Nicolas

    2014-01-01

    Bio-functionalised luminescent organic semiconductors are attractive for biophotonics because they can act as efficient laser materials while simultaneously interacting with molecules. In this paper, we present and discuss a laser biosensor platform that utilises a gain layer made of such an organic semiconductor material. The simple structure of the sensor and its operation principle are described. Nanolayer detection is shown experimentally and analysed theoretically in order to assess the potential and the limits of the biosensor. The advantage conferred by the organic semiconductor is explained, and comparisons to laser sensors using alternative dye-doped materials are made. Specific biomolecular sensing is demonstrated, and routes to functionalisation with nucleic acid probes, and future developments opened up by this achievement, are highlighted. Finally, attractive formats for sensing applications are mentioned, as well as colloidal quantum dots, which in the future could be used in conjunction with organic semiconductors.

  11. Chromophore Structure of Photochromic Fluorescent Protein Dronpa: Acid-Base Equilibrium of Two Cis Configurations.

    Science.gov (United States)

    Higashino, Asuka; Mizuno, Misao; Mizutani, Yasuhisa

    2016-04-07

    Dronpa is a novel photochromic fluorescent protein that exhibits fast response to light. The present article is the first report of the resonance and preresonance Raman spectra of Dronpa. We used the intensity and frequency of Raman bands to determine the structure of the Dronpa chromophore in two thermally stable photochromic states. The acid-base equilibrium in one photochromic state was observed by spectroscopic pH titration. The Raman spectra revealed that the chromophore in this state shows a protonation/deprotonation transition with a pKa of 5.2 ± 0.3 and maintains the cis configuration. The observed resonance Raman bands showed that the other photochromic state of the chromophore is in a trans configuration. The results demonstrate that Raman bands selectively enhanced for the chromophore yield valuable information on the molecular structure of the chromophore in photochromic fluorescent proteins after careful elimination of the fluorescence background.

  12. The photochemical determinants of color vision: revealing how opsins tune their chromophore's absorption wavelength.

    Science.gov (United States)

    Wang, Wenjing; Geiger, James H; Borhan, Babak

    2014-01-01

    The evolution of a variety of important chromophore-dependent biological processes, including microbial light sensing and mammalian color vision, relies on protein modifications that alter the spectral characteristics of a bound chromophore. Three different color opsins share the same chromophore, but have three distinct absorptions that together cover the entire visible spectrum, giving rise to trichromatic vision. The influence of opsins on the absorbance of the chromophore has been studied through methods such as model compounds, opsin mutagenesis, and computational modeling. The recent development of rhodopsin mimic that uses small soluble proteins to recapitulate the binding and wavelength tuning of the native opsins provides a new platform for studying protein-regulated spectral tuning. The ability to achieve far-red shifted absorption in the rhodopsin mimic system was attributed to a combination of the lack of a counteranion proximal to the iminium, and a uniformly neutral electrostatic environment surrounding the chromophore.

  13. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J. [eds.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database.

  14. Influence of Architecture, Concentration, and Thermal History on the Poling of Nonlinear Optical Chromophores in Block Copolymer Domains

    Energy Technology Data Exchange (ETDEWEB)

    Leolukman, Melvina; Paoprasert, Peerasak; Wang, Yao; Makhija, Varun; McGee, David J.; Gopalan, Padma (UW)

    2008-10-02

    Factors affecting the electric-field-induced poling of nonlinear optical chromophores in block copolymer domains were investigated by encapsulating the chromophores in a linear-diblock copolymer [poly(styrene-b-4-vinylpyridine)] and linear-dendritic (poly(methyl methacrylate)-dendron) block copolymer via hydrogen bonding. Temperature-dependent Fourier transform infrared spectroscopy and morphology evaluation by X-ray scattering and transmission electron microscopy were used with in situ second harmonic generation to correlate domain architectures, processing conditions such as thermal history, and chromophore concentrations with poling efficiency. Poling of chromophores encapsulated in the minority domain (spheres or cylinders) of a linear-diblock copolymer was inhibited by the increasing chromophore concentration within the domain and the chemical nature of the majority domain. Chromophore encapsulation in the majority domain produced the most favorable conditions for poling as measured by in situ second harmonic generation. Thermal annealing of the linear-diblock copolymer/chromophore composites resulted in chromophore aggregation with a corresponding decrease in nonlinear optical activity. The linear-dendron/chromophore system presented the most effective architecture for spatially dispersing chromophores. These findings suggest that while well-ordered phase-separated systems such as block copolymers enhance chromophore isolation over homopolymer systems, a more effective approach is to explore polymer chains end functionalized with chromophores.

  15. Development and Characterization of Reactive Triangulenium Chromophores for Bioconjugation Applications

    DEFF Research Database (Denmark)

    Bora, Ilkay

    With the continuing development of advanced fluorescence techniques such as single-molecule fluorescence, time-gated detection, multiple laser pulse excitation, anisotropy decay assays and quenching experiments, fluorescent dyes are needed whose focus does not only lie on classic emission amplitude.......66 in acetonitrile. Their saliently high lifetimes of up to 23 ns in acetonitrile allow for autofluorescence eliminating time-gated measurements; combined with their strongly polarized transitions they enable the measurement of slow protein dynamics. Synthetic strategies developed by Laursen and Krebs allow...... maleimides were introduced into the azadioxa- and diazaoxa-triangulenium chromophores. The effect of the linker rigidity on the local mobility of the fluorophore on protein surfaces and the resulting retardation of initial emission anisotropy loss in time-resolved experiments were then investigated...

  16. Figures of merit of nonlinear optical chromophores in photorefractive polymers

    Science.gov (United States)

    Barzoukas, Marguerite; Blanchard-Desce, Mireille H.; Wortmann, Ruediger W.

    1999-05-01

    A pre-requisite to obtain polymers with a large photorefractive response is to design non-linear optical chromophores with a large figure of merit. This figure depends on the glass transition temperature of the material. We present a theoretical investigation that shows which are the important molecular parameters that control the magnitude of the figure of merit either in a low-Tg or in a high-Tg polymer. Derivation of the figures of merit for various push-pull molecules show a molecular engineering strategy can be successfully implemented to yield very large figures of merit. This approach is supported by an experimental investigation based on electro-optical absorption measurements.

  17. Photochromic gratings in sol gel films containing diazo sulfonamide chromophore

    Science.gov (United States)

    Kucharski, Stanisław; Janik, Ryszard

    2005-09-01

    The photochromic sol-gel hybrid materials were prepared by incorporation of an azo chromophore containing sulfonamide fragment into polysiloxane cross-linked network. The materials were used to form transparent films on glass by spin-coating and/or casting. The reversible change of refraction index of the films on illumination with white light was observed by ellipsometry. The experiments with two beam coupling (TBC) and four wave mixing (4 WM) arrangement with green or blue laser beams as writing beams showed formation of a diffraction grating. The diffraction efficiency of the first order was 0.025-0.038 which yielded refraction index modulation in the range of up to 0.0066.

  18. Chromophore-assisted laser inactivation in neural development

    Institute of Scientific and Technical Information of China (English)

    Wei Li; Nico Stuurman; Guangshuo Ou

    2012-01-01

    Chromophore-assisted laser inactivation (CALI) is a technique that uses photochemically-generated reactive oxygen species to acutely inactivate target proteins in living cells.Neural development includes highly dynamic cellular processes such as asymmetric cell division,migration,axon and dendrite outgrowth and synaptogenesis.Although many key molecules of neural development have been identified since the past decades,their spatiotemporal contributions to these cellular events are not well understood.CALI provides an appealing tool for elucidating the precise functions of these molecules during neural development.In this review,we summarize the principles of CALI,a recent microscopic setup to perform CALI experiments,and the application of CALI to the study of growth-cone motility and neuroblast asymmetric division.

  19. Drug Transport Microdevice Mimicking an Idealized Nanoscale Bio-molecular Motor

    Institute of Scientific and Technical Information of China (English)

    Jae Hwan Lee; Ramana M. Pidaparti

    2011-01-01

    Molecular motors are nature's nano-devices and the essential agents of movement that are an integral part of many living organisms.The supramolecular motor,called Nuclear Pore Complex (NPC),controls the transport of all cellular material between the cytoplasm and the nucleus that occurs naturally in biological cells of many organisms.In order to understand the design characteristics of the NPC,we developed a microdevice for drug/fluidic transport mimicking the coarse-grained representation of the NPC geometry through computational fluid dynamic analysis and optimization.Specifically,the role of the central plug in active fluidic/particle transport and passive transport (without central plug) was investigated.Results of flow rate,pressure and velocity profiles obtained from the models indicate that the central plug plays a major role in transport through this biomolecular machine.The results of this investigation show that fluidic transport and flow passages are important factors in designing NPC based nano- and micro-devices for drug delivery.

  20. Biomolecular Programming of Discrete Nanomaterials for Sensors, Templates and Mimics of Natural Nanoscale Assemblies

    Science.gov (United States)

    2016-10-17

    AFRL-AFOSR-VA-TR-2016-0343 BIOMOLECULAR PROGRAMMING OF DISCRETE NANOMATERIALS FOR SENSORS, TEMPLATES AND MIMICS OF NATURAL NANOSCALE ASSEMBLIES...Performance 3. DATES COVERED (From - To) 01 Jun 2011 to 31 May 2016 4. TITLE AND SUBTITLE BIOMOLECULAR PROGRAMMING OF DISCRETE NANOMATERIALS FOR SENSORS...responsive elements for assembly of complex morphology switchable nanomaterials , and have combined this with an effort in nature-inspired materials

  1. Differential geometry-based solvation and electrolyte transport models for biomolecular modeling: a review

    OpenAIRE

    Wei, Guo Wei; Baker, Nathan A.

    2014-01-01

    This chapter reviews the differential geometry-based solvation and electrolyte transport for biomolecular solvation that have been developed over the past decade. A key component of these methods is the differential geometry of surfaces theory, as applied to the solvent-solute boundary. In these approaches, the solvent-solute boundary is determined by a variational principle that determines the major physical observables of interest, for example, biomolecular surface area, enclosed volume, el...

  2. Chromophore composition of the phycobiliprotein Cr-PC577 from the cryptophyte Hemiselmis pacifica.

    Science.gov (United States)

    Overkamp, Kristina E; Langklotz, Sina; Aras, Marco; Helling, Stefan; Marcus, Katrin; Bandow, Julia E; Hoef-Emden, Kerstin; Frankenberg-Dinkel, Nicole

    2014-12-01

    The cryptophyte phycocyanin Cr-PC577 from Hemiselmis pacifica is a close relative of Cr-PC612 found in Hemiselmis virescens and Hemiselmis tepida. The two biliproteins differ in that Cr-PC577 lacks the major peak at around 612 nm in the absorption spectrum. Cr-PC577 was thus purified and characterized with respect to its bilin chromophore composition. Like other cryptophyte phycobiliproteins, Cr-PC577 is an (αβ)(α'β) heterodimer with phycocyanobilin (PCB) bound to the α-subunits. While one chromophore of the β-subunit is also PCB, mass spectrometry identified an additional chromophore with a mass of 585 Da at position β-Cys-158. This mass can be attributed to either a dihydrobiliverdin (DHBV), mesobiliverdin (MBV), or bilin584 chromophore. The doubly linked bilin at position β-Cys-50 and β-Cys-61 could not be identified unequivocally but shares spectral features with DHBV. We found that Cr-PC577 possesses a novel chromophore composition with at least two different chromophores bound to the β-subunit. Overall, our data contribute to a better understanding of cryptophyte phycobiliproteins and furthermore raise the question on the biosynthetic pathway of cryptophyte chromophores.

  3. High-sensitivity neutron diffraction of membranes: Location of the Schiff base end of the chromophore of bacteriorhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Heyn, M.P.; Westerhausen, J.; Wallat, I.; Seiff, F. (Freie Universitaet Berlin (West Germany))

    1988-04-01

    Three important events in the functional cycle of bacteriorhodopsin occur at the chromophore: the primary absorption of light, the isomerization from the all-trans to the 13-cis form, and the deprotonation and reprotonation of its Schiff base. The protonated Schiff base linkage of the chromophore with lysine-216 plays an essential role in the color regulation of the pigment and is most likely directly involved in the charge translocation of this light-driven proton pump. Although much is known about the structure of the protein, the position of this key functional group has not yet been determined. The authors have synthesized a retinal in which the five protons closest to the Schiff base are replaced by deuterons. The labeled retinal was spontaneously incorporated into bacteriorhodopsin by using a mutant of Halobacterium halobium that is deficient in the synthesis of retinal. The position of the labeled Schiff base end of the chromophore was determined in the two-dimensional projected density of dark-adapted bacteriorhodopsin by neutron diffraction. The result fits very well with their previous work using retinals that were selectively deuterated in the middle of the polyene chain or in the cyclohexene ring. A coherent structure emerges with the three labeled positions on one line, separated by distances that are in good agreement with the tilt angle of the polyene chain (about 20{degree}). The results show that it is possible to locate a small group containing as few as five deuterons in a membrane protein of molecular weight 27,000.

  4. Photo-fragmentation and electron-detachment studies of gas-phase chromophore ions

    DEFF Research Database (Denmark)

    Rahbek, Dennis Bo

    During my time as a PhD-student I have worked on increasing our knowledge of biologically relevant photoactive proteins. More specifically, I have studied chromophores that are found within some of these proteins. Upon absorbing a photon, the chromophore initiates a process within the protein....... Depending on the function of the protein, this may result in human vision, emission of light at a higher wavelength, fluorescence, or harvesting of energy used as an energy source by bacteria, algae or plants. The interaction between these chromophores and the surrounding protein is crucial for fine...

  5. Phase sensitive spectral domain interferometry for label free biomolecular interaction analysis and biosensing applications

    Science.gov (United States)

    Chirvi, Sajal

    Biomolecular interaction analysis (BIA) plays vital role in wide variety of fields, which include biomedical research, pharmaceutical industry, medical diagnostics, and biotechnology industry. Study and quantification of interactions between natural biomolecules (proteins, enzymes, DNA) and artificially synthesized molecules (drugs) is routinely done using various labeled and label-free BIA techniques. Labeled BIA (Chemiluminescence, Fluorescence, Radioactive) techniques suffer from steric hindrance of labels on interaction site, difficulty of attaching labels to molecules, higher cost and time of assay development. Label free techniques with real time detection capabilities have demonstrated advantages over traditional labeled techniques. The gold standard for label free BIA is surface Plasmon resonance (SPR) that detects and quantifies the changes in refractive index of the ligand-analyte complex molecule with high sensitivity. Although SPR is a highly sensitive BIA technique, it requires custom-made sensor chips and is not well suited for highly multiplexed BIA required in high throughput applications. Moreover implementation of SPR on various biosensing platforms is limited. In this research work spectral domain phase sensitive interferometry (SD-PSI) has been developed for label-free BIA and biosensing applications to address limitations of SPR and other label free techniques. One distinct advantage of SD-PSI compared to other label-free techniques is that it does not require use of custom fabricated biosensor substrates. Laboratory grade, off-the-shelf glass or plastic substrates of suitable thickness with proper surface functionalization are used as biosensor chips. SD-PSI is tested on four separate BIA and biosensing platforms, which include multi-well plate, flow cell, fiber probe with integrated optics and fiber tip biosensor. Sensitivity of 33 ng/ml for anti-IgG is achieved using multi-well platform. Principle of coherence multiplexing for multi

  6. The fidelity of dynamic signaling by noisy biomolecular networks.

    Directory of Open Access Journals (Sweden)

    Clive G Bowsher

    Full Text Available Cells live in changing, dynamic environments. To understand cellular decision-making, we must therefore understand how fluctuating inputs are processed by noisy biomolecular networks. Here we present a general methodology for analyzing the fidelity with which different statistics of a fluctuating input are represented, or encoded, in the output of a signaling system over time. We identify two orthogonal sources of error that corrupt perfect representation of the signal: dynamical error, which occurs when the network responds on average to other features of the input trajectory as well as to the signal of interest, and mechanistic error, which occurs because biochemical reactions comprising the signaling mechanism are stochastic. Trade-offs between these two errors can determine the system's fidelity. By developing mathematical approaches to derive dynamics conditional on input trajectories we can show, for example, that increased biochemical noise (mechanistic error can improve fidelity and that both negative and positive feedback degrade fidelity, for standard models of genetic autoregulation. For a group of cells, the fidelity of the collective output exceeds that of an individual cell and negative feedback then typically becomes beneficial. We can also predict the dynamic signal for which a given system has highest fidelity and, conversely, how to modify the network design to maximize fidelity for a given dynamic signal. Our approach is general, has applications to both systems and synthetic biology, and will help underpin studies of cellular behavior in natural, dynamic environments.

  7. Stochastic Simulation of Biomolecular Networks in Dynamic Environments.

    Directory of Open Access Journals (Sweden)

    Margaritis Voliotis

    2016-06-01

    Full Text Available Simulation of biomolecular networks is now indispensable for studying biological systems, from small reaction networks to large ensembles of cells. Here we present a novel approach for stochastic simulation of networks embedded in the dynamic environment of the cell and its surroundings. We thus sample trajectories of the stochastic process described by the chemical master equation with time-varying propensities. A comparative analysis shows that existing approaches can either fail dramatically, or else can impose impractical computational burdens due to numerical integration of reaction propensities, especially when cell ensembles are studied. Here we introduce the Extrande method which, given a simulated time course of dynamic network inputs, provides a conditionally exact and several orders-of-magnitude faster simulation solution. The new approach makes it feasible to demonstrate-using decision-making by a large population of quorum sensing bacteria-that robustness to fluctuations from upstream signaling places strong constraints on the design of networks determining cell fate. Our approach has the potential to significantly advance both understanding of molecular systems biology and design of synthetic circuits.

  8. A fast mollified impulse method for biomolecular atomistic simulations

    Science.gov (United States)

    Fath, L.; Hochbruck, M.; Singh, C. V.

    2017-03-01

    Classical integration methods for molecular dynamics are inherently limited due to resonance phenomena occurring at certain time-step sizes. The mollified impulse method can partially avoid this problem by using appropriate filters based on averaging or projection techniques. However, existing filters are computationally expensive and tedious in implementation since they require either analytical Hessians or they need to solve nonlinear systems from constraints. In this work we follow a different approach based on corotation for the construction of a new filter for (flexible) biomolecular simulations. The main advantages of the proposed filter are its excellent stability properties and ease of implementation in standard softwares without Hessians or solving constraint systems. By simulating multiple realistic examples such as peptide, protein, ice equilibrium and ice-ice friction, the new filter is shown to speed up the computations of long-range interactions by approximately 20%. The proposed filtered integrators allow step sizes as large as 10 fs while keeping the energy drift less than 1% on a 50 ps simulation.

  9. Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions.

    Science.gov (United States)

    Seidel, Susanne A I; Dijkman, Patricia M; Lea, Wendy A; van den Bogaart, Geert; Jerabek-Willemsen, Moran; Lazic, Ana; Joseph, Jeremiah S; Srinivasan, Prakash; Baaske, Philipp; Simeonov, Anton; Katritch, Ilia; Melo, Fernando A; Ladbury, John E; Schreiber, Gideon; Watts, Anthony; Braun, Dieter; Duhr, Stefan

    2013-03-01

    Microscale thermophoresis (MST) allows for quantitative analysis of protein interactions in free solution and with low sample consumption. The technique is based on thermophoresis, the directed motion of molecules in temperature gradients. Thermophoresis is highly sensitive to all types of binding-induced changes of molecular properties, be it in size, charge, hydration shell or conformation. In an all-optical approach, an infrared laser is used for local heating, and molecule mobility in the temperature gradient is analyzed via fluorescence. In standard MST one binding partner is fluorescently labeled. However, MST can also be performed label-free by exploiting intrinsic protein UV-fluorescence. Despite the high molecular weight ratio, the interaction of small molecules and peptides with proteins is readily accessible by MST. Furthermore, MST assays are highly adaptable to fit to the diverse requirements of different biomolecules, such as membrane proteins to be stabilized in solution. The type of buffer and additives can be chosen freely. Measuring is even possible in complex bioliquids like cell lysate allowing close to in vivo conditions without sample purification. Binding modes that are quantifiable via MST include dimerization, cooperativity and competition. Thus, its flexibility in assay design qualifies MST for analysis of biomolecular interactions in complex experimental settings, which we herein demonstrate by addressing typically challenging types of binding events from various fields of life science.

  10. Biomolecular Evidence of Silk from 8,500 Years Ago.

    Science.gov (United States)

    Gong, Yuxuan; Li, Li; Gong, Decai; Yin, Hao; Zhang, Juzhong

    2016-01-01

    Pottery, bone implements, and stone tools are routinely found at Neolithic sites. However, the integrity of textiles or silk is susceptible to degradation, and it is therefore very difficult for such materials to be preserved for 8,000 years. Although previous studies have provided important evidence of the emergence of weaving skills and tools, such as figuline spinning wheels and osseous lamellas with traces of filament winding, there is a lack of direct evidence proving the existence of silk. In this paper, we explored evidence of prehistoric silk fibroin through the analysis of soil samples collected from three tombs at the Neolithic site of Jiahu. Mass spectrometry was employed and integrated with proteomics to characterize the key peptides of silk fibroin. The direct biomolecular evidence reported here showed the existence of prehistoric silk fibroin, which was found in 8,500-year-old tombs. Rough weaving tools and bone needles were also excavated, indicating the possibility that the Jiahu residents may possess the basic weaving and sewing skills in making textile. This finding may advance the study of the history of silk, and the civilization of the Neolithic Age.

  11. Nanoscale Biomolecular Detection Limit for Gold Nanoparticles Based on Near-Infrared Response

    Directory of Open Access Journals (Sweden)

    Mario D’Acunto

    2012-01-01

    Full Text Available Gold nanoparticles have been widely used during the past few years in various technical and biomedical applications. In particular, the resonance optical properties of nanometer-sized particles have been employed to design biochips and biosensors used as analytical tools. The optical properties of nonfunctionalized gold nanoparticles and core-gold nanoshells play a crucial role for the design of biosensors where gold surface is used as a sensing component. Gold nanoparticles exhibit excellent optical tunability at visible and near-infrared frequencies leading to sharp peaks in their spectral extinction. In this paper, we study how the optical properties of gold nanoparticles and core-gold nanoshells are changed as a function of different sizes, shapes, composition, and biomolecular coating with characteristic shifts towards the near-infrared region. We show that the optical tenability can be carefully tailored for particle sizes falling in the range 100–150 nm. The results should improve the design of sensors working at the detection limit.

  12. Biomolecular characterization of the levansucrase of Erwinia amylovora, a promising biocatalyst for the synthesis of fructooligosaccharides.

    Science.gov (United States)

    Caputi, Lorenzo; Nepogodiev, Sergey A; Malnoy, Mickael; Rejzek, Martin; Field, Robert A; Benini, Stefano

    2013-12-18

    Erwinia amylovora is a plant pathogen that affects Rosaceae, such as apple and pear. In E. amylovora the fructans, produced by the action of a levansucrase (EaLsc), play a role in virulence and biofilm formation. Fructans are bioactive compounds, displaying health-promoting properties in their own right. Their use as food and feed supplements is increasing. In this study, we investigated the biomolecular properties of EaLsc using HPAEC-PAD, MALDI-TOF MS, and spectrophotometric assays. The enzyme, which was heterologously expressed in Escherichia coli in high yield, was shown to produce mainly fructooligosaccharides (FOSs) with a degree of polymerization between 3 and 6. The kinetic properties of EaLsc were similar to those of other phylogenetically related Gram-negative bacteria, but the good yield of FOSs, the product spectrum, and the straightforward production of the enzyme suggest that EaLsc is an interesting biocatalyst for future studies aimed at producing tailor-made fructans.

  13. Potential-of-mean-force description of ionic interactions and structural hydration in biomolecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Hummer, G.; Garcia, A.E. [Los Alamos National Lab., NM (United States). Theoretical Biology and Biophysics Group; Soumpasis, D.M. [Max-Planck-Inst for Biophysical Chemistry, Goettingen (Germany). Biocomputation Group

    1994-10-01

    To understand the functioning of living organisms on a molecular level, it is crucial to dissect the intricate interplay of the immense number of biological molecules. Most of the biochemical processes in cells occur in a liquid environment formed mainly by water and ions. This solvent environment plays an important role in biological systems. The potential-of-mean-force (PMF) formalism attempts to describe quantitatively the interactions of the solvent with biological macromolecules on the basis of an approximate statistical-mechanical representation. At its current status of development, it deals with ionic effects on the biomolecular structure and with the structural hydration of biomolecules. The underlying idea of the PMF formalism is to identify the dominant sources of interactions and incorporate these interactions into the theoretical formalism using PMF`s (or particle correlation functions) extracted from bulk-liquid systems. In the following, the authors shall briefly outline the statistical-mechanical foundation of the PMF formalism and introduce the PMF expansion formalism, which is intimately linked to superposition approximations for higher-order particle correlation functions. The authors shall then sketch applications, which describe the effects of the ionic environment on nucleic-acid structure. Finally, the authors shall present the more recent extension of the PMF idea to describe quantitatively the structural hydration of biomolecules. Results for the interface of ice and water and for the hydration of deoxyribonucleic acid (DNA) will be discussed.

  14. Bridge- and Solvent-Mediated Intramolecular Electronic Communications in Ubiquinone-Based Biomolecular Wires

    Science.gov (United States)

    Liu, Xiao-Yuan; Ma, Wei; Zhou, Hao; Cao, Xiao-Ming; Long, Yi-Tao

    2015-05-01

    Intramolecular electronic communications of molecular wires play a crucial role for developing molecular devices. In the present work, we describe different degrees of intramolecular electronic communications in the redox processes of three ubiquinone-based biomolecular wires (Bis-CoQ0s) evaluated by electrochemistry and Density Functional Theory (DFT) methods in different solvents. We found that the bridges linkers have a significant effect on the electronic communications between the two peripheral ubiquinone moieties and solvents effects are limited and mostly depend on the nature of solvents. The DFT calculations for the first time indicate the intensity of the electronic communications during the redox processes rely on the molecular orbital elements VL for electron transfer (half of the energy splitting of the LUMO and LUMO+1), which is could be affected by the bridges linkers. The DFT calculations also demonstrates the effect of solvents on the latter two-electron transfer of Bis-CoQ0s is more significant than the former two electrons transfer as the observed electrochemical behaviors of three Bis-CoQ0s. In addition, the electrochemistry and theoretical calculations reveal the intramolecular electronic communications vary in the four-electron redox processes of three Bis-CoQ0s.

  15. Indirect readout in protein-peptide recognition: a different story from classical biomolecular recognition.

    Science.gov (United States)

    Yu, Hua; Zhou, Peng; Deng, Maolin; Shang, Zhicai

    2014-07-28

    Protein-peptide interactions are prevalent and play essential roles in many living activities. Peptides recognize their protein partners by direct nonbonded interactions and indirect adjustment of conformations. Although processes of protein-peptide recognition have been comprehensively studied in both sequences and structures recently, flexibility of peptides and the configuration entropy penalty in recognition did not get enough attention. In this study, 20 protein-peptide complexes and their corresponding unbound peptides were investigated by molecular dynamics simulations. Energy analysis revealed that configurational entropy penalty introduced by restriction of the degrees of freedom of peptides in indirect readout process of protein-peptide recognition is significant. Configurational entropy penalty has become the main content of the indirect readout energy in protein-peptide recognition instead of deformation energy which is the main source of the indirect readout energy in classical biomolecular recognition phenomena, such as protein-DNA binding. These results provide us a better understanding of protein-peptide recognition and give us some implications in peptide ligand design.

  16. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.125 degrees, Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  17. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  18. Temporal fluctuations in excimer-like interactions between pi-conjugated chromophores

    CERN Document Server

    Stangl, Thomas; Schmitz, Daniela; Remmerssen, Klaas; Henzel, Sebastian; Hoeger, Sigurd; Vogelsang, Jan; Lupton, John M

    2015-01-01

    Inter- or intramolecular coupling processes between chromophores such as excimer formation or H- and J-aggregation are crucial to describing the photophysics of closely packed films of conjugated polymers. Such coupling is highly distance dependent, and should be sensitive to both fluctuations in the spacing between chromophores as well as the actual position on the chromophore where the exciton localizes. Single-molecule spectroscopy reveals these intrinsic fluctuations in well-defined bi-chromophoric model systems of cofacial oligomers. Signatures of interchromophoric interactions in the excited state - spectral red-shifting and broadening, and a slowing of photoluminescence decay - correlate with each other but scatter strongly between single molecules, implying an extraordinary distribution in coupling strengths. Furthermore, these excimer-like spectral fingerprints vary with time, revealing intrinsic dynamics in the coupling strength within one single dimer molecule, which constitutes the starting point ...

  19. Mechanisms of Formation and Structure of Chromophores of Fluorescent Proteins from Anthoza Species

    Science.gov (United States)

    2005-03-01

    chromophore structure……………………....……………20 Task 6. Isolation of chromophore-bearing peptides from cgCP and gtCP…………………..20 Task 7. Aminoacid ...22 Concluding remarks on gtCP chromophore structure……………………………………………24 Task 7. Aminoacid sequence determination of cgCP chromophore-bearing...side chain by A65G substitution………………....26 The nature of the side chain of aminoacid 65 determines the extent of fragmentation…….........27 Task 9

  20. Photobleaching Kinetics of Chromophoric Dissolved Organic Matter Derived from Mangrove Leaf Litter and Floating Sargassum Colonies

    Science.gov (United States)

    We examined the photoreactivity of chromophoric dissolved organic matter (CDOM) derived from Rhizophora mangle (red mangrove) leaf litter and floating Sargassum colonies as these marine plants can be important contributors to coastal and open ocean CDOM pools, respectively. Mangr...

  1. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.125 degrees, East US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  2. Photo-fragmentation and electron-detachment studies of gas-phase chromophore ions

    DEFF Research Database (Denmark)

    Rahbek, Dennis Bo

    -physical properties of two important bio-chromophores by investigating the properties of structural isomers of these molecules. The chromophores are the ones found in the green fluorescent protein and the photoactive yellow protein. The photo-physical properties have been studied experimentally in the gas phase...... excitation energy. This results in a competition between de-excitation by internal conversion and electron emission. Both of these processes are of non-adiabatic character as they rely on coupling between electronic energy and energy in nuclear motion. Moreover, it is found that higher-lying states...... in the anionic forms serves as ‘doorway’- states into the continuum of the neutral radical. Regarding the structural isomeric forms of each of the chromophores we find that the degree of electronic coupling between the subunitsmaking up the chromophores is crucial for the tuning the absorption properties, both...

  3. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  4. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.125 degrees, Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  5. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.125 degrees, East US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  6. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  7. Assembly of Agrobacterium phytochromes Agp1 and Agp2 with doubly locked bilin chromophores.

    Science.gov (United States)

    Inomata, Katsuhiko; Khawn, Htoi; Chen, Li-Yi; Kinoshita, Hideki; Zienicke, Benjamin; Molina, Isabel; Lamparter, Tilman

    2009-03-31

    The natural chromophore of most bacterial and fungal phytochromes is biliverdin (BV), which is incorporated in a covalent manner into the protein. Upon photoconversion between the red light-absorbing form Pr and the far-red light-absorbing form Pfr, the stereochemistry of the chromophore around the C15 methine bridge changes from Z anti to E anti. Recombinant phytochromes Agp1 and Agp2 from Agrobacterium tumefaciens were assembled with a set of synthetic chromophores, including 2,18-Et-BV, 3,18-Et-BV, and the doubly locked 5Ea15Ea-BV, 5Es15Ea-BV, 5Za15Ea-BV, and 5Zs15Ea-BV. In all chromophores, covalent bond formation is restricted. As shown by spectral changes and desalting column separation, all chromophores are bound to Agp1 and Agp2. Adducts with 2,18-Et-BV and 3,18-Et-BV undergo normal photoconversion between Pr and Pfr. As opposed to typical phytochromes, the BV-Agp2 adduct converts from Pr to Pfr in darkness. However, the 2,18-Et-BV-Agp2 and 3,18-Et-BV-Agp2 adducts can undergo dark conversion from Pr to Pfr and Pfr to Pr, showing that ring A of the chromophore has a direct impact on the direction of dark conversion. The doubly locked chromophores were designed to probe for the stereochemistry of the C5 methine bridge in the Pfr form. The adducts with 5Es15Ea-BV and 5Zs15Ea-BV absorbed in the blue spectral range only. Therefore, the C5 E syn and Z syn stereochemistries are unlikely for the Pfr chromophore of Agp1 and Agp2. According to our spectra, the Agp2 chromophore most likely adopts an E anti stereochemistry at its C5 methine bridge. Thus, during Pr to Pfr conversion, the C5 methine bridge of the chromophore might undergo a Hula-twist isomerization. In Agp1, the Pfr chromophore is most likely in the C5 Z anti stereochemistry. We propose that the stereochemistry of the C5 methine bridge might differ between different phytochromes, most particularly in the Pfr form.

  8. Chromophore conformational analysis in phycocyanin and in related chromopeptides by surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Debreczeny, M; Gombos, Z; Csizmadia, V; Várkonyi, Z; Szalontai, B

    1989-03-31

    Chromopeptides got from phycocyanin by proteolytic digestion do not preserve the extended chromophore conformations characteristic to the native protein. Chromophore conformations in the chromopeptides showed heterogenity varying between completely folded and semi-extended states. Indications were found that the silver sol-phycocyanin interaction involves the UV electronic transition of the biliprotein which may explain why the visible excited surface enhanced Raman spectra were similar not to the visible excited but to the UV-excited resonance Raman spectrum of phycocyanin.

  9. Assembly of synthetic locked chromophores with agrobacterium phytochromes Agp1 and Agp2.

    Science.gov (United States)

    Inomata, Katsuhiko; Noack, Steffi; Hammam, Mostafa A S; Khawn, Htoi; Kinoshita, Hideki; Murata, Yasue; Michael, Norbert; Scheerer, Patrick; Krauss, Norbert; Lamparter, Tilman

    2006-09-22

    Phytochromes are photoreceptors with a bilin chromophore in which light triggers the conversion between the red-absorbing form Pr and the far-red-absorbing form Pfr. Agrobacterium tumefaciens has two phytochromes, Agp1 and Agp2, with antagonistic properties: in darkness, Agp1 converts slowly from Pfr to Pr, whereas Agp2 converts slowly from Pr to Pfr. In a previous study, we have assembled Agp1 with synthetic locked chromophores 15Za, 15Zs, 15Ea, and 15Es in which the C15=C16 double bond is fixed in either the E or Z configuration and the C14-C15 single bond is fixed in either the syn (s) or anti (a) conformation. In the present study, the locked chromophores 5Za and 5Zs were used for assembly with Agp1; in these chromophores, the C4=C5 double bond is fixed in the Z configuration, and the C5-C6 single bond is fixed in either the syn or anti conformation. All locked chromophores were also assembled with Agp2. The data showed that in both phytochromes the Pr chromophore adopts a C4=C5 Z C5-C6 syn C15=C16 Z C14-C15 anti stereochemistry and that in the Pfr chromophore the C15=C16 double bond has isomerized to the E configuration, whereas the C14-C15 single bond remains in the anti conformation. Photoconversion shifted the absorption maxima of the 5Zs adducts to shorter wavelengths, whereas the 5Za adducts were shifted to longer wavelengths. Thus, the C5-C6 single bond of the Pfr chromophore is rather in an anti conformation, supporting the previous suggestion that during photoconversion of phytochromes, a rotation around the ring A-B connecting single bond occurs.

  10. 1,3-Diphenylisobenzofuran: a Model Chromophore for Singlet Fission

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Justin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Michl, Josef [University of Colorado; Academy of Sciences of the Czech Republic

    2017-09-11

    In this review we first provide an introductory description of the singlet fission phenomenon and then describe the ground and electronically excited states of the parent 1,3-diphenylisobenzofuran chromophore (1) and about a dozen of its derivatives. A discussion of singlet fission in thin polycrystalline layers of these materials follows. The highest quantum yield of triplet formation by singlet fission, 200% at 80 K, is found in one of the two known crystal modification of the parent. In the other modification and in many derivatives, excimer formation competes successfully and triplet yields are low. A description of solution photophysics of covalent dimers is described in the next section. Triplet yields are very low, but interesting phenomena are uncovered. One is an observation of a separated-charges (charge-transfer) intermediate in highly polar solvents. The other is an observation of excitation isomerism in both singlet and triplet states, where in one isomer the excitation is delocalized over both halves of the covalent dimer, whereas in the other it is localized on one of the halves. In the last section we present the operation of a simple device illustrating the use of triplets generated by singlet fission for charge separation.

  11. Nuclear Wavepacket Propogation Model for the Retinal Chromophore in Rhodopsin

    Science.gov (United States)

    Corn, Brittany; Malinovskaya, Svetlana

    2009-05-01

    Rhodopsin, consisting of a retinal chromophore and a protein opsin, is responsible for the first steps in the vision process through a cis to trans photoisomerization, which is completed within 200 fs[1]. Efforts to control the ultrafast dynamics of this molecule have been carried out experimentally[2] as well as through quantum mechanical modeling of nuclear wave packet propagation[3]. We propose a two state model in which the ground electronic Potential Energy Surface (PES) is made up of two adjacent harmonic potentials, representing the cis and trans retinal saddle points, as well as an excited PES, characterized by the Morse potential, which meets the ground PES at a conical intersection. We explore the achievement of a high quantum yield of the trans retinal configuration by varying parameters of the external field and choosing the most adequate shape. Another investigation is presented in which we compare the charge distribution of cis and trans retinal in order to reveal a charge transfer mechanism behind the isomerization of rhodopsin. The results of the Lowdin and Natural Population Analyses demonstrate a significant transfer of charge in and around the isomerization region. [1] RW Schoenlein, LA Peteanu, RA Mathies, CV Shank, Science 254, 412 (1991) [2] VI Prokhorenko, AM Nagy, SA Waschuk, LS Brown, RR Birge, RJD Miller, Science 313, 1257 (2006) [3] S Hahn, G Stock, Chem Phys 259, 297-312 (2000)

  12. Computational methods to study the structure and dynamics of biomolecules and biomolecular processes from bioinformatics to molecular quantum mechanics

    CERN Document Server

    2014-01-01

    Since the second half of the 20th century machine computations have played a critical role in science and engineering. Computer-based techniques have become especially important in molecular biology, since they often represent the only viable way to gain insights into the behavior of a biological system as a whole. The complexity of biological systems, which usually needs to be analyzed on different time- and size-scales and with different levels of accuracy, requires the application of different approaches, ranging from comparative analysis of sequences and structural databases, to the analysis of networks of interdependence between cell components and processes, through coarse-grained modeling to atomically detailed simulations, and finally to molecular quantum mechanics. This book provides a comprehensive overview of modern computer-based techniques for computing the structure, properties and dynamics of biomolecules and biomolecular processes. The twenty-two chapters, written by scientists from all over t...

  13. Bases biomoleculares do fotoenvelhecimento Molecular basis of photoaging

    Directory of Open Access Journals (Sweden)

    Suelen Montagner

    2009-07-01

    Full Text Available Com o aumento da expectativa de vida, o estudo do processo de envelhecimento orgânico tem sido estimulado. O envelhecimento da pele, órgão que espelha os sinais do tempo, é processo de deterioração progressiva, tempo-dependente, e pode ser intensificado pela exposição solar, então designado fotoenvelhecimento. O dano das radiações sobre diversas estruturas celulares e cutâneas leva a alterações morfológicas nesses componentes, fruto de modificações biomoleculares. Muitas pesquisas são desenvolvidas com o intuito de combater ou minimizar os efeitos do fotoenvelhecimento, porém a principal estratégia nesse sentido continua sendo a prevenção, só conseguida pelo progressivo desvendar dos mecanismos fisiopatogênicos envolvidos nesse processo.As a result of the increase in life expectancy, the study of the organic process of aging has been stimulated. Skin ageing, which reflects the signs of time, is a time-dependent process of progressive deterioration that can be intensified by sun exposure, which is known as photoaging. The damage of radiation on various cell structures and on the skin results in molecular and morphological changes to these components. Many research studies are performed to try to minimize the effects of photoaging; however, the main strategy to manage it is still prevention, which will only be achieved once we learn about the mechanisms involved in the process.

  14. Biomolecular detection using a metal semiconductor field effect transistor

    Science.gov (United States)

    Estephan, Elias; Saab, Marie-Belle; Buzatu, Petre; Aulombard, Roger; Cuisinier, Frédéric J. G.; Gergely, Csilla; Cloitre, Thierry

    2010-04-01

    In this work, our attention was drawn towards developing affinity-based electrical biosensors, using a MESFET (Metal Semiconductor Field Effect Transistor). Semiconductor (SC) surfaces must be prepared before the incubations with biomolecules. The peptides route was adapted to exceed and bypass the limits revealed by other types of surface modification due to the unwanted unspecific interactions. As these peptides reveal specific recognition of materials, then controlled functionalization can be achieved. Peptides were produced by phage display technology using a library of M13 bacteriophage. After several rounds of bio-panning, the phages presenting affinities for GaAs SC were isolated; the DNA of these specific phages were sequenced, and the peptide with the highest affinity was synthesized and biotinylated. To explore the possibility of electrical detection, the MESFET fabricated with the GaAs SC were used to detect the streptavidin via the biotinylated peptide in the presence of the bovine Serum Albumin. After each surface modification step, the IDS (current between the drain and the source) of the transistor was measured and a decrease in the intensity was detected. Furthermore, fluorescent microscopy was used in order to prove the specificity of this peptide and the specific localisation of biomolecules. In conclusion, the feasibility of producing an electrical biosensor using a MESFET has been demonstrated. Controlled placement, specific localization and detection of biomolecules on a MESFET transistor were achieved without covering the drain and the source. This method of functionalization and detection can be of great utility for biosensing application opening a new way for developing bioFETs (Biomolecular Field-Effect Transistor).

  15. Bridging Nano- and Microtribology in Mechanical and Biomolecular Layers

    Science.gov (United States)

    Tomala, Agnieszka; Göçerler, Hakan; Gebeshuber, Ille C.

    The physical and chemical composition of surfaces determine various important properties of solids such as corrosion rates, adhesive properties, frictional properties, catalytic activity, wettability, contact potential and - finally and most importantly - failure mechanisms. Very thin, weak layers (of man-made and biological origin) on much harder substrates that reduce friction are the focus of the micro- and nanotribological investigations presented in this chapter.Biomolecular layers fulfil various functions in organs of the human body. Examples comprise the skin that provides a protective physical barrier between the body and the environment, preventing unwanted inward and outward passage of water and electrolytes, reducing penetration by destructive chemicals, arresting the penetration of microorganisms and external antigens and absorbing radiation from the sun, or the epithelium of the cornea that blocks the passage of foreign material, such as dust, water and bacteria, into the eye and that contributes to the lubrication layer that ensures smooth movement of the eyelids over the eyeballs.Monomolecular thin films, additive-derived reaction layers and hard coatings are widely used to tailor tribological properties of surfaces. Nanotribological investigations on these substrates can reveal novel properties regarding the orientation of chemisorbed additive layers, development of rubbing films with time and the relation of frictional properties to surface characteristics in diamond coatings.Depending on the questions to be answered with the tribological research, various micro- and nanotribological measurement methods are applied, including scanning probe microscopy (AFM, FFM), scanning electron microscopy, microtribometer investigations, angle-resolved photoelectron spectroscopy and optical microscopy. Thoughts on the feasibility of a unified approach to energy-dissipating systems and how it might be reached (touching upon new ways of scientific publishing

  16. Chromophore-Assisted Light Inactivation of Mitochondrial Electron Transport Chain Complex II in Caenorhabditis elegans

    Science.gov (United States)

    Wojtovich, Andrew P.; Wei, Alicia Y.; Sherman, Teresa A.; Foster, Thomas H.; Nehrke, Keith

    2016-01-01

    Mitochondria play critical roles in meeting cellular energy demand, in cell death, and in reactive oxygen species (ROS) and stress signaling. Most Caenorhabditis elegans loss-of-function (lf) mutants in nuclear-encoded components of the respiratory chain are non-viable, emphasizing the importance of respiratory function. Chromophore-Assisted Light Inactivation (CALI) using genetically-encoded photosensitizers provides an opportunity to determine how individual respiratory chain components contribute to physiology following acute lf. As proof-of-concept, we expressed the ‘singlet oxygen generator’ miniSOG as a fusion with the SDHC subunit of respiratory complex II, encoded by mev-1 in C. elegans, using Mos1-mediated Single Copy Insertion. The resulting mev-1::miniSOG transgene complemented mev-1 mutant phenotypes in kn1 missense and tm1081(lf) deletion mutants. Complex II activity was inactivated by blue light in mitochondria from strains expressing active miniSOG fusions, but not those from inactive fusions. Moreover, light-inducible phenotypes in vivo demonstrated that complex II activity is important under conditions of high energy demand, and that specific cell types are uniquely susceptible to loss of complex II. In conclusion, miniSOG-mediated CALI is a novel genetic platform for acute inactivation of respiratory chain components. Spatio-temporally controlled ROS generation will expand our understanding of how the respiratory chain and mitochondrial ROS influence whole organism physiology. PMID:27440050

  17. Investigation of chromophore-chromophore interaction by electro-optic measurements, linear dichroism, x-ray scattering, and density-functional calculations

    DEFF Research Database (Denmark)

    Apitz, Dirk; Bertram, R.P.; Benter, N.;

    2005-01-01

    Free-beam interferometry and angle-resolved absorption spectra are used to investigate the linear electro-optic coefficients and the linear dichroism in photoaddressable bis-azo copolymer thin films. From the first- and second order parameters deduced, the chromophore orientation distribution is ...

  18. Mining, modeling, and evaluation of subnetworks from large biomolecular networks and its comparison study.

    Science.gov (United States)

    Hu, Xiaohua; Ng, Michael; Wu, Fang-Xiang; Sokhansanj, Bahrad A

    2009-03-01

    In this paper, we present a novel method to mine, model, and evaluate a regulatory system executing cellular functions that can be represented as a biomolecular network. Our method consists of two steps. First, a novel scale-free network clustering approach is applied to such a biomolecular network to obtain various subnetworks. Second, computational models are generated for the subnetworks and simulated to predict their behavior in the cellular context. We discuss and evaluate some of the advanced computational modeling approaches, in particular, state-space modeling, probabilistic Boolean network modeling, and fuzzy logic modeling. The modeling and simulation results represent hypotheses that are tested against high-throughput biological datasets (microarrays and/or genetic screens) under normal and perturbation conditions. Experimental results on time-series gene expression data for the human cell cycle indicate that our approach is promising for subnetwork mining and simulation from large biomolecular networks.

  19. Recent applications of AC electrokinetics in biomolecular analysis on microfluidic devices.

    Science.gov (United States)

    Sasaki, Naoki

    2012-01-01

    AC electrokinetics is a generic term that refers to an induced motion of particles and fluids under nonuniform AC electric fields. The AC electric fields are formed by application of AC voltages to microelectrodes, which can be easily integrated into microfluidic devices by standard microfabrication techniques. Moreover, the magnitude of the motion is large enough to control the mass transfer on the devices. These advantages are attractive for biomolecular analysis on the microfluidic devices, in which the characteristics of small space and microfluidics have been mainly employed. In this review, I describe recent applications of AC electrokinetics in biomolecular analysis on microfluidic devices. The applications include fluid pumping and mixing by AC electrokinetic flow, and manipulation of biomolecules such as DNA and proteins by various AC electrokinetic techniques. Future prospects for highly functional biomolecular analysis on microfluidic devices with the aid of AC electrokinetics are also discussed.

  20. Effects of modified chromophores on the spectral sensitivity of salamander, squirrel and macaque cones.

    Science.gov (United States)

    Makino, C L; Kraft, T W; Mathies, R A; Lugtenburg, J; Miley, M E; van der Steen, R; Baylor, D A

    1990-05-01

    1. Chemically modified retinal chromophores were used to investigate the mechanisms that produce the characteristic spectral absorptions of cone pigments. Spectral sensitivities of single cones from the salamander, squirrel and macaque retina were determined by electrical recording. The chromophore was then replaced by bleaching the pigment and regenerating it with a retinal analogue. 2. Exposing a bleached cone to 9-cis-retinal for a brief period (less than 20 min) caused its flash sensitivity to recover to about 0.2 of the pre-bleach value. Similar exposure to a locked 6-s-cis, 9-cis analogue gave a recovery to about 0.03 of the pre-bleach value. 3. Unlike the flash sensitivity, the saturating photocurrent amplitude often recovered completely after bleaching and regenerating the pigment. 4. When the 3-dehydroretinal chromophore in the salamander long-wavelength-sensitive (red) cone was replaced with 11-cis-retinal, shortening the conjugated chain in the chromophore, the spectral sensitivity underwent a blue shift of 67 nm. 5. Pigments containing the planar-locked 6-s-cis.9-cis-retinal analogue absorbed at substantially longer wavelength than those containing unmodified 9-cis-retinal. The opsin shift, a measure of the protein's ability to modify the chromophore's absorption was larger for the locked analogue than for 9-cis-retinal. This suggests that the native chromophore assumes a twisted 6-s-cis conformation in these pigments. 6. The spectral sensitivities of red and green macaque cones containing 9-cis-retinal or planar-locked 6-s-cis.9-cis-retinal retained the 30 nm separation characteristic of the native pigments. This suggests that the different absorptions of of the 6-7 carbon bond in the retinal chromophore.

  1. Fragmentation patterns of Chromophore-Tagged Peptides in Visible Laser Induced Dissociation.

    Science.gov (United States)

    Garcia, Lény; Lemoine, Jérôme; Dugourd, Philippe; Girod, Marion

    2017-09-08

    Tandem mass spectrometry (MS/MS) is the pivotal tool for protein structural characterization and quantification. Identification relies on the fragmentation step of tryptic peptides in bottom-up strategy. Specificity of fragmentation can be obtained using laser induced dissociation (LID) in the visible range, after tagging of the targeted peptides with an adequate chromophore. Backbone fragmentation is required to obtain specific fragments and confident identification. We present herein a study of fragmentation patterns of chromophore-tagged peptides in LID, showing the potential of LID methodology to provide the maximum of fragments for further identification and quantification. 401 cysteine-containing tryptic peptides coming from the human proteome were derivatizated on the thiol group of cysteine with a Dabcyl maleimide chromophore, which has a high photo-absorption cross section at 473 nm. The derivatized peptides were then analyzed by LID at 473 nm on a Q Exactive instrument. LID spectra present a characteristic fragment at m/z 252.112 for all precursors. This product ion arises from the internal dissociation of the dabcyl chromophore. Several peptide-backbone fragment ions are also detected. Results show the quasi absence of fragmentation at the cysteine site. This indicates that part of the energy must be redistributed across the entire system despite excitation initially localized at the chromophore. Indeed, the fragmentation mainly occurs at 3 to 5 amino acids from the derivatized cysteine residue. LID of derivatized cysteine-containing peptides displays the initial fragmentation of the chromophore. As energy is redistributed all along the peptide sequence, fragmentation of the peptide backbone is also observed. Thus, LID of chromophore-tagged peptides produces adequate fragment ions, allowing both good sequence coverage for a greater confidence of identification, and a large choice of transitions for specific quantification. This article is protected by

  2. iBIOMES: managing and sharing biomolecular simulation data in a distributed environment.

    Science.gov (United States)

    Thibault, Julien C; Facelli, Julio C; Cheatham, Thomas E

    2013-03-25

    Biomolecular simulations, which were once batch queue or compute limited, have now become data analysis and management limited. In this paper we introduce a new management system for large biomolecular simulation and computational chemistry data sets. The system can be easily deployed on distributed servers to create a mini-grid at the researcher's site. The system not only offers a simple data deposition mechanism but also a way to register data into the system without moving the data from their original location. Any registered data set can be searched and downloaded using a set of defined metadata for molecular dynamics and quantum mechanics and visualized through a dynamic Web interface.

  3. Engineering intracellular active transport systems as in vivo biomolecular tools.

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, George David; Carroll-Portillo, Amanda

    2006-11-01

    Active transport systems provide essential functions in terms of cell physiology and metastasis. These systems, however, are also co-opted by invading viruses, enabling directed transport of the virus to and from the cell's nucleus (i.e., the site of virus replication). Based on this concept, fundamentally new approaches for interrogating and manipulating the inner workings of living cells may be achievable by co-opting Nature's active transport systems as an in vivo biomolecular tool. The overall goal of this project was to investigate the ability to engineer kinesin-based transport systems for in vivo applications, specifically the collection of effector proteins (e.g., transcriptional regulators) within single cells. In the first part of this project, a chimeric fusion protein consisting of kinesin and a single chain variable fragment (scFv) of an antibody was successfully produced through a recombinant expression system. The kinesin-scFv retained both catalytic and antigenic functionality, enabling selective capture and transport of target antigens. The incorporation of a rabbit IgG-specific scFv into the kinesin established a generalized system for functionalizing kinesin with a wide range of target-selective antibodies raised in rabbits. The second objective was to develop methods of isolating the intact microtubule network from live cells as a platform for evaluating kinesin-based transport within the cytoskeletal architecture of a cell. Successful isolation of intact microtubule networks from two distinct cell types was demonstrated using glutaraldehyde and methanol fixation methods. This work provides a platform for inferring the ability of kinesin-scFv to function in vivo, and may also serve as a three-dimensional scaffold for evaluating and exploiting kinesin-based transport for nanotechnological applications. Overall, the technology developed in this project represents a first-step in engineering active transport system for in vivo

  4. Output-input ratio in thermally fluctuating biomolecular machines.

    Science.gov (United States)

    Kurzynski, Michal; Torchala, Mieczyslaw; Chelminiak, Przemyslaw

    2014-01-01

    Biological molecular machines are proteins that operate under isothermal conditions and hence are referred to as free energy transducers. They can be formally considered as enzymes that simultaneously catalyze two chemical reactions: the free energy-donating (input) reaction and the free energy-accepting (output) one. Most if not all biologically active proteins display a slow stochastic dynamics of transitions between a variety of conformational substates composing their native state. This makes the description of the enzymatic reaction kinetics in terms of conventional rate constants insufficient. In the steady state, upon taking advantage of the assumption that each reaction proceeds through a single pair (the gate) of transition conformational substates of the enzyme-substrates complex, the degree of coupling between the output and the input reaction fluxes has been expressed in terms of the mean first-passage times on a conformational transition network between the distinguished substates. The theory is confronted with the results of random-walk simulations on the five-dimensional hypercube. The formal proof is given that, for single input and output gates, the output-input degree of coupling cannot exceed unity. As some experiments suggest such exceeding, looking for the conditions for increasing the degree of coupling value over unity challenges the theory. Performed simulations of random walks on several model networks involving more extended gates indicate that the case of the degree of coupling value higher than 1 is realized in a natural way on critical branching trees extended by long-range shortcuts. Such networks are scale-free and display the property of the small world. For short-range shortcuts, the networks are scale-free and fractal, representing a reasonable model for biomolecular machines displaying tight coupling, i.e., the degree of coupling equal exactly to unity. A hypothesis is stated that the protein conformational transition networks, as

  5. The terminal phycobilisome emitter, LCM: A light-harvesting pigment with a phytochrome chromophore.

    Science.gov (United States)

    Tang, Kun; Ding, Wen-Long; Höppner, Astrid; Zhao, Cheng; Zhang, Lun; Hontani, Yusaku; Kennis, John T M; Gärtner, Wolfgang; Scheer, Hugo; Zhou, Ming; Zhao, Kai-Hong

    2015-12-29

    Photosynthesis relies on energy transfer from light-harvesting complexes to reaction centers. Phycobilisomes, the light-harvesting antennas in cyanobacteria and red algae, attach to the membrane via the multidomain core-membrane linker, L(CM). The chromophore domain of L(CM) forms a bottleneck for funneling the harvested energy either productively to reaction centers or, in case of light overload, to quenchers like orange carotenoid protein (OCP) that prevent photodamage. The crystal structure of the solubly modified chromophore domain from Nostoc sp. PCC7120 was resolved at 2.2 Å. Although its protein fold is similar to the protein folds of phycobiliproteins, the phycocyanobilin (PCB) chromophore adopts ZZZssa geometry, which is unknown among phycobiliproteins but characteristic for sensory photoreceptors (phytochromes and cyanobacteriochromes). However, chromophore photoisomerization is inhibited in L(CM) by tight packing. The ZZZssa geometry of the chromophore and π-π stacking with a neighboring Trp account for the functionally relevant extreme spectral red shift of L(CM). Exciton coupling is excluded by the large distance between two PCBs in a homodimer and by preservation of the spectral features in monomers. The structure also indicates a distinct flexibility that could be involved in quenching. The conclusions from the crystal structure are supported by femtosecond transient absorption spectra in solution.

  6. Performance of DFT Methods in the Calculation of Optical Spectra of TCF-Chromophores.

    Science.gov (United States)

    Andzelm, Jan; Rinderspacher, Berend C; Rawlett, Adam; Dougherty, Joseph; Baer, Roi; Govind, Niranjan

    2009-10-13

    We present electronic structure calculations of the ultraviolet/visible (UV-vis) spectra of highly active push-pull chromophores containing the tricyanofuran (TCF) acceptor group. In particular, we have applied the recently developed long-range corrected Baer-Neuhauser-Livshits (BNL) exchange-correlation functional. The performance of this functional compares favorably with other density functional theory (DFT) approaches, including the CAM-B3LYP functional. The accuracy of UV-vis results for these molecules is best at low values of attenuation parameters (γ) for both BNL and CAM-B3LYP functionals. The optimal value of γ is different for the charge-transfer (CT) and π-π* excitations. The BNL and PBE0 exchange correlation functionals capture the CT states particularly well, while the π-π* excitations are less accurate and system dependent. Chromophore conformations, which considerably affect the molecular hyperpolarizability, do not significantly influence the UV-vis spectra on average. As expected, the color of chromophores is a sensitive function of modifications to its conjugated framework and is not significantly affected by increasing aliphatic chain length linking a chromophore to a polymer. For selected push-pull aryl-chromophores, we find a significant dependence of absorption spectra on the strength of diphenylaminophenyl donors.

  7. Photophysics of organometallic platinum(II) derivatives of the diketopyrrolopyrrole chromophore

    KAUST Repository

    Goswami, Subhadip

    2014-12-18

    A pair of diketopyrrolopyrrole (DPP) chromophores that are end-functionalized with platinum containing "auxochromes" were subjected to electrochemical and photophysical study. The chromophores contain either platinum acetylide or ortho-metalated 2-thienylpyridinyl(platinum) end-groups (DPP-Pt(CC) and DPP-Pt(acac), respectively). The ground state redox potentials of the chromophores were determined by solution electrochemistry, and the HOMO and LUMO levels were estimated. The chromophores\\' photophysical properties were characterized by absorption, photoluminescence, and time-resolved absorption spectroscopy on time scales from sub-picoseconds to microseconds. Density functional theory (DFT) computations were performed to understand the molecular orbitals involved in both the singlet and triplet excited state photophysics. The results reveal that in both platinum DPP derivatives the organometallic auxochromes have a significant effect on the chromophores\\' photophysics. The most profound effect is a reduction in the fluorescence yields accompanied by enhanced triplet yields due to spin-orbit coupling induced by the metal centers. The effects are most pronounced in DPP-Pt(acac), indicating that the orthometalated platinum auxochrome is able to induce spin-orbital coupling to a greater extent compared to the platinum acetylide units. (Figure Presented).

  8. Revealing Brown Carbon Chromophores Produced in Reactions of Methylglyoxal with Ammonium Sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Peng; Laskin, Julia; Nizkorodov, Sergey A.; Laskin, Alexander

    2015-12-15

    Atmospheric brown carbon (BrC) is an important contributor to light absorption and climate forcing by aerosols. Reactions between small water-soluble carbonyls and ammonia or amines have been identified as one of the potential pathways of BrC formation. However, detailed chemical characterization of BrC chromophores has been challenging and their formation mechanisms are still poorly understood. Understanding BrC formation is impeded by the lack of suitable methods which can unravel the variability and complexity of BrC mixtures. This study applies high performance liquid chromatography (HPLC) coupled to photodiode array (PDA) detector and high resolution mass spectrometry (HRMS) to investigate optical properties and chemical composition of individual BrC components produced through reactions of methylglyoxal (MG) and ammonium sulfate (AS), both of which are abundant in the atmospheric environment. A direct relationship between optical properties and chemical composition of 30 major BrC chromophores was established. Nearly all of these chromophores are nitrogen-containing compounds that account for >70% of the overall light absorption by the MG+AS system in the 300-500 nm range. These results suggest that reduced-nitrogen organic compounds formed in reactions between atmospheric carbonyls and ammonia/amines are important BrC chromophores. It is also demonstrated that improved separation of BrC chromophores by HPLC will significantly advance understanding of BrC chemistry.

  9. Simulation of femtosecond “double-slit” experiments for a chromophore in a dissipative environment

    Energy Technology Data Exchange (ETDEWEB)

    Gelin, M. F.; Domcke, W. [Department of Chemistry, Technische Universität München, Garching D-85747 (Germany); Tanimura, Y. [Department of Chemistry, Technische Universität München, Garching D-85747 (Germany); Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)

    2013-12-07

    We performed simulations of the prototypical femtosecond “double-slit” experiment with strong pulsed laser fields for a chromophore in solution. The chromophore is modeled as a system with two electronic levels and a single Franck-Condon active underdamped vibrational mode. All other (intra- and inter-molecular) vibrational modes are accounted for as a thermal bath. The system-bath coupling is treated in a computationally accurate manner using the hierarchy equations of motion approach. The double-slit signal is evaluated numerically exactly without invoking perturbation theory in the matter-field interaction. We show that the strong-pulse double-slit signal consists of a superposition of N-wave-mixing (N = 2, 4, 6…) responses and can be split into population and coherence contributions. The former reveals the dynamics of vibrational wave packets in the ground state and the excited electronic state of the chromophore, while the latter contains information on the dephasing of electronic coherences of the chromophore density matrix. We studied the influence of heat baths with different coupling strengths and memories on the double-slit signal. Our results show that the double-slit experiment performed with strong (nonperturbative) pulses yields substantially more information on the photoinduced dynamics of the chromophore than the weak-pulse experiment, in particular, if the bath-induced dephasings are fast.

  10. Plasmon Resonance Energy Transfer: Coupling between Chromophore Molecules and Metallic Nanoparticles.

    Science.gov (United States)

    Cao, Yue; Xie, Tao; Qian, Ruo-Can; Long, Yi-Tao

    2017-01-01

    Plasmon resonance energy transfer (PRET) from a single metallic nanoparticle to the molecules adsorbed on its surface has attracted more and more attentions in recent years. Here, a molecular beacon (MB)-regulated PRET coupling system composed of gold nanoparticles (GNPs) and chromophore molecules has been designed to study the influence of PRET effect on the scattering spectra of GNPs. In this system, the chromophore molecules are tagged to the 5'-end of MB, which can form a hairpin structure and modified on the surface of GNPs by its thiol-labeled 3'-end. Therefore, the distance between GNPs and chromophore molecules can be adjusted through the open and close of the MB loop. From the peak shift, the PRET interactions of different GNPs-chromophore molecules coupling pairs have been calculated by discrete dipole approximation and the fitting results match well with the experimental data. Therefore, the proposed system has been successfully applied for the analysis of PRET situation between various metallic nanoparticles and chromophore molecules, and provides a useful tool for the potential application in screening the PRET-based nanoplasmonic sensors.

  11. Cooperative TPA enhancement via through-space interactions in organic nanodots built from dipolar chromophores

    Science.gov (United States)

    Robin, Anne-Claire; Parthasarathy, Venkatakrishnan; Pla-Quintana, Anna; Mongin, Olivier; Terenziani, Francesca; Caminade, Anne-Marie; Majoral, Jean-Pierre; Blanchard-Desce, Mireille

    2010-08-01

    Whereas structure-properties relationships have been widely investigated at the molecular level, supramolecular structure-property relationships have been somewhat overlooked. In many cases, interchromophoric interactions are found to be detrimental (in particular in second-order NLO) and a lot of efforts have been devoted to circumvent and control these effects to achieve efficient NLO materials for electrooptics. At opposite, we have implemented a countermainstream route based on the confinement of push-pull chromophores in close proximity within organic nanodots where both their number and relative position/distance are controlled by covalent attachment onto appropriate organic scaffolds. In such multichromophoric organic superstructures (namely covalent nanoclusters), dipole-dipole interactions can be tuned by playing on the internal architecture (topology, number of chromophoric subunits, length of the covalent linkers) and on the nature and properties (polarity, polarizability) of the chromophoric subunits. Following this strategy, we present the investigation of two series of such organic nanoclusters built from push-pull chromophores where through-space interactions are shown to modify both one-photon (OPA) and two-photon absorption (TPA) of each chromophoric subunits leading to cooperative enhancement of TPA properties and improved transparency.

  12. Synthesis of Dendrimer Containing Carbazole Unit as a Core Chromophore

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Choul; Lee, Jae Wook [Dong-A Univ., Busan (Korea, Republic of); Jin, Sungho [Pusan National Univ., Busan (Korea, Republic of)

    2012-10-15

    Dendrimers, which are prepared by repetition of a given set of reactions using either divergent or convergent strategies, are highly branched and regular macromolecules with well-defined structures and have served as functional objects in nanotechnology and nano-materials science. Following conventional organic small molecules and polymers, dendrimers are now regarded as the third class of materials for use in organic light-emitting diodes (OLEDs) and have attracted much attention due to their distinguished properties. Dendrimers contain three distinct structural parts that are the core, end-groups, and branched units connecting core and periphery. For light-emitting dendrimers, the core is usually selected as the luminescent chromophore, and the dendrons and their periphery are charge transporting units and can also tune the solubility. In contrast to linear polymers, dendrimers are sphere-like with dimensions of the order of nanometers depending on the generation number. By careful structural design, dendrimers combine the potential advantages of both small molecules and polymers. Therefore, the innovative strategy different from conventional convergent and divergent routes has been required to simplify dendrimer synthesis. Recent solid chemistry is the click chemistry which is the copper-catalyzed 1,3-dipolar cycloaddition reaction between alkyne and azide developed by Sharpless and Tornφe. This reaction has many advantages: very high yields, mild and simple reaction conditions, oxygen and water tolerance, and easy isolation of product. This reaction is clearly a breakthrough in the synthesis of dendrimers and dendritic and polymer materials. We have developed the fusion and stitching methods for the synthesis of various dendrimers using click chemistry between an alkyne and an azide. Overall, this method was found to be a straightforward strategy for the synthesis of triazole-based dendrimers. Taking advantage of this fact, herein we report a feasible route

  13. An Analysis of Biomolecular Force Fields for Simulations of Polyglutamine in Solution

    Energy Technology Data Exchange (ETDEWEB)

    Fluitt, Aaron M. [Univ. of Chicago, IL (United States); de Pablo, Juan J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    Polyglutamine (polyQ) peptides are a useful model system for biophysical studies of protein folding and aggregation, both for their intriguing aggregation properties and their own relevance to human disease. The genetic expansion of a polyQ tract triggers the formation of amyloid aggregates associated with nine neurodegenerative diseases. Several clearly identifiable and separable factors, notably the length of the polyQ tract, influence the mechanism of aggregation, its associated kinetics, and the ensemble of structures formed. Atomistic simulations are well positioned to answer open questions regarding the thermodynamics and kinetics of polyQ folding and aggregation. The additional, explicit representation of water permits deeper investigation of the role of solvent dynamics, and it permits a direct comparison of simulation results with infrared spectroscopy experiments. The generation of meaningful simulation results hinges on satisfying two essential criteria: achieving sufficient conformational sampling to draw statistically valid conclusions, and accurately reproducing the intermolecular forces that govern system structure and dynamics. In this work, we examine the ability of 12 biomolecular force fields to reproduce the properties of a simple, 30-residue polyQ peptide (Q30) in explicit water. In addition to secondary and tertiary structure, we consider generic structural properties of polymers that provide additional dimensions for analysis of the highly degenerate disordered states of the molecule. We find that the 12 force fields produce a wide range of predictions. We identify AMBER ff99SB, AMBER ff99SB*, and OPLS-AA/L to be most suitable for studies of polyQ folding and aggregation.

  14. A Diabatic Three-State Representation of Photoisomerization in the Green Fluorescent Protein Chromophore

    CERN Document Server

    Olsen, Seth

    2009-01-01

    We give a quantum chemical description of bridge photoisomerization reaction of green fluorescent protein (GFP) chromophores using a representation over three diabatic states. Bridge photoisomerization leads to non-radiative decay, and competes with fluorescence in these systems. In the protein, this pathway is suppressed, leading to fluorescence. Understanding the electronic structure of the photoisomerization is a prerequisite to understanding how the protein suppresses this pathway and preserves the emitting state of the chromophore. We present a solution to the state-averaged complete active space problem, which is spanned at convergence by three fragment-localized orbitals. We generate the diabatic-state representation by applying a block diagonalization transformation to the Hamiltonian calculated for the anionic chromophore model HBDI with multi-reference, multi-state perturbation theory. The diabatic states that emerge are charge-localized structures with a natural valence-bond interpretation. At plan...

  15. Computer Programming and Biomolecular Structure Studies: A Step beyond Internet Bioinformatics

    Science.gov (United States)

    Likic, Vladimir A.

    2006-01-01

    This article describes the experience of teaching structural bioinformatics to third year undergraduate students in a subject titled "Biomolecular Structure and Bioinformatics." Students were introduced to computer programming and used this knowledge in a practical application as an alternative to the well established Internet bioinformatics…

  16. Global analysis of time-resolved fluorescence microspectroscopy and applications in biomolecular studies

    NARCIS (Netherlands)

    Laptenok, S.

    2009-01-01

    Understanding the properties of biomolecular networks is of central importance in life sciences. Optical microscopy has been very useful to determine the sub-cellular localisation of proteins but it cannot reveal whether proteins interact with one another. Micro-spectroscopic techniques (combining m

  17. Computer Programming and Biomolecular Structure Studies: A Step beyond Internet Bioinformatics

    Science.gov (United States)

    Likic, Vladimir A.

    2006-01-01

    This article describes the experience of teaching structural bioinformatics to third year undergraduate students in a subject titled "Biomolecular Structure and Bioinformatics." Students were introduced to computer programming and used this knowledge in a practical application as an alternative to the well established Internet bioinformatics…

  18. ALTERNATIVAS BIOMOLECULARES EN EL TRATAMIENTO DE LA OBESIDAD

    Directory of Open Access Journals (Sweden)

    Fernando Lizcano

    2010-09-01

    Full Text Available

    Resumen

    La obesidad se ha convertido en un problema de salud pública que cobija tanto a países desarrollados como a aquellos en vía de desarrollo. En la mayoría de los casos las políticas de salud no han tenido el efecto deseado para reducir la prevalencia de esta patología y muchos de los fármacos útiles para contrarrestar la obesidad no han podido continuar en el mercado debido a serios efectos secundarios. Algunas alternativas terapéuticas más agresivas como la cirugías reductivas han demostrado una utilidad restringida. Incluso, recientes observaciones han puesto de manifiesto las consecuencias a largo plazo de este tipo de intervenciones.

    En la búsqueda de nuevas estrategias para el tratamiento de la obesidad se ha investigado, tanto en la propia célula grasa como en los genes que podrían ser modificados y cuya función está enfocada en regular el gasto calórico y la termogénesis adaptativa. Algunos de estos genes son modificados por factores de transcripción que pueden determinar la característica fenotípica de la célula grasa. Recientemente se ha observado que en la persona adulta es posible evidenciar vestigios de célula grasa parda que puede gastar energía en forma de calor y esta modificación podría ser una alternativa terapéutica en la obesidad. Nuestro grupo de investigación ha observado que mediante la modificación de la función de la proteína del retinoblastoma (pRb se pueden aumentar los genes que estimulan la pérdida calórica en el adipocito.

    Palabras clave: Grasa Parda, Obesidad, transcripción, EID1, transdiferenciación

    BIOMOLECULAR OPTIONS IN TREATING OBESITY

    Abstract

    Obesity is a public health issue for both developed and third world countries. Although many efforts have been made to reverse the trend of this prevalent pathology, no results have been obtained with public health policies in most cases. Furthermore, many medicines approved for

  19. A Dark Excited State of Fluorescent Protein Chromophores, Considered as Brooker Dyes

    CERN Document Server

    Olsen, Seth

    2010-01-01

    The green fluorescent protein (GFP) chromophore is an asymmetric monomethine dye system. In the resonance color theory of dyes, a strong optical excitation arises from interactions of two valence-bond structures with a third, higher structure. We use correlated quantum chemistry to show that the anionic chromophore is a resonant Brooker dye, and that the third structure corresponds to a higher stationary electronic state of this species. The excitation energy of this state should be just below the first excitation energy of the neutral form. This has implications for excited state mechanism in GFPs, which we discuss.

  20. Synthesis,structure and nonlinear optical properties of two novel two-photon absorption chromophores

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two triphenylamine-based derivatives that can be used as two-photon absorption chromophore,tris{4-[4-(3-trifluoromethyl-3-oxopanoyl)]phenyl}amine (1) and tris{4-[4-(3-phenyl-3-oxopanoyl)] phenyl} amine (2) were successfully synthesized and fully characterized by elemental analysis,IR,1H NMR and MS. The single crystal X-ray diffraction analysis showed that the molecules possess D-(π-A)3 structures. One-and two-photon absorption and fluorescence in various solvents were experimentally investigated. A data recording experiment proved the potential application of these chromophores.

  1. Assembly of synthetic locked chromophores with Agrobacterium phytochromes Agp1 and Agp2

    OpenAIRE

    Inomata, Katsuhiko; Noack, Steffi; Hammam, Mostafa A. S.; Khawn, Htoi; Kinoshita, Hideki

    2006-01-01

    Phytochromes are photoreceptors with a bilin chromophore in which light triggers the conversion between the red-absorbing form Pr and the far-red-absorbing form Pfr. Agrobacterium tumefaciens has two phytochromes, Agp1 and Agp2, with antagonistic properties: in darkness, Agp1 converts slowly from Pfr to Pr, whereas Agp2 converts slowly from Pr to Pfr. In a previous study, we have assembled Agp1 with synthetic locked chromophores 15Za, 15Zs, 15Ea, and 15Es in which the C15=C16 double bond is f...

  2. Chromopeptides from phytochrome. The structure and linkage of the PR form of the phytochrome chromophore

    Energy Technology Data Exchange (ETDEWEB)

    Lagarias, J. Clark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Rapoport, Henry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)

    1980-07-01

    The isolation and chromatographic purification of chromophore-containing peptides from the PR form of phytochrome treated with pepsin and thermolysin are described. From the amino acid sequence and 1H NMR spectral analysis of phytochromobiliundeca peptide (2), the structure of the PR phytochrome chromophore and the nature of the thioether linkage joining pigment to peptide have been established. Furthermore, confirmatory evidence was obtained from similar analysis of phytochromobilioctapeptide (3). The implications of this structural assignment with respect to the mechanism of the PR to PFR phototransformation are considered.

  3. Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials.

    Science.gov (United States)

    Rezzonico, Daniele; Kwon, Seong-Ji; Figi, Harry; Kwon, O-Pil; Jazbinsek, Mojca; Günter, Peter

    2008-03-28

    We compare the photochemical stability of the nonlinear optical chromophore configurationally locked polyene 2-{3-[2-(4-dimethylaminophenyl)vinyl]-5,5-dimethylcyclohex-2-enylidene} malononitrile (DAT2) embedded in a polymeric matrix and in a single-crystalline configuration. The results show that, under resonant light excitations, the polymeric compound degrades through an indirect process, while the DAT2 crystal follows a slow direct process. We show that chromophores in a crystalline environment exhibit three orders of magnitude better photostability as compared to guest-host polymer composites.

  4. Sources and transformations of dissolved lignin phenols and chromophoric dissolved organic matter in Otsuchi Bay, Japan

    Directory of Open Access Journals (Sweden)

    Chia-Jung eLu

    2016-06-01

    Full Text Available Dissolved lignin phenols and optical properties of dissolved organic matter (DOM were measured to investigate the sources and transformations of terrigenous DOM (tDOM in Otsuchi Bay, Japan. Three rivers discharge into the bay, and relatively high values of syringyl:vanillyl phenols (0.73 ± 0.07 and cinnamyl:vanillyl phenols (0.33 ± 0.10 indicated large contributions of non-woody angiosperm tissues to lignin and tDOM. The physical mixing of river and seawater played an important role in controlling the concentrations and distributions of lignin phenols and chromophoric DOM (CDOM optical properties in the bay. Lignin phenol concentrations and the CDOM absorption coefficient at 350 nm, a(350, were strongly correlated in river and bay waters. Measurements of lignin phenols and CDOM in bay waters indicated a variety of photochemical and biological transformations of tDOM, including oxidation reactions, photobleaching and a decrease in molecular weight. Photodegradation and biodegradation of lignin and CDOM were investigated in decomposition experiments with river water and native microbial assemblages exposed to natural sunlight or kept in the dark. There was a rapid and substantial removal of lignin phenols and CDOM during the first few days in the light treatment, indicating transformations of tDOM and CDOM can occur soon after discharge of buoyant river water into the bay. The removal of lignin phenols was slightly greater in the dark (34% than in the light (30% during the remaining 59 days of the incubation. Comparison of the light and dark treatments indicated biodegradation was responsible for 67% of total lignin phenol removal during the 62-day incubation exposed to natural sunlight, indicating biodegradation is a dominant removal process in Otsuchi Bay.

  5. Chromophoric Dissolved Organic Matter across a Marine Distributed Biological Observatory in the Pacific Arctic Region

    Science.gov (United States)

    Berman, S. L.; Frey, K. E.; Shake, K. L.; Cooper, L. W.; Grebmeier, J. M.

    2014-12-01

    Dissolved organic matter (DOM) plays an important role in marine ecosystems as both a carbon source for the microbial food web (and thus a source of CO2 to the atmosphere) and as a light inhibitor in marine environments. The presence of chromophoric dissolved organic matter (CDOM; the optically active portion of total DOM) can have significant controlling effects on transmittance of sunlight through the water column and therefore on primary production as well as the heat balance of the upper ocean. However, CDOM is also susceptible to photochemical degradation, which decreases the flux of solar radiation that is absorbed. Knowledge of the current spatial and temporal distribution of CDOM in marine environments is thus critical for understanding how ongoing and future changes in climate may impact these biological, biogeochemical, and physical processes. We describe the quantity and quality of CDOM along five key productive transects across a developing Distributed Biological Observatory (DBO) in the Pacific Arctic region. The samples were collected onboard the CCGS Sir Wilfred Laurier in July 2013 and 2014. Monitoring of the variability of CDOM along transects of high productivity can provide important insights into biological and biogeochemical cycling across the region. Our analyses include overall concentrations of CDOM, as well as proxy information such as molecular weight, lability, and source (i.e., autochthonous vs. allochthonous) of organic matter. We utilize these field observations to compare with satellite-derived CDOM concentrations determined from the Aqua MODIS satellite platform, which ultimately provides a spatially and temporally continuous synoptic view of CDOM concentrations throughout the region. Examining the current relationships among CDOM, sea ice variability, biological productivity, and biogeochemical cycling in the Pacific Arctic region will likely provide key insights for how ecosystems throughout the region will respond in future

  6. Hyperactive Arg39Lys mutated mnemiopsin: implication of positively charged residue in chromophore binding cavity.

    Science.gov (United States)

    Mahdavi, Atiyeh; Sajedi, Reza H; Hosseinkhani, Saman; Taghdir, Majid

    2015-04-01

    Mnemiopsin, a Ca(2+)-regulated photoprotein isolated from Mnemiopsis leidyi, belongs to the family of ctenophore photoproteins. These proteins emit blue light from a chromophore, which is tightly but non-covalently bound in their central hydrophobic core that contains 21 conserved residues. In an effort to investigate the role of Arg39 (the sole charged residue in coelenterazine binding cavity of ctenophore photoproteins) in bioluminescence properties of these photoproteins, three mutated forms of mnemiopsin 1 (R39E, R39K and R39M) were constructed and characterized. The results indicate that while the luminescence activity of R39K mutated mnemiopsin has increased about nine fold compared to the wild type, R39M and R39E mutated mnemiopsins have entirely lost their activities. The most distinguished properties of R39K mutated photoprotein are its high activity, slow rate of luminescence decay and broad pH profile compared to the wild type. The complete loss of bioluminescence activity in mutated photoproteins with negatively charged and aliphatic residues (R39E and R39M, respectively) shows that the presence of a positively charged residue at this position is necessary. The results of spectroscopic studies, including CD, intrinsic and extrinsic fluorescence measurements and acrylamide quenching studies show that, while the substitutions lead to structural rigidity in R39E and R39M mutated mnemiopsins, structural flexibility is obvious in R39K mutated mnemiopsin. The presence of a more localized positive charge on ε-amino group of Lys compared to guanidinium group of Arg residue in close proximity to the choromophre might affect its fixation in the binding cavity and result in increased bioluminescence activity in this mutated photoprotein. It appears that the polarity and flexibility of positively charged residue at this position finely tunes the luminescence properties of ctenophore photoproteins.

  7. Intracellular reactive oxygen species in monocytes generated by photosensitive chromophores activated with blue light.

    Science.gov (United States)

    Bouillaguet, Serge; Owen, Brandi; Wataha, John C; Campo, Marino A; Lange, Norbert; Schrenzel, Jacques

    2008-08-01

    Disinfection of the tooth pulp-canal system is imperative to successful endodontic therapy. Yet, studies suggest that 30-50% of current endodontic treatments fail from residual bacterial infection. Photodynamic therapy using red-light chromophores (630 nm) to induce antimicrobial death mediated by generated reactive oxygen species (ROS) has been reported, but red-light also may thermally damage resident tissues. In the current study, we tested the hypothesis that several blue light chromophores (380-500 nm) generate intracellular reactive oxygen species but are not cytotoxic to mammalian cells. THP1 monocytes were exposed to 10 microM of four chromophores (chlorin e6, pheophorbide-a, pheophorbide-a-PLL, and riboflavin) for 30 min before activation with blue light (27J/cm(2), 60s). After activation, intracellular ROS were measured using a dihydrofluorescein diacetate technique, and cytotoxicity was determined by measuring mitochondrial activity with the MTT method. All photosensitizers produced intracellular ROS levels that were dependent on both the presence of the photosensitizer and blue light exposure. Riboflavin and pheophorbide-a-PLL produced the highest levels of ROS. Photosensitizers except riboflavin exhibited cytotoxicity above 10 microM, and all except pheophorbide-a-PLL were more cytotoxic after blue light irradiation. The current study demonstrated the possible utility of blue light chromophores as producers of ROS that would be useful for endodontic disinfection.

  8. Production of Chromophoric Dissolved Organic Matter from Mangrove Leaf Litter and Floating Sargassum Colonies

    Science.gov (United States)

    Chromophoric dissolved organic matter (CDOM) strongly absorbs solar radiation in the blue-green and serves as the primary attenuator of water column ultraviolet radiation (UV-R). CDOM interferes with remote sensing of ocean chlorophyll and can control UV-R-induced damage to light...

  9. Spontaneous activation of visual pigments in relation to openness/closedness of chromophore-binding pocket

    Science.gov (United States)

    Yue, Wendy Wing Sze; Frederiksen, Rikard; Ren, Xiaozhi; Luo, Dong-Gen; Yamashita, Takahiro; Shichida, Yoshinori; Cornwall, M Carter; Yau, King-Wai

    2017-01-01

    Visual pigments can be spontaneously activated by internal thermal energy, generating noise that interferes with real-light detection. Recently, we developed a physicochemical theory that successfully predicts the rate of spontaneous activity of representative rod and cone pigments from their peak-absorption wavelength (λmax), with pigments having longer λmax being noisier. Interestingly, cone pigments may generally be ~25 fold noisier than rod pigments of the same λmax, possibly ascribed to an ‘open’ chromophore-binding pocket in cone pigments defined by the capability of chromophore-exchange in darkness. Here, we show in mice that the λmax-dependence of pigment noise could be extended even to a mutant pigment, E122Q-rhodopsin. Moreover, although E122Q-rhodopsin shows some cone-pigment-like characteristics, its noise remained quantitatively predictable by the ‘non-open’ nature of its chromophore-binding pocket as in wild-type rhodopsin. The openness/closedness of the chromophore-binding pocket is potentially a useful indicator of whether a pigment is intended for detecting dim or bright light. DOI: http://dx.doi.org/10.7554/eLife.18492.001 PMID:28186874

  10. Photo-initiated dynamics and spectroscopy of the deprotonated Green Fluorescent Protein chromophore

    DEFF Research Database (Denmark)

    Bochenkova, Anastasia; Andersen, Lars Henrik

    2013-01-01

    This chapter combines recent advances in understanding the photophysics of the chromophore anion of the Green Fluorescent Protein (GFP) from the jellyfish Aequorea Victoria. GFP and its homologues are widely used for in vivo labeling in biology through their remarkable fluorescent properties...

  11. Design, synthesis and characterization of novel nonlinear optical chromophores for electro-optical applications

    Science.gov (United States)

    Liu, Feng

    This dissertation involves the design, synthesis and characterization of second order nonlinear optical chromophores for electro-optic applications. The design concept, that poling efficiency and macroscopic nonlinearities can be improved by modifying a chromophore's shape, has been explored. Chapter 1 gives an introduction into theoretical background of nonlinear optics and electro-optic phenomenon in organic molecules and poled polymers. Chapter 2 involves the design and synthesis of GLD-2 and GLD-3 chromophores, both with bulky substituents on the ring-fused bridge. The optical studies and HRS measurement show that the two alkyl groups on the bridge blueshift the lambdamax in chloroform by 20 nm and decrease the beta values. DSC and TGA thermal analysis show Td of GLD-2 and GLD-3 over 240°C. The maximum achievable r33 of GLD-2/PMMA is 61 pm/V, compared to the 92.4 pm/V of GLD-1/PMMA. But GLD-2/APC shows r33 of 45.2pm/V, higher than GLD-1/APC due to the improved compatibility with APC. The optical loss of 13 wt% GLD-2/PMMA at 1.55mum is 1.4 dB compared to the 2.3 dB of 17 wt% GLD-1/PMMA. Optical loss studies prove that adding two bulky substituents on bridge help attenuate electrostatic interactions. GLD-3 show deteriorated solubility in common used organic solvents, probably due to the combination of two TBDMS and two lengthy alkyl groups. Chapter 3 presents synthesis of thiophene-based chromophores with variously positioned TBDMS groups. The optical studies of these chromophores show one TBDMSO substitution on the thiophene bridge yields little influence on the lambda max in chloroform. FTCDS chromophore with two TBDMS groups, one on donor and one on thiophene bridge, shows to be the best structure with regards the thermal stability and achievable maximum EO coefficient value, 65.9 pm/V, at only 24 wt% loading density at 1.3 mum. Chapter 4 deals with three novel bridges for NLO chromophores. Synthetic methodologies of the diketone precursor of rigidified

  12. EPOXY-BASED AZO POLYMERS WITH HIGH CHROMOPHORE DENSITY:SYNTHESIS, CHARACTERIZATION AND PHOTOINDUCED BIREFRINGENCE

    Institute of Scientific and Technical Information of China (English)

    Xiao-lin Wang; Xiao-gong Wang

    2012-01-01

    Three epoxy-based azo polymers (PEP-AZ-C1,PEP-AZ-CN and PEP-AZ-NT) with high chromophore density were synthesized by using post-polymerization azo-coupling reactions between epoxy-bascd precursor polymer (PEP-AN)and diazonium salts of 4-chloroaniline,4-aminobenzonitrile and 4-nitroaniline,respectively.The structures and properties of the azo polymers were characterized by using 1H-NMR,FT-IR,UV-Vis and thermal analyses.The photoinduced birefringence of the azo polymers was studied by irradiating spin-coated films of the polymers with laser beam at three different wavelengths (488,532,and 589 nm).The results indicate that the photoinduced birefringence of the azo polymers is related with the electron-withdrawing group on azo chromophores and the excitation wavelength.The excitation wavelength that can cause the efficient responses is determined by the absorption band positions of the azo chromophores,which are mainly affected by the electron-withdrawing group on the chromophores.Therefore,the azo polymers containing chromophores with different electron-withdrawing groups show different responsive behavior to the irradiation light at different wavelengths.When irradiated with 488 nm light,PEP-AZ-Cl shows the shortest time to reach the saturated birefringence but with the lowest saturation birefringence level compared with the other two azo polymers.When irradiated with 532 nm light,PEP-AZ-CN shows the shortest time to reach the saturated birefringence.When irradiated with 532 and 589 nm light,PEP-AZ-NT shows the highest saturation birefringence level.

  13. Ultrafast excited state dynamics of the green fluorescent protein chromophore and its kindling fluorescent protein analogue.

    Science.gov (United States)

    Addison, Kiri; Heisler, Ismael A; Conyard, Jamie; Dixon, Tara; Page, Philip C Bulman; Meech, Stephen R

    2013-01-01

    Fluorescent proteins exhibit a very diverse range of photochemical behaviour, from efficient fluorescence through photochromism to photochemical reactivity. Remarkably this diverse behaviour arises from chromophores which have very similar structures. Here we describe measurements and modelling of the excited state dynamics in the chromophores of GFP (HBDI) and the kindling fluorescent protein, KFP (FHBMI). The methods are ultrafast fluorescence spectroscopy with sub 50 fs time resolution and the modelling is based on the Smoluchowski equation. The excited state decays of both chromophores are very fast, longer for their anions than for the neutral form and independent of wavelength. Detailed studies show the mean fluorescence wavelength to be independent of time. The excited state decay times are also observed to be a very weak function of solvent polarity and viscosity. These results are modelled utilising recently calculated potential energy surfaces for the ground and excited states as a function of the twist coordinates about the two bridging bonds of the chromophore. For FHBMI and the scarce data on the neutral HBDI the calculations are not successful suggesting the need for refinement of these potential energy surfaces. For HBDI in methanol the simulation is successful provided a strong dependence of the radiationless decay rate on the coordinate is assumed. Such dependence should be included in future calculations of excited state dynamics. When the simulations are extended to more viscous solvents they fail to reproduce the observed weak viscosity dependence. The implications of these results for the nature of the coordinate leading to radiationless decay in the chromophore and for the photodynamics of fluorescent proteins are discussed.

  14. Triplet excited state properties in variable gap π-conjugated donor–acceptor–donor chromophores

    KAUST Repository

    Cekli, Seda

    2016-02-12

    A series of variable band-gap donor–acceptor–donor (DAD) chromophores capped with platinum(II) acetylide units has been synthesized and fully characterized by electrochemical and photophysical methods, with particular emphasis placed on probing triplet excited state properties. A counter-intuitive trend of increasing fluorescence quantum efficiency and lifetime with decreasing excited state energy (optical gap) is observed across the series of DAD chromophores. Careful study of the excited state dynamics, including triplet yields (as inferred from singlet oxygen sensitization), reveals that the underlying origin of the unusual trend in the fluorescence parameters is that the singlet–triplet intersystem crossing rate and yield decrease with decreasing optical gap. It is concluded that the rate of intersystem crossing decreases as the LUMO is increasingly localized on the acceptor unit in the DAD chromophore, and this result is interpreted as arising because the extent of spin–orbit coupling induced by the platinum heavy metal centers decreases as the LUMO is more localized on the acceptor. In addition to the trend in intersystem crossing, the results show that the triplet decay rates follow the Energy Gap Law correlation over a 1.8 eV range of triplet energy and 1000-fold range of triplet decay rates. Finally, femtosecond transient absorption studies for the DAD chromophores reveals a strong absorption in the near-infrared region which is attributed to the singlet excited state. This spectral band appears to be general for DAD chromophores, and may be a signature of the charge transfer (CT) singlet excited state.

  15. Simultaneous control of emission localization and two-photon absorption efficiency in dissymmetrical chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Tretiak, Sergei [Los Alamos National Laboratory

    2009-01-01

    The aim of the present work is to demonstrate that combined spectral tuning of fluorescence and two-photon absorption (TPA) properties of multipolar chromophores can be achieved by introduction of slight electronic chemical dissymmetry. In that perspective, two novel series of structurally related chromophores have been designed and studied: a first series based on rod-like quadrupolar chromophores bearing different electron-donating (D) end groups and a second series based on three-branched octupolar chromophores built from a trigonal donating moiety and bearing various acceptor (A) peripheral groups. The influence of the electronic dissymmetry is investigated by combined experimental and theoretical studies of the linear and nonlinear optical properties of dissymmetric chromophores compared to their symmetrical counterparts. In both types of systems (i.e. quadrupoles and octupoles) experiments and theory reveal that excitation is essentially delocalized and that excitation involves synchronized charge redistribution between the different D and A moieties within the multipolar structure (i.e. concerted intramolecular charge transfer). In contrast, the emission stems only from a particular dipolar subunit bearing the strongest D or A moieties due to fast excitation localization after excitation prior to emission. Hence control of emission characteristics (polarization and emission spectrum) in addition to localization can be achieved by controlled introduction of electronic dissymmetry (i.e. replacement of one of the D or A end-groups by a slightly stronger D{prime} or A{prime} units). Interestingly dissymmetrical functionalization of both quadrupolar and octupolar compounds does not lead to significant loss in TPA responses and can even be beneficial due to the spectral broadening and peak position tuning that it allows. This study thus reveals an original molecular engineering route strategy allowing major TPA enhancement in multipolar structures due to concerted

  16. Sequence co-evolutionary information is a natural partner to minimally-frustrated models of biomolecular dynamics [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Jeffrey K Noel

    2016-01-01

    Full Text Available Experimentally derived structural constraints have been crucial to the implementation of computational models of biomolecular dynamics. For example, not only does crystallography provide essential starting points for molecular simulations but also high-resolution structures permit for parameterization of simplified models. Since the energy landscapes for proteins and other biomolecules have been shown to be minimally frustrated and therefore funneled, these structure-based models have played a major role in understanding the mechanisms governing folding and many functions of these systems. Structural information, however, may be limited in many interesting cases. Recently, the statistical analysis of residue co-evolution in families of protein sequences has provided a complementary method of discovering residue-residue contact interactions involved in functional configurations. These functional configurations are often transient and difficult to capture experimentally. Thus, co-evolutionary information can be merged with that available for experimentally characterized low free-energy structures, in order to more fully capture the true underlying biomolecular energy landscape.

  17. Enhanced light-harvesting capacity by micellar assembly of free accessory chromophores and LH1-like antennas.

    Science.gov (United States)

    Harris, Michelle A; Sahin, Tuba; Jiang, Jianbing; Vairaprakash, Pothiappan; Parkes-Loach, Pamela S; Niedzwiedzki, Dariusz M; Kirmaier, Christine; Loach, Paul A; Bocian, David F; Holten, Dewey; Lindsey, Jonathan S

    2014-01-01

    Biohybrid light-harvesting antennas are an emerging platform technology with versatile tailorability for solar-energy conversion. These systems combine the proven peptide scaffold unit utilized for light harvesting by purple photosynthetic bacteria with attached synthetic chromophores to extend solar coverage beyond that of the natural systems. Herein, synthetic unattached chromophores are employed that partition into the organized milieu (e.g. detergent micelles) that house the LH1-like biohybrid architectures. The synthetic chromophores include a hydrophobic boron-dipyrrin dye (A1) and an amphiphilic bacteriochlorin (A2), which transfer energy with reasonable efficiency to the bacteriochlorophyll acceptor array (B875) of the LH1-like cyclic oligomers. The energy-transfer efficiencies are markedly increased upon covalent attachment of a bacteriochlorin (B1 or B2) to the peptide scaffold, where the latter likely acts as an energy-transfer relay site for the (potentially diffusing) free chromophores. The efficiencies are consistent with a Förster (through-space) mechanism for energy transfer. The overall energy-transfer efficiency from the free chromophores via the relay to the target site can approach those obtained previously by relay-assisted energy transfer from chromophores attached at distant sites on the peptides. Thus, the use of free accessory chromophores affords a simple design to enhance the overall light-harvesting capacity of biohybrid LH1-like architectures.

  18. Development and Experimental Study of Phantoms for Mapping Skin Chromophores

    Science.gov (United States)

    Silapetere, A.; Spigulis, J.; Saknite, I.

    2014-06-01

    Skin chromophore phantoms are widely used for better understanding of the light interaction with tissue and for calibration of skin diagnostic imaging techniques. In this work, different phantoms were examined and compared in order to find biologically equivalent substances that are the most promising for this purpose. For mimicking the skin medium and layered structure, a fibrin matrix with epidermal and dermal cell inclusion was used. Synthesized bilirubin, red blood cells and nigrosin were taken as absorbers. For spectral analysis of the developed phantoms a computer-aided multispectral imaging system Nuance 2.4 (Cambridge Research & Instrumentation, Inc., USA) was used. In this study, skin phantoms were created using such substances as bilirubin, melanin, haemoglobin and nigrosin Mūsdienās multispektrālās attēlošanas iekārtas izmanto ādas parametru un fizioloģisko procesu aprakstīšanai gan pētniecības, gan diagnostikas nolūkiem. Iekārtu darbības uzlabošanai ir nepieciešams labāk saprast gaismas mijiedarbību ar audiem, kā arī veikt šo iekārtu kalibrēšanu ar ādas maketu. Redzamā un tuvā infrasarkanā optiskā diapazona spektroskopijā ir svarīgi ādas maketi, kas simulē audu slāņaino struktūru un ķīmiskās īpašības, kā arī maketi, kas ir bioloģiski līdzvērtīgi. Šajā pētījumā tika izveidots ādas makets no bioloģiskām un ķīmiski sintezētām struktūrām. Ādas maketa izveidei tika izmantota fibrīna matrica ar dermālo un epidermālo šūnu piejaukumu, lai imitētu ādas slāņaino struktūru. Fibrīna matrica tiek veidota no 0,47 ml asins plazmas, 0,4 ml fizioloģiskā šķīduma, 0,8 μl treneksāmskābes un 89,4 μl kalcija glukanāta. Izveidoto matricu ievieto šūnu inkubatorā, lai tā polimerizētos. Nākošais slānis tiek veidots ar dermālo šūnu piejaukumu (180-270 šūnas), un pēdējais fibrīna matriksa slānis tiek veidots ar epidermālo šūnu piejaukumu (270 šūnas) un šūnu aug

  19. Complete chemical structure of photoactive yellow protein: novel thioester-linked 4-hydroxycinnamyl chromophore and photocycle chemistry.

    Science.gov (United States)

    Baca, M; Borgstahl, G E; Boissinot, M; Burke, P M; Williams, D R; Slater, K A; Getzoff, E D

    1994-12-06

    The unique ability of photoactive proteins to capture and use energy from a photon of light depends on the chromophore, its linkage to the protein, and the surrounding protein environment. To understand the molecular mechanisms by which a chromophore and protein interact to undergo a light cycle, we are studying photoactive yellow protein (PYP), a 14-kDa water-soluble photoreceptor from Ectothiorhodospira halophila with a photocycle similar to that of sensory rhodopsin. Here, we report the cloning and sequencing of the pyp gene and the chemical identification of both the chromophore and its covalent linkage to the protein. Elemental composition data from high-resolution mass spectrometry of a proteolytically derived chromopeptide, pH titrations and UV-visible spectroscopy of the protein-bound and chemically released chromophore, and fragmentation mass spectrometry of the liberated chromophore amide were combined with results from the 1.4-A-resolution protein crystal structure to identify the chromophore in PYP as a 4-hydroxycinnamyl group covalently bound to the sole cysteine residue via a thioester linkage. While 4-hydroxycinnamate is a metabolic product of the phenylpropanoid pathway and a key molecule in plant stress response, this is the first report of covalent modification of a protein by this group. In the dark (yellow) state of PYP, the protein stabilizes the chromophore as the deprotonated phenolate anion. By combining our biochemical characterization of the chromophore with other published observations, we propose a chemical basis for the photocycle: following the initial absorption of a photon, the photocycle of PYP involves protonation of the chromophore to a neutral phenol form corresponding to the observed photobleached intermediate.

  20. Charge transport through biomolecular wires in a solvent: bridging molecular dynamics and model Hamiltonian approaches.

    Science.gov (United States)

    Gutiérrez, R; Caetano, R A; Woiczikowski, B P; Kubar, T; Elstner, M; Cuniberti, G

    2009-05-22

    We present a hybrid method based on a combination of classical molecular dynamics simulations, quantum-chemical calculations, and a model Hamiltonian approach to describe charge transport through biomolecular wires with variable lengths in presence of a solvent. The core of our approach consists in a mapping of the biomolecular electronic structure, as obtained from density-functional based tight-binding calculations of molecular structures along molecular dynamics trajectories, onto a low-dimensional model Hamiltonian including the coupling to a dissipative bosonic environment. The latter encodes fluctuation effects arising from the solvent and from the molecular conformational dynamics. We apply this approach to the case of pG-pC and pA-pT DNA oligomers as paradigmatic cases and show that the DNA conformational fluctuations are essential in determining and supporting charge transport.

  1. Quantitative characterization of biomolecular assemblies and interactions using atomic force microscopy.

    Science.gov (United States)

    Yang, Yong; Wang, Hong; Erie, Dorothy A

    2003-02-01

    Atomic force microscopy (AFM) has been applied in many biological investigations in the past 15 years. This review focuses on the application of AFM for quantitatively characterizing the structural and thermodynamic properties of protein-protein and protein-nucleic acid complexes. AFM can be used to determine the stoichiometries and association constants of multiprotein assemblies and to quantify changes in conformations of proteins and protein-nucleic acid complexes. In addition, AFM in solution permits the observation of the dynamic properties of biomolecular complexes and the measurement of intermolecular forces between biomolecules. Recent advances in cryogenic AFM, AFM on two-dimensional crystals, carbon nanotube probes, solution imaging, high-speed AFM, and manipulation capabilities enhance these applications by improving AFM resolution and the dynamic and operative capabilities of the AFM. These developments make AFM a powerful tool for investigating the biomolecular assemblies and interactions that govern gene regulation.

  2. Out-of-equilibrium biomolecular interactions monitored by picosecond fluorescence in microfluidic droplets.

    Science.gov (United States)

    Maillot, Sacha; Carvalho, Alain; Vola, Jean-Pierre; Boudier, Christian; Mély, Yves; Haacke, Stefan; Léonard, Jérémie

    2014-05-21

    We developed a new experimental approach combining Time-Resolved Fluorescence (TRF) spectroscopy and Droplet Microfluidics (DμF) to investigate the relaxation dynamics of structurally heterogeneous biomolecular systems. Here DμF was used to produce with minimal material consumption an out-of-equilibrium, fluorescently labeled biomolecular complex by rapid mixing within the droplets. TRF detection was implemented with a streak camera to monitor the time evolution of the structural heterogeneity of the complex along its relaxation towards equilibrium while it propagates inside the microfluidic channel. The approach was validated by investigating the fluorescence decay kinetics of a model interacting system of bovine serum albumin and Patent Blue V. Fluorescence decay kinetics are acquired with very good signal-to-noise ratio and allow for global, multicomponent fluorescence decay analysis, evidencing heterogeneous structural relaxation over several 100 ms.

  3. Constructing Bio-molecular Databases on a DNA-based Computer

    CERN Document Server

    Chang, Weng-Long; Ho,; Guo, Minyi

    2007-01-01

    Codd [Codd 1970] wrote the first paper in which the model of a relational database was proposed. Adleman [Adleman 1994] wrote the first paper in which DNA strands in a test tube were used to solve an instance of the Hamiltonian path problem. From [Adleman 1994], it is obviously indicated that for storing information in molecules of DNA allows for an information density of approximately 1 bit per cubic nm (nanometer) and a dramatic improvement over existing storage media such as video tape which store information at a density of approximately 1 bit per 1012 cubic nanometers. This paper demonstrates that biological operations can be applied to construct bio-molecular databases where data records in relational tables are encoded as DNA strands. In order to achieve the goal, DNA algorithms are proposed to perform eight operations of relational algebra (calculus) on bio-molecular relational databases, which include Cartesian product, union, set difference, selection, projection, intersection, join and division. Fu...

  4. PREFACE: India-Japan Workshop on Biomolecular Electronics & Organic Nanotechnology for Environment Preservation

    Science.gov (United States)

    Onoda, Mitsuyoshi; Malhotra, Bansi D.

    2012-04-01

    The 'India-Japan Workshop on Biomolecular Electronics & Organic Nanotechnology for Environment Preservation' (IJWBME 2011) will be held on 7-10 December 2011 at EGRET Himeji, Himeji, Hyogo, Japan. This workshop was held for the first time on 17-19 December 2009 at NPL, New Delhi. Keeping in mind the importance of organic nanotechnology and biomolecular electronics for environmental preservation and their anticipated impact on the economics of both the developing and the developed world, IJWBME 2009 was jointly organized by the Department of Biological Functions, Graduate School of Life Sciences and Systems Engineering, the Kyushu Institute of Technology (KIT), Kitakyushu, Japan, and the Department of Science & Technology Centre on Biomolecular Electronics (DSTCBE), National Physical Laboratory (NPL). Much progress in the field of biomolecular electronics and organic nanotechnology for environmental preservation is expected for the 21st Century. Organic optoelectronic devices, such as organic electroluminescent devices, organic thin-film transistors, organic sensors, biological systems and so on have especially attracted much attention. The main purpose of this workshop is to provide an opportunity for researchers interested in biomolecular electronics and organic nanotechnology for environmental preservation, to come together in an informal and friendly atmosphere and exchange technical knowledge and experience. We are sure that this workshop will be very useful and fruitful for all participants in summarizing the recent progress in biomolecular electronics and organic nanotechnology for environmental preservation and preparing new ground for the next generation. Many papers have been submitted from India and Japan and more than 30 papers have been accepted for presentation. The main topics of interest are as follows: Bioelectronics Biomolecular Electronics Fabrication Techniques Self-assembled Monolayers Nano-sensors Environmental Monitoring Organic Devices

  5. Biochemical filter with sigmoidal response: increasing the complexity of biomolecular logic.

    Science.gov (United States)

    Privman, Vladimir; Halámek, Jan; Arugula, Mary A; Melnikov, Dmitriy; Bocharova, Vera; Katz, Evgeny

    2010-11-11

    The first realization of a designed, rather than natural, biochemical filter process is reported and analyzed as a promising network component for increasing the complexity of biomolecular logic systems. Key challenge in biochemical logic research has been achieving scalability for complex network designs. Various logic gates have been realized, but a "toolbox" of analog elements for interconnectivity and signal processing has remained elusive. Filters are important as network elements that allow control of noise in signal transmission and conversion. We report a versatile biochemical filtering mechanism designed to have sigmoidal response in combination with signal-conversion process. Horseradish peroxidase-catalyzed oxidation of chromogenic electron donor by H(2)O(2) was altered by adding ascorbate, allowing to selectively suppress the output signal, modifying the response from convex to sigmoidal. A kinetic model was developed for evaluation of the quality of filtering. The results offer improved capabilities for design of scalable biomolecular information processing systems.

  6. Exploiting the dynamic properties of covalent modification cycle for the design of synthetic analog biomolecular circuitry.

    Science.gov (United States)

    Foo, Mathias; Sawlekar, Rucha; Bates, Declan G

    2016-01-01

    Cycles of covalent modification are ubiquitous motifs in cellular signalling. Although such signalling cycles are implemented via a highly concise set of chemical reactions, they have been shown to be capable of producing multiple distinct input-output mapping behaviours - ultrasensitive, hyperbolic, signal-transducing and threshold-hyperbolic. In this paper, we show how the set of chemical reactions underlying covalent modification cycles can be exploited for the design of synthetic analog biomolecular circuitry. We show that biomolecular circuits based on the dynamics of covalent modification cycles allow (a) the computation of nonlinear operators using far fewer chemical reactions than purely abstract designs based on chemical reaction network theory, and (b) the design of nonlinear feedback controllers with strong performance and robustness properties. Our designs provide a more efficient route for translation of complex circuits and systems from chemical reactions to DNA strand displacement-based chemistry, thus facilitating their experimental implementation in future Synthetic Biology applications.

  7. Specificity quantification of biomolecular recognition and its implication for drug discovery

    Science.gov (United States)

    Yan, Zhiqiang; Wang, Jin

    2012-03-01

    Highly efficient and specific biomolecular recognition requires both affinity and specificity. Previous quantitative descriptions of biomolecular recognition were mostly driven by improving the affinity prediction, but lack of quantification of specificity. We developed a novel method SPA (SPecificity and Affinity) based on our funneled energy landscape theory. The strategy is to simultaneously optimize the quantified specificity of the ``native'' protein-ligand complex discriminating against ``non-native'' binding modes and the affinity prediction. The benchmark testing of SPA shows the best performance against 16 other popular scoring functions in industry and academia on both prediction of binding affinity and ``native'' binding pose. For the target COX-2 of nonsteroidal anti-inflammatory drugs, SPA successfully discriminates the drugs from the diversity set, and the selective drugs from non-selective drugs. The remarkable performance demonstrates that SPA has significant potential applications in identifying lead compounds for drug discovery.

  8. Conformation of bovine submaxillary mucin layers on hydrophobic surface as studied by biomolecular probes

    DEFF Research Database (Denmark)

    Pakkanen, Kirsi I.; Madsen, Jan Busk; Lee, Seunghwan

    2015-01-01

    In the present study, the conformational changes of bovine submaxillary mucin (BSM) adsorbed on a hydrophobic surface (polystyrene (PS)) as a function of concentration in bulk solution (up to 2mg/mL) have been investigated with biomolecular probe-based approaches, including bicinchoninic acid (BCA...... solution. Adsorbed masses of BSM onto hydrophobic surface, as probe by BCA, showed a continuously increasing trend up to 2mg/mL. But, the signals from EIA and ELLA, which probe the concentration of available unglycosylatedC-terminals and the central glycosylated regions, respectively, showed complicated...... non-linear responses with increasing surface concentration. The results from this study support the conventional amphiphilic, triblock model of BSM in the adsorption onto hydrophobic surface from aqueous solution.The biomolecular probe-based approaches employed in this study, however, provided further...

  9. Accelerated search for biomolecular network models to interpret high-throughput experimental data

    Directory of Open Access Journals (Sweden)

    Sokhansanj Bahrad A

    2007-07-01

    Full Text Available Abstract Background The functions of human cells are carried out by biomolecular networks, which include proteins, genes, and regulatory sites within DNA that encode and control protein expression. Models of biomolecular network structure and dynamics can be inferred from high-throughput measurements of gene and protein expression. We build on our previously developed fuzzy logic method for bridging quantitative and qualitative biological data to address the challenges of noisy, low resolution high-throughput measurements, i.e., from gene expression microarrays. We employ an evolutionary search algorithm to accelerate the search for hypothetical fuzzy biomolecular network models consistent with a biological data set. We also develop a method to estimate the probability of a potential network model fitting a set of data by chance. The resulting metric provides an estimate of both model quality and dataset quality, identifying data that are too noisy to identify meaningful correlations between the measured variables. Results Optimal parameters for the evolutionary search were identified based on artificial data, and the algorithm showed scalable and consistent performance for as many as 150 variables. The method was tested on previously published human cell cycle gene expression microarray data sets. The evolutionary search method was found to converge to the results of exhaustive search. The randomized evolutionary search was able to converge on a set of similar best-fitting network models on different training data sets after 30 generations running 30 models per generation. Consistent results were found regardless of which of the published data sets were used to train or verify the quantitative predictions of the best-fitting models for cell cycle gene dynamics. Conclusion Our results demonstrate the capability of scalable evolutionary search for fuzzy network models to address the problem of inferring models based on complex, noisy biomolecular

  10. Assembly of single wall carbon nanotube-metal nanohybrids using biomolecular components

    Science.gov (United States)

    Kim, Sang Nyon; Slocik, Joseph M.; Naik, Rajesh R.

    2010-08-01

    Biomaterials such as nucleic acids and proteins can be exploited to create higher order structures. The biomolecular components such as DNA and peptides have been used to assemble nanoparticles with high fidelity. Here, we use DNA and peptides, and their preferential interaction with inorganic and carbon nanomaterials to form homogeneous hybrids. The enhanced binding of Pt ions to both DNA and peptide functionalized nanoparticles mediates the assembly of carbon nanotubes functionalized with DNA with peptide coated gold nanoparticles.

  11. Colloid-in-Liquid Crystal Gels that Respond to Biomolecular Interactions

    OpenAIRE

    Agarwal, Ankit; Sidiq, Sumyra; Setia, Shilpa; Bukusoglu, Emre; de Pablo, Juan J.; Pal, Santanu Kumar; Abbott, Nicholas L.

    2013-01-01

    This paper advances the design of stimuli-responsive materials based on colloidal particles dispersed in liquid crystals (LCs). Specifically, we report that thin films of colloid-in-liquid crystal (CLC) gels can undergo easily visualized ordering transitions in response to reversible and irreversible (enzymatic) biomolecular interactions occurring at aqueous interfaces of the gels. In particular, we demonstrate that LC ordering transitions can propagate across the entire thickness of the gels...

  12. Parity Violation in Chiral Molecules: From Theory towards Spectroscopic Experiment and the Evolution of Biomolecular Homochirality

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The observation of biomolecular homochirality can be considered as a quasi-fossil of the evolution of life [1], the interpretation of which has been an open question for more than a century, with numerous related hypotheses, but no definitive answers. We shall briefly discuss the current status and the relation to the other two questions. The discovery of parity violation led to important developm...

  13. Effects of chromophore concentration and film thickness on thermo-optic properties of electro-optic fluorinated polyimide films

    Institute of Scientific and Technical Information of China (English)

    Hongxiang Song; Chengxun Wu

    2007-01-01

    Electro-optic (EO) effect and thermo-optic (TO) effect are jointly considered on the basis of field-induced and temperature-affected perturbations of the operating point in waveguide components. TO coefficients of EO fluorinated polyimide films with side-chain azobenzene chromophore were measured by attenuatedtotal-reflection (ATR) technique at different temperatures with TE- and TM-polarized lights, respectively.It is found that the absolute values of TO coefficients increase with the increments of both chromophore concentration and film thickness, but the polarization dependence of TO coefficients increases with the increment of chromophore concentration and decreases with the increment of film thickness.

  14. Nanogap biosensors for electrical and label-free detection of biomolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kyu Kim, Sang; Cho, Hyunmin; Park, Hye-Jung; Kwon, Dohyoung; Min Lee, Jeong; Hyun Chung, Bong, E-mail: chungbh@kribb.re.k [BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, PO Box 115, Yuseong, Daejeon 305-600 (Korea, Republic of)

    2009-11-11

    We demonstrate nanogap biosensors for electrical and label-free detection of biomolecular interactions. Parallel fabrication of nanometer distance gaps has been achieved using a silicon anisotropic wet etching technique on a silicon-on-insulator (SOI) wafer with a finely controllable silicon device layer. Since silicon anisotropic wet etching resulted in a trapezoid-shaped structure whose end became narrower during the etching, the nanogap structure was simply fabricated on the device layer of a SOI wafer. The nanogap devices were individually addressable and a gap size of less than 60 nm was obtained. We demonstrate that the nanogap biosensors can electrically detect biomolecular interactions such as biotin/streptavidin and antigen/antibody pairs. The nanogap devices show a current increase when the proteins are bound to the surface. The current increases proportionally depending upon the concentrations of the molecules in the range of 100 fg ml{sup -1}-100 ng ml{sup -1} at 1 V bias. It is expected that the nanogap developed here could be a highly sensitive biosensor platform for label-free detection of biomolecular interactions.

  15. Application of isothermal titration calorimetry and column chromatography for identification of biomolecular targets.

    Science.gov (United States)

    Zhou, Xingding; Kini, R Manjunatha; Sivaraman, J

    2011-02-01

    This protocol describes a method for identifying unknown target proteins from a mixture of biomolecules for a given drug or a lead compound. This method is based on a combination of chromatography and isothermal titration calorimetry (ITC) where ITC is used as a tracking tool. The first step involves the use of ITC to confirm the binding of ligand to a component in the biomolecular mixture. Subsequently, the biomolecular mixture is fractionated by chromatography, and the binding of the ligand with individual fractions (or subfractions) is verified by ITC. The iteration of chromatographic purification on the fractions combined with ITC results in identifying the target protein. This method is useful when the target protein or ligand is unknown and/or not amenable to labeling, chemical modification or immobilization. This protocol has been successfully used by our team and by others to identify both low-abundance and highly abundant target proteins present in biomolecular mixtures. With this protocol, it takes approximately 3-5 d to identify the target protein from a mixture.

  16. Changes in biomolecular profile in a single nucleolus during cell fixation.

    Science.gov (United States)

    Kuzmin, Andrey N; Pliss, Artem; Prasad, Paras N

    2014-11-01

    Fixation of biological sample is an essential technique applied in order to "freeze" in time the intracellular molecular content. However, fixation induces changes of the cellular molecular structure, which mask physiological distribution of biomolecules and bias interpretation of results. Accurate, sensitive, and comprehensive characterization of changes in biomolecular composition, occurring during fixation, is crucial for proper analysis of experimental data. Here we apply biomolecular component analysis for Raman spectra measured in the same nucleoli of HeLa cells before and after fixation by either formaldehyde solution or by chilled ethanol. It is found that fixation in formaldehyde does not strongly affect the Raman spectra of nucleolar biomolecular components, but may significantly decrease the nucleolar RNA concentration. At the same time, ethanol fixation leads to a proportional increase (up to 40%) in concentrations of nucleolar proteins and RNA, most likely due to cell shrinkage occurring in the presence of coagulant fixative. Ethanol fixation also triggers changes in composition of nucleolar proteome, as indicated by an overall reduction of the α-helical structure of proteins and increase in the concentration of proteins containing the β-sheet conformation. We conclude that cross-linking fixation is a more appropriate protocol for mapping of proteins in situ. At the same time, ethanol fixation is preferential for studies of RNA-containing macromolecules. We supplemented our quantitative Raman spectroscopic measurements with mapping of the protein and lipid macromolecular groups in live and fixed cells using coherent anti-Stokes Raman scattering nonlinear optical imaging.

  17. Rational Design of Biomolecular Templates for Synthesizing Multifunctional Noble Metal Nanoclusters toward Personalized Theranostic Applications.

    Science.gov (United States)

    Yu, Yong; Mok, Beverly Y L; Loh, Xian Jun; Tan, Yen Nee

    2016-08-01

    Biomolecule-templated or biotemplated metal nanoclusters (NCs) are ultrasmall (<2 nm) metal (Au, Ag) particles stabilized by a certain type of biomolecular template (e.g., peptides, proteins, and DNA). Due to their unique physiochemical properties, biotemplated metal NCs have been widely used in sensing, imaging, delivery and therapy. The overwhelming applications in these individual areas imply the great promise of harnessing biotemplated metal NCs in more advanced biomedical aspects such as theranostics. Although applications of biotemplated metal NCs as theranostic agents are trending, the rational design of biomolecular templates suitable for the synthesis of multifunctional metal NCs for theranostics is comparatively underexplored. This progress report first identifies the essential attributes of biotemplated metal NCs for theranostics by reviewing the state-of-art applications in each of the four modalities of theranostics, namely sensing, imaging, delivery and therapy. To achieve high efficacy in these modalities, we elucidate the design principles underlying the use of biomolecules (proteins, peptides and nucleic acids) to control the NC size, emission color and surface chemistries for post-functionalization of therapeutic moieties. We then propose a unified strategy to engineer biomolecular templates that combine all these modalities to produce multifunctional biotemplated metal NCs that can serve as the next-generation personalized theranostic agents.

  18. An improved simple polarisable water model for use in biomolecular simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Stephan J.; Gunsteren, Wilfred F. van, E-mail: wfvgn@igc.phys.chem.ethz.ch [Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich (Switzerland)

    2014-12-14

    The accuracy of biomolecular simulations depends to some degree on the accuracy of the water model used to solvate the biomolecules. Because many biomolecules such as proteins are electrostatically rather inhomogeneous, containing apolar, polar, and charged moieties or side chains, a water model should be able to represent the polarisation response to a local electrostatic field, while being compatible with the force field used to model the biomolecules or protein. The two polarisable water models, COS/G2 and COS/D, that are compatible with the GROMOS biomolecular force fields leave room for improvement. The COS/G2 model has a slightly too large dielectric permittivity and the COS/D model displays a much too slow dynamics. The proposed COS/D2 model has four interaction sites: only one Lennard-Jones interaction site, the oxygen atom, and three permanent charge sites, the two hydrogens, and one massless off-atom site that also serves as charge-on-spring (COS) polarisable site with a damped or sub-linear dependence of the induced dipole on the electric field strength for large values of the latter. These properties make it a cheap and yet realistic water model for biomolecular solvation.

  19. Modelling of biomolecular complexes by data-driven docking

    NARCIS (Netherlands)

    Dijk, A.D.J. van

    2006-01-01

    Proteins play a major role in biology by interacting with each other and with other biomolecules. The study of these interactions is of fundamental importance to understand cellular processes, and this could be a key towards understanding mechanisms of diseases and possible development of drugs. As

  20. PREFACE: 1st Nano-IBCT Conference 2011 - Radiation Damage of Biomolecular Systems: Nanoscale Insights into Ion Beam Cancer Therapy

    Science.gov (United States)

    Huber, Bernd A.; Malot, Christiane; Domaracka, Alicja; Solov'yov, Andrey V.

    2012-07-01

    are indispensable for the optimization of this new therapy. The conference gathered 115 participants originating from 28 countries and addressed a large number of highly relevant aspects concerning ion propagation in biological matter, the production of secondary particles along the ion tracks as electrons, holes and radicals, and their propagation in the biomolecular medium. In particular, the attack of DNA molecules and proteins by electrons and free radicals, the relative importance of direct and indirect damage processes as well as the role of the environment were discussed. Not only were fundamental mechanisms and processes elucidated, but radiobiological scale effects, multi-scale approaches and recent advances in the theoretical description of the underlying complex phenomena were also presented. Aspects linked to the energy deposition (LET), the characteristics of the Bragg peak and new techniques of dosimetry and radiolysis were highlighted. Furthermore, methods for increasing the therapy efficiency by using radio sensitizers and the state-of-the-art of defining precise patient treatment plans, identifying the clinical benefits of this type of therapy, were also addressed. We would like to thank all participants for the lively exchange of ideas and results, thus making this conference a very fruitful event. Furthermore, we appreciate the financial support of the sponsors of this conference, in particular of the COST Action MP1002 financed by ESF. We would also like to express our thanks to all authors of these proceedings, as well as to the reviewers for their time, efforts and recommendations made during the preparation of this volume. Finally, many thanks to U G Huber for a careful proof-read of this manuscript. We look forward to the 2nd Nano-IBCT Conference, which will be held in spring 2013. Caen, 15 March 2012 Bernd A Huber, Christiane Malot, Alicja Domaracka and Andrey V Solov'yov The Editors Nano-IBCT group The PDF also contains details of the

  1. Hybrid fuzzy cluster ensemble framework for tumor clustering from biomolecular data.

    Science.gov (United States)

    Yu, Zhiwen; Chen, Hantao; You, Jane; Han, Guoqiang; Li, Le

    2013-01-01

    Cancer class discovery using biomolecular data is one of the most important tasks for cancer diagnosis and treatment. Tumor clustering from gene expression data provides a new way to perform cancer class discovery. Most of the existing research works adopt single-clustering algorithms to perform tumor clustering is from biomolecular data that lack robustness, stability, and accuracy. To further improve the performance of tumor clustering from biomolecular data, we introduce the fuzzy theory into the cluster ensemble framework for tumor clustering from biomolecular data, and propose four kinds of hybrid fuzzy cluster ensemble frameworks (HFCEF), named as HFCEF-I, HFCEF-II, HFCEF-III, and HFCEF-IV, respectively, to identify samples that belong to different types of cancers. The difference between HFCEF-I and HFCEF-II is that they adopt different ensemble generator approaches to generate a set of fuzzy matrices in the ensemble. Specifically, HFCEF-I applies the affinity propagation algorithm (AP) to perform clustering on the sample dimension and generates a set of fuzzy matrices in the ensemble based on the fuzzy membership function and base samples selected by AP. HFCEF-II adopts AP to perform clustering on the attribute dimension, generates a set of subspaces, and obtains a set of fuzzy matrices in the ensemble by performing fuzzy c-means on subspaces. Compared with HFCEF-I and HFCEF-II, HFCEF-III and HFCEF-IV consider the characteristics of HFCEF-I and HFCEF-II. HFCEF-III combines HFCEF-I and HFCEF-II in a serial way, while HFCEF-IV integrates HFCEF-I and HFCEF-II in a concurrent way. HFCEFs adopt suitable consensus functions, such as the fuzzy c-means algorithm or the normalized cut algorithm (Ncut), to summarize generated fuzzy matrices, and obtain the final results. The experiments on real data sets from UCI machine learning repository and cancer gene expression profiles illustrate that 1) the proposed hybrid fuzzy cluster ensemble frameworks work well on real

  2. Follicular fluid oocyte/cumulus-free DNA concentrations as a potential biomolecular marker of embryo quality and IVF outcome.

    Science.gov (United States)

    Dimopoulou, M; Anifandis, G; Messini, C I; Dafopoulos, K; Kouris, S; Sotiriou, S; Satra, M; Vamvakopoulos, N; Messinis, I E

    2014-01-01

    The present prospective study examined the follicular fluid oocyte/cumulus-free DNA concentrations (ff o/c-free DNA) during ovarian stimulation and the possible association between ff o/c-free DNA and embryological results such as embryo quality and pregnancy rate. Eighty-three women undergoing IV/ICSI-ET treatments were prospectively included in this study. ff o/c-free DNA was determined by conventional quantitative real time PCR-Sybr green detection approach. The 83 ff samples were categorized in two groups: group 1 (n = 62) with cumulus oocytes complexes (CoCs) ≥2 and group 2 (n = 21) with CoCs = 1. Group 1 revealed significant higher embryo quality in terms of mean score of embryo transfer (MSET), but lower ff o/c-free DNA concentrations compared to group 2. The two groups showed comparable pregnancy rates (positive hCG and clinical pregnancy). The higher the ff o/c-free DNA concentration, the lower the number of produced oocytes. ff o/c-free DNA did not seem to have any direct role in the IVF outcome. Further research is required to clarify whether ff o/c-free DNA is a biomolecular marker of embryo quality and IVF outcome.

  3. Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore.

    Science.gov (United States)

    Li, Changwei; Yang, Kun; Feng, Yan; Su, Xinyan; Yang, Junyi; Jin, Xiao; Shui, Min; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin; Xu, Hongyao

    2009-12-03

    Two-photon absorption induced excited state absorption in the solution of a new fluorenyl-based chromophore is investigated by a time-resolved pump-probe technique using femtosecond pulses. With the help of an additional femtosecond open-aperture Z-scan technique, numerical simulations based on a three-energy level model are used to interpret the experimental results, and we determine the nonlinear optical parameters of this new chromophore uniquely. Large two-photon absorption cross section and excited state absorption cross section for singlet excited state are obtained, indicating a good candidate for optical limiting devices. Moreover, the influence of two-beam coupling induced energy transfer in neat N,N'-dimethylformamide solvent is also considered, although this effect is strongly restrained by the instantaneous two-photon absorption.

  4. Novel multi-chromophor light absorber concepts for DSSCs for efficient electron injection

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, Robert; Strothkaemper, Christian; Bartelt, Andreas; Hannappel, Thomas; Eichberger, Rainer [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Fasting, Carlo [Institut fuer Organische Chemie, Freie Universitaet Berlin, Takustrasse 3, 14195 Berlin (Germany); Thomas, Inara [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Institut fuer Organische Chemie, Freie Universitaet Berlin, Takustrasse 3, 14195 Berlin (Germany)

    2011-07-01

    Dye sensitized solar cells (DSSCs) operate by injecting electrons from the excited state of a light-harvesting dye into the continuum of conduction band states of a wide bandgap semiconductor. The light harvesting efficiency of pure organic dyes is limited by a narrow spectral electronic transition. A beneficial broad ground state absorption in the VIS region can be achieved by applying a single molecular dye system with multiple chromophors involving a Foerster resonance energy transfer (FRET) mechanism for an efficient electron injection. A model donor acceptor dye system capable for FRET chemically linked to colloidal TiO{sub 2} and ZnO nanorod surfaces was investigated in UHV environment. We used VIS/NIR femtosecond transient absorption spectroscopy and optical pump terahertz probe spectroscopy to study the charge injection dynamics of the antenna system. Different chromophors attached to a novel scaffold/anchor system connecting the organic absorber unit to the metal oxide semiconductor were probed.

  5. Low dipole moment large β electrooptic chromophores based on exocyclic double bond conjugated bridge

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Novel low dipole moment (μ) and large first hyperpolarizability (β) electrooptic chromophores have been designed based on the special characteristic of reversed dipole moment in the excited state of exocyclic double bond (ECDB) conjugated bridge by the optimization of the substituted method, and their electronic and second-order nonlinear optical properties have been theoretically investigated by employing the AM1/FF and ZINDO/S-CI approaches. By extending the conjugation length and optimizing the donor/acceptor strength, the oscillator strength of the excited transition that contributes to the molecular nonlinearity can be further enhanced. The designed chromophores possess a larger figure of merit (FOM) than that of D) ground state dipole moment.``

  6. High diffraction efficiency at low electric field in photorefractive polymers doped with arylimine chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, J L; Ponce-de-Leon, Y; Ramos-Ortiz, G; RodrIguez, M; Meneses-Nava, M A; Barbosa-Garcia, O [Centro de Investigaciones en Optica A.P. 1-948, 37000 Leon, Gto. (Mexico); Santillan, R [Departamento de Quimica, Centro de Investigacion y de Estudios Avanzados del IPN, A.P. 14-740, 07000 Mexico D.F. (Mexico); Farfan, N, E-mail: jlmr@cio.m [Facultad de QuImica, Departamento de QuImica Organica, Universidad Nacional Autonoma de Mexico, Mexico, D.F., 04510 (Mexico)

    2009-04-07

    We report on the high photorefractive performance of organic polymers doped with arylimine chromophore (diethylaminosalicylaldiminato)nitrobenzene (H1) and its derivative (diethylaminophenylaldiminato)nitrophenol (H2). Polymer blends of H1 and H2 with PVK : ECZ : C{sub 60} at 25 : 49 : 25 : 1 wt% and H2 : PVK : ECZ : PC{sub 61}BM at the same concentration were fabricated. The electric field (E) steady-state diffraction efficiency dependence and the optical gain were measured through holographic experiments at room temperature. For polymers based on chromophore H2, overmodulation of the diffraction efficiency was measured at just E = 32 V {mu}m{sup -1} obtaining 75%, and for polymers based on H1, diffraction of 87% (overmodulation) at E = 48 V {mu}m{sup -1} was observed. Holographic recording imaging was demonstrated at an electric field of just 10-14 V {mu}m{sup -1}.

  7. New chromophores based on combination of ethylenedioxythiophene and carbazole fragments: synthesis and optoelectronic properties

    OpenAIRE

    Bakiev A.N.; Mayorova O. A.; Gorbunov A.A.; Lunegov I.V.; Shklyaeva E. V.; Abashev G.G.

    2016-01-01

    Two new D-π-A chromophores composed of an electron-donating carbazole unit linked through π- bridges, bearing 3,4-ethylenedioxythiophene (EDOT) moiety, with an electron withdrawing dicyanovinyl group (DCV) were successfully synthesized involving Suzuki or Heck cross-coupling and Knöevenagel reactions as the key steps. The obtained compounds absorb light over a broad spectral range, including the visible spectrum. The HOMO/LUMO energies and band gap energy values (Eg...

  8. Imidazole as a parent π-conjugated backbone in charge-transfer chromophores

    Directory of Open Access Journals (Sweden)

    Jiří Kulhánek

    2012-01-01

    Full Text Available Research activities in the field of imidazole-derived push–pull systems featuring intramolecular charge transfer (ICT are reviewed. Design, synthetic pathways, linear and nonlinear optical properties, electrochemistry, structure–property relationships, and the prospective application of such D-π-A organic materials are described. This review focuses on Y-shaped imidazoles, bi- and diimidazoles, benzimidazoles, bis(benzimidazoles, imidazole-4,5-dicarbonitriles, and imidazole-derived chromophores chemically bound to a polymer chain.

  9. Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site

    OpenAIRE

    Lamparter, Tilman; Michael, Norbert; Mittmann, Franz; Esteban, Berta

    2002-01-01

    Phytochromes are photochromic photoreceptors with a bilin chromophore that are found in plants and bacteria. The soil bacterium Agrobacterium tumefaciens contains two genes that code for phytochrome-homologous proteins, termed Agrobacterium phytochrome 1 and 2 (Agp1 and Agp2). To analyze its biochemical and spectral properties, Agp1 was purified from the clone of an E. coli overexpressor. The protein was assembled with the chromophores phycocyanobilin and biliverdin, which is the putative nat...

  10. Modeling trans-cis chromophore isomerization for the asFP595 kindling protein

    Science.gov (United States)

    Grigorenko, Bella L.; Nemukhin, Alexander V.

    2007-02-01

    We present the results of modeling properties of the chromophore, 2-acetyl-4-(p-hydroxybenzylidene)-1-methyl-5- imidazolone (AHBMI), from the newly discovered fluorescent protein asFP595 inside the protein environment by using the combined quantum mechanical - molecular mechanical (QM/MM) method. In this approach, the chromophore unit and the side chains of the nearest amino acid residues are assigned to the quantum subsystem. The starting coordinates of heavy atoms were taken from the relevant crystal structures of the protein. Hydrogen atoms were added manually, and the structure of the model protein system was optimized by using QM/MM energy minimization for the trans-form of the chromophore. The Hartree-Fock/6-31G quantum chemical approximation and the AMBER force field parameters were employed in geometry optimization. The points on potential energy surfaces of the ground and first and second excited electronic states were computed with the complete active space self-consistent field approximation in the quantum subsystem under different choices of the QM/MM partitioning. Possible pathways for the trans-cis photo isomerization presumably responsible for the kindling properties of asFP595 as well as other mechanisms of photo excitation are discussed.

  11. Chromophores from photolyzed ammonia reacting with acetylene: Application to Jupiters Great Red Spot

    Science.gov (United States)

    Carlson, Robert W.; Baines, Kevin H.; Anderson, M. S.; Filacchione, G.; Simon, A. A.

    2016-01-01

    The high altitude of Jupiter's Great Red Spot (GRS) may enhance the upward flux of gaseous ammonia (NH3 ) into the high troposphere, where NH3 molecules can be photodissociated and initiate a chain of chemical reactions with downwelling acetylene molecules (C2H2 ). These reactions, experimentally studied earlier by (Ferris and Ishikawa [1987] Nature 326, 777-778) and (Ferris and Ishikawa [1988] J. Amer. Chem. Soc. 110, 4306-4312), produce chromophores that absorb in the visible and ultraviolet regions. In this work we photolyzed mixtures of NH3 and C2H2 using ultraviolet radiation with a wavelength of 214 nm and measured the spectral transmission of the deposited films in the visible region (400-740 nm). From these transmission data we estimated the imaginary indices of refraction. Assuming that ammonia grains at the top of the GRS clouds are coated with this material, we performed layered sphere and radiative transfer calculations to predict GRS reflection spectra. Comparison of those results with observed and previously unreported Cassini visible spectra and with true-color images of the GRS show that the unknown GRS chromophore is spectrally consistent with the coupled NH3-C2H2 photochemical products produced in our laboratory experiments. Using high-resolution mass spectrometry and infrared spectroscopy we infer that the chromophore-containing residue is composed of aliphatic azine, azo, and diazo compounds.

  12. Fiber optic-based fluorescence detection system for in vivo studies of exogenous chromophore pharmacokinetics

    Science.gov (United States)

    Doiron, Daniel R.; Dunn, J. B.; Mitchell, W. L.; Dalton, Brian K.; Garbo, Greta M.; Warner, Jon A.

    1995-05-01

    The detection and quantification of the concentration of exogenous chromophores in-vivo by their fluorescence is complicated by many physical and geometrical parameters. Measurement of such signals is advantageous in determining the pharmacokinetics of photosensitizers such as those used in photodynamic therapy (PDT) or to assist in the diagnosis of tissue histological state. To overcome these difficulties a ratio based fiber optic contact fluorometer has been developed. This fluorescence detection system (FDS) uses the ratio of the fluorescence emission peak of the exogenous chromophore to that of endogenous chromophores, i.e. autofluorescence, to correct for a variety of parameters affecting the magnitude of the measured signals. By doing so it also minimizes the range of baseline measurements prior to exogenous drug injection, for various tissue types. Design of the FDS and results of its testing in animals and patients using the second generation photosensitizer Tin ethyletiopurpurin (SnET2) are presented. These results support the feasibility and usefulness of the Ratio FDS system.

  13. Minimal domain of bacterial phytochrome required for chromophore binding and fluorescence

    Science.gov (United States)

    Rumyantsev, Konstantin A.; Shcherbakova, Daria M.; Zakharova, Natalia I.; Emelyanov, Alexander V.; Turoverov, Konstantin K.; Verkhusha, Vladislav V.

    2015-12-01

    Fluorescent proteins (FP) are used to study various biological processes. Recently, a series of near-infrared (NIR) FPs based on bacterial phytochromes was developed. Finding ways to improve NIR FPs is becoming progressively important. By applying rational design and molecular evolution we have engineered R. palustris bacterial phytochrome into a single-domain NIR FP of 19.6 kDa, termed GAF-FP, which is 2-fold and 1.4-fold smaller than bacterial phytochrome-based NIR FPs and GFP-like proteins, respectively. Engineering of GAF-FP involved a substitution of 15% of its amino acids and a deletion of the knot structure. GAF-FP covalently binds two tetrapyrrole chromophores, biliverdin (BV) and phycocyanobilin (PCB). With the BV chromophore GAF-FP absorbs at 635 nm and fluoresces at 670 nm. With the PCB chromophore GAF-FP becomes blue-shifted and absorbs at 625 nm and fluoresces at 657 nm. The GAF-FP structure has a high tolerance to small peptide insertions. The small size of GAF-FP and its additional absorbance band in the violet range has allowed for designing a chimeric protein with Renilla luciferase. The chimera exhibits efficient non-radiative energy transfer from luciferase to GAF-FP, resulting in NIR bioluminescence. This study opens the way for engineering of small NIR FPs and NIR luciferases from bacterial phytochromes.

  14. Chromophores from photolyzed ammonia reacting with acetylene: Application to Jupiter's Great Red Spot

    Science.gov (United States)

    Carlson, R. W.; Baines, K. H.; Anderson, M. S.; Filacchione, G.; Simon, A. A.

    2016-08-01

    The high altitude of Jupiter's Great Red Spot (GRS) may enhance the upward flux of gaseous ammonia (NH3) into the high troposphere, where NH3 molecules can be photodissociated and initiate a chain of chemical reactions with downwelling acetylene molecules (C2H2). These reactions, experimentally studied earlier by (Ferris and Ishikawa [1987] Nature 326, 777-778) and (Ferris and Ishikawa [1988] J. Amer. Chem. Soc. 110, 4306-4312), produce chromophores that absorb in the visible and ultraviolet regions. In this work we photolyzed mixtures of NH3 and C2H2 using ultraviolet radiation with a wavelength of 214 nm and measured the spectral transmission of the deposited films in the visible region (400-740 nm). From these transmission data we estimated the imaginary indices of refraction. Assuming that ammonia grains at the top of the GRS clouds are coated with this material, we performed layered sphere and radiative transfer calculations to predict GRS reflection spectra. Comparison of those results with observed and previously unreported Cassini visible spectra and with true-color images of the GRS show that the unknown GRS chromophore is spectrally consistent with the coupled NH3-C2H2 photochemical products produced in our laboratory experiments. Using high-resolution mass spectrometry and infrared spectroscopy we infer that the chromophore-containing residue is composed of aliphatic azine, azo, and diazo compounds.

  15. Chromophores from photolyzed ammonia reacting with acetylene: Application to Jupiters Great Red Spot

    Science.gov (United States)

    Carlson, Robert W.; Baines, Kevin H.; Anderson, M. S.; Filacchione, G.; Simon, A. A.

    2016-01-01

    The high altitude of Jupiter's Great Red Spot (GRS) may enhance the upward flux of gaseous ammonia (NH3 ) into the high troposphere, where NH3 molecules can be photodissociated and initiate a chain of chemical reactions with downwelling acetylene molecules (C2H2 ). These reactions, experimentally studied earlier by (Ferris and Ishikawa [1987] Nature 326, 777-778) and (Ferris and Ishikawa [1988] J. Amer. Chem. Soc. 110, 4306-4312), produce chromophores that absorb in the visible and ultraviolet regions. In this work we photolyzed mixtures of NH3 and C2H2 using ultraviolet radiation with a wavelength of 214 nm and measured the spectral transmission of the deposited films in the visible region (400-740 nm). From these transmission data we estimated the imaginary indices of refraction. Assuming that ammonia grains at the top of the GRS clouds are coated with this material, we performed layered sphere and radiative transfer calculations to predict GRS reflection spectra. Comparison of those results with observed and previously unreported Cassini visible spectra and with true-color images of the GRS show that the unknown GRS chromophore is spectrally consistent with the coupled NH3-C2H2 photochemical products produced in our laboratory experiments. Using high-resolution mass spectrometry and infrared spectroscopy we infer that the chromophore-containing residue is composed of aliphatic azine, azo, and diazo compounds.

  16. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska

    Science.gov (United States)

    Spencer, R.G.M.; Aiken, G.R.; Butler, K.D.; Dornblaser, M.M.; Striegl, R.G.; Hernes, P.J.

    2009-01-01

    The quality and quantity of dissolved organic matter (DOM) exported by Arctic rivers is known to vary with hydrology and this exported material plays a fundamental role in the biogeochemical cycling of carbon at high latitudes. We highlight the potential of optical measurements to examine DOM quality across the hydrograph in Arctic rivers. Furthermore, we establish chromophoric DOM (CDOM) relationships to dissolved organic carbon (DOC) and lignin phenols in the Yukon River and model DOC and lignin loads from CDOM measurements, the former in excellent agreement with long-term DOC monitoring data. Intensive sampling across the historically under-sampled spring flush period highlights the importance of this time for total export of DOC and particularly lignin. Calculated riverine DOC loads to the Arctic Ocean show an increase from previous estimates, especially when new higher discharge data are incorporated. Increased DOC loads indicate decreased residence times for terrigenous DOM in the Arctic Ocean with important implications for the reactivity and export of this material to the Atlantic Ocean. Citation: Spencer, R. G. M., G. R. Aiken, K. D. Butler, M. M. Dornblaser, R. G. Striegl, and P. J. Hernes (2009), Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska, Geophys. Res. Lett., 36, L06401, doi:10.1029/ 2008GL036831. Copyright 2009 by the American Geophysical Union.

  17. The allostery landscape: quantifying thermodynamic couplings in biomolecular systems

    CERN Document Server

    Cuendet, Michel A; LeVine, Michael V

    2016-01-01

    Allostery plays a fundament role in most biological processes. However, little theory is available to describe it outside of two-state models. Here we use a statistical mechanical approach to show that the allosteric coupling between two collective variables is not a single number, but instead a two-dimensional thermodynamic coupling function that is directly related to the mutual information from information theory and the copula density function from probability theory. On this basis, we demonstrate how to quantify the contribution of specific energy terms to this thermodynamic coupling function, enabling a decomposition that reveals the mechanism of allostery. We illustrate the thermodynamic coupling function and its use by showing how allosteric coupling in the alanine dipeptide molecule contributes to the overall shape of the {\\Phi}/{\\Psi} free energy surface, and by identifying the interactions that are necessary for this coupling.

  18. Physicochemical Biomolecular Insights into Buffalo Milk-Derived Nanovesicles.

    Science.gov (United States)

    Baddela, Vijay Simha; Nayan, Varij; Rani, Payal; Onteru, Suneel Kumar; Singh, Dheer

    2016-02-01

    Milk is a natural nutraceutical produced by mammals. The nanovesicles of milk play a role in horizontal gene transfer and confer health-benefits to milk consumers. These nanovesicles contain miRNA, mRNA, and proteins which mediate the intercellular communication. In this work, we isolated and characterized the buffalo milk-derived nanovesicles by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), scanning electron microscopy (SEM), Western probing, and Fourier transform infrared (FTIR) spectroscopy. The DLS data suggested a bimodal size distribution with one mode near 50 nm and the other around 200 nm for the nanovesicles. The NTA and SEM data also supported the size of nanovesicles within a range of 50-200 nm. The FTIR measurements of nanovesicles identified some prominent absorption bands attributable to the proteins (1300-1700 cm(-1), amide A and amide B bands), lipids (2800-3100 cm(-1)), polysaccharides, and nucleic acids (900-1200 cm(-1)). The comparative expression profiles of immune miRNA signatures (miR-15b, miR-21, miR-27b, miR-125b, miR-155, and miR-500) in nanovesicles isolated from milk, serum, and urine revealed that these miRNAs are present abundantly (P compounds from buffalo milk with high proportion of stable immune miRNAs compared to urine and plasma of same animals.

  19. Plucked Human Hair Shafts and Biomolecular Medical Research

    Directory of Open Access Journals (Sweden)

    Kevin Schembri

    2013-01-01

    Full Text Available The hair follicle is a skin integument at the boundary between an organism and its immediate environment. The biological role of the human hair follicle has lost some of its ancestral importance. However, an indepth investigation of this miniorgan reveals hidden complexity with huge research potential. An essential consideration when dealing with human research is the awareness of potential harm and thus the absolute need not to harm—a rule aptly qualified by the Latin term “primum non nocere” (first do no harm. The plucked hair shaft offers such advantages. The use of stem cells found in hair follicles cells is gaining momentum in the field of regenerative medicine. Furthermore, current diagnostic and clinical applications of plucked hair follicles include their use as autologous and/or three-dimensional epidermal equivalents, together with their utilization as surrogate tissue in pharmacokinetic and pharmacodynamics studies. Consequently, the use of noninvasive diagnostic procedures on hair follicle shafts, posing as a surrogate molecular model for internal organs in the individual patient for a spectrum of human disease conditions, can possibly become a reality in the near future.

  20. Interacting with the biomolecular solvent accessible surface via a haptic feedback device

    Directory of Open Access Journals (Sweden)

    Hayward Steven

    2009-10-01

    Full Text Available Abstract Background From the 1950s computer based renderings of molecules have been produced to aid researchers in their understanding of biomolecular structure and function. A major consideration for any molecular graphics software is the ability to visualise the three dimensional structure of the molecule. Traditionally, this was accomplished via stereoscopic pairs of images and later realised with three dimensional display technologies. Using a haptic feedback device in combination with molecular graphics has the potential to enhance three dimensional visualisation. Although haptic feedback devices have been used to feel the interaction forces during molecular docking they have not been used explicitly as an aid to visualisation. Results A haptic rendering application for biomolecular visualisation has been developed that allows the user to gain three-dimensional awareness of the shape of a biomolecule. By using a water molecule as the probe, modelled as an oxygen atom having hard-sphere interactions with the biomolecule, the process of exploration has the further benefit of being able to determine regions on the molecular surface that are accessible to the solvent. This gives insight into how awkward it is for a water molecule to gain access to or escape from channels and cavities, indicating possible entropic bottlenecks. In the case of liver alcohol dehydrogenase bound to the inhibitor SAD, it was found that there is a channel just wide enough for a single water molecule to pass through. Placing the probe coincident with crystallographic water molecules suggests that they are sometimes located within small pockets that provide a sterically stable environment irrespective of hydrogen bonding considerations. Conclusion By using the software, named HaptiMol ISAS (available from http://www.haptimol.co.uk, one can explore the accessible surface of biomolecules using a three-dimensional input device to gain insights into the shape and water

  1. Raman spectroscopy detects biomolecular changes associated with nanoencapsulated hesperetin treatment in experimental oral carcinogenesis

    Science.gov (United States)

    Gurushankar, K.; Gohulkumar, M.; Kumar, Piyush; Krishna, C. Murali; Krishnakumar, N.

    2016-03-01

    Recently it has been shown that Raman spectroscopy possesses great potential in the investigation of biomolecular changes of tumor tissues with therapeutic drug response in a non-invasive and label-free manner. The present study is designed to investigate the antitumor effect of hespertin-loaded nanoparticles (HETNPs) relative to the efficacy of native hesperetin (HET) in modifying the biomolecular changes during 7,12-dimethyl benz(a)anthracene (DMBA)-induced oral carcinogenesis using a Raman spectroscopic technique. Significant differences in the intensity and shape of the Raman spectra between the control and the experimental tissues at 1800-500 cm-1 were observed. Tumor tissues are characterized by an increase in the relative amount of proteins, nucleic acids, tryptophan and phenylalanine and a decrease in the percentage of lipids when compared to the control tissues. Further, oral administration of HET and its nanoparticulates restored the status of the lipids and significantly decreased the levels of protein and nucleic acid content. Treatment with HETNPs showed a more potent antitumor effect than treatment with native HET, which resulted in an overall reduction in the intensity of several biochemical Raman bands in DMBA-induced oral carcinogenesis being observed. Principal component and linear discriminant analysis (PC-LDA), together with leave-one-out cross validation (LOOCV) on Raman spectra yielded diagnostic sensitivities of 100%, 80%, 91.6% and 65% and specificities of 100%, 65%, 60% and 55% for classification of control versus DMBA, DMBA versus DMBA  +  HET, DMBA versus DMBA  +  HETNPs and DMBA  +  HET versus DMBA  +  HETNPs treated tissue groups, respectively. These results further demonstrate that Raman spectroscopy associated with multivariate statistical algorithms could be a valuable tool for developing a comprehensive understanding of the process of biomolecular changes, and could reveal the signatures of the

  2. Biomolecular interactions in HCV nucleocapsid-like particles as revealed by vibrational spectroscopy

    Science.gov (United States)

    Rodríguez-Casado, Arantxa; Molina, Marina; Carmona, Pedro

    2007-05-01

    Hepatitis C virus (HCV) occurs in the form of 55-65 nm spherical particles, but the structure of the virion remains to be clarified. Structural studies of HCV have been hampered by the lack of an appropriate cell culture system. However, structural analyses of HCV components can provide an essential framework for understanding of the molecular mechanism of virion assembly. This article reviews the potential of vibrational spectroscopy aimed at the knowledge of HCV structural biology, particularly regarding biomolecular interactions in nucleocapsid-like particles obtained in vitro.

  3. Towards sensitive, high-throughput, biomolecular assays based on fluorescence lifetime

    Science.gov (United States)

    Ioanna Skilitsi, Anastasia; Turko, Timothé; Cianfarani, Damien; Barre, Sophie; Uhring, Wilfried; Hassiepen, Ulrich; Léonard, Jérémie

    2017-09-01

    Time-resolved fluorescence detection for robust sensing of biomolecular interactions is developed by implementing time-correlated single photon counting in high-throughput conditions. Droplet microfluidics is used as a promising platform for the very fast handling of low-volume samples. We illustrate the potential of this very sensitive and cost-effective technology in the context of an enzymatic activity assay based on fluorescently-labeled biomolecules. Fluorescence lifetime detection by time-correlated single photon counting is shown to enable reliable discrimination between positive and negative control samples at a throughput as high as several hundred samples per second.

  4. In situ monitoring of biomolecular processes in living systems using surface-enhanced Raman scattering

    Science.gov (United States)

    Altunbek, Mine; Kelestemur, Seda; Culha, Mustafa

    2015-12-01

    Surface-enhanced Raman scattering (SERS) continues to strive to gather molecular level information from dynamic biological systems. It is our ongoing effort to utilize the technique for understanding of the biomolecular processes in living systems such as eukaryotic and prokaryotic cells. In this study, the technique is investigated to identify cell death mechanisms in 2D and 3D in vitro cell culture models, which is a very important process in tissue engineering and pharmaceutical applications. Second, in situ biofilm formation monitoring is investigated to understand how microorganisms respond to the environmental stimuli, which inferred information can be used to interfere with biofilm formation and fight against their pathogenic activity.

  5. Mathematical model for biomolecular quantification using large-area surface-enhanced Raman spectroscopy mapping

    DEFF Research Database (Denmark)

    Palla, Mirkó; Bosco, Filippo; Yang, Jaeyoung

    2015-01-01

    Surface-enhanced Raman spectroscopy (SERS) based on nanostructured platforms is a promising technique for quantitative and highly sensitive detection of biomolecules in the field of analytical biochemistry. Here, we report a mathematical model to predict experimental SERS signal (or hotspot...... in the picomolar concentration regimes. This developed model may be generally used for biomolecular quantification using Raman mapping on SERS substrates with planar geometries, in which the hotspots are approximated as electromagnetic enhancement fields generated by closely spaced dimers. Lastly, we also show...

  6. Force sensors based on piezoresistive and MOSFET cantilevers for biomolecular sensing

    OpenAIRE

    Tosolini, Giordano

    2013-01-01

    Los procesos de reconocimiento biomolecular entre receptores y ligandos son muy importantes en biología. Estas biomoléculas pueden desarrollar complejos muy específicos y tener una variedad de funciones como replicación y transcripción genómica, actividad enzimática, respuesta inmune, señalamiento celular, etc. La complementariedad inequívoca mostrada por estos componentes biológicos es ampliamente utilizada para desarrollar biosensores. Dependiendo de la naturaleza de las señales que se conv...

  7. Biomolecular interactions probed by fluorescence resonance energy transfer

    Science.gov (United States)

    Lange, Daniela Charlotte

    2000-09-01

    trafficking, with emphasis on defining the role of apoD in this disease. In vitro FRET studies on the dynamic structure of apoD and its close relative, β-lactoglobulin, are presented. FRET combined with conventional fluorescence microscopy established a direct association between apoD and cholesterol in situ. No evidence was found for interaction between apoD and the NPC1 protein.

  8. Absorption by DNA single strands of adenine isolated in vacuo: The role of multiple chromophores

    DEFF Research Database (Denmark)

    Nielsen, L.M.; Pedersen, S.O.; Kirketerp, M.-B.S.;

    2012-01-01

    strands of adenine reveal sign of exciton coupling between stacked bases from blueshifted absorption bands (~3 nm) relative to that of the dAMP mononucleotide (one adenine base). The bands are blueshifted by about 10 nm compared to those of solvated strands, which is a shift similar...

  9. Roles of “junk phosphorylation” in modulating biomolecular association of phosphorylated proteins?

    DEFF Research Database (Denmark)

    Tan, Chris Soon Heng; Jørgensen, Claus; Linding, Rune

    2010-01-01

    Protein phosphorylation dynamically regulates cellular activities in response to environmental cues. Sequence conservation analysis of recent proteome-wide phosphorylation data revealed that many previously unidentified phosphorylation sites are not well-conserved leading to the proposal that man...... evolutionary approaches to interpret physiological important sites....

  10. On the role of electrodynamic interactions in long-distance biomolecular recognition

    CERN Document Server

    Preto, Jordane; Tuszynski, Jack A

    2014-01-01

    The issue of retarded long-range resonant interactions between two molecules with oscillating dipole moments is reinvestigated within the framework of classical electrodynamics. By taking advantage of a theorem in complex analysis, we present a simple method to calculate the frequencies of the normal modes, which are then used to estimate the interaction potential. The main results thus found are in perfect agreement with several results obtained from quantum computations. Moreover, when applied in a biophysical context, our ndings shed new light on Frohlich's theory of selective long-range interactions between biomolecules. In particular, at variance with a long-standing belief, we show that sizeable resonant long-range interactions may exist only if the interacting system is out of thermal equilibrium.

  11. Associated depression in pseudophakic patients with intraocular lens with and without chromophore

    Science.gov (United States)

    Mendoza-Mendieta, María Elena; Lorenzo-Mejía, Ana Aurora

    2016-01-01

    Background With aging, the crystalline lens turns yellowish, which increases the absorption of wavelengths in the blue electromagnetic spectrum, reducing their photoreception in the retina. Since these wavelengths are the main stimulus in the regulation of the circadian rhythm, progressive reduction in their transmission is associated with chronic sleep disturbances and depression in elderly patients. Cataract extraction improves circadian photoreception at any age. However, lenses that block blue waves have 27% to 38% less melatonin suppression than lenses that block only ultraviolet (UV) rays. Purpose To assess the depression symptoms in subjects who have had bilateral phacoemul-sification and intraocular lens (IOL) implants, one group with yellow chromophore IOLs and the other group with transparent IOLs were compared. Setting Association to Prevent Blindness in Mexico (APEC), Hospital “Dr Luis Sánchez Bulnes”. Design This was an observational, cross-sectional, and single-center study. Materials and methods Twenty-six subjects between 60 and 80 years of age, with a history of bilateral phacoemulsification and placement of the same type of IOL in both eyes from 4 to 12 months prior to the study, who attended the follow-up visits and agreed to participate in this study, and provided signed informed consent were included in the study. They were asked to answer the short version of the 15-item Geriatric Depression Scale. Results The average age of the study participants was 72.5±5.94 years. The group without chromophore included 46.1% (n=12) of the patients and the group with chromophore included 53.9% (n=14) of the patients (P=0.088). Conclusion In the group of patients with IOLs that block the passage of blue light, the depression rate was 21.4%, a rate similar to that observed in the elderly population, whereas no patients in the group with transparent IOLs had depression. PMID:27099465

  12. Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics.

    Science.gov (United States)

    Kubelka, Jan

    2009-04-01

    Many important biochemical processes occur on the time-scales of nanoseconds and microseconds. The introduction of the laser temperature-jump (T-jump) to biophysics more than a decade ago opened these previously inaccessible time regimes up to direct experimental observation. Since then, laser T-jump methodology has evolved into one of the most versatile and generally applicable methods for studying fast biomolecular kinetics. This perspective is a review of the principles and applications of the laser T-jump technique in biophysics. A brief overview of the T-jump relaxation kinetics and the historical development of laser T-jump methodology is presented. The physical principles and practical experimental considerations that are important for the design of the laser T-jump experiments are summarized. These include the Raman conversion for generating heating pulses, considerations of size, duration and uniformity of the temperature jump, as well as potential adverse effects due to photo-acoustic waves, cavitation and thermal lensing, and their elimination. The laser T-jump apparatus developed at the NIH Laboratory of Chemical Physics is described in detail along with a brief survey of other laser T-jump designs in use today. Finally, applications of the laser T-jump in biophysics are reviewed, with an emphasis on the broad range of problems where the laser T-jump methodology has provided important new results and insights into the dynamics of the biomolecular processes.

  13. Application of Frontal Affinity Chromatography to Study the Biomolecular Interactions with Trypsin.

    Science.gov (United States)

    Hu, YuanYuan; Qian, Junqing; Guo, Hui; Jiang, ShengLan; Zhang, Zheng

    2015-07-01

    Trypsin is a serine protease that has been proposed as a potential therapeutic target for metabolic disorders and malignancy diseases, thus the identification of biomolecular interactions of compounds to trypsin could be of great therapeutic importance. In this study, trypsin was immobilized on a monolithic silica capillary column via sol-gel. The binding properties of four small molecules (daidzin, genistin, matrine and oxymatrine) to trypsin were examined using the trypsin affinity columns by frontal analysis. The results indicate that the matrine (dissociation constant, Kd = 7.904 μM) has stronger interaction with trypsin than the oxymatrine (Kd = 8.204 μM), whereas daidzin and genistin were nearly have no affinity with trypsin. The results demonstrated that the frontal affinity chromatography can be used for the direct determination of protein-protease inhibitor binding interactions and have several significant advantages, including easy fabricating, reproducible, minimal technological requirements and potential to become a reliable alternative for quantitative studies of biomolecular interactions.

  14. Submicrometer Hall sensors for detection of magnetic nanoparticles in biomolecular sensing

    Science.gov (United States)

    Mihajlovic, Goran; Xiong, P.; von Molnar, S.; Ohtani, K.; Ohno, H.; Field, M.; Sullivan, G. J.

    2006-03-01

    Significant progress has been made in the recent years in synthesis and biomolecular functionalization of magnetic nanoparticles. These magnetic bio-nanolabels can be utilized as protein or gene markers in biomolecular sensing assays, in contrast to the much larger micron sized magnetic beads that are usually limited to cell labeling. However, the low magnetic moments of individual nanoparticles (10^4-10^5 μB) render their sensitive detection still a challenging task. In order to address this issue we are developing miniaturized Hall sensors from InAs/AlSb quantum well semiconductor heterostructures with active Hall cross areas down to 300 nm x 300 nm. Our preliminary characterization measurements performed at room temperature show functional devices with magnetic field resolution < 100 μT/√Hz at frequencies above 100 Hz, yielding a moment sensitivity ˜ 10^5 μB. In addition to the progress in improving the moment sensitivity of the submicrometer Hall detectors, we will also present efforts in device integration with on-chip microcoils for the generation of local magnetic excitation fields. Results on nanoparticle detection will also be presented.

  15. The detection of specific biomolecular interactions with micro-Hall magnetic sensors

    Science.gov (United States)

    Manandhar, Pradeep; Chen, Kan-Sheng; Aledealat, Khaled; Mihajlović, Goran; Yun, C. Steven; Field, Mark; Sullivan, Gerard J.; Strouse, Geoffrey F.; Bryant Chase, P.; von Molnár, Stephan; Xiong, Peng

    2009-09-01

    The detection of reagent-free specific biomolecular interactions through sensing of nanoscopic magnetic labels provides one of the most promising routes to biosensing with solid-state devices. In particular, Hall sensors based on semiconductor heterostructures have shown exceptional magnetic moment sensitivity over a large dynamic field range suitable for magnetic biosensing using superparamagnetic labels. Here we demonstrate the capability of such micro-Hall sensors to detect specific molecular binding using biotin-streptavidin as a model system. We apply dip-pen nanolithography to selectively biotinylate the active areas of InAs micro-Hall devices with nanoscale precision. Specific binding of complementarily functionalized streptavidin-coated superparamagnetic beads to the Hall crosses occurs via molecular recognition, and magnetic detection of the assembled beads is achieved at room temperature using phase sensitive micro-Hall magnetometry. The experiment constitutes the first unambiguous demonstration of magnetic detection of specific biomolecular interactions with semiconductor micro-Hall sensors, and the selective molecular functionalization and resulting localized bead assembly demonstrate the possibility of multiplexed sensing of multiple target molecules using a single device with an array of micro-Hall sensors.

  16. Optimizing water hyperpolarization and dissolution for sensitivity-enhanced 2D biomolecular NMR

    Science.gov (United States)

    Olsen, Greg; Markhasin, Evgeny; Szekely, Or; Bretschneider, Christian; Frydman, Lucio

    2016-03-01

    A recent study explored the use of hyperpolarized water, to enhance the sensitivity of nuclei in biomolecules thanks to rapid proton exchanges with labile amide backbone and sidechain groups. Further optimizations of this approach have now allowed us to achieve proton polarizations approaching 25% in the water transferred into the NMR spectrometer, effective water T1 times approaching 40 s, and a reduction in the dilution demanded for the cryogenic dissolution process. Further hardware developments have allowed us to perform these experiments, repeatedly and reliably, in 5 mm NMR tubes. All these ingredients - particularly the ⩾3000× 1H polarization enhancements over 11.7 T thermal counterparts, long T1 times and a compatibility with high-resolution biomolecular NMR setups - augur well for hyperpolarized 2D NMR studies of peptides, unfolded proteins and intrinsically disordered systems undergoing fast exchanges of their protons with the solvent. This hypothesis is here explored by detailing the provisions that lead to these significant improvements over previous reports, and demonstrating 1D coherence transfer experiments and 2D biomolecular HMQC acquisitions delivering NMR spectral enhancements of 100-500× over their optimized, thermally-polarized, counterparts.

  17. Characterization of a nanoscale S-layer protein based template for biomolecular patterning.

    Science.gov (United States)

    Wong, Wing Sze; Yung, Pun To

    2014-01-01

    Well organized template for biomolecular conjugation is the foundation for biosensing. Most of the current devices are fabricated using lithographic patterning processes and self-assembly monolayer (SAM) methods. However, the research toward developing a sub-10 nm patterned, self-regenerated template on various types of substrates is limited, mainly due to the limited functional groups of the building material. Bacterial surface layer proteins (S-layer proteins) can self-assemble into ordered lattice with regular pore sizes of 2-8 nm on different material supports and interfaces. The ordered structure can regenerate after extreme variations of solvent conditions. In this work, we developed a nanoscale biomolecular template based on S-layer proteins on gold surface for fabrication of sensing layer in biosensors. S-layer proteins were isolated from Bacillus cereus, Lysinibacillus sphaericus and Geobacillus stearothermophilus. Protein concentrations were measured by Bradford assay. The protein purities were verified by SDS-PAGE, showing molecular weights ranging from 97-135 kDa. The hydrophilicity of the substrate surface was measured after surface treatments of protein recrystallization. Atomic force microscopic (AFM) measurement was performed on substrate surface, indicating a successful immobilization of a monolayer of S-layer protein with 8-9 nm height on gold surface. The template can be applied on various material supports and acts as a self-regenerated sensing layer of biosensors in the future.

  18. DockScreen: A Database of In Silico Biomolecular Interactions to Support Computational Toxicology

    Directory of Open Access Journals (Sweden)

    Michael-Rock Goldsmith

    2014-01-01

    Full Text Available We have developed DockScreen, a database of in silico biomolecular interactions designed to enable rational molecular toxicological insight within a computational toxicology framework. This database is composed of chemical/target (receptor and enzyme binding scores calculated by molecular docking of more than 1000 chemicals into 150 protein targets and contains nearly 135 thousand unique ligand/target binding scores. Obtaining this dataset was achieved using eHiTS (Simbiosys Inc., a fragment-based molecular docking approach with an exhaustive search algorithm, on a heterogeneous distributed high-performance computing framework. The chemical landscape covered in DockScreen comprises selected environmental and therapeutic chemicals. The target landscape covered in DockScreen was selected based on the availability of high-quality crystal structures that covered the assay space of phase I ToxCast in vitro assays. This in silico data provides continuous information that establishes a means for quantitatively comparing, on a structural biophysical basis, a chemical’s profile of biomolecular interactions. The combined minimum-score chemical/target matrix is provided.

  19. Biomolecular detection at ssDNA-conjugated nanoparticles by nano-impact electrochemistry.

    Science.gov (United States)

    Karimi, Anahita; Hayat, Akhtar; Andreescu, Silvana

    2017-01-15

    We describe the use of ssDNA functionalized silver nanoparticle (AgNP) probes for quantitative investigation of biorecognition and real time detection of biomolecular targets using nano-impact electrochemistry. The method is based on measurements of the individual collision events between ssDNA aptamer-functionalized AgNPs and a carbon fiber miroelectrode (CFME). Specific binding events of target analyte induced collision frequency changes enabling ultrasensitive detection of the aptamer target in a single step. These changes are assigned to the surface coverage of the NP by the ssDNA aptamers and subsequent conformational changes of the aptamer probe which affect the electron transfer between the NP and the electrode surface. The method enables sensitive and selective detection of ochratoxin A (OTA), chosen here as a model target, with a limit of detection of 0.05nM and a relative standard deviation of 4.9%. The study provides a means of characterizing bioconjugation of AgNPs with aptamers and assessing biomolecular recognition events with high sensitivity and without the use of exogenous reagents or enzyme amplification steps. This methodology can be broadly applicable to other bioconjugated systems, biosensing and related bioanalytical applications.

  20. ISAMBARD: an open-source computational environment for biomolecular analysis, modelling and design.

    Science.gov (United States)

    Wood, Christopher W; Heal, Jack W; Thomson, Andrew R; Bartlett, Gail J; Ibarra, Amaurys A; Leo Brady, R; Sessions, Richard B; Woolfson, Derek N

    2017-06-05

    The rational design of biomolecules is becoming a reality. However, further computational tools are needed to facilitate and accelerate this, and to make it accessible to more users. Here we introduce ISAMBARD, a tool for structural analysis, model building and rational design of biomolecules. ISAMBARD is open-source, modular, computationally scalable and intuitive to use. These features allow non-experts to explore biomolecular design in silico . ISAMBARD addresses a standing issue in protein design, namely, how to introduce backbone variability in a controlled manner. This is achieved through the generalisation of tools for parametric modelling, describing the overall shape of proteins geometrically, and without input from experimentally determined structures. This will allow backbone conformations for entire folds and assemblies not observed in nature to be generated de novo , that is, to access the 'dark matter of protein-fold space'. We anticipate that ISAMBARD will find broad applications in biomolecular design, biotechnology and synthetic biology. A current stable build can be downloaded from the python package index ( https://pypi.python.org/pypi/isambard /) with development builds available on GitHub ( https://github.com/woolfson-group /) along with documentation, tutorial material and all the scripts used to generate the data described in this paper. d.n.woolfson@bristol.ac.uk or chris.wood@bristol.ac.uk. Supplementary data are available at Bioinformatics online.

  1. The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes.

    Science.gov (United States)

    van Zundert, G C P; Rodrigues, J P G L M; Trellet, M; Schmitz, C; Kastritis, P L; Karaca, E; Melquiond, A S J; van Dijk, M; de Vries, S J; Bonvin, A M J J

    2016-02-22

    The prediction of the quaternary structure of biomolecular macromolecules is of paramount importance for fundamental understanding of cellular processes and drug design. In the era of integrative structural biology, one way of increasing the accuracy of modeling methods used to predict the structure of biomolecular complexes is to include as much experimental or predictive information as possible in the process. This has been at the core of our information-driven docking approach HADDOCK. We present here the updated version 2.2 of the HADDOCK portal, which offers new features such as support for mixed molecule types, additional experimental restraints and improved protocols, all of this in a user-friendly interface. With well over 6000 registered users and 108,000 jobs served, an increasing fraction of which on grid resources, we hope that this timely upgrade will help the community to solve important biological questions and further advance the field. The HADDOCK2.2 Web server is freely accessible to non-profit users at http://haddock.science.uu.nl/services/HADDOCK2.2.

  2. fireball/amber: An Efficient Local-Orbital DFT QM/MM Method for Biomolecular Systems.

    Science.gov (United States)

    Mendieta-Moreno, Jesús I; Walker, Ross C; Lewis, James P; Gómez-Puertas, Paulino; Mendieta, Jesús; Ortega, José

    2014-05-13

    In recent years, quantum mechanics/molecular mechanics (QM/MM) methods have become an important computational tool for the study of chemical reactions and other processes in biomolecular systems. In the QM/MM technique, the active region is described by means of QM calculations, while the remainder of the system is described using a MM approach. Because of the complexity of biomolecules and the desire to achieve converged sampling, it is important that the QM method presents a good balance between accuracy and computational efficiency. Here, we report on the implementation of a QM/MM technique that combines a DFT approach specially designed for the study of complex systems using first-principles molecular dynamics simulations (fireball) with the amber force fields and simulation programs. We also present examples of the application of this QM/MM approach to three representative biomolecular systems: the analysis of the effect of electrostatic embedding in the behavior of a salt bridge between an aspartic acid and a lysine residue, a study of the intermediate states for the triosephosphate isomerase catalyzed conversion of dihydroxyacetone phosphate into glyceraldehyde 3-phosphate, and the detailed description, using DFT QM/MM molecular dynamics, of the cleavage of a phosphodiester bond in RNA catalyzed by the enzyme RNase A.

  3. Biomolecular Systems of Disease Buried Across Multiple GWAS Unveiled by Information Theory and Ontology

    Science.gov (United States)

    Lee, Younghee; Li, Jianrong; Gamazon, Eric; Chen, James L.; Tikhomirov, Anna; Cox, Nancy J.; Lussier, Yves A.

    2010-01-01

    A key challenge for genome-wide association studies (GWAS) is to understand how single nucleotide polymorphisms (SNPs) mechanistically underpin complex diseases. While this challenge has been addressed partially by Gene Ontology (GO) enrichment of large list of host genes of SNPs prioritized in GWAS, these enrichment have not been formally evaluated. Here, we develop a novel computational approach anchored in information theoretic similarity, by systematically mining lists of host genes of SNPs prioritized in three adult-onset diabetes mellitus GWAS. The “gold-standard” is based on GO associated with 20 published diabetes SNPs’ host genes and on our own evaluation. We computationally identify 69 similarity-predicted GO independently validated in all three GWAS (FDR<5%), enriched with those of the gold-standard (odds ratio=5.89, P=4.81e-05), and these terms can be organized by similarity criteria into 11 groupings termed “biomolecular systems”. Six biomolecular systems were corroborated by the gold-standard and the remaining five were previously uncharacterized. http://lussierlab.org/publications/ITS-GWAS PMID:21347143

  4. Single-molecule imaging and manipulation of biomolecular machines and systems.

    Science.gov (United States)

    Iino, Ryota; Iida, Tatsuya; Nakamura, Akihiko; Saita, Ei-Ichiro; You, Huijuan; Sako, Yasushi

    2017-08-05

    Biological molecular machines support various activities and behaviors of cells, such as energy production, signal transduction, growth, differentiation, and migration. We provide an overview of single-molecule imaging methods involving both small and large probes used to monitor the dynamic motions of molecular machines in vitro (purified proteins) and in living cells, and single-molecule manipulation methods used to measure the forces, mechanical properties and responses of biomolecules. We also introduce several examples of single-molecule analysis, focusing primarily on motor proteins and signal transduction systems. Single-molecule analysis is a powerful approach to unveil the operational mechanisms both of individual molecular machines and of systems consisting of many molecular machines. Quantitative, high-resolution single-molecule analyses of biomolecular systems at the various hierarchies of life will help to answer our fundamental question: "What is life?" This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Photochemical functionalization of gallium nitride thin films with molecular and biomolecular layers.

    Science.gov (United States)

    Kim, Heesuk; Colavita, Paula E; Metz, Kevin M; Nichols, Beth M; Sun, Bin; Uhlrich, John; Wang, Xiaoyu; Kuech, Thomas F; Hamers, Robert J

    2006-09-12

    We demonstrate that photochemical functionalization can be used to functionalize and photopattern the surface of gallium nitride crystalline thin films with well-defined molecular and biomolecular layers. GaN(0001) surfaces exposed to a hydrogen plasma will react with organic molecules bearing an alkene (C=C) group when illuminated with 254 nm light. Using a bifunctional molecule with an alkene group at one end and a protected amine group at the other, this process can be used to link the alkene group to the surface, leaving the protected amine exposed. Using a simple contact mask, we demonstrate the ability to directly pattern the spatial distribution of these protected amine groups on the surface with a lateral resolution of <12 mum. After deprotection of the amines, single-stranded DNA oligonucleotides were linked to the surface using a bifunctional cross-linker. Measurements using fluorescently labeled complementary and noncomplementary sequences show that the DNA-modified GaN surfaces exhibit excellent selectivity, while repeated cycles of hybridization and denaturation in urea show good stability. These results demonstrate that photochemical functionalization can be used as an attractive starting point for interfacing molecular and biomolecular systems with GaN and other compound semiconductors.

  6. A new approach to implement absorbing boundary condition in biomolecular electrostatics.

    Science.gov (United States)

    Goni, Md Osman

    2013-01-01

    This paper discusses a novel approach to employ the absorbing boundary condition in conjunction with the finite-element method (FEM) in biomolecular electrostatics. The introduction of Bayliss-Turkel absorbing boundary operators in electromagnetic scattering problem has been incorporated by few researchers. However, in the area of biomolecular electrostatics, this boundary condition has not been investigated yet. The objective of this paper is twofold. First, to solve nonlinear Poisson-Boltzmann equation using Newton's method and second, to find an efficient and acceptable solution with minimum number of unknowns. In this work, a Galerkin finite-element formulation is used along with a Bayliss-Turkel absorbing boundary operator that explicitly accounts for the open field problem by mapping the Sommerfeld radiation condition from the far field to near field. While the Bayliss-Turkel condition works well when the artificial boundary is far from the scatterer, an acceptable tolerance of error can be achieved with the second order operator. Numerical results on test case with simple sphere show that the treatment is able to reach the same level of accuracy achieved by the analytical method while using a lower grid density. Bayliss-Turkel absorbing boundary condition (BTABC) combined with the FEM converges to the exact solution of scattering problems to within discretization error.

  7. A novel fluorescent turn-on probe for bisulfite based on NBD chromophore

    Indian Academy of Sciences (India)

    Puhui Xie; Guangqin Gao; Wenjie Zhang; Guoyu Yang; Qiu Jin

    2015-07-01

    A novel fluorescent turn-on probe (compound 1) for bisulfite based on 7-nitrobenz-2-oxa-1,3-diazole (NBD) chromophore has been developed. Its sensing behavior toward various anions was investigated by absorption and fluorescence techniques. This probe shows a selective, turn-on fluorescent response and ratiometric colorimetric response toward bisulfite in aqueous acetonitrile solutions. The possible recognition mechanism of probe 1 toward bisulfite was illustrated by MS spectra analysis and DFT calculations Probe 1 was used to determine bisulfite in real-life samples with good recoveries.

  8. Excited-state symmetry breaking of linear quadrupolar chromophores: A transient absorption study

    Science.gov (United States)

    Dozova, Nadia; Ventelon, Lionel; Clermont, Guillaume; Blanchard-Desce, Mireille; Plaza, Pascal

    2016-11-01

    The photophysical properties of two highly symmetrical quadrupolar chromophores were studied by both steady-state and transient absorption spectroscopy. Their excited-state behavior is dominated by the solvent-induced Stokes shift of the stimulated-emission band. The origin of this shift is attributed to symmetry breaking that confers a non-vanishing dipole moment to the excited state of both compounds. This dipole moment is large and constant in DMSO, whereas symmetry breaking appears significantly slower and leading to smaller excited-state dipole in toluene. Time-dependant increase of the excited-state dipole moment induced by weak solvation is proposed to explain the results in toluene.

  9. Construction of Multi-Chromophoric Spectra from Monomer Data: Applications to Resonant Energy Transfer

    CERN Document Server

    Chenu, Aurélia

    2016-01-01

    We develop a model that establishes a quantitative link between the physical properties of molecular aggregates and their constituent building blocks. The relation is built on the coherent potential approximation, calibrated against exact results, and proven reliable for a wide range of parameters. It provides a practical method to compute spectra and transfer rates in multi-chromophoric systems from experimentally accessible monomer data. Applications to F\\"orster energy transfer reveal optimal transfer rates as functions of both the system-bath coupling and intra-aggregate coherence.

  10. Associated depression in pseudophakic patients with intraocular lens with and without chromophore

    Directory of Open Access Journals (Sweden)

    Mendoza-Mendieta ME

    2016-03-01

    Full Text Available María Elena Mendoza-Mendieta, Ana Aurora Lorenzo-Mejía Association to Prevent Blindness in Mexico (APEC, Hospital “Dr Luis Sánchez Bulnes”, Mexico City, Mexico Background: With aging, the crystalline lens turns yellowish, which increases the absorption of wavelengths in the blue electromagnetic spectrum, reducing their photoreception in the retina. Since these wavelengths are the main stimulus in the regulation of the circadian rhythm, progressive reduction in their transmission is associated with chronic sleep disturbances and depression in elderly patients. Cataract extraction improves circadian photoreception at any age. However, lenses that block blue waves have 27% to 38% less melatonin suppression than lenses that block only ultraviolet (UV rays. Purpose: To assess the depression symptoms in subjects who have had bilateral phacoemulsification and intraocular lens (IOL implants, one group with yellow chromophore IOLs and the other group with transparent IOLs were compared. Setting: Association to Prevent Blindness in Mexico (APEC, Hospital “Dr Luis Sánchez Bulnes”. Design: This was an observational, cross-sectional, and single-center study. Materials and methods: Twenty-six subjects between 60 and 80 years of age, with a history of bilateral phacoemulsification and placement of the same type of IOL in both eyes from 4 to 12 months prior to the study, who attended the follow-up visits and agreed to participate in this study, and provided signed informed consent were included in the study. They were asked to answer the short version of the 15-item Geriatric Depression Scale. Results: The average age of the study participants was 72.5±5.94 years. The group without chromophore included 46.1% (n=12 of the patients and the group with chromophore included 53.9% (n=14 of the patients (P=0.088. Conclusion: In the group of patients with IOLs that block the passage of blue light, the depression rate was 21.4%, a rate similar to that

  11. Criteria for quantum coherent transfer of excitons between chromophores in a polar solvent

    CERN Document Server

    Gilmore, J; Gilmore, Joel; Kenzie, Ross H. Mc

    2004-01-01

    We show that the quantum decoherence of Forster resonant energy transfer between two optically active molecules can be described by a spin-boson model. This allows us to give quantitative criteria, in terms of experimentally measurable system parameters, that are necessary for coherent Bloch oscillations of excitons between the chromophores. Experimental tests of our results should be possible with Flourescent Resonant Energy Transfer (FRET) spectroscopy. Although we focus on the case of protein-pigment complexes our results are also relevant to quantum dots and organic molecules in a dielectric medium.

  12. Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy.

    Science.gov (United States)

    Smith, S O; Lugtenburg, J; Mathies, R A

    1985-01-01

    The analysis of the vibrational spectrum of the retinal chromophore in bacteriorhodopsin with isotopic derivatives provides a powerful "structural dictionary" for the translation of vibrational frequencies and intensities into structural information. Of importance for the proton-pumping mechanism is the unambiguous determination of the configuration about the C13=C14 and C=N bonds, and the protonation state of the Schiff base nitrogen. Vibrational studies have shown that in light-adapted BR568 the Schiff base nitrogen is protonated and both the C13=C14 and C=N bonds are in a trans geometry. The formation of K625 involves the photochemical isomerization about only the C13=C14 bond which displaces the Schiff base proton into a different protein environment. Subsequent Schiff base deprotonation produces the M412 intermediate. Thermal reisomerization of the C13=C14 bond and reprotonation of the Schiff base occur in the M412------O640 transition, resetting the proton-pumping mechanism. The vibrational spectra can also be used to examine the conformation about the C--C single bonds. The frequency of the C14--C15 stretching vibration in BR568, K625, L550 and O640 argues that the C14--C15 conformation in these intermediates is s-trans. Conformational distortions of the chromophore have been identified in K625 and O640 through the observation of intense hydrogen out-of-plane wagging vibrations in the Raman spectra (see Fig. 2). These two intermediates are the direct products of chromophore isomerization. Thus it appears that following isomerization in a tight protein binding pocket, the chromophore cannot easily relax to a planar geometry. The analogous observation of intense hydrogen out-of-plane modes in the primary photoproduct in vision (Eyring et al., 1982) suggests that this may be a general phenomenon in protein-bound isomerizations. Future resonance Raman studies should provide even more details on how bacterio-opsin and retinal act in concert to produce an

  13. Decoupling Electronic versus Nuclear Photoresponse of Isolated Green Fluorescent Protein Chromophores Using Short Laser Pulses

    Science.gov (United States)

    Kiefer, Hjalte V.; Pedersen, Henrik B.; Bochenkova, Anastasia V.; Andersen, Lars H.

    2016-12-01

    The photophysics of a deprotonated model chromophore for the green fluorescent protein is studied by femtosecond laser pulses in an electrostatic ion-storage ring. The laser-pulse duration is much shorter than the time for internal conversion, and, hence, contributions from sequential multiphoton absorption, typically encountered with ns-laser pulses, are avoided. Following single-photon excitation, the action-absorption maximum is shown to be shifted within the S0 to S1 band from its origin at about 490 to 450 nm, which is explained by the different photophysics involved in the detected action.

  14. The radial distribution of water ice and chromophores across Saturn's system

    CERN Document Server

    Filacchione, G; Clark, R N; Nicholson, P D; Cruikshank, D P; Cuzzi, J N; Lunine, J I; Brown, R H; Cerroni, P; Tosi, F; Ciarniello, M; Buratti, B J; Hedman, M M; Flamini, E

    2013-01-01

    Over the last eight years, the Visual and Infrared Mapping Spectrometer (VIMS) aboard the Cassini orbiter has returned hyperspectral images in the 0.35-5.1 micron range of the icy satellites and rings of Saturn. These very different objects show significant variations in surface composition, roughness and regolith grain size as a result of their evolutionary histories, endogenic processes and interactions with exogenic particles. The distributions of surface water ice and chromophores, i.e. organic and non-icy materials, across the saturnian system, are traced using specific spectral indicators (spectral slopes and absorption band depths) obtained from rings mosaics and disk-integrated satellites observations by VIMS.

  15. FTIR microscopy reveals distinct biomolecular profile of crustacean digestive glands upon subtoxic exposure to ZnO nanoparticles.

    Science.gov (United States)

    Romih, Tea; Jemec, Anita; Novak, Sara; Vaccari, Lisa; Ferraris, Paolo; Šimon, Martin; Kos, Monika; Susič, Robert; Kogej, Ksenija; Zupanc, Jernej; Drobne, Damjana

    2016-01-01

    Biomolecular profiling with Fourier-Transform InfraRed Microscopy was performed to distinguish the Zn(2+)-mediated effects on the crustacean (Porcellio scaber) digestive glands from the ones elicited by the ZnO nanoparticles (NPs). The exposure to ZnO NPs or ZnCl2 (1500 and 4000 µg Zn/g of dry food) activated different types of metabolic pathways: some were found in the case of both substances, some only in the case of ZnCl2, and some only upon exposure to ZnO NPs. Both the ZnO NPs and the ZnCl2 increased the protein (∼1312 cm(-1); 1720-1485 cm(-1)/3000-2830 cm(-1)) and RNA concentration (∼1115 cm(-1)). At the highest exposure concentration of ZnCl2, where the effects occurred also at the organismal level, some additional changes were found that were not detected upon the ZnO NP exposure. These included changed carbohydrate (most likely glycogen) concentrations (∼1043 cm(-1)) and the desaturation of cell membrane lipids (∼3014 cm(-1)). The activation of novel metabolic pathways, as evidenced by changed proteins' structure (at 1274 cm(-1)), was found only in the case of ZnO NPs. This proves that Zn(2+) are not the only inducers of the response to ZnO NPs. Low bioavailable fraction of Zn(2+) in the digestive glands exposed to ZnO NPs further supports the role of particles in the ZnO NP-generated effects. This study provides the evidence that ZnO NPs induce their own metabolic responses in the subtoxic range.

  16. Active and silent chromophore isoforms for phytochrome Pr photoisomerization: An alternative evolutionary strategy to optimize photoreaction quantum yields

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2014-01-01

    Full Text Available Photoisomerization of a protein bound chromophore is the basis of light sensing of many photoreceptors. We tracked Z-to-E photoisomerization of Cph1 phytochrome chromophore PCB in the Pr form in real-time. Two different phycocyanobilin (PCB ground state geometries with different ring D orientations have been identified. The pre-twisted and hydrogen bonded PCBa geometry exhibits a time constant of 30 ps and a quantum yield of photoproduct formation of 29%, about six times slower and ten times higher than that for the non-hydrogen bonded PCBb geometry. This new mechanism of pre-twisting the chromophore by protein-cofactor interaction optimizes yields of slow photoreactions and provides a scaffold for photoreceptor engineering.

  17. Light-induced conformational changes of the chromophore and the protein in phytochromes: bacterial phytochromes as model systems.

    Science.gov (United States)

    Scheerer, Patrick; Michael, Norbert; Park, Jung Hee; Nagano, Soshichiro; Choe, Hui-Woog; Inomata, Katsuhiko; Borucki, Berthold; Krauss, Norbert; Lamparter, Tilman

    2010-04-26

    Recombinant phytochromes Agp1 and Agp2 from Agrobacterium tumefaciens are used as model phytochromes for biochemical and biophysical studies. In biliverdin binding phytochromes the site for covalent attachment of the chromophore lies in the N-terminal region of the protein, different from plant phytochromes. The issue which stereochemistry the chromophore adopts in the so-called Pr and Pfr forms is addressed by using a series of locked chromophores which form spectrally characteristic adducts with Agp1 and Agp2. Studies on light-induced conformational changes of Agp1 give an insight into how the intrinsic histidine kinase is modulated by light. Comparison of the crystal structure of an Agp1 fragment with other phytochrome crystal structures supports the idea that a light induced rearrangement of subunits within the homodimer modulates the activity of the kinase.

  18. Refractive index modulation in the polyurethane films containing diazo sulfonamide chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Ortyl, E. [Insitute of Organic and Polymer Technology, WrocIaw University of Technology, 50-384 WrocIaw (Poland); Kucharski, S. [Insitute of Organic and Polymer Technology, WrocIaw University of Technology, 50-384 WrocIaw (Poland)]. E-mail: stanislaw.kucharski@pwr.wroc.pl; Gotszalk, T. [Faculty of Microsystem Electronics and Photonics, WrocIaw University of Technology, 50-384 WrocIaw (Poland)

    2005-05-23

    The series of photochromic polyurethanes was obtained by modification of precursor polymers prepared from 4,4'-diphenylmethane diisocyanate (MDI), hexamethylene 1,6-diisocyanate (HDI) or toluene 2,4-diisocyanate (TDI) and N,N'-di-(2-hydroxyethyl) aniline. The precursor polymers were functionalized by an azo-coupling reaction to form the polymers with different degrees of functionalization and various heterocyclic sulfonamide groups. Ellipsometric measurements showed a decrease of the refractive index during illumination of thin polymer films with white light. The change of real part of the refractive index was in the range of 0.0033-0.0296 depending on the polymer kind and chromophore content. It was found that photocurrent was generated in the polymer films deposited onto indium tin oxide (ITO) glass plates. For the polyurethanes containing sulfathiazole groups in side chains the current density was up to 180 nA/cm{sup 2}. The formation of diffraction grating in the polymer films was easily achieved using linearly polarized laser light (532 nm) in a standard two beam coupling (TBC) system. The diffraction efficiency of the first diffraction beam was dependent on the chromophore content reaching ca. 12% for the derivatives of sulfamethoxazole.

  19. THE RADIAL DISTRIBUTION OF WATER ICE AND CHROMOPHORES ACROSS SATURN'S SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Filacchione, G.; Capaccioni, F.; Cerroni, P.; Tosi, F.; Ciarniello, M. [INAF-IAPS, Istituto di Astrofisica e Planetologia Spaziali, Area di Ricerca di Tor Vergata, via del Fosso del Cavaliere, 100, I-00133, Rome (Italy); Clark, R. N. [Federal Center, US Geological Survey, Denver, CO 80228 (United States); Nicholson, P. D.; Lunine, J. I.; Hedman, M. M. [Astronomy Department, Cornell University, 418 Space Sciences Building, Ithaca, NY 14853 (United States); Cruikshank, D. P.; Cuzzi, J. N. [NASA Ames Research Center, Moffett Field, CA 94035-1000 (United States); Brown, R. H. [Lunar Planetary Laboratory, University of Arizona, Kuiper Space Sciences 431A, Tucson, AZ 85721-0092 (United States); Buratti, B. J. [NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Flamini, E., E-mail: gianrico.filacchione@iaps.inaf.it [ASI, Italian Space Agency, viale Liegi 26, I-00198 Rome (Italy)

    2013-04-01

    Over the past eight years, the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini orbiter has returned hyperspectral images in the 0.35-5.1 {mu}m range of the icy satellites and rings of Saturn. These very different objects show significant variations in surface composition, roughness, and regolith grain size as a result of their evolutionary histories, endogenic processes, and interactions with exogenic particles. The distributions of surface water ice and chromophores, i.e., organic and non-icy materials, across the Saturnian system, are traced using specific spectral indicators (spectral slopes and absorption band depths) obtained from rings mosaics and disk-integrated satellites observations by VIMS. Moving from the inner C ring to Iapetus, we found a marking uniformity in the distribution of abundance of water ice. On the other hand, the distribution of chromophores is much more concentrated in the rings particles and on the outermost satellites (Rhea, Hyperion, and Iapetus). A reduction of red material is observed on the satellites' surfaces orbiting within the E ring environment likely due to fine particles from Enceladus' plumes. Once the exogenous dark material covering the Iapetus' leading hemisphere is removed, the texture of the water ice-rich surfaces, inferred through the 2 {mu}m band depth, appears remarkably uniform across the entire system.

  20. New chromophores based on combination of ethylenedioxythiophene and carbazole fragments: synthesis and optoelectronic properties

    Science.gov (United States)

    Bakiev, A. N.; Mayorova, O. A.; Gorbunov, A. A.; Lunegov, I. V.; Shklyaeva, E. V.; Abashev, G. G.

    2016-12-01

    Two new D-π-A chromophores composed of an electron-donating carbazole unit linked through π- bridges, bearing 3,4-ethylenedioxythiophene (EDOT) moiety, with an electron withdrawing dicyanovinyl group (DCV) were successfully synthesized involving Suzuki or Heck cross-coupling and Knöevenagel reactions as the key steps. The obtained compounds absorb light over a broad spectral range, including the visible spectrum. The HOMO/LUMO energies and band gap energy values (Eg) were calculated on the basis of the experimental optical and electrochemical data: HOMO, LUMO, Eg (eV), -5.51, -3.14, 2.37 (4), -5.34, -3.14, 2.20 (7). The presence of the HC=CH unit in compound 7 resulted in the increase of the HOMO energy level, the decrease of a band gap value and red shifts of the absorption and emission bands in comparison with those of 4. Large Stokes shifts and broadband luminescence inherent to both chromophores suggest their use as materials for luminescent solar collectors (LSCs). The obtained compounds demonstrated good solubility and suitable thin-film forming properties. For this reason, they may be suitable for solution-processable photovoltaic applications.

  1. Using NIR spatial illumination for detection and mapping chromophore changes during cerebral edema

    Science.gov (United States)

    Abookasis, David; Mathews, Marlon S.; Owen, Christopher M.; Binder, Devin K.; Linskey, Mark E.; Frostig, Ron D.; Tromberg, Bruce J.

    2008-02-01

    We used spatially modulated near-infrared (NIR) light to detect and map chromophore changes during cerebral edema in the rat neocortex. Cerebral edema was induced by intraperitoneal injections of free water (35% of body weight). Intracranial pressure (ICP) was measured with an optical fiber based Fabry-Perot interferometer sensor inserted into the parenchyma of the right frontal lobe during water administration. Increase in ICP from a baseline value of 10 cm-water to 145 cm-water was observed. Following induction of cerebral edema, there was a 26+/-1.7% increase in tissue concentration of deoxyhemoglobin and a 47+/-4.7%, 17+/-3% and 37+/-3.7% decrease in oxyhemoglobin, total hemoglobin concentration and cerebral tissue oxygen saturation levels, respectively. To the best of our knowledge, this is the first report describing the use of NIR spatial modulation of light for detecting and mapping changes in tissue concentrations of physiologic chromophores over time in response to cerebral edema.

  2. Multichromic Bis-Axially Extended Perylene Chromophore with Schiff Bases: Synthesis, Characterization and Electrochemical Studies.

    Science.gov (United States)

    Shabir, Ghulam; Saeed, Aamer; Arshad, Muhammad; Zahid, Muhammad

    2016-11-01

    In the present paper a novel way of symmetric conjugation extension along molecular axes of perylene dianhydride chromophore has been devised to achieve lengthy delocalized electronic species exhibiting red shifted absorption and emission of UV-Visible radiations. During synthetic pathway free amino Schiff bases of novel aldehydes with 4-amino acetanilide have been condensed with perylene dianhydride in quinoline at high temperature. Bis perylene diimide Schiff bases (5a-e) have been synthesized which showed absorption λmax at 461-526 nm and emission at 525-550 nm. Structures of newly obtained compounds have been confirmed by (1)H and (13)C-NMR studies. Cyclic voltammetric analysis of these dyes exhibited oxidation and reduction peaks which provide indirect evidence for their potential utility as n-type material for sensitization of semiconductors in solar cells. LUMO and HOMO energy levels were found in the range of -4.21 to -5.20 and -6.75 to -7.57 eV, respectively. Graphical Abstract Multi chromic bis-axially extended perylene chromophore with Schiff bases, synthesis characterization and electrochemical studies. Ghulam Shabir, Aamer Saeed, Muhammad Arshad and Muhammad Zahid.

  3. From gold nanoparticles to luminescent nano-objects: experimental aspects for better gold-chromophore interactions

    Science.gov (United States)

    Navarro, Julien R. G.; Lerouge, Frederic

    2017-01-01

    Gold nanoparticles have been the center of interest for scientists since many decades. Within the last 20 years, the research in that field has soared with the possibility to design and study nanoparticles with controlled shapes. From spheres to more complex shapes such as stars, or anisotropic architectures like rods or bipyramids, these new systems feature plasmonic properties making them the tools of choice for studies on light-matter interactions. In that context, fluorescence quenching and enhancement by gold nanostructures is a growing field of research. In this review, we report a non-exhaustive summary of the synthetic modes for various shapes and sizes of isotropic and anisotropic nanoparticles. We then focus on fluorescent studies of these gold nano-objects, either considering "bare" particles (without modifications) or hybrid particles (surface interaction with a chromophore). In the latter case, the well-known metal-enhanced fluorescence (MEF) is more particularly developed; the mechanisms of MEF are discussed in terms of the additional radiative and non-radiative decay rates caused by several parameters such as the vicinity of the chromophore to the metal or the size and shape of the nanostructures.

  4. Unmixing chromophores in human skin with a 3D multispectral optoacoustic mesoscopy system

    Science.gov (United States)

    Schwarz, Mathias; Aguirre, Juan; Soliman, Dominik; Buehler, Andreas; Ntziachristos, Vasilis

    2016-03-01

    The absorption of visible light by human skin is governed by a number of natural chromophores: Eumelanin, pheomelanin, oxyhemoglobin, and deoxyhemoglobin are the major absorbers in the visible range in cutaneous tissue. Label-free quantification of these tissue chromophores is an important step of optoacoustic (photoacoustic) imaging towards clinical application, since it provides relevant information in diseases. In tumor cells, for instance, there are metabolic changes (Warburg effect) compared to healthy cells, leading to changes in oxygenation in the environment of tumors. In malignant melanoma changes in the absorption spectrum have been observed compared to the spectrum of nonmalignant nevi. So far, optoacoustic imaging has been applied to human skin mostly in single-wavelength mode, providing anatomical information but no functional information. In this work, we excited the tissue by a tunable laser source in the spectral range from 413-680 nm with a repetition rate of 50 Hz. The laser was operated in wavelengthsweep mode emitting consecutive pulses at various wavelengths that allowed for automatic co-registration of the multispectral datasets. The multispectral raster-scan optoacoustic mesoscopy (MSOM) system provides a lateral resolution of <60 μm independent of wavelength. Based on the known absorption spectra of melanin, oxyhemoglobin, and deoxyhemoglobin, three-dimensional absorption maps of all three absorbers were calculated from the multispectral dataset.

  5. Biochemical and biomolecular aspects of oxidative stress due to acute and severe hypoxia in human muscle tissue.

    Science.gov (United States)

    Corbucci, G G; Sessego, R; Velluti, C; Salvi, M

    1995-01-01

    Mitochondrial oxidative stress was investigated in severe and acute hypoxia and in reperfusion applied to human muscle tissues. The biochemical and biomolecular relationship between the response of the respiratory-chain enzymic complexes and the metabolism of specific hypoxia stress proteins (HSP) suggest an adaptive mechanism which antagonizes the oxidative damage due to acute and severe tissue hypoxia.

  6. Investigation of the Human Disease Osteogenesis Imperfecta: A Research-Based Introduction to Concepts and Skills in Biomolecular Analysis

    Science.gov (United States)

    Mate, Karen; Sim, Alistair; Weidenhofer, Judith; Milward, Liz; Scott, Judith

    2013-01-01

    A blended approach encompassing problem-based learning (PBL) and structured inquiry was used in this laboratory exercise based on the congenital disease Osteogenesis imperfecta (OI), to introduce commonly used techniques in biomolecular analysis within a clinical context. During a series of PBL sessions students were presented with several…

  7. Investigation of the Human Disease Osteogenesis Imperfecta: A Research-Based Introduction to Concepts and Skills in Biomolecular Analysis

    Science.gov (United States)

    Mate, Karen; Sim, Alistair; Weidenhofer, Judith; Milward, Liz; Scott, Judith

    2013-01-01

    A blended approach encompassing problem-based learning (PBL) and structured inquiry was used in this laboratory exercise based on the congenital disease Osteogenesis imperfecta (OI), to introduce commonly used techniques in biomolecular analysis within a clinical context. During a series of PBL sessions students were presented with several…

  8. Electrochemical sensor for multiplex screening of genetically modified DNA: identification of biotech crops by logic-based biomolecular analysis.

    Science.gov (United States)

    Liao, Wei-Ching; Chuang, Min-Chieh; Ho, Ja-An Annie

    2013-12-15

    Genetically modified (GM) technique, one of the modern biomolecular engineering technologies, has been deemed as profitable strategy to fight against global starvation. Yet rapid and reliable analytical method is deficient to evaluate the quality and potential risk of such resulting GM products. We herein present a biomolecular analytical system constructed with distinct biochemical activities to expedite the computational detection of genetically modified organisms (GMOs). The computational mechanism provides an alternative to the complex procedures commonly involved in the screening of GMOs. Given that the bioanalytical system is capable of processing promoter, coding and species genes, affirmative interpretations succeed to identify specified GM event in terms of both electrochemical and optical fashions. The biomolecular computational assay exhibits detection capability of genetically modified DNA below sub-nanomolar level and is found interference-free by abundant coexistence of non-GM DNA. This bioanalytical system, furthermore, sophisticates in array fashion operating multiplex screening against variable GM events. Such a biomolecular computational assay and biosensor holds great promise for rapid, cost-effective, and high-fidelity screening of GMO. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Synthesis and NLO Properties of Chromophores with 1,8-Dimethoxy-9,10-dihydroanthracene and Thiobarbituric acid Moieties

    Institute of Scientific and Technical Information of China (English)

    WU De-Lin; JIA Zhao-Li; SHI Jie-Ping; SHI Zheng-Wei; LU Guo-Yuan

    2008-01-01

    The new chromophore molecules with nonlinear optical (NLO) properties were prepared by Knoevenagel condensation from 4,5-diformyl-1,8-dimethoxy-9,10-dihydroanthracene and thiobarbituric acid derivatives in the presence of piperidine and acetic acid. In these chromophores, the ring-locked triene employed as a conjugation bridge and the thiobarbituric acid moiety was as an electron acceptor in a D-π-A units. The solvatochromism and UV spectra indicate that they have higher second-order nonlinear polarizability μβ values than the corresponding reference compound, without causing a large red shift of the charge transfer band.

  10. Effects of Clear Kefir on Biomolecular Aspects of Glycemic Status of Type 2 Diabetes Mellitus (T2DM Patients in Bandung, West Java [Study on Human Blood Glucose, c Peptide and Insulin

    Directory of Open Access Journals (Sweden)

    Judiono J

    2014-08-01

    Full Text Available Background: Diabetes Mellitus (DM triggers an excessive reaction of free-radicals. It increases reactive oxygen species and reduces antioxidants status as well as the β cell damage. Clear kefir was used for DM therapies, however it limited biomolecular exploration of its bioactive roles. Research aimed to investigate the effects of clear kefir on the biomolecular nature of the glycemic status of T2DM in Bandung. Methods: The randomized pretest-posttest control group was conducted by 106 T2DM patients. Research was done in several hospitals in Bandung and Cimahi, West Java from 2012–2013. Samples were divided randomly into three groups: (1 T2DM with HbA1c 7 fed standard diet and supplemented 200 ml/day by clear kefir, (3 T2DM with HbA1c was fed a standard diet as a control group. Dose response was obtained from a preeliminary vivo study, and then converted to human dosage by year 2011. Intervention was effectively done for 30 days. HbA1c was measured by HPLC. Fasting blood glucose (FBG and Postprandial blood glucose levels (PBG were measured by enzymes levels. C Peptide and insulin were measured by Elisa. Data was analyzed by a statictics programme by significance p<0,05. Study was approved by ethic committee. Results : HbA1c was significantly reduced in delta level (p<0.01 and FBG (p<0.015 among kefir groups. PBG was not significantly reduced among groups. C-Peptide was significantly increased in delta level, except in control group (p<0.014. Insulin was reduced significantly, except in control group (p<0.003. Conclusions : Supplementation of clear kefir reduced blood glucose levels (HbA1c, FBG, PBG and increased c-peptide. Clear kefir’s biomolecular mechanisms and chemistry characterization is a challenge for future studies.

  11. Computer programming and biomolecular structure studies: A step beyond internet bioinformatics.

    Science.gov (United States)

    Likić, Vladimir A

    2006-01-01

    This article describes the experience of teaching structural bioinformatics to third year undergraduate students in a subject titled Biomolecular Structure and Bioinformatics. Students were introduced to computer programming and used this knowledge in a practical application as an alternative to the well established Internet bioinformatics approach that relies on access to the Internet and biological databases. This was an ambitious approach considering that the students mostly had a biological background. There were also time constraints of eight lectures in total and two accompanying practical sessions. The main challenge was that students had to be introduced to computer programming from a beginner level and in a short time provided with enough knowledge to independently solve a simple bioinformatics problem. This was accomplished with a problem directly relevant to the rest of the subject, concerned with the structure-function relationships and experimental techniques for the determination of macromolecular structure.

  12. Gold nanoshells with gain-assisted silica core for ultra-sensitive bio-molecular sensors

    Science.gov (United States)

    Tao, Yifei; Guo, Zhongyi; Zhang, Anjun; Zhang, Jingran; Wang, Benyang; Qu, Shiliang

    2015-08-01

    A novel bio-molecular nanostructured sensor composed of Au spherical nanoshell and gain-assisted silica-core has been proposed and investigated theoretically, which shows a superior performance compared to the existing structured sensor. Using quasi-static approximation calculation, it is found that the scattering efficiency and the quality factor of SPR can be enhanced greatly by introducing proper amount of gain. The simulated results demonstrate that our designed Au spherical nanoshell and gain-assisted silica-core can obtain as high as 166.7 nm/RIU for the sensitivity of refractive index, and the sensors' figure of merit is enhanced 2000 times nearly compared to that of g=0, which indicates that the designed spherical core-shell sensors have the powerful ability to detect a subtle change in the concentration of its background medium.

  13. Biomolecular Electrostatics Simulation by an FMM-based BEM on 512 GPUs

    CERN Document Server

    Yokota, Rio; Bardhan, Jaydeep P; Knepley, Matthew G; Barba, L A

    2010-01-01

    We present simulations of biomolecular electrostatics at a scale not reached before, thanks to both algorithmic and hardware acceleration. The algorithmic acceleration is achieved with the fast multipole method (FMM) in conjunction with a boundary element method (BEM) formulation of the continuum electrostatic model. The hardware acceleration is achieved through graphics processors, GPUs. We demonstrate the power of our algorithms and software for the calculation of the electrostatic interactions between biological molecules in solution. Computational experiments are presented simulating the electrostatics of protein--drug binding and several multi-million atom systems consisting of hundreds to thousands of copies of the problems, which models over 20 million atoms and has more than six billion unknowns, one iteration step requires only a few minutes on 512 GPU nodes. We achieved a sustained performance of 34.6TFlops for the entire BEM calculation. We are currently adapting our solver to model the linearized ...

  14. Towards local electromechanical probing of cellular and biomolecular systems in a liquid environment

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V [Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37931 (United States); Rodriguez, Brian J [Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37931 (United States); Jesse, Stephen [Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37931 (United States); Seal, Katyayani [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37931 (United States); Proksch, Roger [Asylum Research, Santa Barbara, CA 93117 (United States); Hohlbauch, Sophia [Asylum Research, Santa Barbara, CA 93117 (United States); Revenko, Irene [Asylum Research, Santa Barbara, CA 93117 (United States); Thompson, Gary Lee [Department of Bioengineering, Clemson University, Clemson, SC 29634 (United States); Vertegel, Alexey A [Department of Bioengineering, Clemson University, Clemson, SC 29634 (United States)

    2007-10-24

    Electromechanical coupling is ubiquitous in biological systems, with examples ranging from simple piezoelectricity in calcified and connective tissues to voltage-gated ion channels, energy storage in mitochondria, and electromechanical activity in cardiac myocytes and outer hair cell stereocilia. Piezoresponse force microscopy (PFM) originally emerged as a technique to study electromechanical phenomena in ferroelectric materials, and in recent years has been employed to study a broad range of non-ferroelectric polar materials, including piezoelectric biomaterials. At the same time, the technique has been extended from ambient to liquid imaging on model ferroelectric systems. Here, we present results on local electromechanical probing of several model cellular and biomolecular systems, including insulin and lysozyme amyloid fibrils, breast adenocarcinoma cells, and bacteriorhodopsin in a liquid environment. The specific features of PFM operation in liquid are delineated and bottlenecks on the route towards nanometre-resolution electromechanical imaging of biological systems are identified.

  15. In situ characterization of nanoparticle biomolecular interactions in complex biological media by flow cytometry

    Science.gov (United States)

    Lo Giudice, Maria Cristina; Herda, Luciana M.; Polo, Ester; Dawson, Kenneth A.

    2016-11-01

    Nanoparticles interacting with, or derived from, living organisms are almost invariably coated in a variety of biomolecules presented in complex biological milieu, which produce a bio-interface or `biomolecular corona' conferring a biological identity to the particle. Biomolecules at the surface of the nanoparticle-biomolecule complex present molecular fragments that may be recognized by receptors of cells or biological barriers, potentially engaging with different biological pathways. Here we demonstrate that using intense fluorescent reporter binders, in this case antibodies bound to quantum dots, we can map out the availability of such recognition fragments, allowing for a rapid and meaningful biological characterization. The application in microfluidic flow, in small detection volumes, with appropriate thresholding of the detection allows the study of even complex nanoparticles in realistic biological milieu, with the emerging prospect of making direct connection to conditions of cell level and in vivo experiments.

  16. A Review of Salam Phase Transition in Protein Amino Acids Implication for Biomolecular Homochirality

    CERN Document Server

    Bai, F; Bai, Fan; Wang, Wenqing

    2002-01-01

    The origin of chirality, closely related to the evolution of life on the earth, has long been debated. In 1991, Abdus Salam suggested a novel approach to achieve biomolecular homochirality by a phase transition. In his subsequent publication, he predicted that this phase transition could eventually change D-amino acids to L-amino acids as C -H bond would break and H atom became a superconductive atom. Since many experiments denied the configuration change in amino acids, Salam hypothesis aroused suspicion. This paper is aimed to provide direct experimental evidence of a phase transition in alanine, valine single crystals but deny the configuration change of D- to L- enantiomers. New views on Salam phase transition are presented to revalidate its great importance in the origin of homochirality.

  17. Effect of temperature and magnetic field on the photocurrent response of biomolecular bulk-hetero junction

    Science.gov (United States)

    Tajima, Hiroyuki; Sekiguchi, Yusuke; Matsuda, Masaki

    2012-02-01

    The photocurrent responses were investigated for the biomolecular bulk-hetero junction of chlorophyll α (Chl-α) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-1-phenyl-(6,6)C61 (PCBM) in the temperature range between 300 K and 1.5 K under the magnetic field up to 8 T. The chopped-light photocurrent decreases on lowering the temperature. Below 10 K, photocurrent decrease was observed under the applied magnetic field. Decay of the photocurrent observed at 10 K was ascribed to the formation of the charged trap under light irradiation. The magnetic field effect (MFE) observed in this device was found to be very similar to that observed in P3HT:PCBM bulk-hetero junction at low temperatures.

  18. PLATINUM: a web tool for analysis of hydrophobic/hydrophilic organization of biomolecular complexes.

    Science.gov (United States)

    Pyrkov, Timothy V; Chugunov, Anton O; Krylov, Nikolay A; Nolde, Dmitry E; Efremov, Roman G

    2009-05-01

    The PLATINUM (Protein-Ligand ATtractions Investigation NUMerically) web service is designed for analysis and visualization of hydrophobic/hydrophilic properties of biomolecules supplied as 3D-structures. Furthermore, PLATINUM provides a number of tools for quantitative characterization of the hydrophobic/hydrophilic match in biomolecular complexes e.g. in docking poses. These complement standard scoring functions. The calculations are based on the concept of empirical Molecular Hydrophobicity Potential (MHP). The PLATINUM web tool as well as detailed documentation and tutorial are available free of charge for academic users at http://model.nmr.ru/platinum/. PLATINUM requires Java 5 or higher and Adobe Flash Player 9. Supplementary data are available at Bioinformatics online.

  19. Biomolecular papain thin films grown by matrix assisted and conventional pulsed laser deposition: A comparative study

    Science.gov (United States)

    György, E.; Pérez del Pino, A.; Sauthier, G.; Figueras, A.

    2009-12-01

    Biomolecular papain thin films were grown both by matrix assisted pulsed laser evaporation (MAPLE) and conventional pulsed laser deposition (PLD) techniques with the aid of an UV KrF∗ (λ =248 nm, τFWHM≅20 ns) excimer laser source. For the MAPLE experiments the targets submitted to laser radiation consisted on frozen composites obtained by dissolving the biomaterial powder in distilled water at 10 wt % concentration. Conventional pressed biomaterial powder targets were used in the PLD experiments. The surface morphology of the obtained thin films was studied by atomic force microscopy and their structure and composition were investigated by Fourier transform infrared spectroscopy. The possible physical mechanisms implied in the ablation processes of the two techniques, under comparable experimental conditions were identified. The results showed that the growth mode, surface morphology as well as structure of the deposited biomaterial thin films are determined both by the incident laser fluence value as well as target preparation procedure.

  20. Biochemical Filter with Sigmoidal Response: Increasing the Complexity of Biomolecular Logic

    CERN Document Server

    Privman, Vladimir; Arugula, Mary A; Melnikov, Dmitriy; Bocharova, Vera; Katz, Evgeny

    2010-01-01

    The first realization of a designed, rather than natural, biochemical filter process is reported and analyzed as a promising network component for increasing the complexity of biomolecular logic systems. Key challenge in biochemical logic research has been achieving scalability for complex network designs. Various logic gates have been realized, but a "toolbox" of analog elements for interconnectivity and signal processing has remained elusive. Filters are important as network elements that allow control of noise in signal transmission and conversion. We report a versatile biochemical filtering mechanism designed to have sigmoidal response in combination with signal-conversion process. Horseradish peroxidase-catalyzed oxidation of chromogenic electron donor by hydrogen peroxide, was altered by adding ascorbate, allowing to selectively suppress the output signal, modifying the response from convex to sigmoidal. A kinetic model was developed for evaluation of the quality of filtering. The results offer improved...

  1. Resolution-Adapted All-Atomic and Coarse-Grained Model for Biomolecular Simulations.

    Science.gov (United States)

    Shen, Lin; Hu, Hao

    2014-06-10

    We develop here an adaptive multiresolution method for the simulation of complex heterogeneous systems such as the protein molecules. The target molecular system is described with the atomistic structure while maintaining concurrently a mapping to the coarse-grained models. The theoretical model, or force field, used to describe the interactions between two sites is automatically adjusted in the simulation processes according to the interaction distance/strength. Therefore, all-atomic, coarse-grained, or mixed all-atomic and coarse-grained models would be used together to describe the interactions between a group of atoms and its surroundings. Because the choice of theory is made on the force field level while the sampling is always carried out in the atomic space, the new adaptive method preserves naturally the atomic structure and thermodynamic properties of the entire system throughout the simulation processes. The new method will be very useful in many biomolecular simulations where atomistic details are critically needed.

  2. Advances in biomolecular surface meshing and its applications to mathematical modeling

    Institute of Scientific and Technical Information of China (English)

    CHEN MinXin; LU BenZhuo

    2013-01-01

    In the field of molecular modeling and simulation,molecular surface meshes are necessary for many problems,such as molecular structure visualization and analysis,docking problem and implicit solvent modeling and simulation.Recently,with the developments of advanced mathematical modeling in the field of implicit solvent modeling and simulation,providing surface meshes with good qualities efficiently for large real biomolecular systems becomes an urgent issue beyond its traditional purposes for visualization and geometry analyses for molecular structure.In this review,we summarize recent works on this issue.First,various definitions of molecular surfaces and corresponding meshing methods are introduced.Second,our recent meshing tool,TMSmesh,and its performances are presented.Finally,we show the applications of the molecular surface mesh in implicit solvent modeling and simulations using boundary element method (BEM) and finite element method (FEM).

  3. Self-chemisorption of azurin on functionalized oxide surfaces for the implementation of biomolecular devices

    Energy Technology Data Exchange (ETDEWEB)

    Biasco, A.; Maruccio, G.; Visconti, P.; Bramanti, A.; Calogiuri, P.; Cingolani, R.; Rinaldi, R

    2004-06-01

    In this work, we investigate the formation of redox protein Azurin (Az) monolayers on functionalized oxygen exposing surfaces. These metallo-proteins mediate electron transfer in the denitrifying chain of Pseudomonas bacteria and exhibit self-assembly properties, therefore they are good candidates for bio-electronic applications. Azurin monolayers are self-assembled onto silane functionalized surfaces and characterized by atomic force microscopy (AFM). We show also that a biomolecular field effect transistor (FET) in the solid state can be implemented by interconnecting an Azurin monolayer immobilized on SiO{sub 2} with two gold nanoelectrodes. Transport experiments, carried out at room temperature and ambient pressure, show FET behavior with conduction modulated by the gate potential.

  4. Differential geometry-based solvation and electrolyte transport models for biomolecular modeling: a review

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Guowei; Baker, Nathan A.

    2016-11-11

    This chapter reviews the differential geometry-based solvation and electrolyte transport for biomolecular solvation that have been developed over the past decade. A key component of these methods is the differential geometry of surfaces theory, as applied to the solvent-solute boundary. In these approaches, the solvent-solute boundary is determined by a variational principle that determines the major physical observables of interest, for example, biomolecular surface area, enclosed volume, electrostatic potential, ion density, electron density, etc. Recently, differential geometry theory has been used to define the surfaces that separate the microscopic (solute) domains for biomolecules from the macroscopic (solvent) domains. In these approaches, the microscopic domains are modeled with atomistic or quantum mechanical descriptions, while continuum mechanics models (including fluid mechanics, elastic mechanics, and continuum electrostatics) are applied to the macroscopic domains. This multiphysics description is integrated through an energy functional formalism and the resulting Euler-Lagrange equation is employed to derive a variety of governing partial differential equations for different solvation and transport processes; e.g., the Laplace-Beltrami equation for the solvent-solute interface, Poisson or Poisson-Boltzmann equations for electrostatic potentials, the Nernst-Planck equation for ion densities, and the Kohn-Sham equation for solute electron density. Extensive validation of these models has been carried out over hundreds of molecules, including proteins and ion channels, and the experimental data have been compared in terms of solvation energies, voltage-current curves, and density distributions. We also propose a new quantum model for electrolyte transport.

  5. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    KAUST Repository

    Sobhy, M. A.

    2011-11-07

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation and detection is a key experimental feature that is under continuous development. In this paper, we describe in detail the design and the construction of a sophisticated and versatile multi-color excitation and emission fluorescence instrument for studying biomolecular dynamics at the single-molecule level. The setup is novel, economical and compact, where two inverted microscopes share a laser combiner module with six individual laser sources that extend from 400 to 640 nm. Nonetheless, each microscope can independently and in a flexible manner select the combinations, sequences, and intensities of the excitation wavelengths. This high flexibility is achieved by the replacement of conventional mechanical shutters with acousto-optic tunable filter (AOTF). The use of AOTF provides major advancement by controlling the intensities, duration, and selection of up to eight different wavelengths with microsecond alternation time in a transparent and easy manner for the end user. To our knowledge this is the first time AOTF is applied to wide-field total internal reflection fluorescence (TIRF) microscopy even though it has been commonly used in multi-wavelength confocal microscopy. The laser outputs from the combiner module are coupled to the microscopes by two sets of four single-mode optic fibers in order to allow for the optimization of the TIRF angle for each wavelength independently. The emission is split into two or four spectral channels to allow for the simultaneous detection of up to four different fluorophores of wide selection and using many possible excitation and photoactivation schemes. We demonstrate the performance of this new setup by conducting two-color alternating excitation single-molecule fluorescence resonance energy

  6. Synthesis and physicochemical characterization of copolymers of 3-octylthiophene and thiophene functionalized with azo chromophore

    Energy Technology Data Exchange (ETDEWEB)

    Nicho, M.E., E-mail: menicho@uaem.mx [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos (Mexico); Garcia-Carvajal, S.; Marquez-Aguilar, P.A.; Gueizado-Rodriguez, M. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos (Mexico); Escalante-Garcia, J. [Centro de Investigaciones Quimicas, UAEM, C.P. 62210, Cuernavaca, Morelos (Mexico); Medrano-Baca, G. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos (Mexico)

    2011-10-03

    Highlights: {yields} Azo chromophore in the copolymer showed an additional color to the P3OT. {yields} Non-linear optical properties by Z-scan technique in states: neutral and oxidized. {yields} The copolymers showed a change of non-linearity sign when the films were doped. {yields} We determined that the nonlinearity of the polymer films was a Kerr type. {yields} This study is the first report of NLO characterization of this material. - Abstract: Polythiophene derivatives with azo chromophore were synthesized via copolymerization of 3-octylthiophene (3OT) and 2-[N-ethyl-N-[4-[(4-nitrophenyl)azo]phenyl]amino]ethyl 3-thienylacetate (3-DRT). This copolymer has interesting optoelectronic properties and a variety of applications such as electrochromic and electronic devices. The polymerization process of 3OT and the functionalized thiophene was carried out via FeCl{sub 3} oxidative polymerization. Thin films of poly(3OT-co-3-DRT) copolymer were prepared by spin-coating technique from toluene. FTIR and {sup 1}H NMR spectroscopy revealed the presence of chromophore groups in the copolymer chain. Molecular weight and polydispersity of the polymers were measured by size exclusion chromatography. Changes in the surface topography of copolymers were analyzed by atomic force microscopy; the results showed that the copolymers presented some protuberances of variable size unlike the homogeneous granular morphology of P3OT. It is believed that these changes appeared by the incorporation of 3-DRT in the polymer. P3ATs are electrochromic materials that show color change upon oxidation-reduction process. We report that electrochemical characterization of poly(3OT-co-3-DRT) copolymer films synthesized chemically on indium-tin oxide (ITO) glass substrates showed an additional color to the P3OT homopolymer. Optical absorption properties of the polymer films were analyzed in the undoped and doped states and as a function of 3-DRT concentration in the copolymer. The nonlinear optical

  7. Dynamics of chromophoric dissolved organic matter in Mandovi and Zuari estuaries — A study through in situ and satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Menon, H.B.; Sangekar, N.P.; Lotliker, A.A.; Vethamony, P.

    The spatial and temporal distribution of absorption of chromophoric dissolved organic matter at 440 nm (a sub (CDOM) (440)) in the Mandovi and Zuari estuaries situated along the west coast of India, has been analysed. The study was carried out using...

  8. Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation

    NARCIS (Netherlands)

    Zhang, Y.; Liu, M.; Qin, B.; Feng, S.

    2009-01-01

    Photochemical degradation of chromophoric-dissolved organic matter (CDOM) by UV-B radiation decreases CDOM absorption in the UV region and fluorescence intensity, and alters CDOM composition. CDOM absorption, fluorescence, and the spectral slope indicating the CDOM composition were studied using 0.2

  9. High hyperpolarizabilities of donor-p-acceptor-functionalized calix[4]arene derivatives by pre-organization of chromophores

    NARCIS (Netherlands)

    Kenis, P.J.A.; Kenis, Paul J.A.; Kerver, Esther G.; Ruel, Bianca H.M.; van Hummel, G.J.; Harkema, Sybolt; Flipse, Marinus C.; Woudenberg, Richard H.; Engbersen, Johannes F.J.; Reinhoudt, David

    1998-01-01

    A systematic investigation of the conceptofpre-organization of nonlinear optical (NLO) active chromophoric groups in calix[4]arene derivatives and the influence on the absolute second-order nonlinear optical coefficients is reported. Several calix[4]arenes were synthesized by modification of the

  10. Catalytic effect of free iron ions and heme-iron on chromophore oxidation of a polyene antibiotic amphotericin B

    Science.gov (United States)

    Czernel, Grzegorz; Typek, Rafał; Klimek, Katarzyna; Czuryło, Aleksandra; Dawidowicz, Andrzej L.; Gagoś, Mariusz

    2016-05-01

    Owing to the presence of a chromophore in the amphotericin B (AmB) structure, the molecule can undergo the oxidation process. In this research, AmB chromophore oxidation was catalysed by iron ions (iron(III) chloride (FeCl3), pH 2.5) and by heme-iron (methemoglobin (HbFe(III)), and hemin (heme-Fe(III)) at pH 7.0). Additionally, we compared oxidation processes induced by the aforementioned oxidizing agents with autoxidation by dioxygen (O2) naturally occurring in a sample. The effects of the interaction of the oxidizing agents with AmB were analysed using molecular spectroscopies (electronic absorption (UV-Vis), fluorescence) and LC-MS. The use of a 1,10-phenanthroline (phen) chelator facilitated unambiguous determination of the oxidative effect of free iron(III) ions (FeIII) in an acidic solution on the AmB molecules. Also, the changes in the spectra of fluorescence emission centred at ∼470 nm indicate iron-catalysed processes of AmB chromophore oxidation. Unexpectedly, we found a similar spectroscopic effect for AmB induced by methemoglobin and hemin at pH 7.0. Methemoglobin and hemin at a concentration of 8 × 10-7 M (physiological) significantly increases the rate of the processes of AmB chromophore oxidation relative to the process of autoxidation.

  11. Synthesis and near-infrared characteristics of novel perylene bisimide dyes bay-functionalized with naphthalimide chromophores

    Institute of Scientific and Technical Information of China (English)

    Bo Gao; Yang Li; He Tian

    2007-01-01

    Novel perylene bisimide dyes bay-functionalized with naphthalimide chromophores have been prepared conveniently by coupling of 1,8-naphthalimide and dibromoperylene bisimides. Their optical properties were investigated by UV-vis and fluorescence spectroscopy. The absorption spectra of these compounds showed wide spectral responses from 300 to 700 nm,which would be potentials for application as organic solar cells.

  12. Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site.

    Science.gov (United States)

    Lamparter, Tilman; Michael, Norbert; Mittmann, Franz; Esteban, Berta

    2002-09-03

    Phytochromes are photochromic photoreceptors with a bilin chromophore that are found in plants and bacteria. The soil bacterium Agrobacterium tumefaciens contains two genes that code for phytochrome-homologous proteins, termed Agrobacterium phytochrome 1 and 2 (Agp1 and Agp2). To analyze its biochemical and spectral properties, Agp1 was purified from the clone of an E. coli overexpressor. The protein was assembled with the chromophores phycocyanobilin and biliverdin, which is the putative natural chromophore, to photoactive holoprotein species. Like other bacterial phytochromes, Agp1 acts as light-regulated His kinase. The biliverdin adduct of Agp1 represents a previously uncharacterized type of phytochrome photoreceptor, because photoreversion from the far-red absorbing form to the red-absorbing form is very inefficient, a feature that is combined with a rapid dark reversion. Biliverdin bound covalently to the protein; blocking experiments and site-directed mutagenesis identified a Cys at position 20 as the binding site. This particular position is outside the region where plant and some cyanobacterial phytochromes attach their chromophore and thus represents a previously uncharacterized binding site. Sequence comparisons imply that the region around Cys-20 is a ring D binding motif in phytochromes.

  13. Ultrafast dual photoresponse of isolated biological chromophores: link to the photoinduced mode-specific non-adiabatic dynamics in proteins.

    Science.gov (United States)

    Bochenkova, Anastasia V; Andersen, Lars H

    2013-01-01

    The anionic wild-type Green Fluorescent Protein (GFP) chromophore defines an entire class of naturally occurring chromophores, which are based on the oxydized tyrosine side chain. The GFP chromophore exhibits an enriched photoinduced non-adiabatic dynamics in the multiple excited-state decay channels. Deactivation includes vibrational resonant photodetachment and internal conversion. Here, we provide detailed insight into the efficiency of different vibrational modes in promoting a selective photoresponse in the bare GFP chromophore anion. We introduce a general theoretical model that is capable of accounting for the alternative non-equivalent pathways in internal conversion, and we outline the factors, by which the photo-initiated response may be altered in this channel. The topography around the planar minimum in S1 and the two distinct types of the S1/S0 conical intersections obtained through high-level ab initio calculations provide direct support to the proposed model. There are mode-selective ways to control the photoresponse and to direct it towards a single excited-state decay channel. By tuning the excitation wavelength, the photoresponse may be directed towards the ultrafast non-statistical electron emission coupled with vibrational (de)coherence, whereas a vibrational pre-excitation in the ground state may lead to the ultrafast non-statistical internal conversion through a conical intersection. We also discuss the implication of our results to the photo-initiated non-adiabatic dynamics in the proteins.

  14. Detailed theoretical investigation of excited-state intramolecular proton transfer mechanism of a new chromophore II

    Science.gov (United States)

    Cui, Yanling; Li, Yafei; Dai, Yumei; Verpoort, Francis; Song, Peng; Xia, Lixin

    2016-02-01

    In the present work, TDDFT has been used to investigate the excited state intramolecular proton transfer (ESIPT) mechanism of a new chromophore II [Sensors and Actuators B: Chemical. 202 (2014) 1190]. The calculated absorption and fluorescence spectra agree well with experimental results. In addition, two types of II configurations are found in the first excited state (S1), which can be ascribed to the ESIPT reaction. Based on analysis of the calculated infrared (IR) spectra of O-H stretching vibration as well as the hydrogen bonding energies, the strengthening of the hydrogen bond in the S1 state has been confirmed. The frontier molecular orbitals (MOs), Hirshfeld charge distribution and the Natural bond orbital (NBO) have also been analyzed, which displays the tendency of the ESIPT process. Finally, potential energy curves of the S0 and S1 states were constructed, demonstrating that the ESIPT reaction can be facilitated based on the photo-excitation.

  15. Determination of optimal source-detector separation in measuring chromophores in layered tissue with diffuse reflectance

    Institute of Scientific and Technical Information of China (English)

    Yunhan Luo; Houxin Cui; Xiaoyu Gu; Rong Liu; Kexin Xu

    2005-01-01

    Based on analysis of the relation between mean penetration depth and source-detector separation in a threelayer model with the method of Monte-Carlo simulation, an optimal source-detector separation is derived from the mean penetration depth referring to monitoring the change of chromophores concentration of the sandwiched layer. In order to verify the separation, we perform Monte-Carlo simulations with varied absorption coefficient of the sandwiched layer. All these diffuse reflectances are used to construct a calibration model with the method of partial least square (PLS). High correlation coefficients and low root mean square error of prediction (RMSEP) at the optimal separation have confirmed correctness of the selection. This technique is expected to show light on noninvasive diagnosis of near-infrared spectroscopy.

  16. PHOTOCHROMISM AND LUMINESCENCE OF DOPANT CHROMOPHORES THROUGH TWO-PHOTON IONIZATION IN POLYMER FILMS

    Institute of Scientific and Technical Information of China (English)

    Masahide Yamamoto; Hideo Ohkita; Shinzaburo Ito

    2001-01-01

    Two-photon ionization and recombination processes of an aromatic chromophore doped in polymer films were studied and the features of these processes were discussed in relation to photofunctional polymers. An aromatic molecule having low ionization potential, e.g., N,N,N',N'-tetramethyl-p-phenylene diamine doped in poly(methyl methacrylate)(PMMA) film was easily photoionized by intense laser light excitation, giving a colored radical cation (photochromism) and a trapped electron in PMMA matrix. As a reversed process, the radical cation recombined with the trapped electron, showing discoloration and emitting luminescence, either isothermal luminescence (ITL), or thermoluminescence (TL). In this report,ITL and TL through the charge recombination process were studied and the luminescence was suggested as a mean of the read-out of photorecording.

  17. Dual Fluorescence in GFP Chromophore Analogues: Chemical Modulation of Charge Transfer and Proton Transfer Bands.

    Science.gov (United States)

    Chatterjee, Tanmay; Mandal, Mrinal; Das, Ananya; Bhattacharyya, Kalishankar; Datta, Ayan; Mandal, Prasun K

    2016-04-14

    Dual fluorescence of GFP chromophore analogues has been observed for the first time. OHIM (o-hydroxy imidazolidinone) shows only a charge transfer (CT) band, CHBDI (p-cyclicamino o-hydroxy benzimidazolidinone) shows a comparable intensity CT and PT (proton transfer) band, and MHBDI (p-methoxy o-hydroxy benzimidazolidinone) shows a higher intensity PT band. It could be shown that the differential optical behavior is not due to conformational variation in the solid or solution phase. Rather, control of the excited state electronic energy level and excited state acidity constant by functional group modification could be shown to be responsible for the differential optical behavior. Chemical modification-induced electronic control over the relative intensity of the charge transfer and proton transfer bands could thus be evidenced. Support from single-crystal X-ray structure, NMR, femtosecond to nanosecond fluorescence decay analysis, and TDDFT-based calculation provided important information and thus helped us understand the photophysics better.

  18. Synthesis of Dendrimer Containing Dialkylated-fluorene Unit as a Core Chromophore via Click Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Choul; Lee, Jae Wook [Dong-A University, Busan (Korea, Republic of); Jin, Sung Ho [Pusan National University, Busan (Korea, Republic of)

    2012-01-15

    The convergent synthetic strategy for the emissive dendrimers having the chromophore at core via the coppercatalyzed 1,3-dipolar cycloaddition reaction between alkyne and azide was described. 2,7-Diazido-9,9-dioctyl- 9H-fluorene, designed to serve as the core in dendrimer, was stitched with the alkyne-functionalized Frechettype and PAMAM dendrons by the click chemistry leading to the formation of the corresponding fluorescent dendrimers in high yields. The preliminary photoluminescence studies indicated that 2,7-diazido-9,9-dioctyl- 9H-fluorene showed no fluorescence due to the quenching effect from the electron-rich α-nitrogen of the azido group but the dendrimers fluoresced due to the elimination of the quenching through the formation of the triazole ring.

  19. Alphabet-Inspired Design of (Hetero)Aromatic Push-Pull Chromophores.

    Science.gov (United States)

    Klikar, Milan; Solanke, Parmeshwar; Tydlitát, Jiří; Bureš, Filip

    2016-08-01

    Push-pull molecules represent a unique and fascinating class of organic π-conjugated materials. Herein, we provide a summary of their recent extraordinary design inspired by letters of the alphabet, especially focusing on H-, L-, T-, V-, X-, and Y-shaped molecules. Representative structures from each class were presented and their fundamental properties and prospective applications were discussed. In particular, emphasis is given to molecules recently prepared in our laboratory with T-, X-, and Y-shaped arrangements based on indan-1,3-dione, benzene, pyridine, pyrazine, imidazole, and triphenylamine. These push-pull molecules turned out to be very efficient charge-transfer chromophores with tunable properties suitable for second-order nonlinear optics, two-photon absorption, reversible pH-induced and photochromic switching, photocatalysis, and intercalation.

  20. Three-photon absorption in a push-pull type chromophore containing tricyanofuran acceptor

    Institute of Scientific and Technical Information of China (English)

    Yan Ji; Ying Qian; Zhi Qiang Zhou; Wei Lu; Yi Ping Cui

    2012-01-01

    Three-photon absorption (3PA) of a push-pull chromophore,2-(3-cyano-(3-(4-(dimethylamino)styryl)-5,5-dimethylcyclohex-2-enylidene)methyl)-5,5-dimethylfuran-2-ylidene) malononitrile (CFM) including TCF group was measured by the nonlinear transmission method using a femto-second Ti:Sapphire oscillator-amplifier laser system.Its three-photon absorption cross-sections at 1300 nm were 36.8 × 10-79 cm6 s2 in the solution of DMF and 12.3 × 10-79 cm6 s2 in the solution of CH2Cl2,respectively.The large values were got by experiments in this paper,which is a new exploration for these kinds of materials.The molecule has the potential application foreground of 3PA areas and optical power limiting.

  1. High-resolution electronic spectroscopy of the BODIPY chromophore in supersonic beam and superfluid helium droplets.

    Science.gov (United States)

    Stromeck-Faderl, Anja; Pentlehner, Dominik; Kensy, Uwe; Dick, Bernhard

    2011-07-11

    We present the fluorescence excitation and dispersed emission spectra of the parent compound of the boron dipyrromethene (BODIPY) dye class measured in a supersonic beam and isolated in superfluid helium nanodroplets. The gas-phase spectrum of the isolated molecules displays many low-frequency transitions that are assigned to a symmetry-breaking mode with a strongly nonharmonic potential, presumably the out-of-plane wagging mode of the BF(2) group. The data are in good agreement with transition energies and Franck-Condon factors calculated for a double minimum potential in the upper electronic state. The corresponding transitions do not appear in the helium droplet. This is explained with the quasi-rigid first layer of helium atoms attached to the dopant molecule by van der Waals forces. The spectral characteristics are those of a cyanine dye rather than that of an aromatic chromophore. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Analysis of an algebraic model for the chromophore vibrations of CF$_3$CHFI

    CERN Document Server

    Jung, C; Taylor, H S

    2004-01-01

    We extract the dynamics implicit in an algebraic fitted model Hamiltonian for the hydrogen chromophore's vibrational motion in the molecule $CF_3CHFI$. The original model has 4 degrees of freedom, three positions and one representing interbond couplings. A conserved polyad allows the reduction to 3 degrees of freedom. For most quantum states we can identify the underlying motion that when quantized gives the said state. Most of the classifications, identifications and assignments are done by visual inspection of the already available wave function semiclassically transformed from the number representation to a representation on the reduced dimension toroidal configuration space corresponding to the classical action and angle variables. The concentration of the wave function density to lower dimensional subsets centered on idealized simple lower dimensional organizing structures and the behavior of the phase along such organizing centers already reveals the atomic motion. Extremely little computational work is...

  3. Synthesis and nonlinear optical properties of copolymers of fluoro-containing bisphenol A and chromophores

    Institute of Scientific and Technical Information of China (English)

    Jie Ping Shi; Hui Yang; Li Wei; Hong Wen Hu; Guo Yuan Lu

    2011-01-01

    A series of new fluoro-containing copolymers have been synthesized by a Mitsunobu reaction with 4,4'-(hexafluoro-isopropylidene)bisphenol A (6FBPA) and the corresponding N, N-dihydroxyethylaminoaryl azo or ring-locked triene compounds, which have high thermal stability and good solubility in organic solvents. The nonlinear optical (NLO) measurements made by Marker fringe method at 1064 nm indicate that the copolymers embedded with the ring-locked triene and azo chromophores exhibit higher macroscopic nonlinear optical coefficient (70.2 pm/V and 26.5-34.6 pm/V, respectively). Thermal analysis and UV-visible absorption spectra show that the copolymers have good thermal stability (Td = 264-319 ℃) and optical transparency (λmax<500nm).

  4. Ochres and earths: Matrix and chromophores characterization of 19th and 20th century artist materials

    Science.gov (United States)

    Montagner, Cristina; Sanches, Diogo; Pedroso, Joana; Melo, Maria João; Vilarigues, Márcia

    2013-02-01

    The present paper describes the main results obtained from the characterization of a wide range of natural and synthetic ochre samples used in Portugal from the 19th to the 20th century, including powder and oil painting samples. The powder ochre samples came from several commercial distributors and from the collection of Joaquim Rodrigo (1912-1997), a leading Portuguese artist, particularly active during the sixties and seventies. The micro-samples of oil painting tubes came from the Museu Nacional de Arte Contemporânea-Museu do Chiado (National Museum of Contemporary Art-Chiado Museum) in Lisbon and were used by Columbano Bordalo Pinheiro (1857-1929), one of the most prominent naturalist Portuguese painters. These tubes were produced by the main 19th century colourmen: Winsor & Newton, Morin et Janet, Maison Merlin, and Lefranc. The samples have been studied using μ-Fourier Transform Infrared Spectroscopy (μ-FTIR), Raman microscopy, μ-Energy Dispersive X-ray fluorescence (μ-EDXRF), and X-ray diffraction (XRD). The analyzed ochres were found to be a mixture of several components: iron oxides and hydroxides in matrixes with kaolinite, gypsum and chalk. The results obtained allowed to identify and characterize the ochres according to their matrix and chromophores. The main chromophores where identified by Raman microscopy as being hematite, goethite and magnetite. The infrared analysis of the ochre samples allowed to divide them into groups, according to the composition of the matrix. It was possible to separate ochres containing kaolinite matrix and/or sulfate matrix from ochres where only iron oxides and/or hydroxides were detected. μ-EDXRF and Raman were the best techniques to identify umber, since the presence of elements such as manganese is characteristic of these pigments. μ-EDXRF also revealed the presence of significant amounts of arsenic in all Sienna tube paints.

  5. Chromophore dynamics in the PYP photocycle from femtosecond stimulated Raman spectroscopy.

    Science.gov (United States)

    Creelman, Mark; Kumauchi, Masato; Hoff, Wouter D; Mathies, Richard A

    2014-01-23

    Femtosecond stimulated Raman spectroscopy (FSRS) is used to examine the structural dynamics of the para-hydroxycinnamic acid (HCA) chromophore during the first 300 ps of the photoactive yellow protein (PYP) photocycle, as the system transitions from its vertically excited state to the early ground state cis intermediate, I0. A downshift in both the C7═C8 and C1═O stretches upon photoexcitation reveals that the chromophore has shifted to an increasingly quinonic form in the excited state, indicating a charge shift from the phenolate moiety toward the C9═O carbonyl, which continues to increase for 170 fs. In addition, there is a downshift in the C9═O carbonyl out-of-plane vibration on an 800 fs time scale as PYP transitions from its excited state to I0, indicating that weakening of the hydrogen bond with Cys69 and out-of-plane rotation of the C9═O carbonyl are key steps leading to photoproduct formation. HOOP intensity increases on a 3 ps time scale during the formation of I0, signifying distortion about the C7═C8 bond. Once on the I0 surface, the C7═C8 and C1═O stretches blue shift, indicating recovery of charge to the phenolate, while persistent intensity in the HOOP and carbonyl out-of-plane modes reveal HCA to be a cissoid structure with significant distortion about the C7═C8 bond and of C9═O out of the molecular plane.

  6. Differential effects of mutations in the chromophore pocket of recombinant phytochrome on chromoprotein assembly and Pr-to-Pfr photoconversion.

    Science.gov (United States)

    Remberg, A; Schmidt, P; Braslavsky, S E; Gärtner, W; Schaffner, K

    1999-11-01

    Site-directed mutagenesis was performed with the chromophore-bearing N-terminal domain of oat phytochrome A apoprotein (amino acid residues 1-595). Except for Trp366, which was replaced by Phe (W366F), all the residues exchanged are in close proximity to the chromophore-binding Cys321 (i.e. P318A, P318K, H319L, S320K, H322L and the double mutant L323R/Q324D). The mutants were characterized by their absorption maxima, and the kinetics of chromophore-binding and the Pr-->Pfr conversion. The strongest effect of mutation on the chromoprotein assembly, leading to an almost complete loss of the chromophore binding capability, was found for the exchanges of His322 by Leu (H322L) and Pro318 by Lys (P318K), whereas a corresponding alanine mutant (P318A) showed wild-type behavior. The second histidine (H319) is also involved in chromophore fixation, as indicated by a slower assembly rate upon mutation (H319L). For the other mutants, an assembly process very similar to that of the wild-type protein was found. The light-induced Pr-->Pfr conversion kinetics is altered in the mutations H319L and S320K and in the double mutant L323R/Q324D, all of which exhibited a significantly faster I700 decay and accelerated Pfr formation. P318 is also involved in the Pr-->Pfr conversion, the millisecond steps (formation of Pfr) being significantly slower for P318A. Lacking sufficient amounts of W366F, assembly kinetics could not be determined in this case, while the fully assembled mutant underwent the Pr-->Pfr conversion with kinetics similar to wild-type protein.

  7. Report on result 1998. Research and development on fusion area. Part 3 (biomolecular mechanism and design); 1998 nendo seika hokokusho. Yugo ryoiki kenkyu kaihatsu daisan bunsatsu (bimolecular mechanism and design)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    An organism is a molecular mechanical system consisting of nucleic acid, peptide and protein having a self-forming and a self-repairing function. For the purpose of creating cells, tissues and molecular mechanism alternating these biological functions, their basic technology was developed. Concretely, studies were made on three-dimensional cellular structural module engineering and biomolecular mechanism and design. Studies on biological soft tissue resulted in success by giving atmospheric glow discharge treatment to the inner surface of a tubular PVC. An artificial vitreous body was created using PVA hydrogels. In addition, liver cells were successfully cultured for the first time in the world. Studies on biological hard tissue revealed that osteopontin plays a role of a trigger for the initial differentiation of the osteoblast cell. Further, a basic experiment was carried out on the initial response of the cartilage cell. In the research on the molecular mechanism, examination was made on the mechanism of a double-head molecular motor. Examination was also made on the adjustment of the hydrogenase LB film as an electricity/hydrogen energy conversion element and on the biomolecular mechanism and design. (NEDO)

  8. Tibialis anterior muscle needle biopsy and sensitive biomolecular methods: a useful tool in myotonic dystrophy type 1

    Directory of Open Access Journals (Sweden)

    S. Iachettini

    2015-10-01

    Full Text Available Myotonic dystrophy type 1 (DM1 is a neuromuscular disorder caused by a CTG repeat expansion in 3’UTR of DMPK gene. This mutation causes accumulation of toxic RNA in nuclear foci leading to splicing misregulation of specific genes. In view of future clinical trials with antisense oligonucleotides in DM1 patients, it is important to set up sensitive and minimally-invasive tools to monitor the efficacy of treatments on skeletal muscle. A tibialis anterior (TA muscle sample of about 60 mg was obtained from 5 DM1 patients and 5 healthy subjects through a needle biopsy. A fragment of about 40 mg was used for histological examination and a fragment of about 20 mg was used for biomolecular analysis. The TA fragments obtained with the minimally-invasive needle biopsy technique is enough to perform all the histopathological and biomolecular evaluations useful to monitor a clinical trial on DM1 patients.

  9. Tibialis anterior muscle needle biopsy and sensitive biomolecular methods: a useful tool in myotonic dystrophy type 1.

    Science.gov (United States)

    Iachettini, S; Valaperta, R; Marchesi, A; Perfetti, A; Cuomo, G; Fossati, B; Vaienti, L; Costa, E; Meola, G; Cardani, R

    2015-10-26

    Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by a CTG repeat expansion in 3'UTR of DMPK gene. This mutation causes accumulation of toxic RNA in nuclear foci leading to splicing misregulation of specific genes. In view of future clinical trials with antisense oligonucleotides in DM1 patients, it is important to set up sensitive and minimally-invasive tools to monitor the efficacy of treatments on skeletal muscle. A tibialis anterior (TA) muscle sample of about 60 mg was obtained from 5 DM1 patients and 5 healthy subjects through a needle biopsy. A fragment of about 40 mg was used for histological examination and a fragment of about 20 mg was used for biomolecular analysis. The TA fragments obtained with the minimally-invasive needle biopsy technique is enough to perform all the histopathological and biomolecular evaluations useful to monitor a clinical trial on DM1 patients.

  10. Controls of functional group chemistry on calcium carbonate nucleation: Insights into systematics of biomolecular innovations for skeletal mineralization?

    Science.gov (United States)

    Dove, P. M.; Hamm, L. M.; Giuffre, A. J.

    2012-12-01

    Living organisms produce skeletal structures within a complex matrix of organic macromolecules that guide the nucleation and growth of crystalline structures into the organic-inorganic composites we know as biominerals. This type of biomolecule-directed mineralization is an ancient process as evidenced by structures in the fossil record that date to the Ediacaran (ca. 549 Ma). Our understanding of template-directed biomineralization, however, is largely based upon assumptions from studies that: 1) qualitatively demonstrate some chemical functionalities influence the nucleating mineral phase and morphology; 2) propose proteins are the primary driver to template-directed mineralization and 3) propose the ubiquitous polysaccharides are inert components. Thus, a mechanistic basis for how the underlying chemistry of macromolecules controls nucleation kinetics and thermodynamics in template-directed nucleation is not well established. Moreover, there is not yet a good appreciation for how patterns of skeletal mineralization evolved with biochemical innovations in response to environmental changes over geologic timescales. In small steps toward understanding biochemical controls on biomineralization, we test the hypothesis that the kinetics and thermodynamics of calcium carbonate (CaCO3) formation is regulated by a systematic relationship to the functional group chemistry of macromolecules. A long-term goal is to establish the energetic basis for biochemical motifs that are seen (and not seen) at sites of calcification across the phylogenetic tree. Two types of studies were conducted. The first measured nucleation rates on model biomolecular substrates with termini that are found in proteins associated with sites of calcification (-COOH, -PO4, and -SH) and two alkanethiol chain lengths (16-C and 11-C) at a variety of chemical driving forces. The measurements show functional group chemistry and molecule conformation regulate rates by a predictable relation to interfacial

  11. Modeling Structural Dynamics of Biomolecular Complexes by Coarse-Grained Molecular Simulations.

    Science.gov (United States)

    Takada, Shoji; Kanada, Ryo; Tan, Cheng; Terakawa, Tsuyoshi; Li, Wenfei; Kenzaki, Hiroo

    2015-12-15

    Due to hierarchic nature of biomolecular systems, their computational modeling calls for multiscale approaches, in which coarse-grained (CG) simulations are used to address long-time dynamics of large systems. Here, we review recent developments and applications of CG modeling methods, focusing on our methods primarily for proteins, DNA, and their complexes. These methods have been implemented in the CG biomolecular simulator, CafeMol. Our CG model has resolution such that ∼10 non-hydrogen atoms are grouped into one CG particle on average. For proteins, each amino acid is represented by one CG particle. For DNA, one nucleotide is simplified by three CG particles, representing sugar, phosphate, and base. The protein modeling is based on the idea that proteins have a globally funnel-like energy landscape, which is encoded in the structure-based potential energy function. We first describe two representative minimal models of proteins, called the elastic network model and the classic Go̅ model. We then present a more elaborate protein model, which extends the minimal model to incorporate sequence and context dependent local flexibility and nonlocal contacts. For DNA, we describe a model developed by de Pablo's group that was tuned to well reproduce sequence-dependent structural and thermodynamic experimental data for single- and double-stranded DNAs. Protein-DNA interactions are modeled either by the structure-based term for specific cases or by electrostatic and excluded volume terms for nonspecific cases. We also discuss the time scale mapping in CG molecular dynamics simulations. While the apparent single time step of our CGMD is about 10 times larger than that in the fully atomistic molecular dynamics for small-scale dynamics, large-scale motions can be further accelerated by two-orders of magnitude with the use of CG model and a low friction constant in Langevin dynamics. Next, we present four examples of applications. First, the classic Go̅ model was used to

  12. Biomolecular interactions and tools for their recognition: focus on the quartz crystal microbalance and its diverse surface chemistries and applications.

    Science.gov (United States)

    Cheng, Cathy I; Chang, Yi-Pin; Chu, Yen-Ho

    2012-03-07

    Interactions between molecules are ubiquitous and occur in our bodies, the food we eat, the air we breathe, and myriad additional contexts. Although numerous tools are available for the recognition of biomolecular interactions, such tools are often limited in their sensitivity, expensive, and difficult to modify for various uses. In contrast, the quartz crystal microbalance (QCM) has sub-nanogram detection capabilities, is label-free, is inexpensive to create, and can be readily modified with a number of diverse surface chemistries to detect and characterize diverse interactions. To maximize the versatility of the QCM, scientists need to know available methods by which QCM surfaces can be modified. Therefore, in addition to summarizing the various tools currently used for biomolecular recognition, explicating the fundamental principles of the QCM as a tool for biomolecular recognition, and comparing the QCM with other acoustic sensors, we systematically review the numerous types of surface chemistries-including hydrophobic bonds, ionic bonds, hydrogen bonds, self-assembled monolayers, plasma-polymerized films, photochemistry, and sensing ionic liquids-used to functionalize QCMs for various purposes. We also review the QCM's diverse applications, which include the detection of gaseous species, detection of carbohydrates, detection of nucleic acids, detection of non-enzymatic proteins, characterization of enzymatic activity, detection of antigens and antibodies, detection of cells, and detection of drugs. Finally, we discuss the ultimate goals of and potential barriers to the development of future QCMs.

  13. Single-Molecule Pull-down FRET (SiMPull-FRET) to dissect the mechanisms of biomolecular machines

    Science.gov (United States)

    Kahlscheuer, Matthew L.; Widom, Julia; Walter, Nils G.

    2016-01-01

    Spliceosomes are multi-megadalton RNA-protein complexes responsible for the faithful removal of non-coding segments (introns) from pre-messenger RNAs (pre-mRNAs), a process critical for the maturation of eukaryotic mRNAs for subsequent translation by the ribosome. Both the spliceosome and ribosome, as well as many other RNA and DNA processing machineries, contain central RNA components that endow biomolecular complexes with precise, sequence-specific nucleic acid recognition and versatile structural dynamics. Single molecule fluorescence (or Förster) resonance energy transfer (smFRET) microscopy is a powerful tool for the study of local and global conformational changes of both simple and complex biomolecular systems involving RNA. The integration of biochemical tools such as immunoprecipitation with advanced methods in smFRET microscopy and data analysis has opened up entirely new avenues towards studying the mechanisms of biomolecular machines isolated directly from complex biological specimens such as cell extracts. Here we detail the general steps for using prism-based total internal reflection fluorescence (TIRF) microscopy in exemplary single molecule pull-down FRET (SiMPull-FRET) studies of the yeast spliceosome and discuss the broad application potential of this technique. PMID:26068753

  14. Fe(II)-Polypyridines as Chromophores in Dye-Sensitized Solar Cells: A Computational Perspective.

    Science.gov (United States)

    Jakubikova, Elena; Bowman, David N

    2015-05-19

    Over the past two decades, dye-sensitized solar cells (DSSCs) have become a viable and relatively cheap alternative to conventional crystalline silicon-based systems. At the heart of a DSSC is a wide band gap semiconductor, typically a TiO2 nanoparticle network, sensitized with a visible light absorbing chromophore. Ru(II)-polypyridines are often utilized as chromophores thanks to their chemical stability, long-lived metal-to-ligand charge transfer (MLCT) excited states, tunable redox potentials, and near perfect quantum efficiency of interfacial electron transfer (IET) into TiO2. More recently, coordination compounds based on first row transition metals, such as Fe(II)-polypyridines, gained some attention as potential sensitizers in DSSCs due to their low cost and abundance. While such complexes can in principle sensitize TiO2, they do so very inefficiently since their photoactive MLCT states undergo intersystem crossing (ISC) into low-lying metal-centered states on a subpicosecond time scale. Competition between the ultrafast ISC events and IET upon initial excitation of Fe(II)-polypyridines is the main obstacle to their utilization in DSSCs. Suitability of Fe(II)-polypyridines to serve as sensitizers could therefore be improved by adjusting relative rates of the ISC and IET processes, with the goal of making the IET more competitive with ISC. Our research program in computational inorganic chemistry utilizes a variety of tools based on density functional theory (DFT), time-dependent density functional theory (TD-DFT) and quantum dynamics to investigate structure-property relationships in Fe(II)-polypyridines, specifically focusing on their function as chromophores. One of the difficult problems is the accurate determination of energy differences between electronic states with various spin multiplicities (i.e., (1)A, (1,3)MLCT, (3)T, (5)T) in the ISC cascade. We have shown that DFT is capable of predicting the trends in the energy ordering of these electronic

  15. Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components.

    Science.gov (United States)

    Pardee, Keith; Green, Alexander A; Takahashi, Melissa K; Braff, Dana; Lambert, Guillaume; Lee, Jeong Wook; Ferrante, Tom; Ma, Duo; Donghia, Nina; Fan, Melina; Daringer, Nichole M; Bosch, Irene; Dudley, Dawn M; O'Connor, David H; Gehrke, Lee; Collins, James J

    2016-05-19

    The recent Zika virus outbreak highlights the need for low-cost diagnostics that can be rapidly developed for distribution and use in pandemic regions. Here, we report a pipeline for the rapid design, assembly, and validation of cell-free, paper-based sensors for the detection of the Zika virus RNA genome. By linking isothermal RNA amplification to toehold switch RNA sensors, we detect clinically relevant concentrations of Zika virus sequences and demonstrate specificity against closely related Dengue virus sequences. When coupled with a novel CRISPR/Cas9-based module, our sensors can discriminate between viral strains with single-base resolution. We successfully demonstrate a simple, field-ready sample-processing workflow and detect Zika virus from the plasma of a viremic macaque. Our freeze-dried biomolecular platform resolves important practical limitations to the deployment of molecular diagnostics in the field and demonstrates how synthetic biology can be used to develop diagnostic tools for confronting global health crises. PAPERCLIP.

  16. A coarse-grained model for the simulations of biomolecular interactions in cellular environments

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao, E-mail: yinghao.wu@einstein.yu.edu [Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461 (United States)

    2014-02-07

    The interactions of bio-molecules constitute the key steps of cellular functions. However, in vivo binding properties differ significantly from their in vitro measurements due to the heterogeneity of cellular environments. Here we introduce a coarse-grained model based on rigid-body representation to study how factors such as cellular crowding and membrane confinement affect molecular binding. The macroscopic parameters such as the equilibrium constant and the kinetic rate constant are calibrated by adjusting the microscopic coefficients used in the numerical simulations. By changing these model parameters that are experimentally approachable, we are able to study the kinetic and thermodynamic properties of molecular binding, as well as the effects caused by specific cellular environments. We investigate the volumetric effects of crowded intracellular space on bio-molecular diffusion and diffusion-limited reactions. Furthermore, the binding constants of membrane proteins are currently difficult to measure. We provide quantitative estimations about how the binding of membrane proteins deviates from soluble proteins under different degrees of membrane confinements. The simulation results provide biological insights to the functions of membrane receptors on cell surfaces. Overall, our studies establish a connection between the details of molecular interactions and the heterogeneity of cellular environments.

  17. Extension of the GLYCAM06 Biomolecular Force Field to Lipids, Lipid Bilayers and Glycolipids.

    Science.gov (United States)

    Tessier, Matthew B; Demarco, Mari L; Yongye, Austin B; Woods, Robert J

    2008-01-01

    GLYCAM06 is a generalisable biomolecular force field that is extendible to diverse molecular classes in the spirit of a small-molecule force field. Here we report parameters for lipids, lipid bilayers and glycolipids for use with GLYCAM06. Only three lipid-specific atom types have been introduced, in keeping with the general philosophy of transferable parameter development. Bond stretching, angle bending, and torsional force constants were derived by fitting to quantum mechanical data for a collection of minimal molecular fragments and related small molecules. Partial atomic charges were computed by fitting to ensemble-averaged quantum-computed molecular electrostatic potentials.In addition to reproducing quantum mechanical internal rotational energies and experimental valence geometries for an array of small molecules, condensed-phase simulations employing the new parameters are shown to reproduce the bulk physical properties of a DMPC lipid bilayer. The new parameters allow for molecular dynamics simulations of complex systems containing lipids, lipid bilayers, glycolipids, and carbohydrates, using an internally consistent force field. By combining the AMBER parameters for proteins with the GLYCAM06 parameters, it is also possible to simulate protein-lipid complexes and proteins in biologically relevant membrane-like environments.

  18. PARENT: A Parallel Software Suite for the Calculation of Configurational Entropy in Biomolecular Systems.

    Science.gov (United States)

    Fleck, Markus; Polyansky, Anton A; Zagrovic, Bojan

    2016-04-12

    Accurate estimation of configurational entropy from the in silico-generated biomolecular ensembles, e.g., from molecular dynamics (MD) trajectories, is dependent strongly on exhaustive sampling for physical reasons. This, however, creates a major computational problem for the subsequent estimation of configurational entropy using the Maximum Information Spanning Tree (MIST) or Mutual Information Expansion (MIE) approaches for internal molecular coordinates. In particular, the available software for such estimation exhibits serious limitations when it comes to molecules with hundreds or thousands of atoms, because of its reliance on a serial program architecture. To overcome this problem, we have developed a parallel, hybrid MPI/openMP C++ implementation of MIST and MIE, called PARENT, which is particularly optimized for high-performance computing and provides efficient estimation of configurational entropy in different biological processes (e.g., protein-protein interactions). In addition, PARENT also allows for a detailed mapping of intramolecular allosteric networks. Here, we benchmark the program on a set of 1-μs-long MD trajectories of 10 different protein complexes and their components, demonstrating robustness and good scalability. A direct comparison between MIST and MIE on the same dataset demonstrates a superior convergence behavior for the former approach, when it comes to total simulation length and configurational-space binning.

  19. Toxicity evaluation of PEDOT/biomolecular composites intended for neural communication electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, M; Thaning, E; Von Holst, H [Division of Neuronic Engineering, School of Technology and Health, Royal Institute of Technology, SE-14152 Huddinge (Sweden); Lundberg, J [Section for Neuroradiology, R2:02 NKK-lab, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Solna, SE-171 76, Stockholm (Sweden); Sandberg-Nordqvist, A C [Section of Clinical CNS Research, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Solna, SE-171 76, Stockholm (Sweden); Kostyszyn, B [Center for Hearing and Communication Research, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, M1:01, SE-171 76 Stockholm (Sweden); Inganaes, O, E-mail: maria.asplund@sth.kth.s [Biomolecular and Organic Electronics, IFM, Linkoeping University, SE-581 83 Linkoeping (Sweden)

    2009-08-15

    Electrodes coated with the conducting polymer poly(3,4-ethylene dioxythiophene) (PEDOT) possess attractive electrochemical properties for stimulation or recording in the nervous system. Biomolecules, added as counter ions in electropolymerization, could further improve the biomaterial properties, eliminating the need for surfactant counter ions in the process. Such PEDOT/biomolecular composites, using heparin or hyaluronic acid, have previously been investigated electrochemically. In the present study, their biocompatibility is evaluated. An agarose overlay assay using L929 fibroblasts, and elution and direct contact tests on human neuroblastoma SH-SY5Y cells are applied to investigate cytotoxicity in vitro. PEDOT:heparin was further evaluated in vivo through polymer-coated implants in rodent cortex. No cytotoxic response was seen to any of the PEDOT materials tested. The examination of cortical tissue exposed to polymer-coated implants showed extensive glial scarring irrespective of implant material (Pt:polymer or Pt). However, quantification of immunological response, through distance measurements from implant site to closest neuron and counting of ED1+ cell density around implant, was comparable to those of platinum controls. These results indicate that PEDOT:heparin surfaces were non-cytotoxic and show no marked difference in immunological response in cortical tissue compared to pure platinum controls.

  20. Biomolecular Nano-Flow-Sensor to Measure Near-Surface Flow

    Directory of Open Access Journals (Sweden)

    Noji Hiroyuki

    2009-01-01

    Full Text Available Abstract We have proposed and experimentally demonstrated that the measurement of the near-surface flow at the interface between a liquid and solid using a 10 nm-sized biomolecular motor of F1-ATPase as a nano-flow-sensor. For this purpose, we developed a microfluidic test-bed chip to precisely control the liquid flow acting on the F1-ATPase. In order to visualize the rotation of F1-ATPase, several hundreds nanometer-sized particle was immobilized at the rotational axis of F1-ATPase to enhance the rotation to be detected by optical microscopy. The rotational motion of F1-ATPase, which was immobilized on an inner surface of the test-bed chip, was measured to obtain the correlation between the near-surface flow and the rotation speed of F1-ATPase. As a result, we obtained the relationship that the rotation speed of F1-ATPase was linearly decelerated with increasing flow velocity. The mechanism of the correlation between the rotation speed and the near-surface flow remains unclear, however the concept to use biomolecule as a nano-flow-sensor was proofed successfully. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-009-9479-3 contains supplementary material, which is available to authorized users. Click here for file

  1. Solving the 0/1 Knapsack Problem by a Biomolecular DNA Computer

    Directory of Open Access Journals (Sweden)

    Hassan Taghipour

    2013-01-01

    Full Text Available Solving some mathematical problems such as NP-complete problems by conventional silicon-based computers is problematic and takes so long time. DNA computing is an alternative method of computing which uses DNA molecules for computing purposes. DNA computers have massive degrees of parallel processing capability. The massive parallel processing characteristic of DNA computers is of particular interest in solving NP-complete and hard combinatorial problems. NP-complete problems such as knapsack problem and other hard combinatorial problems can be easily solved by DNA computers in a very short period of time comparing to conventional silicon-based computers. Sticker-based DNA computing is one of the methods of DNA computing. In this paper, the sticker based DNA computing was used for solving the 0/1 knapsack problem. At first, a biomolecular solution space was constructed by using appropriate DNA memory complexes. Then, by the application of a sticker-based parallel algorithm using biological operations, knapsack problem was resolved in polynomial time.

  2. A Starting Point for Fluorescence-Based Single-Molecule Measurements in Biomolecular Research

    Directory of Open Access Journals (Sweden)

    Alexander Gust

    2014-09-01

    Full Text Available Single-molecule fluorescence techniques are ideally suited to provide information about the structure-function-dynamics relationship of a biomolecule as static and dynamic heterogeneity can be easily detected. However, what type of single-molecule fluorescence technique is suited for which kind of biological question and what are the obstacles on the way to a successful single-molecule microscopy experiment? In this review, we provide practical insights into fluorescence-based single-molecule experiments aiming for scientists who wish to take their experiments to the single-molecule level. We especially focus on fluorescence resonance energy transfer (FRET experiments as these are a widely employed tool for the investigation of biomolecular mechanisms. We will guide the reader through the most critical steps that determine the success and quality of diffusion-based confocal and immobilization-based total internal reflection fluorescence microscopy. We discuss the specific chemical and photophysical requirements that make fluorescent dyes suitable for single-molecule fluorescence experiments. Most importantly, we review recently emerged photoprotection systems as well as passivation and immobilization strategies that enable the observation of fluorescently labeled molecules under biocompatible conditions. Moreover, we discuss how the optical single-molecule toolkit has been extended in recent years to capture the physiological complexity of a cell making it even more relevant for biological research.

  3. iGNM 2.0: the Gaussian network model database for biomolecular structural dynamics.

    Science.gov (United States)

    Li, Hongchun; Chang, Yuan-Yu; Yang, Lee-Wei; Bahar, Ivet

    2016-01-04

    Gaussian network model (GNM) is a simple yet powerful model for investigating the dynamics of proteins and their complexes. GNM analysis became a broadly used method for assessing the conformational dynamics of biomolecular structures with the development of a user-friendly interface and database, iGNM, in 2005. We present here an updated version, iGNM 2.0 http://gnmdb.csb.pitt.edu/, which covers more than 95% of the structures currently available in the Protein Data Bank (PDB). Advanced search and visualization capabilities, both 2D and 3D, permit users to retrieve information on inter-residue and inter-domain cross-correlations, cooperative modes of motion, the location of hinge sites and energy localization spots. The ability of iGNM 2.0 to provide structural dynamics data on the large majority of PDB structures and, in particular, on their biological assemblies makes it a useful resource for establishing the bridge between structure, dynamics and function.

  4. Amplified Immunoassay of Human IgG Using Real-time Biomolecular Interaction Analysis (BIA) Technology

    Institute of Scientific and Technical Information of China (English)

    PEI,Ren-Jun(裴仁军); CUI,Xiao-Qiang(崔小强); YANG,Xiu-Rong(杨秀荣); WANG,Er-Kang(汪尔康)

    2002-01-01

    An automated biomolecular interaction analysis instrument (BIAcore) based on surface plasmon resonance (SPR) has been used to determine human immunoglobulin G (IgG) in real time. Polyclonal anti-human IgG antibody was covalently immobilized to a carboxymethyldextran-modified gold film surface. The samples of human IgG prepared in HBS buffer were poured over the immobilized surface. The signal amplification antibody was applied to amplify the response signal. After each measurement, the surface was regenerated with 0.1 mol/L H3PO4. The assay was rapid, requiring only 30 min for antibody immobilization and 20 min for each subsequent process of immune binding, antibody amplification and regeneration. The antibody immobilized surface had good response to human IgG in the range of 0.12-60 nmol/L with a detection limit of 60 pmoL/L. The same antibody immobilized surface could be used for more than 110 cycles of binding, amplificafion and regeneration. The results demonstrate that the sensitivity, specificity and reproducibility of amplified immunoassay using real-time BIA technology are satisfactory.

  5. A Quick-responsive DNA Nanotechnology Device for Bio-molecular Homeostasis Regulation.

    Science.gov (United States)

    Wu, Songlin; Wang, Pei; Xiao, Chen; Li, Zheng; Yang, Bing; Fu, Jieyang; Chen, Jing; Wan, Neng; Ma, Cong; Li, Maoteng; Yang, Xiangliang; Zhan, Yi

    2016-08-10

    Physiological processes such as metabolism, cell apoptosis and immune responses, must be strictly regulated to maintain their homeostasis and achieve their normal physiological functions. The speed with which bio-molecular homeostatic regulation occurs directly determines the ability of an organism to adapt to conditional changes. To produce a quick-responsive regulatory system that can be easily utilized for various types of homeostasis, a device called nano-fingers that facilitates the regulation of physiological processes was constructed using DNA origami nanotechnology. This nano-fingers device functioned in linked open and closed phases using two types of DNA tweezers, which were covalently coupled with aptamers that captured specific molecules when the tweezer arms were sufficiently close. Via this specific interaction mechanism, certain physiological processes could be simultaneously regulated from two directions by capturing one biofactor and releasing the other to enhance the regulatory capacity of the device. To validate the universal application of this device, regulation of the homeostasis of the blood coagulant thrombin was attempted using the nano-fingers device. It was successfully demonstrated that this nano-fingers device achieved coagulation buffering upon the input of fuel DNA. This nano-device could also be utilized to regulate the homeostasis of other types of bio-molecules.

  6. Computational Recipe for Efficient Description of Large-Scale Conformational Changes in Biomolecular Systems.

    Science.gov (United States)

    Moradi, Mahmoud; Tajkhorshid, Emad

    2014-07-01

    Characterizing large-scale structural transitions in biomolecular systems poses major technical challenges to both experimental and computational approaches. On the computational side, efficient sampling of the configuration space along the transition pathway remains the most daunting challenge. Recognizing this issue, we introduce a knowledge-based computational approach toward describing large-scale conformational transitions using (i) nonequilibrium, driven simulations combined with work measurements and (ii) free energy calculations using empirically optimized biasing protocols. The first part is based on designing mechanistically relevant, system-specific reaction coordinates whose usefulness and applicability in inducing the transition of interest are examined using knowledge-based, qualitative assessments along with nonequilirbrium work measurements which provide an empirical framework for optimizing the biasing protocol. The second part employs the optimized biasing protocol resulting from the first part to initiate free energy calculations and characterize the transition quantitatively. Using a biasing protocol fine-tuned to a particular transition not only improves the accuracy of the resulting free energies but also speeds up the convergence. The efficiency of the sampling will be assessed by employing dimensionality reduction techniques to help detect possible flaws and provide potential improvements in the design of the biasing protocol. Structural transition of a membrane transporter will be used as an example to illustrate the workings of the proposed approach.

  7. AFMPB: An adaptive fast multipole Poisson-Boltzmann solver for calculating electrostatics in biomolecular systems

    Science.gov (United States)

    Lu, Benzhuo; Cheng, Xiaolin; Huang, Jingfang; McCammon, J. Andrew

    2013-11-01

    A Fortran program package is introduced for rapid evaluation of the electrostatic potentials and forces in biomolecular systems modeled by the linearized Poisson-Boltzmann equation. The numerical solver utilizes a well-conditioned boundary integral equation (BIE) formulation, a node-patch discretization scheme, a Krylov subspace iterative solver package with reverse communication protocols, and an adaptive new version of the fast multipole method in which the exponential expansions are used to diagonalize the multipole-to-local translations. The program and its full description, as well as several closely related libraries and utility tools are available at http://lsec.cc.ac.cn/~lubz/afmpb.html and a mirror site at http://mccammon.ucsd.edu/. This paper is a brief summary of the program: the algorithms, the implementation and the usage. Restrictions: Only three or six significant digits options are provided in this version. Unusual features: Most of the codes are in Fortran77 style. Memory allocation functions from Fortran90 and above are used in a few subroutines. Additional comments: The current version of the codes is designed and written for single core/processor desktop machines. Check http://lsec.cc.ac.cn/lubz/afmpb.html for updates and changes. Running time: The running time varies with the number of discretized elements (N) in the system and their distributions. In most cases, it scales linearly as a function of N.

  8. Colloid-in-liquid crystal gels that respond to biomolecular interactions.

    Science.gov (United States)

    Agarwal, Ankit; Sidiq, Sumyra; Setia, Shilpa; Bukusoglu, Emre; de Pablo, Juan J; Pal, Santanu Kumar; Abbott, Nicholas L

    2013-08-26

    This paper advances the design of stimuli-responsive materials based on colloidal particles dispersed in liquid crystals (LCs). Specifically, thin films of colloid-in-liquid crystal (CLC) gels undergo easily visualized ordering transitions in response to reversible and irreversible (enzymatic) biomolecular interactions occurring at the aqueous interfaces of the gels. In particular, LC ordering transitions can propagate across the entire thickness of the gels. However, confinement of the LC to small domains with lateral sizes of ∼10 μm does change the nature of the anchoring transitions, as compared to films of pure LC, due to the effects of confinement on the elastic energy stored in the LC. The effects of confinement are also observed to cause the response of individual domains of the LC within the CLC gel to vary significantly from one to another, indicating that manipulation of LC domain size and shape can provide the basis of a general and facile method to tune the response of these LC-based physical gels to interfacial phenomena. Overall, the results presented in this paper establish that CLC gels offer a promising approach to the preparation of self-supporting, LC-based stimuli-responsive materials.

  9. Co-Immobilization of Proteins and DNA Origami Nanoplates to Produce High-Contrast Biomolecular Nanoarrays.

    Science.gov (United States)

    Hager, Roland; Burns, Jonathan R; Grydlik, Martyna J; Halilovic, Alma; Haselgrübler, Thomas; Schäffler, Friedrich; Howorka, Stefan

    2016-06-01

    The biofunctionalization of nanopatterned surfaces with DNA origami nanostructures is an important topic in nanobiotechnology. An unexplored challenge is, however, to co-immobilize proteins with DNA origami at pre-determined substrate sites in high contrast relative to the nontarget areas. The immobilization should, in addition, preferably be achieved on a transparent substrate to allow ultrasensitive optical detection. If successful, specific co-binding would be a step towards stoichiometrically defined arrays with few to individual protein molecules per site. Here, we successfully immobilize with high specificity positively charged avidin proteins and negatively charged DNA origami nanoplates on 100 nm-wide carbon nanoislands while suppressing undesired adsorption to surrounding nontarget areas. The arrays on glass slides achieve unprecedented selectivity factors of up to 4000 and allow ultrasensitive fluorescence read-out. The co-immobilization onto the nanoislands leads to layered biomolecular architectures, which are functional because bound DNA origami influences the number of capturing sites on the nanopatches for other proteins. The novel hybrid DNA origami-protein nanoarrays allow the fabrication of versatile research platforms for applications in biosensing, biophysics, and cell biology, and, in addition, represent an important step towards single-molecule protein arrays.

  10. A starting point for fluorescence-based single-molecule measurements in biomolecular research.

    Science.gov (United States)

    Gust, Alexander; Zander, Adrian; Gietl, Andreas; Holzmeister, Phil; Schulz, Sarah; Lalkens, Birka; Tinnefeld, Philip; Grohmann, Dina

    2014-09-30

    Single-molecule fluorescence techniques are ideally suited to provide information about the structure-function-dynamics relationship of a biomolecule as static and dynamic heterogeneity can be easily detected. However, what type of single-molecule fluorescence technique is suited for which kind of biological question and what are the obstacles on the way to a successful single-molecule microscopy experiment? In this review, we provide practical insights into fluorescence-based single-molecule experiments aiming for scientists who wish to take their experiments to the single-molecule level. We especially focus on fluorescence resonance energy transfer (FRET) experiments as these are a widely employed tool for the investigation of biomolecular mechanisms. We will guide the reader through the most critical steps that determine the success and quality of diffusion-based confocal and immobilization-based total internal reflection fluorescence microscopy. We discuss the specific chemical and photophysical requirements that make fluorescent dyes suitable for single-molecule fluorescence experiments. Most importantly, we review recently emerged photoprotection systems as well as passivation and immobilization strategies that enable the observation of fluorescently labeled molecules under biocompatible conditions. Moreover, we discuss how the optical single-molecule toolkit has been extended in recent years to capture the physiological complexity of a cell making it even more relevant for biological research.

  11. Review of Transducer Principles for Label-Free Biomolecular Interaction Analysis

    Directory of Open Access Journals (Sweden)

    Janos Vörös

    2011-07-01

    Full Text Available Label-free biomolecular interaction analysis is an important technique to study the chemical binding between e.g., protein and protein or protein and small molecule in real-time. The parameters obtained with this technique, such as the affinity, are important for drug development. While the surface plasmon resonance (SPR instruments are most widely used, new types of sensors are emerging. These developments are generally driven by the need for higher throughput, lower sample consumption or by the need of complimentary information to the SPR data. This review aims to give an overview about a wide range of sensor transducers, the working principles and the peculiarities of each technology, e.g., concerning the set-up, sensitivity, sensor size or required sample volume. Starting from optical technologies like the SPR and waveguide based sensors, acoustic sensors like the quartz crystal microbalance (QCM and the film bulk acoustic resonator (FBAR, calorimetric and electrochemical sensors are covered. Technologies long established in the market are presented together with those newly commercially available and with technologies in the early development stage. Finally, the commercially available instruments are summarized together with their sensitivity and the number of sensors usable in parallel and an outlook for potential future developments is given.

  12. A method for rapid quantitative assessment of biofilms with biomolecular staining and image analysis.

    Science.gov (United States)

    Larimer, Curtis; Winder, Eric; Jeters, Robert; Prowant, Matthew; Nettleship, Ian; Addleman, Raymond Shane; Bonheyo, George T

    2016-01-01

    The accumulation of bacteria in surface-attached biofilms can be detrimental to human health, dental hygiene, and many industrial processes. Natural biofilms are soft and often transparent, and they have heterogeneous biological composition and structure over micro- and macroscales. As a result, it is challenging to quantify the spatial distribution and overall intensity of biofilms. In this work, a new method was developed to enhance the visibility and quantification of bacterial biofilms. First, broad-spectrum biomolecular staining was used to enhance the visibility of the cells, nucleic acids, and proteins that make up biofilms. Then, an image analysis algorithm was developed to objectively and quantitatively measure biofilm accumulation from digital photographs and results were compared to independent measurements of cell density. This new method was used to quantify the growth intensity of Pseudomonas putida biofilms as they grew over time. This method is simple and fast, and can quantify biofilm growth over a large area with approximately the same precision as the more laborious cell counting method. Stained and processed images facilitate assessment of spatial heterogeneity of a biofilm across a surface. This new approach to biofilm analysis could be applied in studies of natural, industrial, and environmental biofilms.

  13. A fully automated colorimetric sensing device using smartphone for biomolecular quantification

    Science.gov (United States)

    Dutta, Sibasish; Nath, Pabitra

    2017-03-01

    In the present work, the use of smartphone for colorimetric quantification of biomolecules has been demonstrated. As a proof-of-concept, BSA protein and carbohydrate have been used as biomolecular sample. BSA protein and carbohydrate at different concentrations have been treated with Lowry's reagent and Anthrone's reagent respectively . The change in color of the reagent-treated samples at different concentrations have been recorded with the camera of a smartphone in combination with a custom designed optomechanical hardware attachment. This change in color of the reagent-treated samples has been correlated with color channels of two different color models namely RGB (Red Green Blue) and HSV (Hue Saturation and Value) model. In addition to that, the change in color intensity has also been correlated with the grayscale value for each of the imaged sample. A custom designed android app has been developed to quantify the bimolecular concentration and display the result in the phone itself. The obtained results have been compared with that of standard spectrophotometer usually considered for the purpose and highly reliable data have been obtained with the designed sensor. The device is robust, portable and low cost as compared to its commercially available counterparts. The data obtained from the sensor can be transmitted to anywhere in the world through the existing cellular network. It is envisioned that the designed sensing device would find wide range of applications in the field of analytical and bioanalytical sensing research.

  14. Affinity analysis for biomolecular interactions based on magneto-optical relaxation measurements

    Science.gov (United States)

    Aurich, Konstanze; Nagel, Stefan; Heister, Elena; Weitschies, Werner

    2008-12-01

    Magneto-optical relaxation measurements of magnetically labelled biomolecules are a promising tool for immunometric analyses. Carcinoembryonic antigen (CEA) and its polyclonal and monoclonal antibodies (anti-CEA) were utilized as a model system for affinity analysis of the interaction between antibody and antigen. For this purpose antibodies were coupled with magnetic nanoparticles (MNPs). Aggregation of these antibody sensors due to interactions with the CEA was observed subsequently by measuring the relaxation time of the birefringence of a transmitted laser beam that occurs in a pulsed magnetic field. A kinetic model of chain-like aggregation developed for these purposes enables the rapid and simple calculation of the kinetic parameters of the underlying protein interaction. From the known antigen concentration and the increase in particle size during the interaction we are able to estimate the unknown parameters with standard methods for the statistical description of stepwise polymerization. This novel affinity analysis was successfully applied for the antigen-antibody interaction described herein and can be applied to other biomolecular interactions. First efforts have been made to establish magneto-optical relaxation measurements in body fluids.

  15. High-Throughput, Protein-Targeted Biomolecular Detection Using Frequency-Domain Faraday Rotation Spectroscopy.

    Science.gov (United States)

    Murdock, Richard J; Putnam, Shawn A; Das, Soumen; Gupta, Ankur; Chase, Elyse D Z; Seal, Sudipta

    2017-01-16

    A clinically relevant magneto-optical technique (fd-FRS, frequency-domain Faraday rotation spectroscopy) for characterizing proteins using antibody-functionalized magnetic nanoparticles (MNPs) is demonstrated. This technique distinguishes between the Faraday rotation of the solvent, iron oxide core, and functionalization layers of polyethylene glycol polymers (spacer) and model antibody-antigen complexes (anti-BSA/BSA, bovine serum albumin). A detection sensitivity of ≈10 pg mL(-1) and broad detection range of 10 pg mL(-1) ≲ cBSA ≲ 100 µg mL(-1) are observed. Combining this technique with predictive analyte binding models quantifies (within an order of magnitude) the number of active binding sites on functionalized MNPs. Comparative enzyme-linked immunosorbent assay (ELISA) studies are conducted, reproducing the manufacturer advertised BSA ELISA detection limits from 1 ng mL(-1) ≲ cBSA ≲ 500 ng mL(-1) . In addition to the increased sensitivity, broader detection range, and similar specificity, fd-FRS can be conducted in less than ≈30 min, compared to ≈4 h with ELISA. Thus, fd-FRS is shown to be a sensitive optical technique with potential to become an efficient diagnostic in the chemical and biomolecular sciences.

  16. Excitation Emission Matrix Spectra (EEMS) of Chromophoric Dissolved Organic Matter Produced during Microbial Incubation

    Science.gov (United States)

    McDonald, N.; Nelson, N. B.; Parsons, R.

    2013-12-01

    The chromophoric or light-absorbing fraction of dissolved organic matter (CDOM) is present ubiquitously in natural waters and has a significant impact on ocean biogeochemistry, affecting photosynthesis and primary production as well direct and indirect photochemical reactions (Siegel et al., 2002; Nelson et al., 2007). It has been largely researched in the past few decades, however the exact chemical composition remains unknown. Instrumental methods of analysis including simultaneous excitation-emission fluorescence spectra have allowed for further insight into source and chemical composition. While certain excitation-emission peaks have been associated with ';marine' sources, they have not been exclusively linked to bacterial production of CDOM (Coble, 1996; Zepp et al., 2004). In this study, ';grazer diluted' seawater samples (70% 0.2μm filtered water; 30% whole water) were collected at the Bermuda Atlantic Time Series (BATS) site in the Sargasso Sea (31° 41' N; 64° 10' W) and incubated with an amendment of labile dissolved organic carbon (10μM C6H12O6), ammonium (1μM NH4Cl) and phosphate (0.1μM K2HPO4) to facilitate bacterial production. These substrates and concentrations have been previously shown to facilitate optimum bacterial and CDOM production (Nelson et al., 2004). Sample depths were chosen at 1m and 200m as water at these depths has been exposed to UV light (the Subtropical Mode Water at 200m has been subducted from the surface) and therefore has low initial concentrations of CDOM. After the samples were amended, they were incubated at in-situ temperatures in the dark for 72 hours, with bacteria counts, UV-Vis absorption and EEMS measurements taken at 6-8 hour intervals. Dissolved organic carbon (DOC) measurements were collected daily. For the surface water experiment specific bacteria populations were investigated using Fluorescence In-Situ Hybridization (FISH) analysis. Results showed a clear production of bacteria and production of CDOM, which

  17. Design, synthesis, and characterization of a novel class of tunable chromophores for second- and third-order NLO applications

    Science.gov (United States)

    Attias, Andre-Jean; Leclerc, Nicolas; Chen, Qiying; Sargent, Edward H.; Schull, Guillaume; Charra, Fabrice

    2004-10-01

    We describe a general approach for the synthesis of 6,6'-(disubstituted)-3,3'-bipyridine based chromophores. This combinatorial type strategy is based on (i) the synthesis of a library of conjugated building blocks end-capped with electron donor or acceptor groups, and (ii) their homo- or cross-coupling. The compounds are either dipolar (push-pull molecules) or apolar (symmetric D-A-A-D) molecules. Depending on the building blocks, we are able to tune both the structural and NLO properties of the chromophores. For example, the D-A-A-D structure possesses ultrafast nonresonant nonlinearity around 1550 nm with excellent figures of merit, as well as TPA in the visible and NIR ranges.

  18. Probing ultrafast \\pi\\pi*/n\\pi* internal conversion in organic chromophores via K-edge resonant absorption

    CERN Document Server

    Wolf, T J A; Cryan, J P; Coriani, S; Squibb, R J; Battistoni, A; Berrah, N; Bostedt, C; Bucksbaum, P; Coslovich, G; Feifel, R; Gaffney, K J; Grilj, J; Martinez, T J; Miyabe, S; Moeller, S P; Mucke, M; Natan, A; Obaid, R; Osipov, T; Plekan, O; Wang, S; Koch, H; Gühr, M

    2016-01-01

    Organic chromophores with heteroatoms possess an important excited state relaxation channel from an optically allowed {\\pi}{\\pi}* to a dark n{\\pi}*state. We exploit the element and site specificity of soft x-ray absorption spectroscopy to selectively follow the electronic change during the {\\pi}{\\pi}*/n{\\pi}* internal conversion. As a hole forms in the n orbital during {\\pi}{\\pi}*/n{\\pi}* internal conversion, the near edge x-ray absorption fine structure (NEXAFS) spectrum at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept with the nucleobase thymine, a prototypical heteroatomic chromophore. With the help of time resolved NEXAFS spectroscopy at the oxygen K-edge, we unambiguously show that {\\pi}{\\pi}*/n{\\pi}* internal conversion takes place within (60 \\pm 30) fs. High-level coupled cluster calculations on the isolated molecules used in the experiment confirm the superb electronic structure sensitivity of this new method for excited state investigations.

  19. A theoretical study on the structural dependences of third-order optical nonlinearities of heterocycle-substituted polymethine cyanine chromophores

    Science.gov (United States)

    Wang, Chao; Yuan, Yizhong; Tian, Xiaohui; Sun, Jinyu; Shao, Hongjuan; Sun, Zhenrong

    2013-09-01

    The linear and third-order nonlinear optical properties of four polymethine cyanines (PC-1-PC-4) were investigated by UV-visible absorption spectroscopy and degenerate four-wave mixing (DFWM) technique. The second-order hyperpolarizabilities γ of the four chromophores achieve 10-31 esu. The dependence of their third-order optical nonlinearities on the molecular structure was discussed based on density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. The calculated second-order hyperpolarizabilities γ well-reproduce the experimental trends. The results show that the third-order optical nonlinearities of the chromophores can be drastically enhanced by bulky heteroatom (such as selenium) with low electro-negativity, or extended π-conjugated terminal group.

  20. Rational Design of Dipolar Chromophore as an Efficient Dopant-Free Hole-Transporting Material for Perovskite Solar Cells.

    Science.gov (United States)

    Li, Zhong'an; Zhu, Zonglong; Chueh, Chu-Chen; Jo, Sae Byeok; Luo, Jingdong; Jang, Sei-Hum; Jen, Alex K-Y

    2016-09-14

    In this paper, an electron donor-acceptor (D-A) substituted dipolar chromophore (BTPA-TCNE) is developed to serve as an efficient dopant-free hole-transporting material (HTM) for perovskite solar cells (PVSCs). BTPA-TCNE is synthesized via a simple reaction between a triphenylamine-based Michler's base and tetracyanoethylene. This chromophore possesses a zwitterionic resonance structure in the ground state, as evidenced by X-ray crystallography and transient absorption spectroscopies. Moreover, BTPA-TCNE shows an antiparallel molecular packing (i.e., centrosymmetric dimers) in its crystalline state, which cancels out its overall molecular dipole moment to facilitate charge transport. As a result, BTPA-TCNE can be employed as an effective dopant-free HTM to realize an efficient (PCE ≈ 17.0%) PVSC in the conventional n-i-p configuration, outperforming the control device with doped spiro-OMeTAD HTM.

  1. Bond selection in the photoisomerization reaction of anionic green fluorescent protein and kindling fluorescent protein chromophore models.

    Science.gov (United States)

    Olsen, Seth; Smith, Sean C

    2008-07-09

    The chromophores of the most widely known fluorescent proteins (FPs) are derivatives of a core p-hydroxybenzylidene-imidazolinon-5-one (HBI) motif, which usually occurs as a phenolate anion. Double bond photoisomerization of the exocyclic bridge of HBI is widely held to be an important internal conversion mechanism for FP chromophores. Herein we describe the ground and excited-state electronic structures and potential energy surfaces of two model chromophores: 4- p-hydroxybenzylidiene-1,2-dimethyl-imidazolin-5-one anion (HBDI), representing green FPs (GFPs), and 2-acetyl-4-hydroxybenylidene-1-methyl-imidazolin-5-one anion (AHBMI), representing kindling FPs (KFPs). These chromophores differ by a single substitution, but we observe qualitative differences in the potential energy surfaces which indicate inversion of bond selection in the photoisomerization reaction. Bond selection is also modulated by whether the reaction proceeds from a Z or an E conformation. These configurations correspond to fluorescent and nonfluorescent states of structurally characterized FPs, including some which can be reversibly switched by specific illumination regimes. We explain the difference in bond selectivity via substituent stabilization effects on a common set of charge-localized chemical structures. Different combinations of these structures give rise to both optically active (planar) and twisted intramolecular charge-transfer (TICT) states of the molecules. We offer a prediction of the gas-phase absorption of AHBMI, which has not yet been measured. We offer a hypothesis to explain the unusual fluorescence of AHBMI in DMF solution, as well as an experimental proposal to test our hypothesis.

  2. Computational Study of Linear and Nonlinear Optical Properties of Single Molecules and Clusters of Organic Electro-Optic Chromophores

    Science.gov (United States)

    Garrett, Kerry

    Organic electro-optic (OEO) materials integrated into silicon-organic hybrid (SOH) devices afford significant improvements in size, weight, power, and bandwidth (SWAP) performance of integrated electronic/photonic systems critical for current and next generation telecommunication, computer, sensor, transportation, and defense technologies. Improvement in molecular first hyperpolarizability, and in turn electro-optic activity, is crucial to further improvement in the performance of SOH devices. The timely preparation of new chromophores with improved molecular first hyperpolarizability requires theoretical guidance; however, common density functional theory (DFT) methods often perform poorly for optical properties in systems with substantial intramolecular charge transfer character. The first part of this dissertation describes the careful evaluation of popular long-range correction (LC) and range-separated hybrid (RSH) density functional theory (DFT) for definition of structure/function relationships crucial for the optimization of molecular first hyperpolarizability, beta. In particular, a benchmark set of well-characterized OEO chromophores is used to compare calculated results with the corresponding experimentally measured linear and nonlinear optical properties; respectively, the wavelength of the peak one-photon absorption energy, lambdamax, and beta. A goal of this work is to systematically determine the amount of exact exchange in LC/RSH-DFT methods required for accurately computing these properties for a variety OEO chromophores. High-level electron correlation (post-Hartree-Fock) methods are also investigated and compared with DFT. Included are results for the computation of beta using second-order Moller-Plesset perturbation theory (MP2) and the double-hybrid method, B2PLYP. The second part of this work transitions from single-molecule studies to computing bulk electronic and nonlinear optical properties of molecular crystals and isotropic ensembles of a

  3. Synthesis and Nonlinear Optical Property of a Series of New Chromophores Containing Furan Ring as the Only Conjugation Bridge

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper reports the synthesis and the nonlinear optical property of a series of new chromophores which contain furan ring as the only conjugation bridge for the first time. They are characterized by UV-VIS, FT-IR, 1H NMR, MS and elemental analysis. Their dipole moment and the first-order molecular hyperpolarizability (β) are calculated and compared with those of the analogues containing either benzene or thiophene as the conjugation bridge.

  4. Design, Synthesis and Evaluation of Organic Non-linear Optical Chromophores with Configurationally and Conformationally Locked Polyene Bridges

    Science.gov (United States)

    2007-11-02

    A modular, synthetic scheme was developed for versatile variation of donors, acceptors and polyene bridge length of NLO-chromophores. Configurational...and conformational rigidity of the polyene bridges were realized by making each set of adjacent double and single bond pair part of a fused...cylohexene ring. Substituent effects on the reactions leading to the establishment of the donor, elongation of the fused polyene bridge and the final

  5. Resonance Raman Analysis of the Mechanism of Energy Storage and Chromophore Distortion in the Primary Visual Photoproduct†

    OpenAIRE

    Yan, Elsa C. Y.; Ganim, Ziad; Kazmi, Manija A; Chang, Belinda S. W.; Sakmar, Thomas P.; Mathies, Richard A.

    2004-01-01

    The vibrational structure of the chromophore in the primary photoproduct of vision, bathorhodopsin, is examined to determine the cause of the anomalously decoupled and intense C11=C12 hydrogen-out-of-plane (HOOP) wagging modes and their relation to energy storage in the primary photoproduct. Low-temperature (77 K) resonance Raman spectra of Glu181 and Ser186 mutants of bovine rhodopsin reveal only mild mutagenic perturbations of the photoproduct spectrum suggesting that dipolar, electrostatic...

  6. Photophysics of the Red Chromophore of HcRed: Evidence for Cis-Trans Isomerization and Protonation-State Changes

    Energy Technology Data Exchange (ETDEWEB)

    Cotlet, M.; Mudalige, K.; Habuchi, S.; Goodwin, P.M.; Pai, R.K.; De Schryver, F.

    2010-03-15

    HcRed is a dimeric intrinsically fluorescent protein with origins in the sea anemone Heteractis crispa. This protein exhibits deep red absorption and emission properties. Using a combination of ensemble and single molecule methods and by varying environmental parameters such as temperature and pH, we found spectroscopic evidence for the presence of two ground state conformers, trans and cis chromophores that are in thermal equilibrium and that follow different excited-state pathways upon exposure to light. The photocycle of HcRed appears to be a combination of both kindling proteins and bright emitting GFP/GFP-like proteins: the trans chromophore undergoes light driven isomerization followed by radiative relaxation with a fluorescence lifetime of 0.5 ns. The cis chromophore exhibits a photocycle similar to bright GFPs and GFP-like proteins such as enhanced GFP, enhanced YFP or DsRed, with radiative relaxation with a fluorescence lifetime of 1.5 ns, singlet-triplet deactivation on a microsecond time scale and solvent controlled protonation/deprotonation in tens of microseconds. Using single molecule spectroscopy, we identify trans and cis conformers at the level of individual moieties and show that it is possible that the two conformers can coexist in a single protein due to the dimeric nature of HcRed.

  7. Molecular hyperpolarizabilities of push–pull chromophores: A comparison between theoretical and experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Capobianco, A. [Dipartimento di Fisica E.R. Caianiello, Università di Salerno, via ponte don Melillo, I-84084 Fisciano (Italy); Centore, R. [Dipartimento di Chimica P. Corradini, Università di Napoli, via Cintia, I-80126 Napoli (Italy); Noce, C. [Dipartimento di Fisica E.R. Caianiello, Università di Salerno, via ponte don Melillo, I-84084 Fisciano (Italy); Peluso, A., E-mail: apeluso@unisa.it [Dipartimento di Chimica e Biologia, Università di Salerno, via ponte don Melillo, I-84084 Fisciano (Italy)

    2013-01-16

    Highlights: ► Electro-optical determined and MP2/DFT computed NLO properties have been compared. ► Significant dependence of dipole moments of elongated NLO chromophores on conformations has been found. ► A thorough comparison between MP2 and DFT/TD-DFT computational approaches has been carried out. ► The two-state model overestimates hyperpolarizability. - Abstract: Electric dipole moments and static first order hyperpolarizabilities of two push–pull molecules with an extended π electron systems have been evaluated at different computational levels and compared with the results of electro-optical absorption measurements, based on the two state model. Calculations show that: (i) the dipole moments of such elongated systems depend significantly on conformation, a thorough conformational search is necessary for a meaningful comparison between theoretical and experimental results; (ii) DFT methods, in particular CAM-B3LYP and M05-2X, yield dipole moments which compare well with those obtained by post Hartree–Fock methods (MP2) and by EOA measurements; (iii) theoretical first order hyperpolarizabilities are largely underestimated, both by MP2 and DFT methods, possibly because of the failure of two state model used in electro-optical measurements.

  8. New Homogeneous Chromophore/Catalyst Concepts for the Solar-Driven Reduction of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Michael D. [The University of Chicago, Chicago, IL (United States)

    2015-06-22

    One of the major scientific and technical challenges of this century is to develop chemical means to store solar energy in the form of fuels. This can be accomplished by developing light-absorbing and catalytic compounds that function cooperatively to rearrange the chemical bonds of feedstocks in a way that allows solar energy to be stored and released on demand. The research conducted during this project was directed toward addressing fundamental questions that underlie the conversion of CO2 to a solar fuel using homogeneous molecular systems. The research focused particularly on developing methods for extracting the reducing equivalents for these photochemical conversions from H2, which is a renewable molecule sourced to water. The research followed two main lines. One effort focused on understanding the general principles that govern how light-absorbing molecules interact with independent H2 oxidation and CO2 reduction catalysts to produce a functional cycle for driving the energy-storing reverse water-gas-shift reaction with light. The second effort centered on developing the excited-state properties and H2 activation chemistry of tungsten–alkylidyne complexes. These chromophores were found to be powerful excited-state reducing agents, which could be incorporated into light-light-harvesting assemblies, and to hold the potential to be regenerated using H2.

  9. SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation.

    Science.gov (United States)

    Takemoto, Kiwamu; Matsuda, Tomoki; Sakai, Naoki; Fu, Donald; Noda, Masanori; Uchiyama, Susumu; Kotera, Ippei; Arai, Yoshiyuki; Horiuchi, Masataka; Fukui, Kiichi; Ayabe, Tokiyoshi; Inagaki, Fuyuhiko; Suzuki, Hiroshi; Nagai, Takeharu

    2013-01-01

    Chromophore-assisted light inactivation (CALI) is a powerful technique for acute perturbation of biomolecules in a spatio-temporally defined manner in living specimen with reactive oxygen species (ROS). Whereas a chemical photosensitizer including fluorescein must be added to specimens exogenously and cannot be restricted to particular cells or sub-cellular compartments, a genetically-encoded photosensitizer, KillerRed, can be controlled in its expression by tissue specific promoters or subcellular localization tags. Despite of this superiority, KillerRed hasn't yet become a versatile tool because its dimerization tendency prevents fusion with proteins of interest. Here, we report the development of monomeric variant of KillerRed (SuperNova) by direct evolution using random mutagenesis. In contrast to KillerRed, SuperNova in fusion with target proteins shows proper localization. Furthermore, unlike KillerRed, SuperNova expression alone doesn't perturb mitotic cell division. Supernova retains the ability to generate ROS, and hence promote CALI-based functional analysis of target proteins overcoming the major drawbacks of KillerRed.

  10. Detailed Photoisomerization Dynamics of a Green Fluorescent Protein Chromophore Based Molecular Switch

    Directory of Open Access Journals (Sweden)

    Chen-Wei Jiang

    2014-01-01

    Full Text Available With density-functional-based nonadiabatic molecular dynamics simulations, trans-to-cis and cis-to-trans photoisomerizations of a green fluorescent protein chromophore based molecule 4-benzylidene-2-methyloxazol-5(4H-one (BMH induced by the excitation to its S1 excited state were performed. We find a quantum yield of 32% for the trans-to-cis photoisomerization of BMH and a quantum yield of 33% for its cis-to-trans photoisomerization. For those simulations that did produce trans-to-cis isomerization, the average S1 excited state lifetime of trans-BMH is about 1460 fs, which is much shorter than that of cis-BMH (3100 fs in those simulations that did produce cis-to-trans isomerization. For both photoisomerization processes, rotation around the central C2=C3 bond is the dominant reaction mechanism. Deexcitation occurs at an avoided crossing near the S1/S0 conical intersection, which is near the midpoint of the rotation.

  11. Organized chromophoric assemblies for nonlinear optical materials: towards (sub)wavelength scale architectures.

    Science.gov (United States)

    Xu, Jialiang; Semin, Sergey; Rasing, Theo; Rowan, Alan E

    2015-03-01

    Photonic circuits are expected to greatly contribute to the next generation of integrated chips, as electronic integrated circuits become confronted with bottlenecks such as heat generation and bandwidth limitations. One of the main challenges for the state-of-the-art photonic circuits lies in the development of optical materials with high nonlinear optical (NLO) susceptibilities, in particular in the wavelength and subwavelength dimensions which are compatible with on-chip technologies. In this review, the varied approaches to micro-/nanosized NLO materials based on building blocks of bio- and biomimetic molecules, as well as synthetic D-π-A chromophores, have been categorized as supramolecular self-assemblies, molecular scaffolds, and external force directed assemblies. Such molecular and supramolecular NLO materials have intrinsic advantages, such as structural diversities, high NLO susceptibilities, and clear structure-property relationships. These "bottom-up" fabrication approaches are proposed to be combined with the "top-down" techniques such as lithography, etc., to generate multifunctionality by coupling light and matter on the (sub)wavelength scale. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effects of Chromophoric Dissolved Organic Matter on Anthracene Photolysis Kinetics in Aqueous Solution and Ice.

    Science.gov (United States)

    Malley, Philip P A; Grossman, Jarod N; Kahan, Tara F

    2017-09-27

    We measured photolysis kinetics of the PAH anthracene in aqueous solution, in bulk ice, and at ice surfaces in the presence and absence of chromophoric dissolved organic matter (CDOM). Self-association, which occurs readily at ice surfaces, may be responsible for the faster anthracene photolysis observed there. Photolysis rate constants in liquid water increased under conditions where anthracene self-association was observed. Concomitantly, kinetics changed from first-order to second-order, indicating that the photolysis mechanism at ice surfaces might be different than that in aqueous solution. Other factors that could lead to faster photolysis at ice surfaces were also investigated. Increased photon fluxes due to scattering in the ice samples can account for at most 20% of the observed rate increase, and other factors including singlet oxygen ((1)O2*) production and changes in pH and polarity were determined not to be responsible for the faster photolysis. CDOM (in the form of fulvic acid (FA)) did not affect anthracene photolysis kinetics in aqueous solution but suppressed photolysis in ice cubes and ice granules (by 30% and 56%, respectively). This was primarily due to competitive photon absorption (the inner filter effect). Freeze-concentration (or "salting out") appears to slightly increase the suppressing effects of FA on anthracene photolysis. This may be due to increased competitive photon absorption or to physical interactions between anthracene and FA.

  13. Features of the alkynyl ruthenium chromophore with modified anionic subsystem UV absorption.

    Science.gov (United States)

    Migalska-Zalas, A; Kityk, I V; Bakasse, M; Sahraoui, B

    2008-01-01

    Theoretical simulation of UV-vis absorption for a new series of alkynyl ruthenium chromophores spectra and investigations the influence of anionic substituence on a spectral shift of UV absorption was presented. The MM(+) molecular force field method was used for total energy minimization and for building of the molecular optimized geometry [S.J. Weiner, P.A. Kollman, D.A. Case, U.C. Ghio, G. Alagona, J.S. Profeta, P. Weiner, J. Am. Chem. Soc. 106 (1984) 765; S.J. Weiner, P.A. Kollman, D.T. Nguyen, D.A. Case, J. Comput. Chem. 7 (1986) 230]. All quantum chemical calculations were performed by semi-empirical ZINDO/1 method within a framework of the restricted Hartree-Fock approach and convergence limit up to 10(-6)eV after 500 iterations was achieved. Good agreement between the theoretically calculated and experimentally measured spectra was observed. The largest spectral shift in position of absorption peaks was observed for compound containing the anionic (Cl), substituent. The theoretically calculated absorption maximum is blue shifted with respect to the experimental spectra for all compounds what is connected with the changes of the charge transfer determining the corresponding state dipole moments. Analysis of the theoretical spectra shows a substantial sensitivity to the backside groups.

  14. Effect of chromophore elongation on linear and nonlinear optical properties of merocyanines derivatives of diethylaminocoumarin

    Science.gov (United States)

    Gayvoronsky, V. Ya.; Uklein, A. V.; Gerasov, A. O.; Garashchenko, V. V.; Kovtun, Yu. P.; Shandura, M. P.; Kachkovsky, O. D.

    2013-08-01

    A series of the merocyanines containing the aminocoumarin as an acceptor terminal group and typical donor residues with different length of the polymethine chain were studied in detail. Joint spectral and quantum-chemical analysis of their molecular geometries and electronic structures as well as origin of their lowest electron transitions have been performed. It was shown that the electronic and spectral properties of the neutral merocyanines are similar to the well-known cationic cyanine dyes, being determined by the same structure of the lowest electron transitions in molecule. The elongation of the chromophore chain of the studied merocyanines leads to the significant bathochromic shift of the long wavelength band in their absorption spectra, approximately to that in the symmetrical cyanines. The calculated third hyperpolarizability increases for the higher merocyanine vinylog due to the dependence of the energy of the excited state on the elongation of the conjugated chain. It was confirmed by nonlinear optical (NLO) study performed within the picosecond range pulsed laser excitation at 532 nm.

  15. Highly Fluorescent Green Fluorescent Protein Chromophore Analogues Made by Decorating the Imidazolone Ring.

    Science.gov (United States)

    Gutiérrez, Sara; Martínez-López, David; Morón, María; Sucunza, David; Sampedro, Diego; Domingo, Alberto; Salgado, Antonio; Vaquero, Juan J

    2015-12-14

    The synthesis and photophysical behavior of an unexplored family of green fluorescent protein (GFP)-like chromophore analogues is reported. The compound (Z)-4-(4-hydroxybenzylidene)-1-propyl-2-(propylamino)-1H-imidazol-5(4 H)-one (p-HBDNI, 2 a) exhibits significantly enhanced fluorescence properties relative to the parent compound (Z)-5-(4-hydroxybenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one (p-HBDI, 1). p-HBDNI was considered as a model system and the photophysical properties of other novel 2-amino-3,5-dihydro-4H-imidazol-4-one derivatives were evaluated. Time-dependent DFT calculations were carried out to rationalize the results. The analogue AIDNI (2 c), in which the 4-hydroxybenzyl group of p-HBDNI was replaced by an azaindole group, showed improved photophysical properties and potential for cell staining. The uptake and intracellular distribution of 2 c in living cells was investigated by confocal microscopy imaging.

  16. Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI).

    Science.gov (United States)

    Lin, John Y; Sann, Sharon B; Zhou, Keming; Nabavi, Sadegh; Proulx, Christophe D; Malinow, Roberto; Jin, Yishi; Tsien, Roger Y

    2013-07-24

    Optogenetic techniques provide effective ways of manipulating the functions of selected neurons with light. In the current study, we engineered an optogenetic technique that directly inhibits neurotransmitter release. We used a genetically encoded singlet oxygen generator, miniSOG, to conduct chromophore assisted light inactivation (CALI) of synaptic proteins. Fusions of miniSOG to VAMP2 and synaptophysin enabled disruption of presynaptic vesicular release upon illumination with blue light. In cultured neurons and hippocampal organotypic slices, synaptic release was reduced up to 100%. Such inhibition lasted >1 hr and had minimal effects on membrane electrical properties. When miniSOG-VAMP2 was expressed panneuronally in Caenorhabditis elegans, movement of the worms was reduced after illumination, and paralysis was often observed. The movement of the worms recovered overnight. We name this technique Inhibition of Synapses with CALI (InSynC). InSynC is a powerful way to silence genetically specified synapses with light in a spatially and temporally precise manner.

  17. Photoproduction of hydrogen peroxide in aqueous solution from model compounds for chromophoric dissolved organic matter (CDOM).

    Science.gov (United States)

    Clark, Catherine D; de Bruyn, Warren; Jones, Joshua G

    2014-02-15

    To explore whether quinone moieties are important in chromophoric dissolved organic matter (CDOM) photochemistry in natural waters, hydrogen peroxide (H2O2) production and associated optical property changes were measured in aqueous solutions irradiated with a Xenon lamp for CDOM model compounds (dihydroquinone, benzoquinone, anthraquinone, napthoquinone, ubiquinone, humic acid HA, fulvic acid FA). All compounds produced H2O2 with concentrations ranging from 15 to 500 μM. Production rates were higher for HA vs. FA (1.32 vs. 0.176 mM h(-1)); values ranged from 6.99 to 0.137 mM h(-1) for quinones. Apparent quantum yields (Θ app; measure of photochemical production efficiency) were higher for HA vs. FA (0.113 vs. 0.016) and ranged from 0.0018 to 0.083 for quinones. Dihydroquinone, the reduced form of benzoquinone, had a higher production rate and efficiency than its oxidized form. Post-irradiation, quinone compounds had absorption spectra similar to HA and FA and 3D-excitation-emission matrix fluorescence spectra (EEMs) with fluorescent peaks in regions associated with CDOM.

  18. Thermodynamic origin of selective binding of β-cyclodextrin derivatives with chiral chromophoric substituents toward steroids.

    Science.gov (United States)

    Chen, Yong; Li, Fang; Liu, Bo-Wen; Jiang, Bang-Ping; Zhang, Heng-Yi; Wang, Li-Hua; Liu, Yu

    2010-12-16

    Two β-cyclodextrin derivatives with chiral chromophoric substituents, that is, L- (1) and D-tyrosine-modified β-cyclodextrin (2), were synthesized and fully characterized. Their inclusion modes, binding abilities, and molecular selectivities with four steroid guests, that is, cholic acid sodium salt (CA), deoxycholic acid sodium salt (DCA), glycochoic acid sodium salt (GCA), and taurocholic acid sodium salt (TCA), were investigated by the circular dichroism, 2D NMR, and isothermal titration microcalorimetry (ITC). The results obtained from the circular dichroism and 2D NMR showed that two hosts adopted the different binding geometry, and these differences subsequently resulted in the significant differences of molecular binding abilities and selectivities. As compared with native β-cyclodextrin and tryptophan-modified β-cyclodextrin, host 2 showed the enhanced binding abilities for CA and DCA but the decreased binding abilities for GCA and TCA; however, host 1 showed the decreased binding abilities for all four bile salts. The best guest selectivity and the best host selectivity were K(S)(2-DCA)/K(S)(2-TCA) = 12.6 and K(S)(2-CA)/K(S)(1-CA) = 10, respectively, both exhibiting great enhancement as compared with the corresponding values of the previously reported L- and D-tryptophan-modified β-cyclodextrins. Thermodynamically, it was the favorable enthalpic gain that led to the high guest selectivity and host selectivity.

  19. Factor 390 chromophores: phosphodiester between AMP or GMP and methanogen factor 420.

    Science.gov (United States)

    Hausinger, R P; Orme-Johnson, W H; Walsh, C

    1985-03-26

    Two chromophores with absorbance maxima at 390 nm (factors 390) have been isolated from oxidized cells of Methanobacterium thermoautotrophicum delta H. The isolation procedure included anion-exchange chromatography of the soluble cofactor pool followed by reverse-phase chromatography. The factor 390 species are novel derivatives of methanogen coenzyme factor 420 in which the 5-deazaflavin 8-hydroxy group is in a phosphodiester linkage to adenosine 5'-phosphate or guanosine 5'-phosphate. The structural assignments were based, in part, on the UV-visible and 1H NMR spectra. In addition, the results from amino acid analysis, phosphate determination, 31P NMR spectroscopy, and fast atom bombardment mass spectrometry were consistent with the proposed structures. Confirmation of the factor 390 structures was made following phosphodiesterase release of the nucleotide monophosphates from factor 420. The nucleotide monophosphates were identified as AMP and GMP by UV-visible spectra and based on elution position by using reverse-phase and anion-exchange high-performance liquid chromatography. The presence of AMP was further demonstrated by using adenylate-5'-phosphate kinase which induced a spectral shift during conversion of the sample to IMP. In addition, the presence of GMP was established by a specific enzymatic assay.

  20. Third-Order Nonlinear Optical Behavior of Novel Polythiophene Derivatives Functionalized with Disperse Red 19 Chromophore

    Directory of Open Access Journals (Sweden)

    Marilú Chávez-Castillo

    2015-01-01

    Full Text Available Two copolymers of 3-alkylthiophene (alkyl = hexyl, octyl and a thiophene functionalized with disperse red 19 (TDR19 as chromophore side chain were synthesized by oxidative polymerization. The synthetic procedure was easy to perform, cost-effective, and highly versatile. The molecular structure, molecular weight distribution, film morphology, and optical and thermal properties of these polythiophene derivatives were determined by NMR, FT-IR, UV-Vis GPC, DSC-TGA, and AFM. The third-order nonlinear optical response of these materials was performed with nanosecond and femtosecond laser pulses by using the third-harmonic generation (THG and Z-scan techniques at infrared wavelengths of 1300 and 800 nm, respectively. From these experiments it was observed that although the TRD19 incorporation into the side chain of the copolymers was lower than 5%, it was sufficient to increase their nonlinear response in solid state. For instance, the third-order nonlinear electric susceptibility (χ3 of solid thin films made of these copolymers exhibited an increment of nearly 60% when TDR19 incorporation increased from 3% to 5%. In solution, the copolymers exhibited similar two-photon absorption cross sections σ2PA with a maximum value of 8545 GM and 233 GM (1 GM = 10−50 cm4 s per repeated monomeric unit.

  1. Selective reaction of hydroxylamine with chromophore during the photocycle of pharaonis phoborhodopsin.

    Science.gov (United States)

    Iwamoto, M; Sudo, Y; Shimono, K; Kamo, N

    2001-09-03

    Phoborhodopsin (pR; also called sensory rhodopsin II, sRII) is a receptor of negative phototaxis of Halobacterium salinarum, and pharaonis phoborhodopsin (ppR; also pharaonis sensory rhodopsin II, psRII) is a corresponding protein of Natronobacterium pharaonis. These receptors contain retinal as a chromophore which binds to a lysine residue via Schiff base. This Schiff base can be cleaved with hydroxylamine to loose their color (bleaching). In dark, the bleaching rate of ppR was very slow whereas illumination accelerated considerably the bleaching rate. Addition of azide accelerated the decay of the M-intermediate while its formation (decay of the L-intermediate) is not affected. The bleaching rate of ppR under illumination was decreased by addition of azide. Essentially no reactivity with hydroxylamine under illumination was observed in the case of D75N mutant which lacks the M-intermediate in its photocycle. Moreover, we provided illumination by flashes to ppR in the presence of varying concentrations of azide to measure the bleaching rate per one flash. A good correlation was obtained between the rate and the mean residence time, MRT, which was calculated from flash photolysis data of the M-decay. These findings reveal that water-soluble hydroxylamine reacts selectively with the M-intermediate and its implication was discussed.

  2. Preorganized Chromophores Facilitate Triplet Energy Migration, Annihilation and Upconverted Singlet Energy Collection.

    Science.gov (United States)

    Mahato, Prasenjit; Yanai, Nobuhiro; Sindoro, Melinda; Granick, Steve; Kimizuka, Nobuo

    2016-05-25

    Photon upconversion (UC) based on triplet-triplet annihilation (TTA) has the potential to enhance significantly photovoltaic and photocatalytic efficiencies by harnessing sub-bandgap photons, but the progress of this field is held back by the chemistry problem of how to preorganize multiple chromophores for efficient UC under weak solar irradiance. Recently, the first maximization of UC quantum yield at solar irradiance was achieved using fast triplet energy migration (TEM) in metal-organic frameworks (MOFs) with ordered acceptor arrays, but at the same time, a trade-off between fast TEM and high fluorescence efficiency was also found. Here, we provide a solution for this trade-off issue by developing a new strategy, triplet energy migration, annihilation and upconverted singlet energy collection (TEM-UPCON). The porous structure of acceptor-based MOF crystals allows triplet donor molecules to be accommodated without aggregation. The surface of donor-doped MOF nanocrystals is modified with highly fluorescent energy collectors through coordination bond formation. Thanks to the higher fluorescence quantum yield of surface-bound collectors than parent MOFs, the implementation of the energy collector greatly improves the total UC quantum yield. The UC quantum yield maximization behavior at ultralow excitation intensity was retained because the TTA events take place only in the MOF acceptors. The TEM-UPCON concept may be generalized to collectors with various functions and would lead to quantitative harvesting of upconverted energy, which is difficult to achieve in common molecular diffusion-based systems.

  3. g_contacts: Fast contact search in bio-molecular ensemble data

    Science.gov (United States)

    Blau, Christian; Grubmuller, Helmut

    2013-12-01

    Short-range interatomic interactions govern many bio-molecular processes. Therefore, identifying close interaction partners in ensemble data is an essential task in structural biology and computational biophysics. A contact search can be cast as a typical range search problem for which efficient algorithms have been developed. However, none of those has yet been adapted to the context of macromolecular ensembles, particularly in a molecular dynamics (MD) framework. Here a set-decomposition algorithm is implemented which detects all contacting atoms or residues in maximum O(Nlog(N)) run-time, in contrast to the O(N2) complexity of a brute-force approach. Catalogue identifier: AEQA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEQA_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 8945 No. of bytes in distributed program, including test data, etc.: 981604 Distribution format: tar.gz Programming language: C99. Computer: PC. Operating system: Linux. RAM: ≈Size of input frame Classification: 3, 4.14. External routines: Gromacs 4.6[1] Nature of problem: Finding atoms or residues that are closer to one another than a given cut-off. Solution method: Excluding distant atoms from distance calculations by decomposing the given set of atoms into disjoint subsets. Running time:≤O(Nlog(N)) References: [1] S. Pronk, S. Pall, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J.C. Smith, P. M. Kasson, D. van der Spoel, B. Hess and Erik Lindahl, Gromacs 4.5: a high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics 29 (7) (2013).

  4. An expanded framework for biomolecular visualization in the classroom: Learning goals and competencies.

    Science.gov (United States)

    Dries, Daniel R; Dean, Diane M; Listenberger, Laura L; Novak, Walter R P; Franzen, Margaret A; Craig, Paul A

    2017-01-02

    A thorough understanding of the molecular biosciences requires the ability to visualize and manipulate molecules in order to interpret results or to generate hypotheses. While many instructors in biochemistry and molecular biology use visual representations, few indicate that they explicitly teach visual literacy. One reason is the need for a list of core content and competencies to guide a more deliberate instruction in visual literacy. We offer here the second stage in the development of one such resource for biomolecular three-dimensional visual literacy. We present this work with the goal of building a community for online resource development and use. In the first stage, overarching themes were identified and submitted to the biosciences community for comment: atomic geometry; alternate renderings; construction/annotation; het group recognition; molecular dynamics; molecular interactions; monomer recognition; symmetry/asymmetry recognition; structure-function relationships; structural model skepticism; and topology and connectivity. Herein, the overarching themes have been expanded to include a 12th theme (macromolecular assemblies), 27 learning goals, and more than 200 corresponding objectives, many of which cut across multiple overarching themes. The learning goals and objectives offered here provide educators with a framework on which to map the use of molecular visualization in their classrooms. In addition, the framework may also be used by biochemistry and molecular biology educators to identify gaps in coverage and drive the creation of new activities to improve visual literacy. This work represents the first attempt, to our knowledge, to catalog a comprehensive list of explicit learning goals and objectives in visual literacy. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):69-75, 2017. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union

  5. Immunohistochemical Study to Evaluate the Prognostic Significance of Four Biomolecular Markers in Radiotherapy of Nasopharyngeal Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Joo; Lee, Seung Hee; Wu, Hong Gyun; Go, Heoun Jeong; Jeon, Yoon Kyung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2010-11-15

    We performed an immunohistochemical study with pre-treatment biopsy specimens to evaluate the prognostic significance of four biomolecular markers which can be used as a predictive assay for radiotherapy (RT) treatment of nasopharyngeal carcinoma (NPC). From January 1998 through December 2006, 68 patients were histologically diagnosed as non-metastatic NPC and treated by RT. Only 38 patients had the paraffin block for the immunohistochemical study. Thirty-one patients had undifferentiated carcinoma and 7 patients had squamous cell carcinoma. Thirty two patients (84%) had advanced stage NPC (2002 AJCC Stage III{approx}IV). Immunohistochemical staining was performed for Met, COX-2, nm23-H1, and epidermal growth factor receptor (EGFR) expression using routine methods. The median follow-up time was 30 months (range, 11 to 83 months) for all patients, and 39 months (range, 19 to 83 months) for surviving patients. The 5-year overall survival (OS) rate of the patients with high Met extent ({>=}50%) was significantly lower than that of the patients with low Met extent (48% vs. 84%, p=0.02). In addition, Met extent was also a significant prognostic factor in multivariate analysis (p=0.01). No correlation was observed between Met extent and T stage, N stage, stage group, gender, age, and the response to chemotherapy or RT. Met extent showed moderate correlation with COX-2 expression (Pearson coefficient 0.496, p<0.01), but COX-2 expression did not affect OS. Neither nm23-H1 or EGFR expression was a prognostic factor for OS in this study. High Met extent ({>=}50%) might be an independent prognostic factor that predicts poor OS in NPC treated with RT.

  6. Morbillivirus infection in cetaceans stranded along the Italian coastline: pathological, immunohistochemical and biomolecular findings.

    Science.gov (United States)

    Di Guardo, Giovanni; Di Francesco, Cristina Esmeralda; Eleni, Claudia; Cocumelli, Cristiano; Scholl, Francesco; Casalone, Cristina; Peletto, Simone; Mignone, Walter; Tittarelli, Cristiana; Di Nocera, Fabio; Leonardi, Leonardo; Fernández, Antonio; Marcer, Federica; Mazzariol, Sandro

    2013-02-01

    Morbilliviruses are recognized as biological agents highly impacting the health and conservation status of free-ranging cetaceans worldwide, as clearly exemplified by the two Dolphin Morbillivirus (DMV) epidemics of 1990-1992 and 2006-2008 among Mediterranean striped dolphins (Stenella coeruleoalba). After these two epidemics, morbilliviral infection (MI) cases with peculiar neurobiological features were reported in striped dolphins stranded along the Spanish coastline. Affected cetaceans showed a subacute-to-chronic, non-suppurative encephalitis, with brain lesions strongly resembling those found in human "subacute sclerosing panencephalitis" and "old dog encephalitis". Brain was the only tissue in which morbilliviral antigen and/or genome could be detected. Beside a case of morbilliviral encephalitis in a striped dolphin's calf stranded in 2009, we observed 5 additional MI cases in 2 striped dolphins, 1 bottlenose dolphin (Tursiops truncatus) and 2 fin whales (Balaenoptera physalus), all stranded in 2011 along the Italian coastline. Noteworthy, 3 of these animals (2 striped dolphins and 1 bottlenose dolphin) showed immunohistochemical (IHC) and/or biomolecular (PCR) evidence of morbilliviral antigen and/or genome exclusively in their brain, with 1 striped dolphin and 1 bottlenose dolphin also exhibiting a non-suppurative encephalitis. Furthermore, simultaneous IHC and PCR evidence of a Toxoplasma gondii coinfection was obtained in 1 fin whale. The above results are consistent with those reported in striped dolphins after the two MI epidemics of 1990-92 and 2006-2008, with evidence of morbilliviral antigen and/or genome being found exclusively in the brain tissue from affected animals.

  7. Sop-GPU: accelerating biomolecular simulations in the centisecond timescale using graphics processors.

    Science.gov (United States)

    Zhmurov, A; Dima, R I; Kholodov, Y; Barsegov, V

    2010-11-01

    Theoretical exploration of fundamental biological processes involving the forced unraveling of multimeric proteins, the sliding motion in protein fibers and the mechanical deformation of biomolecular assemblies under physiological force loads is challenging even for distributed computing systems. Using a C(α)-based coarse-grained self organized polymer (SOP) model, we implemented the Langevin simulations of proteins on graphics processing units (SOP-GPU program). We assessed the computational performance of an end-to-end application of the program, where all the steps of the algorithm are running on a GPU, by profiling the simulation time and memory usage for a number of test systems. The ∼90-fold computational speedup on a GPU, compared with an optimized central processing unit program, enabled us to follow the dynamics in the centisecond timescale, and to obtain the force-extension profiles using experimental pulling speeds (v(f) = 1-10 μm/s) employed in atomic force microscopy and in optical tweezers-based dynamic force spectroscopy. We found that the mechanical molecular response critically depends on the conditions of force application and that the kinetics and pathways for unfolding change drastically even upon a modest 10-fold increase in v(f). This implies that, to resolve accurately the free energy landscape and to relate the results of single-molecule experiments in vitro and in silico, molecular simulations should be carried out under the experimentally relevant force loads. This can be accomplished in reasonable wall-clock time for biomolecules of size as large as 10(5) residues using the SOP-GPU package.

  8. Biomolecularly capped uniformly sized nanocrystalline materials: glutathione-capped ZnS nanocrystals

    Science.gov (United States)

    Torres-Martínez, Claudia L.; Nguyen, Liem; Kho, Richard; Bae, Weon; Bozhilov, Krassimir; Klimov, Victor; Mehra, Rajesh K.

    1999-09-01

    Micro-organisms such as bacteria and yeasts form CdS to detoxify toxic cadmium ions. Frequently, CdS particles formed in yeasts and bacteria were found to be associated with specific biomolecules. It was later determined that these biomolecules were present at the surface of CdS. This coating caused a restriction in the growth of CdS particles and resulted in the formation of nanometre-sized semiconductors (NCs) that exhibited typical quantum confinement properties. Glutathione and related phytochelatin peptides were shown to be the biomolecules that capped CdS nanocrystallites synthesized by yeasts Candida glabrata and Schizosaccharomyces pombe. Although early studies showed the existence of specific biochemical pathways for the synthesis of biomolecularly capped CdS NCs, these NCs could be formed in vitro under appropriate conditions. We have recently shown that cysteine and cysteine-containing peptides such as glutathione and phytochelatins can be used in vitro to dictate the formation of discrete sizes of CdS and ZnS nanocrystals. We have evolved protocols for the synthesis of ZnS or CdS nanocrystals within a narrow size distribution range. These procedures involve three steps: (1) formation of metallo-complexes of cysteine or cysteine-containing peptides, (2) introduction of stoichiometric amounts of inorganic sulfide into the metallo-complexes to initiate the formation of nanocrystallites and finally (3) size-selective precipitation of NCs with ethanol in the presence of Na+. The resulting NCs were characterized by optical spectroscopy, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction and electron diffraction. HRTEM showed that the diameter of the ZnS-glutathione nanocrystals was 3.45+/-0.5 nm. X-ray diffraction and electron diffraction analyses indicated ZnS-glutathione to be hexagonal. Photocatalytic studies suggest that glutathione-capped ZnS nanocrystals prepared by our procedure are highly efficient in degrading a test model

  9. Enthalpy-entropy compensation in biomolecular halogen bonds measured in DNA junctions.

    Science.gov (United States)

    Carter, Megan; Voth, Andrea Regier; Scholfield, Matthew R; Rummel, Brittany; Sowers, Lawrence C; Ho, P Shing

    2013-07-23

    Interest in noncovalent interactions involving halogens, particularly halogen bonds (X-bonds), has grown dramatically in the past decade, propelled by the use of X-bonding in molecular engineering and drug design. However, it is clear that a complete analysis of the structure-energy relationship must be established in biological systems to fully exploit X-bonds for biomolecular engineering. We present here the first comprehensive experimental study to correlate geometries with their stabilizing potentials for fluorine (F), chlorine (Cl), bromine (Br), or iodine (I) X-bonds in a biological context. For these studies, we determine the single-crystal structures of DNA Holliday junctions containing halogenated uracil bases that compete X-bonds against classic hydrogen bonds (H-bonds), estimate the enthalpic energies of the competing interactions in the crystal system through crystallographic titrations, and compare the enthalpic and entropic energies of bromine and iodine X-bonds in solution by differential scanning calorimetry. The culmination of these studies demonstrates that enthalpic stabilization of X-bonds increases with increasing polarizability from F to Cl to Br to I, which is consistent with the σ-hole theory of X-bonding. Furthermore, an increase in the X-bonding potential is seen to direct the interaction toward a more ideal geometry. However, the entropic contributions to the total free energies must also be considered to determine how each halogen potentially contributes to the overall stability of the interaction. We find that bromine has the optimal balance between enthalpic and entropic energy components, resulting in the lowest free energy for X-bonding in this DNA system. The X-bond formed by iodine is more enthalpically stable, but this comes with an entropic cost, which we attribute to crowding effects. Thus, the overall free energy of an X-bonding interaction balances the stabilizing electrostatic effects of the σ-hole against the competing

  10. Evolução biomolecular homoquiral: a origem e a amplificação da quiralidade nas moléculas da vida Homochiral biomolecular evolution: the origin and the amplification of chirality in life molecules

    Directory of Open Access Journals (Sweden)

    José Augusto R. Rodrigues

    2010-01-01

    Full Text Available The fact that biologically relevant molecules exist only as one of the two enantiomers is a fascinating example of complete symmetry breaking of chirality and has long intrigued our curiosity. The origin of this selective chirality has remained a fundamental enigma with regard to the origin of life since the time of Pasteur, 160 years ago. The symmetry breaking processes, which include autocatalytic crystallization, asymmetric autocatalysis, spontaneous crystallization, adsorption and polymerization of amino acids on mineral surfaces, provide new insights into the origin of biomolecular homochirality.

  11. Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes.

    Science.gov (United States)

    Velazquez Escobar, Francisco; von Stetten, David; Günther-Lütkens, Mina; Keidel, Anke; Michael, Norbert; Lamparter, Tilman; Essen, Lars-Oliver; Hughes, Jon; Gärtner, Wolfgang; Yang, Yang; Heyne, Karsten; Mroginski, Maria A; Hildebrandt, Peter

    2015-01-01

    Phytochromes are biological photoreceptors that can be reversibly photoconverted between a dark and photoactivated state. The underlying reaction sequences are initiated by the photoisomerization of the tetrapyrrole cofactor, which in plant and cyanobacterial phytochromes are a phytochromobilin (PΦB) and a phycocyanobilin (PCB), respectively. The transition between the two states represents an on/off-switch of the output module activating or deactivating downstream physiological processes. In addition, the photoactivated state, i.e., Pfr in canonical phytochromes, can be thermally reverted to the dark state (Pr). The present study aimed to improve our understanding of the specific reactivity of various PΦB- and PCB-binding phytochromes in the Pfr state by analysing the cofactor structure by vibrational spectroscopic techniques. Resonance Raman (RR) spectroscopy revealed two Pfr conformers (Pfr-I and Pfr-II) forming a temperature-dependent conformational equilibrium. The two sub-states-found in all phytochromes studied, albeit with different relative contributions-differ in structural details of the C-D and A-B methine bridges. In the Pfr-I sub-state the torsion between the rings C and D is larger by ca. 10° compared to Pfr-II. This structural difference is presumably related to different hydrogen bonding interactions of ring D as revealed by time-resolved IR spectroscopic studies of the cyanobacterial phytochrome Cph1. The transitions between the two sub-states are evidently too fast (i.e., nanosecond time scale) to be resolved by NMR spectroscopy which could not detect a structural heterogeneity of the chromophore in Pfr. The implications of the present findings for the dark reversion of the Pfr state are discussed.

  12. Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes

    Directory of Open Access Journals (Sweden)

    Francisco eVelazquez Escobar

    2015-07-01

    Full Text Available Phytochromes are biological photoreceptors that can be reversibly photoconverted between a dark and photoactivated state. The underlying reaction sequences are initiated by the photoisomerisation of the tetrapyrrole cofactor, which in plant and cyanobacterial phytochromes are a phytochromobilin (PB and a phycocyanobilin (PCB, respectively. The transition between the two states represents an on/off-switch of the output module activating or deactivating downstream physiological processes. In addition, the photoactivated state, i.e. Pfr in canonical phytochromes, can be thermally reverted to the dark state (Pr. The present study aimed to improve our understanding of the specific reactivity of various PB- and PCB-binding phytochromes in the Pfr state by analyzing the cofactor structure by vibrational spectroscopic techniques. Resonance Raman (RR spectroscopy revealed two Pfr conformers (Pfr-I and Pfr-II forming a temperature-dependent conformational equilibrium. The two sub-states - found in all phytochromes studied, albeit with different relative contributions - differ in structural details of the C-D and A-B methine bridges. In the Pfr-I sub-state the torsion between the rings C and D is larger by ca. 10o compared to Pfr-II. This structural difference is presumably related to different hydrogen bonding interactions of ring D as revealed by time-resolved IR spectroscopic studies of the cyanobacterial phytochrome Cph1. The transitions between the two sub-states are evidently too fast (i.e., nanosecond time scale to be resolved by NMR spectroscopy which could not detect a structural heterogeneity of the chromophore in Pfr. The implications of the present findings for the dark reversion of the Pfr state are discussed.

  13. Spin dynamics of photogenerated triradicals in fixed distance electron donor-chromophore-acceptor-TEMPO molecules.

    Science.gov (United States)

    Mi, Qixi; Chernick, Erin T; McCamant, David W; Weiss, Emily A; Ratner, Mark A; Wasielewski, Michael R

    2006-06-15

    The stable free radical 2,2,6,6-tetramethylpiperidinoxyl (TEMPO, T*) was covalently attached to the electron acceptor in a donor-chromophore-acceptor (D-C-A) system, MeOAn-6ANI-Phn-A-T*, having well-defined distances between each component, where MeOAn = p-methoxyaniline, 6ANI = 4-(N-piperidinyl)naphthalene-l,8-dicarboximide, Ph = 2,5-dimethylphenyl (n = 0,1), and A = naphthalene-1,8:4,5-bis(dicarboximide) (NI) or pyromellitimide (PI). Using both time-resolved optical and EPR spectroscopy, we show that T* influences the spin dynamics of the photogenerated triradical states 2,4(MeOAn+*-6ANI-Phn-A-*-T*), resulting in modulation of the charge recombination rate within the triradical compared with the corresponding biradical lacking T*. The observed spin-spin exchange interaction between the photogenerated radicals MeOAn+* and A-* is not altered by the presence of T*, which interacts most strongly with A-* and accelerates radical pair intersystem crossing. Charge recombination within the triradicals results in the formation of 2,4(MeOAn-6ANI-Phn-3*NI-T*) or 2,4(MeOAn-3*6ANI-Phn-PI-T*) in which T* is strongly spin polarized in emission. Normally, the spin dynamics of correlated radical pairs do not produce a net spin polarization; however, the rate at which the net spin polarization appears on T* closely follows the photogenerated radical ion pair decay rate. This effect is attributed to antiferromagnetic coupling between T* and the local triplet state 3NI, which is populated following charge recombination. These results are explained using a switch in the spin basis set between the triradical and the three-spin charge recombination product having both T* and 3*NI or 3*6ANI present.

  14. Characterization and spacial distribution variability of chromophoric dissolved organic matter (CDOM) in the Yangtze Estuary.

    Science.gov (United States)

    Wang, Ying; Zhang, Di; Shen, Zhenyao; Chen, Jing; Feng, Chenghong

    2014-01-01

    The spatial characteristics and the quantity and quality of the chromophoric dissolved organic matter (CDOM) in the Yangtze Estuary, based on the abundance, degree of humification and sources, were studied using 3D fluorescence excitation emission matrix spectra (F-EEMs) with parallel factor and principal component analysis (PARAFAC-PCA). The results indicated that the CDOM abundance decreased and the aromaticity increased from the upstream to the downstream areas of the estuary. Higher CDOM abundance and degrees of humification were observed in the pore water than that in the surface and bottom waters. Two humic-like components (C1 and C3) and one tryptophan-like component (C2) were identified using the PARAFAC model. The separation of the samples by PCA highlighted the differences in the DOM properties. Components C1 and C3 concurrently displayed positive factor 1 loadings with nearly zero factor 2 loadings, while C2 showed highly positive factor 2 loadings. The C1 and C3 were very similar and exhibited a direct relationship with A355 and DOC. The CDOM in the pore water increased along the river to the coastal area, which was mainly influenced by C1 and C3 and was significantly derived from sediment remineralization and deposition from the inflow of the Yangtze River. The CDOM in the surface and bottom waters was dominated by C2, especially in the inflows of multiple tributaries that were affected by intensive anthropogenic activities. The microbial degradation of exogenous wastes from the tributary inputs and shoreside discharges were dominant sources of the CDOM in the surface and bottom waters.

  15. Water mass age and aging driving chromophoric dissolved organic matter in the dark global ocean

    Science.gov (United States)

    Catalá, T. S.; Reche, I.; Álvarez, M.; Khatiwala, S.; Guallart, E. F.; Benítez-Barrios, V. M.; Fuentes-Lema, A.; Romera-Castillo, C.; Nieto-Cid, M.; Pelejero, C.; Fraile-Nuez, E.; Ortega-Retuerta, E.; Marrasé, C.; Álvarez-Salgado, X. A.

    2015-07-01

    The omnipresence of chromophoric dissolved organic matter (CDOM) in the open ocean enables its use as a tracer for biochemical processes throughout the global overturning circulation. We made an inventory of CDOM optical properties, ideal water age (τ), and apparent oxygen utilization (AOU) along the Atlantic, Indian, and Pacific Ocean waters sampled during the Malaspina 2010 expedition. A water mass analysis was applied to obtain intrinsic, hereinafter archetypal, values of τ, AOU, oxygen utilization rate (OUR), and CDOM absorption coefficients, spectral slopes and quantum yield for each one of the 22 water types intercepted during this circumnavigation. Archetypal values of AOU and OUR have been used to trace the differential influence of water mass aging and aging rates, respectively, on CDOM variables. Whereas the absorption coefficient at 325 nm (a325) and the fluorescence quantum yield at 340 nm (Φ340) increased, the spectral slope over the wavelength range 275-295 nm (S275-295) and the ratio of spectral slopes over the ranges 275-295 nm and 350-400 nm (SR) decreased significantly with water mass aging (AOU). Combination of the slope of the linear regression between archetypal AOU and a325 with the estimated global OUR allowed us to obtain a CDOM turnover time of 634 ± 120 years, which exceeds the flushing time of the dark ocean (>200 m) by 46%. This positive relationship supports the assumption of in situ production and accumulation of CDOM as a by-product of microbial metabolism as water masses turn older. Furthermore, our data evidence that global-scale CDOM quantity (a325) is more dependent on aging (AOU), whereas CDOM quality (S275-295, SR, Φ340) is more dependent on aging rate (OUR).

  16. Flavylium chromophores as species markers for dragon's blood resins from Dracaena and Daemonorops trees.

    Science.gov (United States)

    Sousa, Micaela M; Melo, Maria J; Parola, A Jorge; Seixas de Melo, J Sérgio; Catarino, Fernando; Pina, Fernando; Cook, Frances E M; Simmonds, Monique S J; Lopes, João A

    2008-10-31

    A simple and rapid liquid chromatographic method with diode-array UV-vis spectrophotometric detection has been developed for the authentication of dragon's blood resins from Dracaena and Daemonorops trees. Using this method it was discovered that the flavylium chromophores, which contribute to the red colour of these resins, differ among the species and could be used as markers to differentiate among species. A study of parameters, such as time of extraction, proportion of MeOH and pH, was undertaken to optimise the extraction of the flavyliums. This method was then used to make extracts from samples of dragon's blood resin obtained from material of known provenance. From the samples analysed 7,6-dihydroxy-5-methoxyflavylium (dracorhodin), 7,4'-dihydroxy-5-methoxyflavylium (dracoflavylium) and 7,4'-dihydroxyflavylium were selected as species markers for Daemonorops spp., Dracaena draco and Dracaena cinnabari, respectively. The chromatograms from these samples were used to build an HPLC-DAD database. The ability to discriminate among species of dragon's blood using the single marker compounds was compared with a principal components analysis of the chromatograms in the HPLC-DAD database. The results from the HPLC-DAD method based on the presence of these flavylium markers was unequivocal. The HPLC-DAD method was subsequently applied to 37 samples of dragon blood resins from the historical samples in the Economic Botany Collection, Royal Botanic Gardens, Kew. The method identified anomalies in how samples in this collection had been labelled. It is clear that the method can be used to evaluate the provenance of samples used in different areas of cultural heritage. It also could be used to monitor the trade of endangered species of dragon's blood and the species being used in complex formulations of traditional Chinese medicine.

  17. Looking at the Green Fluorescent Protein (GFP) chromophore from a different perspective: a computational insight.

    Science.gov (United States)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2013-02-15

    In the present contribution Density Functional Theory (DFT) has been applied to explore molecular dipole moment, frontier molecular orbital (FMO) features, chemical hardness, and the molecular electrostatic potential surface (MEPS) characteristics for optimized molecular geometry of the Green Fluorescent Protein (GFP) chromophore p-hydroxybenzylideneimidazolinone (HBDI) both in its protonated (neutral) and deprotonated (anion) forms. The distribution of atomic charges over the entire molecular framework as obtained from Natural Bond Orbital (NBO) analysis is found to faithfully replicate the predictions from the MEP map in respect of reactivity map of HBDI (neutral and anion) and possible sites for hydrogen bonding interactions etc. The three dimensional MEP map encompassing the entire molecule yields a reliable reactivity map of HBDI molecule also displaying the most probable regions for non-covalent interactions. The differential distribution of the electrostatic potential over the neutral and anionic species of HBDI is authentically reflected on MEP map and NBO charge distribution analysis. Thermodynamic properties such as heat capacity, thermal energy, enthalpy, entropy have been calculated and the correlation of the various thermodynamic functions with temperature has been established for neutral molecule. More importantly, however, the computational approach has been employed to unveil the nonlinear optical (NLO) properties of protonated (neutral) and deprotonated (anion) HBDI. Also in an endeavor to achieve a fuller understanding on this aspect the effect of basis set on the NLO properties of the title molecule has been investigated. Our computations delineate the discernible differences in NLO properties between the neutral and anionic species of HBDI whereby indicating the possibility of development of photoswitchable NLO device.

  18. Quantum algorithms and mathematical formulations of biomolecular solutions of the vertex cover problem in the finite-dimensional hilbert space.

    Science.gov (United States)

    Chang, Weng-Long; Ren, Ting-Ting; Feng, Mang

    2015-01-01

    In this paper, it is shown that the proposed quantum algorithm for implementing Boolean circuits generated from the DNA-based algorithm solving the vertex-cover problem of any graph G with m edges and n vertices is the optimal quantum algorithm. Next, it is also demonstrated that mathematical solutions of the same biomolecular solutions are represented in terms of a unit vector in the finite-dimensional Hilbert space. Furthermore, for testing our theory, a nuclear magnetic resonance (NMR) experiment of three quantum bits to solve the simplest vertex-cover problem is completed.

  19. A Theoretical Study of Distribution of First Passage Times of Biomolecular Folding and Reactions with Application to Single Molecules

    Science.gov (United States)

    Wang, Jin; Leite, Vitor; Stell, George; Lee, Chi-Lun

    2002-03-01

    We study the distribution of first passage times of biomolecular folding and reactions through the general framework of energy landscape theory. Both the analytical and lattice simulation results show above cirtain specific temperature, the distribution of first passage time is log-normal, while under the same temperature, the distribution starts to develop fatty tails and deviate from the log-normal distribution, indicating intermittency whereas rare events might dominate the whole process. A power law distribution of first passage time was found analytically in this situation. Applications and connections to experiments on single molecule reaction dynamics are studied.

  20. New product development with the innovative biomolecular sublingual immunotherapy formulations for the management of allergic rhinitis

    Directory of Open Access Journals (Sweden)

    Frati F

    2014-09-01

    Full Text Available Franco Frati,1 Lorenzo Cecchi,2,3 Enrico Scala,4 Erminia Ridolo,5 Ilaria Dell'Albani,1 Eleni Makrì,6 Giovanni Pajno,7 Cristoforo Incorvaia6 1Medical and Scientific Department, Stallergenes, Milan, Italy; 2Interdepartmental Centre of Bioclimatology, University of Florence, Florence, Italy; 3Allergy and Clinical Immunology Section, Azienda Sanitaria di Prato, Prato, Italy; 4Experimental Allergy Unit, IDI-IRCCS, Rome, Italy; 5Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy; 6Allergy/Pulmonary Rehabilitation, ICP Hospital, Milan, Italy; 7Department of Pediatrics, Allergy Unit, University of Messina, Messina, Italy Abstract: The molecular allergy technique, currently defined as component-resolved diagnosis, significantly improved the diagnosis of allergy, allowing for differentiation between molecules actually responsible for clinical symptoms (genuine sensitizers and those simply cross-reacting or shared by several sources (panallergens, thus influencing the appropriate management of a patient's allergy. This also concerns allergen immunotherapy (AIT, which may be prescribed more precisely based on the component-resolved diagnosis results. However, the advance in diagnosis needs to be mirrored in AIT. According to consensus documents and to expectations of specialists, therapy should be based on standardized extracts containing measured amounts of the clinically relevant molecules, ie, the major allergens. The new generation of extracts for sublingual immunotherapy fulfills these requirements and are thus defined as biomolecular (BM. BM refers to natural extracts with a defined content of major allergens in micrograms. All Staloral BM products are indicated for the treatment of allergic rhinitis with or without asthma. The effectiveness of AIT is related to its ability to modify the immunological response of allergic subjects. The 5-grass and house dust mite extracts were evaluated addressing the T helper 1, T

  1. Pushing back the frontiers of mercury speciation using a combination of biomolecular and isotopic signatures: challenge and perspectives.

    Science.gov (United States)

    Pedrero, Zoyne; Donard, Olivier F X; Amouroux, David

    2016-04-01

    Mercury (Hg) pollution is considered a major environmental problem due to the extreme toxicity of Hg. However, Hg metabolic pathways in biota remain elusive. An understanding of these pathways is crucial to elucidating the (eco)toxic effects of Hg and its biogeochemical cycle. The development of a new analytical methodology based on both speciation and natural isotopic fractionation represents a promising approach for metabolic studies of Hg and other metal(loid)s. Speciation provides valuable information about the reactivity and potential toxicity of metabolites, while the use of natural isotopic signature analysis adds a complementary dynamic dimension that allows the life history of the target element to be probed, the source of the target element (i.e., the source of pollution) to be identified, and reactions to be tracked. The resulting combined (bio)molecular and isotopic signature affords precious insight into the behavior of Hg in biota and Hg detoxification mechanisms. In the long term, this highly innovative methodology could be used in life and environmental science studies of metal(loid)s to push back the frontiers of our knowledge in this field. This paper summarizes the current status of the application of Hg speciation and the isotopic signature of Hg at the biomolecular level in living organisms, and discusses potential future uses of this combination of techniques.

  2. Nanomechanical force transducers for biomolecular and intracellular measurements: is there room to shrink and why do it?

    Science.gov (United States)

    Sirbuly, Donald J; Friddle, Raymond W; Villanueva, Joshua; Huang, Qian

    2015-02-01

    Over the past couple of decades there has been a tremendous amount of progress on the development of ultrasensitive nanomechanical instruments, which has enabled scientists to peer for the first time into the mechanical world of biomolecular systems. Currently, work-horse instruments such as the atomic force microscope and optical/magnetic tweezers have provided the resolution necessary to extract quantitative force data from various molecular systems down to the femtonewton range, but it remains difficult to access the intracellular environment with these analytical tools as they have fairly large sizes and complicated feedback systems. This review is focused on highlighting some of the major milestones and discoveries in the field of biomolecular mechanics that have been made possible by the development of advanced atomic force microscope and tweezer techniques as well as on introducing emerging state-of-the-art nanomechanical force transducers that are addressing the size limitations presented by these standard tools. We will first briefly cover the basic setup and operation of these instruments, and then focus heavily on summarizing advances in in vitro force studies at both the molecular and cellular level. The last part of this review will include strategies for shrinking down the size of force transducers and provide insight into why this may be important for gaining a more complete understanding of cellular activity and function.

  3. Unusual Spectral Properties of Bacteriophytochrome Agp2 Result from a Deprotonation of the Chromophore in the Red-absorbing Form Pr*

    Science.gov (United States)

    Zienicke, Benjamin; Molina, Isabel; Glenz, René; Singer, Patrick; Ehmer, Dorothee; Escobar, Francisco Velazquez; Hildebrandt, Peter; Diller, Rolf; Lamparter, Tilman

    2013-01-01

    Phytochromes are widely distributed photoreceptors with a bilin chromophore that undergo a typical reversible photoconversion between the two spectrally different forms, Pr and Pfr. The phytochrome Agp2 from Agrobacterium tumefaciens belongs to the group of bathy phytochromes that have a Pfr ground state as a result of the Pr to Pfr dark conversion. Agp2 has untypical spectral properties in the Pr form reminiscent of a deprotonated chromophore as confirmed by resonance Raman spectroscopy. UV/visible absorption spectroscopy showed that the pKa is >11 in the Pfr form and ∼7.6 in the Pr form. Unlike other phytochromes, photoconversion thus results in a pKa shift of more than 3 units. The Pr/Pfr ratio after saturating irradiation with monochromatic light is strongly pH-dependent. This is partially due to a back-reaction of the deprotonated Pr chromophore at pH 9 after photoexcitation as found by flash photolysis. The chromophore protonation and dark conversion were affected by domain swapping and site-directed mutagenesis. A replacement of the PAS or GAF domain by the respective domain of the prototypical phytochrome Agp1 resulted in a protonated Pr chromophore; the GAF domain replacement afforded an inversion of the dark conversion. A reversion was also obtained with the triple mutant N12S/Q190L/H248Q, whereas each single point mutant is characterized by decelerated Pr to Pfr dark conversion. PMID:24036118

  4. Unusual spectral properties of bacteriophytochrome Agp2 result from a deprotonation of the chromophore in the red-absorbing form Pr.

    Science.gov (United States)

    Zienicke, Benjamin; Molina, Isabel; Glenz, René; Singer, Patrick; Ehmer, Dorothee; Escobar, Francisco Velazquez; Hildebrandt, Peter; Diller, Rolf; Lamparter, Tilman

    2013-11-01

    Phytochromes are widely distributed photoreceptors with a bilin chromophore that undergo a typical reversible photoconversion between the two spectrally different forms, Pr and Pfr. The phytochrome Agp2 from Agrobacterium tumefaciens belongs to the group of bathy phytochromes that have a Pfr ground state as a result of the Pr to Pfr dark conversion. Agp2 has untypical spectral properties in the Pr form reminiscent of a deprotonated chromophore as confirmed by resonance Raman spectroscopy. UV/visible absorption spectroscopy showed that the pKa is >11 in the Pfr form and ∼7.6 in the Pr form. Unlike other phytochromes, photoconversion thus results in a pKa shift of more than 3 units. The Pr/Pfr ratio after saturating irradiation with monochromatic light is strongly pH-dependent. This is partially due to a back-reaction of the deprotonated Pr chromophore at pH 9 after photoexcitation as found by flash photolysis. The chromophore protonation and dark conversion were affected by domain swapping and site-directed mutagenesis. A replacement of the PAS or GAF domain by the respective domain of the prototypical phytochrome Agp1 resulted in a protonated Pr chromophore; the GAF domain replacement afforded an inversion of the dark conversion. A reversion was also obtained with the triple mutant N12S/Q190L/H248Q, whereas each single point mutant is characterized by decelerated Pr to Pfr dark conversion.

  5. ZINDO-SOS Studies on Second-order Nonlinear Optical Properties of Thiophene S,S-Dioxide Chromophores

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The second-order nonlinear optical properties of thiophene S,S-dioxides derivatives were studied by using the ZINDO-SOS method. The computed results show that the thiophene S,S-dioxide derivatives exhibit larger second-order polarizabilities than their thiophene precursors. In order to clarify the origin of the different NLO responses among these chromophores, their electron properties and frontier orbital properties were investigated as well. These thiophene S,S-dioxides derivatives are good candidates for their application in electro-optical device due to their high nonlinearities, good thermal and photo stabilities.

  6. Linear and third-order nonlinear optical properties for the heptamethine cyanine chromophore H-aggregates thin film

    Institute of Scientific and Technical Information of China (English)

    YUAN YiZhong; KANG HaiFeng; SUN ZhenRong; WANG ZuGeng

    2007-01-01

    The thin film of a heptamethine cyanine chromophore HC was prepared by spin-coating technique. Its surface morphology and linear optical property were characterized by atomic force microscopy (AFM) and UV-visible absorption spectroscopy. The results show that HC molecules are arranged in a well-ordered H-aggregate type. The third-order nonlinear optical properties of the spin-coating film were also measured by degenerate four-wave mixing (DFWM) measurement. Enhanced third-order nonlinear susceptibility can be attributed to molecular aggregation effects, and the corresponding mechanism was dealt with by collective electronic oscillator (CEO) approach.

  7. Ultrafast excited state dynamics of Pt(II) chromophores bearing multiple infrared absorbers.

    Science.gov (United States)

    Glik, Elena A; Kinayyigit, Solen; Ronayne, Kate L; Towrie, Michael; Sazanovich, Igor V; Weinstein, Julia A; Castellano, Felix N

    2008-08-04

    The paper reports the synthesis, structural characterization, electrochemistry, ultrafast time-resolved infrared (TRIR) and transient absorption (TA) spectroscopy associated with two independent d (8) square planar Pt(II) diimine chromophores, Pt(dnpebpy)Cl 2 ( 1) and Pt(dnpebpy)(C[triple bond]Cnaph) 2 ( 2), where dnpebpy = 4,4'-(CO 2CH 2- (t) Bu) 2-2,2'-bipyridine and CCnaph = naphthylacetylide. The neopentyl ester substitutions provided markedly improved complex solubility relative to the corresponding ethyl ester which facilitates synthetic elaboration as well as spectroscopic investigations. Following 400 nm pulsed laser excitation in CH 2Cl 2, the 23 cm (-1) red shift in the nu C=O vibrations in 1 are representative of a complex displaying a lowest charge-transfer-to-diimine (CT) excited state. The decay kinetics in 1 are composed of two time constants assigned to vibrational cooling of the (3)CT excited-state concomitant with its decay to the ground state (tau = 2.2 +/- 0.4 ps), and to cooling of the formed vibrationally hot ground electronic state (tau = 15.5 +/- 4.0 ps); we note that an assignment of the latter to a ligand field state cannot be excluded. Ultrafast TA data quantitatively support these assignments yielding an excited-state lifetime of 2.7 +/- 0.4 ps for the (3)CT excited-state of 1 and could not detect any longer-lived species. The primary intention of this study was to develop a Pt (II) complex ( 2) bearing dual infrared spectroscopic tags (C[triple bond]C attached to the metal and CO (ester) attached to the diimine ligand) to independently track the movement of charge density in different segments of the molecule following pulsed light excitation. Femtosecond laser excitation of 2 in CH 2Cl 2 at 400 nm simultaneously induces a red-shift in both the nu C=O (-30 cm (-1)) and the nu C[triple bond]C (-61 cm (-1)) vibrations. The TRIR data in 2 are consistent with a charge transfer assignment, and the significant decrease of the energy of the nu

  8. Examining ruthenium chromophores for the photochemical reduction of CO2 to methanol

    Science.gov (United States)

    Boston, David J.

    pyridinium being only a cocatalyst for the reduction of CO2. However, Musgrave and coworkers predict that the homogeneous reductions can take place with the aid of water molecules in solution. They allow for a PCET process to take place between the CO 2 and the pyridinium radical. This would allow for a second pathway for the catalytic reduction of CO2 to methanol. Work done during this dissertation has shown that the photochemical reduction of carbon dioxide to methanol is possible using pyridine in a similar manner to Bocarsly and coworkers in their electrochemical system. By replacing the electrode with Ru(phen)3Cl2 it is still possible to drive the reaction using excited states of the chromophore to provide the electrons with enough energy to reduce the pyridinium to the radical species. This system has been shown to produce up to 66 BM methanol after 6 hours of irradiation of 470 nm light. Production of formate is also observed, with ~27 mM being observed within the first hour of irradiation. This system was further investigated with the incorporation of the pyridine catalyst into a chromophore system using the complex [Ru(phen)2dppz](PF 6)2, [Ru(phen)2pbtpalpha](PF6) 2, and [Ru(phen)2pbtpbeta](PF6)2. Cyclic voltammetry experiments for these complexes show similar reduction potentials for with ~100 mV difference between them with [Ru(phen)2dppz](PF 6)2 being the most negative and [Ru(phen)2pbtpbeta](PF 6)2 being the most positive. When the electrolyte solution was saturated with CO2 only [Ru(phen)2pbtpalpha](PF 6)2 and [Ru(phen)2pbtpbeta](PF6) 2 showed a response signifying catalysis was taking place. Initial photochemical tests with these complexes showed that [Ru(phen)2pbtpalpha](PF 6)2 seemed to undergo dimer formation in the absence of CO 2 with [Ru(phen)2pbtpbeta](PF6)2 forming a singly reduced species that is oxidized upon introduction of additional CO2. Electrolysis of [Ru(phen)2pbtpbeta](PF6 )2 produces ~900 BM methanol with both CO and formate being produced as

  9. Synthesis and characterization of thermally stable second-order nonlinear optical side-chain polyimides containing thiazole and benzothiazole push-pull chromophores

    Science.gov (United States)

    Tambe, S. M.; Kittur, A. A.; Inamdar, S. R.; Mitchell, G. R.; Kariduraganavar, M. Y.

    2009-04-01

    Push-pull nonlinear optical (NLO) chromophores containing thiazole and benzothiazole acceptors were synthesized and characterized. Using these chromophores a series of second-order NLO polyimides were successfully prepared from 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), pyromellitic dianhydride (PMDA) and 3,3'4,4'-benzophenone tetracarboxylic dianhydride (BTDA) by a standard condensation polymerization technique. These polyimides exhibit high glass transition temperatures ranging from 160 to 188 °C. UV-vis spectrum of polyimide exhibited a slight blue shift and decreases in absorption due to birefringence. From the order parameters, it was found that chromophores were aligned effectively. Using in situ poling and temperature ramping technique, the optical temperatures for corona poling were obtained. It was found that the optimal temperatures of polyimides approach their glass transition temperatures. These polyimides demonstrate relatively large d33 values range between 35.15 and 45.20 pm/V at 532 nm.

  10. Occlusion of chromophore oxides by Sol-Gel methods: Application to the synthesis of hematite-silica red pigments

    Directory of Open Access Journals (Sweden)

    Vicent, J. B.

    2000-02-01

    Full Text Available Heteromorphic pigments present the chromophore particle occluded in an encapsulating matrix which is thermally stable and insoluble in glazes. The occluded chromophore compound is also insoluble in the host matrix. In this work the mechanisms of formation of this type of pigments are analyzed and the occlusion of hematite into silica matrix is discussed. The formation of this hematite-silica red pigment follows a sintering-coarsening mechanism, and, consequently, the control of both hematite particles nucleation and their crystal growth results to be decisive to obtain a good coloring effectiveness.

    En los pigmentos heteromórficos la partícula de cromóforo es ocluida en una matriz encapsuladora estable tanto termicamente como frente a los vidriados. El compuesto cromóforo ocluido y la matriz no coloreada son insolubles. En este trabajo se analiza los diferentes mecanismos de formación de estos pigmentos heteromórficos y se estudia la oclusión de hematita en sílice mediante métodos sol-gel acuoso. El pigmento sigue un mecanismo de sinterización-crecimiento cristalino por lo que es muy importante controlar el momento de nucleación y la velocidad de crecimiento de las partículas de hematita en el seno de la matriz.

  11. Tunable Two-color Luminescence and Host–guest Energy Transfer of Fluorescent Chromophores Encapsulated in Metal-Organic Frameworks

    Science.gov (United States)

    Yan, Dongpeng; Tang, Yanqun; Lin, Heyang; Wang, Dan

    2014-01-01

    Co-assembly of chromophore guests with host matrices can afford materials which have photofunctionalities different from those of individual components. Compared with clay and zeolite materials, the use of metal–organic frameworks (MOFs) as a host structure for fabricating luminescent host–guest materials is still at an early stage. Herein, we report the incorporation of a laser dye, 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), into stilbene-based and naphthalene-based MOF systems. The resulting materials exhibit blue/red two-color emission, and the intensity ratio of blue to red fluorescence varies in different planes within the MOF crystal as detected by 3D confocal fluorescence microscopy. The observed changes in ratiometric fluorescence suggest the occurrence of energy transfer from MOF host to DCM molecules, which can be further confirmed by periodic density functional theoretical (DFT) calculations. Moreover, selective changes in luminescence behavior are observed on treating the guest@MOF samples with volatile organic compounds (methanol, acetone and toluene), indicating that these host–guest systems have potential applications as fluorescence sensors. It can be expected that by rational selection of MOF hosts and guest chromophores with suitable emissive colors and energy levels, a wide variety of multi-color luminescent and energy-transfer systems can readily be prepared in a similar manner. PMID:24614015

  12. Highly efficient and selective photocatalytic oxidation of sulfide by a chromophore-catalyst dyad of ruthenium-based complexes.

    Science.gov (United States)

    Li, Ting-Ting; Li, Fu-Min; Zhao, Wei-Liang; Tian, Yong-Hua; Chen, Yong; Cai, Rong; Fu, Wen-Fu

    2015-01-05

    Electronic coupling across a bridging ligand between a chromophore and a catalyst center has an important influence on biological and synthetic photocatalytic processes. Structural and associated electronic modifications of ligands may improve the efficiency of photocatalytic transformations of organic substrates. Two ruthenium-based supramolecular assemblies based on a chromophore-catalyst dyad containing a Ru-aqua complex and its chloro form as the catalytic components were synthesized and structurally characterized, and their spectroscopic and electrochemical properties were investigated. Under visible light irradiation and in the presence of [Co(NH3)5Cl]Cl2 as a sacrificial electron acceptor, both complexes exhibited good photocatalytic activity toward oxidation of sulfide into the corresponding sulfoxide with high efficiency and >99% product selectivity in neutral aqueous solution. The Ru-aqua complex assembly was more efficient than the chloro complex. Isotopic labeling experiments using (18)O-labeled water demonstrated the oxygen atom transfer from the water to the organic substrate, likely through the formation of an active intermediate, Ru(IV)═O.

  13. Novel hybrid organic-inorganic sol-gel materials based on highly efficient heterocyclic push-pull chromophores

    Science.gov (United States)

    Abbotto, Alessandro; Bozio, Renato; Brusatin, Giovanna; Facchetti, Antonio; Guglielmi, Massimo; Innocenzi, Plinio; Meneghetti, Moreno; Pagani, Giorgio A.; Signorini, Raffaella

    1999-10-01

    We report the synthesis of sol-gel materials based on highly efficient heterocycle-based push-pull chromophores showing second- and third-order nonlinear optical activity. We show the proper functionalization of the best performing chromophores and their incorporation into a hybrid organic- inorganic sol-gel matrix. Different types of functionalization of the active molecule have been considered, including hydroxyl and alkoxysilyl end-groups. The functionalization strategy responded to different criteria such as stability and synthetic availability of the final molecular precursors, their solubility, and the used synthetic approach to the sol-gel material. The synthesis of the sol-gel materials has been tuned in order to preserve molecular properties and control important factors such as final concentration of the active dye in the matrix. Both acid- and base-catalyzed sol-gel synthesis has been taken into account. 3-Glycidoxypropyltrimethoxysilane and 3- aminopropyltriethoxysilane have been used as the organically modified alkoxides to prepare the hybrid organic-inorganic matrix. Characterization of the spectroscopic properties of the sol-gel materials is presented.

  14. Predicting dissolved lignin phenol concentrations in the coastal ocean from chromophoric dissolved organic matter (CDOM absorption coefficients

    Directory of Open Access Journals (Sweden)

    Cédric G. Fichot

    2016-02-01

    Full Text Available Dissolved lignin is a well-established biomarker of terrigenous dissolved organic matter (DOM in the ocean, and a chromophoric component of DOM. Although evidence suggests there is a strong linkage between lignin concentrations and chromophoric DOM (CDOM absorption coefficients in coastal waters, the characteristics of this linkage and the existence of a relationship that is applicable across coastal oceans remain unclear. Here, 421 paired measurements of dissolved lignin concentrations (sum of 9 lignin phenols and CDOM absorption coefficients (ag(λ were used to examine their relationship along the river-ocean continuum (0-37 salinity and across contrasting coastal oceans (sub-tropical, temperate, high-latitude. Overall, lignin concentrations spanned four orders of magnitude and revealed a strong, non-linear relationship with ag(λ. The characteristics of the relationship (shape, wavelength dependency, lignin-composition dependency and evidence from degradation indicators were all consistent with lignin being an important driver of CDOM variability in coastal oceans, and suggested physical mixing and long-term photodegradation were important in shaping the relationship. These observations were used to develop two simple empirical models for estimating lignin concentrations from ag(λ with a +/- 20% error relative to measured values. The models are expected to be applicable in most coastal oceans influenced by terrigenous inputs.

  15. Experimental evidence for secondary protein-chromophore interactions at the Schiff base linkage in bacteriorhodopsin: molecular mechanism for proton pumping

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, A.; Marcus, M.A.; Ehrenberg, B.; Crespi, H.

    1978-10-01

    Resonance Raman spectroscopy of the retinylidene chromophore in various isotopically labeled membrane environments together with spectra of isotopically labeled model compounds demonstrates that a secondary protein interaction is present at the protonated Schiff base linkage in bacteriorhodopsin. The data indicate that although the interaction is present in all protonated bacteriorhodopsin species it is absent in unprotonated intermediates. Furthermore, kinetic resonance Raman spectroscopy has been used to monitor the dynamics of Schiff base deprotonation as a function of pH. All results are consistent with lysine as the interacting group. A structure for the interaction is proposed in which the interacting protein group in an unprotonated configuration is complexed through the Schiff base proton to the Schiff base nitrogen. These data suggest a molecular mechanism for proton pumping and ion gate molecular regulation. In this mechanism, light causes electron redistribution in the retinylidene chromophore, which results in the deprotonation of an amino acid side chain with pK > 10.2 +- 0.3 (e.g., arginine). This induces subsequent retinal and protein conformational transitions which eventually lower the pK of the Schiff base complex from > 12 before light absorption to 10.2 +- 0.3 in microseconds after photon absorption. Finally, in this low pK state the complex can reprotonate the proton-deficient high pK group generated by light, and the complex is then reprotonated from the opposite side of the membrane.

  16. Preparation and third-order nonlinear optical property of poly(urethane-imide containing dispersed red chromophore

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available A novel poly(urethane-imide (PUI containing dispersed red chromophore was synthesized. The PUI was characterized by FT-IR, UV-Vis, DSC and TGA. The results of DSC and TGA indicated that the PUI exhibited high thermal stability up to its glass-transition temperature (Tg of 196°C and 5% heat weight loss temperature of 229°C. According to UV-Vis spectrum and working curve, the maximum molar absorption coefficient and absorption wavelength were measured. They were used to calculate the third-order nonlinear optical coefficient χ(3. At the same time, the chromophore density of PUI, nonlinear refractive index coefficient and molecular hyperpolarizability of PUI were obtained. The fluorescence spectra of PUI and model compound DR-19 were determined at excitation wavelength 300 nm. The electron donor and acceptor in polymer formed the exciplex through the transfer of the electric charges. The results show that the poly(urethane-imide is a promising candidate for application in optical devices.

  17. Fabrication of Supramolecular n/p-Nanowires via Coassembly of Oppositely Charged Peptide-Chromophore Systems in Aqueous Media.

    Science.gov (United States)

    Khalily, Mohammad Aref; Bakan, Gokhan; Kucukoz, Betul; Topal, Ahmet Emin; Karatay, Ahmet; Yaglioglu, H Gul; Dana, Aykutlu; Guler, Mustafa O

    2017-07-25

    Fabrication of supramolecular electroactive materials at the nanoscale with well-defined size, shape, composition, and organization in aqueous medium is a current challenge. Herein we report construction of supramolecular charge-transfer complex one-dimensional (1D) nanowires consisting of highly ordered mixed-stack π-electron donor-acceptor (D-A) domains. We synthesized n-type and p-type β-sheet forming short peptide-chromophore conjugates, which assemble separately into well-ordered nanofibers in aqueous media. These complementary p-type and n-type nanofibers coassemble via hydrogen bonding, charge-transfer complex, and electrostatic interactions to generate highly uniform supramolecular n/p-coassembled 1D nanowires. This molecular design ensures highly ordered arrangement of D-A stacks within n/p-coassembled supramolecular nanowires. The supramolecular n/p-coassembled nanowires were found to be formed by A-D-A unit cells having an association constant (KA) of 5.18 × 10(5) M(-1). In addition, electrical measurements revealed that supramolecular n/p-coassembled nanowires are approximately 2400 and 10 times more conductive than individual n-type and p-type nanofibers, respectively. This facile strategy allows fabrication of well-defined supramolecular electroactive nanomaterials in aqueous media, which can find a variety of applications in optoelectronics, photovoltaics, organic chromophore arrays, and bioelectronics.

  18. Versatile design of biohybrid light-harvesting architectures to tune location, density, and spectral coverage of attached synthetic chromophores for enhanced energy capture.

    Science.gov (United States)

    Harris, Michelle A; Jiang, Jianbing; Niedzwiedzki, Dariusz M; Jiao, Jieying; Taniguchi, Masahiko; Kirmaier, Christine; Loach, Paul A; Bocian, David F; Lindsey, Jonathan S; Holten, Dewey; Parkes-Loach, Pamela S

    2014-07-01

    Biohybrid antennas built upon chromophore-polypeptide conjugates show promise for the design of efficient light-capturing modules for specific purposes. Three new designs, each of which employs analogs of the β-polypeptide from Rhodobacter sphaeroides, have been investigated. In the first design, amino acids at seven different positions on the polypeptide were individually substituted with cysteine, to which a synthetic chromophore (bacteriochlorin or Oregon Green) was covalently attached. The polypeptide positions are at -2, -6, -10, -14, -17, -21, and -34 relative to the 0-position of the histidine that coordinates bacteriochlorophyll a (BChl a). All chromophore-polypeptides readily formed LH1-type complexes upon combination with the α-polypeptide and BChl a. Efficient energy transfer occurs from the attached chromophore to the circular array of 875 nm absorbing BChl a molecules (denoted B875). In the second design, use of two attachment sites (positions -10 and -21) on the polypeptide affords (1) double the density of chromophores per polypeptide and (2) a highly efficient energy-transfer relay from the chromophore at -21 to that at -10 and on to B875. In the third design, three spectrally distinct bacteriochlorin-polypeptides were prepared (each attached to cysteine at the -14 position) and combined in an ~1:1:1 mixture to form a heterogeneous mixture of LH1-type complexes with increased solar coverage and nearly quantitative energy transfer from each bacteriochlorin to B875. Collectively, the results illustrate the great latitude of the biohybrid approach for the design of diverse light-harvesting systems.

  19. Lake and sea populations of Mysis relicta (Crustacea, Mysida with different visual-pigment absorbance spectra use the same A1 chromophore.

    Directory of Open Access Journals (Sweden)

    Nikolai Belikov

    Full Text Available Glacial-relict species of the genus Mysis (opossum shrimps inhabiting both fresh-water lakes and brackish sea waters in northern Europe show a consistent lake/sea dichotomy in eye spectral sensitivity. The absorbance peak (λmax recorded by microspectrophotometry in isolated rhabdoms is invariably 20-30 nm red-shifted in "lake" compared with "sea" populations. The dichotomy holds across species, major opsin lineages and light environments. Chromophore exchange from A1 to A2 (retinal → 3,4-didehydroretinal is a well-known mechanism for red-shifting visual pigments depending on environmental conditions or stages of life history, present not only in fishes and amphibians, but in some crustaceans as well. We tested the hypothesis that the lake/sea dichotomy in Mysis is due to the use of different chromophores, focussing on two populations of M. relicta from, respectively, a Finnish lake and the Baltic Sea. They are genetically very similar, having been separated for less than 10 kyr, and their rhabdoms show a typical lake/sea difference in λmax (554 nm vs. 529 nm. Gene sequencing has revealed no differences translating into amino acid substitutions in the transmembrane parts of their opsins. We determined the chromophore identity (A1 or A2 in the eyes of these two populations by HPLC, using as standards pure chromophores A1 and A2 as well as extracts from bovine (A1 and goldfish (A2 retinas. We found that the visual-pigment chromophore in both populations is A1 exclusively. Thus the spectral difference between these two populations of M. relicta is not due to the use of different chromophores. We argue that this conclusion is likely to hold for all populations of M. relicta as well as its European sibling species.

  20. Accurate Spectral Fits of Jupiter's Great Red Spot: VIMS Visual Spectra Modelled with Chromophores Created by Photolyzed Ammonia Reacting with Acetyleneχ±

    Science.gov (United States)

    Baines, Kevin; Sromovsky, Lawrence A.; Fry, Patrick M.; Carlson, Robert W.; Momary, Thomas W.

    2016-10-01

    We report results incorporating the red-tinted photochemically-generated aerosols of Carlson et al (2016, Icarus 274, 106-115) in spectral models of Jupiter's Great Red Spot (GRS). Spectral models of the 0.35-1.0-micron spectrum show good agreement with Cassini/VIMS near-center-meridian and near-limb GRS spectra for model morphologies incorporating an optically-thin layer of Carlson (2016) aerosols at high altitudes, either at the top of the tropospheric GRS cloud, or in a distinct stratospheric haze layer. Specifically, a two-layer "crème brûlée" structure of the Mie-scattering Carlson et al (2016) chromophore attached to the top of a conservatively scattering (hereafter, "white") optically-thick cloud fits the spectra well. Currently, best agreement (reduced χ2 of 0.89 for the central-meridian spectrum) is found for a 0.195-0.217-bar, 0.19 ± 0.02 opacity layer of chromophores with mean particle radius of 0.14 ± 0.01 micron. As well, a structure with a detached stratospheric chromophore layer ~0.25 bar above a white tropospheric GRS cloud provides a good spectral match (reduced χ2 of 1.16). Alternatively, a cloud morphology with the chromophore coating white particles in a single optically- and physically-thick cloud (the "coated-shell model", initially explored by Carlson et al 2016) was found to give significantly inferior fits (best reduced χ2 of 2.9). Overall, we find that models accurately fit the GRS spectrum if (1) most of the optical depth of the chromophore is in a layer near the top of the main cloud or in a distinct separated layer above it, but is not uniformly distributed within the main cloud, (2) the chromophore consists of relatively small, 0.1-0.2-micron-radius particles, and (3) the chromophore layer optical depth is small, ~ 0.1-0.2. Thus, our analysis supports the exogenic origin of the red chromophore consistent with the Carlson et al (2016) photolytic production mechanism rather than an endogenic origin, such as upwelling of material

  1. Structure of the red fluorescent protein from a lancelet (Branchiostoma lanceolatum): a novel GYG chromophore covalently bound to a nearby tyrosine

    Energy Technology Data Exchange (ETDEWEB)

    Pletnev, Vladimir Z., E-mail: vzpletnev@gmail.com; Pletneva, Nadya V.; Lukyanov, Konstantin A.; Souslova, Ekaterina A.; Fradkov, Arkady F.; Chudakov, Dmitry M.; Chepurnykh, Tatyana; Yampolsky, Ilia V. [Russian Academy of Sciences, Moscow (Russian Federation); Wlodawer, Alexander [National Cancer Institute, Frederick, MD 21702 (United States); Dauter, Zbigniew [National Cancer Institute, Argonne, IL 60439 (United States); Pletnev, Sergei, E-mail: vzpletnev@gmail.com [National Cancer Institute, Argonne, IL 60439 (United States); SAIC-Frederick, Argonne, IL 60439 (United States); Russian Academy of Sciences, Moscow (Russian Federation)

    2013-09-01

    The crystal structure of the novel red emitting fluorescent protein from lancelet Branchiostoma lanceolatum (Chordata) revealed an unusual five residues cyclic unit comprising Gly58-Tyr59-Gly60 chromophore, the following Phe61 and Tyr62 covalently bound to chromophore Tyr59. A key property of proteins of the green fluorescent protein (GFP) family is their ability to form a chromophore group by post-translational modifications of internal amino acids, e.g. Ser65-Tyr66-Gly67 in GFP from the jellyfish Aequorea victoria (Cnidaria). Numerous structural studies have demonstrated that the green GFP-like chromophore represents the ‘core’ structure, which can be extended in red-shifted proteins owing to modifications of the protein backbone at the first chromophore-forming position. Here, the three-dimensional structures of green laGFP (λ{sub ex}/λ{sub em} = 502/511 nm) and red laRFP (λ{sub ex}/λ{sub em} ≃ 521/592 nm), which are fluorescent proteins (FPs) from the lancelet Branchiostoma lanceolatum (Chordata), were determined together with the structure of a red variant laRFP-ΔS83 (deletion of Ser83) with improved folding. Lancelet FPs are evolutionarily distant and share only ∼20% sequence identity with cnidarian FPs, which have been extensively characterized and widely used as genetically encoded probes. The structure of red-emitting laRFP revealed three exceptional features that have not been observed in wild-type fluorescent proteins from Cnidaria reported to date: (i) an unusual chromophore-forming sequence Gly58-Tyr59-Gly60, (ii) the presence of Gln211 at the position of the conserved catalytic Glu (Glu222 in Aequorea GFP), which proved to be crucial for chromophore formation, and (iii) the absence of modifications typical of known red chromophores and the presence of an extremely unusual covalent bond between the Tyr59 C{sup β} atom and the hydroxyl of the proximal Tyr62. The impact of this covalent bond on the red emission and the large Stokes shift (

  2. Comprehensive studies on an overall proton transfer cycle of the ortho-green fluorescent protein chromophore.

    Science.gov (United States)

    Hsieh, Cheng-Chih; Chou, Pi-Tai; Shih, Chun-Wei; Chuang, Wei-Ti; Chung, Min-Wen; Lee, Junghwa; Joo, Taiha

    2011-03-09

    Initiated by excited-state intramolecular proton transfer (ESIPT) reaction, an overall reaction cycle of 4-(2-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (o-HBDI), an analogue of the core chromophore of the green fluorescent protein (GFP), has been investigated. In contrast to the native GFP core, 4-(4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (p-HBDI), which requires hydrogen-bonding relay to accomplish proton transfer in vivo, o-HBDI possesses a seven-membered-ring intramolecular hydrogen bond and thus provides an ideal system for mimicking an intrinsic proton-transfer reaction. Upon excitation, ESIPT takes place in o-HBDI, resulting in a ∼600 nm proton-transfer tautomer emission. The o-HBDI tautomer emission, resolved by fluorescence upconversion, is comprised of an instantaneous rise to a few hundred femtosecond oscillation in the early relaxation stage. Frequency analysis derived from ultrashort pulse gives two low-frequency vibrations at 115 and 236 cm(-1), corresponding to skeletal deformation motions associated with the hydrogen bond. The results further conclude that ESIPT in o-HBDI is essentially triggered by low-frequency motions and may be barrierless along the reaction coordinate. Femtosecond UV/vis transient absorption spectra also provide supplementary evidence for the structural evolution during the reaction. In CH(3)CN, an instant rise of a 530 nm transient is resolved, which then undergoes 7.8 ps decay, accompanied by the growth of a rather long-lived 580 nm transient species. It is thus concluded that following ESIPT the cis-proton transfer isomer undergoes cis-trans-isomerization. The results of viscosity-dependent dynamics are in favor of the one-bond-flip mechanism, which is in contrast to the volume-conserving isomerization behavior for cis-stilbene and p-HBDI. Further confirmation is given by the picosecond-femtosecond transient IR absorption spectra, where several new and long-lived IR bands in the range of 1400

  3. Water quality monitoring in a bathing area of Civitavecchia (Latium, Italy) using Chromophoric Dissolved Organic Matter (CDOM) as a tracer of faecal contamination

    Science.gov (United States)

    Madonia, Alice; Bonamano, Simone; Caruso, Gabriella; Stefani', Chiara; Consalvi, Natalizia; Piermattei, Viviana; Zappalà, Giuseppe; Marcelli, Marco

    2017-04-01

    Coastal urban bathing areas are often affected by events of faecal contamination, caused by the discharge of untreated wastewaters during the bathing season that can increase the risk for public health. Monitoring the quality of recreational waters is still closely linked to time-consuming seawater sampling and laboratory analysis, not allowing promptly management interventions. To face this issue, the European environmental policies strongly promote the development of coastal observing systems, above all in the Southern European Seas (SES). Chromophoric Dissolved Organic Matter (CDOM) has been increasingly used as a tracer of bacterial loads, since wastewaters are characterized by a large amount of organic compounds. The aim of this work was to study the relation between CDOM and Escherichia coli abundance, giving relevance to bacterial physiological state detected using both the standard culture method and the innovative fluorescent antibody technique. Attention has been paid also on the expression of extracellular enzymatic activity by the total microbial community to explore the role of bacteria in the decomposition processes of dissolved organic matter. Data were collected during summer 2015 and 2016 in a bathing area of Civitavecchia at increasing distances from the discharge point. The results confirm the usefulness of CDOM measurements as a proxy of faecal pollution in bathing areas. In this perspective, the low-cost stand-alone systems equipped with CDOM fluorescence sensors developed by the Laboratory of Experimental Oceanology and Marine Ecology (Tuscia University) (Marcelli et al., 2014) could allow the continous monitoring of water quality, increasing the capabilities of the Civitavecchia Coastal Environmental Monitoring System (C-CEMS) in the analysis of pollution events. Thanks to the integration of in situ fixed stations, high-resolution satellites imagery and numerical models, C-CEMS provides a management tool to support the stakeholders for timely

  4. A model system for targeted drug release triggered by biomolecular signals logically processed through enzyme logic networks.

    Science.gov (United States)

    Mailloux, Shay; Halámek, Jan; Katz, Evgeny

    2014-03-07

    A new Sense-and-Act system was realized by the integration of a biocomputing system, performing analytical processes, with a signal-responsive electrode. A drug-mimicking release process was triggered by biomolecular signals processed by different logic networks, including three concatenated AND logic gates or a 3-input OR logic gate. Biocatalytically produced NADH, controlled by various combinations of input signals, was used to activate the electrochemical system. A biocatalytic electrode associated with signal-processing "biocomputing" systems was electrically connected to another electrode coated with a polymer film, which was dissolved upon the formation of negative potential releasing entrapped drug-mimicking species, an enzyme-antibody conjugate, operating as a model for targeted immune-delivery and consequent "prodrug" activation. The system offers great versatility for future applications in controlled drug release and personalized medicine.

  5. PUPIL: A Software Integration System for Multi-Scale QM/MM-MD Simulations and Its Application to Biomolecular Systems.

    Science.gov (United States)

    Torras, Juan; Roberts, Benjamin P; Seabra, Gustavo M; Trickey, Samuel B

    2015-01-01

    PUPIL (Program for User Package Interfacing and Linking) implements a distinctive multi-scale approach to hybrid quantum mechanical/molecular mechanical molecular dynamics (QM/MM-MD) simulations. Originally developed to interface different external programs for multi-scale simulation with applications in the materials sciences, PUPIL is finding increasing use in the study of complex biological systems. Advanced MD techniques from the external packages can be applied readily to a hybrid QM/MM treatment in which the forces and energy for the QM region can be computed by any of the QM methods available in any of the other external packages. Here, we give a survey of PUPIL design philosophy, main features, and key implementation decisions, with an orientation to biomolecular simulation. We discuss recently implemented features which enable highly realistic simulations of complex biological systems which have more than one active site that must be treated concurrently. Examples are given.

  6. Probing volumetric properties of biomolecular systems by pressure perturbation calorimetry (PPC)--the effects of hydration, cosolvents and crowding.

    Science.gov (United States)

    Suladze, Saba; Kahse, Marie; Erwin, Nelli; Tomazic, Daniel; Winter, Roland

    2015-04-01

    Pressure perturbation calorimetry (PPC) is an efficient technique to study the volumetric properties of biomolecules in solution. In PPC, the coefficient of thermal expansion of the partial volume of the biomolecule is deduced from the heat consumed or produced after small isothermal pressure-jumps. The expansion coefficient strongly depends on the interaction of the biomolecule with the solvent or cosolvent as well as on its packing and internal dynamic properties. This technique, complemented with molecular acoustics and densimetry, provides valuable insights into the basic thermodynamic properties of solvation and volume effects accompanying interactions, reactions and phase transitions of biomolecular systems. After outlining the principles of the technique, we present representative examples on protein folding, including effects of cosolvents and crowding, together with a discussion of the interpretation, and further applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications.

    Science.gov (United States)

    Verma, Arjun; Fratto, Brian E; Privman, Vladimir; Katz, Evgeny

    2016-07-05

    We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s) as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed.

  8. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Arjun Verma

    2016-07-01

    Full Text Available We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed.

  9. Diffusion Monte Carlo applied to weak interactions - hydrogen bonding and aromatic stacking in (bio-)molecular model systems

    Science.gov (United States)

    Fuchs, M.; Ireta, J.; Scheffler, M.; Filippi, C.

    2006-03-01

    Dispersion (Van der Waals) forces are important in many molecular phenomena such as self-assembly of molecular crystals or peptide folding. Calculating this nonlocal correlation effect requires accurate electronic structure methods. Usual density-functional theory with generalized gradient functionals (GGA-DFT) fails unless empirical corrections are added that still need extensive validation. Quantum chemical methods like MP2 and coupled cluster are more accurate, yet limited to rather small systems by their unfavorable computational scaling. Diffusion Monte Carlo (DMC) can provide accurate molecular total energies and remains feasible also for larger systems. Here we apply the fixed-node DMC method to (bio-)molecular model systems where dispersion forces are significant: (dimethyl-) formamide and benzene dimers, and adenine-thymine DNA base pairs. Our DMC binding energies agree well with data from coupled cluster (CCSD(T)), in particular for stacked geometries where GGA-DFT fails qualitatively and MP2 predicts too strong binding.

  10. Hybrid Quantum Mechanics/Molecular Mechanics/Coarse Grained Modeling: A Triple-Resolution Approach for Biomolecular Systems.

    Science.gov (United States)

    Sokkar, Pandian; Boulanger, Eliot; Thiel, Walter; Sanchez-Garcia, Elsa

    2015-04-14

    We present a hybrid quantum mechanics/molecular mechanics/coarse-grained (QM/MM/CG) multiresolution approach for solvated biomolecular systems. The chemically important active-site region is treated at the QM level. The biomolecular environment is described by an atomistic MM force field, and the solvent is modeled with the CG Martini force field using standard or polarizable (pol-CG) water. Interactions within the QM, MM, and CG regions, and between the QM and MM regions, are treated in the usual manner, whereas the CG-MM and CG-QM interactions are evaluated using the virtual sites approach. The accuracy and efficiency of our implementation is tested for two enzymes, chorismate mutase (CM) and p-hydroxybenzoate hydroxylase (PHBH). In CM, the QM/MM/CG potential energy scans along the reaction coordinate yield reaction energies that are too large, both for the standard and polarizable Martini CG water models, which can be attributed to adverse effects of using large CG water beads. The inclusion of an atomistic MM water layer (10 Å for uncharged CG water and 5 Å for polarizable CG water) around the QM region improves the energy profiles compared to the reference QM/MM calculations. In analogous QM/MM/CG calculations on PHBH, the use of the pol-CG description for the outer water does not affect the stabilization of the highly charged FADHOOH-pOHB transition state compared to the fully atomistic QM/MM calculations. Detailed performance analysis in a glycine-water model system indicates that computation times for QM energy and gradient evaluations at the density functional level are typically reduced by 40-70% for QM/MM/CG relative to fully atomistic QM/MM calculations.

  11. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  12. UV–Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore

    OpenAIRE

    Antosiewicz, Jan M.; Shugar, David

    2016-01-01

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV–Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  13. Spectral and structural study of two acceptor-substituted pyridinium-betaines of squaric acid: Promising chromophores for nonlinear optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kolev, Tsonko [Institute of Organic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)], E-mail: kolev@orgchm.bas.bg; Stamboliyska, Bistra [Institute of Organic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Yancheva, Denitsa [Institute of Organic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2006-05-31

    Two acceptor-substituted chromophores (3- and 4-benzoylpyridinium-betaines of squaric acid) were characterized by means of thermogravimetric analysis and UV-vis and IR spectra. The experiment is supported by theoretical predictions undertaken at different levels of approximation (MP2 and DFT/B3LYP). The results of the optimized molecular structure are presented and compared with the X-ray diffraction data for both chromophores studied. Generalized atomic polar tensor (GAPT) model was chosen for calculation of atomic charges of studied species. The charge distribution over fragments indicates that strongly polarized systems are present. Harmonic vibrational frequencies of the molecules were evaluated theoretically using B3LYP/6-311G** level. The nonlinear optical efficiency of both chromophores was estimated by molecular parameters such as absorption maxima in various solvents of different polarity, ground state dipole and difference between ground and excited state dipole moments. A static hyperpolarizability for 4-benzoyl chromophore was provided from EOAM experiment for a dioxane solution. Combined with the noncentrosymmertic crystal structure of the same isomer and the exceptional thermal stability of both species, these studies gave evidences for their reliability as nonlinear optical materials.

  14. Circularly polarized luminescence by visible-light absorption in a chiral O-BODIPY dye: unprecedented design of CPL organic molecules from achiral chromophores.

    Science.gov (United States)

    Sánchez-Carnerero, Esther M; Moreno, Florencio; Maroto, Beatriz L; Agarrabeitia, Antonia R; Ortiz, María J; Vo, Bryan G; Muller, Gilles; de la Moya, Santiago

    2014-03-05

    Circularly polarized luminescence (CPL) in simple (small, nonaggregated, nonpolymeric) O-BODIPYs (R)-1 and (S)-1 by irradiation with visible light is first detected as proof of the ability of a new structural design to achieve CPL from inherently achiral monochromophore systems in simple organic molecules. The measured level of CPL (|g(lum)|) in solution falls into the usual range of that obtained from other simple organic molecules (10(-5)-10(-2) range), but the latter having more complex architectures since axially chiral chromophores or multichromophore systems are usually required. The new design is based on chirally perturbing the acting achiral chromophore by orthogonally tethering a single axially chiral 1,1'-binaphtyl moiety to it. The latter does not participate as a chromophore in the light-absorption/emission phenomenon. This simple design opens up new perspectives for the future development of new small-sized CPL organic dyes (e.g., those based on other highly luminescent achiral chromophores and/or chirally perturbing moieties), as well as for the improvement of the CPL properties of the organic molecules spanning their use in photonic applications.

  15. Extension of Light-Harvesting Ability of Photosynthetic Light-Harvesting Complex 2 (LH2) through Ultrafast Energy Transfer from Covalently Attached Artificial Chromophores.

    Science.gov (United States)

    Yoneda, Yusuke; Noji, Tomoyasu; Katayama, Tetsuro; Mizutani, Naoto; Komori, Daisuke; Nango, Mamoru; Miyasaka, Hiroshi; Itoh, Shigeru; Nagasawa, Yutaka; Dewa, Takehisa

    2015-10-14

    Introducing appropriate artificial components into natural biological systems could enrich the original functionality. To expand the available wavelength range of photosynthetic bacterial light-harvesting complex 2 (LH2 from Rhodopseudomonas acidophila 10050), artificial fluorescent dye (Alexa Fluor 647: A647) was covalently attached to N- and C-terminal Lys residues in LH2 α-polypeptides with a molar ratio of A647/LH2 ≃ 9/1. Fluorescence and transient absorption spectroscopies revealed that intracomplex energy transfer from A647 to intrinsic chromophores of LH2 (B850) occurs in a multiexponential manner, with time constants varying from 440 fs to 23 ps through direct and B800-mediated indirect pathways. Kinetic analyses suggested that B800 chromophores mediate faster energy transfer, and the mechanism was interpretable in terms of Förster theory. This study demonstrates that a simple attachment of external chromophores with a flexible linkage can enhance the light harvesting activity of LH2 without affecting inherent functions of energy transfer, and can achieve energy transfer in the subpicosecond range. Addition of external chromophores, thus, represents a useful methodology for construction of advanced hybrid light-harvesting systems that afford solar energy in the broad spectrum.

  16. Ferrocene-quinoxaline Y-shaped chromophores as fascinating second-order NLO building blocks for long lasting highly active SHG polymeric films.

    Science.gov (United States)

    Senthilkumar, Kabali; Thirumoorthy, Krishnan; Dragonetti, Claudia; Marinotto, Daniele; Righetto, Stefania; Colombo, Alessia; Haukka, Matti; Palanisami, Nallasamy

    2016-07-26

    The first example of a Y-shaped ferrocene quinoxaline derivative with a surprisingly high and stable second harmonic generation (SHG) response in composite polymeric films is reported. The interesting quadratic hyperpolarizability values of different substituted Y-shaped chromophores are also investigated in solution by the EFISH technique.

  17. Optical properties of a visible push-pull chromophore covalently bound to carbohydrates: solution and gas-phase spectroscopy combined to theoretical investigations.

    Science.gov (United States)

    Enjalbert, Quentin; Racaud, Amandine; Lemoine, Jérôme; Redon, Sébastien; Ayhan, Mehmet Menaf; Andraud, Chantal; Chambert, Stéphane; Bretonnière, Yann; Loison, Claire; Antoine, Rodolphe; Dugourd, Philippe

    2012-01-19

    The use of visible absorbing and fluorescent tags for sensing and structural analysis of carbohydrates is a promising route in a variety of medical, diagnostic, and therapeutic contexts. Here we report an easy method for covalent attachment of nonfluorescent push-pull chromophores based on the 4-cyano-5-dicyanomethylene-2-oxo-3-pyrroline ring to carbohydrate moieties. The impact of sugar grafting on the optical properties of the push-pull chromophore in the gas phase and in solution was investigated by absorption and action spectroscopy and theoretical methods. The labeled sugars efficiently absorb photons in the visible range, as demonstrated by their intense photodissociation in a quadrupole ion trap. A strong blue shift (-70 nm) of the gas-phase photodissociation intensity maximum is observed upon sugar grafting, whereas no such effect is visible on the solution absorption spectra. Molecular dynamics simulations of labeled maltose in the gas phase describe strong interactions between the sulfonated chromophore and the carbohydrate, which lead to cyclic conformations. These are not observed in the simulations with explicit solvation. Time-dependent density functional theory (TD-DFT) calculations on model molecules permit us to attribute the observed shift to the formation of such cyclic conformations and to the displacement of the negative charge relative to the aromatic moiety of the chromophore.

  18. Locally-excited (LE) versus charge-transfer (CT) excited state competition in a series of para-substituted neutral green fluorescent protein (GFP) chromophore models.

    Science.gov (United States)

    Olsen, Seth

    2015-02-12

    In this paper, I provide a characterization of the low-energy electronic structure of a series of para-substituted neutral green fluorescent protein (GFP) chromophore models using a theoretical approach that blends linear free energy relationships (LFERs) with state-averaged complete-active-space self-consistent field (SA-CASSCF) theory. The substituents are chosen to sample the Hammett σ(p) scale from R = F to NH2, and a model of the neutral GFP chromophore structure (R = OH) is included. I analyze the electronic structure for different members of the series in a common complete-active-space valence-bond (CASVB) representation, exploiting an isolobal analogy between active-space orbitals for different members of the series. I find that the electronic structure of the lowest adiabatic excited state is a strong mixture of weakly coupled states with charge-transfer (CT) or locally excited (LE) character and that the dominant character changes as the series is traversed. Chromophores with strongly electron-donating substituents have a CT-like excited state such as expected for a push-pull polyene or asymmetric cyanine. Chromophores with weakly electron-donating (or electron-withdrawing) substituents have an LE-like excited state with an ionic biradicaloid structure localized to the ground-state bridge π bond.

  19. Theoretical Studies on the First Hyperpolarizabilities of One-dimensional Donor-bridge-acceptor Chromophores and New Applications of BLA in Determining Molecular First Hyperpolarizabilities

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We present a quantum-chemical analysis of the relationship between the bond length alteration (BLA) and the static first hyperpolarizability of a series of one-dimensional (ID)chromophores with donor-bridge-acceptor (D-B-A) structures.The calculated results show that the parameter BLA can be considered as an indicator to evaluate the molecular first hyper-polarizability.Along the direction of molecular ground-state dipole moments, the evolutions of BLA can be classified into three categories: the first is a non-monotonic line, which represents most chromophores; the second is monotonic increasing; and the third, contrarily, is monotonic decreasing.On the whole, the first hyperpolarizabilities of these studied chromophores are the mortotonic functions of BLA along the direction of dipole moments.Therefore, the first hyper-polarizability of these 1D chromophores can be preliminarily evaluated in terms of the deve-lopment of BLA without a rigorous computation.In other words, one can roughly estimate the relative magnitude of the first hyperpolarizability according to the optimized geometry.

  20. Phosphorescence parameters for platinum (II) organometallic chromophores: A study at the non-collinear four-component Kohn–Sham level of theory

    DEFF Research Database (Denmark)

    Norman, Patrick; Jensen, Hans Jørgen Aagaard

    2012-01-01

    A theoretical characterization of the phosphorescence decay traces of a prototypical platinum (II) organic chromophore has been conducted. The phosphorescence wavelength and radiative lifetime are predicted to equal 544 nm and 160 μs, respectively. The third triplet state is assigned as participa...

  1. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  2. New sugar-based gelators bearing a p-nitrophenyl chromophore: remarkably large influence of a sugar structure on the gelation ability

    NARCIS (Netherlands)

    Amanokura, Natsuki; Yoza, Kenji; Shinmori, Hideyuki; Shinkai, Seiji; Reinhoudt, David N.

    1998-01-01

    Three sugar-integrated gelators bearing a p-nitrophenyl group as a chromophore were synthesised. D-Mannose-based compound 3 was too soluble in most organic solvents to act as a gelator whereas D-galactose-based compound 2 was sparingly soluble in most organic solvents. D-Glucose-based compound 1 was

  3. Coloured electrochromic windows based on nanostructured TiO{sub 2} films modified by adsorbed redox chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Cinnsealach, Rachel; Boschloo, Gerrit; Nagaraja Rao, S.; Fitzmaurice, Donald [Department of Chemistry, University College Dublin, Belfield, Dublin 4 (Ireland)

    1999-02-12

    A series of viologens has been synthesised, characterised and tested for their suitability as redox chromophores in electrochromic devices. These viologens contain a phosphonic acid moiety and are irreversibly adsorbed at a transparent nanoporous-nanocrystalline TiO{sub 2} electrode. An electrochromic device consisting of a sandwich of a viologen-modified TiO{sub 2} electrode/electrolyte ({gamma}-butyrolactone, 0.05M LiClO{sub 4}, 0.05M ferrocene)/conducting glass shows excellent electrochromic properties: fast switching times (1-2 s), large changes in absorbance, high colouration efficiencies (up to =200 cm{sup 2}/C) and good long-term stability (>10 000 cycles). Further, the colour changes from transparent or a faint yellow to either a deep blue or a deep green, depending on the nature of the viologen

  4. Experimental tests of the correlated chromophore domain model of self-healing in a dye-doped polymer

    CERN Document Server

    Ramini, Shiva K; Kuzyk, Mark G

    2013-01-01

    Temperature dependent photodegradation and recovery studies of Dipserse Orange 11 (DO11) dye dissolved in poly(methyl methacrylate) and polystyrene polymer hosts are used as a test of the recently proposed correlated chromophore domain model.[1] This model posits that dye molecules form domains or aggregates. The nature of aggregation or how it mediates self healing is not yet well understood. In this paper we present qualitative evidence that supports the hypothesis that the dye molecules undergo a change to a tautomer state with higher dipole moment and hydrogen bond with the amines and keto oxygens of the polymer. Groupings of such molecules in a polymer chain form what we call a domain, and interactions between molecules in a domain make them more robust to photodegradation and mediate self healing.

  5. A New Class of Organic Luminophores With a stilbene Chromophore: 3-Phenylmethylene-1(3-H) Isobenzofuranones

    Science.gov (United States)

    Nikolov, Peter; Fratev, Filip; Minchev, Stoyan

    1983-02-01

    A new class of luminophores with a stilbene chromophore, 3-phenylmethylene-1(3H)-iso-benzofuranones (BPH's), has been investigated. The fluorescence occurs in the region 26000-16000 cm-1, the maximal quantum yield being about 0.6. As a result of substitution or higher polarity of the solvent the ππ* state of the BPH's separates from the fluorescently inactive nπ* state. The S0-S2 absorption transition of the BPH's results from an excitation which is practically localized in the stilbene fragment. The good linear correlation of the fluorescence and absorption maxima and O-O transitions in ethanol with the σp-Hammett constants has been used for an interpretation of the changes in the potential hyperfaces of S0 and S1 states.

  6. LanFP10-A, first functional fluorescent protein whose chromophore contains the elusive mutation G67A.

    Science.gov (United States)

    Roldán-Salgado, Abigail; Sánchez-Barreto, Celidee; Gaytán, Paul

    2016-11-01

    Since Green Fluorescent Protein (GFP) was first successfully expressed in heterologous systems in 1994, many genes encoding other natural autofluorescent proteins (AFPs) have been cloned and subsequently modified by protein engineering to improve their physicochemical properties. Throughout this twenty-two-year period, glycine 67 (Gly67) has been regarded as the only amino acid in the entire protein family that is essential for the formation of the different reported chromophores. In this work, we demonstrate that a synthetic gene encoding LanFP10-A, a natural protein encoded in the genome of the lancelet Branchiostoma floridae containing the G67A mutation, produces a heterologous, functional yellow fluorescent protein when expressed in E. coli. In contrast to LanFP10-A, LanFP6-A, a second GFP-like protein found in the lancelet genome that also contains the natural G67A mutation, was non-fluorescent.

  7. Recent Advances in Stimuli-Responsive Photofunctional Materials Based on Accommodation of Chromophore into Layered Double Hydroxide Nanogallery

    Directory of Open Access Journals (Sweden)

    Wu Li

    2013-01-01

    Full Text Available The assembly of photofunctional molecules into host matrices has become an important strategy to achieve tunable fluorescence and to develop intelligent materials. The stimuli-responsive photofunctional materials based on chromophores-assembled layered double hydroxides (LDHs have received much attention from both academic and industry fields as a result of their advantages, such as high photo/thermal stability, easy processing, and well reversibility, which can construct new types of smart luminescent nanomaterials (e.g., ultrathin film and nanocomposite for sensor and switch applications. In this paper, external environmental stimuli have mainly involved physical (such as temperature, pressure, light, and electricity and chemical factors (such as pH and metal ion; recent progress on the LDH-based organic-inorganic stimuli-responsive materials has been summarized. Moreover, perspectives on further development of these materials are also discussed.

  8. Bandgap Engineering in π-Extended Pyrroles. A Modular Approach to Electron-Deficient Chromophores with Multi-Redox Activity.

    Science.gov (United States)

    Zhylitskaya, Halina; Cybińska, Joanna; Chmielewski, Piotr; Lis, Tadeusz; Stępień, Marcin

    2016-09-07

    A family of bandgap-tunable pyrroles structurally related to rylene dyes was computationally designed and prepared using robust, easily scalable chemistry. These pyrroles show highly variable fluorescence properties and can be used as building blocks for the synthesis of electron-deficient oligopyrroles. The latter application is demonstrated through the development of π-extended porphyrins containing naphthalenediamide or naphthalenediimide units. These new macrocycles exhibit simultaneously tunable visible and near-IR absorptions, an ability to accept up to 8 electrons via electrochemical reduction, and high internal molecular free volumes. When chemically reduced under inert conditions, the most electron-deficient of these macrocycles revealed reversible formation of eight charged states, characterized by remarkably red-shifted optical absorptions, extending beyond 2200 nm. Such features make these oligopyrroles of interest as functional chromophores, charge-storage materials, and tectons for crystal engineering.

  9. Theoretical Investigation on the Electron and Energy Transfer between Peripheral Carrier Transport Groups and Central Chromophores in Electroluminescent Materials

    Institute of Scientific and Technical Information of China (English)

    潘玉钰; 刘丹丹; 许海; 刘晓冬; 孙冠楠; 杨兵; 马於光

    2012-01-01

    The molecular materials with structures of luminescent core and peripheral carrier groups (e.g. carbazoles), have exhibited high-performance in organic light-emitting diodes (OLEDs). Present work is to understand the basic process of electronic and energy exchange between the peripheral functional groups and the central core through quantum chemical analysis. As an example, 4,7-bis(9,9-bis(6-(9H-carbazol-9-yl)hexyl)-9H-fluoren-2-yl)benzo[c]- [1,2,5]thiadiazole (TCBzC) is investigated in regards to optoelectronic properties using density functional theory (DFT). The results suggest that the forbidden transition from peripheral carbazole to the central chromophore core makes for separated electrical and optical properties, and high performance electroluminescence (EL) is mainly at- tributed to the energy-transfer from carbazoles to the fluorene derivative core.

  10. Photoinduced energy transfer processes within dyads of metallophthalocyanines compactly fused to a ruthenium(II) polypyridine chromophore.

    Science.gov (United States)

    Haas, Marco; Liu, Shi-Xia; Kahnt, Axel; Leiggener, Claudia; Guldi, Dirk M; Hauser, Andreas; Decurtins, Silvio

    2007-09-28

    An unsymmetric, peripherally octasubstituted phthalocyanine (Pc) 1, which contains a combination of dipyrido[3,2-f:2',3'-h] quinoxaline and 3,5-di-tert-butylphenoxy substituents, has been obtained via a statistical condensation reaction of two corresponding phthalonitriles. Synthetic procedures for the selective metalation of the macrocyclic cavity and the periphery of 1 were developed, leading to the preparation of the key precursor metallophthalocyanines 3-5 in good yields. Two different strategies were applied to the synthesis of compact dyads MPc-Ru(II) 6-8 (M = Mg(II), Co(II), Zn(II)). Intramolecular electronic interactions in these dyads were studied by absorption, emission, and transient absorption spectroscopy. Upon photoexcitation, these dyads exhibit efficient intramolecular energy transfer from the Ru(II) chromophore to the MPc moiety.

  11. Benzo[f]azino[2,1-a]phthalazinium cations: novel DNA intercalating chromophores with antiproliferative activity.

    Science.gov (United States)

    Martínez, Valentín; Burgos, Carolina; Alvarez-Builla, Julio; Fernández, Gerónimo; Domingo, Alberto; García-Nieto, Raquel; Gago, Federico; Manzanares, Ignacio; Cuevas, Carmen; Vaquero, Juan J

    2004-02-26

    New azaquinolizinium-type cations have been obtained from isochromane. The synthesis was completed over seven steps and included as the key feature an intramolecular Westphal condensation. This first example of the intramolecular process allowed the preparation of benzo[f]pyrido[2,1-a]phthalazinium and benzo[f]quino[2,1-a]phthalazinium salts, which were evaluated as DNA intercalators, DNA topoisomerase I inhibitors, and antiproliferative compounds. Both cationic systems behave as DNA intercalators and exhibit antiproliferative activity. The pentacyclic benzo[f]quino[2,1-a]phthalazinium cations also have an inhibitory effect on the catalytic activity of DNA topoisomerase I, without trapping of cleavage complexes. Structural characterization using density functional theory indicates that the fused ring systems are slightly nonplanar, and additional molecular modeling studies suggest a preferred orientation for the intercalating chromophores within a typical CpG or TpG intercalation site.

  12. Ultrafast dual photoresponse of isolated biological chromophores: link to the photoinduced mode-specific non-adiabatic dynamics in proteins

    DEFF Research Database (Denmark)

    Bochenkova, Anastasia; Andersen, Lars Henrik

    2013-01-01

    channels. Deactivation includes vibrational resonant photodetachment and internal conversion. Here, we provide a detailed insight in the efficiency of different vibrational modes in promoting a selective photoresponse in the bare GFP chromophore anion. We introduce a general theoretical model...... that is capable to account for the alternative non-equivalent pathways in internal conversion, and we outline the factors, by which the photo-initiated response may be altered in this channel. The topography around the planar minimum in S1 and the two distinct types of the S1/S0 conical intersections obtained...... the ultrafast non-statistical electron emission coupled with vibrational (de)coherence, whereas a vibrational pre-excitation in the ground state may lead to the ultrafast non-statistical internal conversion through a conical intersection. We also discuss the implication of our results to the photo-initiated non...

  13. Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo

    Science.gov (United States)

    Chitnis, Danial; Airantzis, Dimitrios; Highton, David; Williams, Rhys; Phan, Phong; Giagka, Vasiliki; Powell, Samuel; Cooper, Robert J.; Tachtsidis, Ilias; Smith, Martin; Elwell, Clare E.; Hebden, Jeremy C.; Everdell, Nicholas

    2016-06-01

    The first wearable multi-wavelength technology for functional near-infrared spectroscopy has been developed, based on a custom-built 8-wavelength light emitting diode (LED) source. A lightweight fibreless probe is designed to monitor changes in the concentrations of multiple absorbers (chromophores) in biological tissue, the most dominant of which at near-infrared wavelengths are oxyhemoglobin and deoxyhemoglobin. The use of multiple wavelengths enables signals due to the less dominant chromophores to be more easily distinguished from those due to hemoglobin and thus provides more complete and accurate information about tissue oxygenation, hemodynamics, and metabolism. The spectroscopic probe employs four photodiode detectors coupled to a four-channel charge-to-digital converter which includes a charge integration amplifier and an analogue-to-digital converter (ADC). Use of two parallel charge integrators per detector enables one to accumulate charge while the other is being read out by the ADC, thus facilitating continuous operation without dead time. The detector system has a dynamic range of about 80 dB. The customized source consists of eight LED dies attached to a 2 mm × 2 mm substrate and encapsulated in UV-cured epoxy resin. Switching between dies is performed every 20 ms, synchronized to the detector integration period to within 100 ns. The spectroscopic probe has been designed to be fully compatible with simultaneous electroencephalography measurements. Results are presented from measurements on a phantom and a functional brain activation study on an adult volunteer, and the performance of the spectroscopic probe is shown to be very similar to that of a benchtop broadband spectroscopy system. The multi-wavelength capabilities and portability of this spectroscopic probe will create significant opportunities for in vivo studies in a range of clinical and life science applications.

  14. Protonation state and structural changes of the tetrapyrrole chromophore during the Pr --> Pfr phototransformation of phytochrome: a resonance Raman spectroscopic study.

    Science.gov (United States)

    Kneip, C; Hildebrandt, P; Schlamann, W; Braslavsky, S E; Mark, F; Schaffner, K

    1999-11-16

    The photoconversion of phytochrome (phytochrome A from Avena satina) from the inactive (Pr) to the physiologically active form (Pfr) was studied by near-infrared Fourier transform resonance Raman spectroscopy at cryogenic temperatures, which allow us to trap the intermediate states. Nondeuterated and deuterated buffer solutions were used to determine the effect of H/D exchange on the resonance Raman spectra. For the first time, reliable spectra of the "bleached" intermediates meta-R(A) and meta-R(C) were obtained. The vibrational bands in the region 1300-1700 cm(-)(1), which is particularly indicative of structural changes in tetrapyrroles, were assigned on the basis of recent calculations of the Raman spectra of the chromophore in C-phycocyanin and model compounds [Kneip, C., Hildebrandt, P., Németh, K., Mark, F., Schaffner, K. (1999) Chem. Phys. Lett. 311, 479-485]. The experimental resonance Raman spectra Pr are compatible with the Raman spectra calculated for the protonated ZZZasa configuration, which hence is suggested to be the chromophore structure in this parent state of phytochrome. Furthermore, marker bands could be identified that are of high diagnostic value for monitoring structural changes in individual parts of the chromophore. Specifically, it could be shown that not only in the parent states Pr and Pfr but also in all intermediates the chromophore is protonated at the pyrroleninic nitrogen. The spectral changes observed for lumi-R confirm the view that the photoreaction of Pr is a Z --> E isomerization of the CD methine bridge. The subsequent thermal decay reaction to meta-R(A) includes relaxations of the CD methine bridge double bond, whereas the formation of meta-R(C) is accompanied by structural adaptations of the pyrrole rings B and C in the protein pocket. The far-reaching similarities between the chromophores of meta-R(A) and Pfr suggest that in the step meta-R(A) --> Pfr the ultimate structural changes of the protein matrix occur.

  15. Highly conserved residues Asp-197 and His-250 in Agp1 phytochrome control the proton affinity of the chromophore and Pfr formation.

    Science.gov (United States)

    von Stetten, David; Seibeck, Sven; Michael, Norbert; Scheerer, Patrick; Mroginski, Maria Andrea; Murgida, Daniel H; Krauss, Norbert; Heyn, Maarten P; Hildebrandt, Peter; Borucki, Berthold; Lamparter, Tilman

    2007-01-19

    The mutants H250A and D197A of Agp1 phytochrome from Agrobacterium tumefaciens were prepared and investigated by different spectroscopic and biochemical methods. Asp-197 and His-250 are highly conserved amino acids and are part of the hydrogen-bonding network that involves the chromophore. Both substitutions cause a destabilization of the protonated chromophore in the Pr state as revealed by resonance Raman and UV-visible absorption spectroscopy. Titration experiments demonstrate a lowering of the pK(a) from 11.1 (wild type) to 8.8 in H250A and 7.2 in D197A. Photoconversion of the mutants does not lead to the Pfr state. H250A is arrested in a meta-Rc-like state in which the chromophore is deprotonated. For H250A and the wild-type protein, deprotonation of the chromophore in meta-Rc is coupled to the release of a proton to the external medium, whereas the subsequent proton re-uptake, linked to the formation of the Pfr state in the wild-type protein, is not observed for H250A. No transient proton exchange with the external medium occurs in D197A, suggesting that Asp-197 may be the proton release group. Both mutants do not undergo the photo-induced protein structural changes that in the wild-type protein are detectable by size exclusion chromatography. These conformational changes are, therefore, attributed to the meta-Rc --> Pfr transition and most likely coupled to the transient proton re-uptake. The present results demonstrate that Asp-197 and His-250 are essential for stabilizing the protonated chromophore structure in the parent Pr state, which is required for the primary photochemical process, and for the complete photo-induced conversion to the Pfr state.

  16. Application of isothermal titration calorimetry for characterizing thermodynamic parameters of biomolecular interactions: peptide self-assembly and protein adsorption case studies.

    Science.gov (United States)

    Kabiri, Maryam; Unsworth, Larry D

    2014-10-13

    The complex nature of macromolecular interactions usually makes it very hard to identify the molecular-level mechanisms that ultimately dictate the result of these interactions. This is especially evident in the case of biological systems, where the complex interaction of molecules in various situations may be responsible for driving biomolecular interactions themselves but also has a broader effect at the cell and/or tissue level. This review will endeavor to further the understanding of biomolecular interactions utilizing the isothermal titration calorimetry (ITC) technique for thermodynamic characterization of two extremely important biomaterial systems, viz., peptide self-assembly and nonfouling polymer-modified surfaces. The advantages and shortcomings of this technique will be presented along with a thorough review of the recent application of ITC to these two areas. Furthermore, the controversies associated with the enthalpy-entropy compensation effect as well as thermodynamic equilibrium state for such interactions will be discussed.

  17. Thirty years of European biotechnology programmes: from biomolecular engineering to the bioeconomy.

    Science.gov (United States)

    Aguilar, Alfredo; Magnien, Etienne; Thomas, Daniel

    2013-06-25

    This article traces back thirty years of biotechnology research sponsored by the European Union (EU). It outlines the crucial role played by De Nettancourt, Goffeau and Van Hoeck to promote and prepare the first European programme on biotechnology (1982-1986) run by the European Commission. Following this first biotechnology programme, others followed until the current one, part of the seventh Framework Programme for Research, Technological Development and Demonstration (2007-2013) (FP7). Particular attention is given to the statutory role of the European institutions in the design and orientation of the successive biotechnology programmes, compared to the more informal-yet visionary-role of key individuals upstream to any legislative decision. Examples of success stories and of the role of the biotechnology programmes in addressing societal issues and industrial competitiveness are also presented. Finally, an outline of Horizon 2020, the successor of FP7, is described, together with the role of biotechnology in building the bioeconomy. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. AplA, a member of a new class of phycobiliproteins lacking a traditional role in photosynthetic light harvesting.

    Science.gov (United States)

    Montgomery, Beronda L; Casey, Elena Silva; Grossman, Arthur R; Kehoe, David M

    2004-11-01

    All known phycobiliproteins have light-harvesting roles during photosynthesis and are found in water-soluble phycobilisomes, the light-harvesting complexes of cyanobacteria, cyanelles, and red algae. Phycobiliproteins are chromophore-bearing proteins that exist as heterodimers of alpha and beta subunits, possess a number of highly conserved amino acid residues important for dimerization and chromophore binding, and are invariably 160 to 180 amino acids long. A new and unusual group of proteins that is most closely related to the allophycocyanin members of the phycobiliprotein superfamily has been identified. Each of these proteins, which have been named allophycocyanin-like (Apl) proteins, apparently contains a 28-amino-acid extension at its amino terminus relative to allophycocyanins. Apl family members possess the residues critical for chromophore interactions, but substitutions are present at positions implicated in maintaining the proper alpha-beta subunit interactions and tertiary structure of phycobiliproteins, suggesting that Apl proteins are able to bind chromophores but fail to adopt typical allophycocyanin conformations. AplA isolated from the cyanobacterium Fremyella diplosiphon contained a covalently attached chromophore and, although present in the cell under a number of conditions, was not detected in phycobilisomes. Thus, Apl proteins are a new class of photoreceptors with a different cellular location and structure than any previously described members of the phycobiliprotein superfamily.

  19. Reordering hydrogen bonds using Hamiltonian replica exchange enhances sampling of conformational changes in biomolecular systems

    NARCIS (Netherlands)

    Vreede, J.; Wolf, M.G.; de Leeuw, S.W.; Bolhuis, P.G.

    2009-01-01

    Hydrogen bonds play an important role in stabilizing (meta-)stable states in protein folding. Hence, they can potentially be used as a way to bias these states in molecular simulation methods. Previously, Wolf et al. showed that applying repulsive and attractive hydrogen bond biasing potentials in a

  20. Perturbing dissimilar biomolecular targets from natural product scaffolds and focused chemical decoration

    DEFF Research Database (Denmark)

    Nielsen, John; Tung, Truong Thanh; Tim, Holm Jakobsen

    2017-01-01

    Fungal plasma membrane H+-ATPase (Pma1) has recently emerged as a potential target for the discovery of new antifungal agents. This p-type pump plays a pivotal role in many physiol. functions and processes inside the cell. Therefore, inhibition of Pma1 could lead to discovery of new antifungal...